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Zusammenfassung

In dieser Arbeit werden die Forschungsergebnisse der Entwicklung sicherheitskritischer Soft-
ware mittels den Prinzipien von Open-Source2-Software beschrieben. Es wurden verschiedene
modellbasierte Entwürfe und Architekturen für das Gebiet des Schienenverkehrs, inklusive
wiederverwendbare Formalismen zur Verifikation & Validation, untersucht. Außerdem wurden
die Eindämmung von möglichen Sicherheitsbedrohungen3 durch plattform- oder hersteller-
speziefische Anpassung der modellierten und offenen Kern-Software analysiert, und als Lösung
der Einsatz von Hardware-Virtualisierung im Gegensatz zu traditionellen Speicherverwaltung
entwickelt. Der Hauptteil dieser Arbeit besteht aus der Entwicklung einer Domänen-spezifischer
Sprache (DSL), um Teile des europäischen Zug-Kontrollsystems (ETCS) zu modellieren, welche
aus dem Spezifikationsdokument speziell abgeleitete Daten-, Kontrollflussformalismen und
Sprachelemente verwendet. Das neue GOPPRR Meta-Metamodell wurde als Erweiterung des
bereits existierenden GOPRR Meta-Metamodell entwickelt, um den Anforderungen an die
Syntax-Definition für die Modellierung für sicherheitskritische Systeme zu genügen. GOPPRR
bietet Methoden für die Definitionen von Randbedingungen4 mittels der Objekt-Randbedingung-
Sprache (OCL), sodass eine statische Semantik definiert werden kann, um die Korrektheit
von Modellen sicherzustellen. Teile der ETCS Spezifikation für die Kontrolleinheit in Zügen
wurden mittels eines neuen Metamodells modelliert. Ein Domänen-Rahmenwerk5 und ein
entsprechender Code-Generator mit integrierter Unterstützung für Verifikation & Validation
wurden entworfen und entwickelt, um die Transformation des Modells in eine ausführbare
Anwendung zu ermöglichen. Um zu demonstrieren, dass das Modell der Spezifikation kor-
rekt ist, wurde die so generierte Anwendung in einer Simulationsumgebung ausgeführt und
entsprechende Simulationsprotokolle erstellt. Die Übereinstimmung dieser Protokolle mit dem
erwartetem Verhalten aus dem Spezifikationsdokument bestätigten die verwendeten Methoden
und Strategien als mögliches Konzept.

2dt. offene Quellen
3eng. security threats
4eng. constraints
5eng. domain framework
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Abstract

This document describes the research results that were obtained from the development of
safety-critical software under the principles of open source. Different model-based designs
and architectures within the railway control system application domain, including re-usable
formalisms for verification & validation, were investigated. The reduction of possible security
threats caused by platform or supplier specific adaptations of modelled open-core software was
analysed, and a possible solution by the usage of hardware virtualisation, instead of traditional
memory management, was elaborated. At core of this work, the development of a graphical
domain-specific language for modelling parts of the European Train Control System (ETCS) is
presented, which is based on specialised data, control flow formalisms, and language elements
derived from the specification document. For a more precise and therefore more appropriate
syntax definition for safety-critical systems, the already existing GOPRR meta meta model was
extended to the newly developed GOPPRR meta meta model. GOPPRR includes methods for
defining constraints by the object constraint language, which supports the definition of static
semantics to ensure correct model instances. Parts of the ETCS specification related to the
train on-board unit were modelled in a new meta model. To transform the developed model of
the ETCS specification into an executable application, a domain framework, according to the
new meta model and the corresponding code generator, were designed and implemented, which
have implicitly an integrated support for the verification & validation process. To proof the
correctness of the modelled specification, the resulting application was executed in a simulative
environment to obtain simulation traces. The correspondence of traces to the expected data
from the specification document supported the used methods and strategies in this dissertation
as proof of concept.
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1
Introduction

In this chapter, the objectives of this dissertation are introduced. Furthermore, its main
contributions are emphasised and explained in detail. Afterwards, the delimitation from already
existing, related work is introduced. This chapter terminates with a summary about the
structure of this document.

1.1. Objectives

This dissertation investigates the potential of model-based design and verification and validation
of safety-critical control systems in presence of re-usable open source software. Railway control
systems are used here as application domain, specifically the European Train Control System
(ETCS) [24]. This topic is highly relevant from an industrial and also from a research perspective
because manufacturers of complex safety-critical control systems, especially in the avionic and
in the railway domains, currently perform a change of strategy regarding the development of
software core components.

In the past, this was completely under responsibility of the supplier of the embedded
controller. Since system integrators, like German Railways, always use several suppliers for each
component in order to avoid single-source situations, this led to similar software components
being redundantly developed by different suppliers and resulted in costs that were no longer
acceptable. As a consequence, today’s strategy is to manage a “pool” of core algorithms for
crucial control algorithms to be re-used by every supplier on its proprietary hardware platform.
There is already a general consent that this pool should not just consist of software code
but instead of system (component) models, so that platform-specific code can be generated
following the model-based development paradigm by extending, specializing, instantiating, and
transforming these models. This new strategy leads to a number of interesting challenges for
research activities in the fields of system modelling, operating systems, and embedded systems
verification and are analysed in the context of this dissertation project.

The overall research process of this dissertation is graphically summarised in Figure 1.1,
which shows the interconnection of the main research objectives. It should be noted that the
order in the research process does not correspond directly to the order of topics or rather
chapters in this document, which additionally will be explained in Section 1.4.
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Chapter 1. Introduction

Figure 1.1.: Research process of the main objectives

1.2. Main Contributions

The following new, scientific contributions were gained by this dissertation:

→ the introduction of open source software developed under model-driven aspects with the
new denomination open model software [27]

→ the usage of hardware virtualisation as security measure in the railway domain for open
source software [27]

→ the GOPPRR1 meta meta model as an extension of the existing GOPRR meta meta
model that is applicable for the modelling of safety-critical systems [29]

→ a graphical domain-specific language for a subset of the ETCS specification as case study
including a formal specification language as meta model, a domain framework, a code
generator, and a model of parts of the ETCS specification [73, 28, 29]

→ the development of a completely model-driven tool chain for a case study of the European
Train Control System (ETCS) for dependable software [28]

Each point is discussed in detail in the following paragraphs.
Initially, it was necessary to examine, which prerequisites have to be met in order to develop

safety-critical control systems as open source software. Since the usage of Domain-Specific
Modelling (DSM) [48] and the extension of such models by supplier-specific implementations
implies certain security related problems, those were analysed and discussed. The usage of
hardware virtualisation [94] has been proposed as solution and is described in [27].

The selection of an appropriate meta meta model is of certain interest since it builds the
basis for the syntax definition of the Domain-Specific Language (DSL) [48]. Although the
Graphs, Objects, Properties, Roles, and Relationships (GOPRR) [46] meta meta model fulfils
most of the needs, the Graphs, Objects, Ports, Properties, Roles, and Relationships (GOPPRR)

1It must be noted that this acronym was also claimed by MetaCASE – developer of the MetaEdit+ [58]
application – during the development of this work to also reflect the presence of ports in their meta meta
model. However, the GOPPRR meta meta model extension developed in this thesis must not be understood
as a rival product of the GOPPRR meta meta model used in MetaEdit+ but as an extension for it that is
required in the context of safety-critical systems.
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1.3. Related Work

meta meta model extension was developed with the aim to be able to define a more precise
concrete syntax and certain model constraints as static semantics in a general way. Parts of
these results will be published in a special issue of Science of Computer Programming [29].

A DSL or rather a meta model based on GOPPRR was developed for ETCS [39], which is
an excellent choice for a case study, because it is a publicly available (and usable) train control
standard. There also exists an initiative of the German Railways (Deutsche Bahn) to develop
an open source solution for ETCS. This initiative led to an European project supported by the
Information Technology for European Advancement (ITEA2) board [44] and funded in part by
the German Federal Ministry of Education and Research (Bundesministerium für Bildung und
Forschung). The University of Bremen is a participant within the openETCS consortium.

During the ETCS meta model development, several new formalisms, like data and control
flow, were integrated, tested, and adapted to certain specialities of the ETCS specification.
Also, new formalisms mainly derived from the specification were developed to support later
the transfer of the mostly textual specification document to a model of the meta model. Since
the meta model had to be developed in several iterative steps to test certain formalisms or
rather syntaxes, an initial version of the DSL was published in a book chapter [73] in [30]. A
new version of the DSL will be also included in [29] and the latest results can be found in this
document.

According to the instances of a DSL or a Model-Driven Architecture (MDA) [45], a domain
framework was developed, which already integrates the results from the initial security analysis
in form of hardware virtualisation and also hardware abstraction. Additionally, a code generator
was realised as link between model and domain framework, which also provides methods for
verification and validation by dynamic testing and model constraint checking. Parts of these
methods and strategies are independent from the meta model for ETCS and are therefore
completely re-usable for any DSL using the GOPPRR meta meta model. To test the ETCS
model or rather the generated code, a virtual simulation environment was set up, which can be
used to trace the specification model behaviour. The developed model-driven tool chain of the
case study will be published in [28].

The requirements for verification and validation were investigated for applicable safety
standards in the railway domain. Thus, verification mechanisms were integrated into the tool
chain for testing all static code and the transformation processes for the code generation. A
static semantics was defined by a set of model constraints to ensure the validity of concrete
models.

1.3. Related Work

Domain-Specific Modelling in the Railway Domain The general applicability of DSM in the
railway domain was successfully investigated in [59] and [77]. Especially in [59], the potential
of domain-specific modelling for train control applications was investigated, but, in contrast to
this thesis, with focus on the control centre perspective. More important, this work adds the
aspect of open source software in the railway domain.
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Chapter 1. Introduction

MontiCore MontiCore [52, 53] is a framework that is specialised for the development of
text-based domain-specific languages [36]. A typical task during the development of these is
the definition of the concrete and abstract syntax. In textual languages, the concrete syntax is
also called grammar. While the definition of the grammar is mostly related to the development
of the available textual constructs and elements, the abstract syntax is needed for parsing
concrete text instances that conform to the grammar.

Therefore, both syntax types must be held synchronised or rather must be modified together.
Normally, the concrete syntax / grammar is in the main focus during the development of the
textual language. Thus, modifications in the grammar render necessary adaptations of the
abstract syntax. To avoid this often recurring task, MontiCore provides an own grammar
format for the ANTLR [71] parser generator, from which an abstract syntax (tree) can be
generated automatically. Accordingly, the manual update and development of the abstract
syntax can be omitted.

Although MontiCore seems to be an excellent starting point for the development of textual
languages, the case study in Part III developed in this work uses a graphical modelling formalism,
which is motivated in Chapter 3.

Open Proofs The development of safety-critical software as re-usable open source is one of
the basic ideas that supports this dissertation. A similar concept called Open Proofs [67] also
addresses this idea because the term “open proofs” refers to the public proofs of correctness of
a certain software. Open Proofs requires

• the entire implementation,
• automatically-verifiable proof(s) of at least one key property, and
• required tools (for use and modification)

to be free/libre open source software (FLOSS) [97]. Open Proofs demands that in such a
publicly developed tool-chain faults can be found more easily and eliminated due to a big
community using them. Nevertheless, currently there exist only few examples of software that
implement the Open Proofs principle.

In contrast to the contributions of this dissertation, Open Proofs is only a concept that can
be applied to the software development for safety-critical systems.

openETCS The openETCS [39, 38] initiative of German Railways (Deutsche Bahn) is based
on the Open Proofs idea [41, 40]. Reviewing evidence, where security threats have been
purposefully integrated into closed-source commercial software products, the initiators argued
that open source software could be useful – perhaps even mandatory in the future – to ensure
safety and security of railway control systems. Even though the standards applicable for
safety-critical systems software development in the railway domain [11, 10] require independent-
third-party verification and validation, the complexity of the source code on the one hand
and the limited budget available for V&V on the other hand can only mitigate the threat of
safety and security vulnerabilities. A guarantee to uncover all compromising code fragments
inadvertently or purposefully injected into the code cannot be given. As a consequence, in
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addition to the V&V efforts required by the standards the broad peer-review enabled by publicly
available software could really increase software dependability2.

As of today, the openETCS approach has stirred considerable interest, in particular among
the research communities, which are now invited to act – at least in the V&V branch of the
system development process – as equal partners to commercial railway manufacturers. This
resulted in a European ITEA2 [44] project initiative, which is currently in progress, but, due
to the short project life time, no remarkable results are available.

In contrast to this work, especially to the developed case study, the openETCS project
heavily focusses on the tool development to fully realise the Open Proofs concept. The case
study was primarily developed to demonstrate that the main contributions of this dissertation
can be seen as proof of concept for the applicability of open source software in safety-critical
systems in the railway domain. A realisation of a tool chain that completely corresponds to
the Open Proofs concept was not a main goal.

AUTOSAR The idea of an open architecture is of course not limited to the railway domain.
The Automotive Open System Architecture (AUTOSAR) [5] is an industrial approach that
facilitates the interchange of software for control modules used in automotive systems. AU-
TOSAR does not only include a specification for the software architecture but also for the used
development tools. It defines the following goals [5]:

• implementation and standardization of basic system functions as an OEM wide “Standard
Core” solution

• scalability to different vehicle and platform variants
• transferability of functions throughout network
• integration of functional modules from multiple suppliers
• consideration of availability and safety requirements
• redundancy activation
• maintainability throughout the whole “Product Life Cycle”
• increase use of “Commercial off the shelf hardware”
• software updates and upgrades over vehicle lifetime

In contrast to the main goal of this dissertation project, AUTOSAR only defines an open
architecture, but does not require the developed software or development tools to be open
source or even to use a free/libre open source development strategy [97].

TOPCASED The Toolkit in Open Source for Critical Applications & Systems Development
(TOPCASED) [83] is a different approach for a standardised development. It is an extension
of the Eclipse [21] Integrated Development Environment (IDE), which provides methods and
tools for the development of safety-critical software or rather systems for the avionics domain.
In contrast to AUTOSAR, TOPCASED does not define a certain system and/or software
architecture but the development process by formalisms and tools. Although TOPCASED
is, like the Eclipse, IDE published under a FLOSS software license, the developed software is
typically not.

2Following [55], dependability, in particular, safety, and security are emergent properties that can only be
attributed to complete systems and not to software alone.
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ERTMS Formal Specs The ERTMS Formal Specs [26] is an application for modelling parts
of the ETCS specification [85]. The motivation is similar as for parts of this dissertation project
since the transfer of the textual specification to a formal model provides better methods during
the system development3 and supports direct testing on the model for V&V. The ERTMS
Formal Specs is developed by the company ERTMS Solutions, which addresses their product
to costumers in the area of ETCS hardware / system suppliers.

Since only very few publications exist about the DSL, which only present small parts, a
comparison with the in this dissertation developed DSL or rather meta model is hardly possible.
It can be only determined that the ERTMS Formal Specs formalisms are strongly aligned to the
textual formalisms used in the ETCS specification while parts have a graphical representation.
The focus lays mainly on the execution of the model in a simulation environment instead of
generating code for an executable binary. At the end of October 2012 an open source version of
the ERTMS Formal Specs application was released, but the tool chain and DSL development in
this dissertation was already finished at this point. Thus, possible contributions by the ERTMS
Formal Specs application could not been taken into account for the case study development.

In contrast to the DSL developed for this dissertation the ERTMS Formal Specs is distributed
as one single application and accordingly focuses and the tool development, similar to the
openETCS project. Thus, no extendible tool chain is provided, no public meta meta model
is employed, and neither a full definition of the concrete and abstract syntax and the static
semantics of the meta model is available. Another difference is that the contributed case
study is a pure graphical DSL because this approach in general provides the maximal possible
abstraction.

In general, the ERTMS Formal Specs is a specialised, commercial software product for ETCS
component suppliers, which source code is now published under an open source license. On the
other hand, the case study in this work was used to investigate the potential of developing
train control applications as open source software and not only distributing them under an
open source software license. This takes the complete development process into account and
is not especially focussed on the tool development. Accordingly, ETCS was only used as an
example for a train control application.

1.4. Structure of this Document

This document is divided in four major parts. Part I provides background information needed
for understanding the following parts. It introduces concepts for safe railway operation by
means of the European Train Control System. Also, a brief introduction to Domain-Specific
Modelling is given. This part concludes with the choice of a meta meta model and modelling
application for this work. The last chapter in this part deals with the new developed extension
for the selected meta model, which is needed for the integration of safety-critical software.

Part II explains mechanisms of verification and validation for safety-critical systems by using
examples of applicable standards and how they might be used for the development of safety-
critical open source software. The next chapter in this part elaborates security problems arose
by the development of open source software and provides a solution by hardware virtualisation.

3by modelling
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The new term open model software is defined as software with a model-driven architecture
developed as open source software.

A case study for the European Train Control System as Domain-Specific Language for open
model software is described in Part III. Following the ideas presented in [39] and [38], this open
model software has been labelled openETCS. It should be noted that the name openETCS R©
was registered at the end of this dissertation project as trademark by German Railways. Since
this work is non-commercial research, the term is used in this document as name for the case
study and does not refer to a product of German Railways.

The four typical instances meta model, model, domain framework, and code generators are
explained in separated chapters. The last chapter of this part discusses how the gained instances
are validated in a simulation process. Especially for understanding Chapter 8 about the design
and implementation of the domain framework and the generator application, basic knowledge
(class, sequence/interaction, and deployment diagrams) of the UML superstructure [66] is
required.

The case study is followed by Chapter 12 that concludes about all preceding chapters and
discusses about possible further work.

Part IV merges all references like meta model syntaxes or source code for the case study in
Part III as appendix.

Requirements, problems, and advantages that are of global interest in this document and
not limited to a single chapter are enumerated in a certain style. Requirements are prefixed by
a “Req.” followed by a unique, iterated number, advantages have a “Adv.”, and problems a
“Prob.” prefix. Therefore, each Req.n, Adv.m and Prob.l exist only once in this document and
can be uniquely referred to.
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2
Concepts for Safe Railway
Operation and Control

In general, a railway system can be divided in three components: [69, p. 94]

infrastructure trackwork, signalling equipment, stations, and elements for the
electrical power supply1

rolling stock cars and locomotives

system of operating rules provides a set of operating rules and procedures to ensure safe2

railway operation

Infrastructure and rolling stock can be interpreted as the hardware of a railway system while
the operating rules and procedures represent the software. Train control systems are typically
realised as software. They use the hardware of a railway system to ensure safe railway operation.
There exist various kinds of strategies for train control systems. A comprehensive description
of typically strategies can be found in [69].

The work presented in this dissertation focuses on Automatic Train Control (ATP) systems,
which cause an automatic train stop in the case that any active limits are overpassed. Those
limits can refer to the speed of the train or to a certain distance on the track. For ATP systems,
data transmission from track-to-train is always needed to inform the train about active limits.
Also, the precise determination of the train location on the track is needed for distance limits.
More sophisticated ATP systems also use data transmission from train-to-track to inform a
control centre about the train status. There exits two types of ATP systems:

• intermittent
• continuous

1not always available
2safe relates here to the avoidance of any possible incidences that could harm any human or the environment.
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Intermittent ATP: In intermittent ATP systems, the track-to-train communication is only
established on certain points. Possible safety-functions of an intermittent ATP [69, p. 95] are:

automatic warning warning on approach to a stop-point or on approach to other
active limits

braking curve supervision guarantees that a stop-point is not overpassed at all or only at a
certain distance

train stop ensures that the train stops after an overpassed stop signal

An example for an intermittent ATP is the German punktförmige Zugbeeinflussung (PZB) [70,
pp. 71-77], which is also used in several other countries. The disadvantage of such system is
that new limits can be only submitted to the train at certain points of the track. For example,
a train-stop can not be triggered between two submission points. The benefits are the low
investment and maintenance costs on the infrastructure side.

Continuous ATP: In continuous ATP systems, the train-to-track and track-to-train commu-
nication is permanently established. This may invoke cable-loop-devices on the track or radio.
Discrete devices may be additionally used for continuous systems. Of course, a continuous
ATP system can provide the same safety-functions as an intermittent one. Additionally, speed
profiles [69, p. 99ff] can be generated to automatically guide a train in respect to

current speed limit active limit that may not be exceeded

target speed may not be exceeded at the target distance

target distance distance to new speed limit

An example of a continuous ATP is the German linienförmige Zugbeeinflussung (LZB) [70,
pp. 77-84], which is the successor of PZB. Compared with intermittent ATP systems, continuous
systems need more investment costs for the infrastructure but can provide more efficient safety-
functions.

2.1. Requirements for a Train Control System as Open Source

Software

The implementation of a train control system as Open Source Software (OSS) [96] or even
as Free/Libre Open Source Software (FLOSS) implies that the software is published3 and is
accessible for a wide mass of software developers. Train control systems are normally defined
by a set of documents called specification. A result of implementing a train control system by
following its specification is that the relevant4 parts of it can be found in the source code as
a set of statements in a certain programming language. In other words, the specification is

3typically over the Internet
4also called: normative
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indirectly published via the source code. This is a problem if the specification is not licensed in
the manner of OSS or FLOSS, which means generally public accessible and usable. Therefore,
it is only meaningful to develop OSS or FLOSS for train control systems which specification is
adequately licensed. This circumstance directly influenced the choice of train control system
used for the case study in Part III. Further issues related to OSS and FLOSS software for
safety-critical systems are discussed in Chapter 6.

2.2. European Train Control System

The European Train Control System (ETCS) [69, pp. 102-105] is a component of the stan-
dardised European train traffic control system, which should replace the several different
used train safety systems in European countries. The initiative for creating a general train
control system for the European Union was already launched in 1990. Meanwhile, there exist
several revisions of the specification of ETCS, which are now published and maintained by the
European Railways Agency (ERA) [22]. The actual version of the ETCS specification can be
found in [24]. The specification itself is divided in so-called Subsets, which combine a set of
documents for a certain specification issue. The following description of ETCS mainly relates
to the Subset-026 [85], which is also called System Requirement Specification (SRS). It must
be emphasised that this work refers to the specification version 2.3.0, which was mandatory at
the beginning of this work in 2010.

The SRS 2.3.0 consists of seven documents:

Introduction general introduction to ETCS and the documents in the SRS [88]

System Description description of an ETCS [86]

Principles principles for ETCS [91]

Modes and Transition description of possible modes and transition in ETCS [90]

Procedures operation procedures [92]

ERTMS/ETCS Language structures for data transmission [87]

Messages data structures for radio communication in ETCS [89]

This SRS document often refers to another specification element outside the Subset-026, the
Functional Requirement Specification (FRS) [23]. The FRS defines the functionality that is
available in ETCS. It is more abstract because it only describes required functions, but not
how those are realised. In the development cycle of the ETCS specification, the FRS is used as
input for the SRS, in which the functional requirements are transformed to requirements of the
whole system. Therefore, the FRS is never used directly for system development.

2.2.1. General Purpose

The ETCS introduction defines some general goals and advantages [88, p. 4]:
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• cross border interoperability
• improvement of the safety of national and international train traffic
• improvement of international passengers and freight train traffic management
• shorter headway on heavily trafficked lines by driving on moving block, enabling exploita-

tion of maximum track capacity
• the possibility of step-by-step introduction of the new technology
• enabling Pan-European competition between the manufacturers of ETCS components,

strengthening the position of the European railway industry on the world market
• enabling preconditions for future harmonisation in other areas of rail traffic management

Not all of these advantages are technical, but they are also political and economical. While
this work only focuses on technical aspects, also those advantages must be seen more critical.
The improvement in certain countries heavily depends on the existing ATP systems, which
have to be discussed in detail to decide about gained benefits by ETCS.

ETCS monitors, as most ATP systems, certain parameters:

• local maximum speed
• maximum speed of the train
• correctness of train’s tracks
• train’s movement direction
• suitability of train for current track
• compliance with special operating instructions

For this task several hardware components in the infrastructure and rolling stock are used [86,
pp. 6-8]:

Eurobalise Local limited data transfer facilities in the rails. It is dif-
ferentiated between Eurobalises that transfer fixed data
and those that transfer dynamic data. The functionality is
similar to a transponder because the data is only transferred
when a train passes an Eurobalise.

Euroloop Cable-based semi-continuous data transfer facility, which is
located in track bed.

Radio-Infill Radio based semi-continuous data transfer facility, which
uses GSM-R.

Euroradio Standard for data transfer encryption, which is used for
GSM-R.

STM The Specific Transmission Module is a component that can
connect the ETCS on-board device with national systems.
Each National system needs a certain STM.

ETCS vehicle on-board devices Devices on the train are mainly an European Vital Com-
puter (EVC), a Driver Machine Interface (DMI), a distance
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measurement device5, a GSM-R transmitting device / Eu-
roradio, a reader for Eurobalises, and an access device to
the brake systems. STMs are optional.

Most of those already exist and do not have to be developed especially for ETCS. Therefore,
the development primary focuses on the software-side of railway systems. Figure 2.1 shows
the (simplified) architecture [86, p. 8] of ETCS for track and train. The focus is on the

Figure 2.1.: ETCS architecture of track and train (simplified)

communication and the data flow between the components of track and train. The integration
of a control centre is omitted for simplification.

The following sections introduce some central parts for the train operation under ETCS.

2.2.2. Application Levels

The ETCS Application Levels were introduced to distinguish between different safety require-
ments. ETCS Level 0 is the lowest and 3 the highest. The ETCS Application Level describes,
which components from Subsection 2.2.1 are available / used in the rail track and in the train.
Trains are downwards compatible but tracks are not [86].

2.2.2.1. Level 0

In this Level, no ETCS track-side components are available. The train conductor only uses the
conventional signal and signs [69]. The ETCS on-board equipment only supervises the static
maximum speed of the train and the track [86, pp. 11-12].

2.2.2.2. Level 1

In ETCS Application Level 1, Eurobalises or other distance discrete transmission devices (see
Subsection 2.2.1) are used for transmitting the local maximum speed for the track, the track

5also called: odometer
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gradient, and the next stop point. The usage of Euroloop devices is optional. The provided
functionality in this Level is the control of the local maximum speed and the movement
authority. Information about track clearance is acquired by conventional methods / devices,
like axis counters [69]. The train is unknown For the track-side equipment [86, pp. 14-17].

2.2.2.3. Level 2

In Level 2, all information is mainly transmitted via GSM-R / Euroradio. Eurobalises are only
used for transmitting the current position to the train on-board equipment. Level 2 provides
an overlay functionality for an underlying signalling system. Train detection and train integrity
are monitored by the track-side non-ETCS equipment. Conventional signals on the track are
optional. The provided functionality is supervision of speed, distance, and movement authority.
The track-side radio centre on each train can be identified individually [86, pp. 18-20].

2.2.2.4. Level 3

In ETCS Level 3, compared to Level 2 , the train submits additionally its position (acquired
by Eurobalises) to the control centre by GSM-R or Euroradio. Furthermore, the train integrity
information is sent. This means that the train integrity and position are monitored by train
and track-side equipment in cooperation. Conventional signals are not used in Level 3. As in
Level 2, the provided functionality is supervision of speed, distance, and movement authority.
The track-side radio centre on each train can be identified individually [86, pp. 20-22].

2.2.2.5. Specific Transmission Module

In the Specific Transmission Module (STM) Level, all track to train information are handled by
national systems. Also, all on-board functions are provided by national systems in cooperation
with ETCS. Additionally, only Eurobalises are used to detect possible or required transitions
to other ETCS Application Levels. Train detection and integrity supervision are performed by
external equipment. The provided ETCS functionality depends on the implementation of the
STM and the national system. This level is used for compatibility reasons for already existing
national systems [86, pp. 13-14].

2.2.3. Operational States

In contrast to the different Levels for tracks and trains in Subsection 2.2.2, the ETCS Modes
refer to the state of the EVC (Subsection 2.2.1) on board the train. Those modes are roughly
introduced in the following. It must be noted that not every ETCS Mode is available in each
ETCS Application Level [90]. Hence, each mode description is followed by a small table, in
which all possible Levels are marked grey.
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2.2.3.1. Full Supervision

In the Full Supervision (FS) [90, pp. 17-18] Mode, the speed and position of the train are
supervised by ETCS. This Mode should automatically be used if all necessary train and track
data are available.
0 1 2 3 STM

2.2.3.2. On Sight

In the On Sight (OS) [90, pp. 22-23] Mode, the train is monitored by ETCS, but the train
conductor drives on sight, for example, in an occupied track. In this Mode, the train speed is
supervised against a dynamic speed profile submitted from the track-side equipment.
0 1 2 3 STM

2.2.3.3. Staff Responsible

In the Staff Responsible (SR) [90, pp. 19-23] Mode, the train conductor is alone in charge
of the train while driving on an track equipped for ETCS. This mode is normally used after
starting the on-board equipment from Sleeping (Subsection 2.2.3.6) to pass a stop-signal at
danger or after a failure of the track-side ETCS equipment. In this Mode, the train’s static top
speed and its position are supervised by Eurobalises.
0 1 2 3 STM

2.2.3.4. Shunting

The Shunting (SH) [90, pp. 15-16] Mode is used for shunting6 operations. In this Mode, the
ETCS on-board equipment supervises the shunting top speed, which is normally a national
value, and the train’s position by Eurobalises. The Shunting mode does not require any train
data because the train is only partly supervised.

0 1 2 3 STM

2.2.3.5. Unfitted
In the Unfitted (UN) [90, p. 18] Mode, only the train static top speed is supervised by ETCS.
This Mode is used for tracks that are not equipped for ETCS or only with a national track-side
system and no corresponding STM is available.

0 1 2 3 STM

2.2.3.6. Sleeping

The Sleeping (SL) [90, pp. 12-13] Mode should be used for engines, which are used as slaves
and are remote controlled. In this Mode, no movement supervision is done, only the acquisition
of the train position. If the connection to the remote engine is lost, it should be switched to
Stand By (Subsection 2.2.3.7) after the train has stopped.

0 1 2 3 STM

6American English: switching
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2.2.3.7. Stand By

The Stand By (SB) [90, p. 14] Mode is the default mode after starting the ETCS on-board
equipment. In this mode, a self-test and a test of all external devices is executed. ETCS
supervises that the train does not move at all.

0 1 2 3 STM

2.2.3.8. Trip

In the Trip (TR) [90, p. 23] Mode, the emergency brake is active until the train completely
stops and the conductor acknowledges the Trip. This changes the ETCS operational state to
Post Trip (Subsection 2.2.3.9).
0 1 2 3 STM

2.2.3.9. Post Trip

The Post Trip (PT) [90, pp. 24-25] Mode is entered, when the train conductor acknowledges a
Trip after an emergency stop, which then releases the breaks. In Post Trip, it is possible that
the train drives a certain distance (defined by a national value) backwards. Only this distance
is supervised in this mode by ETCS.
0 1 2 3 STM

2.2.3.10. System Failure

In case of an error in the ETCS on-board equipment that leads to an failure of the system
the on-board equipment should switch to System Failure (SF) [90, p. 11]. In this Mode, the
emergency braking should be permanently active.

0 1 2 3 STM

2.2.3.11. Isolation

The Isolation (IS) [90, p. 9] Mode should be used if the EVC is isolated from the other on-board
equipment (including the driver) and is also physically isolated from the brake systems. In this
Mode, the ETCS on-board equipment does not have any responsibility.

0 1 2 3 STM

2.2.3.12. No Power

The No Power (NP) [90, p. 10] Mode should be used if the ETCS on-board equipment is
switched off.

0 1 2 3 STM
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2.2.3.13. Non Leading

The Non-Leading (NL) [90, p. 26] Mode is used for slave engines, which are not electrically
coupled and are therefore not remote controlled by the master, as it is the case for the Sleeping
mode (Subsection 2.2.3.6). This situation is also called Tandem [23]. In this Mode, only the
trains position is acquired.

0 1 2 3 STM

2.2.3.14. STM European

The STM European (SE) [90, pp. 27-28] Mode should enable the usage of supervision function-
ality of national systems by ETCS. Also, the access of the STM to on-board equipment via
ETCS should be possible. ETCS supervises the train movement with a profile given by the
STM.
0 1 2 3 STM

2.2.3.15. STM National
In the STM National (SN) [90, p. 29] Mode, the STM has access to the train on-board equipment
via ETCS. The STM is responsible for all supervisions including the interaction with the driver.
0 1 2 3 STM

2.2.3.16. Reversing

In the Reversing (RV) [90, pp. 30-31] Mode, a train can drive backwards. The speed and
position of the train is supervised by ETCS.
0 1 2 3 STM

2.2.4. Mode Transitions

There are various possible transitions between Modes under different conditions [90, pp. 36-40],
which are, due to their extensiveness, not explicitly listed here. [90, pp. 37] provides a good
overview in form of a transition table.

2.3. openETCS

openETCS [39, 38] describes the idea of the approach to implement the ETCS functionality on
the basis of open source software (OSS) [96].

Due to the advantages, openETCS should not only be implemented by OSS but by Free/Libre
Open-source Software (FLOSS). This means that the openETCS software should not only be
distributed with open source code but also under licenses that allow users to use, study, modify,
and (re-)distribute the source code. The main advantages compared to conventional closed
source software methods are listed below:

reduction of licenses costs No external / commercial license fees are necessary because
other FLOSS can be used for openETCS.

19



Chapter 2. Concepts for Safe Railway Operation and Control

reduction of errors First experiences with ETCS software already showed that even
with common testing methods complex software never can be
assumed to be error-free [39, 38]. With FLOSS, it is possible to
have a big community (of experts) reviewing and correcting the
source code. Also, this includes the elimination of "Backdoors".

support of European Union The European Union does not only recommend the usage of
FLOSS but also to make use of the European Union Public
License (EUPL) [25], which is a license for FLOSS. Because
openETCS is a project within the European Union, it seems
obvious to use FLOSS under the EUPL for its realisation.

ETCS refers to a whole control system with hardware and software elements while openETCS
only describes (parts) of the software of this system. The openETCS software is (mainly)
located on trains on board unit, the EVC. This is connected with several hardware components
on the train (see Subsection 2.2.1 and Figure 2.1), which are used by the openETCS software.
To avoid dependencies from certain and proprietary hardware components in the software, a
hardware abstraction layer must exist between openETCS and the hardware device drivers on
the EVC. Therefore, openETCS is more generally usable. Figure 2.2 shows how openETCS
integrates in the EVC with a hardware abstraction interacting with all other train on-board
equipment from Figure 2.1.

Figure 2.2.: openETCS system integration

2.4. Conclusion

ETCS or rather openETCS is used as case study in this work because, first of all, it fulfils
the requirements defined in Section 2.1. Second, it has a public available specification, which
also could be published as formal language or model. Additionally, it provides the focus on
the software-side of the ATP system, which is of main interest in this work. The openETCS
initiative demonstrates that the scope of this work especially with ETCS is of high research
interest.
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Domain-Specific Modelling

Domain-Specific Modelling (DSM) [48] is a modern software engineering method that uses
models, instead of pure source code, to develop software, as applied in several currently used
development strategies. The key difference is that it does not use a general modelling language
to describe each certain problem but uses for each certain problem domain a certain Domain-
Specific Language (DSL) [48]. This dramatically increases the level of abstraction for software
development while the complexity is reduced [48].

In contrast to currently available CASE-Tools for UML [66], a DSL can provide the generation
of all source code. With UML, this is not possible since UML is a very general language and
does not provide much abstraction from source code. Although UML provides a specialisation
mechanism with profiles [66], it can be shown that those cannot provide the same level of
abstraction and effectiveness for code generation as when using a DSL [59]. In general, a DSM
architecture consists of four elements as shown in Figure 3.1.

Figure 3.1.: Elements of a DSM architecture
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Language or rather the DSL is a modelling formalism specialised for a certain problem domain,
which provides a high level of abstraction in relation to a programming language / target.
The DSL is developed by a domain expert.

Generator specifies how the parts of a concrete model are transformed to source code fitting
to the target. The generator is normally developed by a programming expert to provide
a high quality of the generated code.

Domain Framework provides an interface between the generated code and the target platform
/ hardware. Typically, it consists of all static source code that does not have to be
generated from the model. Often, a domain framework provides encapsulation of platform
or hardware depended operation to enable platform / hardware independence. The
domain framework is also developed by a programming expert, but itself does not
necessarily need to be developed under model-driven aspects.

Target is the generated code typically in a certain programming language. Normally, the target
code is not executed or rather compiled alone but together with the domain framework
and additional (static) source code.

A DSM architecture does not have to necessarily consist of all four elements. For example,
for an architecture that generates (Java code and then) Java bytecode, no domain framework
would be necessary since Java bytecode is (mostly) platform independent. The corresponding
DSM architecture elements are shown in Figure 3.2.

Figure 3.2.: Example of a DSM architecture for Java virtual machine as target

Besides the definition and development of a DSM architecture, its usage is also an integral
part of the development process. While DSM architecture elements are developed by domain
and programming experts, the DSM architecture and especially the DSL is used by application
developers who neither have to be programming nor domain experts. The correspondents
between DSM definition and their usage is graphically shown in Figure 3.3 [48, p. 67].

The following section introduces some prominent, public meta meta models. Afterwards,
these are compared in combination with the corresponding modelling applications to select an
appropriate meta meta model for the case study in Part III. Readers familiar with the meta
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Figure 3.3.: DSM definition and usage

meta models in the first section of this chapter, may skip the section or the corresponding
subsections.

3.1. Meta Meta Models

Normally, a DSL is defined by a meta model [78], which specifies the elements the DSL consist
of and how they can be connected with each other. Analogue to the modelling of software in
a DSL, a meta model itself is modelled in a meta meta model [78]. Therefore, a meta model
can be interpreted as an instance of a meta meta model. Furthermore, a DSM architecture
consists of two more instances that are the model and the application. Figure 3.4 shows all
four instances and their relations.

To illustrate the meaning of the instances, Figure 3.5 shows examples for instances of a
programming language and of a graphical user interface (GUI) as DSM architecture. Typically,
an existing meta meta model is chosen and not developed. For an object-oriented programming
language, a class concept could be defined as meta class. In C++, this would correspond
to the class [81] statement. The declaration of a concrete class would be the next instance
and an object of this class the final one. The same could be done for developing a graphical
user interface (GUI): Available GUI elements are defined as so-called widgets, which could be
combined to a dialogue, from which the corresponding application is generated.

As the preceding examples and figures show, the meta meta model is the starting point for
every DSM architecture. Because of the big amount of available meta meta models, only the
most significant are exemplary mentioned and explained in the following subsections.

3.1.1. Meta Object Facility

The Meta Object Facility (MOF) [78, pp. 64-71] was specified by the Object Management
Group (OMG) by using UML. Since UML is an already well established formalism, no more
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Figure 3.4.: DSM architecture instances

Figure 3.5.: DSM architecture instances examples
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additional syntax for the meta meta model has to be investigated for understanding it. In
other words, UML is the meta model and MOF the meta meta model. This grants a high
duality between software design and meta model.

MOF can be generally divided in EMOF (Essential MOF) [62], which specifies the essential
elements of MOF, and CMOF (Complete MOF) [62], which holds all available MOF elements.
Due to the complexity of CMOF, only EMOF is explained here, beginning with all general
EMOF types in Figure 3.6.

Figure 3.6.: EMOF types

Element is the most general and abstract base class for any element in MOF. It holds a set of
comments (ownedComment).

NamedElement is the abstract base class for all elements with an additional, internal name.
Hence, it has the attribute name.

Type is the abstract super class for all classes and data types.

TypedElement is the abstract base class for all typified elements.

Comment is used for commenting any element. Thus, it provides the attribute body, in which
the literal comment is stored. It has an aggregation to its possessing element (element).

All classes marked with <<abstract>> are abstract classes [81], which generally means they
cannot be instantiated directly, only by generalisation / inheritance [64, 81].

Furthermore, EMOF provides the possibility of modelling data types. Figure 3.7 introduces
the relations between the built-in data types. New elements are:

DataType is the general class for all data types.

PrimitiveType is a class for all primitive data types.
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Figure 3.7.: EMOF data types

EnumerationLiteral is a class for all enumeration literals. It holds an aggregation to its
possessing enumeration (enumeration).

Enumeration is a class for enumeration types while the literals are described by a set of
enumeration literals (ownedLiteral).

To describe complex DSLs with EMOF, it is also necessary to model classes. This is shown
in Figure 3.8. The new elements are described below:

MultiplicityElement is the abstract base type for all elements that can be multiplicities.

Property is a class for all properties / attributes of a class. It has a self association for a
possible opposite type (opposite) and an aggregation [66] to its possessing class (class).

Operation describes a certain operation / method of a class. It holds an aggregation to its
possessing class (class) and to a possible set of parameters (ownedParameter). It also
has an association with types (raisedException), which specifies the possible kinds of
thrown / raised exceptions.

Parameter is a class for all parameters of an operation. It has an aggregation to its possessing
operation (operation).

Class describes a general class type. It holds a set of attributes (ownedAttribute) and a set
of operations (ownedOperation).

Since the UML infrastructure should be aligned to the MOF specification [66, p. 8], Figure 3.9
shows the related DSM instances introduced in Section 3.1 for the UML specification.
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Figure 3.8.: EMOF classes

Figure 3.9.: MOF DSM instances
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3.1.2. Ecore

Ecore [78, pp. 71-73] is very similar to MOF and uses the Eclipse Modelling Framework
(EMF) [78, pp. 71-73]. EMF is a software framework based on Java, which provides functionality
for model-driven software development. Furthermore, it provides mechanisms for creating new
DSLs and for generating code. Its main disadvantage is are the code generation capabilities,
which are limited to Java source code using the EMF.

Ecore is not explained in this document in detail because its similarity to MOF, which was
already introduced in Subsection 3.1.1.

3.1.3. Extensible Markup Language with Schema Definition

The Extensible Markup Language [98] (XML) with XML Schema Definition (XSD) [43, 72] is
very easy and simple to use for DSM because XSD can be directly used as meta meta model
while the definition in XML describes corresponding meta models. A XML file complying to a
certain Schema Definition is then a model of the meta model [78, p. 74].

An example for an XML file or rather model could be the simple description of a software
class, as shown in Figure 3.10. This example can be taken to explain the most important

1 <c l a s s name="CSomeClass">
2 <implementation language="C++" />
3 <method name="SomeMethod" v i s i b i l i t y=" pub l i c ">
4 <return type="void ">
5 <parameter name=" iValue " type=" in t " d i r e c t i o n=" in " />
6 <d e f i n i t i o n>
7 // do something meaningful
8 iValue++;
9 </ d e f i n i t i o n>

10 </method>
11 </ c l a s s>

Figure 3.10.: XML class description example

elements of XML:

Markup All elements starting with < and ending with > are markups. In the example, all
lines are markups except 7 and 8.

Content Every element that is not markup is content. In the example, the only content are
the lines 7 and 8.

Tag A tag is a markup construct. There are three different tag types:

• start-tag (e.g. <class name="CSomeClass"> in line 1)
• end-tag (e.g. </class> in line 11)
• empty-element-tag (e.g. <implementation language="C++" /> in line 2)
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Element An element is a logical component either encapsulated by a corresponding start-tag
and end-tag or an empty-element-tag. Line 1 to 11 or 3 to 10 are elements in the
example but also line 2.

Attribute An attribute is also a markup construct that consists of a name-value pair in
a start-tag or an empty-element-tag. For example, language="C++" in line 2 or
name="SomeMethod" and visibility="public" in line 3 are attributes.

The simple example in Figure 3.10 demonstrates how XML could be used to model / describe
software classes or other kinds of models. As already mentioned, XML can be used as meta
model and XSD as its corresponding meta meta model. XSD can be simplified and interpreted
as a grammar definition for XML while XSD uses the same syntax as XML. Also, MOF and
UML (Subsection 3.1.1) share this advantage.

Figure 3.11 shows an example of an XML Schema Definition, which defines a software class
description formalism corresponding to the preceding XML example in Figure 3.10. Generally,

1 <xs : e l ement name=" c l a s s ">
2 <xs:complexType>
3 <x s : a t t r i b u t e name="name" type=" x s : s t r i n g " />
4 <xs : s equence>
5 <xs : e l ement name=" implementation ">
6 <xs:complexType>
7 <x s : a t t r i b u t e name=" language " type=" x s : s t r i n g " />
8 </xs:complexType>
9 </ xs : e l ement>

10 <xs : e l ement name="method">
11 <xs:complexType>
12 <xs : s equence>
13 <xs : e l ement name=" return ">
14 <xs:complexType>
15 <x s : a t t r i b u t e name=" type" type=" x s : s t r i n g " />
16 </xs:complexType>
17 </ xs : e l ement>
18 <xs : e l ement name="parameter ">
19 <xs:complexType>
20 <x s : a t t r i b u t e name=" type" type=" x s : s t r i n g " />
21 <x s : a t t r i b u t e name=" d i r e c t i o n " type=" x s : s t r i n g " />
22 </xs:complexType>
23 </ xs : e l ement>
24 <xs : e l ement name=" d e f i n i t i o n " type=" x s : s t r i n g " />
25 </ xs : s equence>
26 </xs:complexType>
27 </ xs : : e l emen t>
28 </ xs : s equence>
29 </xs:complexType>
30 </ xs : e l ement>

Figure 3.11.: XSD class definition example
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all XSD elements are in the name space xs and must be prefixed by xs:. The first statement in
line 1 starts with the definition of an XML element named class, which corresponds to line 1 of
the XML example in Figure 3.10. Line 2 defines a class as a complex type, which means it may
consist of more elements and may have attributes. Line 3 declares that the element class has
an attribute name, which is a string (see line 1 in Figure 3.10). Lines 3 to 27 are a sequence of
elements in the declared class, which also can be complex and holds more elements or attributes
and so on. Of course, the example only demonstrates a small set of the possibilities in XSD.

Figure 3.12 shows how the DSM architecture instances are generally related for XML and
XSD.

Figure 3.12.: XML/XSD DSM instances

3.1.4. Backus-Naur Form

The Backus-Naur Form (BNF) [50] is a meta syntax to describe context-free textual grammars.
BNFs are widely spread for the definition of programming language grammars, but it can be
also used to define a DSLs.

Generally, a BNF consists of a set of rules with the following syntax:

<symbol> : := __expression__

A <symbol> is called a non-terminal and __expression__ consists of one or more sequences
of symbols. Several sequences can be separated by a | indicating that each sequence can be
chosen for definition. Symbols that never appear on the left side of a rule are called terminals.

A BNF must be interpreted in a recursive way: Each non-terminal in a rule on the right
side of ::= must be replaced by its definition while choosing one of by | separated sequences,
until the right side of a rule only consists of terminals. Figure 3.13 shows the BNF syntax
as BNF. <rule-name> and <text> are here the only terminals and should be replaced by the
rules literal name or literal text.
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<syntax> : := <rule> | <rule> <syntax>
<rule> : := <opt−whitespace> "<" <rule−name> ">" <opt−whitespace>

": :=" <opt−whitespace> <expres s ion> <l i n e−end>
<opt−whitespace> : := " " <opt−whitespace> | ""
<expres s i on> : := <l i s t > | <l i s t > " |" <expres s i on>
<l i n e−end> : := <opt−whitespace> "\n" | <l i n e−end> <l in e−end>
<l i s t > : := <term> | <term> <opt−whitespace> <l i s t >
<term> : := <l i t e r a l > | "<" <rule−name> ">"
<l i t e r a l > : := ’" ’ <text> ’" ’ | " ’" <text> " ’"

Figure 3.13.: BNF syntax defined as BNF

To define a new DSL, a corresponding syntax has to be defined by a BNF and certain models
in the new DSL have to comply to the grammar. Figure 3.14 shows how the BNF instances
integrate in a DSM architecture.

Figure 3.14.: BNF DSM instances

The Extended Backus-Naur Form (EBNF) is a small extension for the BNF that mainly
adds possibilities to define optional or repetitive elements. Those can only be defined in a
simple BNF by recursion, which causes more complex BNF statements.

3.1.5. Graph, Object, Property, Role, and Relationship

Graph, Object, Property, Role, and Relationship (GOPRR) [46] consists mainly of the elements
its name mentions. It was designed for the easy and fast development of graphical meta models
and models.

Generally, all elements in GOPRR are divided in two groups: Properties and non-properties
while all non-properties can have properties. Figure 3.15 shows the relation of all elements. The
possible types of properties do not have to be limited in GOPRR. Nevertheless, in practical
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Figure 3.15.: roperties and non-properties in GOPRR

implementations, the set is often limited to strings, numbers, Boolean values, arrays, and
non-properties.

Since GOPRR was designed to develop graphical meta models, a graph instance typically
contains a set of the other non-property elements, as shown in Figure 3.16.

Figure 3.16.: GOPRR graph elements

The complete abstract meta meta model syntax [48, pp. 68-69] is far more complex and is
introduced in Figure 3.17 and Figure 3.18 as an overview. The diagrams were assembled from

Figure 3.17.: GOPRR meta meta model abstract syntax for type generalisations

parts of [47]/[46], [48], and [58]. The included elements are explained in detail in the following:

Concept is the ancestor or – in object-oriented words – base class [81] for all GOPRR types
/ classes. It holds two attributes: typeName, which is a string storing the name of the
instance and typeDescription, which stores a description as string / text.
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Figure 3.18.: GOPRR meta meta model abstract syntax for type associations
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Property is the parent class for all property types. It holds the attribute value, which specifies
the value of the property and the value’s type by the dataType association.

NonProperty is the parent class for all non-properties, which was already explained in Fig-
ure 3.15. The association explosionSet provides the possibility to describe any non-
property by one or more or sub graph.

Object is the parent class for all custom object types. It has an optional set of ports (portSet).

Relationship is the parent class for all relationship types. A relation specifies the kind of
connection between two or more objects.

Role is the parent class for all types describing a role. A role describes the part of an object
in a certain relationship.

Port is an optional element of GOPRR. Normally, objects can be directly connected via roles
and relationships, but with ports it can be additionally specified, which parts of an object
a certain role can connect to.

Connection describes a connection between a set of objects (objectSet) with a certain role
(role) while the attribute multiplicity describes the cardinality / multiplicity of the
connection. This class should be instantiated directly without further inheritance. Instead
of a direct connection between objects, an optional port (portSet) (of an object) can be
used.

Binding specifies the binding between a relationship (relationship) and one or more con-
nections (connectionCall). This class should be instantiated directly without further
inheritance.

Graph combines all necessary elements for a graphical representation. Therefore, it holds
relationships (relationshipSet), roles (roleSet), objects (objectSet), and bindings
(bindingSet) to connect the preceding ones. The set of ports (portSet) is optional.

Project combines one or more graphs (graphSet) to a project. This class should instantiated
directly without further inheritance.

Again, all classes marked with <<abstract>> are abstract classes [81], which generally means
they cannot be instantiated directly, only by generalisation / inheritance [64, 81].

In contrast to the abstract meta meta model syntax, Figure 3.19 shows the concrete syntax [48,
p. 70] of bindings in GOPRR without ports. Additionally, Figure 3.20 shows the concrete

Figure 3.19.: GOPRR concrete binding syntax without ports

syntax for the usage of optional ports. In Figure 3.19, the objects are connected directly with
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Figure 3.20.: GOPRR concrete binding syntax with ports

certain roles and a certain relationship. In Figure 3.20, roles and relationship are the same,
but the objects are connected only indirectly by their ports (out and in). Therefore, it can
be modelled that only certain ports can be connected under certain roles and relationship.
For example, a connection out→out or in→in could be avoided in Figure 3.20. The concrete
syntax of the GOPRR meta meta model consists of further elements for describing sub-graph
connections by decompositions and explosions, but which are not explicitly introduced here.

Figure 3.21 shows the instantiation of GOPRR in DSM architectures.

Figure 3.21.: GOPRR DSM instances

3.2. Meta Meta Model Comparison

Generally, DSLs can be divided in two categories:

• textual
• graphical

A textual model is defined by text statements while a graphical model is defined by graphics.
Of course, combinations of both are also possible. The difference between those two types
cannot be explained completely in general because this is also a matter of the concrete problem
domain. A general discussion can be found in [48, p. 50ff].

A goal of this work – modelling an ATP system – includes the development of a meta model
for the corresponding specification, the ETCS SRS. These documents are mostly written in
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natural language, which means text. In minor cases other textual formalisms like tables are
used but not generally in a normalised or formalised manner.

To provide significant abstraction from the ETCS specification documents, a pure textual DSL
would fail because pure text is always represented linearly. As in the specification documents
themselves, this may lead to a lot of references or even cross-references. Combined with the
complexity of the specification, this renders a textual representation confusing.

Instead, a graphical DSL provides a lot more representation techniques that are not limited
to linear representation methods. For example, references can be represented by sub-graphs.
Although the most of the above introduced meta meta models can be used for building models,
MOF / Ecore and GOPRR are predestined because they already provide graphical formalisms
for meta model definition. Especially, GOPRR was designed for graphical DSLs, which gives it
a big advantage compared with the others.

3.3. Domain-Specific Modelling Development Applications

Although a modelling application for a certain DSL can always be implemented explicitly, there
are already several applications and tools available for designing a DSL / meta model, modelling,
and code generation. In the following, some of the most common and most appropriate for the
openETCS case study are introduced.

3.3.1. Xtext

Xtext is a plug-in for Eclipse [9] that provides functionality for creating textual DSLs and
generating code from those. It uses ANTLR, which is a parser for BNFs. Therefore, the
grammar for a DSL and the code generator can be freely specified, which makes Xtext
completely independent from any concrete implementation. It additionally offers the export to
Ecore meta models. Its main disadvantage is the lack of any possibility for creating graphical
models.

3.3.2. Graphical Modelling Framework

The Graphical Modelling Framework (GMF) is also a plug-in for the Eclipse IDE that combines
EMF (see Subsection 3.1.2) and GEF (Graphical Editing Framework) to enable the creation of
graphical DSLs. It uses Ecore as meta meta model and its code generation is limited1 to Java.

3.3.3. Rascal

Like GMF, Rascal [17] is also a plug-in for Eclipse with special focus on graphical meta
modelling and modelling. It also has the advantage that it is shipped under an OSS license.
Although this approach seems to be quite promising, it is currently still under development
and is only provided as an alpha release.

1because of EMF
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3.3.4. MetaEdit+

MetaEdit+ [58] is a commercial application for creating DSLs. It uses the GOPRR meta
meta model and is very specialised for the development of graphical meta models and models.
The code is generated from graphs using the MetaEdit+ Reporting Language (MERL) [58].
MERL does not depend on any certain programming framework, like Ecore, and therefore
code for any kind of programming language can be generated. Moreover, it provides easier
generator development because it only uses the concrete syntax, as in Figure 3.19 and 3.20, for
certain graph types. The abstract syntax from Figure 3.17 and Figure 3.18 is not visible to
MERL. Also, generators can be restricted to certain graph types and cannot be used on the
project-level. In contrast to all other DSM applications mentioned before, MetaEdit+ is the
only one that provides a development standard on an industrial level. Since this work focuses
on safety-critical systems, this fact cannot simply be ignored.

The main disadvantage of MetaEdit+, related to this work, is that no FLOSS version is
available.

3.4. Conclusion

Although a full FLOSS tool chain – including the DSM development applications – fits the aim
of this work better, MetaEdit+ as commercial software offers several advantages that cannot be
simply ignored. Compared to the other applications and their meta meta models, MetaEdit+
is highly specialised for the development of graphical DSLs. Additionally, it provides a script
language for generator development that does not depend on certain programming languages.
Furthermore, the usage of the introduced FLOSS applications would always cause additional
development effort for the tooling because none provides graphical modelling and general
generation in one. Due to the fact that a complete tool development should not be in the main
scope of this work, MetaEdit+ and the GOPRR meta meta model are employed for this work.
To be able to publish all parts work the corresponding case study in Part III, any meta model
and model can be exported to an appropriate XML format like XMI [63]. Such files are then
free for publication under any license and are not limited to a certain application.
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4
The GOPPRR Meta Meta Model –
An Extension of GOPRR

On account of the idea of using a DSL to directly provide additional artefacts for the certification
procedure for dependable software, the definition of the abstract syntax [48, pp. 68-69] –
including the definition formalism – is crucial. In relation to this work, this primary means
the selection of the meta meta model and the developed meta model. Although the selected
GOPRR meta meta model provides a good documentation (Chapter 3), the formalisms for
defining the syntax of meta models have to be evaluated.

The definition of the concrete syntax [48, p. 70] and the static semantics [48, pp. 69-70]
of the underlying meta model is a very important task in the development of safety-critical
software under the model-driven architecture (MDA) [45] paradigm. The concrete syntax
defines how models can be instantiated from a meta model. Falsely or too “loose” defined
concrete syntaxes may lead to models instantiated from those that are in conflict with the
required safety properties for the modelled system or software. Those errors in the model could
have an impact on all lower instances of a DSL down to the executable binary code.

GOPRR is a graphical meta meta model, which makes the decision for a graphical syntax
description formalism obvious. The main advantage is that the syntax description of a meta
model can be also defined as meta model of GOPRR. This results in the situation that a
concrete syntax description is also a model of the same meta meta model. The complete and
detailed description of the original GOPRR syntax description formalisms can be found in [46]
and [58].

Unfortunately, the GOPRR syntax description meta model does not include ports (Subsec-
tion 3.1.5), but which are also elements of the meta meta model. Concrete explanations for this
could not be found in the corresponding documentation, but a possible reason might be that
ports were added later to the meta meta model. This might also be reflected in the acronym
GOPRR (Graph, Objects, Properties, Roles and Relationships), which does not include a letter
for ports. However, ports provide in some cases great advantages for meta models and are
also heavily used in the case study presented in Part III for an interfacing concept. Without
ports, this could only have been realised with a much more complex concrete syntax or rather
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meta model. Neither, the proper definition of the static semantics is included in the original
GOPRR syntax description formalism.

A possible solution to these problems could be the extension of the already existing meta
model for the syntax definition. The fact that it does not provide possibilities to define syntax
for the graphical containment of objects opposed this option. Graphical containment means
that the graphical representation of an object o1 consisting of a set of points P1 graphically
contains another object o2 if P2 ⊆ P1. This modelling mechanism can also provide good
abstraction possibilities that should not be ignored. The additional integration of ports and
graphical containment in the original GOPRR syntax description meta model does not seem
very promising because a direct mapping of these meta meta model elements to model elements
is not possible, as it is done for the other GOPRR elements.

Thus, to use all GOPRR features and elements for dependable software, a new syntax
description formalism has to be developed that ideally can be defined as meta model in
GOPRR itself. The formalisms for defining the concrete syntax and static semantics are
introduced in the following sections. Furthermore, an abstract syntax model as C++ structure
and its intermediate representation as XML are presented because the abstract syntax is needed
for the generation process and the definition of the static semantics. Additionally, a possible
transformation from the new GOPPRR meta meta model to MOF can be found in Appendix A.

4.1. Concrete Syntax Description Formalism

The name for the new meta meta model was chosen as Graph, Objects, Properties, Ports,
Roles, and Relationships (GOPPRR) to emphasise the extension about ports. If the term
GOPPRR is used as meta meta model, it refers to the GOPRR meta meta model with the
GOPPRR extensions for the syntax definition, the new abstract syntax model, and the new
definition formalism for static semantics.

In general, the GOPPRR concrete syntax description formalism provides three different
graph types:

1. graph bindings syntax graph
2. sub-graph syntax graph
3. type property graph

Graph Bindings The syntax graph for graph bindings specifies how object types in a certain
graph type can be connected. Figure 4.1 shows the elements of such a graph. The root node of
a graph binding represents the graph type under consideration. Relationship and role types
are child nodes of the graph type. Object types can be children of role or of port types, which
are on the intermediate level between role and object types while the last possibility is an
extension compared to the original GOPRR syntax description formalism. Another important
addition is the definition of graphical inclusions. This means in other words that the graphical
placement of an object within the graphical representation of another one can be used for the
syntax definition. This graphical inclusion for a certain object type is a child node of the graph
type node, and the child nodes are the possible included object types.
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RelationshipType1

RoleType11
1...1

RoleType12
1...*

PortType1
0...1

PortType2
1...*

ObjectTypeWithPorts11
1...1

ObjectTypeWithPorts12
1...*

RelationShipType2

RoleType21
1...*

RoleType22
0...1

RoleType23
1...*

ObjectType21
1...*

ObjectType22
0...*

ObjectType23
1...1

GraphType

ObjectType21
0...*

ObjectTypeWithoutBindings
1...1

ObjectTypeWithPorts11
0...*

Figure 4.1.: Example of a meta model graph bindings definition

Role, port, and object type nodes have a cardinality written below the name label, which
have different meanings for different nodes. The cardinality of roles define how often they can
or have to be used in a certain relationship instance. For object and port types, the cardinality
refers to their possible connections under the corresponding role type. The cardinality of
graphical inclusion nodes refers to their occurrence in the corresponding graph type.

The multiple, graphical occurrence of a certain relationship type node under the same graph
type node means a disjunction of the below defined role, port, and object types. In other
words, those relationship type definitions can be used alternatively. Also, other elements than
relationships in a certain graph (roles, ports, and objects) can be used multiple times since
their cardinality may differ for different parent nodes.

Sub-Graphs The syntax graph for sub-graphs and occurrences defines the interconnection
between different graph types and the occurrence of object types in a certain graph type. An
example is given in Figure 4.2. As in the definition for bindings, the root node is always
a graph type. Child nodes are object, relationship, and role types. As stated above, only
object types can have decompositions, but all three types may have explosions. To define more
complex, potentially recursive, graph interconnections, sub-graph nodes can have again object,
relationship, and role type child nodes.
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GraphType

ObjectType11
1...*

RelationshipType1 RoleType21
0...*

ObjectDecomposition
0...1

ObjectExplosion
0...*

RelationshipExplosion
1...*

RoleExplosion
0...*

SubGraph1 SubGraph2 SubGraph3

Figure 4.2.: Example of a meta model sub-graph and occurrence definition

Type Properties The GOPPRR type property graph defines the properties of all GOPPRR
types, aggregations of non-properties, and inheritance, as shown in Figure 4.3. Graph, object,

Object : BaseType

String : Name (globally)

Object : SubType Object : AnotherType

Graph : AGraph

Aggregation

Aggregation

Figure 4.3.: Example of meta model properties definition

port, roles, and relationship types are indicated by rectangular boxes while properties are
labelled in the format “[type] : [type name]”. Those types can have properties, which are
drawn within the corresponding box of the surrounding type in the format “[property type] :
[property name] ([uniqueness])”. Also, they can have aggregations [66] to other elements that
are non-property types. Furthermore, all types, including property types, can inherit from
others belonging to the same meta type. For example, a graph type can only inherit from
another graph type but not from an object type.
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GOPPRR Concrete Syntax Meta Model Similar to the original GOPRR concrete syntax
description formalism [58], also a GOPRR meta model was created for the new GOPPRR
concrete syntax formalism. Hence, a concrete syntax in GOPPRR can also be modelled in
MetaEdit+ as instance of this meta model. The concrete syntax of this GOPPRR concrete
syntax meta model is not explicitly documented here, but it is located in Section B.6 together
with a model of the concrete syntax for the case study in Part III.

4.2. GOPPRR C++ Abstract Syntax Model

Additionally to the meta model concrete syntax definition formalism, the generator capabilities
are of high relevance for the creation of dependable software. Typically, generators for models
in a certain meta meta model are tool bounded and are not independently implemented. Due
to the decision to use MetaEdit+ as meta modelling application (reasoned in Chapter 3), the
relevant generator or rather generator language is MERL. Its main advantage is the provided
abstraction for navigating through the bindings between objects in graphs. In contrast to the
abstract GOPRR meta meta model structure in Figure 3.17 and Figure 3.18, the navigation is
simplified in MERL to bindings in Figure 3.19 without ports and Figure 3.20 with ports. The
direct drawback is that a generator is only related to the scope of a graph type but not to a
project. Also, MERL generators for other GOPRR elements can be implemented but can only
be used for graphical representation effects and not for output generation, like source code.
Therefore, all elements in a graph are treated only as graph-global, although they are project
global, and might be (re)used in several different graphs.

To obtain the information about the partition of an object, the implementation in MERL
mostly ends in a complex generator. Additionally, MERL suffers in general from a weak syntax.
For example, it lacks of the definition of functions and the specification of the scope of variables.
This means simple generators can be easily implemented in MERL while complex and project
related generators typically reach an unacceptable level of complexity in their implementation.
To handle this issue, the concrete generation of source code and other components must be
done outside of MetaEdit+ and MERL because the drawbacks cannot be eliminated by custom
extensions and modifications. Furthermore, extensions or modifications of the generation
module are not possible since MetaEdit+ is proprietary, closed source software.

For this reason, an external generator application that uses an abstract syntax model should
be implemented. The term model refers here to a software class model specified in UML.
Nevertheless, from the DSM view the, GOPPRR C++ abstract syntax model is a meta
meta model while concrete instantiations corresponds to a model instances within that meta
meta model. This abstract model must be provided in a project-oriented manner while the
implementation in C++ eliminates the syntactical weaknesses of MERL. The transformation
from the internal, concrete syntax model in MetaEdit+ to the C++ GOPPRR model should
be done via XML1, which is explained in Section 4.3 in detail.

In the following, the C++ abstract syntax model is explained in detail. For the initial
development, the already existing GOPRR meta meta model abstract structure in Figure 3.17
and Figure 3.18 was taken and then transferred to an UML class structure to be extended as

1as intermediate model
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usable for C++ classes and objects. The resulting structure of the GOPPRR C++ abstract
syntax model is shown in Figure 4.4. Compared with the original abstract syntax, the following
main extensions and modifications were done:

• An additional class CCall2 was added, which is used by CConnection as aggregation [66] to
combine an object (CObject), a role (CRole), and an optional port (CPort). Without this
addition, it could not be distinguished, which objects and ports belong to the same call.
Caused by the circumstance that ports are optional, the size of direct associations [66] of
ports in CConnection could be different and the assignment of ports to a concrete pair of
object and role would be non-unique. CCall should be interpreted as the definition of
one concrete end of a connection (CConnection) or rather binding (CBinding).

• The class CGraphicalContainer was added to provide the information of graphical
containment of objects and relationships. Instances are related to exact one graph object
because the graphical containment feature is only valid in a certain graph but not for a
whole project.

• For all associations that ends at classes representing GOPPRR base elements and have
in their multiplicity [66] a not limited upper bound (stated by a *) a STL map [81] is
used as container. The object identifier3 (OID) is used as key [81] value in the map. The
map ensures that no duplicates exist in association and elements can be easily accessed
by their OID, but it also can be iterated, like a vector / stack or a list.

While the C++ GOPPRR abstract syntax model provides access to all model information,
it makes the processing of bindings in a certain graph quite more complex. Compared to
the concrete syntax model used for MERL, bindings now cannot easily navigated by directly
stating the type name, like

. ob j e c t1~ro l e1>r e l a t i o n s h i p~ r o l e 2 . ob j e c t2

or

. ob j e c t1#port1~ro l e1>r e l a t i o n s h i p~ r o l e 2#port2 . ob j e c t2

To reduce this drawback, the graph representation class CGraph provides several methods that
abstracts the navigation via bindings. In the example below, the method returns all roles of a
certain type connected to a certain object. The returned map of roles can be then processed or
used for further navigation to relationships or roles.
/∗ !
∗ \ b r i e f a b s t r a c t i on method
∗
∗ Gets c e r t a in r o l e s connected to a ce r t a in o b j e c t in a ce r t a in graph .
∗
∗ \param [ in ] pObject : po in t e r to the o b j e c t
∗ \param [ in ] Type : r o l e type
∗ \param [ in ] bSubStr ing : i f true , Type only must be a su b s t r i n g o f r o l e type

2The name was chosen according to the connectionCall composition in the original structure.
3OIDs are not part of the original GOPRR meta meta model but are created in MetaEdit+ for each instance

of a GOPRR element and are unique within a project.
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4.2. GOPPRR C++ Abstract Syntax Model

Figure 4.4.: UML class diagram for the GOPPRR C++ abstract syntax model
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∗ \param [ in ] bUseException : op t i ona l Boolean f l a g f o r throwing an excep t ion
∗ in case o f an empty map
∗ \ return map of po in t e r s to r o l e s
∗/

: : s td : : map< : : std : : s t r i ng , GOPPRR: : CRole∗ >
Roles (GOPPRR: : CObject ∗ const pObject ,

const : : s td : : s t r i n g& Type ,
const bool& bSubString = false ,
const bool& bUseException = true
) const throw ( : :GOPPRR: : Error : : CEmpty) ;

All abstraction methods can be found in Section E.1. Details about the deployment and the
implementation are discussed in Chapter 9 along with the openETCS case study code generator
application.

Limitations It is necessary to remark that a concrete GOPPRR C++ abstract syntax model
only holds information about the related model but not about the related meta model. This
means, for example, that for two instances of CObject no information is available if they are
sub- and parent-type, or not. Nevertheless, this is not a major disadvantage because the meta
modelling and the modelling itself should only be related to the modeller, which means here
MetaEdit+.

4.3. GOPPRR XML Schema Definition

To transform an internal MetaEdit+ GOPPRR model4, an interface between MetaEdit+ and
the custom generator or rather C++ abstract syntax model has to be established. This is done
by XML as an intermediate model representation. As already introduced in Subsection 3.1.3,
the XML Schema Definition [43, 72] provides a dictionary definition mechanism for XML.
Accordingly, a concrete instance of a XSD can be interpreted as meta model while an XML
valid to the Schema corresponds to a model instance (Figure 3.10).

The fact that XSD provides an object-oriented syntax enables the definition of the XML
Schema in the exact same manner as the GOPPRR C++ abstract syntax model in Figure 4.4.
Furthermore, the usage of so-called key and keyref [43] elements provides the definition of an
even more detailed meta meta model. The C++ abstract syntax model only defines that all
GOPPRR elements are instances / objects in a project object, but in all other associations
among the model those are only connected by references / pointers [81]. An important constraint
is that all GOPPRR elements referenced at any point of the model must occur once as instance
in the related project object. The definition of this constraint in the XSD for GOPPRR renders
the integration into the C++ model unnecessary because it is always instantiated by a XML
model fulfilling it. The complete GOPPRR XSD is located in Section E.2 in the appendix.

4.4. MERL GOPPRR Generator

The generator for transforming GOPRR models in MetaEdit+ to external XML GOPPRR files
is briefly introduced here. Corresponding to the requirement that the GOPPRR C++ abstract

4GOPPRR model means a concrete instance of a meta model in GOPRR.
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syntax model should be independent from a certain meta model, which is also reflected in
the corresponding XSD in Section 4.3, the generator in MetaEdit+ should be held general.
Most of this could be easily covered by implementing general generators for each GOPRR or
rather GOPPRR element, which are called for each graph. Owing to the limitation of MERL
/ MetaEdit to graph-oriented generators, these general generators have to be initially called
from a graph and then executed recursively. Therefore, the start-point for the generation must
be some kind of root-graph5. This also means that the meta model graph types must be all
related in sub-graph structure. Otherwise, generators specialised for the concrete meta model
must be developed. The complete MERL source code of the GOPPRR XML generator can be
found in Section F.1

Drawbacks Although all meta models with a coherent sub-graph structure can be generated
by the general generators, for each root-graph type6 a specialised but simple generator must be
implemented that calls the others. A more grave problem is a limitation in MERL / MetaEdit+
that occurs if non-property elements are used as property. For example, if an object type is
used as property in another object type. It is possible in MERL to access such non-properties
as properties, including their properties, but only by using the concrete type name of the
non-property. Obviously, in a general generator, concrete type names are not available. The
only solution as a work-around is to provide for every meta model a specialised generator that
generates the corresponding XML elements for all non-properties used as properties.

It must be remarked that this drawback is only related to the modelling application but not
to the meta meta model.

4.5. The Object Constraint Language for Static Semantics

The Object Constraint Language (OCL) [65] was developed to refine software models described
by the Unified Modelling Language (UML) [66] in more detail. It provides a very general and
big syntax to cover most object-oriented model situations. Nevertheless, not all available syntax
expressions are required by the usage of a GOPPRR model because the related class-model
is invariant and well-defined by the GOPPRR C++ abstract syntax model (see Section 4.2).
Additionally, OCL is also well-defined and -documented, e.g., in [65]. Hence, a comprehensive
introduction of OCL will be omitted and only parts that are relevant for the GOPPRR meta
meta model will be presented.

OCL expressions are always related to a certain UML graph instance, which can be of
different types. One possibility is a class diagram [66] as it is used in Figure 4.4 for the
definition of the GOPPRR C++ abstract syntax model. Due to the fact that the C++ abstract
syntax model primary consists of relations – methods / operations are only used for abstraction
– and these relations only hold all relevant information about the related GOPPRR model, the
main OCL construct needed is the invariant. An invariant must always be fulfilled. If they
are not graphically bounded to an element in an UML diagram, all OCL expressions must be
defined in a certain context. This is typically the class name. For example, to define one or

5related to sub-graphs by decompositions and explosions
6typically only one per project
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more invariants for a GOPPRR project, the context would be CProject. To select this context,
the following OCL statement is used:

context CProject

An invariant construct within a certain context is prefixed by an inv: statement followed by
the invariant expression itself. This expression follows in part the C++ syntax for accessing
methods and attributes of objects [81]. For clarification, the following OCL statement defines
that all GOPPRR project objects must have a non empty ID:

context CProject
inv : m_ID <> ’ ’

The following examples are used to clarify the usage of OCL for constraint definition, which
are taken from the case study presented in Part III.

4.5.1. OCL Example: Global, Numerical Criteria

The global occurrence of the graph type “EVCStateMachine” must be exact one:

context CProject
inv : m_GraphSet−>s e l e c t (m_Type = ’EVCStateMachine ’ )−>s i z e ( ) = 1

4.5.2. OCL Example: Numerical Criteria within a Graph

All objects of the type “EVCState” within any graph of type “EVCStateMachine” must have at
least one explosion:

context CProject
inv : m_GraphSet−>s e l e c t (m_Type = ’EVCStateMachine ’ )−>f o rA l l (m_ObjectSet−>s e l e c t (m_Type

= ’EVCState ’ )−>f o rA l l ( m_Explosions−>s i z e ( ) >= 1) )

Combined with the prior constraint (Subsection 4.5.1), it can be reduced to:

context CProject
inv : m_GraphSet−>s e l e c t (m_Type = ’EVCStateMachine ’ )−>s i z e ( ) = 1
inv : m_GraphSet−>any (m_Type = ’EVCStateMachine ’ ) . m_ObjectSet−>s e l e c t (m_Type =

’EVCState ’ )−>f o rA l l ( m_Explosions−>s i z e ( ) >= 1)

An iteration (by the forAll() statement) over a set of multiple “EVCStateMachine” graphs
is not required because the first invariant already requires exact one instance of it. For
simplification, this reduction is done for all following constraint examples.

4.5.3. OCL Example: Boolean Criteria within a Graph by further Type
Specification

All “EVCGuard” properties of all “EVCTransition” relationships within all “EVCStateMachine”
graphs must also exist in at least one explosion of the corresponding objects connected by the
“CurrentEVCState” role of the before selected relationship:
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context CProject
inv : m_GraphSet−>s e l e c t (m_Type = ’EVCStateMachine ’ )−>s i z e ( ) = 1
inv : m_GraphSet−>f o rA l l (

graph |
graph . m_RelationshipSet−>s e l e c t (m_Type = ’ ModeTransition ’ )−>f o rA l l (

r e l a t i o n s h i p |
graph . m_BindingSet−>e x i s t s (

m_Connection . m_pRole .m_Type = ’ CurrentState ’
and
m_Connection . m_Calls−>e x i s t s (

m_pObject . m_Explosions−>e x i s t s (
exp l o s i on |
exp l o s i on . m_ObjectSet−>e x i s t s (

r e l a t i o n s h i p . m_Properties−>any (m_Type =
’EVCGuard ’ ) . m_NonProperties−>any (m_Type = ’ModeGuard ’ )

)
)

)
)

)
)

4.5.4. OCL Example: Port Connection Specification

For all graphs and for all ports, the amount of connected “DataInput” roles must be exact one:

context CProject
inv : m_GraphSet−>s e l e c t (m_Type = ’EVCStateMachine ’ )−>s i z e ( ) = 1
inv : m_GraphSet−>f o rA l l (

graph |
graph . m_PortSet−>f o rA l l (

port |
graph . m_BindingSet−>s e l e c t (m_Connection . m_Calls−>e x i s t s (m_pPort = port and

m_pRole .m_Type = ’ DataInput ’ ) )−>s i z e ( ) = 1
)

)

4.5.5. OCL Example: Graphical Containment

In all “CommunicationIn” graphs, all “Packet” objects that are graphically contained by any
“Telegram” object must exist also in the decomposition of the related “Telegram” object:

context CProject
inv : m_GraphSet−>s e l e c t (m_Type = ’EVCStateMachine ’ )−>s i z e ( ) = 1
inv : m_GraphSet−>s e l e c t (m_Type = ’ CommunicationIn ’ )−>f o rA l l (

graph |
graph . m_ObjectSet−>s e l e c t (m_Type = ’ Telegram ’ )−>f o rA l l (

te legram |
graph . m_Containers−>any (m_pContainer = te legram ) . m_ContainedObjects−>f o rA l l (

ob j e c t |
te legram . m_pDecomposition . m_ObjectSet−>inc l ude s ( ob j e c t )

)
)

)
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4.5.6. Limitations

Although the direct usage of the GOPPRR C++ abstract syntax model provides better
possibilities to define static semantics [48, pp. 69-70], as it is available within the MetaEdit+
application and its concrete syntax model, specific limitations cannot be resolved because the
XML file used as intermediate model is generated by MERL. Therefore, information that is not
accessible or visible by MERL cannot be exported to the XML file and accordingly cannot be
included in the GOPPRR C++ abstract syntax model. This results in the following limitations:

• The most remarkable limitation is the absence of sub- or supertypes. This means if
“Parent” is an object super type, “Child” is a subtype in the meta model, a concrete
model would have an instance A of “Parent”, and an instance B of “Child” the constraint

inv : ob j ec t s−>s e l e c t (m_Type = ’ Parent ’ )−>s i z e ( ) = 2

would not be fulfilled because m_Type = ’Parent’ only matches A.

• As already stated in Section 4.2, OCL cannot be used to check constraints for a meta
model without a concrete model instance.

4.5.7. Conclusion

The examples for certain constraints show that general constraints are very simple to be
defined by the OCL combined with the GOPPRR C++ abstract syntax model. The statement
complexity increases if constraints need the navigation through the GOPPRR bindings in
graphs. The reason is that the transformation from the MetaEdit+ internal GOPRR model to
the GOPPRR C++ abstract syntax model does not transform the navigation on GOPRR /
GOPPRR bindings into associations between classes. This was reasoned in Section 4.2. Also,
OCL only provides navigation through classes by their associations. Thus, OCL statements
have to use the classes for bindings, connection, and calls for navigation, which causes longer
and complexer statements.

In spite of this disadvantage, the following advantages of using OCL for GOPPRR prevail:

• The syntax is already well-defined and -documented as specified in [65].
• It is already widely used and known in the field of model-driven software development

with UML.
• It is based on MOF, the UML meta meta model.

This reasons the adoption of OCL as constraint language in this work.

4.6. Tool Chain

To integrate all elements introduced in this chapter in the development cycle of open source
software for dependable train control systems, a tool chain must be established. In a model-
driven architecture (MDA), those elements are generators and artefacts [48]. Generators can
only be connected with artefacts and vice versa. The resulting graph is shown in Figure 4.5
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where artefacts are represented by small boxes, generators by small ellipses, and applications
by big boxes surrounding a set of artefacts and generators. All elements are explained in detail
below and are grouped by applications. To better distinguish between element properties, the

Figure 4.5.: Tool chain for dependable open source software for openETCS

following abbreviations are used:
G generator
A artefact (generation not specified)
AF fully generated artefact
AM manually7 generated artefact

MetaEdit+ All elements within this box are located in and managed by the MetaEdit+
application. Artefacts, output by MetaEdit+, are outside the box.

7in the meaning of human interaction
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GOPRR (A) The GOPRR meta meta model.

MetaEdit+ Workbench (G) Part of MetaEdit+ for meta modelling /
development of meta models.

openETCS Meta Model (AM) The formal openETCS specification lan-
guage.

GOPPRR Abstract Syntax Meta Model (AM) Abstract syntax definition language for GOP-
PRR meta models.

MetaEdit+ Modeller (G) Part of MetaEdit+ for modelling / develop-
ment of models of certain meta models.

openETCS Model (AM) Formal and graphical model of the ETCS
specification related to the EVC and open-
ETCS.

openETCS Concrete Syntax Model (AM) Graphical model of the openETCS concrete
syntax model.

GOPPRR Generator (G) Transforms any model in GOPRR to a GOP-
PRR XML intermediate model file.

openETCS Generator Although this generator application is implemented in C++ and uses
the general GOPPRR XML file format as interface to MetaEdit+, the majority of its generators
are especially designed for the usage with openETCS models. This issue will be specified in
detail in Part III.

GOPPRR Transformer (G) Transforms a GOPPRR XML file model into a
GOPPRR C++ abstract syntax model.

GOPPRR Abstract Syntax Model (AF) Concrete instance of the C++ abstract syntax class
model representing the openETCS model.

C++ Generator (G) Generates the source code for the openETCS model.

Build Generator (G) Generates the build configuration for the open-
ETCS source code.

VM Generator (G) Generates the configuration files for virtual ma-
chines for openETCS (see Chapter 6).

Constraint Checker (G) Generates a report about fulfilled and unfulfilled
constraints for a GOPPRR by OCL statements.
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External Artefacts The following artefacts are not located in any application and are used
as interface, input, or final output of the tool chain.

OCL File (AM) List of OCL statements defining constraints for models of
the openETCS meta model as static semantics.

Source Code (AF) Generated C++ source code for the openETCS model.

Build Configuration (AF) Generated build configuration to compile and link the gen-
erated openETCS source code.

VM Configuration File(s) (AF) Generated configuration files for hypervisors running virtual
machines corresponding to the openETCS model.

Constraint Report (AF) List of unfulfilled constraints within the openETCS model.

The tool chain cannot end with the final generated artefacts as output because none of them
is executable. This chapter only provides background information needed for understanding
the following parts of this work and therefore the complete tool chain for the case study is
presented in Part III.

Drawback One idea of modelling the syntax of a meta model as model under the same
meta meta model was to be able to directly generate the meta model from this syntax model.
Unfortunately, it emerged that the XML file format used by MetaEdit+ for import and export
of meta models [58] does not support port types. Ports are only exported (and imported)
type-less as graphical connectors in object symbols / graphical representations. Therefore,
after (re-)importing a meta model via XML, all port types are stripped from the meta model.
This lack of port type support is not documented within the MetaEdit+ manual [58] and was
only found in support forums.

An alternative would be to use the internal MetaEdit+ patch file format [58], but it is
proprietary, not documented, and binary. To use it, the format would have to be re-engineered
– without any guarantee of success – and a binary generator would have to be developed.
Nevertheless, because the extension of existing modelling application is out of the scope of this
work, the openETCS concrete syntax model is manually kept synchronous with the openETCS
meta model and primary used for documentation purposes. This drawback is only related to
the modelling application but not to the meta meta model.

4.7. Conclusion

The GOPPRR extension of the GOPRR meta meta model provides good techniques and
formalisms integrated in a tool chain to fulfil the objectives of this work. The GOPPRR C++
abstract syntax model provides now all formalisms to fully describe the static semantics for a
meta model of GOPRR, which is a must for modelling of safety-critical systems. Additionally, it
provides better abstraction because it separates definition of element properties and sub-types
from graph-binding and sub-graphing. That the abstract syntax model cannot be used to
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automatically generate a meta model concrete syntax is an obvious disadvantage, but it is
acceptable within the context of this work.

The interconnection of the GOPPRR generator, a GOPPRR XML file, the GOPPRR
transformer, and finally the GOPPRR C++ abstract syntax model enables a separation of
(meta) modelling application and generator to develop more sophisticated generators that are
not limited to the syntax of a certain generator language. As a by-product, this interconnection
is meta model independent and could be used for any further project. There are some minor
limitations to this independence, but they can be compensated with little effort for each meta
model.

With OCL, an already well established formalism for defining object-oriented constraints
for the static semantics is integrated. In certain cases, its syntax might not provide the same
abstraction as a custom constraint language, but this small difference does not justify the
complete new development of tools like a parser. Also, the constraint checker is meta model
independent, which is not on account of OCL but of the independent GOPPRR C++ abstract
syntax model. It could be argued that the introduction of the GOPPRR C++ abstract syntax
model combined with the OCL would render the graphical description formalisms for graph
bindings, sub-graphs, and type properties obsolete. Although, this is correct – all allowed
bindings, decompositions, explosions, and properties can be defined as constraints for each
graph type – the resulting OCL statements would be much more complex than the presented
examples. Hence, those are very bad intuitively understandable. Furthermore, the three
graphical, concrete syntax formalisms could be interpreted as abstraction from the very general
but more complex description formalism provided by OCL.

All final output generators are directly related to the meta model and will be discussed in
Part III. The idea of the transformation from the GOPPRR to the MOF meta meta model in
Appendix A offers the possibility to use another meta meta model and modelling tool and to
reuse existing meta models, models, and, of course, the external generator elements.
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5
Verification and Validation

Since software engineering methods exist, verification and validation (often abbreviated V&V)
are integral parts in software development. They are used in traditional software development
strategies such as waterfall or V-model [80, p. 314] but also in modern methods.

Verification and validation mean in general to check if a certain software is correct, but they
also relate to two different aspects:

Verification means to check if a software is implemented correctly. It can be interpreted as
low-level checking and is mostly related to the implementation of the software.

Validation means to check if a software fulfils the requirements. It can be interpreted as
high-level checking and is mostly related to the design and purpose of the software.

Although verification and validation are often applied at the end of a software development
cycle, according to the aims of this work previously stated in Chapter 1, verification and
validation should be also taken into account during the design and implementation phases to
implicitly reduce errors in these development phases. This approach is also required by most of
the relevant standards related to the case study in this work, which will be described in the
following sections. This chapter introduces the concepts of verification and validation in the
scope of this work while the concrete realisation and results are described in Part III.

This chapter starts with the introduction of standards that are applicable in the railway
domain and strategies and techniques they define to develop certified software for safety-critical
systems. Additionally, some related1 standards are shortly explained to compare the proposed
methods. Afterwards, special issues related to the development of safety-critical software as
OSS / FLOSS are illustrated and a specialised software life cycle is presented. This is also used
to extend the general tool chain from Figure 4.5 about the derived integration of verification
and validation.

1not directly applicable
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5.1. Applicable and Related Standards

For the development of safety-critical systems exist several (industrial) standards. Figure 5.1
introduces those standards relevant for this work, which will be roughly discussed in the
following:

Figure 5.1.: Standards for the development of safety-critical systems

DIN EN 61508 Functional safety of electrical / electronic/ programmable electronic safety-
related systems: The DIN EN 61508 is a general standard, which is applica-
ble to all safety relevant electrical, electronic, and programmable electronic
systems. It can be interpreted as a superior standard [19].

EN 50128 Railway applications – Communications, signalling and processing systems
– Software for railway control and protection systems: The EN 50128 is a
specialised standard for software for train control systems. It refers to the
EN 50129 and EN 50126 [11].

EN 50129 Railway applications – Communication, signalling and processing systems –
Safety related electronic systems for signalling: The EN 50129 is a specialised
standard for communication, signalling, and processing in train systems. It
is related to the DIN EN 61508 and bases partly on it [13].

EN 50126 Railway applications – The specification and demonstration of Reliability,
Availability, Maintainability and Safety (RAMS): The EN 50126 is a stan-
dard for safety and reliability aspects in the field of train operators. It is
also related to the DIN EN 61508 because its analysis procedures are based
on it [10].

DO-178B Software Considerations in Airborne Systems and Equipment Certification:
The DO-178B is a standard developed by the RTCA for software for airborne
systems in general [76].

Although this is obviously not an applicable standard for the railway do-
main, it is used in this document to additionally introduce techniques and
methodologies from other domains.
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All standards are described in detail in the following subsections.

5.1.1. DIN EN 61508

The DIN EN 61508 is a general and superior standard, which is released by the German
Institute for Standardisation2, but it is also a European standard. Its focus is not only on the
development of software but on the hardware or rather system development. In this work, only
the development of software is included, but to enable a verification for a complete hardware
and software system Part 3 [20] of the DIN EN 61508 should be taken into account. The core
concept of the DIN EN 61508 is the so-called safety life cycle, which defines the development
process for the whole system. Due to its complexity and copyright restrictions, the safety life
cycle is not explained in detail in this document but can be found in [20].

The main principle of the DIN EN 61508 is that every possible hazardous failure for humans or
the environment must be avoided by safety-functions of the related system. Each safety-function
has a safety-integrity-level (SIL). The SIL describes the performance of a safety-function. This
means how reliable is the execution of a safety-function related to a certain possible, hazardous
failure. There are four safety-integrity-levels (n ∈ SIL = {1, 2, 3, 4}) while 1 is the lowest and
4 the highest performance. If a system only needs safety-functions with a SIL lower than 1, the
DIN EN 61508 is not applicable.

Since this work is only related to software development and not to a (complete) programmable
electronic system, this standard is not applicable and is only used as reference and for clarification
of the general certification process.

5.1.2. EN 50128, EN 50129, and EN 50126

Figure 5.1 shows that EN 50128, 50129, and 50126 are a group of related standards for train
systems. Therefore, they are explained in detail in one section as group and not separated.
While EN 50128 is the main standard for this work, 50129 and 50126 are introduced because
they are referenced by the main standard. Analogue to the the safety-integrity-level of the
DIN EN 61508, a software safety-integrity-level (SWSIL) is used. The difference is that for the
SWSIL an additional level (m ∈ SWSIL = SIL ∪ {0}) is used, which was explicitly forbidden
for the SIL. SWSIL m = 0 is used for software functions that are non-safety related. Similar to
he DIN EN 61508, the EN 50128 defines a life cycle, which is especially related to the software
development. Hence, it is called software life cycle, which can be found in [11].

Furthermore, the EN 50128 defines techniques and measures for the different steps in the
software life cycle. Depending on the SWSIL they are sorted by categories:

• mandatory
• highly recommended
• recommended
• no recommendation
• not recommended

2German: Deutsches Institut für Normung
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The category of a certain technique or measure depends on the SWSIL. Due to their ex-
tensiveness, the techniques and measures are not presented here in detail but can be found
in [12].

5.1.3. DO-178B

In contrast to the preceding ones, the DO-17B is neither a German nor a European standard. It
is released by the RTCA located in the United States. It is applicable for software in airborne
systems and therefore not applicable for this work. Anyway, it is additionally introduced
because it provides different techniques and measures from the EN 50128. [76]

Due to the fact that the DO-178B is not related to any other of the relevant standards, no
direct corresponds can be found, but nevertheless there exist similarities. Like all preceding
standards, it defines a certain life cycle, which includes a software life cycle [76]. Most of the
life cycle elements can be set in a relation to elements of the software life cycle of the EN 50128
in Subsection 5.1.2. A detailed description of the software development life cycle can be found
in [76].

The DO-17B also defines levels for software, but, in contrast to the preceding standards,
these levels o ∈ {A,B,C,D,E} describe the maximal hazard a possible failure could cause in
the software.

Level A describes software which failure would prevent the continuation of a safe flight or a
landing.

Level B describes software which failure would cause a large reduction of safety margins or
functional capabilities.

Level C describes software which failure would cause a reduction of safety margins or functional
capabilities.

Level D describes software which failure would cause a not significant reduction of safety
margins or functional capabilities.

Level E describes software which failure would not affect the operational capability.

Similar to the EN 50128, the DO-178B also provides techniques and measures that depend
on the software level. In contrast to the EN 50128, these techniques and measures are not sort
in different categories. It is only distinguished between techniques and measures that must be
satisfied for a certain level and are not mandatory, but are possible to use. For mandatory
elements, it is additionally distinguished between techniques and measures that only have to
be satisfied and those that have to satisfy with independence. Independence means here that
the result of a certain technique or measurement must be at least archived by two different
software development teams.

5.2. Verification and Validation as Open Source Software

As already defined in Chapter 1, one of the aims of this dissertation is the creation of a suitable
open source solution for model-based design, verification, and validation of safety-critical
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control systems. Consequently, this means that the used tools, mechanisms, and software for
verification and validation must be distributed also as open source software. This is also defined
by the Open Proofs concept [67].

Section 2.3 mentioned and explained the case of openETCS, for which the development
as open source software can mean more safety compared to the development as proprietary
software [39, 38]. For this purpose, there exist already approaches and solutions such as
TOPCASED [83], an Eclipse plug-in and toolkit for the software development of safety-
critical systems, which contains tools for modelling (in UML), model-checking, simulation,
documentation, and further more. Unfortunately, TOPCASED currently does not provided
directly any meta modelling [83] and therefore is not usable for this work.

Because no complete open source software suite or toolkit for certified meta modelling is
available, all used tools and software should be open source software, if possible. If proprietary
software or tools are used, they must have at least to support the export of the corresponding
content to an open file or data format. For example, the meta modeller MetaEdit+ (Subsec-
tion 3.3.4) is not distributed as open source, but it can export any model as XMI, which is an
open standard [63]. This means any meta model and model created with MetaEdit+ cannot
be accessed directly without a licensed version, but each meta model and model exported to
XMI can be viewed, inspected, and modified by an open source community. Also, the in this
work developed GOPPRR XSD is publicly available and can be used for the distribution as
OSS / FLOSS.

5.3. Software Life Cycle with Domain-Specific Modelling

The software life cycle for DSM describes the life cycle of the development of safety-critical
open source software with DSM in the railway domain. It takes all relevant information from
preceding chapters and sections into account that are necessary to finally fulfil all aims for
the software. These are mainly, on the one side, the necessities for open source software
(Section 5.2) and, on the other side, all specified requirements for the applicable standard
EN 50128 (Subsection 5.1.2). Figure 5.2 sketches the DSM software development concept
as software life cycle. It shows the connection of the different phases of the development
over time. Some phases must be executed in parallel because they have a high cohesion and
cannot be executed independently. It is obvious that most phases are executed iterative and
maybe lead back to their predecessors as it is common in software development strategies. The
corresponding edges are neglected in Figure 5.2 for graphical clearance. This life cycle can be
used to refine the software life cycle of the EN 50128.

The Verification & Validation Suite is additionally introduced, which combines both aspects
and defines for each a superior technique:

Dynamic Testing is a technique used for verification, which focuses on the functionality [80,
pp. 316ff] of a system or component. The corresponding test implementations are often
derived from the Software Architecture Specifications [11].

Model Constraint Checking is a technique used for validation, which checks model instances
for certain constraints and static semantics. Typically, these are derived from the Software
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Figure 5.2.: Software development life cycle for DSM in the railway domain

Requirements Specifications [11].

To directly integrate verification and validation in the development process, the original tool
chain for the GOPPRR meta meta model extension (see Section 4.6) has to be extended, which
is shown in Figure 5.3. The generator for functional testing [80, p. 316] refers to a concrete
dynamic testing category that should be applied.

It must be emphasised that this extended tool chain still is very general since it does not yet
take the domain framework into account, which always heavily depends on the concrete meta
model. Furthermore, the code generation also depends on the domain framework because it
builds the link between models and the framework. Thus, a complete or rather more concrete
tool chain is given in Part III for a certain example in form of a case study.

5.4. Conclusion

This chapter introduced standards for safety-critical systems and discussed the issues for
software development of such systems. Besides standards directly related to the domain of
train control systems, also a general standard in form of the DIN EN 61508 was exemplary
introduced. The DO-178B for airborne systems was used to additionally introduce principles
and techniques for a complete different problem domain.

Since all standards are life cycle oriented, a specialised software life cycle was developed,
which directly integrates the development of a DSL for a certain train control standards in
general. Also, considerations for the development as FLOSS were taken into account.

The general tool chain for the GOPPRR meta model was extended about the integration of
verification and validation according to the considerations related to the standards. Nevertheless,
the integration of the software life cycle for DSM into the life cycle of the EN 50128 cannot be
realised in the case study because it would exceed the limits of a dissertation.
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Figure 5.3.: Extended GOPPRR software development tool chain with V&V
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6
Security in Open Source Software

As described in Chapter 3, an important part of this work is the modelling of software.
Specifically, the development of a DSL for a train control system using ETCS as case study is
one of the superior aims of this work. Several advantages for the usage of OSS were already
introduced in Chapter 1 and Chapter 5 while the latter one explained why the development as
and with FLOSS is relevant for this work and how it should be integrated.

Since the terms OSS and FLOSS mainly refer to source code, the term open model or
open architecture is more accurate in relation to this work. Generally, the denomination
for open DSM software can be related to the instance of a DSL, which it relates to. The
resulting denominations and their correspondence of Figure 3.4 from Section 3.1 are presented
in Figure 6.1.

Figure 6.1.: Denomination for open DSM architecture instances

A meta meta model distributed under the principles of OSS / FLOSS is called open meta
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meta model, a meta model is called open meta model, a model open model, and an application
(or software), of course, open source.

This means that most parts of the software for this work should be developed (and published)
as open meta model and open model. Only the domain framework, generators, and parts of
the verification and validation suite apply directly to the term open source.

This approach leads to a security related problem because parts of the architecture can
or should be (re)implemented or extended by users / suppliers. As explained in Chapter 5,
the developed software should be verified, validated, and certified, which cannot be done
for (later) additional implemented software from third-parties in advance. This means that
verification and validation cannot be assured for all parts of the openETCS software because
the third-party implementations from other users / suppliers can only be verified and validated
by their developers or later in an additional process. Therefore, it have to be assumed that
third-party software that is not verified and validated does not comply with the EN 50128
(Subsection 5.1.2) and may even hold faulty or malicious software, e.g., a Backdoor. Malicious
software may even compromise software parts that were verified and validated before.

On the other hand, if additional supplier implementations are validated and certified, this
has to be done for the additional software, the open source, and the open model software
together. The result is an extensive process because all possible impacts of the additional
software to the already certified open source and open model software have to be analysed.

Figure 6.2 shows a very general example of how a third-party or supplier implementation
could compromise other parts of an open model software. This example has one model
implementation, which is certified, because it was directly generated from the certified open
model. Additionally, it holds two supplier implementations, which both instantiates certain
model parts of the open model software. These supplier implementations cannot guarantee
to be certified whereas one of them holds even malicious code. The communication between
different implementation parts is often required. A typical method is the usage of shared
memory. This means two (or more) implementations read and write to same areas in the
memory to communicate. Unfortunately, this mechanism can also be misused to compromise
other implementation parts. Therefore, the malicious supplier implementation could access the
memory of any other implementation and change their data used for execution or even the
execution itself.

Measures and techniques should be found to minimise the possible influence of a faulty or
malicious supplier implementation. Already existing strategies and a novel approach with the
usage hardware virtualisation are introduced and compared in the following sections and are
also described in [27].

In the following section, traditional methods for the management of memory are shortly
explained followed by the description of concepts for the usage of hardware virtualisation as a
new strategy. Afterwards, certain problems related to hardware virtualisation are discussed.
Possible solutions are elaborated and presented, which will be used for the case study in
Part III.
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Figure 6.2.: Possible spoiling with open models

6.1. Memory Management

The security problem with third-party implementations in an open model concept cannot be
completely avoided, but its influence to other components should be minimised. Because this
problem is not very uncommon, there exist different strategies for keeping the security of the
rest of the system uninfluenced from a faulty and malicious component.

There are different ways on how a component can influence another, but the access of the
used memory / data is the most problematic one. This means if a component can read and
write to the memory of another component it can change the data used for execution or even
the execution itself. Therefore, the following different memory management strategies are
described that reduce or avoid this problem in multiprocessing systems.

6.1.1. Partitioning

Partitioning means that the main memory of multiprocessing operating systems is divided
in sequential partitions. Programs or processes can only be loaded and executed in such a
partition and can only access the memory of their partition. Partitioning can generally be
divided in:

Static partitioning: The memory M is divided in n = const fixed sized partitions pi, ∀i :
length(pi) = const, M = {p0, p1, . . . , pn} while length(M) ≥ ∑n

i=0 length(pi) [79,
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pp. 353-453]. Static partitioning is very easy to implement, but it provides a very
inefficient usage of the main memory. In a fixed environment, like in embedded systems,
it can be used as a very simple but efficient memory management strategy due to the
systems constrains.

For example, the ARINC specification 653P1-2 [3], which is applicable for avionics software
standard interfaces, requires the usage of static partitioning for operating systems for the
corresponding embedded systems.

Dynamic partitioning: The memory M is divided in m = {1, 2, 3, . . . } partitions pj with
dynamic sizes: ∀j : length(pj) > 0, M = {p0, p1, . . . , pm−1} while length(M) ≥∑m−1

j=0 length(pj) [79, pp. 353-453]. Compared to static partitioning, dynamic parti-
tioning provides a more efficient usage of the main memory but needs in general more
computation time for its management.

6.1.2. Paging

For paging with virtual memory, the virtual memory V consists of the main memory M and
the swap space S: V = M ∪ S. This virtual memory V is divided in pages pk, which all have
the same size: ∀k : length(pk) = s. Programs or processes are loaded in different but not
necessarily sequential pages depending on their required memory. Pages of a program can be
loaded on demand and do not need to be loaded completely at program start. A program can
access its memory in a sequential manner because the physical memory addresses are mapped.
Therefore, a program can only access pages that belong to it [79, pp. 353-453]. Paging with
virtual memory provides an effective way of memory management for multiprocessing operating
systems, but it is quite complex to implement.

6.1.3. Segmentation

For segmentation with virtual memory, also the virtual memory V consists of the main memory
M and the swap space S: V = M ∪ S. A program e ∈ {0, 1, 2, . . . , n} is divided in certain
number of segments se,l (l ∈ {1, 2, 3, . . . m}), which have a dynamic size. This size can
be influenced by the developer of a program or the used compiler for high-level languages:
∀e : ∀l : length(se,l) > 0 while V ≥ ∑n

e=0

∑m
l=1 length(se,l).

As in paging, the segments are not necessarily sequential and not all segments of a program
must be loaded at its start. Also, the physical memory is mapped to provide each program a
sequential access to its allocated memory / segments [79, pp. 353-453]. The main difference,
compared with the advantages of paging, is that a developer can influence the size of the
segments. This can also be used to define areas of shared data segments, where several programs
have access to. Its implementation is even more complex as for paging.

6.1.4. Segmentation combined with Paging

To gain the advantages from paging and segmentation together, another more sophisticated
strategy is to combine both strategies. This means that segmentation is used for programs
while the segments se,l of each program e ∈ {0, 1, 2, . . . , n} are again divided in pages pe,l,k of
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a fixed size s: ∀e : ∀l : se,l = {pe,l,0, pe,l,1, . . . }, length(se, l) > 0, V ≥ ∑n
e=0

∑m
l=1 length(se,l),

∀k : length(pe,l,k) = s [79, pp. 353-453].
This strategy is used in most of the current multi-user-multiprocessing operating systems,

like GNU/Linux.

6.2. Hardware Virtualisation

Section 6.1 described traditional strategies for avoiding the influence of faulty or malicious
components on the rest of the system. This strategy must be integrated in the hardware1 and
the software and/or the operating system. That means for the usage of these strategies, it is
important how the hardware platform and the operating system are chosen.

This is often problematic because open source software is typically not limited to a certain
hardware or software platform. For a concrete open model software for industrial usage, this
is almost mandatory because during its development not all potentially used hardware and
software platforms can be known in advance. This leads to the need for another mechanism for
memory protection that better fulfils the requirements of open model software in industrial
applications.

The solution proposed in this work is the usage of hardware virtualisation [94]. Ideally,
each supplier implementation or program should be executed in a separated virtual machine.
The term virtual machine (VM) refers to the hardware virtualisation of any operating system
representing a computer. Since a VM is completely separated from its host’s operating
system, the virtualised operating system does not have any direct access or knowledge about
it. Programs executed in a VM can only communicate via a (virtual) network or a shared file
system with programs on the host system or on other VMs.

The application of the hardware virtualisation concept to the initial problem of open models
is shown in Figure 6.3. It holds the generated and certified model implementation and the two
supplier implementations from Figure 6.2, but, in contrast, all supplier implementations are
now locked in own virtual machines. This assures that the malicious implementation cannot
compromise any other part of the software while a communication still is possible.

This hardware virtualisation concept fits the typical use cases of open model software in
industrial applications because:

• Supplier implementations in a VM can never access memory of the host system or any
other VM independent from the used operating system or memory management strategies
and can only communicate with other components over defined and known channels.

• There exist several OSS / FLOSS implementations for hardware virtualisation, e.g.,
QEMU (KVM) [75], VirtualBox [68], Xen [99], and User Mode Linux [93].

Furthermore, the usage of hardware virtualisation provides additional advantages compared to
traditional memory management strategies:

Adv.1: Hardware virtualisation protects the host operating system from any kind of negative
and direct influence by failures, errors, or malicious behaviours of components executed

1typically CPU and MMU
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Figure 6.3.: Hardware virtualisation for open models
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in a virtual machine. This means, in the worst case other, components only have to
cope with the unavailability of other components in the corresponding virtual machine
or false data delivered or sent by them.

Adv.2: Each hardware device and its software interfaces are protected from direct access
from software components executed in a virtual machine. Several implementations of
hardware virtualisation hypervisors already provide for certain bus-types, like USB,
the possibility to configure the accessible devices in a certain virtual machine.

Adv.3: Virtualisation reduces dramatically the costs of partitioning analysis because software
components executed in a virtual machine can only have an impact to other components
over defined and known channels or interfaces.

Adv.4: Platform dependent source code can be executed in any (proprietary) operating system
and does not influence the choice of the host operating system.

Adv.5: Costs for hardware could be reduced because one hardware platform can host several
operating systems.

Adv.6: Virtual machines can be easily maintained or (re)installed because their hard disk
images can simply be copied.

There exist also some disadvantages and unsolved problems:

Prob.1: Hardware virtualisation itself does not implicitly provide any mechanism to protect
the bandwidth of real hardware resources, like the CPU(s) or the network interface(s)
on the host system. A hypervisor process can be assigned to a certain CPU (in
a multi-core system), which would at least protect the bandwidth of other cores.
Otherwise, if a (faulty or malicious) implementation consumes too much bandwidth,
it may influence any other executed implementation and limit its functionality.

Prob.2: Current open source hypervisors implementations are not too complex to be validated
and certified [15], but which is currently for typical multi-user operating systems
impossible because of their complexity. This means although the hypervisor can be
assumed to be trustworthy that the operating system cannot. Therefore, the operating
system itself may cause security problems.

Prob.3: Overhead for computation, main memory, and storage space is generated because
each virtual machine needs physical memory, each virtualised operating system needs
additional computation time, and each virtual operating system needs physical storage
space.

Prob.4: Access to shared memory outside a VM is not possible even if it is desired. Communi-
cation with processes outside a VM can only be done by mechanisms also used for
communication between different computers / hardware platforms that is typically a
network or memory mapped files on a shared file system.

Prob.5: Direct access to hardware devices or their interfaces is only possible for certain
bus-types.

Possible solutions for the problems Prob.1 till Prob.5 are introduced in the following subsections.
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6.2.1. Bandwidth Protection

As the bandwidth protection of the host system’s hardware resource is of high relevance, possible
solutions for Prob.1 are introduced in this subsection. Unlimited bandwidth consumption
is a possibility to influence or compromise the execution of other implementations over the
boundaries of a VM.

Unfortunately, a general solution for any kind of hardware resource cannot currently be
provided. Nevertheless, a possible solution is the usage of partitioning, which will be described
exemplary for CPUs and network interfaces.

6.2.1.1. Process Scheduling

For a host system, a VM is mainly like a normal process, which is executed, but knowledge
about certain processes in a VM is typically not available in the host. Therefore, partitioning
for the process execution must be done on the host system for the hypervisor process.

As for static memory partitioning (Subsection 6.1.1), the ARINC 653P1-2 requires for
embedded avionics systems the usage of static temporal partitioning [3]. This means a
global sample or cycle time Tc is defined, which is divided in n temporal slots si with i ∈
{0, 1, 2, . . . , n−1}, ti = length(si), and Tc =

∑n−1
i=0 ti. Each temporal slot si is exactly executed

once in one cycle Tc for the duration of its execution time ti while a certain process is assigned
to each temporal slot si. Static temporal partitioning is very robust and and easy to implement
but inflexible and mainly usable in embedded systems.

Process scheduling for multi-process operating systems with a not-fixed number of processes
is far more complex because statical temporal partitioning cannot be used. One important
requirement for the scheduler of the host system is that it behaves – at least partly – determin-
istically. Thus, it must be assured that no process starves [79, pp. 457-504]. It exist several
scheduler strategies that are deterministic and avoid starving, but a fair-share scheduler [79,
pp. 457-504] probably fits the requirements the best. It does not only avoid starving of processes
completely and is deterministic but also provides the possibility to group processes while the
execution of these groups is done in a “fair way”. Accordingly, if supplier and open model
implementations are in separated groups, a malicious or faulty supplier implementation could
only influence other supplier implementation in their scheduling.

6.2.1.2. Network Traffic Scheduling

It is not avoidable that processes of the software have to communicate with processes on other
computers or systems and also processes jailed in VMs need access to real network interfaces.
Although this access is never direct, a malicious or faulty implementation could consume too
much network bandwidth by, for example, sending plenty of user datagram protocol (UDP)
packets. This could limit the ability of any other process on the local system – independent
from if it is executed in a VM or not – to transfer data. This problem is mainly related to
network traffic or bandwidth outgoing from the local system because network traffic incoming
to the local system is generated by other computers on the network, which can be hardly
influenced by the retrieving system.
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Again, partitioning is a possible solution for this bandwidth problem. Similar to the scheduling
of processes, this is a temporal scheduling, not of CPU time but of network bandwidth usage.
Temporal slots are defined, which certain services / connections are assigned to. An example
for static temporal partitioning is the Time Triggered Protocol (TTP) [51], which defines fixed
temporal slots for each node on the bus.

The scheduling of network traffic is provided by hardware or by software. An industrial
solution for hardware scheduling of network traffic is, for example, the Avionics Full-Duplex
Ethernet (AFDX) [2], which is a real-time extension for Ethernet in avionic systems. Its main
disadvantage is that additional hardware is needed.

Of course, there exist also open source solutions, like the traffic control (tc) tool for
GNU/Linux, which is a part of the iproute suite [54]. With tc, it is possible to assign
to each network interface a so-called queuing discipline. The default discipline is a simple
first-in-first-out (FIFO) discipline, which does not protect the bandwidth of network interfaces.
A possible solution for bandwith protection is the usage of the Stochastic Fairness Queuing
(SFQ) discipline [54], which is a network traffic scheduler. Like the fair-share scheduler (Subsec-
tion 6.2.1.1), the SFQ schedules all network connections in a fair way that no connection can
starve. Unfortunately, the term “stochastic” in its name is misleading because the scheduler
behaviour is deterministic. It divides the network traffic on a certain interface into certain
number n of FIFO queues. Network traffic is assigned to this n FIFO queues by a hash function,
which is chosen in a stochastic way. The n FIFO queues are dequeued by a Round Robin [79,
pp. 457-504] algorithm while here the quantum q [79, pp. 457-504] is not in time but in data
size. This means that the SFQ does not provide temporal partitioning directly, but because
time t, bandwidth b ,and data size s are related by t = s

b with typically b = const it can be
called temporal partitioning anyway.

6.2.2. Minimal Host Operating System

A possible solution for Prob.2 could be the usage of an additional on-top security layer for the
host operating system, such as SELinux for Linux. Its source code would be simple enough to
be validated and certified and it supervises all security functions of the host operating system.
The disadvantage of this solution is that an additional execution layer is added to the host
operating system, which increase the complexity.

Therefore, it the usage of some kind of minimal operating system is proposed here. This
operating system should mainly consist of the hypervisor implementation(s), a scheduler, which
only switches between hypervisor processes and device handle routines, and device drivers and
interfaces. An example for such a minimal host operating system for hardware virtualisation is
LynxSecure [57]. Due to its reduced complexity, it can be validated and certified and then the
host operating system and hypervisors can be assumed to be secure.

6.2.3. Hardware Assisted Virtualisation

This section describes a possible solution for Prob.3 with the usage of hardware assisted
virtualisation. Most modern x86 compatible CPUs provide a support for virtualisation. Hence,
they offer two modes: Host and guest. The host mode is the “normal” mode of a CPU while the
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guest mode is used for VMs. In the guest mode, the virtualised operating system still sees the
four privilege levels of x86 CPUs in protected mode. Additionally, in guest mode, a virtualised
operating system can be executed in the highest privilege level. This does not mean a security
risk because in guest mode all privileged executions are trapped and the control returned to
the hypervisor, which handles then the execution in the host mode. The advantage of the two
modes is that the hypervisor does not need to provide a software implemented virtual CPU.
This can drastically reduce the computational overhead [1].

The usage of host and guest mode still leaves an overhead problem with the memory
management inside a VM: The memory management unit (MMU) of a CPU, which is used for
paging and segmentation [79, pp. 353-453], has to be provided by the hypervisor as software
implementation. For this problem also exists a hardware assisted solution because a virtual
MMU can also be provided by x86 CPUs by a feature known as Rapid Virtualisation Indexing
(RVI) or Extended Page Table (EPT) [1]. The combination of both CPU features in a hypervisor
may provide the best performance or rather overhead reduction that is currently available.

6.2.4. Process Communication

The limitation of the communication to network mechanisms (Prob.4) could be directly
integrated in the software design to reduce the drawbacks. For example, CORBA [42] can
be used for user or supplier implementations. Simply and generally expressed, the typical
CORBA development case is that an interface [42] is defined, which has to be implemented in
an object-oriented programming language, e.g. C++ or Java. The implementation is called
Servant [42] and is a software class. Additionally, CORBA provides a so-called Proxy [42],
which is generated from the interface and can be used to access the Servant. Figure 6.4 shows
a simplified example of a CORBA development case.

Figure 6.4.: Simple CORBA usage example

This Servant-Proxy mechanism could be directly included in the software model by, for
example, defining each part of the open model (from Figure 6.3) that could or should be
(re)implemented as supplier parts as CORBA interface. Consequently, each supplier implemen-
tation would be done by implementing a CORBA Servant for a certain interface. Besides the
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fact that the usage of CORBA can solve communication problems in a distributed software
architecture with VMs, it also provides additional advantages:

• CORBA is (quite) platform-independent because there exist several implementations for
various object-oriented programming and scripting languages under different operating
systems.

• CORBA is an industrial standard for middle-ware, which supports the processes of
verification and validation.

• CORBA supports in general the usage of distributed systems.

The presented example for open models with hardware virtualisation and CORBA was very
simplified because all software models normally do not consist of only one interface, but it is
for example possible to build a complex model by using several interfaces.

An alternative for the integration of CORBA could be the D-Bus [32] system, which is
quite popular in most Linux [49] distributions. Like CORBA, D-Bus implementations are
available for several different platforms and supports platform crossing communication. It also
uses an object model and differs only slightly in the terminology since the concrete interface
implementations are called adaptors. The main difference, compared to CORBA, is that the
bus, the interconnection between objects and proxies, is the central component. In CORBA,
there exist different possibilities for the proxy to servant connection since always a so-called
Interoperable Object Reference (IOR) [42] of the servant is needed. Only one possible way is
to exchange the IOR via a CORBA name server [42], which is similar to the bus mechanism
of D-Bus. Interfaces are defined for D-Bus as XML, from which a class for the adaptor
implementation and for the proxy is generated [32].

D-Bus mainly provides the same advantages as CORBA besides that it is not that frequently
used in industrial applications but more on Linux (desktop) systems. Especially, when executed
on a Linux system, D-Bus adds the advantage that system wide bus [32] is mostly available
and session related buses can easily be created.

6.2.5. Hardware Device Access

As for the inter-processes communication (Subsection 6.2.4), also the access to certain hardware
components could be solved by the employment of a middle-ware, like CORBA or D-Bus.
Accordingly, a general interface for each hardware component type would have to be defined,
which must be implemented by any hardware supplier. Unfortunately, this platform-specification
adoptions would have be executed directly on the target platform to guarantee access to the
related hardware component, which is in conflict with the idea of using hardware virtualisation.

Hence, the usage of a hypervisor that provides configurable access to certain hardware
components renders the concept of hardware device access through a middle-ware obsolete and
accordingly is preferable.

6.2.6. Hardware Virtualisation on Certified Supplier Hardware

A typical usage case for an open model software is that a supplier uses the open model and
open source elements, adds certain own supplier implementations, and compiles it for a certain
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(own) hardware platform. Often, this hardware is already certified itself and holds components
that provide or support management mechanisms, like temporal and spacial partitioning (see
Subsection 6.1.1 and Subsection 6.2.1.1).

One reason for additional supplier implementations was that suppliers or vendors often do
not use the enterprise model of open source (or open model) and prefer to keep their software
closed source and proprietary. Another reason is that not every existing application case can
be covered in advance during the development of the open model software.

The primary motivation for the usage of hardware virtualisation was the protection of verified,
validated, and certified software from possibly malicious and faulty ones. Certified supplier
hardware normally covers this task, but hardware virtualisation running on certified hardware
still provides the advantages Adv.1 to Adv.6 anyway and therefore still is worth to be used.

6.2.7. Hypervisor Requirements

Taking the before mentioned advantages Adv.1 to Adv.6 and problems Prob.1 to Prob.5 into
account, the following requirements must be fulfilled for the usage of hardware virtualisation
for security in open source and open model software:

Req.1: The minimal host operating system (Subsection 6.2.2) must be open source to enable
its validation.

Req.2: The hypervisor must be open source to enable its validation.
Req.3: Temporal partitioning or a deterministic scheduler algorithm (Subsection 6.2.1.1) must

be used for process scheduling in the minimal host operating system.
Req.4: Temporal partitioning or a deterministic scheduler algorithm (Subsection 6.2.1.1) must

be used for network connections / interfaces in the minimal host operating system.

6.3. Conclusion

In this chapter, the issues related to security raised if software realised by DSM is distributed
and developed under the principles of OSS / FLOSS were analysed and discussed. Besides
the traditional strategies for memory management, hardware virtualisation was presented as a
new and more general platform independent approach. A list of advantages and requirements
for the hypervisor integration was elaborated. Additionally, two concrete possibilities for the
realisation of required interprocess communication were presented.
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7
openETCS Meta Model

The meta model is the first instance to be developed in every DSL development cycle. In this
work, the selected meta meta model is GOPPRR, as already explained in Chapter 4. Figure 7.1
repeats the concrete DSL open model instances from Figure 6.1 and adds the concrete instances
for the openETCS case study.

Figure 7.1.: DSM instances for the openETCS case study

The openETCS1 meta model corresponds to the formal specification language. One of the
aims of this work in relation to the formal specification language is to provide more abstraction
than the specification documents of the ETCS SRS. The openETCS meta model should be
comprehensible for a domain expert2 and additionally should reflect the structure of the SRS, as

1The name openETCS was chosen for the case study. Although this work follows similar goals as the German
Railways initiative, it is not an immediate part of it.

2ATP or ETCS expert
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far as possible. Furthermore, the meta model must be formal [80, Ch. 11]. Hence, the complete
concrete syntax and the static semantics must be completely defined. A formal representation
of the dynamic semantics can support this feature of the meta model.

This chapter starts with the selection of the used parts or rather the subset3 of the ETCS SRS
for the case study because this must already be taken into account during the development of
the openETCS meta model. The concrete syntax [48, p. 70] of the meta model is explained by
the GOPPRR formalisms for sub-graphs, graph bindings, and type properties from Section 4.1,
which mainly corresponds to the concrete syntax used in MetaEdit+. Furthermore, the static
semantics [48, pp. 69-70] are defined by using the GOPPRR (C++) abstract syntax with OCL,
which is a set of constraints for any instance of the openETCS meta model. Afterwards, the
dynamic semantics [48, pp. 69-70], which means the behavioural interpretation of the meta
model, is discussed followed by a mathematical model for the dynamic semantics.

7.1. Selection of Specification Subset

Due to the complexity of the ETCS specification, even of the Subset-026 of the SRS, the
modelling of the complete SRS would no be realisable in the scope of this work. Therefore, a
certain and small enough subset of the SRS was selected for the case study:

• EVC implementation (mainly Subset-026)

– ETCS Application Levels: 0, 1
– ETCS Modes:

∗ No Power (NP)
∗ Stand By (SB)
∗ System Failure (SF)
∗ Isolation (IS)
∗ Trip (TR)
∗ Post Trip (PT)
∗ Unfitted (UN)
∗ Staff Responsible (SR)
∗ Full Supervision (FS)

This reduced subset of the SRS should directly influence the complexity of the later introduced
model instance. On the other hand, the limitation to the Application Levels 0 and 1 means
that only Eurobalises are used for track-to-train communication. As device types are also
included in the meta model, which is explained in the following section, this already reduces
the complexity for the meta modelling process.

The aim of this specification subset and the corresponding DSM instances is to provide
a minimal executable case study for the EVC that proves the feasibility of the open model
concept. Necessary extensions to all DSM instances needed for covering all SRS parts should
not be a reduction of this prove. Hence, those extensions were also taken into account during
the DSL development but are not (yet) implemented.

3Subset does not refer here to the term used in the ETCS SRS for combining several chapters, for example,
Subset-026.
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The developed meta model is based on the ETCS SRS version 2.3.0, which was already
referred to in the general ETCS introduction in Section 2.2. Accordingly, all following instances
of the openETCS DSL in this case study are also based on this SRS version.

7.2. Concrete Syntax for Graph Types and Sub-Graphs

To begin the meta model description with an overview, Figure 7.2 introduces all graph types
and their connection by explosions and decompositions. For clarification, all graph types are
denoted by a “g” as prefix and objects by an “o”. In the real meta model, those prefixes do not
exist. The general meaning of graph types is explained in this section while the certain binding
syntax and the used object types for each graph type are explained in the next section.

gEVCStateMachine graph type The ETCS standard specifies EVC behaviour according to
operational Modes. In each Mode, a well-defined collection of functions is active. Transitions
between Modes are specified in the standard as the so-called transition tables while related
descriptions of guard conditions are presented in structured natural language [90, pp. 37-40].

gMainFunctionBlock, gSubFunctionBlock, and gEmbeddedStateMachine
graph types The specification of ETCS Application Levels applicable in a certain Mode is
realised in the openETCS meta model by explosions from Modes (object type oMode) to
graphs of type gMainFunctionBlock: One for each level applicable in the respective Mode.
A gMainFunctionBlock graph defines the EVC operations to be executed in a given mode
and ETCS Application Level [90, 92, 91]. To determine the ETCS Application Level of a
function block, the gMainFunctionBlock graph type holds an oApplicationLevelType object
in its property list. This object carries the level identification of each gMainFunctionBlock
instance associated with an ETCS mode via explosion.

Function blocks are used to model data flow between objects that can be sources, like sensors
or actuators, but also to model variables describing internal states. Experience with system
modelling has shown that it is often necessary to complement data flow specifications by control
flow descriptions in order to model the complete system behaviour [8]. Therefore, the oEm-
beddedStateMachine object type in the gMainFunctionBlock graph type has a decomposition
into state machines (gEmbeddedStateMachine graph type) embedded within the data flow.
Conversely, state machine control states may be decomposed again into gSubFunctionBlock,
which model the active behaviour while residing in the control state. It should be noted that
this recursive relationship allows to specify hierarchic control states as used in the so-called
“OR-states” of statecharts [37].

Another special object is the oSubFunction object within the gMainFunctionBlock graph
type. Its purpose is to structure certain functionality into sub-graphs for better graphical
clarity and re-usability. For this reason, it has a decomposition to the gSubFunctionBlock
graph type.

The gSubFunctionBlock type differs from gMainFunctionBlock mainly in the lack of the
assignment to a certain Application Level by a property. This enables the re-usability of certain
(sub) functionality in several Modes and Application Levels. Therefore, object types related to
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gMainFunctionBlock

gEVCStateMachine

gPacket

ModeExplosion
1...*

oSubFunction
0...*

SubFunctionDecomposition
1...1

oCommunicationSender
0...*

oCommunicationReader
0...*

CommReaderDecomposition
1...1

CommSenderDecomposition
1...1

gCommunicationReadergCommunicationSender

oTelegram
1...*

TelegramDecompositon
1...1

gTelegram

oAnyPacket
0...*

PacketDecomposition
1...1

AnyPacketDecompositon
1...1

gAnyPacket

oMode
1...*

oRootNode
1...1

oLeafeNode
1...1

oRootNode
1...1

oLeafeNode
1...1

oPacket
1...*

gSubFunctionBlock

oEmbeddedStateMachine
0...*

gEmbeddedStateMachine

StateMachineDecomposition
1...1

oEmbeddedState
0...*

StateDecomposition
1...1

Figure 7.2.: openETCS meta model graphs, sub-graphs, and object occurrences
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hardware elements, like sensors and actuators, are only directly usable in a gMainFunctionBlock
graph. Access from gSubFunctionBlock is only possible via model variables. Furthermore,
gMainFunctionBlock has the property FailureGuard, which holds a oModeGuard (to be
explained in Subsection 7.3.2) object for defining the transition to be used in case of an error
in the EVC. If this property is not set, no failure state is defined for the corresponding ETCS
Mode and Application Level.

Apart from describing Mode- and Level-dependent functionality, the gMainFunctionBlock
and gSubFunctionBlock graph types are also used to specify behaviour at the interface between
train engine drivers and the EVC.

CommunicationSender and CommunicationReader graph types These graph types are used
to specify information exchange between train and track side components [89]. The data objects
used in train-to-track (oCommunicationSender) and track-to-train (oCommunicationSender)
communication are of type oTelegram.

gTelegram and gPacket graph types The ETCS SRS defines telegrams as the most complex
data structure for train-to-track communication via balises. Telegrams are composed of
packets [87]. According to the SRS, an oPacket is a data element in a telegram [87]. It is
modelled by a sequence of ETCS (language) variables, which are the atomic data items of
ETCS communication between train and track-side. The oAnyPacket object type is not directly
derived from the SRS. It is used to provide patterns, selections, or sub-structures of several
packets inside telegrams.

gAnyGraph This is a very simple graph type, which only holds packet object instances to
define a pattern for oAnyPacket objects.

7.3. Concrete Syntax for Graph Bindings

Section 7.2 explained the general purpose of all graph types of the openETCS meta model and
their interconnection. The concrete syntax of object bindings in each graph type is defined and
explained in the following subsections.

7.3.1. gEVCStateMachine Graph Type

The gEVCStateMachine graph type is applied to specify EVC Mode transitions, which are
labelled by guard conditions, as specified in Figure 7.3. Each mode transition has two attributes:

1. A ModeTransitionGuard object, which represents a Boolean trigger condition for a given
transition between two EVC Modes. Those conditions can be found in the modes and
transitions tables of the ETCS specification [90, pp. 38-40].

2. A ModeTransitionPriority, which is a non-negative integral number defining a priority for
situations where several guards of transitions emanating from the current mode evaluate
to true.
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ModeTransition

gEVCStateMachine

CurrentState
1...1

NextState
1...1

oMode
1...*

oMode
0...*

ModeTransition

CurrentState
1...1

NextState
1...1

oMode
0...*

oMode
1...*

Figure 7.3.: gEVCStateMachine bindings

It must be observed that the gEVCStateMachine graph itself does not provide any syntax
to define temporal behaviour, but the evaluation of its guard objects is manipulated in
gMainFunctionBlock graphs where causal and time-dependent behaviour can be described, as
shown below.

A certain question arises if the gained abstraction for modes and their transitions in the
openETCS meta model is directly evaluated here. A representation of 8 modes and 30 guard
conditions for transitions would result in a huge graph, which would be difficult to read
and therefore would not provide good abstraction. On the other hand, the transition table
in [90, p. 40] already is somehow in an optimized form. Fortunately, MetaEdit+ not only can
instantiate graph types directly with objects and bindings but also in matrix representation [58].

In contrary to the transition table, the modes are listed on the row and column index of the
matrix while the transitions or rather the ModeTransition relationships are located in the cells.
Any transition between a state i to state j can be found then in the cell (i, j). An example
taken from [90, p. 40] is shown in Figure 7.4. The EVC can be switched from the mode NP to

NP <29 · · ·-p2-
4> SB · · ·-p2-
...

...
. . .

Figure 7.4.: Simple example from SRS transition table

SB under the condition / guard “4” and from SB to NP under condition “29”. Both transitions
have the priority 2. The result of converting a gEVCStateMachine to a matrix instance is
presented in Figure 7.5. A more concrete example for a gEVCStateMachine matrix is presented
in Chapter 10.
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NP SB · · ·
NP c4-p2 · · ·
SB c29-p2 · · ·
...

...
...

. . .

Figure 7.5.: Simple example for a gEVCStateMachine matrix

7.3.2. gMainFunctionBlock and gSubFunctionBlock Graph Types

Main function blocks are used to model transformations of the data flow performed by the EVC
in a specific Mode and ETCS Application Level (Figure 7.6). Since these transformations may
be quite extensive, gMainFunctionBlock graphs may contain oSubFunction objects allowing
top-down decomposition into gSubFunctionBlock graphs. The behavioural interpretation is the
same as if all details occurring in the lower-level function block had been presented already in
the original function block without referencing an oSubFunction object.

Objects in the gMainFunctionBlock and gSubFunctionBlock graph type can be related
by the binary DataFlow relationships connecting objects by means of a DataOutput role
(sending object) and a DataInput role (receiving object). The possibility to connect general
objects by means of data flows and ports enables the specification of feed-forward or feed-back
structures [31], which are typically used in loop controllers. The GOPPRR port concept is used
to avoid modelling errors and facilitates the checking of static model semantics with respect to
interface consistency.

Compared to other graph types, both function block types use the majority of object types
in the meta model because they mainly describe the complete functionality in a certain ETCS
Application Level. Those object types can be divided in four categories:

sources Object types that only provide outputs. Those are mostly related to sensor
devices, like odometers. All types in this category use oFunctionBlockOut
as super type.

sinks Object types that only have inputs. Those are mostly related to actuator
devices, like service brakes. All types in this category use oFunctionBlockIn
as super type.

transformations Object types with inputs and outputs. Those apply a certain transforma-
tion on the inputs and give the results on the output. For example, the
computation of a braking-curve or the simple calculation of a sum. All types
in this category use oFunctionBlockIn as super type.

storages Object types for storing and restoring data values. No super type is used
for storages.

specials Object types that do not have any inputs and outputs and are not a direct
part of a data flow. No super type is used for special object types.
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gMainFunctionBlock

DataFlow

DataOutput
1...1

DataInput
1...1

oFunctionBlockOut
1...*

oFunctionBlockInOut
1...*

oFunctionBlockIn
1...*

oVariableStorage
0...1

oVariableStorage
0...*

intOutput
1...*

intInput
1...1

DataFlow

DataOutput
1...1

DataInput
1...1

doubleOutput
1...*

doublenput
1...1

DataFlow

DataOutput
1...1

DataInput
1...1

boolOutput
1...*

boolInput
1...1

DataFlow

DataOutput
1...1

DataInput
1...1

stringOutput
1...*

stringInput
1...1

DataOutput
1...1

DataInput
1...1

DataFlow

oFunctionBlockOut
1...*

oFunctionBlockInOut
1...*

oFunctionBlockIn
1...*

atomicOutput
1...*

oFunctionBlockOut
1...*

oFunctionBlockInOut
1...*

oVariableStorage
0...1

oVariableStorage
0...*

DataOutput
1...1

DataInput
1...1

DataFlow

atomicInput
1...1

oFunctionBlockInOut
1...*

oFunctionBlockIn
1...*

Figure 7.6.: gMainFunctionBlock binding syntax
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The data flow between those object type categories is in general not type-less, which ensures
data connections only between input and output of the same type. Data flow types are
determined by the port types of input and output, which are:

intOutput for integer outputs

intInput for integer inputs

doubleOutput for double precision floating point outputs

doubleInput for double precision floating point inputs

boolOutput for Boolean outputs

boolInput for Boolean inputs

stringOuput for string outputs

stringInput for string inputs

All output port types use atomicOutput as super type and all input types use atomicInput.
Figure 7.6 presents the bindings for the gMainFunctionBlock graph type using super types

for object and port types and Table 7.1 introduces the concrete object types. A documentation
of all types in Figure 7.6 would be an extensive diagram with low level of clarity.

Before continuing with the detailed explanation of object types, it must be noted that in
some minor cases the double data type has to be used as an array type. This means that the
data flow does not only transport single double values but vectors of a certain size. The array
type is only available for double data flows and rarely used.

All object types introduced in the table are shortly explained below and are grouped by the
category.

Source oOdometer is an interface to an odometer device as sensor hardware compo-
nent. It provides the current position and the current speed as double
values.

oCommunicationReader defines an abstract interface for certain telegrams
or messages for track-to-train communication [87, 89]. Its Boolean output
switches to true if a corresponding telegram / message was received.

oDMIInput is a certain element on the Driver Machine Interface (DMI) [86]
for receiving data from the driver. For each possible data type, a port
is available, but only one port can be used simultaneously. The used
output port type determines the type of data, which can be entered by
the driver. Additionally it has a Boolean input port to set if the element

4Boolean
5integer
6double
7string
8array
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Output
Port Types

Input
Port Types

Category Object Type b4 i5 d6 s7 b4 i5 d6 s7

source

oOdometer 1
oCommunicationReader 1
oDMIInput 2 1 1 1 1
oEnteredTrigger 1

sink

oServiceBrake 1
oEmegergencyBrake 1
oCommunicationSender 1
oDMIOutput 2 1 1 1
oApplicationLevelType 1
oModeGuard 1
oStateGuard 1

transformation

oAND 1 2
oOR 1 2
oXOR 1 2
oNOT 1 1
oSum 1 3
oSubstraction 1 2
oDivision 1 2
oMultiplication 1 2
oDoubleEqual 1 2
oIntEqual 1 2
oStringEqual 1 2
oDoubleGreater 1 2
oDoubleGreaterOrEqual 1 2
oIntGreater 1 2
oDoubleArrayAcessor 1 1 18

oBoolGate 1 2
oDoubleGate 1 1 1
oStringGate 1 1 1
oBoolSwitch 1 3
oDoubleSwitch 1 1 2
oStringSwitch 1 1 3
oEmbeddedStateMachine 1 1
oBrakingToTargetSpeed 4 1 5 + 28

oCeilingSpeedControl 4 4 + 28

special
oVariableStorage
oSubFunction
oNote

Table 7.1.: Concrete object types in function block graph types
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is currently visible or not. A further Boolean output port switches to
true if the driver entered data in the previous computation cycle.

oEnteredTrigger has a true output only in the first computation cycle after
switching to a new ETCS Mode and/or an new Application Level.

Sink oServiceBrake is an interface to a service brake hardware component. The
double input can be set from 0 to 100%, which corresponds to the
pressure level of the brake system.

oEmergencyBrake is an interface to an emergency brake hardware compo-
nent. If its Boolean input is set to true, the emergency brake system is
activated.

oCommunicationSender defines an abstract interface for certain telegrams
or messages for train-to-track communication [87, 89]. If its Boolean
input is set to true, the corresponding telegram / message structure is
sent.

oDMIOutput is a certain element on the Driver Machine Interface (DMI) [86]
for displaying data to the driver. For each possible data type, a port is
available, but only one port can be used simultaneously. Additionally, it
has an Boolean input port to set if the element is currently visible or
not.

oApplicationLevelType is used to switch between ETCS Application Levels.
If its Boolean input is set to true, it switched to the corresponding
Application Level defined by the property ApplicationLevelName in the
same ETCS Mode.

oModeGuard is, similar to oApplicationLevelType, used to switch between
different ETCS Modes. In contrast to oApplicationLevelType, the next
Mode is determined by the parent gEVCStateMachine graph. Each
ModeTransition relationship holds an oModeGuard object property that
must correspond to an instance9 in an explosion of the related current
state oMode object. This means if the Boolean input of an oModeGuard
object is set to true the corresponding ModeTransition relation is passed
to the new state. The new mode is then executed in the same Application
Level.

oStateGuard is the same as the oModeGuard type but is used for control
flows. This means in decompositions of oEmbeddedState objects used in
gEmbeddedStateMachine graph types, which will be explained in more
detail in the section describing the binding syntax of the gEmbedded-
StateMachine graph.

Transformation In contrast to sources and sinks, most transitional object types provide basic
mathematical operations. Their functionality can be simply derived from

9by reference
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their name:

• oAND, oOR, oXOR, and oNOT provide Boolean operations.

• oSum, oSubstraction, oDivision, and oMultiplication provide arithmetical
calculations.

• oDoubleEqual, oIntEqual, oStringEqual, oDoubleGreater, oDoubleGrea-
terOrEqual, and oIntGreater compare data flows of the corresponding
types.

Nevertheless, there exist also some object types which functionality must be
explained more accurate:

oDoubleArrayAcessor accesses a certain element of a double array input by
using an integer input as index. The element is used as double output.

oBoolGate controls a Boolean data flow by using another Boolean input. If
this control input is true, then the Boolean input is directly transferred
to the output, else nothing is output. This is the same functionality of
inhibit gates elements in Fault Tree Analysis [80, pp. 43-50].

oDoubleGate provides the same functionality as oBoolGate but for double
data flows.

oStringGate provides the same functionality as oBoolGate but for string
data flows.

oBoolSwitch is similar to oBoolGate, but instead of only copying or not
output at all it switches between two Boolean inputs. If the Boolean
control input is true, the first Boolean input is transferred to the output,
else the second input is transferred.

oDoubleSwitch has the same functionality as oBoolSwitch but for double
data flows.

oStringSwitch has the same functionality as oBoolSwitch but for string data
flows.

oEmbeddedStateMachine is used to define control flows by a decomposition
to a gEmbeddedStateMachine graph. It has one Boolean input to start
the underlying control flow. The string output delivers the literal name
of the current active state if the control was started and did not finish
yet.

oBrakingToTargetSpeed defines the calculation of a braking-curve for a
certain target speed as double input. It uses the gradient distance and
gradient values of the track as double array input. The current speed
and distance, the distance to the new speed limit, the new speed limit,
and the adhesion factor for the track are taken as double inputs. It
provides a Boolean output for the emergency brakes and a double output
for the service brakes. Additionally, it has Boolean outputs to inform
about exceeded speed limit and applied service and emergency brakes.
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oCeilingSpeedControl provides a supervision for a certain ceiling speed of
the train. It has the same inputs and outputs as oBrakingToTargetSpeed
but does not use the distance to the speed limit input because it provides
no braking-curve calculation.

Special oVariableStorage stores data flow values of any kind. It can be used to
copy values from a gMainFunctionBlock to a gSubFunctionBlock, and
vice versa, or also between different gSubFunctionBlock instances. This
means also between different ETCS Modes and Application Levels. The
only functionality it provides is the conversion or rather casting [81]
between the different data flow types. For example, it can store a Boolean
output and can then be used as integer input. Therefore, it does not have
any input or output ports and the data flow type is always determined
by the input or output port type of connected objects. A data flow
between two oVariableStorage objects is possible but is type-less and is
declared as bit data flow.

oSubFunction only defines a sub data flow to be used, which is defined as
decomposition to gSubFunctionBlock graph. It does not have any input
or output and does not participate in any data flow directly. It could
be interpreted as an include-statement [81] in high-level programming
languages.

oNote only is used for documentation purposes in a model to define comments.
Any object instances of oNote do not influence the semantics of the model
and thus neither the finally generated source code.

Difference between gMainFunctionBlock and gSubFunctionBlock Until now both data
flow graph types gMainFunctionBlock and gSubFunctionBlock were explained equally, but
gMainFunctionBlock is only used as explosion of oMode objects in the gEVCStateMachine
graph type, as already defined in Section 7.2. Additionally, it holds a property for defining the
ETCS Application Level, which it is used in. gSubFunctionBlock graphs are not limited to a
certain Application Level and can be reused for any Mode or Level.

Therefore, gSubFunctionBlock graph may not use any instance of oModeGuard object types
because those are always directly related to the parent oMode objects. Neither, the direct access
to hardware interface should be possible to ensure graphical clarity about used hardware on the
first data flow level for each ETCS Mode and Application Level. In general, this means that
mainly all sub-types of oFunctionBlockIn and oFunctionBlockOut are not available in gSub-
FunctionBlock graphs. The resulting bindings syntax is shown in Figure 7.7. The oStateGuard
is the only object type, which is used in gSubFunctionBlock but not in gMainFunctionBlock
because it is always related to oEmbeddedState object, which gMainFunctionBlock never can be
a decomposition of. In its syntax definition in Figure 7.6, it is available for gMainFunctionBlock
because it is a sub-type of oFunctionBlockIn. To avoid its usage there, a constraint is used,
which will be defined later by the static semantics.
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gSubFunctionBlock

DataFlow

DataOutput

1...1

DataInput

1...1

oFunctionBlockInOut
1...*

oVariableStorage
0...1

oVariableStorage
0...*

intOutput
1...*

intInput
1...1

DataFlow

DataOutput

1...1

DataInput

1...1

doubleOutput
1...*

doublenput
1...1

DataFlow

DataOutput

1...1

DataInput

1...1

boolOutput
1...*

boolInput
1...1

DataFlow

DataOutput

1...1

DataInput

1...1

stringOutput
1...*

stringInput
1...1

DataOutput

1...1

DataInput

1...1

DataFlow

oFunctionBlockInOut
1...*

atomicOutput
1...*

oFunctionBlockInOut
1...*

oVariableStorage
0...1

oVariableStorage
0...*

DataOutput

1...1

DataInput

1...1

DataFlow

atomicInput
1...1

oFunctionBlockInOut
1...*

oStateGuard
1...*

Figure 7.7.: gSubFunctionBlock binding syntax
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7.3.3. gEmbeddedStateMachine Graph Type

The gEmbeddedStateMachine graph type syntax is similar to the gEVCStateMachine, but
is also used, as the gMainFunctionBlock and gSubFunctionBlock graph types, to define the
functionality or rather the behaviour in a certain EVC Mode. In contrast to those graph types
that are used to model data flows, this graph type is used to specify control flows. Experience
with system modelling shows that the specification of data flows alone is insufficient in most
cases because a separate means for modelling control is needed [8]. For example, to model
communication protocols. The syntax definition of the gEmbeddedStateMachine graph type is
shown in Figure 7.8, which only differs from Figure 7.3 in the object type used for states. Of

gEmbeddedStateMachine

InitialTransition

CurrentState
1...1

NextState
1...1

oEmbeddedState
1...1

StateTransition

CurrentState
1...1

NextState
1...1

oEmbeddedInitialState
1...1

oEmbeddedState
1...*

oEmbeddedFinalState
1...*

Figure 7.8.: gEmbeddedStateMachine binding syntax

course, it is also meaningful to present instances of gEmbeddedStateMachine as matrix as for
gEVCStateMachine, but for a smaller amount of states the “normal” graphical representation
might provide the same or even better abstraction. Therefore, the representation kind for this
graph type can be chosen accordingly to the concrete state machine to be modelled.

7.3.4. gCommunicationSender Graph Type

The purpose of gCommunicationSender graphs is to compose telegrams with data from gFunc-
tionBlock graphs and to transmit them via a communication device. Currently, for this case
study, only Eurobalises [86] are used. The object types they operate on are oTelegram, oPacket,
oVariableInstace, oVariableStorage, and the different devices types for transmission. To model
or specify operations on an oTelegram, an oVariableStorage object can be connected by a
DataFlow relationship with an oVariableInstance object. Composition of gPacket objects by
oVariableInstance objects is modelled by graphical containment. The same is done for the
composition of oTelegram objects. Composed oTelegram objects can also be connected by a
DataFlow relationship with a certain sending device to specify the transmission of a telegram.
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The syntax is presented in Figure 7.9. The gCommunicationSender graph type also uses a data

gCommunicationSender

DataFlow

DataOutput
1...1

oSenderDevice
1...1

oTelegram
1...*

oTelegram
1...*

oPacket
1...*

oVariableInstance
1...*

DataFlow

oVariableStorage
1...*

oVariableInstance
1...1

DataInput
1...1

telegramInput
1...*

DataOutput
1...1

DataInput
1...1

Figure 7.9.: gCommunicationSender binding syntax

flow syntax, but this is reduced to the flow from a composed telegram to a sending device – a
sub-type instance of oSenderDevice – and from oVariableStorage objects to oVariableInstance
objects. The oVariableInstance object type represents the atomic data element used in balise
communication [87]. The concrete structuring of the large elements will be explained in sections
about the gTelegram and gPacket graph types.

In this graph type, only those modelled structures must be used. To compose a certain
oTelegram object, it has to be modelled that it graphically includes one or more oPacket objects
that are also part of the gTelegram graph decomposition of it. The same must be done for
each oVariableInstace object in the gPacket graph decompositions of the oPacket objects. The
data flow from an oVariableStorage to an oVariableInstace object can be interpreted as filling
of the telegram elements with values from the active data flows. This data flow is also of the
pseudo type bit because telegrams are transferred only digital.

7.3.5. gCommunicationReader Graph Type

The gCommunicationReader graph type is used for the opposite purpose of the gCommunica-
tionSender to get values from received telegrams by track-to-train communication. Therefore,
only the direction of the data flows is changed: From the receiving device – a sub type of
oReaderDevice – to a oTelegram object and from the included oVariableInstance objects to
oVariableInstace objects. The binding syntax is shown in Figure 7.10.
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gCommunicationReader

DataFlow

oTelegram
1...*

oPacket
1...*

DataFlow

oReaderDevice
1...*

oTelegram
1...1

oVariableInstance
1...*

oVariableInstance
1...*

oVariableStorage
1...1

DataOutput
1...1

DataInput
1...1

DataOutput
1...1

DataInput
1...1

telegramOutput
1...*

Figure 7.10.: gCommunicationReader binding syntax

7.3.6. gTelegram Graph Type

To specify an ETCS telegram [87], a certain order of ETCS packets has to be modelled. To
provide the possibility to define a telegram not only by exact one order but rather by a pattern,
the additional object type oAnyPacket is used. A gTelegram graph type consists in general
of five object types: oVariableInstace, oPacket, oAnyPacket, oRootNode, and oLeafNode.
oRootNode and oLeafNode are only used to define the first and last packet in the order of all
packets. All object types can be connected by the directed relationships VariableOrder and
PacketOrder. The corresponding syntax can be found in Figure 7.11. oVariableInstance objects

gTelegram

PacketOrder

PreviousPacket
1...1

NextPacket
1...1

oRootNode
1...1

oAnyPacket
1...1

oPacket
1...1

oLeafNode
1...1

VariableOrder

PreviousVariable
1...1

NextVariable
1...1

oVariableInstance
1...1

oLeafNode
1...1

PacketOrder

PreviousVariable
1...1

NextPacket
1...1

oVariableInstance
1...1

oAnyPacket
1...1

oPacket
1...1

Figure 7.11.: gTelegram binding syntax
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can be only used at the beginning of a telegram to define a telegram header [87]. Therefore,
they only can be modelled in the order between the oRootNode object and the first oPacket or
oAnyPacket instance. The VariableOrder relationship is used between the connection between
two oVariableInstance objects. PacketOrder is valid between oAnyPacket and/or oPacket types,
and between the last oVariableInstace and the two packet types.

The oAnyPacket object type is different from the others because it cannot be directly found
in SRS [87]. It can be used to model that at a certain point in the variable-packet order
several oPacket objects are possible. The concrete set of oPacket objects is specified in the
decomposition of the oAnyPacket instance. In that way, ETCS telegrams only differing from
each other in a certain packet can be easier and faster modelled.

7.3.7. gPacket Graph Type

Similar to the gTelegram graph type, the gPacket graph type is used to specify the order of
oVariableInstance objects in a certain ETCS packet [87]. Three object types are provided:

oRootNode defines the start point of a packet order.

oVariableInstance defines a certain ETCS variable of a certain type [87]. Therefore, the
oVariableInstance object type holds an oVariableType object as property. The oVari-
ableType type is not graphically used (only as property) and specifies the type of an
oVariableInstance object, which is similar to a template-mechanism [81] in object-oriented
programming languages. The oVariableType type holds several properties for defining
the attributes of an oVariableInstance object:

1. size in bits
2. the variable’s resolution [87]
3. the variable’s physical unit

oLeafNode determines the last gPacket object in an order.

The advantage of defining a property of oVariableType object type is that the concrete
oVariableType objects can be reused for several oVariableInstance objects.

Apart from enabling the specification of variable orders according to the ETCS specifica-
tions [87], also a possibility to model the scaling of certain variables is needed. Scaling means
that a value of a certain variable can scale (by multiplication) the value of another. This is
modelled by the additional Scaling relationship while the VariableOrder is used for specifying
the oVariableInstance object order. The full syntax is illustrated in Figure 7.12.

Moreover, the ETCS language specification [87] defines so-called iterating variables. This
concept is similar to arrays in C/C++ [81] or other high-level programming languages. A
certain variable holds the size of an array and the following variables are components of an
array of the specified size. An iterating variable is not modelled by a relationship but by
graphical containment, as introduced in Chapter 4. Therefore, oVariableInstance objects that
are iterated by another oVariableInstance object are drawn within the iterating instance. In
this way, it is also possible to specify nested iterations.

A specialisation of iterating variables are so-called conditional iterator variables. In contrast
to the normal iteration concept, conditional iterators do not iterate the graphically contained
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gPacket

VariableOrder Scaling

PreviousVariable
1...1

NextVariable
1...1

ScalingValue
1...1

ScaledValue
1...1

oVariableInstance
1...1

oRootNode
1...1

oLeafeNode
1...1

oVariableInstance
0...*

oVariableInstance
1...1

oVariableInstance
1...*

oVariableInstance
1...*

Figure 7.12.: gPacket binding syntax

objects corresponding to their numerical value. A (numerical) conditional value can be
defined, for which all iterated variables (by graphically containment) are exactly iterated once.
Otherwise, they will not exits. In this manner, it is possible to define the existence of certain
oVariableInstace objects only for certain (numerical) conditions.

7.3.8. gAnyPacket Graph Type

The gAnyPacket type is only used to specify a set of oPacket objects for oAnyPacket objects.
Hence, it has no binding syntax at all.

7.4. Concrete Syntax for Type Properties

As stated in Chapter 4, for a complete meta model syntax definition, besides sub-graphs and
graph-binding, the full definition for all types10 is needed. For the most important properties,
this was already done in Section 7.2 and Section 7.3. As the definition of all types is not
necessary for understanding the case study and for further reading of this document, this can
be found in Appendix B.

7.5. Static Semantics for Models

Section 7.3 defined all bindings as concrete syntax for each graph type by means of the GOPPRR
meta meta model. However, it is additionally necessary to define constraints for some graph
types as static semantics to reduce or refine the allowed syntax for models in special situations.
The use of constrains avoids models that do not have a semantic meaning with respect to the
SRS and is also an issue related to the safety properties of the generated software. According
to Section 4.5, constraints are defined by OCL.
10graphs, objects, ports, roles, and relationships
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The static semantics for openETCS meta model instances will be introduced by the graph
type they are mainly related to. It must be remarked that the majority of the following
constraints are only meaningful combined with others. Those dependencies between constraints
are not specially highlighted and therefore the following constraints should be always interpreted
in combination.

7.5.1. gEVCStateMachine

This graph type is used to define all available ETCS Modes of the EVC and the transitions
between those modes. An important constraint is that only one instance of this graph type
must exist in a model.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEVCStateMachine ’ )−>s i z e ( ) = 1

Listing 7.1: gEVCStateMachine constraint 1

It is also crucial that each mode defines the functionality it provides when it is active. This
means that in a model all oMode objects have at least one explosion to a gMainFunctionBlock
graph.

1 context CProject
2 inv : m_GraphSet−>any (m_Type = ’ gEVCStateMachine ’ ) . m_ObjectSet−>s e l e c t (m_Type =

’ oEVCState ’ )−>f o rA l l ( m_Explosions−>s i z e ( ) >= 1)

Listing 7.2: gEVCStateMachine constraint 2

It must be guaranteed that all oModeGuard objects used as properties in ModeTransition
relationships exist in at least one explosion of the oMode object connected by the CurrentState
role to ensure the correctness of the Mode. Otherwise, ModeTransition relationships could be
modelled but are never used.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEVCStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_RelationshipSet−>s e l e c t (m_Type = ’ ModeTransition ’ )−>f o rA l l (
5 r e l a t i o n s h i p |
6 graph . m_BindingSet−>e x i s t s (
7 m_Connection . m_pRole .m_Type = ’ CurrentState ’
8 and
9 m_Connection . m_Calls−>e x i s t s (

10 m_pObject . m_Explosions−>e x i s t s (
11 exp l o s i on |
12 exp l o s i on . m_ObjectSet−>inc l ud e s (
13 r e l a t i o n s h i p . m_Properties−>any (m_Type =

’EVCGuard ’ ) . m_NonProperties−>any (m_Type = ’oModeGuard ’ )
14 )
15 )
16 )
17 )
18 )
19 )

Listing 7.3: gEVCStateMachine constraint 2
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A proper EVC implementation always needs exact one initial state. In a gEVCStateMachine
graph this is modelled by the Boolean property IsInitial of the oMode object type. Thus, in a
certain graph exact one oMode object must have this property set to true while all others are
false.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEVCStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (
5 ob j e c t |
6 ob j e c t .m_Type = ’oMode ’ and ob j e c t . m_Properties−>any (m_Type = ’ I s I n i t i a l ’ ) . m_Value

= ’T ’
7 )−>s i z e ( ) = 1
8 )

Listing 7.4: gEVCStateMachine constraint 3

Furthermore, it must be ensured that all possible transitions from a certain oMode object
have different priorities. Otherwise, it is not possible to uniquely decide in a concurrent
situation, which transition is going to be used.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEVCStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’oMode ’ )−>f o rA l l (
5 mode |
6 graph . m_BindingSet−>s e l e c t (m_Connection . m_Calls−>e x i s t s (m_pObject =

mode) ) . m_pRelationship . m_Properties−>s e l e c t (m_Type =
’ P r i o r i t y ’ )−>isUnique (m_Value)

7 )
8 )

Listing 7.5: gEVCStateMachine constraint 4

7.5.2. gMainFunctionBlock and gSubFunctionBlock

As both graph types define data flows, the first constraint is that each input port – independent
from its data type – should be connected only with one data flow. Multiple inputs are not
semantically meaningful.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ or m_Type =

’ gSubFunctionBlock ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oSubFunction ’ ) . m_pDecomposition−>c l o s u r e (
5 subgraph |
6 subgraph . m_ObjectSet−>s e l e c t (m_Type = ’ oSubFunction ’ ) . m_pDecomposition
7 )−>inc lud ing ( graph )−>f o rA l l (
8 graph |
9 graph . m_PortSet−>f o rA l l (

10 port |
11 graph . m_BindingSet−>s e l e c t (m_Connection . m_Calls−>e x i s t s (
12 m_pPort = port and m_pRole .m_Type = ’ DataInput ’
13 ) )−>s i z e ( ) = 1
14 )
15 )
16 )
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Listing 7.6: gFunctionBlock constraint 1

The OCL closure [65, pp. 30-31] statement (lines 4 to 7) is not only used to check this constraint
for each graph instance separately but also to include gSubFunctionBlock graphs referenced by
oSubFunction object decompositions. In other words, if an input port is already connected in a
gMainFunctionBlock graph and also in a gSubFunctionBlock graph included by a oSubFunction
object, this constraints fails. Due to the easy usage of this complex operation, the closure
statement is also used for further constraints.

Because oVariableStorage objects do not have any input ports, an additional constraint for
their input count must be defined.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ or m_Type =

’ gSubFunctionBlock ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oSubFunction ’ ) . m_pDecomposition−>c l o s u r e (
5 subgraph |
6 subgraph . m_ObjectSet−>s e l e c t (m_Type = ’ oSubFunction ’ ) . m_pDecomposition
7 )−>inc lud ing ( graph )−>f o rA l l (
8 graph |
9 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oVar iab l eStorage ’ )−>f o rA l l (

10 ob j e c t |
11 graph . m_BindingSet−>s e l e c t (m_Connection . m_Calls−>e x i s t s (
12 m_pObject = ob j e c t and m_pRole .m_Type = ’ DataInput ’
13 ) )−>s i z e ( ) = 1
14 )
15 )
16 )

Listing 7.7: gFunctionBlock constraint 2

Regarding the inclusion of gSubFunctionBlock graphs, it is important that a model instance
does not hold a recursive inclusion of gSubFunctionBlock graphs by oSubFunction objects.
Recursive inclusion means that a parent graph which includes a child graph by an oSubFunction
object is also included in the child graph representation – or any other further child graph – by
another oSubFunction object.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ or m_Type =

’ gSubFunctionBlock ’ )−>f o rA l l (
3 graph |
4 l e t subob j e c t s : Collection (GOPPRR: : CObject ) =
5 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oSubFunction ’ ) . m_pDecomposition−>c l o s u r e (
6 subgraph |
7 subgraph . m_ObjectSet−>s e l e c t (m_Type = ’ oSubFunction ’ ) . m_pDecomposition
8 )−>inc lud ing ( graph ) . m_ObjectSet−>f l a t t e n ( )−>s e l e c t (m_Type = ’ oSubFunction ’ )
9 in

10 subobject s−>s i z e ( ) = subobject s−>asSet ( )−>s i z e ( )
11 )

Listing 7.8: gFunctionBlock constraint 3

The constraint that each instance of oSubFunction must have a decomposition is not extremely
necessary, but it is defined to ensure model correctness.
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1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ or m_Type =

’ gSubFunctionBlock ’ ) . m_ObjectSet−>s e l e c t (m_Type = ’ oSubFunction ’ )−>f o rA l l (
3 subobjec t |
4 subobjec t . m_pDecomposition−>s i z e ( ) = 1
5 )

Listing 7.9: gFunctionBlock constraint 4

An instance without decomposition would not oppose the static semantics but might falsify
the information provided by the graph for human beings.

The same is required for the oEmbeddedStateMachine object type.
1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ or m_Type =

’ gSubFunctionBlock ’ ) . m_ObjectSet−>s e l e c t (m_Type = ’ oEmbeddedStateMachine ’ )−>f o rA l l (
3 embedded |
4 embedded . m_pDecomposition−>s i z e ( ) = 1
5 )

Listing 7.10: gFunctionBlock constraint 5

As required for the gEVCStateMachine graph type, all oModeGuard objects used as properties
in ModeTransition relationships must exist at least in one explosion of the related oMode
object. It is also necessary that all oModeGuard objects in a gMainFunctionBlock graph exist
at least once as property of a ModeTransition relation connected to the parent oMode object.
Otherwise, the activation of such oModeGuard object would be without any effect.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEVCStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’oMode ’ )−>f o rA l l (
5 mode |
6 mode . m_Explosions−>f o rA l l (
7 func t i on |
8 func t i on . m_ObjectSet−>s e l e c t (m_Type = ’oModeGuard ’ )−>f o rA l l (
9 guard |

10 graph . m_BindingSet−>s e l e c t (
11 m_Connection . m_Calls−>e x i s t s (m_pObject = mode and m_pRole .m_Type =

’ CurrentState ’ )
12 )−>e x i s t s (
13 m_pRelationship . m_Properties−>any (m_Type =

’EVCGuard ’ ) . m_NonProperties−>any (m_Type = ’EVCGuard ’ ) = guard
14 )
15 )
16 )
17 )
18 )

Listing 7.11: gFunctionBlock constraint 6

A very similar constraint is required for oStateGuard objects that are used in gSubFunction-
Block and gEmbeddedStateMachine graphs.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEmbeddedStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oEmbeddedState ’ )−>f o rA l l (
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5 s t a t e |
6 s t a t e . m_pDecomposition . m_ObjectSet−>s e l e c t (m_Type = ’ oStateGuard ’ )−>f o rA l l (
7 guard |
8 graph . m_BindingSet−>s e l e c t (
9 m_Connection . m_Calls−>e x i s t s (m_pObject = mode and m_pRole .m_Type =

’ CurrentState ’ )
10 )−>e x i s t s (
11 m_pRelationship . m_Properties−>any (m_Type =

’ StateGuard ’ ) . m_NonProperties−>any (m_Type = ’ StateGuard ’ ) = guard
12 )
13 )
14 )
15 )

Listing 7.12: gFunctionBlock constraint 7

Since the concrete syntax only uses the atomic types11 for input and output ports, it must
be ensured that in each data flow both are of the same type.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ ) . m_BindingSet−>f o rA l l (
3 binding |
4 binding . m_Connection . m_Calls . m_pPort .m_Type−>asSet ( )−>s i z e ( ) = 1
5 )

Listing 7.13: gFunctionBlock constraint 8

A final constraint for gMainFunctionBlock was already derived in Subsection 7.3.2 that
requires that no oStateGuard objects may exist in a gMainFunctionBlock graph.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ ) . m_ObjectSet−>s e l e c t (m_Type =

’ oStateGuard ’ )−>s i z e ( ) = 0

Listing 7.14: gFunctionBlock constraint 9

7.5.3. gEmbeddedStateMachine Graph Type

Similar to the gEVCStateMachine graph type, it is required that the oStateGuard objects used
as guards in StateTransition relationships exist in the decomposition of the oEmbeddedState
object on the connected CurrentState role.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEmbeddedStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_RelationshipSet−>s e l e c t (m_Type = ’ Sta t eTrans i t i on ’ )−>f o rA l l (
5 r e l a t i o n s h i p |
6 graph . m_BindingSet−>e x i s t s (
7 m_Connection . m_pRole .m_Type = ’ CurrentState ’
8 and
9 m_Connection . m_Calls−>e x i s t s (

10 m_pObject . m_pDecomposition . m_ObjectSet−>inc l ud e s (
11 r e l a t i o n s h i p . m_Properties−>any (m_Type =

’ StateGuard ’ ) . m_NonProperties−>any (m_Type = ’ oStateGuard ’ )
12 )
13 )

11atomicInput and atomicOutput
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14 )
15 )
16 )

Listing 7.15: gEmbeddedStateMachine constraint 1

This constraint implicitly defines that all oEmbeddedState objects have a decomposition.
A state machine always needs to have exact one initial state to be able to start.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEmbeddedStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet . s e l e c t (m_Type = ’ oEmbeddedIn it ia lState ’ )−>s i z e ( ) = 1
5 )

Listing 7.16: gEmbeddedStateMachine constraint 2

Additionally, each oEmbeddedInitialState object must be exact in one current state role or
rather an InitialTransition relationship.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEmbeddedStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_BindingSet−>s e l e c t ( m_pRelationship .m_Type = ’ I n i t i a l T r a n s i t i o n ’ )−>s i z e ( ) = 1
5 )

Listing 7.17: gEmbeddedStateMachine constraint 3

It is necessary that all oEmbeddedState objects are in at least one CurrentState role to avoid
dead locks / states.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEmbeddedStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oEmbeddedState ’ )−>f o rA l l (
5 ob j e c t |
6 graph . m_BindingSet−>s e l e c t ( m_pRelationship .m_Type =

’ Trans i t i on ’ ) . m_Connection . m_Calls−>s e l e c t (m_pRole .m_Type = ’ CurrentState ’ and
m_pObject = ob j e c t )−>s i z e ( ) >= 1

7 )
8 )

Listing 7.18: gEmbeddedStateMachine constraint 4

Similar to the constraint for non-concurrent priorities for transition of ETCS Modes in
Subsection 7.5.1, also those situations must be avoided for the priority of transitions of
embedded state machines.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gEmbeddedStateMachine ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oEmbeddedState ’ )−>f o rA l l (
5 s t a t e |
6 graph . m_BindingSet−>s e l e c t (m_Connection . m_Calls−>e x i s t s (m_pObject =

s t a t e ) ) . m_pRelationship−>s e l e c t (m_Type =
’ Trans i t i on ’ ) . m_Properties−>s e l e c t (m_Type = ’ P r i o r i t y ’ )−>isUnique (m_Value)

7 )
8 )

Listing 7.19: gEmbeddedStateMachine constraint 5
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7.5.4. gCommunicationReader and gCommunicationSender Graph Type

The communication graph type provides a reduced set of possibilities for modelling data flows
between oTelegram objects and oSenderDevice or oReaderDevice objects. As for the graph
types for data flows, it also has to be ensured that each input port is only used once.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gCommunicationReader ’ or m_Type =

’ gCommunicationSender ’ )−>f o rA l l (
3 graph |
4 graph . m_PortSet−>f o rA l l (
5 port |
6 graph . m_BindingSet−>s e l e c t (m_Connection . m_Calls−>e x i s t s (
7 m_pPort = port and m_pRole .m_Type = ’ DataInput ’
8 ) )−>s i z e ( ) = 1
9 )

10 )

Listing 7.20: Communication graph constraint 1

The following two constraints are defined to guarantee that all modelled oPacket objects are
graphically included by exact one oTelegram object and are also part of the decomposition
graph (of type gTelegram) of this oTelegram object.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gCommunicationReader ’ or m_Type =

’ gCommunicationSender ’ )−>f o rA l l (
3 graph |
4 graph . m_Containers−>s e l e c t (m_pContainer .m_Type =

’ oTelegram ’ ) . m_ContainedObjects−>s i z e ( ) =
graph . m_Containers−>s e l e c t (m_pContainer .m_Type =
’ oTelegram ’ ) . m_ContainedObjects−>asSet−>s i z e ( )

5 )

Listing 7.21: Communication graph constraint 1

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gCommunicationReader ’ or m_Type =

’ gCommunicationSender ’ )−>f o rA l l (
3 graph |
4 graph . m_Containers−>s e l e c t (m_pContainer .m_Type = ’ oTelegram ’ )−>f o rA l l (
5 conta ine r |
6 conta ine r . m_ContainedObjects−>s e l e c t (m_Type = ’ oPacket ’ )−>f o rA l l (
7 packet |
8 conta ine r . m_pContainer . m_pDecomposition . m_ObjectSet−>inc l ud e s ( packet )
9 )

10 )
11 )

Listing 7.22: Communication graph constraint 2

The same constraints are also needed for oVariableInstance objects that are graphically
contained by oPacket objects.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gCommunicationReader ’ or m_Type =

’ gCommunicationSender ’ )−>f o rA l l (
3 graph |
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4 graph . m_Containers−>s e l e c t (m_pContainer .m_Type =
’ oPacket ’ )−>m_ContainedObjects−>s i z e ( ) =
graph . m_Containers−>s e l e c t (m_pContainer .m_Type =
’ oPacket ’ ) . m_ContainedObjects−>asSet−>s i z e ( )

5 )

Listing 7.23: Communication graph constraint 3

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gCommunicationReader ’ or m_Type =

’ gCommunicationSender ’ )−>f o rA l l (
3 graph |
4 graph . m_Containers−>s e l e c t (m_pContainer .m_Type = ’ oPacket ’ )−>f o rA l l (
5 conta ine r |
6 conta ine r . m_ContainedObjects−>s e l e c t (m_Type = ’ oVar i ab l e In s ta c e ’ )−>f o rA l l (
7 va r i ab l e |
8 conta ine r . m_pContainer . m_pDecomposition . m_ObjectSet−>inc l ud e s ( v a r i ab l e )
9 )

10 )
11 )

Listing 7.24: Communication graph constraint 4

7.5.5. gTelegram Graph Type

The gTelegram graph type is used to define an ordered set of oVariableInstance and oPacket
objects that build together an ETCS telegram. Therefore, it is important that this ordered set
has a defined beginning and ending, which is modelled by oRootNode and oLeafNode objects.
The derived constraint is that in each gTelegram exists exact one instance of each type.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gTelegram ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oRootNode ’ )−>s i z e ( ) = 1
5 and
6 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oLeafNode ’ )−>s i z e ( ) = 1
7 )

Listing 7.25: gTelegram constraint 1

Furthermore, no “loose” objects are allowed, which means that all objects besides the
oLeafNode and oRootNode instances, must have exact one NextVariable or NextPacket role
and exact one PreviousVariable or PreviousPacket role.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gTelegram ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>r e j e c t (m_Type = ’ oRootNode ’ or m_Type = ’ oLeafNode ’ )−>f o rA l l (
5 ob j e c t |
6 graph . m_BindingSet . m_Connection . m_Calls−>s e l e c t (
7 (m_pRole .m_Type = ’ NextVariable ’ or m_pRole .m_Type = ’ NextPacket ’ ) and m_pObject

= ob j e c t
8 )−>s i z e ( ) = 1
9 and

10 graph . m_BindingSet . m_Connection . m_Calls−>s e l e c t (
11 (m_pRole .m_Type = ’ Prev iousVar iab l e ’ or m_pRole .m_Type = ’ PreviousPacket ’ ) and

m_pObject = ob j e c t

105



Chapter 7. openETCS Meta Model

12 )−>s i z e ( ) = 1
13 )
14 )

Listing 7.26: gTelegram constraint 2

This constraint implicitly contains the requirement that the oRootNode and oLeafNode ob-
jects are always connected because only by their usage it is possible to not model “loose”
oVariableInstace or oPacket objects.

Finally, for model correctness all oPacket objects should have a decomposition.
1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gTelegram ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oPacket ’ )−>f o rA l l (
5 ob j e c t |
6 ob j e c t . m_pDecomposition−>s i z e ( ) = 1
7 )
8 )

Listing 7.27: gTelegram constraint 2

7.5.6. gPacket Graph Type

Like the gTelegram graph type, the gPacket graph type is used to model an ordered set of
object types. The difference is that only oVariableInstace objects can be used. Therefore, the
constraint for the existence of an oRootNode and an oLeafNode object is mainly the same.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gPacket ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oRootNode ’ )−>s i z e ( ) = 1
5 and
6 graph . m_ObjectSet−>s e l e c t (m_Type = ’ oLeafNode ’ )−>s i z e ( ) = 1
7 )

Listing 7.28: gPacket constraint 1

Also, the concrete constraint for no “loose” oVariableInstace is the same, only the packet
related roles are not used.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gPacket ’ )−>f o rA l l (
3 graph |
4 graph . m_ObjectSet−>r e j e c t (m_Type = ’ oRootNode ’ or m_Type = ’ oLeafNode ’ )−>f o rA l l (
5 ob j e c t |
6 graph . m_BindingSet . m_Connection . m_Calls−>s e l e c t (
7 (m_pRole .m_Type = ’ NextVariable ’ ) and m_pObject = ob j e c t
8 )−>s i z e ( ) = 1
9 and

10 graph . m_BindingSet . m_Connection . m_Calls−>s e l e c t (
11 (m_pRole .m_Type = ’ Prev iousVar iab l e ’ ) and m_pObject = ob j e c t
12 )−>s i z e ( ) = 1
13 )
14 )

Listing 7.29: gTelegram constraint 2
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7.5.7. Undefinable Static Semantics

A constraint type for the data flow graph types that is probably meaningful was not yet specified.
It concerns to not used input and output ports of any data type in gMainFunctionBlock and
gSubFunctionBlock graphs. It seems meaningful to require that any available port of objects
in those graph types should be used or rather connected. The behaviour is that in cases, in
which inputs are not set, the corresponding output(s) cannot be directly defined. It can be
an initial value but also the last value set in ETCS Mode or Application Level, in which the
output was used last.

The reason why a general OCL constraint cannot be defined for this purpose is that in
MERL only ports that are in a connection are accessible. Unconnected ports are simply not
visible to any generator. Therefore, unconnected ports cannot be found in the GOPPRR C++
abstract syntax model, which is used for the constraint checking.

The only currently possible work-around for this situation is to define an own constraint for
each concrete object type with ports while using the knowledge about its port number in the
constraint.

For example, for the oAND type, which has two Boolean inputs and one Boolean output,
the following statement is defined to require that all its input ports must be used,

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ or m_Type =

’ gSubFunctionBlock ’ )−>f o rA l l (
3 func t i on |
4 func t i on . m_ObjectSet−>s e l e c t (m_Type = ’oAND’ )−>f o rA l l (
5 ob j e c t |
6 func t i on . m_BindingSet . m_Connection . m_Calls−>s e l e c t (m_pObject = ob j e c t and m_pRole

= ’ DataInput ’ ) . m_pPort−>s i z e ( ) = 2
7 )
8 )

Listing 7.30: oAND input port constraint

The requirement that all output ports are connected is not that crucial because those uncon-
nected ports cannot cause an undefined calculation result, but it might be useful to avoid
unused objects in graphs. The corresponding constraint for the oAND type is defined as follows.

1 context CProject
2 inv : m_GraphSet−>s e l e c t (m_Type = ’ gMainFunctionBlock ’ or m_Type =

’ gSubFunctionBlock ’ )−>f o rA l l (
3 func t i on |
4 func t i on . m_ObjectSet−>s e l e c t (m_Type = ’oAND’ )−>f o rA l l (
5 ob j e c t |
6 func t i on . m_BindingSet . m_Connection . m_Calls−>s e l e c t (m_pObject = ob j e c t and m_pRole

= ’DataOutput ’ ) . m_pPort−>asSet ( )−>s i z e ( ) = 1
7 )
8 )

Listing 7.31: oAND output port constraint

The main difference to the input port constraint is that output ports can be connected more
than once. Therefore, a multiple times connected port may only be counted once. This is done
by the OCL asSet() [65, p. 158] statement. Because those constraints only differ in the object
type name and the number of input and output ports, those are not presented here for other
object types.
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7.5.8. Static Semantics directly used in the Modelling Process

According to the tool chain introduced in Section 4.6, constraints are defined outside the
MetaEdit+ application and checked by an external generator. Therefore, the generated report
is pure textual and it has to be (manually) searched in MetaEdit+ for incorrect model elements.
This drawback cannot easily be avoided because the used GOPPRR XML format used as
interface is general and accordingly independent from the concrete meta model. However, it is
possible to check simple constraints directly during the manual modelling process.

The best way to do this is to use generators that do not produce any direct output to files
but graphical feedback. In MetaEdit+ [58], this is done by MERL scripts that directly output
information to the graphical representation of a GOPPRR element that is not a graph, a port,
or a property12. Those scripts are always executed in the scope of the current graph, which
the representation is displayed in. This is the obvious limitation for this method because, as
discussed in Chapter 4, constraints related to the project scope are in this way very difficult
to implement. Constraints that are related to graphs cannot be implemented because MERL
generators for graphs cannot be output on the graph representation itself. Properties do not
have any direct graphical representation at all, and ports are only graphical connection points.

Thus, only a subset of the above introduced constraints are implemented directly in the
graphical elements of the openETCS meta model. However, even this subset providing direct
graphical feedback in the case of model or rather static semantics violations can help an ETCS
expert during the specification process.

7.6. Dynamic Semantics for the Cyclic Execution

The presented openETCS meta model or formal specification language can mainly divided in
three major parts:

1. a superior state machine for ETCS Modes
2. data and control flows for behavioural and functional specification
3. specification of data structures for communication

The dynamic semantics of the superior state machine defined in a gEVCStateMachine graph is
described in general as for state machines [82]. As already discussed, no temporal behaviour
can be derived directly from a gEVCStateMachine graph because oModeGuard objects are
used as conditions for transitions. Since the oModeGuard objects are used in the data flows,
only the specification language part for data and control flow defines temporal behaviour of
the whole model. Although data flows can be modelled in general, it is obvious that when
the model is transformed to an executable binary13 the data flow has to be implemented in
discrete manner. From control theory, it is known that for the establishment of stable, discrete
systems those must have a fixed sample time Ts [31]. This means that the data flows or rather
their calculations k are executed at certain time points t, which all have the same temporal
distance:

t = kTs; k = 0, 1, 2, . . . (7.1)
12objects, roles, and relationships
13for a certain computer platform
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It has to be acknowledged that not for all objects with outputs those cannot be calculated in
parallel for the dynamic semantics of a gMainFunctionBlock and gSubFunctionBlock graph.
Furthermore, it is meaningful if first the outputs are calculated, which then are used as inputs
for other objects. In a simple chain or rather an open loop [31], the first element can easily be
identified at the beginning of the open loop. Figure 7.13 shows a simple example for an open
loop. In this example, in every execution step k the outputs are calculated in the following

Figure 7.13.: Simple example of an open loop

order:

1. Sensor
2. Controller
3. Actuator

Also, the definition for closed loops is possible if they still have a “start” element, which normally
only have outputs as in Figure 7.14.

Figure 7.14.: Simple example of an closed loop

Similar to the open loop example the execution order is accordingly:

1. Sensor
2. Sum (“+”)
3. Controller
4. Actuator

When the Sum is calculated, the new output of the Controller is not yet available. Hence,
for such feedback flows the last output value is taken. In other words, the negative input
of the Sum is in calculation k the output of the Actuator in calculation14 k − 1. This also
demonstrates that it is necessary that all data flow elements must have initial output values if
they have outputs to avoid undefined calculation results for k = 0.

In rare cases, it also may occur that a closed loop does not have a beginning or ending
element. For example, Figure 7.14 without the Sensor. Then the starting element would be
once chosen arbitrarily.
14Although in the openETCS meta model actuators do not have outputs, here it is used for simplification.
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Thus, the oEmbeddedStateMachine objects, which are part of the data flow graph types
gMainFunctionBlock and gSubFunctionBlock, are also executed with the sample time Ts

by their parent graph instance. Very similar to the gEVCStateMachine graph type, the
gEmbeddedStateMachine graph type does not provide any temporal behaviour by itself. This
is provided by the decomposition of each oEmbeddedState object to a gSubFunctionBlock
graph. Therefore, the currently active oEmbeddedState object is executed if its parent
oEmbeddedStateMachine object is executed within a data flow graph.

The dynamic semantics of oSubFunction objects can be interpreted in two ways: First, when
they are executed by the data flow graph15 that they are part of, they only delegate this
execution to the data flows in their decomposition. Second, the content of their decomposition
is virtually copied to the parent graph contenting the oSubFunction object, and that all objects
are executed directly by the parent graph. Actually, the latter interpretation indeed represents
the implementation of the domain framework and generator, in which after the graphical
“unrolling” all objects are located in a gMainFunctionBlock, which is executed with a certain
sample time. Nevertheless, the first dynamic semantics interpretation is also valid, and both
correspond to the provided functionality.

The transformation from an openETCS model with general data flows to a concrete sample
system is done by the generator and the domain framework. The generator defines the
calculation order in each execution step k while the domain framework ensures that those are
executed in equidistant time points t with a fixed sample time Ts. The concrete value for Ts is
not defined in the model but in the domain framework. Related to the definition of control
loops, this can arise severe problems related to stability because the sample time directly
influences the parameters of a controller [31]. Simplified expressed, if a control loop with the
same parameters is stable for Ts, it can be unstable for T ′

s (with Ts 
= T ′
s). Therefore, it must

be emphasised that the openETCS meta model is not specialised for building control loops in
the meaning of control theory but for defining control functions for ETCS. In addition, concrete
control loop issues are handled directly in the domain framework design and implementation.

7.7. Mathematical Model of the Dynamic Semantics

The preceding sections Section 7.2, Section 7.3, and Section 7.5 introduced the concrete
syntax and static semantics but did not explain how the correctness of model instances can
be ensured in an analytical way. One possibility is to transform the dynamic semantics to
a mathematical model, which certain properties can be analysed and proven for. Because
some graph types use very similar syntax and semantics, those can be grouped for defining
corresponding mathematical models in equivalence groups:

data flows gMainFunctionBlock, gSubFunctionBlock, gCommunicationReader, gCom-
municationSender

state machines gEVCStateMachine, gEmbeddedStateMachine, gMainFunctionBlock / oAp-
plicationLevelType

15gMainFunctionBlock or gSubFunctionBlock graph
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data structures gTelegram, gPacket, gAnyPacket

While state machines together with the data flows describe the temporal behaviour, data
structures are time invariant and therefore easier to define. A corresponding mathematical
model for each group is defined and described in the following subsections.

7.7.1. Data Flows

Generally, a data flow consist of a set of transfer functions F determined by the objects, the
available inputs X and outputs Y , the internal states S and initial states S0 of those, and the
connection matrix C for the data flow relationships. This tuple defines the data flow D:

D = (F,X, Y, S, S0, C) (7.2)

The set of transfer functions consists of nf functions

F ≡ {fi; i = 1, 2, 3, . . . , nf} (7.3)

while each fi is generally defined by a function

fi = f
i
(xi, si) (7.4)

where xi is a vector with all inputs and si a vector with all internal states. The result of f
i
is

its new internal state vector s′i and output vector y
i
:

[
s′i
y
i

]
= f

i
(xi, si) (7.5)

For clarification, the vectors can be written as

xi =

⎡
⎢⎢⎢⎣

xi,1
xi,2
...

xi,mi

⎤
⎥⎥⎥⎦ ; si =

⎡
⎢⎢⎢⎣

si,1
si,2
...

si,oi

⎤
⎥⎥⎥⎦ ; y

i
=

⎡
⎢⎢⎢⎣

yi,1
yi,2
...

yi,pi

⎤
⎥⎥⎥⎦ ⇒

[
s′i
y
i

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s′i,1
s′i,2
...

s′i,oi
yi,1
yi,2
...

yi,pi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.6)

All time variant values are digitised by the index k for the current execution point to additionally
consider that the data flow is discrete:[

si,k
y
i,k

]
= f

i
(xi,k, si,k−1); k = 0, 1, 2, 3, . . . (7.7)
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In the case k = 0 for the initial calculation, the constant initial state vector si,0 must be used
because the usage of negative calculation time points t |k=−1= −Ts < 0 would render the
system non-causal. Thus, the calculation time point must be translated about 1:

[
si,k+1

y
i,k+1

]
= f

i
(xi,k+1, si,k); k = 0, 1, 2, 3, . . . (7.8)

Furthermore, not all data flow objects or rather transfer functions have inputs and outputs. If
they only have inputs (pi = 0), their transfer function equation is reduced to

si,k+1 = f
i
(xi,k+1, si,k); k = 0, 1, 2, 3, . . . (7.9)

Analogously, transfer functions without any input (mi = 0) can be reduced to

[
si,k+1

y
i,k+1

]
= f

i
(si,k); k = 0, 1, 2, 3, . . . (7.10)

While

X ≡ {
xj ; j = 1, 2, 3, . . . , nx

}
(7.11)

Y ≡
{
y
l
; l = 1, 2, 3, . . . , ny

}
(7.12)

S ≡ {
sp; p = 1, 2, 3, . . . , ns

}
(7.13)

S0 ≡
{
soq ; q = 1, 2, 3, . . . , ns0

}
(7.14)

are defined for a whole data flow model, the connection matrix C defines the connections
between all outputs and inputs by the connection equation:

xk = Cy
k

(7.15)

112



7.7. Mathematical Model of the Dynamic Semantics

The global vectors x and y with all inputs and outputs of a data flow model are defined as
follows:

x =

⎡
⎢⎢⎢⎣

x1
x2
...

xnx

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1
...

x1,m1

x2,1
...

x2,m2

...
xnx,1

...
xnx,mnx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.16)

y =

⎡
⎢⎢⎢⎢⎣

y
1

y
2
...

y
ny

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,1
...

y1,p1
y2,1
...

y2,p2
...

yny ,1
...

yny ,pny

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.17)

Since there may not be any unused output in a data flow the number of outputs must always
be smaller or equal the number inputs. Correspondingly, the following mathematical constraint
must be fulfilled:

ny∑
u=1

pu︸ ︷︷ ︸
p

≤
nx∑
v=1

mv︸ ︷︷ ︸
m

(7.18)

Additionally, the following two constraints have to be fulfilled for C because its elements can
only be 0 or 1 and only one input can be connected with each output:

ci,j ∈ {0; 1} (7.19)

∀i :
p∑

j=1

ci,j
!
= 1 (7.20)

Example For clarification, the simple example for a data flow in Figure 7.15 is taken. It only
consists of a oSum object and three oVariableStorage objects. The object “0” is only used to
ensure that all inputs of the oSum object are used, but it does not influence the calculation.
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+

Step 1
(CONST)

Value

0
(CONST)

double

double

double

double

Figure 7.15.: Simple data flow example

The object “Step 1” is constant and therefore always holds the value 1. “Value” is an input
to the oSum object, but is also connected to its output. Therefore this example increases the
“Value” in each calculation about 1. Furthermore, “Value” has an initial value of 0.

The transfer function for the oSum object is defined as

y1,1,k+1 = f1 = fsum(x1,k+1) = x1,1,k+1 + x1,2,k+1 + x1,3,k+1; x1,k+1 =

⎡
⎣ x1,1,k+1

x1,2,k+1

x1,3,k+1

⎤
⎦ (7.21)

It can be observed that the oSum transfer function does not depend on internal states and
therefore only has the input vector x1 as parameter. The oVariableStorage objects have the
following transfer functions:

[
s2,1,k+1

y2,1,k+1

]
= f

2
= f

Value
(x2,k+1, s2,k) =

[
x2,1,k+1

s2,1,k

]
; s02 = s2,1,0 = 0 (7.22)

y3,1,k+1 = f3 = fNull(s3,k) = s3,1,k; s03 = s3,1,0 = 0 = const (7.23)
y4,1,k+1 = f4 = fStep1(s4,k) = s4,1,k; s04 = s4,1,0 = 1 = const (7.24)

The global input x and output y vector are defined as

xk =

⎡
⎢⎢⎣

x1,1,k
x1,2,k
x1,3,k
x2,1,k

⎤
⎥⎥⎦ (7.25)

y
k

=

⎡
⎢⎢⎣

y1,1,k
y2,1,k
y3,1,k
y4,1,k

⎤
⎥⎥⎦ (7.26)
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The corresponding connection matrix C for Figure 7.15 must be defined as

C =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ (7.27)

Finally, the complete connection equation is determined by⎡
⎢⎢⎣

x1,1,k
x1,2,k
x1,3,k
x2,1,k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

y1,1,k
y2,1,k
y3,1,k
y4,1,k

⎤
⎥⎥⎦ (7.28)

=

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1,1,k + x1,2,k + x1,3,k
s2,1,k−1

s3,1,k−1

s4,1,k−1

⎤
⎥⎥⎦

It must be remarked that the equations for each element of xk must be calculated in the
order of the elements from top to bottom. This was reasoned in Section 7.6. Thus, the element
order for xk cannot be chosen arbitrarily.

No element xi,j,k may occur at the same time on the left and the right side of the equation to
have meaningful equations for each element of xk. Corresponding to the openETCS model, this
would be the case if an output of an object is directly connected with an own input. This could
be, for example, Figure 7.15 without the “Value” object. From the view of the mathematical
model, such connections are not possible and lead to undefined connection equations because
for the calculation of an output is an input used that is not yet available. In the domain frame
work, for each existing input is a certain default / initial value defined to allow such data
flows anyway. However, the mathematical model suggests that it is in any case better to use
intermediate oVariableStorage objects as “Value” and to model the initial value implicitly. A
virtual storage object has always to be inserted to define connections between input and output
in the mathematical model.

7.7.2. State Machines

The state machine types used in the openETCS meta model do not provide any direct outputs
and accordingly can be called transition systems. Generally, such a transition system T is a
tuple of a set of states S, an initial state s0, inputs alphabet Σ, a transition function δ, and a
set of final states F :

T = (S, s0,Σ, δ, F ) (7.29)

with

s0 ∈ S ≡ {sh; h = 1, 2, 3, . . . , ns} (7.30)
F ⊂ {∅} ∪ S (7.31)

δ : S × Σ → S (7.32)
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This mathematical model is quite similar to a Moore machine [60]. According to the openETCS
meta model, the inputs are defined by Boolean data flows to guard objects (oModeGuard,
oStateGuard, oApplicationLevelType). Thus, this input can be defined as

Σ ≡ {ij ; j = 1, 2, 3, . . . , ni} ; ij ∈ {0; 1} (7.33)

The transition function δ uses the state transition vector v(s), which defines for each certain /
active state s the possible transitions to all others depending on the current inputs:

s′ = δ(s) = δ
(
v(s)Ts

)
(7.34)

s′ is the new active state and s the state vector with all available states:

s =

⎡
⎢⎢⎢⎣

s1
s2
...

sns

⎤
⎥⎥⎥⎦ ; ∀o : so ∈ S (7.35)

The Sum of all available inputs multiplied by their numerical priority, which is in the meta
model a property of the related Transition relationship, are the elements of the state transition
vector v(s):

v(s) =

⎡
⎢⎢⎣

c1(s)
c2(s)
. . .

cns(s)

⎤
⎥⎥⎦ (7.36)

If several transition to the same new state s′ exist but under different input conditions, the
corresponding element ci of the state transition vector is the sum of the products of inputs and
their priority. In general, this means for each element

∀l : cl =
ni∑
j=0

(ij(pj + 1)) ; pj ∈ N ∪ {0} (7.37)

pj is the priority of the input ij . ij = 1 means that the input ij is a condition for the
corresponding new state. Otherwise, ij = 0 is set. In the openETCS model, pj is taken from
the Transition relationship. The result of the v(s)Ts operation is a sum of possible different
states sj , which have a numerical factor each. The δ function selects from this sum the state sj
with the highest factor and returns it. Therefore, it is important, that the priority is different
for all possible transitions from a certain state. Otherwise, two states with the same factor
may occur and the result of the δ function is undefined. Since not at every execution point
an input for a transition to a new state is set, the element in transition vector v(s) for a self
transition has always the value 1.

s′ = s = sj ⇒ cj
!
= 1 (7.38)

Therefore, 1 is added to the priority pj in (7.36) in order that transitions that are not a
self transition are always preferred by the δ function. Although the state machines in the
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openETCS meta model do not provide directly any temporal behaviour, those are driven by
the active gMainFunctionBlock, which builds a sample system. According to the notation for
sample systems, (7.34) can be rewritten as

sk+1 = δ(s) = δ
(
v(sk)

Ts(sk)
)

(7.39)

with
sk|k=0 = s0 (7.40)

The vector s(sk) with all available states only depends on the current active state sk but not
on the sample point k and therefore does not have the corresponding index.

Example Again, a simple example of an oEmbeddedStateMachine object or rather its decom-
position, the gEmbeddedStateMachine graph in Figure 7.16, is discussed to provide a better
understandability. The example is a simplified life cycle of a process with four states:

Starting

RunningSleeping

Terminating

Figure 7.16.: Simple state machine example

S ≡ {sStarting; sSleeping; sRunning; sTerminating} (7.41)

“Starting” is the initial state
s0 = sStarting (7.42)
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and the only final state is marked with doubled circled dot

F ≡ {sEND} (7.43)

There are seven transitions, which also corresponds to the number of inputs:

ni = 7 (7.44)

The transition between the initial state, drawn by the black spot, is not counted because it
does not have any condition / input and is always passed in the beginning. The conditions and
inputs are numbered as follows:

Transition Condition Input, Priority
Starting −→ Sleeping c1 i1, p1 = 0

Starting −→ Running c2 i2, p2 = 1

Sleeping −→ Running c3 i3, p3 = 0

Running −→ Sleeping c4 i4, p4 = 0

Sleeping −→ Terminating c5 i5, p5 = 1

Running −→ Terminating c6 i6, p6 = 1

Terminating −→ END c7 i7, p7 = 0

Accordingly, the transition vector v(s) can be build for each state s:

s =

⎡
⎢⎢⎢⎢⎣

sStarting
sSleeping
sRunning

sTerminating

sEND

⎤
⎥⎥⎥⎥⎦ (7.45)

v(sStarting)
T = [1; i1,k; 2i2,k; 0; 0] (7.46)

v(sSleeping)
T = [0; 1; i3;,k2i5,k; 0] (7.47)

v(sRunning)
T = [0; i4,k; 1; 2i6,k; 0] (7.48)

v(sTerminating)
T = [0; 0; 0; 1; i7,k] (7.49)

A transition vector for the final state sEND is not required. Since sStarting is the initial state s0,
the corresponding transition function can be defined as

sk = sStarting : sk+1 = δ

⎛
⎜⎜⎜⎜⎝[1; 2i1,k; 3i2,k; 0; 0]

⎡
⎢⎢⎢⎢⎣

sStarting
sSleeping
sRunning

sTerminating

sEND

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= δ (sStarting + 2i1,ksSleeping + 3i2,ksRunning) (7.50)
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This is done analogously for all other non-final states:

sk = sSleeping : sk+1 = δ (sSleeping + 2i3,ksRunning + 3i5,ksTerminating) (7.51)
sk = sRunning : sk+1 = δ (2i4,ksSleeping + sRunning + 3i6,ksTerminating) (7.52)

sk = sTerminating : sk+1 = δ (sTerminating + 2i7,ksEND) (7.53)

Because the inputs ij,k are set in data flows, for which its mathematical model was already
discussed in Subsection 7.7.1, this small example ends with the definition of the transition
functions.

7.7.3. Data Structures

In contrast to the two preceding groups, the data structures do not define any behaviour but
only the structure of data for communication. On the highest level, this is a telegram for Balise
communication. Therefore, a set of telegrams Ti define the language L:

L ≡ {Ti; i = 1, 2, 3, . . . , nT } (7.54)

Ti corresponds to instances of oTelegram or rather gTelegram in an openETCS model. Fur-
thermore, each Ti is again a set of oVariableInstance Vj , oPacket Pl, and oAnyPacket Am

objects:

∀i : Ti ≡ {Vi,j ;Pi,l;Ai,m; j = 1, 2, . . . , nVi ; l = 1, 2, . . . , nPi ; m = 1, 2, . . . , nAi} (7.55)

Again, all those are sets. Pi,l is a set of oVariableInstace objects:

∀i, l : Pi,l =
{
Vi,l,o; o = 1, 2, . . . , nVi,o

}
(7.56)

Ai,m is a set of oPacket objects:

∀i,m : Ai,m ≡ {
Pi,m,q; q = 1, 2, . . . , nPi,q

}
(7.57)

Each Vi,j and Vi,l,o represent an atomic element of the language, which combines certain
properties16 ps:

∀i, j : Vi,j ≡ {pi,l,s; Ii,j ;Mi,j ; s = 1, 2, . . . , np} (7.58)
∀i, l, o : Vi,l,o ≡ {pi,l,o,s; Ii,l,o;Mi,l,o; s = 1, 2, . . . , np} (7.59)

Ii,j and Ii,l,o are sets of oVariableInstace objects that are iterated:

∀i, j : Ii,j ⊂ {∅} ∪ Vi,j (7.60)
∀i, l, o : Ii,l,o ⊂ {∅} ∪ Vi,l,o (7.61)

Analogously, Mi,j and Mi,l,o are sets of oVariableInstace objects that are scaled:

∀i, j : Mi,j ⊂ {∅} ∪ Vi,j (7.62)
∀i, l, o : Mi,l,o ⊂ {∅} ∪ Vi,l,o (7.63)

Which concrete properties ps exist, is not relevant for the mathematical structure and their
additional introduction is therefore omitted. The meta model properties of the oVariableInstace
object type can be found in Section B.2.
16corresponding to the properties of the language objects types in the meta model in Section B.2
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7.8. Conclusion

The openETCS meta model should be considered as the most crucial instance of a DSL
(Figure 7.1) related to the complete development process. Design errors made here can cause
faults and resulting errors in all lower instances (model and application) that then may lead to
system failures [80, p. 12]. In the worst case, such errors are neither easy detectable within a
model instance nor in the generated code nor the domain framework.

Hence, it is very important to properly define the concrete syntax of the meta model to
oppose such faults. For openETCS, this was done by the GOPPRR meta model for the
sub-graph hierarchy, for the bindings of all graph types, and for property definition of all meta
model types. The static semantics is defined for all graph types by OCL statements to “tighten”
the syntax and to forbid undesired model constellations.

Furthermore, the description of the dynamic semantics of the meta model makes easier to
understand how things from the ETCS SRS should be modelled in a concrete model and how
they are executed in the generated binary.

Even, if syntax and static semantics are defined in a correct manner, the dynamic semantics
must be analysable in a formal way to ensure that corresponding model instances do not carry
any immanent defects or faults. Thus, mathematical representations of the dynamic semantics
for the three major groups of the meta model graphs were introduced.

Only errors in the modelling process of transforming the textual SRS in an openETCS model
cannot be avoided by the meta model because this is typically a manual process.
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8
openETCS Domain Framework

This chapter starts with a definition of a set of requirements for the openETCS domain
framework, which are used as starting point for its development process. The design strategy
and the general use cases are discussed to identify in a first step the needed basic classes. The
description of the structural software design refines the initial class structure and provides a
detailed description of all domain framework types. Afterwards, the corresponding behaviour
or rather the behavioural design is introduced followed by the description of the deployment.
The concrete implementation of the openETCS domain framework is illustrated by examples of
the source code. Finally, the strategy for the verification of the domain framework is presented.
UML is used as formalism for all design descriptions.

8.1. Requirements

According to Chapter 3, a domain framework in a DSL is the interface between the generated
code and the target platform. Since this is a very general description, some additional
requirements were derived before the development of the openETCS domain framework:

Req.5: highest possible simplification of code generators
Req.6: maximal transparency between meta model, model, and domain framework
Req.7: as platform independent as possible
Req.8: direct support for interprocess communication (IPC)

Req.5 There are mainly two reasons for keeping the code generation as simple as possible:
First, for complex meta models with a lot of different types, the implementation of code
generators can easily reach a level of complexness that is not any more good manageable.
Second and more important, because the domain framework is implemented once and normally
is only modified due to changes in the meta model, tests provided for the domain framework
can cover accordingly more static code and can be executed separately from the generated
code. To test the generated code, additionally the generator or rather the generation process
has to be taken into account, which increases the effort in general.
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Req.6 Transparency between meta model and the domain framework means that elements
in the meta model directly correspond to elements in the domain framework. The meta
model primary consists of object types while objects types should correspond to classes in
object-oriented programming languages, like C++. Therefore, the domain framework should
contain for each object type of the meta model a corresponding class so far this is possible and
meaningful for each type.

Req.7 Although this openETCS case study is not supposed to run on special target platforms,
it should be executable on the prominent, general-purpose operating systems to be available to
a broad community of developers. This can be accomplished by the usage of certain platform
independent FLOSS libraries that encapsulates platform dependent functions, like threading or
graphical user interface (GUI) creation, and provide a general interface to them.

Req.8 The necessity of the separation of processes by hardware virtualisation due to security
issues was discussed in Chapter 6. Hence, processes spread over different (virtual) machines
cannot simply communicate via shared memory or similar techniques. The required IPC
should be implemented in the domain framework. Ideally, according to Req.7, in a platform
independent way.

8.2. Design Strategy

To initially identify the major classes required in the openETCS domain framework, the UML
use case diagram [66] in Figure 8.1 is used. It shows the very basic, directed use cases derived
from the meta model and the general dynamic semantics in Section 7.6. The Driver actor is
the only external one [66] while all others directly correspond to software classes, which are
prefixed with a capital “C”. All classes and the related use cases are discussed in the following.

CEVCStateMachine Provides the interface to the EVC implementation. Furthermore, it
holds the functionality of the superior EVC state machine, which cor-
responds to the gEVCStateMachine graph in the openETCS meta
model.

CDMISubject Is the driver machine interface (DMI) class. It is provided to the EVC
through the CEVCStateMachine class.

CEVState Represents a ETCS Mode of the EVC and is part of CEVCStateMachine.
Corresponds to the oMode object type in the meta model.

CEVCCondition Is used as transition guard between two CEVCState objects. It corre-
sponds to oModeGuard in the meta model.

CDataFlow Builds the data flow for each CEVCState object in a certain ETCS
Application Level. It is similar to the gMainFunctionBlock graph type.

CFunctionBlock Is the base class for all object types used in data flows.
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Figure 8.1.: UML use case diagram for the openETCS domain framework
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CStorage Can store data flow values in different data (flow) types. It corresponds
to the oVariableStorage type.

CControlFlow Provides control flows embedded in data flows according to the oEm-
beddedStateMachine and gEmbeddedStateMachine types.

CState Similar to CEVCState, represents states of a control flow. It corresponds
to the oEmbeddedStateMachine type in the meta model.

CCondition Like CEVCCondition, CCondition is used as a guard for transitions
between two CState objects. The correspondence in the openETCS
meta model is the oStateGuard object type.

CComBlockOut Represents a data flow element for defining train-to-track communica-
tion. It is owned by a CComBlockOut object and corresponds to the
oCommunicationSender type.

CComBlockIn Is similar to CComBlockOut but used for track-to-train communication
and corresponds to the oCommunicationReader type in the meta model.

CBaliseDeviceOut Is a sub class as interface to any concrete hardware device type for
sending telegrams to balises. It is the oBaliseSender type in the meta
model.

CBaliseDeviceIn Is the same as the CBaliseDeviceOut class but for receiving telegrams
from balises. It corresponds to oBaliseReader.

CTelegram Builds the data superstructure for balise communication. It is accessed
by CBaliseDeviceIn and CBaliseDeviceOut objects. Its correspondence
in the meta model is oTelegram.

CPacket Its instances are parts of CTelegram objects. It is the oPacket type in
the meta model.

CVariable Is the atomic data element in balise communication. Instances are part
of CTelegram and CPacket objects. It can be set or read by a CStorage
object and corresponds to oVariableInstance in the openETCS meta
model.

While the use cases were utilised to identify the basic classes in the openETCS domain framework,
the following sections explain its software design in detail. Mainly, UML diagrams [66] are
used as description formalism.

8.3. Structural Design

The main goal of the structural design is to define for the classes, found by the first use case
analysis in Section 8.2, certain object oriented design patterns [33]. Additional classes that are
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Figure 8.2.: Class diagram as overview of the openETCS domain framework
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also needed should be identified during this process, too. Figure 8.2 is a UML class diagram
with an overview of the structural design of the openETCS domain framework. Although
the diagram already holds several classes, the openETCS domain framework consists of more.
Therefore, Figure 8.2 provides only an initial overview about the central class structures. Details
of further classes are introduced later in this section by further UML class diagrams. The
following overview is discussed in groups according to the openETCS meta model structure.

EVC State Machine The EVC state machine is the basis in all openETCS implementations1.
Thus, exact one object of CEVCStateMachine is used for building an EVC. Since the EVC
is a state machine or rather an ETCS Mode machine, a general state design pattern [33,
pp. 305-313] was specialised for openETCS: CEVCState is the only class representing ETCS
Modes, accordingly no base class for states is provided. Furthermore, CEVCState is nested [81]
in CEVCStateMachine to provide its instances direct access to its parent object via the
m_pParent aggregation [66]. The current active state is indicated by the m_pCurrentState

aggregation end in CEVCStateMachine. Additionally, it holds all available states in the
m_AvailbleStates composition [66]. The current ETCS Application Level is stored in a string
as a m_CurrentApplicationLevel composition.

The CEVCTransition class can be interpreted as the Transition relationship in the meta model.
Each of its object is associated with a start state m_pStartState, a target state m_pTargetState,
and a condition m_pCondition, which it is activated in. The m_TransitionStack aggregation
stores enabled transition as a stack to support situations, which more than one transition is
enabled in. In such cases, the transition to be executed should be selected by the highest
priority.

The CEVCCondition class is part of data flows and therefore inherits from CFunctionBlock
and only takes a Boolean input as condition for the corresponding CEVCTransition object.
CLevelCondition objects are used similarly to switch to a new Application Level depending on
their m_TargetApplicationLevel composition.

Data Flows For each available ETCS Application Level in CEVCState, at least one CDataFlow
object must be available. Those are combined in the m_DataFlows composition of CEVCState
while the currently executed data flows are indicated by the m_CurrentDataFlow aggregation.
If more than one CDataFlow object is used in a certain CEVCState and a certain Application
Level m_CurrentApplicationLevel, this means that those data flows are independent and can
be executed in parallel to gain performance on multi-core systems. Anyway, how independent
data flows are identified is an issue of the code generator and will be discussed in Chapter 9.
Each CDataFlow object holds an aggregation m_pParent to its parent CEVCState object.
Again, to provide direct access to members in CEVCState and CEVCStateMachine, CDataFlow
is nested in the state class.

A CDataFlow object holds a set of CFunctionBlock objects in the m_FunctionBlocks

aggregation, which are executed in the order as they are stored in the aggregation. The cyclic
execution described in Section 7.6 is actually implemented in the CEVCState class, which
starts the execution of m_CurrentDataFlow with a fixed sample time.

1in the meaning of the generated code
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CFunctionBlock objects have an aggregation m_pParent to the CEVCStateMachine instance
while all CFunctionBlock objects used in the EVC state machine are owned by the CEVC-
StateMachine instance via the m_FunctionBlocks composition. This is necessary to make
CFunctionBlock objects CEVCStateMachine global and not only related to a certain CDataFlow
object, as it is also the case in the openETCS meta mode or rather model.

The CDataFlow class has an aggregation m_pFaultState, which indicates the state that is
switched to, if an error in the data flow execution occurs. This corresponds to the FailureGuard
property of the gMainFunctionBlock graph type in the meta model (see Appendix B).

Control Flows In contrast to CDataFlow, the CControlFlow class represents the embedded
control flows. As a consequence, it inherits from CFunctionBlock. Due to the circumstances
that a control flow is defined by a state machine formalism, the design pattern used for the
EVC state machine is integrated again. The m_AvailbleStates composition holds all available
states of a control flow while m_pCurrentState determines the currently active one. The
initial CState object is defined by the m_pInitialState aggregation. According to the design
pattern, CState is a nested class of CControlFlow. CTransition represents possible transitions
between two CState objects defined by the m_pStartState and m_pTargetState aggregations.
CCondition objects are used like CEVCCondition objects in data flows to activate CTransition
objects which have them in their m_pCondition aggregation.

Communications CComBlockIn and CComBlockOut are both part of data flows and are
accordingly CFunctionBlock types. Corresponding to the decomposition to the gCommu-
nicationSender and gCommunicationReader graph types in the meta model, both hold a
composition to CBaliseDeviceIn and CBaliseDeviceOut objects. To each balise device object
at least one CTelegram object by the m_Telegram aggregation is assigned, which is used for
receiving or sending.

Language Since the ETCS language elements in the openETCS meta model are only used to
model data structures and no behaviour, the meta model elements can be transferred more
or less directly to the structural design. CTelegram objects consist of CVariable (m_Header
aggregation) and CPacket (m_Packets aggregation) instances while their order is determined
by the order in the aggregations2. CPacket objects hold one ore more CVariable objects by
the m_Variables aggregation, which corresponds to the meta model. The ETCS variable
iteration and scaling is modelled by the self aggregations in CVariable m_IteratedVariables

and m_ScaledVariables. The mapping of certain values, which is modelled by a property in
the meta model, is defined by the m_ValueMap aggregation.

Driver Machine Interface Within the openETCS domain framework, the DMI mainly consists
of three classes: First, CDMIInput for modelling inputs from the driver, which corresponds to
oDMIInput in the meta model. Second, CDMIOutput for modelling the output of information
to the driver, which corresponds to oDMIOutput. Third, CDMISubject combines all exiting
input and output objects for a certain CDataFlow instance, which is defined by the m_Inputs

2as stacks / sequences
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and m_Outputs aggregation while it is owned by a CDataFlow instance through the m_pDMI

composition. CDMIInput and CDMIOutput are both, according to the meta model, data flow
elements and therefore inherit from CFunctionBlock.

The current active subject depending on the currently executed data flow can be accessed
by the parent CEVCStateMachine instance via the executed CEVCState instance and its
m_pCurrentState composition.

To not directly bind the concrete implementation of the graphical user interface (GUI) to
the openETCS domain framework, a modified observer design pattern [33, pp. 293-303] is used.
The CDMIWidget class (not shown in Figure 8.2) is a concrete implementation of an observer,
which means the GUI representation of the DMI. An abstract subject [33, pp. 293-303] is not
needed here because exact one data basis, the DMI, exists.

8.3.1. Data Flow Details

Due to the fact that the data flow is the central part of the openETCS meta model, also the
domain framework reflects this. All object types in the meta model (Subsection 7.3.2) with
inputs or/and outputs have a corresponding class in the domain framework. Figure 8.3 shows
all special data flow classes. Since all class names only differ from the meta model object type
names in the prefix (“o” → “C”), the description of their functionality will be not repeated here
but can be found in Subsection 7.3.2.

The openETCS meta model defines in graph types related to data flows the connection
between outputs and inputs of objects by ports in an interfacing concept. Therefore, the
transfer of this port or rather interfacing concept to the domain framework is an important part.
A possible solution is provided by the chain of responsibility design pattern [33, pp. 223-232],
which is used to connect objects3 in a chain that passes a request after handling it to the
next instance in the chain. This pattern would have to be adapted to support different
requests in form of different data flow types and multiple inputs and outputs for different
function block classes. Also, the support of closed loops would have to be added. On the
other hand, the instantiation and parametrisation of the domain framework classes is done
by source code created from a code generator. This code generator has access to the model
instance and therefore has certain knowledge about the data flow structure. Thus, it can
generate the instantiations in an appropriate way that renders a complex design pattern for
this issue unnecessary. As a consequence, inputs can be easily defined by class properties of
the corresponding data type, which can directly store the current value. Outputs are class
properties as references or rather pointers [81] to the data types and can be connected to inputs
by storing their reference / address. Furthermore, outputs can be connected with more than
one input and therefore the class properties must be sequences [65] of references / pointers.

Unfortunately, a certain problem arises with this design: Since all data flow class objects are
globally available for an EVC implementation, as they are in a model instance, their inputs and
outputs can be used in several data flows or rather gMainFunctionBlock and gSubFunctionBlock
graphs. The concrete problem is that a certain CFunctionBlock object, after its execution, sets
all inputs of other objects referenced in its output properties. This might include inputs of

3called handler in the pattern
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Figure 8.3.: Class diagram of the function block classes
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objects that are not used in the current data flow. This modification of a currently unused
object can lead to undefined and/or undesired behaviour not corresponding to the concrete
model.

The concrete syntax of data flows between function block objects in the openETCS meta model
in Subsection 7.3.2 defines DataFlow relationships as the related interconnection. Although
function block objects can be reused in any graph of a model4, this DataFlow relationship is
unique. Therefore, an obvious and direct solution is to additionally design a class representing
a data flow or rather an interconnection between two function block objects. This class should
be instantiated5 for each relationship in the openETCS model. The classes for the data flow
interconnection are shown in Figure 8.4.

Figure 8.4.: Class diagram of the function block classes for the data flow

As data flows can be of different types (double, integer, string, etc.), CFlow, the additional
class for interconnections, is a template class [81]. Its first template parameter INPUT_TYPE_T

4instance of the openETCS meta model
5generated by openETCS generator
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defines the corresponding implementation or rather C++ type [81], like bool, double, int, etc.
The second template parameter FLOW_TYPE_T defines the type of the related CInput object.
This parameter has the default value CInput< INPUT_TYPE_T > and normally does not have
to be set explicitly. It is used to define the attribute m_pInput of CFlow that is the connected
CInput instance. m_pInput is not modelled as composition in Figure 8.4 because the usage of
template parameters in UML class diagrams is limited.

The CInput template class, which is nested in the CFunctionBlock base class, is used to
encapsulate each data flow input as property. Its template parameter INPUT_TYPE_T defines,
as for the CFlow class, the concrete implementation data type. This means each input of a
certain function block type or rather class is defined as attribute of the type CInput with the
corresponding template parameter for the concrete data flow type corresponding to the meta
model. Compared with the direct usage of an implementation data type, this has the advantage
that the modification state of each input can be made available or visible to its possessing
function block object. Furthermore, the access of inputs can be made thread-safe [7] by using
a mutable exclusion (mutex) [7] object via the m_ValueMutex composition. It must be noted
that the mutex class is located within the std:: name space of the standard C++ library [7],
which is not explicitly modelled in Figure 8.4.

Unfortunately, the bit data flow type between oVariableStorage objects in the openETCS meta
model (see Subsection 7.3.2) cannot be directly mapped to a data type in the implementation.
Hence, the CFlow template class cannot be used for those data flows and the additional
CBitFlow class was added, which is not a template class and is especially designed for data
flows between CStorage instances. Correspondingly, the aggregation between those two classes
has the two ends m_pInput and m_BitValue. The first is the input storage object, from the view
of CFlow while the latter holds all outputs to other CStorage objects. It should be remarked
that m_pInput is modelled as aggregation compared to the m_pInput because CBitFlow is not
a template class.

Since all interconnections or rather all flows are assigned to a certain parent CEVCStateMa-
chine object via the m_Flows composition, CAbstractFlow is used as base class for the both
concrete flow types. Finally, to solve the initial problem of the general usage or rather execution
of all existing interconnection / data flows, each CAbstractFlow instance requests via the
m_pStateMachine aggregation if it is part of the currently executed data flow, which means
an element of the m_Flows aggregation. If not, any message from a connected function block
object using operator=() is ignored. Otherwise, the value is marshalled to the related input.
Since the flows between function block objects that are part of an embedded state machine
respectively a CControlFlow instance should only be executed if the related CState object is
currently active, also CState posses an aggregation m_Flows to CAbstractFlow.

8.3.2. Driver Machine Interface Details

All classes especially related to the DMI are presented in a separated class diagram in Figure 8.5.
CDMIObserver is the abstract observer [33, pp. 293-303], from which each concrete observer
implementation must be derived and methods called by the CEVCStateMachine class must be
implemented by overriding [81]. The parent CEVCStateMachine instance holds pointers to all
registered, concrete observers in the aggregation m_Observers via the abstract base type to be
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Figure 8.5.: Class diagram of the DMI classes

able to inform any observer about a changed subject. On the other hand, each observer only
holds a pointer to one CEVCStateMachine object that it observes. Via this m_pStateMachine

aggregation, an observer can access the currently active CDMISubject object to read data from
the EVC to the driver or set data entered in the observer by the driver.

CDMIQWidget is a concrete observer implementation using the Qt 4 [61] framework. Qt 4
was chosen because it provides platform independent GUI development in the C++ programming
language [81], which means in an object-oriented manner. This is required by Req.6 and Req.7.
The concrete elements6 for inputs and outputs are generated dynamically since those typically
vary for different ETCS Modes or rather CEVCState instances. The input and output elements
are stored in the m_OutputWidgets and m_InputWidgets compositions. For those, a pointer
to the QWidget [61] class is used as data type. A QWidget is the very basic type of all classes
in Qt 4 representing graphical elements. Which concrete, derived classes are used, depends on
the CDMIInput and CDMIOuput objects in the current CDMISubject. Since this is of low
relevance, those certain types will be not discussed here. The CDMIQWidget observer class
itself is also a QWidget, which mainly has the advantage that it can be used as standalone
dialogue but also can be integrated or combined with other Qt 4 elements if required. The
inputs and outputs of the subject are aligned in a grid respectively in two columns: Outputs
on the left side, inputs on the right side. The corresponding graphical arrangement is provided
by the m_Layout composition to the QGridLayout [61] class. For the graphical definition of the
meaning of each input or output element in CDMIQWidget, labels are used, which are located
on the left side of each graphical element. Those correspond to the m_Labels composition to

6widgets in terms of Qt

132



8.4. Behavioural Design

the QLabel [61] class. Furthermore, each input device has a QPushButton [61] element to
ensure that the driver can first enter or modify data in the widget and then can activate it by
a single click on the button. Those buttons are stored in the m_InputButtons aggregation.

8.3.3. Language Details

Figure 8.6 sketches only the classes and relevant associations that are related to the ETCS
language in a UML class diagram. CLanguage is the base class for all other already introduced

Figure 8.6.: Class diagram of the language classes

language classes. Since a telegram or rather a CTelegram object can be used for several
CBaliseDeviceIn and CBaliseDeviceOut instances, those are CEVCStateMachine global indi-
cated by the m_Language composition. This association should hold all available instances of
CTelegram, CPacket, and CVariable because CPacket and CVariable objects can also be reused
for different CTelegram instances and CVariable objects for CPacket instances.

The bit data flows between oVariableStorage and oVariableStorage objects in oCommunica-
tionReader and oCommunicationSender graphs in the openETCS model7 are, like in function
blocks, mapped to CBitFlow instances. Hence, CVariable has a aggregation m_BitValues to
CBitFlow in Figure 8.6.

8.4. Behavioural Design

In contrast to the previous Section 8.3 about the structural design of the openETCS domain
framework, this section describes its behavioural design. The main difference between the
structural and the behavioural design is that the structural design is constant and cannot be

7instance of the openETCS meta model
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changed by code generators if a statically typed programming language [81], as C++, is used.
Nevertheless, the behaviour depends heavily on the instantiation of objects, which means here
on the generated code and accordingly on the openETCS model. The consequence is that this
section can only show examples of models and their corresponding generated code by UML
diagrams for clarification.

Data Flow Example The data flow model in Figure 8.7 is used as example to describe the
corresponding behaviour, which is explained as follows. This example is very similar to the one

Step 1
(CONST)

Value

0
(CONST) + > 1

(CONST)

Start->Running

double

double

double

doubledouble double

bool

Figure 8.7.: Example of a gSubFunctionBlock graph with a simple data flow

in Figure 7.15 that was used for the description of the mathematical model of the dynamic
semantics in Section 7.7. It is only extended about three objects on the right side. Those
and the new data flows between them add the following functionality: If the incremented
oVariableStorage object “Value” (initial value 0) is greater than 1, the oStateGuard object,
“Start→Running” is activated. Furthermore, Figure 8.7 should be a decomposition of the
“Starting” state in Figure 7.16.

Figure 8.8 introduces a UML interaction diagram [66] for two execution cycles (k = 0, 1) of
the example mapped / transformed to the domain framework. According to the description in
Subsection 8.3.1, all model objects are transformed to class instances of the openETCS domain
framework. Those are referenced by the m_FunctionBlocks aggregation of the CDataFlow
instance “DataFlow”. Due to the fact that an oStateGuard respectively CCondition object is
used, “DataFlow” is part of the CControlFlow “Parent” (Figure 7.16). Figure 8.8 introduces the
corresponding UML interaction diagram [66] for two execution cycles. Both execution steps k
are started by the Execute() message from the “Parent” control flow object to its CDataFlow
instance. To be precise, the control flow object must be a part of a superior CDataFlow object
that itself is part of a CEVCState instance starting the execution chain. For simplification
reasons, this is omitted in Figure 8.8. Neither, the CState object owning “DataFlow” is not
relevant for understanding the data flow behaviour and is omitted, too.

After the first Execute() message “Value” holds the value 0, “Sum” has the output 1 and the
“Greater” operator false. During the second Execute() message the output of “Sum” reaches
2, which causes that the “Greater” output switches to true and, as a consequence, triggers
the “Start->Running” condition. The triggered condition locates the related CTransition
object (not in the diagram) pRelatedTransition and places it on the the transition stack
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Figure 8.8.: UML interaction diagram for the example data flow in Figure 8.7
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(m_TransitionStack) of the “Parent” control flow to initiate a state switch within the “Parent”
control flow.

Control Flow Example As used for the data flow description above, the same combination
of gEmbeddedStateMachine and gSubFunctionBlock graph is now employed to explain the
corresponding behaviour from the perspective of the parent control flow. Like the data flow in
Figure 8.7, all objects in the graph have to be transformed to objects of the openETCS domain
framework. This does not only include oEmbeddedState→CState but also the transformation
from Transition relationships to CTransition objects. Figure 8.9 shows the first execution cycles
in a UML interaction diagram.

Figure 8.9.: UML interaction diagram for the example control flow in Figure 7.16

The “Parent” control flow object sends an Execute() message to the initial and current state
“Starting”. This messages corresponds to the Execute message in Figure 8.7. Therefore, the
execution of “Starting” can be found in the previous interaction diagram. The first execution
of the state and its data flow does not activate any CCondition object, which is checked by the
“Parent” object by getting the size of the transition stack via the size() message. The second
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execution (see Figure 8.7) of “Starting” finally activates the “Start->Running” condition, which
causes in Figure 8.9 that the reference of the related CTransition “TransSleepingRunning” is
placed on the m_TransitionStack of “Parent” by the push_back() message. After the parent
control flow noticed that the transition stack is not empty (result of size), it gets the priority
by GetPriority() and the reference to the target state by GetTargetState(). The priority
is used to determine, which new state is switched to in the case if the stack would hold more
than one transition object. Finally, in the current execution step “Parent” sets internally its
m_pCurrentState aggregation to the reference of “Running”. Therefore, in the next execution
step “Parent” sends the Execute() to “Running” to execute its data flow and so on.

EVC State Machine Example Although the EVC state machine graph type gEVCStateMa-
chine also defines a control flow, it differs a little bit from the gEmbeddedStateMachine graph
type in the behaviour because it describes two nested state machines. The superior one is for
the EVC Modes (CEVCState class) while the switching of ETCS Application Levels is nested
within. Because the switching of the Application Level only means a context switch of the
current CEVCState object m_pCurrentState, the levels are simply distinguished by a string
stored in m_CurrentApplicationLevel. A certain class for Application Level switching, like
CTransition, is accordingly not required because the condition objects of class CLevelCondition,
which corresponds to oApplicationLevelType in the meta model, can directly write their level
in the parent CEVCCondition object if they are activated by a Boolean data flow.

Thus, the preceding example for a control flow does not cover this speciality, and an
additional example for an EVC is discussed. Figure 8.10 represents the transition matrix (of an
gEVCStateMachine graph) of a strongly simplified EVC state machine. It only consists of the

Starting (INITIAL)
Running

Starting (INITIAL) Running

c1-p0

Figure 8.10.: Transition matrix for an simple EVC example

states “Starting”, which is the initial one, and “Running”. From “Starting” to “Running” exists
exact one transition under the condition “c1” with the priority 0. It is obvious that this example
does not correspond to any Modes or parts of the ETCS SRS and is only used to exemplary
demonstrate the behavioural design of the EVC state machine. “Running” is available in
Application Level 0 and 1, which means the oEVCState object must have two explosions: One
for each Level. Figure 8.11 shows the gMainFunctionBlock graph for Application Level 0 and
Figure 8.12 for Level 1. “Running” is only available in Application Level 1, but its explosion
is not relevant for this example and accordingly omitted.

Both data flows of “Starting” use the already introduced and described counter construct. In
Level 0, after one calculation step, the oApplicationLevelType object for Level 1 is activated
by a true Boolean data flow, which means a context switch to Level 1 is then initiated. In
Level 1, the counter has the limit 2. If it is reached, the condition “c1” is activated, with means
a transition to the state “Running”. The UML interaction diagram with the primary objects

137



Chapter 8. openETCS Domain Framework
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Figure 8.11.: gMainFunctionBlock graph of “Starting” state (Figure 8.10) in Application Level 0
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Figure 8.12.: gMainFunctionBlock graph of “Starting” state (Figure 8.10) in Application Level 1
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for the first six calculation steps (k = 0, 1, . . . , 5) is sketched in Figure 8.13.

Any execution is started by the external EVC actor via an asynchronous Start() message to
the “StateMachine” object. At first, “StateMachine” executes the initial CEVCState “Running”
(“Running” in Application Level 0) by a further Start() message. A running CEVCState object
always starts for each independent data flow object in m_CurrentDataFlow for the current active
Application Level an own thread [79] by a DataFlowThread() message to itself. In this example,
only one CDataFlow object is defined. “Running” handles the execution of the data flow by a
Execute() to the current CDataFlow object that is here “SDL0” at equidistant time points
(see Section 7.6). For each Execute() message from the related EVC state object, the data
flow object sends a Calculate() message to all CFunctionBlock objects in m_FunctionBlocks.
At the first execution step (k = 0), only the value of the counter storage “Value” in Figure 8.11
is increased by one. At the second step (k = 1), the CLevelCondition object “L1” is activated
by a Boolean true input. Therefore, it sends a m_CurrentApplicationLevel = "1" message
to the parent CEVCStateMachine object by its m_pParent aggregation. Furthermore, it
informs the parent CDataFlow object about an upcoming switch of the EVC state or/and the
ETCS Application Level by the m_bStateLevelSwitch = true message. As a consequence,
the execution of DataFlowThread(0) and Start() in “Running” is terminated and accordingly
returned to the “EVC” object execution. This then directly starts the execution of the current
active CEVCState object defined by m_pCurrentState, which is the same as before but now
with the new Application Level 1 (m_CurrentApplicationLevel).

Again, for each CDataFlow object (here only “SDL1”) in “Running” for the current Application
Level, a separated thread is started by the DataFlowThread() message that is for this example
only one. This thread executes the related CDataFlow object “SDL1” by the Execute()

message. For k = 2 and k = 3, only the value of “Value” is further increased. For k = 4,
the output of the CSum object is 5, which causes the activation of the CEVCCondition
“c1”. Thus, it places a reference of the corresponding CEVCTransition object “Tc1” of the
transition stack of “StateMachine” by the m_TransitionStack.push_back(&Tc1) message.
The m_bStateLevelSwitch = true is used to inform the “StateMachine” object about an
upcoming transition to a another CEVCState object. Like in Application Level 0 before, then
the execution of DataFlowThread() and Start() is terminated.

The “StateMachine” gets the target state of the “Tc1” object on the transition stack by the
GetTargetState() message that is here the only CEVCTransition object on the stack. In the
case of several objects, their priority property would be used to determine, which one is going
to be executed. The target state m_pTargetState of “Tc1” is “Running”, which reference is
then stored in m_pCurrentState.

Since “StateMachine” is still started by the EVC, it starts the new state “Running” by a
Start() message. As for “Running”, a thread for the only data flow object “RDL1” in “Running”
for Application Level 1 is started by Start(). This executes “RDL1” via the Execute()

messages (k = 6, 7, . . . ). Further execution steps are not explained in this example.

Finally, “StateMachine” is stopped by the EVC through a Stop() message.
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Figure 8.13.: UML interaction diagram for EVC state machine example in Figure 8.10
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8.5. Deployment Design

The deployment design describes how the source code and the compiled binary code is distributed
on different platforms for their execution. For openETCS and its domain framework, this is
of special interest regarding the separation of platform-specific adaptations from the directly
generated code by hardware virtualisation, which was discussed in Chapter 6.

For clarification, the openETCS architecture is divided in three categories:

Computational Independent Model (CIM) is the part of the DSL that does not hold any
certain information about computation structure and processing of the system [45, p. 2-5].
This corresponds to the openETCS model.

Platform independent model (PIM) provides information about computational and process-
ing structure of the system without any information depending on a certain target
platform [45, p. 2-6]. This corresponds to the openETCS domain framework (see Req.7)
and the code generated from the openETCS model / CIM.

Platform specific model (PSM) extends the PIM or is a transformation of it to be applicable
on a certain platform [45, p. 2-6]. In the openETCS architecture, this corresponds to
possible adaptations for concrete hardware devices, like sensors and actuators (Section 7.2).

While CIM and PIM are already defined for the openETCS case study, the PSM is defined
in the deployment. Due to the fact that this work primary focusses on the CIM and PIM,
platform-specific adaptations are only used for testing and simulation purposes. Nevertheless,
the deployment design should provide a general approach for extending the PIM about PSM
elements of any kind. Figure 8.14 introduces the deployment of the openETCS domain
framework with the separation of PIM and PSM as UML deployment diagram [66]. Both are
located on the target platform, the EVC, but are executed in separated execution environments.
Both execution environments can communicate (over a network link) with the EVC but not
directly with each other. Communication between them is only possible via the EVC, on which
this communication could be limited by a firewall or other mechanisms.

All source artefacts located in the PIM execution environment manifest together the li-
bopenETCSPIM component, which is a library. This library represents the platform indepen-
dent implementation (parts) of the openETCS domain framework. On the other hand, the
libopenETCSPSM is the manifestation of the platform specific implementation base within the
PSM execution environment. Each source artefact is shortly explained in the following:

EVCStateMachine Holds all source code that is basically needed by the CEVC-
StateMachine class. This includes all required types for data
flows.

ControlFlow All sources for control flows, including CControlFlow and
CState.

FunctionBlocks Sources of all platform independent function block classes.

Language Includes all sources for the ETCS language classes.
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Figure 8.14.: UML deployment diagram of the openETCS domain framework
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DriverMachineInterfaceMOC Holds the implementation of the concrete DMI Qt 4 observer
CDMIQWidget.

PlatformSpecificClientsMOC Includes all source code for accessing the platform-specific ex-
tensions for COdomoter, CEmergencyBrake, CServiceBrake,
CBaliseDeviceIn, and CBaliseDeviceOut. For testing purposes
without platform-specific adaptations, also a stub8 implemen-
tation is provided for each class.

Storage Source code of the CStorage class. It is provided in a sepa-
rated artefact because it is used by several other artefacts like
EVCStateMachine and Language.

Condition Source code of the CCondition class, which is also provided
in a separated class due to multiple dependencies.

Transition Source code of the CCondition class, which is separated for
the same reasons as for CCondition and CStorage.

Configuration Provides type definitions and global constants for the whole
domain framework.

DBusInterfaces Holds the source code for all D-Bus interfaces [32] for platform
specific classes.

DBusAdaptors Provides the source code for all D-Bus adaptors [32] for plat-
form specific classes. The usage and integration of D-Bus [32]
will be additionally discussed at a later point of this section.

AdaptorStubsMOC Source code of all stubs classes for D-Bus adaptors. For
concrete platform-specific adaptations, those should be used
or rather implemented by class inheritance [81].

All source artefacts with the postfix “MOC” in their name require the usage of Qt 4’s meta
object compiler (moc) [61].

As each library component is located in another execution environment respectively another
virtual machine, a middleware for IPC communication has to be used (see Req.8), which was
partly discussed in Subsection 6.2.4. For this purpose D-Bus is employed, which was also
introduced in Subsection 6.2.4. The D-Bus daemon [32] is executed directly on the EVC and
therefore enables the communication between both execution environments but only through
defined interfaces (see Chapter 6). Details about this interconnection are shown in Figure 8.15
as UML component diagram [66].

The interfaces required by the libopenETCSPIM component are IEmergencyBrake, IOdomoter,
IServiceBrake, IBaliseDeviceIn, and IBaliseDeviceOut. Those define the interfaces that have
to be implemented by suppliers of hardware components defined in the ETCS SRS. Hence,

8empty
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Figure 8.15.: UML component diagram for PIM and PSM of openETCS domain framework
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those classes can only have a stub implementation in the PIM because those hardware compo-
nents are always specific. The D-Bus component / daemon provides those interfaces to the
libopenETCSPIM component while it requires them from the libopenETCSPSM component.
In that way, messages from and to the specific classes in the PIM can be dispatched to the
PSM without any direct connection in an object-oriented manner.

Of course, it is possible, as proposed in Section 6.2, to place each hardware interface
implementation in an own execution environment or rather virtual machine and to connect each
to the D-Bus component in the EVC. Nevertheless, the domain framework / PIM only defines
the interfaces to the PSM but does not define how (and where) the concrete implementations
are provided because such details are not relevant for the domain framework deployment design
in general.

Finally, it must be emphasised that for an executable EVC state machine not only the source
artefacts from the openETCS domain framework are required but also the generated code from
the openETCS model, which instantiates the classes of the domain framework. However, that
generated code is mutable because it depends on the openETCS model and therefore is not a
direct part of the domain framework deployment design.

D-Bus Integration Since the preceding paragraphs in this section mainly discussed the general
integration of the D-Bus as middleware, the following paragraphs will explain the details
about the D-Bus usage. The defined interfaces IEmergencyBrake, IOdomoter, IServiceBrake,
IBaliseDeviceIn, and IBaliseDeviceOut are not directly types or rather abstract classes [81] and
therefore cannot be simply integrated into the class structure by inheritance. Therefore, the
corresponding openETCS domain framework classes must make use of the interface in a different
manner, which is shown in Figure 8.16. The function block classes that are all located in the
PlatformSpecificClientsMOC artefact have all a composition m_pProxy to the corresponding
interface9 type. Since the general D-Bus implementation provides only a GLib [32] API,
which is not object oriented, its direct usage in the openETCS domain framework would
cause a break with the so far pure object-oriented design and implementation. Thus, as for
the concrete observer implementation CDMIQWidget, Qt 4 is employed because its D-Bus
module [61] provides an object-oriented API. Accordingly, the platform specific classes are not
only CFunctionBlock types but additionally inherit from QObject to be able to use Qt 4’s
signal and slot mechanism [61]. The function block types use a m_Mutex composition to ensure
thread-safe manipulations of their attributes.

On the one hand, D-Bus itself defines interfaces that can be used as proxies for the com-
munication and, on the other hand, adaptors that must be (re-)implemented with the “real”
implementation [32]. Interface and adaptor are generated from an XML file that defines the
messages and signals of an adaptor (and its interface), which is sketched in Figure 8.17. The
contents of the XML interface definition can be found in Appendix D. It must be noted that
the generated interface classes are no interfaces in the meaning of abstract classes [81], which
are types that cannot instantiated directly. Instead, they can be interpreted as proxy objects
that can be used in place of the corresponding adaptors. The artefacts are generated in the
case of the Qt 4 D-Bus API by the “qdbusxmll2cpp” application [61].

9prefixed by an “I”
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Figure 8.16.: UML class diagram of the integration of the platform specific interfaces

Figure 8.17.: UML deployment diagram of the adaptor and interface artefacts
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According to the discussion about security problems caused by platform-specific adaptations
in Chapter 6, implicitly, only direct communication – in form of method calls – from the PIM
to the PSM is allowed to further minimise the possible, malicious influence of platform-specific
adaptations on the PIM. Hence, communication from the PSM to the PIM is only possible
through the D-Bus signalling mechanism [32], which avoids that the adaptors in the PSM have
any knowledge about connected proxies in the PIM.

In contrast to the interface classes, the adaptor classes cannot be used directly since the
messages and signals defined in the XML file must be implemented. This implementation
is an often recurring task because the implementation must be adapted for each (hardware)
interface even for simulative implementations for testing. Therefore, a stub class is provided
for each adaptor class, which methods only have to be extended by class inheritance and
overriding [81]. The stub classes are shown in Figure 8.18. Similar to the function block classes,

Figure 8.18.: UML class diagram of the adaptor stub classes

also the corresponding adaptor stubs, CBaliseDeviceIn, CBaliseDeviceOut, CEmergencyBrake,
CServiceBrake, and COdomoter inherit from QObject to be able to use the Qt 4 signal and
slot mechanism. The classes are located within the “PS”10 package of the openETCS domain
framework package, which means in C++ in the ::oETCS::DF::PS name space. In contrast
to other middleware, like CORBA, adaptor implementations for the Qt 4 D-Bus API are not
done by inheritance from the adaptor classes but by an association of the generated adaptor to
a QObject that provides the implementation of the adaptor methods. Thus, these associations
are not sketched in Figure 8.18.

The UML deployment digram in Figure 8.14 only refers to two library components: One for
the platform independent and the other for the platform specific implementation. Of course,

10abbreviation: platform specific
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these two libraries alone cannot build executable binaries for the two execution environments.
As already discussed in this chapter and according to Req.6 for the PIM, this is done by the
instantiation of the openETCS domain framework classes by the code generator. For the
execution of the PSM, any kind of adaptor implementation is required even if it only consists
of stub classes. The deployment including these instantiations for PIM and PSM is shown in
Figure 8.19.

Figure 8.19.: UML deployment diagram of the instantiation of PIM and PSM

The openETCS.xml artefact holds the CIM respectively the openETCS model in the GOP-
PRR meta meta model (see Chapter 4). The openETCSGenerator (to be discussed in Chapter 9)
application uses it to generate the C++ source artefact that holds the corresponding instan-
tiations of domain framework classes and the main() function [81]. The openEVC process
/ binary is manifested by the GeneratedInstantiations artefact and imports or rather links
against the libopenETCSPIM component with the platform independent types. The HWSpeci-
ficImplementations source artefact holds according to its name the concrete platform and/or
hardware specific implementations. Currently, there exists only a simulative implementation,
which will be explained and used in Chapter 11. This specific artefact uses or rather includes
the AdaptorStubsMOC artefact, which holds the before presented D-Bus adaptor stub classes
in Figure 8.18. Obviously, the HardwareServices process / binary must be manifested by the
HWSpecificImplementations artefact and is linked against the libopenETCSPSM component.
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8.6. Implementation

The previous sections in this chapter described the design of the openETCS domain framework
based on UML diagrams. Since UML is a very general description formalism for object-
oriented programming languages, those typically cannot provide certain information about
the implementation in a concrete programming language. Mainly, two strategies exist for
implementing a software design defined by UML:

1. manually implement the complete design
2. generate as much as possible code from the UML model and manually implement missing

parts

As already illustrated in Chapter 3, general modelling formalisms respectively meta models
normally do not provide enough abstraction to enable full code generation. However, strategy 2
is anyway preferable because the workload is in any case smaller compared to a complete
manual implementation.

As for this work the tooling for the domain framework development is not of main interest,
a description of this specific tool chain is omitted.

8.6.1. Programming Language and Target Platform

According to Section 8.5, the domain framework is the PIM of the openETCS architecture and
should be (mostly) platform independent. Hence, the C++ programming language is chosen
for the implementation because it provides object-oriented programming (corresponding to
Req.6) and is suitable for technical applications. Since the goal of this case study is primary a
proof of concept, the new C++ standard also called C++11 [7] is already used, but which is
currently in draft status. Nevertheless, it provides certain advantages for the domain framework
implementation. For example, the implementation must establish a sample system (described
in Section 7.6) with a constant sample time. This is related to the scheduling of the executing
platform, which normally refers to an operating system. Since interfaces to operating system
functionality, e.g. system calls [79], generally differ much, access via C++ objects, methods,
and functions [7, Ch. 30] that are available for any platform providing a C++ compiler is
preferable. The gcc or rather the g++ [34] compiler is used for the software development of
the openETCS case study because it is developed under a FLOSS license and supports since
version 4.4.7 the draft standard C++11. Although the choice for the target platform should
not be relevant for the PIM, the usage of Linux [49] provides the integration in a platform that
is also FLOSS.

Obviously, not all elements of the domain framework implementation can be discussed in
detail. Therefore, the following subsections discuss certain parts of the domain framework
implementation that are of highest relevance and/or interest. The full software reference of the
openETCS domain framework is located in Appendix D.

Before proceeding with concrete implementation examples, it is noted that all classes of the
openETCS domain framework are located in the ::oETCS::DF C++ name space [81].
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8.6.2. Data Flow Implementation

Most of the functionality of CFunctionBlock elements is simple to implement, like mathematical
operations, but also the implementation of braking curves is mainly a transfer of a mathematical
/ physical model to C++ code. More crucial for the correct operation of any data flow is the
execution in equidistant time points, which will be discussed here.

Section 8.4 demonstrated that the cycles are generated in the CEVCState class by an own
thread for each independent data flow. Those threads are implemented in the following method:
void CEVCStateMachine : : CEVCState : : DataFlowThread ( const unsigned int& iIndex ) throw ( ) ;

Since for each independent CDataFlow object an additional thread of this method is started,
iIndex determines for which CDataFlow object in m_CurrentDataFlow the thread is responsible.
In the implementation, the m_CurrentDataFlow aggregation is declared as
: : s td : : vector< CDataFlow∗ > m_CurrentDataFlow ;

Creating threads according to C++11 is done by using the ::std::thread class [7, Ch. 30].
Hence, all data flow threads are created and started by the lines of code in Listing D.1 in
Appendix D.

These are located in the definition of the following method:
void CEVCStateMachine : : CEVCState : : S tar t ( ) throw ( : : oETCS : :DF : : Error : : CException )

Since the CEVCStateMachine::CEVCState::Start() method should be blocking and should
only return if all threads are terminated, the ::std::thread::join() method is used, which
blocks until the corresponding thread has been terminated in Listing D.2. While this is mainly
an object-oriented and platform independent way of starting a group of worker-thread, the
thread-method implementation is more complex and therefore of more interest.

The execution of the related CDataFlow object at equidistant time points must be imple-
mented, which is done in corresponding CEVCState method:
void CEVCStateMachine : : CEVCState : : DataFlowThread ( const unsigned int & iIndex ) throw ( )

Furthermore, all m_Threads must be synchronised in that way that the execution of each
thread should start for every k at the same time point t = kTs (see (7.1)). This problem is
related to real-time scheduling [79, pp. 457-504]. Although this is very difficult to realise in real
technical systems, the time difference between the execution start points should be minimised.
Figure 8.20 sketches a sample execution in the time domain for two unsynchronised threads.
Besides that the second thread always starts the execution with a delay Δti, those delays
also differ: Δt1 
= Δt2 
= Δt3 
= . . . . As already discussed in Section 7.6, this can lead to an
undefined behaviour of the data flows in the time domain. The ideal sample execution for two
threads is shown in Figure 8.21

The execution is implemented as a loop that calculates for each execution cycle k the
consumed time and puts the thread for the remaining time to the next execution time point
(k + 1)Ts to sleep. The corresponding C++ source code can be found in Listing D.3 in
Appendix D.

At the very first execution of the while-loop, the time point of the execution start is measured
once (Line 21) by the ::std::chrono::high_resolution_clock::now() method, which is
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Figure 8.20.: Temporal execution of two unsynchronised data flow threads with a constant
sample time Ts
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Figure 8.21.: Ideal temporal execution of two synchronised data flow threads with a constant
sample time Ts
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also a new asset of the C++11 specification. The time for putting the thread to sleep state
is calculated in Line 105 while SAMPLE_TIME is the system constant sample time Ts, which is
typically in the range of milliseconds.

To synchronise all threads right from the beginning, the Lines 3 - 18 are implemented.
m_Barrier is of type ::std::condition_variable and also part of the new thread library [7,
Ch. 30] of the C++11 draft standard. Its wait(::std::mutex) method locks a calling thread
until notify_all() is executed from any other thread. It seems that this is the best that
can be implemented to avoid delays as in Figure 8.20 with the usage of soft real-time [79,
pp. 457-504] mechanisms. Since hard real-time [79, pp. 457-504] mechanisms and interfaces are
mostly platform specific, those cannot be used in the domain framework because it represents
the PIM. Hence, hard real-time mechanisms could only be integrated in the PSM.

Unfortunately, it is crucial that no thread starts its next execution before all others are
finished. Otherwise, it cannot be assured that all used CEVCTransition, CTransition, and
CLevelCondition objects are already calculated and a transition to a new CEVCState or CState
object is not ignored. Thus, before calculating the sleep time and putting the thread to sleep
in Line 111, all parallel executed threads must be synchronised. This is done by the same
construct used for the initial synchronisation (Lines 3 - 18) but extended about the evaluation
of activated transitions in Lines 46 - 101. In the case that the thread is not the last active
thread, which is determined by m_iLockedThreads == (m_Threads.size() - 1), it is simply
blocked by the m_Barrier object. In contrast to the initial synchronisation, the last thread
that enters the block not only notify all others via m_Barrier to proceed with the execution but
also checks the stack of the m_TransitionStack with the activated CEVCTransition objects of
the current cycle k. If more than one transition was activated, the one with the highest priority
is chosen and set in Line 76. A consequence is that the slowest thread or rather the thread
with the latest ending time point of its m_CurrentDataFlow[iIndex]->Execute() execution
defines the blocking / sleeping time for all others by the synchronisation. Although this can
lead to problems if a thread is severe delayed, it is necessary to guarantee that CEVCTransition
are always evaluated properly at the end of each execution k.

At the very end of the while-loop in Line 122, the start time for each thread is calculated
instead of measured as for the first execution in Line 21. This has the advantages that global
drifts in execution time are avoided and only local drifts may occur. Within a soft real-time
system, the absence of drifts cannot be guaranteed because the execution of all processes is
managed by a global scheduler that works under the regime of the operating system kernel.
Therefore, kernel processes may always block the execution of a user space process or thread
even if it has a high priority [79, pp. 457-504]. The difference between global and local drifts
are exemplary shown for one thread in Figure 8.22.

In the case of a global drift, the delay of the execution start Δt delays all further execution
about the same Δt because the start time is measured, which includes the delay. Even further
delays would be accumulated, so that the execution would end to be completely unsynchronised
with the desired sample time points kTs. Since the calculation of the new start time, instead
of measuring it, does not take any occurred delay Δt into account, the next execution starts at
the correct time point 2Ts for the local drift.

Of course, a general constraint to avoid drifts is that the minimal required execution time is
not bigger than the sample time: te ≤ Ts. To this property is also referred as scheduleability [79,
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Figure 8.22.: Example of global and local execution drift

pp. 457-504] of a real-time system.

8.6.3. Control Flow Implementation

As the execution of CControlFlow objects is driven by the CDataFlow objects and CControlFlow
objects are always a part of CDataFlow objects, their implementation is not relevant for
a detailed discussion here. While the CDataFlow instances handle the transition to new
CEVCState objects by their m_TransitionStack, CControlFlow must take care of transition
between its CState objects by itself. In contrast to the transition between CEVCState instances,
the evaluation of transition between CState objects is done in the currently executed CState
object and not in the parent CControlFlow instance. This simplification can be done because
a control flow cannot be executed in parallel as independent data flow.

Thus, a CState object executes all CFunctionBlock objects m_FunctionBlocks and afterwards
evaluates its transition stack m_TransitionStack, which is implemented in Listing D.4 in
Appendix D.

8.6.4. EVC State Machine Implementation

Since the core functionality of the openETCS domain framework or rather the execution of
the currently active data flows is located in CDataFlow, the transition between EVC Modes
and switching to ETCS Application Levels is mostly implemented in CDataFlow. Also, the
CEVCStateMachine::Start() should be non-blocking according to the behavioural design
in Section 8.4. Hence, the execution of CEVCState must be done in a separated thread
that is created and started by that method. The thread is implemented in a method of
CEVCStateMachine:
void CEVCStateMachine : : StateThread ( ) throw ( )
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Similar to the CDataFlow execution by CEVCState, the ::std::thread is used to start
the method in a separated thread. Its implementation is quite simple and can be found in
Listing D.5 in Appendix D.

It only executes a while-loop as long the internal Boolean attribute m_bStarted is true. This
can only turn into false if the CEVCStateMachine instance is explicitly stopped by the Stop()

method or if an exception is thrown in the executed current EVC Mode m_pCurrentState or
rather in its data flows. If the execution of the current EVC Mode in Line 6 is stopped due to
a Mode transition or Application Level switch, the while-loop simple starts in its next run the
new active CEVCState object or with the new m_CurrentApplicationLevel or even with a
new combination of both.

To stop the execution, only the attribute m_bStarted has to be set to false, which informs
the current thread about the stop request and waits for the state thread to terminate by the
::std::thread:join() method in Listing D.6.

8.6.5. DMI Implementation

The CDMIQWidget implementation is quite simple and mainly treats the update of the displayed
widgets for inputs and outputs. Any attached observer is notified by its CEVCStateMachine
object via the Update() method that the contents or visibility state of one or more CDMIInput
or CDMIOutput object of the current subject CDMISubject has changed or that even the
complete subject was changed. The latter is the case if the ETCS mode and/or application
level was changed. A changed subject always means that the input and output widgets
(m_InputWidgets and m_OutputWidgets) have to be rearranged. Since this includes the
deletion of all existing input and output widgets and the creation of the new ones, this process
should be avoided in cases, where only the value of CDMIOutput objects of the current
CDMISubject were modified by the data flow calculation. Otherwise, this would delete any
input of the driver that was already entered but not yet activated via the corresponding
QPushButton. Accordingly, the CDMIQWidget observer always stores the pointer to the
last used CDMISubject in the m_pLastSubject aggregation (see Figure 8.5). Only, if in the
execution of Update() the last subject is not identical to the current subject, the input and
output widgets are rearranged. Otherwise, only the (displayed) values of the m_OutputWidgets

are updated from m_Outputs in the DMI subject.
Another but more minor aspect of the DMI implementation, is the fact that Qt 4 does not

accept changes of GUI elements from other threads than the one running the Qt event loop [61].
The event loop is started from the main() function because the corresponding openETCS C++
generator (see Chapter 9) only generates the instantiation of domain framework types and the
starting of the CEVCStateMachine object. The CDMIQWidget Update() method is called from
the current data flow thread (see Subsection 8.6.2), which is not the main thread. Therefore,
the Update() method cannot change GUI elements of CDMIQWidget directly. The solution
is again to make use of Qt 4’s signal and slot mechanism: The real update implementation
is moved to the Qt slot UpdatedSlot(), which is connected [61] with the signal Updated().
The method Update() then only emits the signal Updated() to call the slot with the update
implementation but then in the thread of the Qt event loop.
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8.6.6. Error Handling

Since faults [80, pp. 12-14] not only can occur in concrete hardware components, which means
in the PSM, but neither can be avoided completely in the implementation of the PIM, error
handling is also an issue for the openETCS domain framework. An error is the incarnation
of a fault as a deviation from the normal operation of the framework [80, pp. 12-14]. For
fault detection or rather error propagation, exceptions [81] are used. This means if in a
method of the domain framework a fault is detected that cannot be handled by the method
itself, a corresponding exception is thrown. Mostly, exceptions may occur in data and control
flows, which must be handled by the parent CEVCStateMachine object. The ETCS SRS
already defines EVC Modes and procedures [90] in the case of an error that lead to a system
failure [80, pp. 12-14]. Thus, the error handling is part of the concrete openETCS model
while only the propagation is part of the openETCS domain framework. Furthermore, from
the view of the domain framework, a system failure11 may never occur because all errors
respectively all thrown exceptions in the execution of CEVCState objects are handled by the
parent CEVCStateMachine instance. Of course, from the view of the EVC, those errors lead to
system failures because in the resulting failure Modes the EVC cannot perform its required
function.

The most relevant origin of possible faults is the PSM or rather the HWSpecificImplementa-
tions sources because obviously not any possible specific implementation can be foreseen. On
the one hand, faults may occur in the hardware itself. Those faults can be propagated to any
connected proxy by a D-Bus signal while the resulting error can be then thrown by the related
function block object. This kind of error propagation presumes a correct implementation of
the HWSpecificImplementations source code. As already discussed in detail in Chapter 6, this
presumption is not valid for the PSM and any supplier implementations in general, which was
the reason for the separation of PIM and PSM in different execution environments. A grave
issue for the execution of the openETCS domain framework data flow is the execution time
of calls to platform specific adaptors since a constant sample time may not be exceeded (see
Subsection 8.6.2). To avoid a dead-lock situation in the data flow thread caused by infinite
response times of platform-specific implementations, all D-Bus calls are done with a certain
time-out value. If this value is overrun, the waiting for the call is aborted and an exception is
thrown.

There is a minor set of errors that cannot be handled by CEVCStateMachine class. Those
may occur in methods that are called by an external actor, which mainly means the EVC.
Nevertheless, those are limited to methods of CEVCStateMachine for starting and stopping
the execution, and methods used during the instantiation of the domain framework classes by
the generated code from the openETCS model. The latter ones must be avoided by a correct
generator implementation and the checking of the static semantics.

In the domain framework, each method is declared with the exception types it can raise [81]
to provide a transparent chain for error propagation. This is also done for methods that cannot
throw any exception type at all. Additionally, for certain fault and error categories, different
C++ types as classes are defined. Those are shown in Figure 8.23 as UML class diagram.

CException is the parent class for all concrete exceptions types in the domain framework.
11in the meaning of a unexpected and unwanted process termination
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Figure 8.23.: UML class diagram of the openETCS domain framework exception types

It inherits from the ::std::exception class to provide easier collection of error information,
especially during the implementation and testing cycles, because their content is automatically
printed (to the console) in cases of an uncaught exception. The concrete domain framework
exception types are:

CMath Mathematical errors, e.g. a division by 0.

CInput Errors due to (false) input values in CFunctionBlock objects outside the definition
space.

CInternal Internal error in a CFunctionBlock object typically related to an error in a
hardware component.

CUnknown Errors for which no category can be determined. This exception should never
occur, but also must be included to ensure all error cases are included.

All openETCS domain framework exception classes are located in the ::oECTS::DF::Error

C++ name space.

8.7. Verification

According to Req.5, the verification of the openETCS domain framework is an important issue
because it covers most of the source code used for the EVC implementation. Not only to ensure
the correctness of the implementation, but also to ensure the correct execution on a target
platform, tests are used. Since the domain framework is implemented in an object-oriented
manner, unit tests [6] are implemented. In general, unit testing focusses on the individual units
of the source code to be tested. For object-oriented programming languages, like C++, those
units are typically defined as the methods of classes, but this not explicitly required.
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Since C++ does not provide an implicit unit testing mechanism, the tests must be imple-
mented manually or with the support of a unit testing framework. CppUnit [16] is a platform
independent framework for creating test suites based on unit tests, which perfectly matches the
requirements of the openETCS domain framework. In contrast to complete self implementation
of unit tests, CppUnit already provides mechanisms for the test development and the collection
and output of test results.

8.7.1. Unit Testing Design

The CppUnit framework defines at its highest level so-called test suites, which are classes.
Those test suites combine different (unit) test cases, which are methods of the test suite classes.
In these test methods, assertions [81, 16] can be defined as Boolean expressions, which all
must evaluate to true if the test method is executed successfully. The complete unit testing
application or rather V&V test suite combines and executes all suites respectively all test
methods. Since all classes of the domain framework (in name space ::oETCS::DF) are tested,
Figure 8.24 shows only a subset of the complete relations of the unit testing design.

Figure 8.24.: UML class diagram of the basic openETCS domain framework unit testing
elements

157



Chapter 8. openETCS Domain Framework

The classes in ::oETCS::DF::UT are the test suites, which inherit from TextFixture [16],
which is a class of the CppUnit framework. The classes that are tested are indicated by the
aggregations m_pAnd, m_pTelegram, m_pStateMachine, and m_pControlFlow. Of course, all
classes are tested, but, due to the size and complexity of the figure, only some examples are
sketched.

The test suite classes must have access to all attributes, which include the private and
protected ones, of the tested classes to provide white-box testing [80, p. 312] instead of pure
black-box testing [80, p. 312], which only runs tests on the outputs for certain inputs. Since
most of those methods are not public visible / accessible, a friend [81] relation between test
suite classes and the classes to be tested have to be defined (omitted in the figure). Black-box
testing might be sufficient for tests for the CFunctionBlock classes because those are defined as
transfer functions for certain inputs, which return certain outputs. Consequently, their internal
states are not of interest for the tests. However, this is not the case for all other classes and
white-box tests are implemented via direct class attribute access.

8.7.2. Unit Testing Implementation

The implementation of tests for CFunctionBlock blocks is realised as random testing [80, p. 317].
For all inputs of a certain CFunctionBlock class, random input values are generated. Since the
the transfer function for the Execute() method is always well-defined for each CFunctionBlock
class, the resulting outputs can be checked for the expected values.

For classes outside the data flow, such interconnections between inputs and outputs is not
defined. Therefore, those have to be tested in a simulative way [80, p. 318]. Especially, the
classes for control flows (CControlFlow and CEVCStateMachine) can be additionally tested
by state transition testing [80, p. 318]. For those cases, a transition system is instantiated
by corresponding state and transition objects and then is tested if all states are reached and
executed as expected.

A further, more detailed discussion of test implementation is not in the main focus of this
work. The software reference of the tests and their implementation can be found in Appendix G.

8.8. Conclusion

The design, the implementation, and finally the testing of the openETCS domain framework
show that all initial defined requirements are fulfilled. Certain, already theoretical introduced
issues, like the integration of hardware virtualisation, are dealt with. Furthermore, the domain
framework is aligned to the terminology of the OMG’s definition of a model-driven architecture
(MDA).

The special situations of the behavioural design is described because this is defined by
the instantiation of domain framework classes. This can also be called “behaviour through
structure”.

In contrast to all other instances of the openETCS architecture, the domain framework has
to differentiate between faults, errors, and system failures and has to provide an error handling
interface to the meta model respectively model.
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9
openETCS Generator Application

This chapter describes the design and implementation of the openETCS code generator. Initially,
general requirements for the application are defined. In general, the development description
follows the same principles as in Chapter 8, which discussed the openETCS domain framework.
Hence, the generator design is illustrated by the used design strategy, the structural design,
and the deployment while UML is used as formalism. Also, the implementation is discussed
by concrete source code examples. Additionally, the generation of configurations for virtual
machines is introduced, which is followed by the description of the V&V strategy of the complete
openETCS development process. Finally, the complete employed tool chain down to executable
EVC binary is presented.

9.1. Requirements

In a DSL, the generators typically build the link between a model and the domain framework,
which was introduced in Chapter 3. Therefore, the process of generating the code that is
compiled and linked against the domain framework is also called model-to-text or model-to-code
transformation. Since the code generators are not executed together with the target, but their
execution result strongly influences the target execution, the requirements for the openETCS
generator development are quite different from the ones for the domain framework in Section 8.1
and are defined as follows:

Req.9: full coverage / usage of relevant model elements
Req.10: generation of optimised code
Req.11: generation of a build configuration for compiling and linking the resulting executable

binary
Req.12: generation of virtual machine configurations for the PIM and PSM

Req.9 To guarantee that the generated code from the openETCS model is a correct trans-
formation, it must be ensured that all relevant elements in the model are used during the
generation process. All relevant elements means any GOPPRR type that influences the dynamic
semantics. Those are the most types besides the ones only used for documentation, like oNote.
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Req.10 The generated code for the target binary should be optimised in respect to the
execution time. Due to Req.5 of the openETCS domain framework, the code generator only
creates instances of domain framework classes. Hence, the optimisation is reduced here to the
order of the objects in aggregations, which is mostly relevant for data flow creation.

Req.11 Since the pure source code for the instantiation of the domain framework classes has
to be compiled to be executable, an appropriate build configuration must be generated. This is
especially needed to take certain compiler and linker flags [34] for including the openETCS
domain framework and all other required libraries into account. According to Req.7, this build
configuration should be also generated in a platform independent way.

Req.12 Since the deployment of the openETCS domain framework (see Section 8.5) defines
different execution environments for the domain framework or rather the PIM and possible
platform-specific adaptations (for hardware components) or rather the PSM, also the configu-
ration for starting those environments should be generated. The used hypervisor should be
available as FLOSS and chosen according to the considerations in Section 6.2.

9.2. Design Strategy

Similar to the openETCS domain framework in Section 8.2, all required classes of the generator
must be identified by general use cases in an initial design step. For the use case definition,
the tool chain (Figure 4.5 and Figure 5.3) presented already in Section 4.6 and Section 5.3 is
also taken into account. Figure 9.1 defines the basic use cases as UML use case diagram. The
included external actors and classes are explained in the following:

MERL_Generator Corresponds to the GOPPRR Generator of the tool chain in
Figure 4.5 and Figure 5.3. It generates a GOPPRR XML file
from a certain model in MetaEdit+.

XML GOPPRR XML file of the corresponding model.

DomParser XML parser class from the libxml++ library [56], which allows
the conversion of an XML file to an internal Document Object
Model (DOM) [4], which also corresponds to an abstract
syntax tree. This can be easier processed than a plain text
file.

CGOPPRRTransformer Transforms the DOM of the GOPPRR XML file into a GOP-
PRR C++ abstract syntax model.

CGOPPRRSyntaxTree Encapsulates a ::GOPPRR:CProject (in Section 4.2) instance
to provide a general interface to any kind of abstract model
or tree for GOPPRR. Thus, further abstract syntax trees
could be easily integrated. Currently, only the GOPPRR
C++ abstract syntax model from Section 4.2 is supported.
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Figure 9.1.: UML use case diagram for the openETCS generator
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CProject Root element class for any GOPPRR C++ abstract syntax
model.

CConstraintChecker Checks a ::GOPPRR:CProject instance for certain constraints
defined in OCL as static semantics. Its implementation is,
like the GOPPRR C++ abstract syntax model in Section 4.2,
independent from the used meta model.

OCL_Constraint_File External file with constraints defined by OCL statements as
static semantics for a certain meta model in the GOPPRR
meta meta model.

CVMGenerator Generates the configuration for the virtual machines by
traversing a CGOPPRRSyntaxTree object.

CCPPGenerator Generates the C++ sources to instantiate the openETCS
domain framework by traversing a CGOPPRRSyntaxTree
object.

CBuildGenerator Generates the build configuration (for cmake [14]) to compile
the generated sources by traversing a CGOPPRRSyntaxTree
object.

VM_Configuration Generated configuration for virtual machines of a certain
hypervisor.

CPP_Source Generated C++ sources.

CMake_Build_Configuration Generated cmake build configuration.

Since the openETCS generator application uses and combines several modules or rather
packages [66], the affiliation of the actors in Figure 9.1 is explicitly defined in the diagram. The
packages themselves are explained in more detail in the next lines:

xmlpp External libxml++ library for parsing XML files, which is appropriate for the case
study because it is licensed as FLOSS and is implemented in C++.

DSM Holds classes that are generally usable for domain-specific modelling and are not
limited to a certain meta model. Since in this work only the GOPPRR meta meta
model is used, this is mainly a design issue to provide a better expandability for
further work with other meta meta models, like MOF (see Appendix A).

GOPPRR Package of the GOPPRR C++ abstract syntax model in Section 4.2, which is
independent from the used meta model.

oETCS The superior package for all elements related to the openETCS case study.

GEN Package inside the oETCS package with all classes for the generator application
that depend on the openETCS meta model (in Chapter 7).
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Since the UML packages are mapped for the implementation to C++ name spaces, those can
be directly found in the generator C++ implementation.

9.3. Structural Design

As for the openETCS domain framework in Section 8.3, the classes defined by the use cases
in the prior section have to be transferred to a structural design. In contrast to the domain
framework, most parts of the generator application are especially developed for the openETCS
meta model, which mainly renders the re-usability1, in most classes, impossible. Thus, the
definition of a sophisticated object-oriented design pattern [33] is here not required and may
even cause unnecessary workload. Figure 9.2 introduces the structural design for the generator
application. The design details are discussed in groups of the surrounding packages in the next

Figure 9.2.: UML class diagram openETCS generator application

paragraphs.

GEN The openETCS generator classes do not provide a special software design pattern. Only,
CGenerator is used as base class for all concrete generator classes to provide operations and
attributes needed for each generator and to define abstract operations [66, 81], which have to
be implemented. This could be interpreted as a composite design pattern [33, pp. 163-173],
but since CMain only uses compositions of the concrete generator classes, it is not. CMain
combines all generator classes and provides an operation, which can be called by the main-
function [81] of the generator application. Furthermore, it has a composition m_Lexer to

1for other meta models
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CGOPPRRTransformer to be able to provide a GOPPRR C++ abstract syntax model to
the generator classes. The m_ConstraintChecker composition is used to check the GOPPRR
C++ abstract syntax model validity according to the meta model constraints or rather static
semantics.

DSM For general domain-specific modelling issues, this package provides a composite design
pattern for transformer and abstract syntax model classes. Generally, transformer classes
convert an intermediate model from an XML file to an abstract syntax tree. Therefore, for
each one a base class (CSyntaxTransformer and CSyntaxTree) is defined, which corresponds
to the component participant [33, p. 165] of the design pattern. CGOPPRRTransformer and
CGOPPRRSyntaxTree are the concrete leafs [33, p. 165] for the GOPPRR meta meta model.
As already explained above, the integration of this pattern is mainly relevant for possible
extensions by further abstract syntax models in further work.

GOPPRR The detailed structure of the GOPPRR C++ abstract syntax model was already
introduced and discussed in Section 4.2 and sketched in Figure 4.4. New in this package is the
CConstraintChecker class for checking a certain CProject object for a set of constraints. Due
to the definition of GOPPRR and its C++ abstract syntax model, also the constraint checker
is completely independent from the meta model and can be easily implemented in one class.

xmlpp In the UML model, the xmlpp package only represents the external libxml++ library,
which is used for the parsing of XML files.

9.4. Deployment Design

The differentiation by the three MDA model categories, as in Section 8.5, is not necessary for
the generator application because it is not part of the model. Neither, the generator has to be
executed in a different execution environment, nor an IPC has to be established.

How the different packages are combined or rather deployed together to build an executable
binary is of special interest for the generator application development. Thus, the deployment
of the GOPPRR and DSM package is introduced first and at last the GEN package, which
combines all components.

GOPPRR Corresponding to its definition in Section 4.2, the GOPPRR C++ abstract syntax
model is independent from the meta model and accordingly heavily reusable. Hence, its
deployment as a library [79] seems to be the most appropriate. The deployment of the
libGOPPRR is sketched in Figure 9.3. The artefacts hold the corresponding classes with the
“C” prefix and all manifest the libGOPPRR component. The ExceptionTypes artefact holds
the exception classes used for the abstraction methods for easier accessing be graph bindings
in an abstract syntax model (see Section 4.2). The libGOPPRR component provides all classes
to other components, which accordingly have to import or rather link against the libGOPPRR
library. Figure 9.4 shows the corresponding component diagram.
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Figure 9.3.: UML deployment diagram for the GOPPRR library

Figure 9.4.: UML component diagram for the GOPPRR library
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DSM Similar to the GOPPRR package and the libGOPPRR library, the DSM package is
also independent from the used meta model and can be deployed as library. The corresponding
deployment diagram can be found in Figure 9.5. Again, the ExceptionTypes artefact holds all

Figure 9.5.: UML deployment diagram for the DSM library

types used for raising exceptions. Since the libDSM builds the link between any meta model
of GOPPRR and a concrete generator, it also requires and imports the classes provided by
the libGOPPRR library. This is sketched in Figure 9.6. The libDSM library itself provides
all classes for transforming a GOPPRR XML file, as intermediate model, into objects of the
libGOPPRR library classes.

GEN As already described before, the GEN package implements the openETCS generator
application as executable binary. Since it is deployed in only one component, the related
diagram in Figure 9.7 is as simple as for libGOPPRR and libDSM. In contrast to those two
other components, the openETCSGenerator does not provide any classes but requires those
from the two libraries. The component diagram in Figure 9.8 shows corresponding import of
classes.

9.5. Implementation

Due to the nature of the generator application, the interaction between the generator classes
or rather objects is low. Mainly, a CMain object calls a CGOPPRRTransformer instance to
convert a GOPPRR XML file into a CGOPPRRSyntaxTree to finally call all generator instances
and the constraint checker. Thus, an own section for the behavioural design is spared for the
openETCS generator application and the section directly proceeds with the implementation of
the structural design.
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Figure 9.6.: UML component diagram for the DSM library

Figure 9.7.: UML deployment diagram for the openETCS generator application
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Figure 9.8.: UML component diagram for the openETCS generator application
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The openETCS generator application is implemented correspondingly to the methodology
of the domain framework implementation. Hence, the general implementation strategy in
Section 8.6, the programming language, and target platform in Subsection 8.6.1 are the same
and not explicitly discussed here.

9.5.1. libGOPPRR Implementation

Although the structural design of the GOPPRR C++ abstract syntax model was already
introduced in Chapter 4, its implementation is discussed in this chapter because it is used by
the generator application.

All elements for defining a GOPPRR C++ abstract syntax model are declared as structs,
which can be observed in Figure 4.4. In C++, the only difference between classes and structs is
that in a class all elements are by default private visible [81]. For structs, the default visibility
is public [81]. Since for the GOPPRR C++ abstract syntax model mainly a tree of data
structures has to be built, those are declared as structs to provide an easy and direct access to
their attributes2. Hence, no methods need to be implemented for their access.

The only methods implemented in those structs are the ones used for abstraction, which
were already mentioned in Section 4.2. Those are mainly located in the CGraph class3. Since
they mainly focus on the abstraction of graph bindings (see Section 4.2), they are implemented
by iterating over the local bindings m_BindingSet and the corresponding sub-structures. As
already exemplary introduced in Section 4.2 for the ::GOPPRR::CGraph:Roles() method, the
abstraction methods mainly use a certain GOPPRR C++ abstract syntax element instance
(e.g. of ::GOPPRR::CObject) and the literal name of connected type that should be found.

Generally, such searches can provide more than one object4. Hence, the abstraction methods
always return a map of pointers to the matching instances. To facilitate the usage in the
generator classes, which typically iterate over the returned map or use just the first element,
an optional exception was introduced to handle situations if the returned map is empty. The
usage of exceptions can be defined in all abstraction methods by the bUseException parameter.
This means the generator does not have to be implemented by an if-branch for each returned
map to check it for non-emptiness. Otherwise, the access to an element of any empty map
always causes a segmentation fault [79, pp. 353-453]. Since in the most cases the absence of
an element type in a connection means a fault in the model, this is not manageable by the
generator classes and the resulting error can be easily propagated by an exception.

Unfortunately, until the end of this work, no general OCL parser and checker was available
as OSS or FLOSS library that could have been directly integrated in the CConstraintChecker
class implementation. As a work-around for the case study, some exemplary constraints for the
static semantics in Section 7.5 were directly implemented in C++. Of course, those are only
meaningful for openETCS meta model instances. For other meta models, the static semantics
would have to be implemented additionally in C++.

2aggregations, compositions, and properties from the design
3C++ structs will be also called classes in this document because of the only small difference in C++.
4GOPPRR instance
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9.5.2. libDSM Implementation

Since the base class CSyntaxTransformer only provides general attributes and methods for all
concrete transformer classes, the implementation of CGOPPRRTransformer is explained in
detail.

The converting process starts with the parsing of a GOPPRR XML file by the m_XMLParser

object, which delivers the content of the file as DOM. Furthermore, the XML file is validated
according to the GOPPRR XSD from Section 4.3 to ensure that only valid GOPPRR instances
are used. Since the DOM is mainly a representation of the XML file in a certain C++ class
or rather object structure, the whole document object model has to be processed by the
CGOPPRRTransformer.

Due to the structure of the GOPPRR C++ abstract syntax model and the XSD, concrete
instances of GOPPRR elements are only used on the project level while on lower levels for
graphs, objects, ports, properties, roles, and relationships other elements are only referenced.
For the implementation in C++, those are class instances and pointers [81] to them. In the
XSD, a special XML element is defined for references to elements, which uses the OID (see
Section 4.2) instead of memory addresses [81] for pointers.

A certain issue is the fact that graphs structures can be defined in a quasi unlimited
way by decompositions and explosions. Therefore, the first approach was also a recursive
implementation of the CGOPPRRTransformer. This means if a reference to any element type
was encountered in the DOM, this reference was followed (by the OID) until a concrete instance
was met. The big advantage of this approach is that it is ensured that all references are
resolved for the GOPPRR C++ abstract syntax model. Unfortunately, this also caused severe
performance problems. Mainly, not by the recursion itself but by the usage of methods in the
libxml++ library to resolve XPath [43] expressions to find directly the referenced element.

To handle this problem, a certain condition of the GOPPRR C++ abstract syntax model
and XSD was used to implement the conversion in an iterative way: Since every GOPPRR
element instance must exists in the parent project, all concrete instances can be created in
the project by a single iterative step through the complete DOM while all references are left
unset. In only one further iterative step, all references can be then easy initialised because all
instances are guaranteed to exist, which is enforced by the GOPPRR XSD. This implementation
approach provides a much better performance than the recursive one and is finally used in the
CGOPPRRTransformer class.

Additionally, it implicitly solves a problem with recursive sub-graph relations if a GOP-
PRR object has a decomposition to a GOPPRR graph in which this object is again present.
Proceeding such a relation in a recursive way would directly lead to an endless execution
without termination. Of course, such recursive sub-graph relations are explicitly forbidden for
a openETCS model by the static semantics in Subsection 7.5.2, but it must be emphasised that
according to the tool chain and the integration of the OCL in Chapter 4, the corresponding
constraints are checked on the GOPPRR C++ abstract syntax model. Thus, the GOPPRR
XML file can always hold such an invalid relation. Nevertheless, the recursive implementation
is still available for references purposes. The issue to insure that the whole intermediate XML
model is used is also related to Req.9.

The CGOPPRRSyntaxTree mainly encapsulates a CProject instance and does not have to
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be discussed in certain detail.

9.5.3. openETCS Generator Implementation

Obviously, CCPPGenerator is the most complex generator class for creating the source code,
which instantiates the classes of the openETCS domain framework. Since nearly all objects in
the openETCS C++ abstract syntax model are relevant for the domain framework instantiation,
the complete C++ model must be traversed. Furthermore, the order of the class instantiations
is not arbitrary because some classes need other classes directly during their construction [81].
For example, each CEVCState object needs its parent CEVCStateMachine instance to register
itself as new state. Also, for other classes, it is necessary to primary create a vector of pointers
to other already existing class instances, which are then used during the object construction.
This is the case, for example, for CDataFlow objects, which need a vector of CFunctionBlock
pointers, which defines the objects used in the data flow. Therefore, several helper methods
were implemented to separately handle the generation of different model parts and to provide
a better structured implementation. For clarification, the whole generation process is shown as
UML interaction diagram from the view of the CMain class.

In the first step, the GOPPRR C++ abstract syntax model is created by CreateSyntax-

FromFile() method of the transformation class. This creates the CGOPPRRSyntaxTree
object m_pTree, which additionally creates the underlying m_pProject with the GOPPRR
C++ abstract syntax model.

Directly afterwards, the underlying CProject instance is returned by the GetProject()

method and checked for validity according to the static semantics because the generation
process should only be executed for valid models.

CCPPGenerator Implementation The generation of the C++ source code for the openETCS
domain framework instantiation is started by the Generate() method of the m_CppGenerator

object. Initially, the GenerateRootGraph() method generates all sources for the instantiation
of the parent CEVCStateMachine object after the source file’s initial part5 was added by the
GenerateHeader() method. This is followed by the generation of all other objects by the
related helper methods. All instantiations are generated surrounded by a main() function
block [81] in order that the source code file can be directly compiled as executable binary. Since
only valid models are used for generation, the CCPPGenerator methods do not need a special
error handling for faults related to the model. Only general faults, as segmentations, should be
handled or, even better, avoided. Thus, most of the implementation of the CCPPGenerator
methods is mostly the iteration over GOPPRR C++ abstract syntax model objects and does
not need to be discussed here in more detail or by examples.

More complicate is the generation of the execution order of function block objects, which
importance was derived and explained in Section 7.6 and Section 7.7. Simplified expressed,
function block objects should be executed in the order of the direction of the data flow. In cases
of open loops, this means starting from the objects that only have outputs. For closed loops,
the start and end object cannot be defined in a general manner if they do not have any element

5with comments about creation time, model name, etc.
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Figure 9.9.: UML interaction diagram of the generation process
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outside the closed loop. Hence, the start object can be arbitrarily chosen. Because data flows
are modelled as relationships or rather bindings in GOPPRR, the needed processing of objects
is quite more complicated than for all other cases in the openETCS meta model. Therefore, a
specialised abstract model of data flows is used to determine the execution order in each data
flow of the model. The class diagram of this abstract model is shown in Figure 9.10. Due to

Figure 9.10.: UML class diagram of the abstract model for data flow execution order generation

its specialisation for the data flow order, the abstract model is quite simple and only consists
of the struct CFBNode. It holds the attributes m_OID which is the OID of the corresponding
function block object and m_eState, which is an enumeration type used during the creation
of the abstract model. The m_Inputs aggregation represents the connection from outputs of
other function block objects, which is the backward direction of the data flow. The other or
rather forward data flow direction, the connection of inputs to outputs, is not relevant for the
data flow abstract model because only function block objects without inputs shall be found.

The abstract data flow model is created by the CCPPGenerator::BuildAbstractModel()

method, which is located in Listing E.1 in Appendix E.
After the execution of this method, the abstract model consists of CFBNode objects, which

have the m_eState DEFINED, which means those do not have to be modified further and are
final in the data flow abstract model. In contrast, all objects in each m_Inputs are created as
UNDEFINED. They can be interpreted as place holders and must afterwards be replaced by a
reference to the “real” (DEFINED) object with the same OID, which can be easily done by the
code in Listing E.2.

The execution and also generation order is finally computed by the CCPPGenerator::-

ProcessAbstractModel() method, which simply generates a list of function block object OIDs
in the required execution order in Listing E.3.

Although the openETCS domain framework provides the parallelisation of independent data
flows (see Section 8.3), this is currently not taken into account for the C++ code generator
because the performance by a plain, serial data flow execution is sufficient for this case study.

CBuildGenerator Implementation In the next step, the build configuration for cmake is
generated by the Generate() method of the m_BuildGenerator object. This is completely in-
dependent from the GOPPRR C++ abstract syntax model because it only requires information
about the source code file, include directories [81], and libraries for linking.
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CVMGenerator Implementation As final generation step, the configuration for the virtual
machine(s) is created. This uses only few objects of the model since it only needs information
about the reimplementation of certain hardware devices, as COdometer or CServiceBrake, in a
PSM. The details of the virtual machine integration and the used hypervisor are discussed in
Section 9.6.

9.6. Virtual Machine Usage and Integration

For the openETCS case study, only a simple configuration for the Xen [99] hypervisor is
generated. Xen is part of the Linux kernel and accordingly also FLOSS. Furthermore, Xen uses
a micro architecture [99], which corresponds to the discussion in Section 6.2 and accordingly
fulfils Req.12. On the other hand, the Xen hypervisor is only available on Linux-based operating
systems, which opposes Req.7 for the openETCS domain framework. However, the generation
of configurations for Xen is used in this case study to exemplary demonstrate the integration
of the possible hypervisor usage. Any other hypervisor could be integrated analogously by
extending the “VM Generator” or rather the class CVMGenerator from Section 9.3.

Generally, a Xen configuration file is generated for the VM6 as para-virtualisation [94] for
the PIM in Figure 8.16. Additionally to this configuration, at least a root file system is needed,
which holds the operating system to be executed in the VM and the EVC binary. Since the
EVC binary is compiled and linked from generated code from the CCPPGenerator class, it is
not meaningful to provide such a root file system with the software and models without the
EVC binary. Furthermore, operating systems executed under a Linux kernel can be created
and modified in unlimited ways. Hence, the root file system is not generated by the openETCS
generator but can easily be created by established tools like xen-create-image [18].

A second configuration file for a VM for the PSM is created if one ore more objects for
hardware interfaces (from Chapter 7) in the openETCS model are defined as external by the
Boolean property “IsExternal”. Analogue to the VM for the PIM, neither this root file system
can be created in advance because the platform specific extensions have to be added and cannot
be known before.

9.7. Verification and Validation

The verification of the generator must be divided in several parts because it combines function-
ality from other classes and name spaces establishing the generation process. Therefore, it is
not meaningful to test all those classes together. Since the classes of the ::GOPPRR name space
do not provide much implementation to test, the initial focus lays on the ::DSM name space,
which converts the intermediate GOPPRR XML model into a CProject object.

It would be possible to implement functional tests [80, p. 316] with small, human-interpretable
XML models and then check the created CProject instance. Unfortunately, the complete
transformation process from the GOPRR model instance in the MetaEdit+ application to
the CProject object includes also the generation of the XML file by MetaEdit+ (described

6called domain in the terminology of Xen [99]
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in Section 4.4). This means even if functional tests show the correct implementation of
CGOPPRRTransformer, it is not guaranteed that the XML file is generated correctly by
MetaEdit+. Additionally, the implementation of tests for the MERL GOPPRR XML generator
is not easy to realise because MERL scripts only may run in the context of certain GOPRR
instances. The best possible solution to avoid this problem is to generate the tests directly
from the MetaEdit+ model as C++ source code.

Similar to the MERL generator for creating the GOPPRR XML file, this can be done in a
general manner not specialised for a certain meta model. Only, all graphs have to be processed
to generate for each GOPPRR element test statements to check their existence in a CProject
object or rather abstract syntax model. These statements look like the following example,
which is only a small excerpt:

1 : :GOPPRR: : CGraph∗ pGraph (0) ;
2 : :GOPPRR: : CObject∗ pObject (0 ) ;
3 : :GOPPRR: : CProperty∗ pProperty (0) ;
4
5
6 // BEGIN: asser ts for graph openETCS Case Study with oid 3_256
7 CPPUNIT_ASSERT( pProject−>m_GraphSet . f i nd ( "3_256" ) != pProject−>m_GraphSet . end ( ) ) ;
8 pGraph = &(pProject−>m_GraphSet [ "3_256" ] ) ;
9 // BEGIN: asserts for object Ful l Supervision of type Mode with oid 3_283

10 CPPUNIT_ASSERT(pGraph−>m_ObjectSet . f i nd ( "3_283" ) != pGraph−>m_ObjectSet . end ( ) ) ;
11 pObject = pGraph−>m_ObjectSet [ "3_283" ] ;
12 CPPUNIT_ASSERT( pObject−>m_ID == : : std : : s t r i n g ( " Ful l ␣ Superv i s i on " ) ) ;
13 CPPUNIT_ASSERT( pObject−>m_Type == : : std : : s t r i n g ( "Mode" ) ) ;
14 CPPUNIT_ASSERT( pObject−>m_OID == : : std : : s t r i n g ( "3_283" ) ) ;
15 CPPUNIT_ASSERT( pObject−>m_Properties . f i nd ( "3_285" ) != pObject−>m_Properties . end ( ) ) ;
16 pProperty = pObject−>m_Properties [ "3_285" ] ;
17 CPPUNIT_ASSERT( pProperty−>m_Value == : : std : : s t r i n g ( " Ful l ␣ Superv i s i on " ) ) ;
18 CPPUNIT_ASSERT( pProperty−>m_Type == : : std : : s t r i n g ( "ModeName" ) ) ;
19 CPPUNIT_ASSERT( pProperty−>m_OID == : : std : : s t r i n g ( "3_285" ) ) ;
20 [ . . . ]

The CPPUNIT_ASSERT() [16] macro is part of the CppUnit framework and defines assertions [81],
which must be fulfilled for a certain test case. Initially, the existence of the graph instance is
checked. Afterwards, objects and their properties are checked and so on. A great advantage
is that the OIDs are used as key values for the maps in the GOPPRR C++ abstract syntax
model. Thus, the access to the elements is easy definable in the MERL generator. Since a lot
of assertions for each graph are generated in this manner, those are grouped in C++ functions
for each graph. Finally, a function is generated that calls all those graph functions and can be
integrated in any testing application.

Because the test can always be generated along with the GOPPRR XML intermediate model,
it can be guaranteed that all GOPRR or rather GOPPRR elements of the model instance in
MetaEdit+ also exist in the GOPPRR C++ abstract syntax model or rather in the CProject
object. This covers Req.9 for the transformation process and is not limited to the openETCS
meta model.

As already explained for the GOPPRR XML generator in Section 4.4, a small drawback is
that no assertions can be generated, due to MetaEdit+ / MERL limitations, for properties
that are non-properties. For those, always a specialised generator for the concrete meta model
has to be added. The full code of the assertion generators can be found in Section F.2.

The realisation of tests to ensure Req.9 for the C++ source code generation by CCPPGen-
erator is much more complicated. It can also be interpreted as a transformation but not in
such a general way as for the internal MetaEdit+ GOPRR representation to the GOPPRR
C++ abstract syntax model. Therefore, again generating tests directly from MetaEdit+ is not
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an option because much more complex and specialised generators in MERL would have to be
implemented, which would raise problems already discussed in Chapter 4. On the other hand,
it is already assured by the generated tests for the transformation to a CProject object that
the GOPPRR C++ abstract syntax model is correct and fully covered / used. Hence, it is
sufficient to test if the transformation from CProject object to C++ source code is correct or
rather covers the whole model.

The executable EVC binary is the end product of the generation process and consists of
linked object or rather binary code. This is very difficult to analyse by parsing since object
code is always platform specific. Another possibility would be the generation of test methods /
functions that are linked with object code of the EVC binary. Since it is quite complicated to
identify the C++ object structure by directly analysing the application memory or rather the
heap [79, pp. 353-453], the openETCS domain framework objects would have to be accessed
for testing. Unfortunately, according to Section 8.3, class instances of the domain framework
cannot be easily compared with instances of GOPPRR C++ abstract syntax model because
not all model elements are directly transferred to domain framework instances and not all
element properties, including the OID, are used. Therefore, a simple identification of elements
by their OID is not available. Furthermore, the CCPPGenerator class generates directly the
domain framework instantiation in a main-function, which means that for testing the target
code would have to be modified. This might influence the validity of the testing results for the
real EVC binary.

Alternatively, instead of examining the object code, the generated C++ source code could
be analysed. Since CCPPGenerator uses the OIDs for generation of object instance names
/ variable declaration, their GOPPRR equivalence can be found much easier by parsing the
generated source code file. It is also questionable if it is necessary to again run tests on
openETCS domain framework objects since those are already tested independently from the
generators (see Section 8.7). To only test the CCPPGenerator class, the analysis of the
generated C++ source code file should be sufficient. This means concretely that the generated
C++ source code is checked for the existence of certain C++ statements that instantiate the
corresponding domain framework classes. In contrast to the verification of the transformation
from a GOPRR model instance to GOPPRR C++ abstract syntax model, not all elements
can be tested for existence because the openETCS C++ generator does not use all GOPPRR
elements to create a certain openETCS domain framework class instances. For example, the
roles “DataOutput” and “DataInput” in a data flow are only used to connect a certain function
block object output with a certain input, but their OID is never used. On the other hand, the
“DataFlow” relationship is directly used to create CFlow or CBitFlow instances, and accordingly
all “DataFlow” relationships in the GOPPRR model must exist in the generated C++ code as
object. Thus, currently only the existence of instantiation statements of all function blocks,
EVC Mode, and language objects and the objects for the “DataFlow” relationship is tested.
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9.8. openETCS Tool Chain for Dependable Open Model

Software

The resulting concrete openETCS tool chain for the complete development process is sketched
in Figure 9.11. The verification of the transformation from the GOPRR to the GOPPRR
instance is done, corresponding to the description in Section 9.7, by the generated “Functional
Test Cases”, which are run on the “GOPPRR Abstract Syntax Tree”. The verification of the
transformation of the concrete GOPPRR C++ abstract syntax model to the concrete source
code for the EVC binary is implemented in the “Functional Testing”, which consumes the
generated “Source Code” and “GOPPRR Abstract Syntax Tree” artefact. The validation of
the generation process refers here to a valid model, which is checked by the constraints of the
static semantics. Also, the final build process of the EVC binary and its execution under a
Xen hypervisor were added.

Since the extensions or transformations for the PSM cannot be generally foreseen and neither
is automatically generated from other artefacts, it is omitted in Figure 9.11.

9.9. Conclusion

The openETCS generator application fulfils all initially defined requirements by combining
several C++ classes producing the different generator output.

To ensure that Req.9 is fulfilled, tests can be generated automatically for both models: First,
in a general way, independent from the meta model, for the transformation from the GOPRR
meta model instance in MetaEdit+ to the GOPPRR C++ abstract syntax model. Second, for
the concrete model-to-text transformation to openETCS domain framework objects.

The usage of cmake provides implicitly a platform independent build configuration for
compiling and linking the EVC executable binary, which facilitated the implementation of the
CBuildGenerator and fulfils Req.11.

CVMGenerator provides an implementation for generating configurations for the Xen hyper-
visor for para-virtualisations, which fulfils Req.12.

The separation of independent data flows for parallelisation could be future development
work for the openETCS generator application because it is already prepared in the domain
framework.

Although the checking of the static semantics was only realised by the direct implementation
of exemplary constraints in C++, all OCL constraint statements in Section 7.5 could be used
in combination with the UML-based Specification Environment (USE) [35] application, which
is available as FLOSS, to check the static semantics outside the openETCS tool chain in
Figure 9.11. Accordingly, the openETCS tool chain and USE would have to be adapted to allow
the export and import of the concrete GOPPRR C++ abstract syntax model instantiation.
Hence, an appropriate XMI export must be realised inside the GOPPRR package / name space
and the corresponding XMI import mechanism in USE, which neither is currently available.
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Figure 9.11.: Complete openETCS tool chain for dependable open model software
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10
openETCS Model

The openETCS model or rather, according to Figure 7.1, the openETCS formal specification is
the CIM of the case study. As already discussed in Section 7.1, the modelling of the complete
ETCS specification would exceed the limits of this work and this case study by far. Therefore,
only a sub-subset of the ETCS SRS is modelled here. Nevertheless, the limitation to certain
ETCS Modes and Application Levels emerged to be not sufficient to gain an openETCS model
that is small enough to be manageable in this dissertation. Hence, not all functionality specified
in the SRS for the used ETCS Modes is modelled. The main goal of the openETCS model is
to give an example that is executable in a simple but adequate simulation environment. This
simulation is described in Chapter 11. The reduction of used functionality is mainly related to
the modelling of data flows.

It should be noted that parts of the SRS that are not modelled for the case study are not
always emphasised in this document since ETCS is primarily used as an example of a train
control system. Another certain remark is that not all parts of the model are presented in
this chapter because those are mostly graphs, which all together would require extensive space.
The complete model can be found in Appendix C.

This chapter presents exemplary diagrams of the openETCS model in the order of the
top-down structure of the meta model graph types in Figure 7.2. The description starts with
the so-called root graph for the ETCS Modes and transitions, which is followed by data and
control flows for each combination of ETCS Mode and Application Level. Afterwards, the
extraction of data from incoming balise telegrams is described and the models of the used
ETCS language elements are presented. Finally, possible concepts of extending models in
respect to safety properties are discussed.

10.1. ETCS Mode and Transition Matrix

Although the GOPRR or GOPPRR meta meta model does not define or require a certain root
graph, the gEVCStateMachine graph type can be interpreted as such because it must exist
exactly once in an openETCS meta model (see Subsection 7.5.1) and all other graph instances
are connected with it via decompositions and explosions (see Section 7.2). The modelled
transition matrix of the used ETCS Modes (compare Section 7.1) is shown in Figure 10.1.
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10.2. Data and Control Flows in ETCS Modes

The transition matrix holds all transitions that are defined in the ETCS SRS for the subset
of modes and can be therefore easily compared with the transition table [90, p. 40] in the
specification document. It must be noted that only those conditions are part of the modelled
transition matrix that are applicable in ETCS Application Levels 0 and 1 because the selected
subset for the case study in Section 7.1 precludes Application Levels 2 and 3.

10.2. Data and Control Flows in ETCS Modes

In contrast to the gEVCStateMachine root graph, a gMainFunctionBlock is modelled for each
ETCS Application Level in each Mode. Thus, this section is divided in subsections for each
ETCS Mode and, where required, in sub-subsections for different Application Levels.

10.2.1. No Power Mode

Although the No Power Mode is not directly related to a certain Application Level, it is
relevant for the model that No Power is modelled for all possible Application Levels. Appli-
cation Level 0 is defined as default for No Power because it is the initial mode for a newly
started EVC binary. Anyway, it is possible that No Power is entered during the runtime
from another Mode in Application Level 1. For example, this is the case for the transition
Full Supervision c29−p2−→ No Power.

Application Level 0

The main functionality in No Power is, according to [90, p. 10], the enforcing of the train stop
via the emergency brake system. Furthermore, the driver should be able to power up the
EVC (via the DMI), which should activate the transition “c4-p2” to the Stand By Mode. The
corresponding modelled data flow is sketched in Figure 10.2 as gMainFunctionBlock graph. Of
course, in a “real world” implementation of ETCS, powering the system refers to physically
powering, but since this case study is realised as pure software, this functionality bases on a
simple DMI input object.

The DMI is modelled by a separated oSubFunction object “DMI No Power” to be reusable in
other Application Levels. The corresponding model is shown in Figure 10.3. The DMI displays
the current ETCS Mode and Application Level to the driver. Additionally, the driver is able to
power up the system via the “System On Power” oDMIInput object.

Application Level 1

The only difference between Application Level 0 and 1 in the No Power mode is the assignment
of the “Stored ETCS Level” oVariableStorage object, which is therefore omitted. The DMI
is modelled by the same oSubFunction object as for Application Level 0 and was already
presented in Figure 10.3.
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Figure 10.2.: No Power Mode in Application Level 0
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Figure 10.3.: “DMI No Power” gSubFunctionBlock graph
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10.2.2. Stand By Mode

Stand By cannot be entered directly by the driver but only by a transition from No Power. The
provided functionality is the enforcement of the stand-still of the train and the data collection
for the train mission [92, pp. 8-17].

Application Level 0

The data collected from the driver for the train mission is used to determine the next ETCS
Mode and, if necessary, an Application Level switch. Figure 10.4 represents the model of the
data flow in Application Level 0. According to the transition matrix in Figure 10.1, all guard
objects are used besides “c13-p3”, which is executed in the case of an error, because the error
oModeGuard object is a property of the graph itself.

The primary functionality is modelled in three oSubFunction objects: “Start of Mission in
Stand By”, “Stand Still Supervision”, and “DMI Stand By”.

The “Start of Mission in Stand By” function collects, according to [92, pp. 8-17], data from
the driver. In the model, the sub-function only holds an oEmbeddedStateMachine object with
a Boolean true input to start it. Due to its simplicity, it is omitted in the documentation,
and only the related gEmbeddedStateMachine graph is shown in Figure 10.5. States that are
prefixed with a “D” or “S” and are followed by a number are directly transferred from the
so-called state diagram in [92, p. 18]. Since the state diagram syntax in the SRS is a mixture
of states, activities, executions, and decisions, not all of them can be mapped directly to the
openETCS model.

It should be remarked that the used state diagram formalism in the SRS was not integrated
in the openETCS meta model because first it is a mixture of already existing diagram types, like
state machines / diagrams [82] and (UML) activity diagrams [66]. Second, the used formalism
for control structure must be combinable with data flows, which was discussed and explained
in Section 7.2. This is not the case for the state diagram syntax used in the SRS.

State ”S1: Request Driver ID“ is the initial state, which is executed until the driver has
entered his or her ID in the DMI.

”D1: Check ETCS Level“ verifies if the current ETCS Application Level is valid or not.
State ”S2: Request ETCS Level“ waits for the input of the current Application Level via the

DMI if the Application Level is invalid.
In ”Check Train Position“, the driver can revalidate the current train position or enter a new

one.
”S10: Waiting for Driver Selection” offers the driver via the DMI the selection of overriding

an existing EoA1 or the proceeding one with an active mission or the entering of train
data.

“Override EoA” is a final state, in which the transition to the Staff Responsible Mode is
activated via the “c37” condition with the usage of the “Staff Responsible via Override”
oVariableStorage object. Since the Staff Responsible Mode is only available in ETCS

1End of Authority
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Figure 10.4.: Stand By Mode in Application Level 0
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Figure 10.5.: Start of mission procedure as gEmbeddedStateMachine graph
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Application Level 1 (and this is Level 0), the switch to Level 1 is activated by the same
oVariableStorage object.

State “S12: Request for Train Data” waits for the values for the train length and maximum
train speed via the DMI. The SRS defines more values for the train data, but which are
not used in this case study.

“S20: Wait for Start Selection” only waits for the driver to select the start of the mission
via the DMI.

“S24/S23: Mode and Level Activation” is another final state, which determines the new
ETCS Mode based on the data entered. Either the guard “c60” is activated via the
“Unfitted Selected” oVariableStorage object or guard “c37” is activated via the “Staff
Responsible selected” object. In the latter case, also the switch to Application Level 1 is
activated.

Application Level 1

Generally, Application Level 1 does not differ from the functionality in Level 0. Figure 10.6
sketches the corresponding model. In contrast to Figure 10.4, the activation of ETCS Mode
Staff Responsible does not require a switch of the Application Level because the EVC is already
in Level 1. On the other hand, here the transition to Mode Unfitted requires a switch to
Level 0.

10.2.3. Unfitted Mode

Unlike the previous introduced Modes and their models, the Unfitted ETCS Mode is not
used for the start-up procedure but for the train movement. Nevertheless, the support of
ATP by ETCS (see Chapter 2) in this Mode is little because it is used on tracks that are
unfitted or unequipped for ETCS. Thus, Unfitted is only available in Application Level 0. The
corresponding gMainFunctionBlock is shown in Figure 10.7. The supervision of the speed
according to the train’s maximum speed is the only available ATP functionality. The maximum
speed can be entered in Mode Stand By as train data. The supervision is modelled in a separate
gSubFunctionBlock graph in Figure 10.8.

Since the train can move in Unfitted, balise telegrams can be received and must be evaluated
accordingly. Mainly, this is relevant for the Transition Order Package [87, p. 14], which
announces a switch to a new Application Level. According to the limits of this case study, this
means a switch to Level 1, which also includes a transition to the Mode Staff Responsible or
Full Supervision. Also, a Moving Authority (MA) telegram [87, p. 11] can be received, which
is not used in Unfitted directly. It enables a transition to the Mode Full Supervision, in which
a MA is always needed.

The evaluations of transition order and MA balise telegrams are both modelled by an
oEmbeddedStateMachine instance that is located in the oSubFunction object “Telegram
Evaluation in Unfitted”. Figure 10.9 shows the model for the evaluation of transition orders
and Figure 10.10 for MAs.

A transition order or rather the transition to a new Application Level always requires the
acknowledgement of the Driver via the DMI within a certain time. If the driver does not
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Figure 10.6.: Stand By Mode in Application Level 1
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Figure 10.7.: Unfitted Mode in Application Level 0
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Variables 
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Figure 10.10.: Moving Authority evaluation in Unfitted as gEmbeddedStateMachine graph

acknowledge the transition in this time, the service brake is applied until it is acknowledged.
After the acknowledgement, the oVariableStorage objects used for Mode transitions and Level
switches are set to true and the transition order evaluation terminates.

Since in Unfitted a received MA is only used to ensure a safe transition to the Mode Full
Supervision, the MA evaluation only checks if a received MA still is valid2. The result of this
evaluation is stored as Boolean in the oVariableStorage object “MA Valid”.

10.2.4. Staff Responsible Mode

The Staff Responsible Mode corresponds more or less to Unfitted in Subsection 10.2.3, but is
only available in ETCS Application Level 1. The train is mainly moved under the responsibility
of the driver and only few ATP functionality is available. Figure 10.11 represents the model of
the main functionality. Compared to Unfitted, the following additional sub-functionality is
provided:

Distance Supervision Ensures that a certain distance3 is not overpassed in this
Mode. Otherwise, any brake system is activated and oMod-
eGuard “c42” is set to true. See Figure 10.12.

Monitoring of National Values Monitors any incoming balise telegram for new national
values by using the “New National Values received” oVari-
ableStorage object. See Figure 10.13.

Balise Linking Supervision Supervises the consistency of the linking of balise groups [91,
p. 10ff]. If an error is detected, the oModeGuard “c36” is
activated via the “Balise Link Error” oVariableStorage object.
See Figure 10.14.

2by the submitted section length [87, p. 11]
3normally defined by a national value [87]
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Figure 10.11.: Staff Responsible Mode in Application Level 1
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Reverse Movement Protection Activates the emergency brake system in the case that the
train moves in the reverse direction. See Figure 10.15.

Since different telegram types can be received in Staff Responsible, all of them must be treated
in the corresponding sub-function “Telegram Evaluation in Staff Responsible”. The evaluation
of MAs is modelled analogously to the Unfitted Mode in Subsection 10.2.3 and is only needed
for a possible transition to Full Supervision.
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Figure 10.12.: Distance supervision in Staff Responsible as gSubFunctionBlock graph

10.2.5. Full Supervision Mode

In Full Supervision, the EVC completely supervises the train movement. To ensure that the
train only enters allowed areas of the track, Moving Authorities (MA) [91, pp. 35-47] are used.
It is ensured that the train never overpasses the end of a MA without a new valid one has
been received before. In general, this procedure is done to provide an automatic spacing of
trains [69, ch. 3]. The model of the main functionality is sketched in Figure 10.16.

In comparison to Staff Responsible, Full Supervision mainly adds the functionality for
automatic train spacing. This is modelled in the “Dynamic Speed Profile Supervision” in
Figure 10.17.
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Figure 10.15.: Reverse movement protection as gSubFunctionBlock graph

In contrast to the supervision of train speed in respect to a constant top or ceiling speed
in Unfitted or Staff Responsible, here the speed is additionally controlled corresponding to
the end of the current valid MA. Furthermore, the allowed speed at the end of a MA must
not always be 0. This supervision corresponds to a typically braking curve supervision [69,
pp. 95-97] and is represented in the model by an oBrakingToTargetSpeed (BTS) object (see
Subsection 7.3.2). “Current V_LOA” (vloa) holds the speed that is currently permitted at
the end / limit of authority, and “Distance of EoA” is the absolute position of the end of the
authority. In the case that vloa > 0 and the train has overpassed the end of authority, it can
move with vloa until a certain overlap distance [91, pp. 35-47] is passed. In this case, the Mode
is switched to Trip, which is modelled by the “c12” oModeGuard object in Figure 10.16.

10.2.6. Trip Mode

Trip Mode is always activated if an operational4 failure occurs that requires the train fully to
stop. This can be, for example, the case for an overpassed stop signal and a corresponding
balise telegram or if the balise linking supervision (see Subsection 10.2.4) fails.

According to the ETCS SRS, Trip is not available in Application Level 0 [90, p. 23] but in
all other levels. This is in conflict with the fact that Trip is also reachable from Unfitted [90,
p. 37] (see Figure 10.1 for the corresponding model). Furthermore, successor Modes of Trip
can only be Post Trip (oModeGuard “c62”) and Unfitted (oModeGuard “c7”) while condition
62 or rather oModeGuard object “c62” is defined as

(the driver acknowledges the train trip) AND (the train is at standstill) AND (the
ERTMS/ETCS level is 0) [90, p. 58]

Since this is in conflict with definition of available Application Levels for Unfitted in the
SRS [90, p. 23], Unfitted is also modelled for Level 0 in this case study.

The main functionality in Trip is to stop the train by applying emergency brakes until the
train is fully stopped.

4Compared to system failures, operational failures are related to the train operations and not to the train
control system.
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Figure 10.16.: Full Supervision Mode in Application Level 1
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Figure 10.17.: Dynamic speed profile supervision as gSubFunctionBlock graph

10.2.6.1. Application Level 0

Figure 10.18 introduces the model for Trip in Level 0. As already described, the emergency
brakes are permanently applied by a data flow from a constant set to true. The supervision
of the train stop is modelled in the oSubFunction object “Train Stop Supervision”, which is
sketched in Figure 10.19. Accordingly, the oVariableStorage object “Train Stopped” is set to
true if the train is fully stopped. In this case, the driver is able to acknowledge the Trip via the
DMI. The conjunction of those conditions is used as input for the oModeGuard “c62”, which
activates then the transition back to Unfitted.

10.2.6.2. Application Level 1

The model for Trip in Level 1 only differs from the one in Level 0 in the activated oModeGuard
object “c7”, which is shown in Figure 10.20. “c7” activates the transition to Post Trip.

10.2.7. Post Trip Mode

The Post Trip Mode is only reachable via Trip and is used to move the train slowly backwards
after an operational failure. For example, to get in front of an overpassed stop point. Accordingly,
Post Trip is only available in Application Level 1. Its model is shown in Figure 10.21. The
reverse movement supervision is modelled in the oSubFunction object “Reverse Movement
Supervision in Post Trip”, which is sketched in Figure 10.22. According to the SRS, in Post
Trip, the train is allowed to move about a certain distance (a national value [91, pp. 89-90])
in reverse direction. If this distance is overpassed, the service brake is applied to 100%. Any
forward movement is always inhibited. In contrast to Trip in Subsection 10.2.6, the emergency
brakes are always released.
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Figure 10.20.: Trip Mode in Application Level 1
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Figure 10.21.: Post Trip Mode in Application Level 1
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Figure 10.22.: Reverse movement supervision in Post Trip as gSubFunctionBlock graph

10.2.8. System Failure Mode

System Failure is activated if an error is detected in the EVC during the execution in other ETCS
Modes that causes a system failure [80, p. 12]. As described in Section 7.2, the corresponding
oModeGuard object “c13” in Figure 10.1 is typically not activated by a Boolean data flow, but
is used as FailureGuard property in the corresponding gEVCStateMachine instances. Since a
system failure means that the system or rather the EVC cannot longer perform its required
functionality, this is a threat to safety. Correspondingly, the SRS defines for the System Failure
Mode that the emergency brakes are permanently activated. Since an error may occur in any
Mode and any Application Level, System Failure is modelled for Application Level 0 and 1.

10.2.8.1. Application Level 0

The model of System Failure in Level 0 is sketched in Figure 10.23. Once this Mode is entered,
it can only be left by input from the driver via the DMI. It can be either switched to No Power
(Subsection 10.2.1) via the “c29” oModeGuard object or to Isolation (Subsection 10.2.9) via
the “c1” oModeGuard object.

10.2.8.2. Application Level 1

Since the failure handling does not differ for different Application Levels, the model for Level 1
matches exactly the model of Level 0 and is omitted.
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Figure 10.23.: System Failure Mode in Application Level 0

10.2.9. Isolation Mode

The SRS defines that in Isolation the ETCS on-board equipment is isolated from the train
and does not have any responsibilities for train safety [90, p. 9]. Since isolation means from
the perspective of the openETCS (meta) model that the object types representing hardware
interfaces (e.g. oServiceBrake) are not available, the model only consists of oDMIOutput
objects for displaying the information about he current state to the driver.

10.2.9.1. Application Level 0

The trivial model for Application Level 0 is shown in Figure 10.24.

Sub-Function:
DMI in Isolation

Figure 10.24.: Isolation Mode in Application Level 0

10.2.9.2. Application Level 1

Application Level 1 directly corresponds to Level 0 and is omitted.

10.3. Incoming Balise Telegrams

According to the sub-graph structure of the openETCS meta model in Section 7.2, the gCom-
municationReader graph type is a child of the gMainFunctionBlock type, which is referenced
by decompositions of oCommunicationReader objects. Thus, the following subsections contain
a description of gCommunicationReader instances that are often used in the openETCS model.
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The purpose of these graphs is to define how data is extracted for incoming telegrams (see
Subsection 7.3.5) but not to define the structure of telegrams. This is done in the graph
instances for the ETCS language in the upcoming Section 10.4.

It should be noted that the model of the openETCS case study does not contain any
gCommunicationSender graphs because the selected subset of the specification or rather the
sub-subset of Subset-026 (of the SRS) does not include sending from train to track-side
functionality.

10.3.1. Level Transition Order Reading

The graph for reading a telegram with a level transition order [87, p. 14] is used in most Modes
for moving the train: Unfitted, Staff Responsible, and Full Supervision. The corresponding
model is displayed in Figure 10.25.

BaliseTelegram Level Transition Order
TELEGRA

BALISE 
READER

D_LEVEL_TR_T: 
D_LEVLTR

Iterator Variable
M_LEVELTR_T: 
M_LEVELTR

L_ACKLEVELTR_T: 
L_ACKLEVELTR

LevelTransition D_LEVEL_TR

LevelTransition M_LEVELTR

LevelTransition L_ACKLEVELTR

telegram

bit

bit

bit

Figure 10.25.: Reading of a level transition order as gCommunicationReader graph

The currently used data in the case study are the following information:

1. the Application Level to be switched to (“M_LEVELTR”)
2. the distance to the point where the transition takes place (“D_LEVELTR)
3. the distance to the point until the driver has to acknowledge the transition (”L_ACK-

LEVELTR“)

10.3.2. National Values Reading

This graph describes the reading of national values, which is part of most ETCS Modes in
Application Level 1. Its model is shown in Figure 10.26. The meaning of each value can be
found in [87, pp. 31-62].

202



10.3. Incoming Balise Telegrams

TELEGRA
BALISE 

READER

BaliseTelegram

NID_PACKET

Q_DIR

L_PACKET

D_VALIDNV

NID_C

V_NVSHUNT

V_NVSTFF

D_NVSTFF

National Values

Q_DIR_T: Q_DIR

L_PACKET_T: 
L_PACKET

D_VALIDNV_T: 
D_VALIDNV

NID_C_T: NID_C_N

V_NVSHUNT_T: 
V_NVSHUNT

V_NVSTFF_T: 
V_NVSTFF

NID_PACKET_T: 
NID_PACKET

D_NVSTFF_T: 
D_NVSTFF

Q_NVDRIVER_ADHES
_T: 
Q NVDRIVER ADHES

Q_NVDRIVER_ADH

D_NVPOTRP_T: 
D_NVPOTRP D_NVPOTR

telegram

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

Figure 10.26.: Reading of new national values as gCommunicationReader graph
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10.3.3. General Balise Telegram Reading in Staff Responsible

In Staff Responsible, the general balise reading is used to extract the header [89, p. 9] of all
incoming balise telegrams. Additionally, the information from a “Stop if in Staff Responsible” [87,
p. 24] packet is extracted if it is included.

TELEGRA
BALISE 

READER BaliseTelegram

Q_SRSTOP

Stop if in Staff Responsible

Q_SRSTOP_T: 
Q_SRSTOP

M_VERSION_T: 
M_VERSION

Q_UPDOWN_T: 
Q_UPDOWN

Q_MEDIA_T: Q_MEDIA

N_PIG_T: N_PIG

N_TOTAL_T: N_TOTAL

M_DUP_T: M_DUP

M_MCOUNT_T: 
M_MCOUNT

NID_C_T: NID_C

NID_BG_T: NID_BG

Q_LINK_T: Q_LINK

Q_UPDOWN

M_VERSION

Q_MEDIA

N_PIG

N_TOTAL

M_DUP

M_COUNT

NID_C

NID_BG

Q_LINK

bit

telegram

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

Figure 10.27.: General reading of balise telegrams in Staff Responsible as gCommunication-
Reader graph

The “Q_SRSTOP” [87, p. 55] oVariableInstance object holds the flag if the train should be
stopped if the current Mode is Staff Responsible.
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10.4. The ETCS Language

In contrast to all preceding graphs, the language part of the openETCS model describes only
data structures and not behaviour.

10.4.1. Balise Telegram

The modelling of the balise telegram is done in a gTelegram graph. Since it defines the structure
of any possible telegram, it is only one graph instance required for the complete openETCS
model, which is shown in Figure 10.28. The oVariableInstance objects ”Q_UPDOWN“ down

Balise Content

End of Information

Q_UPDOWN_T: 
Q_UPDOWN

M_VERSION_T: 
M_VERSION

Q_MEDIA_T: Q_MEDIA

N_PIG_T: N_PIG

N_TOTAL_T: N_TOTAL

M_DUP_T: M_DUP

M_MCOUNT_T: 
M_MCOUNT

NID_C_T: NID_C

NID_BG_T: NID_BG

Q_LINK_T: Q_LINK

#

#

#

#

#

#

#

#

#

#

#

#

#

Figure 10.28.: Balise telegram structure as gTelegram graph

to ”Q_LINK“ are used as header for any type of balise telegram [89, p. 9]. They hold the
general information about the telegram, like the transmission direction (”Q_UPDOWN” [87,
p. 57]), the related ETCS version (“M_VERSION” [87, p. 44]), and the used transmission
media (“Q_MEDIA” [87, p. 52]).

The oAnyPacket object labelled “Balise Content” defines all possible ETCS packets that
may occur after the header. The concrete structure representation as gAnyPacket graph will
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be explained in the following Subsection 10.4.2. A balise telegram always terminates with an
“End of Information” packet [87, p. 30].

10.4.2. Balise Content

All available ETCS packets are modelled in a gAnyPacket graph. According to the initial
description of the gAnyPacket graph type in Subsection 7.3.8, the model in Figure 10.29 only
holds a set of oPacket objects without any bindings. The models or rather decompositions of
some exemplary packets will be discussed in the following subsections.

Level 1 Movement 
Authority

National Values

Linking

Gradient Profile
International Static 
Speed Profile

Repositioning 
Information

Stop if in Staff 
Responsible

Level Transition 
Order

Figure 10.29.: Available packets as gAnyPacket graph

10.4.3. Level Transition Order Packet

The “Level Transition Order” packet [87, p. 14] is used to order a train to switch to a
new Application Level. This was described for the Unfitted Mode in Subsection 10.2.3.
The three very first oVariableInstance objects define only general information of the packet.
“NID_PACKET” [87, p. 47] is the unique numerical ID of each packet, “Q_DIR” [87, p. 49]
defines, which movement directions of the train the packet is valid for, and “L_PACKET” [87,
p. 37] is the size of the telegram in bits.

“Q_SCALE” [87, p. 54] is a scaling qualifier, which is applied by the “Scaling” relationship
(see Subsection 7.3.7) to all distances and lengths in this packet. “D_LEVELTR” [87, p. 32]
holds the distance to the level transition itself. On the one hand, “M_LEVELTR” [87, p. 41]
holds the information about the new Application Level to be switched to. On the other hand,
it is also a conditional iterator for the oVariableInstance object “NID_STM” [87, p. 37], which
holds the identifier to the required STM. Nevertheless, because this case study only includes
Application Level 0 and 1, this oVariableInstance object is never used and is only modelled for
completeness.

“L_ACKLEVELTR” [87, p. 36] represents the length of the area, in which the driver has to
acknowledge the level transition via the DMI.

The oVariableInstance object “N_ITER” [87, p. 4] gives the possibility to define multiple Level
transitions in one packet by iterating over oVariableInstance objects of the same oVariableType
objects (“M_LEVELTR_T”, “NID_STM_T”, and “L_ACKLEVELTR_T”) that were used
before.
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NID_PACKET_T: 
NID_PACKET

Q_DIR_T: Q_DIR

L_PACKET_T: 
L_PACKET

Q_SCALE_T: 
Q_SCALE

D_LEVEL_TR_T: 
D_LEVLTR

Iterator Variable
M_LEVELTR_T: M_LEVELTR

NID_STM_T: NID_STM

L_ACKLEVELTR_T: 
L_ACKLEVELTR

Iterator Variable
N_ITER_T: N_ITER

Iterator Variable
M_LEVELTR_T: M_LEVELTR_K

NID_STM_T: 
NID_STM_K

L_ACKLEVELTR_T: 
L_ACKLEVELTR_K

#

#

#

#

#

#

#

#

#

#

#

#

#

XXX

Figure 10.30.: Level transition order as gPacket graph
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10.4.4. Stop if in Staff Responsible Packet

The “Stop if in Staff Responsible” packet [87, p. 24-25] is used to stop the train by a transi-
tion to the Trip Mode if the current ETCS Mode is Staff Responsible. The corresponding
behavioural model was introduced in Subsection 10.2.4 while the model of the packet structure
is displayed in Figure 10.31. Compared with the preceding packet in Subsection 10.4.3, this

NID_PACKET_T: 
NID_PACKET

Q_DIR_T: Q_DIR L_PACKET_T: 
L_PACKET

Q_SRSTOP_T: 
Q_SRSTOP# # #

#

#

Figure 10.31.: Stop if in Staff Responsible packet as gPacket graph

packet is more simple and does not have any scaling factors or iterating variables. The first
three oVariableInstance objects are the same as in the the “Level Transition Order” while
“Q_SRSTOP” [87, p. 55] is a qualifier to determine if the train should be stopped.

10.4.5. End of Information Packet

Corresponding to the model in Subsection 10.4.1, every balise telegram terminates with an
“End of Information” [87, p. 30] packet to guarantee the integrity of the submitted data. Thus,
the packet only contains one oVariableInstance: “NID_PACKET”, which is used in all packet
types [87]. Its model is shown in Figure 10.32.

NID_PACKET_T: 
NID_PACKET

#

#

Figure 10.32.: End of information packet as gPacket graph
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10.5. Model Extensions

Model extensions are mainly needed in the case that an existing model5 has to be extended or
adapted for a newer version of the ETCS SRS. Ideally, these extensions only have to be done
in the model but not in the meta model because any changes there might require additional
modifications for the code generators and the domain framework.

On the other hand, it seems doubtful that is possible to foresee any potential changes of the
SRS in the future for the design of the meta model or rather the openETCS formal specification
Language (in Figure 7.1).

Furthermore, even extensions on the model level should be traceable [80, p. 323][76] because
those are always related to the safety of the modelled system. One possibility is to trace
changes in the model by identifying the difference (of model elements) between two model /
SRS versions. Unfortunately, finding the difference in graphical models is not always trivial
because a modification of the graphical representation does not always mean a modification
of the abstract syntax model or the dynamic semantics. A loophole to this situation is a
transformation to a model representation that only holds the abstract syntax..

The GOPPRR meta model extension is such a model representation, which was introduced
in Chapter 4. Especially, the intermediate XML model in Section 4.3 can be directly used to
identify the syntactical differences between two models by using standard tools. Additionally,
a custom application could be developed that uses the GOPPRR C++ abstract syntax model
in Section 4.2.

In contrast to identifying model extensions between different model versions, it is also possible
to take model extensions directly into account for the design of the meta model. In other words,
the openETCS formal specification could offer a syntax to directly express extensions due to
new SRS versions in the graphical model. This would have the advantage of a more abstract
representation, compared to building the difference of XML files but also would increase the
complexity of the meta model and the corresponding model.

10.6. Conclusion

This chapter introduced the concrete model of the openETCS case study for a sub-subset of
the ETCS SRS. Representative examples of the model from all levels respectively graph types
were presented and described. The complete openETCS model can be found in Appendix C.

Furthermore, an important issue of model extensions for new ETCS SRS versions was
illuminated and a possible outlook on how the traceability of model extensions might be
increased in future work was given.

5in terms of MDA the CIM
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11
openETCS Simulation

Generally, a simulation is applicable to test the behaviour of the generated system to evaluate
the openETCS case study and the developed tool chain as proof of concept for model based
development and tests for openETCS. According to the MDA principle, which is used for the
whole tool chain, also this simulation should be developed based on models.

This chapter starts with an initial description of the simulation methodology, which means
how the simulation environment is set up and can interact with a generated EVC binary.
Afterwards, the PSM (see Section 8.5) for the simulation is introduced, followed by the
simulation model using it.

11.1. Simulation Methodology

The simulation environment should access the generated and compiled binary, which shall be
executed on the train on-board unit, the EVC, through special simulative hardware interfaces1

in the PSM and DMI. The simulation is modelled by two independent state machines: One
for simulating the ETCS Modes and Application Levels based on a virtual track. The other
for describing the driver’s behaviour by the interaction with the DMI. The data flow between
simulation and on-board binary or rather PSM is sketched in Figure 11.1.

Simulation PSMDMI

speed, telegram

position, brake systemdriver inputs

ETCS outputs

Figure 11.1.: Simulation environment data flow

1for odometer, service and emergency brake, and for receiving balise telegrams
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The simulation itself is modelled by UML state charts [66] while the source code is generated by
the RT-Tester [74] application. The corresponding generation procedure is shown in Figure 11.2.
libopenETCSPSMSIM is used to provide the necessary platform specific adaptations by the

Figure 11.2.: Generators and artefacts for the simulation development

corresponding D-Bus adaptors, which is explained in detail by the simulation deployment in
Subsection 11.2.2.

Both simulation state machines are executed together in one thread and share memory for
data exchange. The one modelling ETCS Modes and Application Levels should be created
directly from the ETCS specification [24].

The idea is to proof the concept of the model based tool chain for openETCS by showing that
a simulation representing the ETCS specification for Modes and transitions stimulating the
EVC binary, which was generated by a model based on the ETCS specification, produces the
same traces of modes and transitions as the EVC binary. In other words, if a Mode transition
within the generated binary is executed, this should be also found in the simulation and vice
versa. The data flow of the trace generation is shown in Figure 11.3.

11.2. Platform Specific Model for the Simulation

According to Figure 8.15, the adaptations needed for simulation purposes must be realised as a
PSM for an openETCS CIM or rather PIM. The special requirements for this PSM for the
simulation are defined in the following:

Req.13: transparent integration into the existing openETCS domain framework
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Simulation Traces EVC
modes, transitions

modes, transitions

stimulations

ETCS outputs

Figure 11.3.: Data flow of the generation of traces for Modes and transitions

Req.14: simulation of the physical behaviour of the train
Req.15: access to DMI inputs and outputs

Req.13 The simulative PSM must be developed using the already proposed platform-specific
adaptor stubs in Figure 8.18 to make it directly usable for any openETCS model / CIM.
Thus, those stubs or rather their methods only have to be implemented with the simulative
functionality by class inheritance.

Req.14 Since the simulation uses no hardware components, the physical behaviour must be
simulated, too. This means, for example, if a brake system (service or emergency) is applied, the
resulting output value of the odometer should be modified in a physically meaningful manner.
Therefore, a physical model for the train movement and for brakes must be implemented in
the simulative PSM.

Req.15 Corresponding to Figure 11.1, the simulation does not only need access to hardware
interfaces in the PSM because the driver’s behaviour should be modelled by manipulating inputs
of the DMI. Furthermore, DMI outputs must be used to trace the state and the behaviour of
the EVC binary, as it is defined in Figure 11.3. Therefore, an additional interface for accessing
the DMI via D-Bus has to be defined and implemented.

11.2.1. Structural Design

According to Req.13, the simulative PSM should implement the provided adaptor stubs. This
is done by inheritance from the stub classes, as it is shown in the UML class diagram in
Figure 11.4. For simplification, all class names used in this section refer to the simulative
classes in the ::oETCS::DF::PS::SIM UML package. The physical model of the train is located
in the CServiceBrake class, which uses a separated thread for the permanent calculation.
This is indicated by the composition m_pPhysicalCalculation to the ::std::thread class. The
COdomoter class holds – due to its derivation from the stub class in the PS package – the
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Figure 11.4.: UML class diagram of the simulative PSM
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current train speed and the absolute distance. Their simulative calculation will be explained in
Subsection 11.2.3, which illustrates details about the implementation.

According to Req.15, the access to the DMI is realised by the definition of another D-Bus
interface that is used in the concrete DMI observer CDMIQWidget from Subsection 8.3.2.
Since the resulting generated D-Bus adaptor is simply used as composition, an additional
UML diagram is omitted. Details about the interface and the adaptor can be found alongside
with all other openETCS domain framework description in Appendix D. The access to the
DMI from the simulation is in conflict with the general design principle that only accesses
by method calls from the PIM to the PSM are allowed. Therefore, the DMI adaptor should
only be available for simulation purposes and only be used if required. This is done by the
openETCS C++ generator by setting a Boolean property of the gEVCStateMachine root graph.
The full documentation of the graph properties can be found in Section B.1.

11.2.2. Deployment Design

The deployment of the PSM for the simulation is shown in Figure 11.5, which is an extension
of the PSM execution environment in Figure 8.19. The new artefacts are described below:

Simulation Holds all the PSM implementations needed for providing simulative
hardware devices.

WrapperFunctions Provide a C-API for accessing objects of classes of the Simulation arte-
fact because the RT-Tester module used for code generation currently
only supports the generation of C source code [74].

SimulationModel Holds the simulation source code generated from the simulation
model.

DMIDBusInterface Provides the generated sources for the D-Bus proxy of the additional
adaptor for the DMI / CDMIQWidget class.

DMIDBusAdaptor Includes the generated sources for the D-Bus adaptor for the DMI
respectively the class CDMIQWidget.

SimulationModel.xmi Exported UML simulation model as XMI file.

DMI.xml Is the D-Bus interface specification for the required DMI adaptor
(Req.15).

Details about the simulation model itself and the corresponding code generation can be found
in Section 11.3 and Section 11.4.

The libopenETCSPSMSIM component combines the static source code for the simulation
environment as library and is imported by the Simulation executable binary.

The manifestation of the libopenETCSPIM component is not complete in Figure 11.5 and only
represents the extensions compared to Figure 8.19. Since the usage of the DMI D-Bus adaptor
is not defined before the generation of the GeneratedInstantiations artefact (Figure 8.19), the
DMIDBusAdaptor source artefact must always be a part of the libopenETCSPIM library
component.
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Figure 11.5.: UML deployment diagram of the simulative PSM
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11.2.3. Implementation

Train Kinematics As described in the preceding subsections, the main task for the imple-
mentation of the simulative PSM is the realisation of the train kinematics, which means the
current train speed v(t) and the absolute distance d(t). The latter one is calculated by the
simple differential equation [95, p. 15]

d(t) =

∫ ∞

0
v(t)dt (11.1)

Since the modelled and implemented system is a sample system (see Section 7.6), this kinematic
equation can be expressed with (7.1) as

dk =

k∑
i=0

viTs (11.2)

The speed vk can only be directly set from the simulation or by the computation of physical
model for the brake systems. The computation bases on the following general differential
equation [95, p. 15]:

v(t) = v0 +

∫ ∞

0
a(t)dt (11.3)

a(t) is the acceleration or rather the deceleration (a(t) < 0) and v0 = v(t = 0) the initial
velocity. Accordingly, expressed as difference equation:

vk = v0 +
k∑

i=0

akTs (11.4)

The equation system of (11.2) and (11.4) build the train kinematics and are implemented in
the physical calculation thread in the CServiceBrake class. Access to the velocity and distance
is enabled by the n_pOdometer aggregation (in Figure 11.4), and m_pEmergency is used to
determine the activation flag of the simulative emergency brake system.

The following linear and ideal2 equation is used to calculate the current deceleration ak by
the service brake intensity sk and the emergency brake activation ek:

ak = −fgμik (11.5)

The variables are defined as follows:

f = 0.25 = const (11.6)

g = 9.81
m

s2
= const (11.7)

μ ∈ ]0; 1] (11.8)
sk ∈ [0; 1] (11.9)
ek ∈ {0; 1} (11.10)

ik =

{
sk ek = 0
1.2 ek = 1

(11.11)

2Ideal because it is assumed that the mass m influences the friction and deceleration force the same and is
accordingly not part of the equation.
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f is the maximal friction coefficient [95, pp. 40ff] for metal on metal (track↔wheel), g represents
the gravitation acceleration, and μ the adhesion between train and wheels.

The adhesion μ depends on the condition of the track, like wetness caused by rain, and may
decrease the maximal possible deceleration: μ = 1 ⇒ −ak = max
Also, the adhesion is used in the openETCS model in Figure 10.8 and Figure 10.17.

A direct setting of a new speed v′ by the simulation environment always means a reset of
time t = 0 ⇒ k = 0 and the initial speed v0 = v′ to have correct kinematics calculations.

It should be emphasised that a more realistic mathematical model is not needed for the
simulation because this focuses on the ATP functionality and not the exactly physical behaviour.

Communications In contrast to the devices for train kinematics, the simulative implementa-
tion of the communication devices CBaliseDeviceIn and CBaliseDeviceOut is much simpler.
Since CBaliseDeviceIn simulates a balise device for reading telegrams from track to train, new
telegrams can be set by the simulation, which are then distributed via the D-Bus signalling
mechanism [32] to all connected CBaliseDeviceIn objects in the PIM (see Section 8.5 and
Figure 8.16).

CBaliseDeviceOut accepts all telegrams sent via the corresponding PIM objects and stores
them. These can be retrieved by the simulation if required.

11.3. Simulation Model

Corresponding to the simulation concept in Figure 11.1, the simulation model defines how the
PSM of the EVC binary is stimulated by setting the train speed or by sending balise telegrams,
and which resulting outputs values of the position and the brake systems are expected from
the EVC PSM. Since a driver interaction is always required, the same is modelled for the
stimulation via driver inputs to the DMI and for the checking of DMI outputs.

Although the ETCS specification also provides an extensive set of tests sequences in [84],
those were not used to model the simulation and expected system behaviour because the tested
system is only a sub-subset of the SRS, and therefore most tests are not directly applicable.
The simulation model is directly derived from the ETCS SRS (Subset-026) [85] according to
the chosen sub-subset for the openETCS case study in Section 7.1 to avoid the extensive work
for adaptations and selecting appropriate test sequences from the Subset-076-6-3 [84]. Since
the purpose of the simulation is to evaluate the openETCS case study as a proof of concept,
this is no limitation to its validity.

The test environment [74] represents the simulation and defines executable state machines
and signals between them. Figure 11.6 introduces the high-level model as UML class diagram.
Each class represents an independent state machine while attributes of interfaces can be used as
signals between the state machines for interaction. Generally, the simulation model is divided
in three state machines:

CEVC State machine for modelling a virtual track, which the train is moving on. Addi-
tionally, it checks the behaviour of the EVC for correctness.

CDMI State machine that describes the deterministic behaviour of a driver.
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Figure 11.6.: UML class diagram of the test environment model

CInitPSM Simple state machine for initialising the PSM in order that the EVC binary can
be connected to the required D-Bus adaptors (see Section 8.5). Also, it creates
the proxy to the DMI for the CDMI machine.

The interface ISignals provides global signals between the state machine classes and is used in
their concrete models, which will be introduced in detail in a subsection each. The complete
simulation model can also be found in Section H.3.

11.3.1. CInitPSM – Initialisation Model

The model of the state machine for the PSM initialisation is quite simple and only consists of
sequence of states, which is shown in Figure 11.7. The state “Waiting_for_start_of_PSM”
creates all simulative adaptors for hardware interfaces and waits for user input because the
generated EVC executable binary has to be started manually to connect to those adaptors via
proxies.

Afterwards, “Initialising_DMI” creates a proxy to access the DMI in the PSM part of the
EVC binary. The Boolean bInitialised signal is set to true to inform the other state machines
that all preconditions for the simulation process have been met.

Currently, the RT-Tester does not support the usage of final state objects, which are part of
the UML standard for state machines [66]. Therefore, the empty and dead state “Final” is used
to model that after the initialisation nothing more is executed by the CInitPSM state machine.

Most states in all state machines generate an output by the printf() function, which can
be used to generate the simulation traces described in Section 11.1.
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Figure 11.7.: UML state machine diagram of the PSM initialisation
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11.3.2. CDMI – Driver Model

The model of the driver’s behaviour is defined by several decomposition of different states.
The parent state machine is displayed in Figure 11.8. On the top level, only two states in a

Figure 11.8.: UML state machine diagram of the driver’s behaviour

non-terminating state machine are provided:

Idling No data is currently available in the DMI. Nothing can be entered by the
(virtual) driver.

Evaluating_Data The DMI requires data to be entered. The behaviour in this state is
refined by a decomposition to a further sub-state machine, which is
introduced in a separated section.

11.3.2.1. Evaluating_Data State Machine

The corresponding graph of the UML state machine is shown in Figure 11.9. Its states are
explained as follows:

Check_Type_of_Data This initial state checks the type of the available inputs
in the DMI by the EvaluateDMIInputs() function of
the simulative PSM C-API (see Subsection 11.2.2). The
full documentation and source code for all those C-API
functions is located in the appendix in Section H.2.

Furthermore, it is checked if the system / EVC was
initially powered by the “Powering_System” state or
the DMI has at least one input3. Otherwise, the execu-
tion of this state is not meaningful, and the simulation
detects an error, which is is evaluated by @rttAssert-
statement [74]. If the Boolean expression in this state-
ment evaluates to false, the complete simulation is
stopped and the error is logged.

Powering_System During an error-free simulation, this state is only ex-
ecuted once, at the beginning of the simulation. It

3return value of the DMIHasInput() function
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Figure 11.9.: UML state machine diagram for evaluating the data in the DMI

222



11.3. Simulation Model

sets the Boolean input “System on Power” (see Sub-
section 10.2.1) by the SetDMIBooleanValue() function.
The attribute Time is used to determine the elapsed
time of 2000ms = 2s as a guard condition.

Entering_Train_Data Similar to “Powering_System”, this state is normally
executed once to enter the static train data, like train
length and static top-speed, in the ETCS Mode Stand
By (modelled in Subsection 10.2.2).

Ignoring_Optional_Data Any visible input field in the DMI that is not directly
needed to be filled with data for the continuation of the
simulation is marked as optional and is in the simula-
tion simply ignored. An example for optional data is
the activation of the override function in most ETCS
Modes [90, p. 42].

Acknowledging_Trip This state is only used in the case that the EVC is in
the Mode Trip (described in Subsection 10.2.6) and this
has to be acknowledged by the driver to proceed.

Acknowledging_Level_Transition A transition to a new ETCS Application Level that is
propagated to the EVC has always to be acknowledged
by the driver, which is executed in this state.

Acknowledging_Mode_Transition Similar to “Acknowledging_Level_Transition”, it can
be necessary to acknowledge an explicit Mode switch.

Since some states are also refined by a sub-state machine, those are introduced in the following
paragraphs.

11.3.2.1.1. Entering_Train_Data The static train data is entered in a simple sequence,
which model is sketched in Figure 11.10. On the EVC side, this corresponds to the the “Start
of Mission in Stand By” model in Subsection 10.2.2 and Figure 10.5.

Each state in the simulation model sets a certain input value of the DMI. All transitions
between the states are activated after 1.5s since a real driver neither can enter data in parallel
nor without pause. The data entered in each state is roughly explained in the following:

Entering_Driver_ID The driver ID is a string for identifying the current
driver, which is set as “ORA-SIM” for the simulative
driver.

Entering_Train_Position The absolute train position can be set to another value
than 0 if required. In the simulation, this is not neces-
sary.
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Figure 11.10.: UML state machine diagram of the “Entering_Train_Data” state
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Entering_Driver_Selection The driver can choose between overriding the input of
further static train data or to enter all train data. In
the simulation, all data should be entered.

Entering_Train_Length The static train length is entered as 500m

Entering_Train_Maximum_Speed The static maximum velocity of the train is entered.
For the simulation, vmax = 200km

h is used, which will
be also referred to in further state machines.

Starting_Mission The start of mission is activated.

11.3.2.1.2. Acknowledging_Level_Transition In the simulation, any transition from Ap-
plication Level 0 to Level 1 should be done via the override function in Figure 10.7 and not
by a valid MA. Accordingly, if the current Application Level is 0 (iLevel == 0), the override
function in the DMI should be activated first. This is modelled in Figure 11.11 with the
following states:

Figure 11.11.: UML state machine diagram of the “Acknowledging_Level_Transition” state

Setting_Override Activates the override function in the DMI.

Acknowledging_Transition Acknowledges the Level transition in the DMI.
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11.3.3. CEVC – EVC and Virtual Track Model

In contrast to the two preceding models, the CEVC state machine defines the virtual track and
also checks for required conditions for the EVC to detect errors during the simulation execution.
This means for the model that not only values are set in the simulative PSM hardware devices,
but also the @rttAssert-statement is used to detect deviations of the EVC from the expected
behaviour. On the top level of this state machine, all states correspond to a certain ETCS

Figure 11.12.: UML state machine diagram of the EVC behaviour

Mode while the virtual track is modelled in most states as sub-state machines. The correctness
of the EVC behaviour is tested on the top level and as well in the decompositions. Obviously,
not all ETCS Modes and possible transitions of the openETCS case study model in Chapter 10
were used in the EVC simulation model. This was done to keep a model which complexity and
size is still well interpretable in this document. Furthermore, the simulation in the openETCS
case study should primary demonstrate the applicability of the approach of a completely
model-driven tool chain. A small simulation model does not oppose this conclusion because
it can be extended without modifications of any openETCS DSL instance, like meta model,
generator, and domain framework.
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The states of the EVC simulation are introduced below:

No_Power According to the ETCS SRS and the corresponding open-
ETCS model in Subsection 10.2.1, this state only checks if
the emergency brakes are activated and if the “ETCS Mode”
DMI output field holds the string “No Power”. Since no
movement can be simulated in this state, transitions to other
states can only be done by signals (in Figure 11.6) from
the CDMI state machine. For example, the powering of the
system / EVC, which is indicated by the bSystemPowered

variable.

Stand_By This state does not differ much from the (normally) pre-
ceding “No_Power” state because again it is checked if the
emergency brake is activated and the “ETCS Mode” DMI
output field holds the name of the current Mode. Also,
the corresponding manipulation of the DMI is done by
the CDMI machine from Subsection 11.3.2 by entering the
static train data.

Moving_in_Unfitted The train movement starts in the ETCS Mode Unfitted if
the Application Level is 0, which is the default case in the
simulation. Since various ATP functionalities are tested in
this state, which are modelled in a sub-state machine, this
state only has an assertion for the correct “ETCS Mode”
DMI output field as entry-action [66]. Further assertions
are defined in its decomposition.

Moving_in_Staff_Responsible In this state, similar to “Moving_in_Unfitted”, only the
correct value of the “ETCS Mode” DMI is checked. The con-
crete functionality and the corresponding correct behaviour
is tested in a sub-state machine.

Stopping_in_Trip According to the model in Subsection 10.2.6, the emergency
brake must be activated in this Mode and the correct ETCS
Mode string must be displayed in the DMI.

Stopped_in_Post_Trip This state can only be executed directly after “Stopping_-
in_Trip”. In contrast to the preceding state, the emergency
brake must not be used here, which is explicitly tested by
an assert statement. Again, the ATP functionality is tested
in a sub-state machine.

Isolated Since ETCS does not provide any ATP functionality in
Mode Isolated, only the correct value of the “ETCS Mode”
DMI output field is tested. Furthermore, the simulation
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is stopped in this state by the @rttStopTest statement
because there is no transition to any other Mode or state
from here. Since the failing of any assertion executed
before would lead to a stop of the simulation, reaching this
stop statement always means a successful execution of the
simulation.

The CEVC state machine defines several possible transitions between its states, which are
often activated by signals influenced by the CDMI state machine or by sub-state machines of
CEVC. Which transitions are used in the current version of the simulation model, can be easily
identified in the simulation traces presented in Section 11.5.

Each sub-state machine of CEVC is explained in detail in the following subsections.

11.3.3.1. Moving_in_Unfitted

In the ETCS Mode Unfitted, the ATP functionality is mainly limited to the supervision of
train speed in respect to its static top speed (modelled in Subsection 10.2.3), which is entered
by the simulated driver. Thus, the simulation model for the movement in this Mode consists
of a simple sequence of states, which is displayed in Figure 11.13. Each state is explained in
detail in the following:

Moving_with_allowed_speed The train is moving with the speed v = 100km
h , which

is lower than its static top speed vmax = 200km
h (see

Figure 11.10): v < vmax

Accordingly, service or emergency brake may not be ap-
plied, which is permanently checked by corresponding
do-actions [66].

Moving_with_warning_speed The train speed v = 1.025vmax = 205km
h exceeds the static

top speed vmax but not the hard limit for brake intervention
vmax,int = 1.05vmax = 210km

h : vmax ≤ v ≤ vmax,int

Details can be found in the implementation and docu-
mentation of the CBrakingToTargetSpeed class in Ap-
pendix D.

In this state, still no brakes may be applied, but a warn-
ing in the “Speed Warning” DMI output field must be
displayed, which is checked by an assert statement.

Moving_with_forbidden_speed The train speed of v = 1.1vmax = 220km
h exceeds the hard

limit vmax,int: v > vmax,int

Thus, the service brake sk must be applied until the speed v
is smaller than the hard limit vmax,int: sk > 0∨v ≤ vmax,int

Entering_track_with_Level_1 A switching of the ETCS Application Level to 1 is propa-
gated to the EVC by a balise telegram that holds a “Level
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Figure 11.13.: UML state machine diagram of the “Moving_in_Unfitted” state
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Transition Order” packet in Subsection 10.4.3. The binary
telegram itself consists of 121 bits and is therefore not
printed here explicitly but can be found in the C-API of
the simulative PSM in Section H.2 of the appendix.

Waiting_for_mode_switch After the level transition was acknowledged by CDMI
state machine, the relative distance dtrans = 1000m to the
transition point must be passed. The speed is decreased
below the static top speed because here the Level transition
and the speed supervision should not be tested in parallel:
v = 175km

h < vmax

Entering_Level_1 The guard to this final state requires that 1100m instead of
dtrans = 1000m were passed because the EVC is a sample
system (see Section 7.6). Therefore, it cannot be ensured
that the Level transition happens at exactly dtrans and
dtol = 100m is used as tolerance value in the simulation.

This state itself only sets the global signal iLevel = 1

(from Figure 11.6) to inform all state machines about the
new ETCS Application Level.

11.3.3.2. Moving_in_Staff_Responsible

The simulated virtual track for the ETCS Mode Staff Responsible does not differ much from
the one for Unfitted in Subsection 11.3.3.1, besides that in Staff Responsible a certain value
for the top speed in this Mode is taken into account, which is normally a national value. In
this simulation, it is initialised with vSR,max = 180km

h . The state machine model is shown in
Figure 11.14 and its states are explained below.

Moving_with_allowed_speed The train is moving with a speed v = 100km
h , which is

lower than the top speed in Staff Responsible vSR,max:
v < vSR,max

Service or emergency brake may not be applied in this
state.

Moving_with_warning_speed The train speed v = 1.025vSR,max = 184.5km
h ex-

ceeds the top speed vSR,max but not the hard limit for
brake intervention vSR,max,int = 1.05vSR,max = 189km

h :
vSR,max ≤ v ≤ vSR,max,int

In this state still no brakes may be applied, but a
warning in the “Speed Warning” DMI output field must
be displayed, which is checked by an assert statement.

Moving_with_forbidden_speed The train speed of v = 1.1vSR,max = 220km
h exceeds

the hard limit vSR,max,int: v > vmax,int
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Figure 11.14.: UML state machine diagram of the “Moving_in_Staff_Responsible” state
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Thus, the service brake sk must be applied until the
speed v is smaller than the hard limit vSR,max,int: sk >
0 ∨ v ≤ vSR,max,int

Sending_stop_if_in_SR_telegram A “Stop if in Staff Responsible” packet from Subsec-
tion 10.4.4 is sent to the train, which should trigger
a transition to the Trip Mode in the EVC to test the
additional functionality of the EVC in Staff Responsi-
ble.

Entering_Trip After giving the EVC some time to react, the switch
to Trip is propagated to the parent state machine by
the local signal bStopIfSRReceived = TRUE.

Isolating_ETCS This state is only entered if the states “Stopping_-
in_Trip” and “Stopped_in_Post_Trip” in the parent
state machine in Figure 11.12 were executed before.
This is indicated by the bWasInPT == TRUE conjunc-
tion in the corresponding transition guard.

The train is stopped and the EVC is isolated from the
train via the DMI “Isolate ETCS” input field.

Entering_Isolated All state machines are informed by the global signal
bIsolatedByDMI = TRUE that the EVC was isolated.

11.3.3.3. Stopped_in_Post_Trip

According to the model in Subsection 10.2.6, the ETCS Mode Post Trip (in Application Level 1)
is entered after the train was completely stopped in Trip and this is acknowledged by the
driver via the DMI. In Post Trip itself, the emergency brakes should not be applied and any
forward movement of the train must be inhibited by the service brakes (see Subsection 10.2.7).
Furthermore, the reverse movement about a constance distance4 is allowed. The simulation
model for testing these ATP functionalities is sketched in Figure 11.15. The executed simulation
is explained for each state in detail in the following:

Moving_forward The train speed is set to v = 10km
h , which simulates a slow forward

movement. Accordingly, the service brakes should be applied (sk >

0) until the train is again fully stopped (v !
= 0). This is checked by

an assert statement.

Moving_in_reverse The train speed is set to v = −30km
h , which means a slow backward

movement. This is allowed until the distance drev = 150m is
overpassed. Then, the backward movement should be also inhibited
by the service brakes until the train fully stops.

4national value
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Figure 11.15.: UML state machine diagram of the “Stopped_in_Post_Trip” state
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Activating_override Similar to the Mode switch from Unfitted to Staff Responsible in
Figure 11.13, the override function is also used here to switch Staff
Responsible using the “c37” oModeGuard in Figure 10.21. Thus,
the corresponding input field “Select Override Function” in the DMI
is set to true.

Switching_to_Unfitted The switch to the ETCS Mode Staff Responsible is propagated to all
state machines by the global signal bOverrideSelected = TRUE.

11.4. Code Generation

The simulation model of UML state machines introduced in Section 11.3 cannot be directly
executed. Therefore, compilable code must be generated (Figure 11.2) or rather a model-to-text
transformation must be applied. The RT-Tester application was chosen as generator because its
ORA-SIM [74] component provides a complete generator for C to build executable simulations
from UML models. Alternatively, custom code generators could have be implemented for the
UML state machines. Though, as already discussed in Section 3.4, complete tool development is
not in the main focus of this work and using already available solutions is preferred. Furthermore,
the RT-Tester application already provides an infrastructure for evaluating test results.

Since the RT-Tester is currently not available under a OSS or FLOSS license, the generation
process cannot be published, like other parts of the case study, as FLOSS within this document.
Nevertheless, this restriction is not applicable for the generated source code, which can be
found in Section H.4.

The generated source code must be linked against libraries provided by RT-Tester, which
neither are publicly available. Therefore, the simulation source code cannot be currently
compiled and executed without a valid RT-Tester license. Nevertheless, the generated source
code is used as reference in this work.

11.5. Simulation Execution Results

The simulation execution generates two types of logs or rather traces:

1. output of the state machines
2. output of the RT-Tester

The output of the state machines is produced by the printf() statements in the actions of
states and can be found accordingly in the simulation model. It reflects the simulated, virtual
track for the train and the expected ETCS Mode switches of the EVC. Errors cannot be found
directly in this trace, only the activation of the State “Isolated” of the CEVC machine in
Figure 11.12 refers to a successful execution.

The RT-Tester produces for each state machine or rather abstract machine a separated log
file. This holds the information about the executed asserts and the test result. Thus, this type
is not very qualified for comprehending the virtual track but for the identification of errors or
the successful execution of the simulation. Each log file contains at its very end a summary
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about warnings, failures, and the test verdict [74], which should be “PASS”5. The traces are
located in the appendix in Section H.5 and Section H.6.

The simulation state machines and data flows of the EVC binary are executed both with the
sample time Ts = 1s but are not especially synchronised. Nevertheless, this apparently big Ts

is not a limitation to the validity of the simulation because simply the time scale is increased
for the whole simulation process. Furthermore, a big sample time provides the advantage that
(local) drifts (see Subsection 8.6.2) in the EVC and the simulation could be better avoided
because the simulation was not executed in a hard real-time operating system. Local drifts
do not necessarily lead to errors in the simulation but may falsify the results. Since any local
drifts are logged, it is ensured that during the generation of the simulation traces neither local
drifts occurred in the simulation nor in the EVC binary.

11.6. Conclusion

This chapter illustrated the usage of a simulation to verify the generated EVC binary of the
openETCS case study. To follow the MDA principle, the simulation is generated from formal
models, which enables the verification of the correctness of the simulation model. Accordingly,
the successful execution of the simulation for the generated EVC binary implies a proof of
concept for the MDA approach for the development of safety-critical systems in the railway
domain as open model software.

In contrast to modelling the simulation in a different meta model than the system, for future
work, the simulation models could also be integrated in the openETCS model. This would
probably enhance the possibility of detecting errors during the modelling phase but also would
increase the complexity of the meta model and the model. Also, the (automatic) generation
of simulative tests from the Subset-076-6-3 [84] could be investigated, but therefore the full
Subset-026 [85] would have to be modelled.

5“NOT TESTED” for CInitPSM because it does not contain any asserts.
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Conclusion and Outlook

This chapter provides the overall conclusion of this dissertation and proposes possible future
work for related research.

The chapters in the Background part (Part I) provided several concepts that are relevant for
the development of OSS/FLOSS for safety-critical train control applications. It was identified
that the current and typical principles of software development of OSS / FLOSS are not
sufficient for the certification for applicable safety standards. Thus, the principles of DSM
were discussed by examples of several state-of-the-art meta meta models. Additionally, an own
extension of the existing GOPRR meta meta model was introduced, which complies with all
requirements for defining a completely formal meta model. Besides a tree- and graph-based
graphical formalism for defining the concrete syntax of a meta model, also the definition of an
abstract syntax model and the integration of OCL for defining constraints as static semantics
were developed.

Part Dependability (Part II) dealt with issues related to safety and security in connection
with the idea of developing safety-critical software as OSS / FLOSS. Applicable safety standards
for the railway domain were illuminated and a possible concept developed to integrate the
usage of DSM in the software life cycles, which is defined by these standards. This also included
the new integration of V&V based on model properties. Furthermore, the new term open
model software was raised, which, in contrast to the the traditional open source software,
refers to a MDA developed under the principles and licenses of OSS / FLOSS. New security
problems caused by the usage of open model software were identified and discussed. The usage
of hardware virtualisation, in contrast to traditional operating system strategies, to oppose
those security risks was investigated and elaborated as possible strategy to be used together
with open model software.

To proof the correctness and applicability of the developed concepts, part openETCS Case
Study (Part III) introduced a completely developed case study for ETCS. This included all
required instances for a DSL: Starting from the meta model as formal specification language, to
the concrete formal model of a sub-subset of the ETCS SRS, and finally down to the generated
source code. Furthermore, all new generators between those instances or rather artefacts were
developed and discussed. The meta model description was identified as the most crucial part
of the development because any errors made in the definition of the concrete syntax or the
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static semantics can have an erroneous impact to all lower instances. Accordingly, the concrete
syntax – especially the graph bindings – and the static semantic were extensively documented.
Furthermore, mathematical models were developed and introduced to also formalise the dynamic
semantics of the openETCS meta model.

All static source code that does not have to be generated from a concrete model was designed
and implemented as domain framework for the openETCS meta model. An object-oriented
design was chosen because this could be aligned to the object-oriented meta model syntax,
which simplified the later generator development. Hence, the openETCS domain framework
provides classes, which only have to be instantiated from the concrete openETCS model by
the generator. All implementations of the dynamic semantics were transferred accordingly
to the domain framework libraries. Additionally, functional tests were provided to verify the
correctness of the openETCS domain framework implementation.

The openETCS generator, as link between the concrete openETCS model as formal specifica-
tion and the source code, was developed and its software design was discussed. Additionally, the
developed strategies for the verification of the used model transformation for the generation of
the openETCS source code for the EVC were described: Assert statements are generated from
the GOPRR instance, which can be executed on the transformed GOPPRR model to ensure
that all model elements for the model-to-model transformation from GOPRR to GOPPRR
model are correctly converted. The final model-to-text transformation from GOPPRR model
to the instantiation of the openETCS domain framework is verified by tests for the existence of
certain domain framework objects in the generated source code. Furthermore, the openETCS
generator provides the possibility to generate the build configuration needed for creating the
EVC binary from the generated source code and the configuration for executing the PIM and
PSM of the openETCS model in separated virtual machines under a Xen hypervisor.

The ETCS SRS or rather Subset-026 [85] was partly1 modelled and discussed by exemplary
diagrams of the corresponding openETCS model for all developed graph types. Additionally,
the possibility of tracing the modification of safety properties due to model extensions was
illuminated.

A simulation for the model or rather the generated openETCS EVC binary was developed
under the MDA principle to validate the complete openETCS case study. Hence, a special
simulative PSM had to be realised to provide the interconnection between EVC binary and
simulation. The successful execution of the simulation shows that the proposed and developed
concepts for developing safety-critical software for train control applications as open model
software can be seen as a proof-of-concept. The reduction of model size and complexity is
no limitation to this statement because the influence of further model extensions was also
illuminated and the case study is a valid sub-subset of the ETCS SRS.

The concepts for dependability were only exemplary realised by generating configurations for
VMs, which was also applied in the simulation execution. The certification of the developed
openETCS case study software for the EN 50128 and SWSIL 4 is obviously out of the scope of
this work because this always has to be done by an external party. Since neither a concrete
hardware target platform was available during this work nor the proposed minimal host
operating system, all tests (including the simulation) are pure software tests and no system

1according to the scope of the openETCS case study
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integration tests.
Future work would primary focus on the extension of the openETCS meta model and

model to completely cover the ETCS SRS, which also would render extensions of the domain
framework and the generator necessary. The direct integration of the simulation models and the
Subset-076-6-3 [84] in the openETCS model and meta model seems promising to enhance the
modelling process related to safety properties of the system. Furthermore, it might be necessary
to investigate if the tracing of model extensions and safety properties by the identification of
differences in model instances is sufficient for SWSIL 4 conformance or if model extensions
must also be added to the meta model capabilities.

Currently, not all parts of the developed tool chain conform to the Open Proofs concept,
which requires all elements to be FLOSS. Primary, this is related to meta modelling and
modelling application because with MetaEdit+ only a closed source application is available for
the GOPRR meta meta model. Thus, it would be necessary to develop the openETCS meta
model under a different meta meta model that has FLOSS tool support. Alternatively, the
openETCS meta model could be simply transformed to avoid a complete redevelopment, which
was developed and discussed for the MOF meta meta model. While this transformation only
have to be proceeded, the main future work would have to focus on the development of the
modelling tool because related Eclipse plug-ins currently do not provide a stable performance.
Furthermore, the openETCS model or rather the formal specification has to be remodelled in
the new meta model or an appropriate model-to-model transformation has to be found.

Neither, the simulation generation by the RT-Tester application is aligned to the idea of open
proofs and could accordingly be extended in further work. In contrast to the development of
new FLOSS generators for the simulation model, it seems more promising to directly integrate
the simulation specification in the openETCS meta model, which means another extension of
the openETCS specification language.
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A
GOPPRR to MOF Transformation

Although the selection of the GOPRR meta meta model was well reasoned in Section 3.4,
the proprietary properties of the modelling application MetaEdit+ is an obstacle to the idea
of publishing all generators and artefacts under the principles of FLOSS. Additionally, the
application causes some drawbacks that are not related to the meta meta model.

The usage and integration of MetaEdit+ is adequate for the case study presented in this
work, but for further work going beyond a case study it might be necessary to use an alternative
application. The main problem of using another application is the integration of a new meta
meta model because currently no other meta (meta) modelling application that uses GOPRR
is available. Then, most elements would have to be manually redeveloped. Instead, a solution
that obtains a better re-usability by a transformation from GOPPRR to another meta meta
model that has FLOSS tool support could be found.

The most reasonable choice for the new meta meta model is MOF. For example, the Ecore
meta meta model is used in Eclipse for meta modelling and modelling [9]. Fortunately, the
C++ abstract syntax model is already defined as UML class diagram (see Figure 4.4) and uses
the same syntax as MOF [64][78, pp. 64-71]. Figure 4.4 could also be interpreted as a template
for GOPPRR meta models represented in MOF. Concrete GOPPRR elements only have to be
added to the structure by inheriting from their super type1 for any existing GOPPRR meta
model.

This approach arises the problem that all associations between the GOPPRR elements are
defined between the super types and are inherited by all concrete types of the original GOPPRR
meta model. As a consequence, for example, all sub types of CGraph could have any sub type
of CObject, which is normally not desired and does not correspond to a unique transformation.

The redefinition of all associations would be a possible solution. In other words, besides the
associations between the supertypes, all subtypes or rather concrete meta model types have
the concrete associations to other concrete meta model types. An example of this strategy was
modelled in Eclipse with EMF and with types from the case study in Part III and is shown in
Figure A.1.

1CProject, CGraph, CObject, CProperty, CPort, CRole, CRelationship, CBinding, CConnection, CCall, and
CGraphicalContainer

243



Appendix A. GOPPRR to MOF Transformation

Figure A.1.: A possible transformation from GOPPRR to MOF using redefinitions of
associations

This leaves the main problem that associations to different types have to be defined separately
and therefore named differently. For example, in ModelTransitionBinding the compositions
connection1 and connection2. Since those associations can be then named more less arbitrary,
model and generator development might emerge as more difficult and even non-unique.

To avoid this problem, constraints could be used instead of the redefinition of associations
to define the allowed association ends for certain sub types of a meta model. Fortunately,
OCL can also be used for meta models or rather concrete models of MOF. In Figure A.1, to
only allow “Mode” objects to be in a “CurrentMode” or “NextMode” tole, the following OCL
statement could be used:
context GOPPRR: : CProject
inv : m_GraphSet−>s e l e c t (m_Type = ’EVCStateMachine ’ )−>f o rA l l (

graph |
graph . m_Connection . m_Calls−>f o rA l l (

c a l l |
c a l l . m_pObject . oclIsTypeOf (Mode)
and
( c a l l . m_pRole . oc lIsTypeOf ( CurrentMode ) or c a l l . m_pRole . oc lIsTypeOf (NextMode ) )

)
)

This example shows that it not only renders the redefinitions of associations unnecessary but
also the intermediate connection types ModeConnection1 and ModeConnection2 because the
OCL can be directly defined for the each call in m_Calls. A minor disadvantage is that, besides
the graphical modelling of sub-types, the bindings are specified by textual OCL statements
outside the graphical model, which are not as intuitively understandable, like the GOPPRR
abstract syntax description.
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openETCS Meta Model Concrete
Syntax

B.1. Graph Type Properties

Graph : gMainFunctionBlock

Object : ApplicationLevelType
String : ApplicationLevel (globally)

Graph : gFunctionBlock
String : FunctionBlockName
Text : Description

Graph : gSubFunctionBlock

Object : oModeGuard
Number : Condition (globally)

Graph : gEVCStateMachine
String : StateMachineName 
(globally)
Boolean : Simulation
Text : Description

Graph : gAnyPacket
String : Name (globally)
Text : Description

Graph : gCommunicationReader
String : Name (globally)
Text : Description

Graph : gCommunicationSender
String : Name (globally)
Text : Description

Graph : gEmbeddedStateMachine
String : Name (globally)
Text : Description

Graph : gPacket
String : Name (globally)
Text : Description

Graph : gTelegram
String : Name (globally)
Text : Description

ActiveApplicationLevel FailureGuard
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B.2. Object Type Properties

Object : oFunctionBlockInOut

String : Name (globally)

Text : Description

Object : oAnd

Object : oBoolGate Object : oBoolSwitch Object : oBrakingToTargetSpeed

Object : DoubleArrayAccessor

Object : oCeelingSpeedControl Object : oDivision

Object : oDoubleEqual

Object : oDoubleEqualOrGreater

Object : oDoubleGate

Object : oDoubleGreater

Object : oDoubleSwitch

Object : oEmbeddedStateMachineObject : oIntEqualObject : oIntGreaterObject : oMultiplicationObject : oNOT

Object : oOR

Object : oStringEqual

Object : oStringGate

Object : oStringSwitch
Object : oSubstraction

Object : oSum
Object : oXOR

Object : oEmbeddedFinalState Object : oEmbeddedInitialState Object : oEmbeddedState
String : Name (globally)
Text : Description

Object : oStateGuard
String : Name (globally)
Text : Description
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Object : oModeGuard
Number : Condition (globally)
Text : Description

Object : oFunctionBlockIn
String : Name (globally)
Text : Description

Object : oCommunicationSender Object : oEnteredTrigger Object : oActuator
Boolean : IsExternal

Object : oEmergencyBrake Object : oServiceBrake

Object : oDMIOutput
Boolean : InitialVisible
Fixed List : DataType

Object : oFunctionBlockOut
String : Name (globally)
Text : Description

Object : oCommunicationReader Object : oSensor
Boolean : IsExternal

Object : oOdometer

Object : oDMIInput
Boolean : InitialVisible
Fixed List : DataType

Object : oValue
String : Value
Fixed List : ValueType

AllowedValues

*
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Object : oVariableInstance
Boolean : IsIterator

Object : oVariableType
Number : Size
Number : Resolution
String : Unit

Object : oCommunicationReader
String : Name (globally)
Text : Description
Boolean : IsExternal

Object : oBaliseReader

Object : oCommunicationSender
String : Name (globally)
Text : Description
Boolean : IsExternal

Object : oBaliseSender

Object : oLanguage
String : Name (globally)
Text : Description

Object : oAnyPacket Object : oTelegram

Object : oPacket
Number : PacketID

Object : oValueMap
String : Value
String : MappedValue
Fixed List : MappeValueType

Type

Object : oMode
String : ModeName
Boolean : IsInitial
Text : Description

Object : oApplicationLevelType
String : ApplicationLevel (globally)

Object : oSubFunction
String : Name (globally)
Text : Description
Boolean : IsConstant
Boolean : DebugOutput

Object : oVariableStorage

Object : oValue
String : Value
Fixed List : ValueType

Object : oLeafNode Object : oRootNode

InitialLevel InitialValue
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B.3. Port Type Properties

Port : atomicInput

String : PortName

Port : atomicOutput

String : PortName

Port : intOutput Port : doubleOutput Role : boolOutput Object : stringOutput

Port : intInput Port : doubleInput Port : boolInput Property : stringInput

Port : doubleArrayOutput

Port : doubleArrayInput

B.4. Role Type Properties

Role : CurrentState Role : DataInput
Boolean : AddConnectedPort

Role : DataOutput
Boolean : AddConnectedPort

Role : LinkedElement

Role : NextState Role : NextVariable

Role : PreviousPacket Role : PreviousVariable Role : ScaledValue

Role : ScalingValueRole : NextPacket
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B.5. Relationship Type Properties

Relationship : DataFlow Relationship : InitialTransition Relationship : Linkage

Relationship : ModeTransition
Number : Priority

Relationship : PacketOrder

Relationship : Scaling Relationship : Transition
Number : Priority

Object : oStateGuard

Relationship : VariableOrder

Object : oModeGuard
Number : Condition (globally)
Text : Description

StateGuard ModeGuard

B.6. openETCS Meta Model Concrete Syntax Model

The complete concrete syntax model of the openETCS meta model can be accessed as a
separated MetaEdit+ patch [58], and MetaEdit+ XML file at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/GOPPRR-MetaEdit.met and
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/GOPPRR-MetaEdit.mxt,
and together with the openETCS model as MetaEdit+ repository [58] in Appendix C.

250



C
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The complete openETCS model can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS-Repo.tar.bz2,
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS-MetaEdit.mxt, and
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS.xml

as MetaEdit+ repository [58], as MetaEdit+ XML file [98], and as GOPPRR XML file. The
MetaEdit+ XML file should not be directly used and only serves here as a reference because it
does not contain any port types.

The generated source code from the openETCS model is kept separately at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS-GaDF.tar.bz2.
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D.1. Domain Framework Software Reference

The reference documentation for the openETCS domain framework sources can be found at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/doxygen.

D.2. Domain Framework Source Code

The complete source code of the openETCS domain framework is located at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS-GaDF.tar.bz2.
The following C++ source code listings are used as examples for the main part of this document.

Listing D.1: Thread creation in C++11
1 int y ;
2
3 // s tar t a l l independent data f lows threads
4 for ( y = 0 ; y < m_CurrentDataFlow . s i z e ( ) ; y++)
5 {
6
7 // create new thread
8 m_Threads [ y ] = (new : : s td : : thread (&: :oETCS : :DF : : CEVCStateMachine : : CEVCState : : DataFlowThread ,

this , y ) ) ;
9

10 } // for (y = 0; y < m_CurrentDataFlow . s i ze () ; y++)

Listing D.2: Thread joining in C++11
1 // wait for a l l threads to f in i sh and de le te them
2 for ( y = 0 ; y < m_Threads . s i z e ( ) ; y++)
3 {
4 // check i f current thread i s jo inab le
5 i f (m_Threads [ y]−>jo i n ab l e ( ) )
6 {
7 // wait for current thread
8 m_Threads [ y]−>jo i n ( ) ;
9

10 } // i f (m_Threads[ y]−>joinab le () )
11
12 // de le te current thread
13 delete m_Threads [ y ] ;
14
15 } // for (y = 0; y < m_Threads. s i ze () ; y++)
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Listing D.3: Data flow thread synchronisation

1 // synchronise with a l l other threads at s tar t
2 // check i f t h i s i s already l a s t thread for synchronisation
3 i f (m_iLockedThreads == (m_Threads . s i z e ( ) − 1) )
4 {
5
6 // not i fy a l l other threads to proceed
7 m_Barrier . n o t i f y_a l l ( ) ;
8
9 } // i f (m_iLockedThreads == (m_Threads. s i ze () − 1) )

10 else

11 {
12 // increase number of locked threads
13 m_iLockedThreads++;
14
15 // wait for a l l remaining executing threads
16 m_Barrier . wait ( Lock ) ;
17
18 } // e l se
19
20 // compute s tar t time once
21 StartTime = : : std : : chrono : : h igh_reso lut ion_clock : : now( ) ;
22
23 // execute thread unt i l a s ta te and/or l e v e l switch
24 while ( ! m_bStateLevelSwitch )
25 {
26 try

27 {
28 // execute re la ted data flow once
29 m_CurrentDataFlow [ i Index]−>Execute ( ) ;
30
31 } // try
32 catch ( const : : oETCS : :DF : : Error : : CException& Exception )
33 {
34 // create and print error message to stderr
35 : : std : : c e r r << "Error ␣ whi le ␣ execut ing ␣data␣ f low ␣#␣" << iIndex << " : ␣" << Exception . what ( ) << "␣

in ␣" << __FILE__ << "␣at ␣ l i n e ␣" << __LINE__ << : : std : : endl ;
36
37 // store exception on stack
38 m_DataFlowExceptions . push_back ( Exception ) ;
39
40 // stop execution of a l l threads by using the switch f l a g
41 m_bStateLevelSwitch = true ;
42
43 } // catch ( const : :oETCS: :DF: : Error : : CException& Exception )
44
45 // check i f t h i s i s already l a s t thread for synchronisation
46 i f (m_iLockedThreads == (m_Threads . s i z e ( ) − 1) )
47 {
48 // check i f any trans i t ions were placed on stack
49 i f ( m_TransitionStack . s i z e ( ) > 0)
50 {
51 // store very f i r s t pointer
52 pStateTrans i t i on = m_TransitionStack [ 0 ] ;
53
54 // search a l l other trans i t ion on stack for higher pr ior i t y
55 for ( x = 1 ; x < m_TransitionStack . s i z e ( ) ; x++)
56 {
57 // compare current pr ior i t y with stored one
58 i f ( pStateTrans i t ion−>GetPr io r i ty ( ) < m_TransitionStack [ x]−>GetPr io r i ty ( ) )
59 {
60 // store current trans i t ion
61 pStateTrans i t i on = m_TransitionStack [ x ] ;
62
63 } // i f ( pStateTransition−>GetPriority () < m_TransitionStack [ x]−>GetPriority () )
64
65 } // for (x = 0; x < m_TransitionStack . s i ze () ; x++)
66
67 // do sanity check of trans i t ion object
68 i f ( pStateTrans i t ion−>GetStartState ( ) != this )
69 {
70 // print error message to stderr
71 : : std : : c e r r << " In␣ f i l e ␣" << __FILE__ << "␣at ␣ l i n e ␣" << __LINE__ << " : ␣ ac t i va t ed ␣ t r a n s i t i o n ␣

ob j e c t ␣has␣ f a l s e ␣ s t a r t ␣ s t a t e " << : : std : : endl ;
72
73 } // i f ( pStateTransition−>GetStartState () != th i s )
74
75 // set pointer to new sta te in parent s ta te machine
76 m_pParent−>m_pCurrentState = pStateTrans i t ion−>GetTargetState ( ) ;
77
78 // act ivate f l a g for s ta te / l e v e l switch
79 m_bStateLevelSwitch = true ;
80
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81 // clear trans i t ion stack
82 m_TransitionStack . c l e a r ( ) ;
83
84 } // i f (m_TransitionStack . s i ze () > 0)
85
86 // reset the number of locked threads
87 m_iLockedThreads = 0 ;
88
89 // not i fy a l l other threads to proceed
90 m_Barrier . n o t i f y_a l l ( ) ;
91
92 } // i f (m_iLockedThreads == (m_Threads. s i ze () − 1) )
93 else

94 {
95 // increase number of locked threads
96 m_iLockedThreads++;
97
98 // wait for a l l remaining executing threads
99 m_Barrier . wait ( Lock ) ;

100
101 } // e l se
102
103
104 // compute s leep time by execution time unt i l now
105 SleepTime = SAMPLE_TIME − ( : : s td : : chrono : : h igh_reso lut ion_clock : : now( ) − StartTime ) ;
106
107 // check i f sample time was no exceeded
108 i f ( SleepTime . count ( ) >= 0 )
109 {
110 // put thread to s leep
111 : : std : : th is_thread : : s l e ep_for ( SleepTime ) ;
112
113 } // i f (SleepTime . count () >= 0 )
114 else

115 {
116 // print warning to stderr
117 : : std : : c e r r << " In␣ f i l e ␣" << __FILE__ << "␣ in ␣ l i n e ␣" << __LINE__ << " : ␣ sample␣ time␣ exceeded ␣ in ␣

thread " << std : : endl ;
118
119 } // e l se
120
121 // ca lcu la te next s tar t time point to avoid g loba l d r i f t s
122 StartTime += SAMPLE_TIME;
123
124 } // while ( ! m_bStateLevelSwitch )

Listing D.4: Control flow execution
1 void CControlFlow : : CState : : Execute ( ) throw ( : : oETCS : :DF : : Error : : CException )
2 {
3 unsigned int x (0) ;
4 const unsigned int NUMBER_FUNCTION_BLOCKS( m_FunctionBlocks . s i z e ( ) ) ;
5 : : oETCS : :DF : : CTransit ion∗ pTrans i t ion (0) ;
6
7
8 try

9 {
10 // execute a l l re la ted function block objec ts
11 for ( x = 0 ; x < NUMBER_FUNCTION_BLOCKS; x++)
12 {
13 // ca lcu la te current function block
14 m_FunctionBlocks [ x]−>Calcu la te ( ) ;
15
16 } // for (x = 0; x < NUMBER_FUNCTION_BLOCKS; x++)
17
18
19 // check i f t rans i t ion stack i s not empty
20 i f ( ! m_TransitionStack . empty ( ) )
21 {
22 // store f i r s t t rans i t ion on stack
23 pTrans i t ion = m_TransitionStack [ 0 ] ;
24
25 // find trans i t ion with highest pr ior i t y
26 for ( x = 0 ; x < m_TransitionStack . s i z e ( ) ; x++)
27 {
28 // compare p r i o r i t i e s
29 i f ( pTrans it ion−>GetPr io r i ty ( ) < m_TransitionStack [ x]−>GetPr io r i ty ( ) )
30 {
31 // store current trans i t ion
32 pTrans i t ion = m_TransitionStack [ x ] ;
33
34 } // i f ( pTransition−>GetPriority () < m_TransitionStack [ x]−>GetPriority () )
35
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36 } // for (x = 0; x < m_TransitionStack . s i ze () ; x++)
37
38 // execute trans i t ion
39 m_pParent−>m_pCurrentState = pTransit ion−>GetTargetState ( ) ;
40
41 } // i f ( ! m_TransitionStack . empty() )
42
43 // check i f t h i s s ta te i s a f i na l s ta te
44 i f ( m_bIsFinal )
45 {
46 // t e l l parent control f low to terminate
47 m_pParent−>m_pCurrentState = 0 ;
48
49 } // i f (m_bIsFinal)
50
51 } // try
52 catch ( const : : oETCS : :DF : : Error : : CException&)
53 {
54 // re−throw exception
55 throw ;
56
57 } // catch ( const : :oETCS: :DF: : Error : : CException&)
58
59 } // void CControlFlow : : CState : : Execute ()

Listing D.5: EVC state machine execution
1 while (m_bStarted )
2 {
3 try

4 {
5 // s tar t execution of current s ta te
6 m_pCurrentState−>Star t ( ) ;
7
8 } // try
9 catch ( const : : oETCS : :DF : : Error : : CException& Exception )

10 {
11 // set s tar t f l a g to stopped
12 m_bStarted = fa l se ;
13
14 // create and print error message to stderr
15 : : std : : c e r r << "Error ␣whi l e ␣ execut ing ␣ cur rent ␣EVC␣ s t a t e : ␣" << Exception . what ( ) << "␣ in ␣" <<

__FILE__ << "␣at ␣ l i n e ␣" << __LINE__ << "␣and␣no␣ f a u l t ␣ s t a t e ␣ av a i l a b l e ! " << : : std : : endl ;
16
17 } // catch ( const : :oETCS: :DF: : Error : : CException& Exception )
18
19 } // while (m_bStarted)

Listing D.6: EVC state machine termination
1 void CEVCStateMachine : : Stop ( ) throw ( : : oETCS : :DF : : Error : : CException )
2 {
3 // check i f a current s ta te i s ava i l ab l e
4 i f ( m_pCurrentState == 0)
5 {
6 // throw exception
7 throw ( : : oETCS : :DF : : Error : : CInterna l ( "no␣ current ␣ s t a t e ␣ ava i l a b l e " ) ) ;
8
9 } // i f (m_pCurrentState == 0)

10
11 // check i f current s ta te i s already running
12 i f (m_pCurrentState−>IsRunning ( ) )
13 {
14 // e x p l i c i t l y set the s ta te machine to stop
15 m_bStarted = fa l se ;
16
17 // s tar t execution of current s ta te
18 m_pCurrentState−>Stop ( ) ;
19
20 // check i f thread i s jo inab le
21 i f (m_pThread−>jo i n ab l e ( ) )
22 {
23 // wait for thread to terminate
24 m_pThread−>jo i n ( ) ;
25
26 } // i f (m_pThread−>joinab le () )
27
28 // f i n a l l y de le te thread object
29 delete m_pThread ;
30
31 // reset thread pointer
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32 m_pThread = 0 ;
33
34 } // i f (m_pCurrentState−>IsRunning () )
35
36 } // void CEVCStateMachine : : Stop ()

D.3. Domain Framework Model

The UML model of the openETCS domain framework is located at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS-DF-Model.tar.bz2.
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E.1. GOPPRR C++ Abstract Syntax Source Reference

The reference documentation for GOPPRR C++ abstract syntax implementation is also part
of the openETCS domain framework reference documentation in Section D.1.

E.2. GOPPRR XML Schema Definition

1 <?xml version=" 1.0 " encoding="UTF−8"?>
2 <xs:schema xmlns:xs=" ht tp : //www.w3 . org /2001/XMLSchema"
3 elementFormDefault=" q u a l i f i e d " targetNamespace=" ht tp : //www.GOPPRR. org "
4 xmlns:gopprr=" ht tp : //www.GOPPRR. org ">
5
6
7 <xs : e l ement name=" pro j e c t ">
8 <xs:complexType>
9 <xs : s equence>

10 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" gopprr :graph " />
11 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" goppr r : ob j e c t " />
12 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" gopprr :p roper ty " />
13 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" goppr r :po r t " />
14 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" gopp r r : r o l e " />
15 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" g opp r r : r e l a t i o n s h i p " />
16 </ xs : s equence>
17 <x s : a t t r i b u t e name="name" use=" requ i r ed " type="xs:Name" />
18 </xs:complexType>
19
20 <xs :key name="graph−oid ">
21 <x s : s e l e c t o r xpath=" ./ gopprr :graph " />
22 <x s : f i e l d xpath="@oid" />
23 </ xs :key>
24
25 <x s : k e y r e f name="graph−oid−r e f " r e f e r=" gopprr :graph−oid ">
26 <x s : s e l e c t o r
27 xpath=" ./ gopp r r : ob j e c t / gopprr :decompos i t ion | . / gopp r r : ob j e c t / gopp r r : e xp l o s i on s |

. / g opp r r : r o l e / gopp r r : e xp l o s i on s | . / g opp r r : r e l a t i o n s h i p / gopp r r : e xp l o s i on s |

. / gopprr :p roper ty / gopprr :graph−r e f e r e n c e " />
28 <x s : f i e l d xpath="@oid" />
29 </ x s : k e y r e f>
30
31 <xs :key name=" r e l a t i on sh i p −oid ">
32 <x s : s e l e c t o r xpath=" ./ g opp r r : r e l a t i o n s h i p " />
33 <x s : f i e l d xpath="@oid" />
34 </ xs :key>
35
36 <x s : k e y r e f name=" r e l a t i on sh i p −oid−r e f " r e f e r=" gopp r r : r e l a t i on sh i p −oid ">
37 <x s : s e l e c t o r
38 xpath=" ./ gopprr :graph / gopp r r : r e l a t i on sh i p −r e f e r e n c e |

. / gopprr :graph / gopprr :b ind ing / gopp r r : r e l a t i on sh i p −r e f e r e n c e |

. / gopprr :p roper ty / gopp r r : r e l a t i on sh i p −r e f e r e n c e |

. / gopprr :graph / goppr r : g raph i ca l−content / gopp r r : r e l a t i on sh i p −r e f e r e n c e " />
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39 <x s : f i e l d xpath="@oid" />
40 </ x s : k e y r e f>
41
42 <xs :key name=" ro l e−oid ">
43 <x s : s e l e c t o r xpath=" ./ g opp r r : r o l e " />
44 <x s : f i e l d xpath="@oid" />
45 </ xs :key>
46
47 <x s : k e y r e f name=" ro l e−oid−r e f " r e f e r=" goppr r : r o l e−oid ">
48 <x s : s e l e c t o r
49 xpath=" ./ gopprr :graph / goppr r :b ind ing / goppr r : connec t i on / goppr r : r o l e−r e f e r e n c e |

. / gopprr :p roper ty / goppr r : r o l e−r e f e r e n c e " />
50 <x s : f i e l d xpath="@oid" />
51 </ x s : k e y r e f>
52
53 <xs :key name="port−oid ">
54 <x s : s e l e c t o r xpath=" ./ goppr r :po r t " />
55 <x s : f i e l d xpath="@oid" />
56 </ xs :key>
57
58 <x s : k e y r e f name="port−oid−r e f " r e f e r=" gopprr :port−oid ">
59 <x s : s e l e c t o r
60 xpath=" ./ gopprr :graph / gopprr :b ind ing / goppr r : connec t i on / gopprr :port−r e f e r e n c e |

. / gopprr :p roper ty / gopprr :port−r e f e r e n c e " />
61 <x s : f i e l d xpath="@oid" />
62 </ x s : k e y r e f>
63
64 <xs :key name="property−oid ">
65 <x s : s e l e c t o r xpath=" ./ gopprr :p roper ty " />
66 <x s : f i e l d xpath="@oid" />
67 </ xs :key>
68
69 <x s : k e y r e f name="property−oid−r e f " r e f e r=" gopprr :property−oid ">
70 <x s : s e l e c t o r
71 xpath=" ./ gopprr :graph / gopprr :property−r e f e r e n c e | . / gopp r r : ob j e c t / gopprr :property−r e f e r e n c e

| . / goppr r :po r t / gopprr :property−r e f e r e n c e | . / g opp r r : r o l e / gopprr :property−r e f e r e n c e |
. / g opp r r : r e l a t i o n s h i p / gopprr :property−r e f e r e n c e " />

72 <x s : f i e l d xpath="@oid" />
73 </ x s : k e y r e f>
74
75 <xs :key name=" object−oid ">
76 <x s : s e l e c t o r xpath=" ./ gopp r r : ob j e c t " />
77 <x s : f i e l d xpath="@oid" />
78 </ xs :key>
79
80 <x s : k e y r e f name=" object−oid−r e f " r e f e r=" goppr r : ob j e c t−oid ">
81 <x s : s e l e c t o r
82 xpath=" ./ gopprr :graph / goppr r : ob j e c t−r e f e r e n c e |

. / gopprr :graph / goppr r :b ind ing / goppr r : connec t i on / goppr r : ob j ec t−r e f e r e n c e |

. / gopprr :p roper ty / goppr r : ob j e c t−r e f e r e n c e |

. / gopprr :graph / goppr r : g raph i ca l−content / goppr r : ob j e c t−r e f e r e n c e " />
83 <x s : f i e l d xpath="@oid" />
84 </ x s : k e y r e f>
85
86 </ xs : e l ement>
87
88
89 <xs:complexType name=" concept ">
90 <x s : a t t r i b u t e name=" oid " use=" requ i r ed " type="xs:NMTOKEN" />
91 <x s : a t t r i b u t e name=" type" use=" requ i r ed " type=" x s : s t r i n g " />
92 </xs:complexType>
93
94
95 <xs:complexType name="non−property ">
96 <xs:complexContent>
97 <xs : e x t en s i on base=" gopprr : concept ">
98 <x s : a t t r i b u t e name="name" use=" requ i r ed " type=" x s : s t r i n g " />
99 </ x s : e x t en s i on>

100 </xs:complexContent>
101 </xs:complexType>
102
103
104 <xs:complexType name=" r e f e r e n c e ">
105 <x s : a t t r i b u t e name=" oid " use=" requ i r ed " type="xs:NMTOKEN" />
106 </xs:complexType>
107
108
109 <xs : e l ement name="graph">
110 <xs:complexType>
111 <xs:complexContent>
112 <xs : e x t en s i on base="gopprr:non−property ">
113 <xs : s equence>
114 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
115 r e f=" goppr r : ob j e c t−r e f e r e n c e " />
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116 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
117 r e f=" gopprr :property−r e f e r e n c e " />
118 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
119 r e f=" gopprr :port−r e f e r e n c e " />
120 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
121 r e f=" goppr r : r o l e−r e f e r e n c e " />
122 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
123 r e f=" gopp r r : r e l a t i on sh i p −r e f e r e n c e " />
124 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" gopprr :b ind ing " />
125 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
126 r e f=" goppr r : g raph i ca l−content " />
127 </ xs : s equence>
128 <x s : a t t r i b u t e name=" root " use=" requ i r ed " type=" xs :boo l ean "/>
129 </ x s : e x t en s i on>
130 </xs:complexContent>
131 </xs:complexType>
132 </ xs : e l ement>
133
134
135 <xs : e l ement name=" ob j e c t ">
136 <xs:complexType>
137 <xs:complexContent>
138 <xs : e x t en s i on base="gopprr:non−property ">
139 <xs : s equence>
140 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
141 r e f=" gopprr :property−r e f e r e n c e " />
142 <xs : e l ement minOccurs="0" maxOccurs="1"
143 r e f=" gopprr :decompos i t ion " />
144 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" gopp r r : e xp l o s i on s " />
145 </ xs : s equence>
146 </ x s : e x t en s i on>
147 </xs:complexContent>
148 </xs:complexType>
149 </ xs : e l ement>
150
151
152 <xs : e l ement name="property ">
153 <xs:complexType mixed=" true ">
154 <xs:complexContent>
155 <xs : e x t en s i on base=" gopprr : concept ">
156 <x s : c h o i c e minOccurs="0" maxOccurs="unbounded">
157 <xs : e l ement r e f=" gopprr :graph−r e f e r e n c e " />
158 <xs : e l ement r e f=" goppr r : ob j ec t−r e f e r e n c e " />
159 <xs : e l ement r e f=" gopprr :port−r e f e r e n c e " />
160 <xs : e l ement r e f=" goppr r : r o l e−r e f e r e n c e " />
161 <xs : e l ement r e f=" gopp r r : r e l a t i on sh i p −r e f e r e n c e " />
162 </ x s : c h o i c e>
163 </ x s : e x t en s i on>
164 </xs:complexContent>
165 </xs:complexType>
166 </ xs : e l ement>
167
168
169 <xs : e l ement name="port ">
170 <xs:complexType>
171 <xs:complexContent>
172 <xs : e x t en s i on base="gopprr:non−property ">
173 <xs : s equence>
174 <xs : e l ement minOccurs="0" r e f=" gopprr :property−r e f e r e n c e " />
175 </ xs : s equence>
176 </ x s : e x t en s i on>
177 </xs:complexContent>
178 </xs:complexType>
179 </ xs : e l ement>
180
181
182 <xs : e l ement name=" r o l e ">
183 <xs:complexType>
184 <xs:complexContent>
185 <xs : e x t en s i on base="gopprr:non−property ">
186 <xs : s equence>
187 <xs : e l ement minOccurs="0" r e f=" gopprr :property−r e f e r e n c e " />
188 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" gopp r r : e xp l o s i on s " />
189 </ xs : s equence>
190 </ x s : e x t en s i on>
191 </xs:complexContent>
192 </xs:complexType>
193 </ xs : e l ement>
194
195
196 <xs : e l ement name=" r e l a t i o n s h i p ">
197 <xs:complexType>
198 <xs:complexContent>
199 <xs : e x t en s i on base="gopprr:non−property ">
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200 <xs : s equence>
201 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
202 r e f=" gopprr :property−r e f e r e n c e " />
203 <xs : e l ement minOccurs="0" maxOccurs="unbounded" r e f=" gopp r r : e xp l o s i on s " />
204 </ xs : s equence>
205 </ x s : e x t en s i on>
206 </xs:complexContent>
207 </xs:complexType>
208 </ xs : e l ement>
209
210
211 <xs : e l ement name=" graph ica l−content ">
212 <xs:complexType>
213 <xs : s equence>
214 <xs : e l ement minOccurs="1" maxOccurs="unbounded"
215 r e f=" goppr r : ob j e c t−r e f e r e n c e " />
216 <xs : e l ement minOccurs="0" maxOccurs="unbounded"
217 r e f=" gopp r r : r e l a t i on sh i p −r e f e r e n c e " />
218 </ xs : s equence>
219 </xs:complexType>
220 </ xs : e l ement>
221
222
223 <xs : e l ement name="decomposit ion ">
224 <xs:complexType>
225 <xs : s equence>
226 <xs : e l ement minOccurs="1" maxOccurs="1"
227 r e f=" gopprr :graph−r e f e r e n c e " />
228 </ xs : s equence>
229 </xs:complexType>
230 </ xs : e l ement>
231
232
233 <xs : e l ement name=" exp l o s i on s ">
234 <xs:complexType>
235 <xs : s equence>
236 <xs : e l ement minOccurs="1" maxOccurs="unbounded"
237 r e f=" gopprr :graph−r e f e r e n c e " />
238 </ xs : s equence>
239 </xs:complexType>
240 </ xs : e l ement>
241
242
243 <xs : e l ement name="binding ">
244 <xs:complexType>
245 <xs : s equence>
246 <xs : e l ement minOccurs="1" maxOccurs="1"
247 r e f=" gopp r r : r e l a t i on sh i p −r e f e r e n c e " />
248 <xs : e l ement minOccurs="1" maxOccurs="1" r e f=" goppr r : connec t i on " />
249 </ xs : s equence>
250 </xs:complexType>
251 </ xs : e l ement>
252
253
254 <xs : e l ement name=" connect ion ">
255 <xs:complexType>
256 <xs : s equence minOccurs="2" maxOccurs="unbounded">
257 <xs : e l ement minOccurs="1" maxOccurs="1"
258 r e f=" goppr r : ob j e c t−r e f e r e n c e " />
259 <xs : e l ement minOccurs="1" maxOccurs="1"
260 r e f=" goppr r : r o l e−r e f e r e n c e " />
261 <xs : e l ement minOccurs="0" maxOccurs="1"
262 r e f=" gopprr :port−r e f e r e n c e " />
263 </ xs : s equence>
264 </xs:complexType>
265 </ xs : e l ement>
266
267
268 <xs : e l ement name="graph−r e f e r e n c e " type=" gopp r r : r e f e r e n c e " />
269
270
271 <xs : e l ement name=" object−r e f e r e n c e " type=" gopp r r : r e f e r e n c e " />
272
273
274 <xs : e l ement name="property−r e f e r e n c e " type=" gopp r r : r e f e r e n c e " />
275
276
277 <xs : e l ement name="port−r e f e r e n c e " type=" gopp r r : r e f e r e n c e " />
278
279
280 <xs : e l ement name=" ro l e−r e f e r e n c e " type=" gopp r r : r e f e r e n c e " />
281
282
283 <xs : e l ement name=" r e l a t i on sh i p −r e f e r e n c e " type=" gopp r r : r e f e r e n c e " />
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284
285
286 </xs:schema>

E.3. Generator Application Source Reference

The source code reference documentation is also part of the openETCS domain framework
reference documentation in Section D.1.

E.4. Generator Model

The UML model is also part of the openETCS domain framework model in Section D.3.

E.5. Generator Source Code

The source code is also part of the openETCS domain framework source code in Section D.2.
The following C++ source code listings are used as examples for the main part of this document.

Listing E.1: Abstract data flow model initial creation
1 void CCPPGenerator : : BuildAbstractModel (GOPPRR: : CGraph ∗ const pFunctionBlock , : : s td : : map<

: : std : : s t r i ng , oETCS : :GEN: : CFBNode >& FBNodes ) throw ( : :GOPPRR: : Error : : CException )
2 {
3 dec l type ( : :GOPPRR: : CGraph : : m_ObjectSet . begin ( ) ) Object ;
4 dec l type ( : :GOPPRR: : CGraph : : m_RoleSet ) Inputs ;
5 dec l type ( : :GOPPRR: : CGraph : : m_RoleSet . begin ( ) ) Input ;
6 : :GOPPRR: : CRole∗ pOutput ( nu l l p t r ) ;
7 : :GOPPRR: : CObject∗ pOutputNode ( nu l l p t r ) ;
8
9

10 // process a l l ob jec ts in sub function block
11 for ( Object = pFunctionBlock−>m_ObjectSet . begin ( ) ; Object != pFunctionBlock−>m_ObjectSet . end ( ) ;

Object++)
12 {
13 // check i f current object i s a concrete function block element
14 i f (m_FBMap. f i nd ( Object−>second−>m_Type) != m_FBMap. end ( ) )
15 {
16 // add current object to node l i s t
17 FBNodes [ Object−>second−>m_OID] = : : oETCS : :GEN: : CFBNode( Object−>second−>m_OID,

: : oETCS : :GEN: : CFBNode : :DEFINED) ;
18
19 // get a l l input ro les of current function block object
20 Inputs = pFunctionBlock−>Roles ( Object−>second , "DataInput" , false , fa l se ) ;
21
22 // process a l l inputs
23 for ( Input = Inputs . begin ( ) ; Input != Inputs . end ( ) ; Input++)
24 {
25 // get connected output ro le
26 pOutput = pFunctionBlock−>Roles ( Input−>second , "DataOutput" , false , true ) . begin ( )−>second ;
27
28 // get connected function block object
29 pOutputNode = pFunctionBlock−>Objects ( pOutput , true ) . begin ( )−>second ;
30
31 // add input object as undefined node in outputs
32 FBNodes [ Object−>second−>m_OID] . m_Inputs . push_back (new

: : oETCS : :GEN: : CFBNode(pOutputNode−>m_OID, : : oETCS : :GEN: : CFBNode : :UNDEFINED) ) ; // TODO:
handle exceptions

33
34 } // for ( Input = Inputs . begin () ; Input != Inputs . end() ; Input++)
35
36 } // i f (m_FBMap. f ind (Object−>second−>m_Type) != m_FBMap. end() )
37 else i f ( Object−>second−>m_Type == "SubFunction" )
38 {
39 // check i f ob ject has a decomposition
40 i f ( Object−>second−>m_pDecomposition != 0)
41 {
42 // ca l l t h i s method recurs ive ly on decomposition
43 this−>BuildAbstractModel ( Object−>second−>m_pDecomposition , FBNodes ) ;
44
45 } // i f (Object−>second−>m_pDecomposition != 0)
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46
47 } // e l se i f (Object−>second−>m_Type == "SubFunction")
48
49 } // for (Object = pFunctionBlock−>m_ObjectSet . begin () ; Object !=

pFunctionBlock−>m_ObjectSet . end() ; Object++)
50
51 } // void CCPPGenerator : : BuildAbstractModel ()

Listing E.2: Abstract data flow model full creation
1 // process a l l nodes found ( including sub−graphs )
2 for (n = FBNodes . begin ( ) ; n != FBNodes . end ( ) ; n++)
3 {
4 // process a l l inputs of current node
5 for ( i = n−>second . m_Inputs . begin ( ) ; i != n−>second . m_Inputs . end ( ) ; i++)
6 {
7 // store OID of current output node
8 OID = (∗ i )−>m_OID;
9

10 // de le te current undefined object
11 delete (∗ i ) ;
12
13 // use pointer to actual node at i t e ra tor s place
14 ∗ i = &FBNodes [OID ] ;
15
16 } // for ( i = n−>second .m_Inputs . begin () ; i != n−>second .m_Inputs . end() ; i++)
17
18 } // for (n = FBNodes . begin () ; n != FBNodes . end() ; n++)

Listing E.3: Abstract data flow model processing
1 void CCPPGenerator : : ProcessAbstractModel ( const oETCS : :GEN: : CFBNode & Node , : : s td : : l i s t <

: : std : : s t r i n g >& ExecutionOrder , : : s td : : vector< const oETCS : :GEN: : CFBNode ∗ >& NodeStack )
throw ( )

2 {
3 dec l type (Node . m_Inputs . begin ( ) ) i ;
4 dec l type ( ExecutionOrder . begin ( ) ) s ;
5 dec l type ( NodeStack . begin ( ) ) ns ;
6 bool bFound( fa l se ) ;
7 bool bOnStack ( fa l se ) ;
8
9

10 // check i f t h i s node i s already on node stack
11 for ( ns = NodeStack . begin ( ) ; ns != NodeStack . end ( ) && not bOnStack ; ns++)
12 {
13 // check i f current node on stack i s current node
14 bOnStack = (∗ ns == &Node ) ;
15
16 } // for (ns = NodeStack . begin () ; ns != NodeStack . end() && not bOnStack ; ns++)
17
18
19 // only process node i f i t i s not on stack to avoid i n f i n i t e recursions on data flow loops
20 i f (not bOnStack )
21 {
22 // check i f current node already ex i s t s on execution order stack
23 for ( s = ExecutionOrder . begin ( ) ; s != ExecutionOrder . end ( ) && not bFound ; s++)
24 {
25 // check i f current stack element corresponds to current node ’ s OID
26 bFound = (∗ s == Node .m_OID) ;
27
28 } // for ( s = ExecutionOrder . begin () ; s != ExecutionOrder . end() && not bFound ; s++)
29
30
31 // check i f node has any input
32 i f (Node . m_Inputs . empty ( ) )
33 {
34 // check i f node i s already on stack
35 i f (not bFound)
36 {
37 // node i s a flow−chain s tar t point and i s d i r ec t l y added to the execution order
38 ExecutionOrder . push_back (Node .m_OID) ;
39
40 } // i f (not bFound)
41
42 } // i f (Node .m_Inputs . empty() )
43 else

44 {
45 // process a l l input nodes
46 for ( i = Node . m_Inputs . begin ( ) ; i != Node . m_Inputs . end ( ) ; i++)
47 {
48 // place current node on stack
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49 NodeStack . push_back(&Node ) ;
50
51 // ca l l t h i s method recurs ive ly for current node
52 : : oETCS : :GEN: : CCPPGenerator : : ProcessAbstractModel ((∗∗ i ) , ExecutionOrder , NodeStack ) ;
53
54 // remove node again from stack
55 NodeStack . pop_back ( ) ;
56
57 } // for ( i = Node .m_Inputs . begin () ; i != Node .m_Inputs . end() ; i++)
58
59 // check i f node i s already on stack
60 i f (not bFound)
61 {
62 // add current node a f ter a l l inputs node on execution order stack
63 ExecutionOrder . push_back (Node .m_OID) ;
64
65 } // i f (not bFound)
66
67 } // e l se
68
69 } // i f (not bOnStack)
70
71 } // void CCPPGenerator : : ProcessAbstractModel () throw ()
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MetaEdit+ Generators

F.1. GOPPRR XML Generators

F.1.1. EVCStateMachine XML Generator

The openETCS EVCStateMachine XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generateEVCStateMachineXML.merl.

F.1.2. Graphl XML Generator

The GOPPRR graph XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generateGraphXML.merl.

F.1.3. Object XML Generator

The GOPPRR object XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generateObjectXML.merl.

F.1.4. Property XML Generator

The GOPPRR property XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generatePropertyXML.merl.

F.1.5. Non-Property XML Generator

The GOPPRR non-property XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generateNonPropertyXML.merl.

F.1.6. Port XML Generator

The GOPPRR port XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generatePortXML.merl.
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F.1.7. Role XML Generator

The GOPPRR role XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generateRoleXML.merl.

F.1.8. Relationship XML Generator

The GOPPRR relationship XML MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generateRelationshipXML.merl.

F.2. GOPPRR CppUnit Assertion Generators

The GOPPRR CppUnit assertion MERL generator can be accessed at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/generateCppAsserts.merl.
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G.1. Unit Testing Source Reference

The source code reference documentation is also part of the openETCS domain framework
reference documentation in Section D.1.

G.2. Unit Testing Model

The UML model is also part of the openETCS domain framework model in Section D.3.

G.3. Unit Testing Code

The source code is also part of the openETCS domain framework source code in Section D.2.
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H.1. Simulation Platform Specific Model

The the complete PSM for the simulation is part of the domain framework implementation in
Appendix D.

H.2. Simulation Platform Specific C-API

The the complete C-API of the PSM for the simulation is part of the domain framework
implementation in Appendix D.

H.3. Simulation Model

The complete simulation model as XMI is located at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS-Simulation.xml.

H.4. Simulation Source Code

The complete generated source code generated from the simulation model in Section H.3 can
be found at
http://www.informatik.uni-bremen.de/agbs/jfeuser/openETCS/openETCS-Simulation-src.tar.bz2.

H.5. Simulation Execution Trace

1 QAppThread : Executing adaptor event loop . . .
2 PSM i n i t i a l i s e d
3 Press <RETURN> fo r s t a r t i n g s imulat ion
4
5 SUT sta r t ed
6 Entered NO POWER (NP)
7 DMI i s i d l e
8 DMI proxy i n i t i a l i s e d
9 DMI i s eva luat ing data

10 DMI: checking type o f data
11 DMI: powering system
12 DMI: checking type o f data
13 Entered Stand By (SB)
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14 DMI: en t e r ing t r a i n data
15 DMI: en t e r ing new dr i v e r ID
16 DMI: en te r ing new t r a i n po s i t i on
17 DMI: ent e r ing d r i v e r s e l e c t i o n
18 DMI: en te r ing t r a i n length
19 DMI: en te r ing t r a i n maximum speed
20 DMI: s t a r t i n g miss ion
21 Entered Unf i t ted (UN)
22 Moving with al lowed speed
23 DMI: checking type o f data
24 Speed : 100.000000 Pos i t i on : 27.754528
25 Speed : 100.000000 Pos i t i on : 55.524556
26 Speed : 100.000000 Pos i t i on : 83.312250
27 Speed : 100.000000 Pos i t i on : 111.079583
28 Moving with warning speed
29 Speed : 205.000000 Pos i t i on : 195.936306
30 Speed : 205.000000 Pos i t i on : 252.817428
31 Speed : 205.000000 Pos i t i on : 309.776165
32 Speed : 205.000000 Pos i t i on : 366.708822
33 Moving with forb idden speed
34 Speed : 219.117100 Pos i t i on : 484.670926
35 Speed : 217.429251 Pos i t i on : 545.385042
36 Speed : 215.924388 Pos i t i on : 605.673038
37 Speed : 214.549457 Pos i t i on : 665.523256
38 Speed : 213.293239 Pos i t i on : 725.005800
39 Speed : 212.145485 Pos i t i on : 784.141271
40 Speed : 211.096829 Pos i t i on : 843.034789
41 Speed : 210.138715 Pos i t i on : 901.533198
42 Enter ing track with Level 1
43 DMI: acknowledging l e v e l t r a i n s i t i o n
44 DMI: checking type o f data
45 Waiting f o r overpass ing o f D_LEVELTR
46 Speed : 175.000000 Pos i t i on : 1474.422800
47 Speed : 175.000000 Pos i t i on : 1523.031578
48 Speed : 175.000000 Pos i t i on : 1571.648862
49 Speed : 175.000000 Pos i t i on : 1620.258078
50 Speed : 175.000000 Pos i t i on : 1668.869286
51 Speed : 175.000000 Pos i t i on : 1717.467709
52 Speed : 175.000000 Pos i t i on : 1766.079161
53 Speed : 175.000000 Pos i t i on : 1814.685897
54 Speed : 175.000000 Pos i t i on : 1863.295647
55 Speed : 175.000000 Pos i t i on : 1911.904473
56 Speed : 175.000000 Pos i t i on : 1960.512133
57 Speed : 175.000000 Pos i t i on : 2009.122515
58 Speed : 175.000000 Pos i t i on : 2057.731876
59 Trans i t i on to Level 1
60 Entered S t a f f Respons ib le (SR)
61 Moving with al lowed speed
62 Speed : 100.000000 Pos i t i on : 2182.766876
63 Speed : 100.000000 Pos i t i on : 2210.549932
64 Speed : 100.000000 Pos i t i on : 2238.327904
65 Speed : 100.000000 Pos i t i on : 2266.097432
66 Speed : 100.000000 Pos i t i on : 2293.881959
67 Moving with warning speed
68 Speed : 184.500000 Pos i t i on : 2372.967443
69 Speed : 184.500000 Pos i t i on : 2424.261620
70 Speed : 184.500000 Pos i t i on : 2475.471389
71 Speed : 184.500000 Pos i t i on : 2526.718212
72 Moving with forb idden speed
73 Speed : 197.117100 Pos i t i on : 2632.987851
74 Speed : 195.394606 Pos i t i on : 2687.569965
75 Speed : 193.843213 Pos i t i on : 2741.702481
76 Speed : 192.448156 Pos i t i on : 2795.452495
77 Speed : 191.193687 Pos i t i on : 2848.811497
78 Speed : 190.065637 Pos i t i on : 2901.763424
79 Speed : 189.051267 Pos i t i on : 2954.487330
80 Enter ing track not al lowed f o r S t a f f Respons ib le
81 Entered Trip (TR)
82 Speed : 135.165121 Pos i t i on : 3286.444740
83 Speed : 124.570321 Pos i t i on : 3323.075907
84 Speed : 113.975521 Pos i t i on : 3356.763916
85 Speed : 103.380721 Pos i t i on : 3387.521565
86 Speed : 92.785921 Pos i t i on : 3415.323837
87 Speed : 82.191121 Pos i t i on : 3440.192337
88 Speed : 71.596321 Pos i t i on : 3462.110898
89 Speed : 61.001521 Pos i t i on : 3481.089896
90 Speed : 50.406721 Pos i t i on : 3497.125772
91 Speed : 39.811921 Pos i t i on : 3510.219971
92 Speed : 29.217121 Pos i t i on : 3520.368447
93 Speed : 18.622321 Pos i t i on : 3527.575910
94 Speed : 8.027521 Pos i t i on : 3531.843242
95 Speed : 0.000000 Pos i t i on : 3533.207930
96 Speed : 0.000000 Pos i t i on : 3533.207930
97 Speed : 0.000000 Pos i t i on : 3533.207930
98 Speed : 0.000000 Pos i t i on : 3533.207930
99 Speed : 0.000000 Pos i t i on : 3533.207930

100 DMI: acknowledging t r i p
101 Speed : 0.000000 Pos i t i on : 3533.207930
102 DMI: checking type o f data
103 Entered Post Trip (PT)
104 Moving forward
105 Speed : 5.585500 Pos i t i on : 3535.913686
106 Speed : 0.000000 Pos i t i on : 3536.761126
107 Speed : 0.000000 Pos i t i on : 3536.761126
108 Speed : 0.000000 Pos i t i on : 3536.761126
109 Moving in r ev e r s e
110 Speed : −30.000000 Pos i t i on : 3528.427501
111 Speed : −30.000000 Pos i t i on : 3520.094484
112 Speed : −30.000000 Pos i t i on : 3511.761284
113 Speed : −30.000000 Pos i t i on : 3503.427509
114 Speed : −30.000000 Pos i t i on : 3495.092584
115 Speed : −30.000000 Pos i t i on : 3486.759926
116 Speed : −30.000000 Pos i t i on : 3478.414576
117 Speed : −30.000000 Pos i t i on : 3470.091109
118 Speed : −30.000000 Pos i t i on : 3461.761218
119 Speed : −30.000000 Pos i t i on : 3453.428826
120 Speed : −30.000000 Pos i t i on : 3445.094676
121 Speed : −30.000000 Pos i t i on : 3436.762693
122 Speed : −30.000000 Pos i t i on : 3428.429384
123 Speed : −21.171000 Pos i t i on : 3420.853403
124 Speed : −12.342000 Pos i t i on : 3415.729461
125 Speed : −3.513000 Pos i t i on : 3413.057916
126 Entered S t a f f Respons ib le (SR)
127 Moving with al lowed speed
128 Speed : 100.000000 Pos i t i on : 3440.370770
129 Speed : 100.000000 Pos i t i on : 3468.152020
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130 Speed : 100.000000 Pos i t i on : 3495.956187
131 Speed : 100.000000 Pos i t i on : 3523.708270
132 Moving with warning speed
133 Speed : 184.500000 Pos i t i on : 3602.781962
134 Speed : 184.500000 Pos i t i on : 3654.048926
135 Speed : 184.500000 Pos i t i on : 3705.285191
136 Speed : 184.500000 Pos i t i on : 3756.545749
137 Moving with forb idden speed
138 Speed : 197.117100 Pos i t i on : 3862.832663
139 Speed : 195.394606 Pos i t i on : 3917.376523
140 Speed : 193.843213 Pos i t i on : 3971.513661
141 Speed : 192.448156 Pos i t i on : 4025.226868
142 Speed : 191.193687 Pos i t i on : 4078.585802
143 Speed : 190.065637 Pos i t i on : 4131.583487
144 Speed : 189.051267 Pos i t i on : 4184.295925
145 I s o l a t i n g ETCS
146 Entered I s o l a t e d ( IS )
147
148 r e a l 2m47.682 s
149 user 0m23.005 s
150 sys 2m19.725 s

H.6. Simulation Abstract Machine Logs

H.6.1. CInitPSM Logs

1 TM 00000000021 AM 3 N ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ STARTUP OF AM 3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ PROJECT : RTT−ORA−SIM−openETCS
3 ∗ COMPONENT : oEVC
4 ∗ TEST PROCEDURE : P1
5 ∗ TOOL VERSION : RT−Tester 6.0 −4.9.3
6 ∗ AUTHOR : rtt−mbt
7 ∗ START OF TEST : 2012 : 1 0 : 0 6 : 1 3 : 3 0 : 1 2 ( l o c a l time )
8 ∗ TIME SCALE : m i l l i s e c ond
9 ∗ SCHEDULING : AM 3 − am__sim_CInitPSM , LWP 0 − Simulat ion

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 TM 00000167061 AM 3 R ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ TERMINATION OF AM 3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 ∗ WARNINGS: 0
13 ∗ FAILURES: 0
14 ∗ VERDICT : NOT TESTED
15 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

H.6.2. CDMI Logs

1 TM 00000000018 AM 1 N ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ STARTUP OF AM 1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ PROJECT : RTT−ORA−SIM−openETCS
3 ∗ COMPONENT : oEVC
4 ∗ TEST PROCEDURE : P1
5 ∗ TOOL VERSION : RT−Tester 6.0 −4.9.3
6 ∗ AUTHOR : rtt−mbt
7 ∗ START OF TEST : 2012 : 1 0 : 0 6 : 1 3 : 3 0 : 1 2 ( l o c a l time )
8 ∗ TIME SCALE : m i l l i s e c ond
9 ∗ SCHEDULING : AM 1 − am__sim_CDMI, LWP 0 − Simulat ion

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 TM 00000010971 AM 1 P PASS : @rttAssert expre s s i on in f i l e _sim_CDMI. rts , l i n e 709 eva lua te s to 1 :
12 ( ( _bSystemPowered == TRUE) | | (DMIHasInput ( ) == 1) )
13 TM 00000014969 AM 1 P PASS : @rttAssert expre s s i on in f i l e _sim_CDMI. rts , l i n e 690 eva lua te s to 1 :
14 ( ( _bSystemPowered == TRUE) | | (DMIHasInput ( ) == 1) )
15 TM 00000030970 AM 1 P PASS : @rttAssert expre s s i on in f i l e _sim_CDMI. rts , l i n e 563 eva lua te s to 1 :
16 ( ( _bSystemPowered == TRUE) | | (DMIHasInput ( ) == 1) )
17 TM 00000056969 AM 1 P PASS : @rttAssert expre s s i on in f i l e _sim_CDMI. rts , l i n e 45 eva lua te s to 1 :
18 ( ( _bSystemPowered == TRUE) | | (DMIHasInput ( ) == 1) )
19 TM 00000115969 AM 1 P PASS : @rttAssert expre s s i on in f i l e _sim_CDMI. rts , l i n e 211 eva lua te s to 1 :
20 ( ( _bSystemPowered == TRUE) | | (DMIHasInput ( ) == 1) )
21 TM 00000167018 AM 1 R ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ TERMINATION OF AM 1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
22 ∗ WARNINGS: 0
23 ∗ FAILURES: 0
24 ∗ VERDICT : PASS
25 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

H.6.3. CEVC Logs

1 TM 00000000009 AM 2 N ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ STARTUP OF AM 2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ PROJECT : RTT−ORA−SIM−openETCS
3 ∗ COMPONENT : oEVC
4 ∗ TEST PROCEDURE : P1
5 ∗ TOOL VERSION : RT−Tester 6.0 −4.9.3
6 ∗ AUTHOR : rtt−mbt
7 ∗ START OF TEST : 2012 : 1 0 : 0 6 : 1 3 : 3 0 : 1 2 ( l o c a l time )
8 ∗ TIME SCALE : m i l l i s e c ond
9 ∗ SCHEDULING : AM 2 − am__sim_CEVC, LWP 0 − Simulat ion

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 TM 00000008969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 20 eva lua te s to 1 :
12 ( GetEmergencyActivation ( ) == 1)
13 TM 00000008971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 22 eva lua te s to 1 :
14 ( strcmp ( ctx−>pDMIValue , "No Power ") == 0)
15 TM 00000015969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 722 eva lua te s to 1 :
16 GetEmergencyActivation ( )
17 TM 00000015970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 724 eva lua te s to 1 :
18 ( strcmp ( ctx−>pDMIValue , "Stand By") == 0)
19 TM 00000030970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 763 eva lua te s to 1 :
20 ( strcmp ( ctx−>pDMIValue , " Unf i t ted ") == 0)
21 TM 00000031969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 560 eva lua te s to 1 :
22 ( GetEmergencyActivation ( ) == 0)
23 TM 00000031969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 561 eva lua te s to 1 :
24 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
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25 TM 00000031969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 562 eva lua te s to 1 :
26 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
27 TM 00000032969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 560 eva lua te s to 1 :
28 ( GetEmergencyActivation ( ) == 0)
29 TM 00000032969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 561 eva lua te s to 1 :
30 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
31 TM 00000032969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 562 eva lua te s to 1 :
32 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
33 TM 00000033969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 560 eva lua te s to 1 :
34 ( GetEmergencyActivation ( ) == 0)
35 TM 00000033969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 561 eva lua te s to 1 :
36 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
37 TM 00000033970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 562 eva lua te s to 1 :
38 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
39 TM 00000034969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 560 eva lua te s to 1 :
40 ( GetEmergencyActivation ( ) == 0)
41 TM 00000034969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 561 eva lua te s to 1 :
42 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
43 TM 00000034969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 562 eva lua te s to 1 :
44 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
45 TM 00000036969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 659 eva lua te s to 1 :
46 ( GetEmergencyActivation ( ) == 0)
47 TM 00000036969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 660 eva lua te s to 1 :
48 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
49 TM 00000036970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 661 eva lua te s to 1 :
50 ( ( GetVeloc ity ( ) < ((200 ∗ 1.025000 e+00) + 1.000000 e+00) )
51 && ( GetVeloc ity ( ) > ((200 ∗ 1.025000 e+00) − 1) ) )
52 TM 00000036971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 664 eva lua te s to 1 :
53 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
54 TM 00000037969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 659 eva lua te s to 1 :
55 ( GetEmergencyActivation ( ) == 0)
56 TM 00000037969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 660 eva lua te s to 1 :
57 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
58 TM 00000037969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 661 eva lua te s to 1 :
59 ( ( GetVeloc ity ( ) < ((200 ∗ 1.025000 e+00) + 1.000000 e+00) )
60 && ( GetVeloc ity ( ) > ((200 ∗ 1.025000 e+00) − 1) ) )
61 TM 00000037970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 664 eva lua te s to 1 :
62 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
63 TM 00000038969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 659 eva lua te s to 1 :
64 ( GetEmergencyActivation ( ) == 0)
65 TM 00000038969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 660 eva lua te s to 1 :
66 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
67 TM 00000038969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 661 eva lua te s to 1 :
68 ( ( GetVeloc ity ( ) < ((200 ∗ 1.025000 e+00) + 1.000000 e+00) )
69 && ( GetVeloc ity ( ) > ((200 ∗ 1.025000 e+00) − 1) ) )
70 TM 00000038971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 664 eva lua te s to 1 :
71 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
72 TM 00000039969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 659 eva lua te s to 1 :
73 ( GetEmergencyActivation ( ) == 0)
74 TM 00000039969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 660 eva lua te s to 1 :
75 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
76 TM 00000039969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 661 eva lua te s to 1 :
77 ( ( GetVeloc ity ( ) < ((200 ∗ 1.025000 e+00) + 1.000000 e+00) )
78 && ( GetVeloc ity ( ) > ((200 ∗ 1.025000 e+00) − 1) ) )
79 TM 00000039970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 664 eva lua te s to 1 :
80 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
81 TM 00000041969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :
82 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
83 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
84 TM 00000042969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :
85 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
86 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
87 TM 00000043969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :
88 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
89 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
90 TM 00000044969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :
91 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
92 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
93 TM 00000045969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :
94 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
95 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
96 TM 00000046969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :
97 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
98 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
99 TM 00000047969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :

100 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
101 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
102 TM 00000048969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 610 eva lua te s to 1 :
103 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
104 | | ( GetVeloc ity ( ) <= (2.000000 e+02 ∗ 1.050000 e+00) ) )
105 TM 00000072971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 449 eva lua te s to 1 :
106 ( strcmp ( ctx−>pDMIValue , " S t a f f Respons ib le ") == 0)
107 TM 00000073969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
108 ( GetEmergencyActivation ( ) == 0)
109 TM 00000073969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
110 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
111 TM 00000073969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
112 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
113 TM 00000074969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
114 ( GetEmergencyActivation ( ) == 0)
115 TM 00000074969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
116 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
117 TM 00000074969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
118 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
119 TM 00000075969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
120 ( GetEmergencyActivation ( ) == 0)
121 TM 00000075969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
122 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
123 TM 00000075970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
124 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
125 TM 00000076969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
126 ( GetEmergencyActivation ( ) == 0)
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127 TM 00000076969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
128 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
129 TM 00000076969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
130 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
131 TM 00000077969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
132 ( GetEmergencyActivation ( ) == 0)
133 TM 00000077969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
134 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
135 TM 00000077969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
136 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
137 TM 00000079969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
138 ( GetEmergencyActivation ( ) == 0)
139 TM 00000079969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
140 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
141 TM 00000079970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
142 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
143 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
144 TM 00000079970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
145 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
146 TM 00000080969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
147 ( GetEmergencyActivation ( ) == 0)
148 TM 00000080970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
149 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
150 TM 00000080970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
151 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
152 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
153 TM 00000080971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
154 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
155 TM 00000081969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
156 ( GetEmergencyActivation ( ) == 0)
157 TM 00000081969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
158 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
159 TM 00000081969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
160 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
161 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
162 TM 00000081971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
163 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
164 TM 00000082969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
165 ( GetEmergencyActivation ( ) == 0)
166 TM 00000082969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
167 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
168 TM 00000082969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
169 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
170 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
171 TM 00000082970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
172 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
173 TM 00000084971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
174 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
175 TM 00000084971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
176 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
177 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
178 TM 00000085971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
179 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
180 TM 00000085971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
181 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
182 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
183 TM 00000086971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
184 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
185 TM 00000086971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
186 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
187 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
188 TM 00000087971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
189 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
190 TM 00000087971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
191 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
192 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
193 TM 00000088970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
194 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
195 TM 00000088971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
196 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
197 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
198 TM 00000089970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
199 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
200 TM 00000089970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
201 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
202 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
203 TM 00000090971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
204 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
205 TM 00000090971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
206 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
207 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
208 TM 00000096970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 99 eva lua te s to 1 :
209 ( strcmp ( ctx−>pDMIValue , "Trip ") == 0)
210 TM 00000096970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 100 eva lua te s to 1 :
211 ( GetEmergencyActivation ( ) == TRUE)
212 TM 00000116969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 940 eva lua te s to 1 :
213 ( GetEmergencyActivation ( ) == FALSE)
214 TM 00000117969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 868 eva lua te s to 1 :
215 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00) | | ( GetVeloc ity ( ) == 0.000000 e+00) )
216 TM 00000118969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 868 eva lua te s to 1 :
217 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00) | | ( GetVeloc ity ( ) == 0.000000 e+00) )
218 TM 00000119969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 868 eva lua te s to 1 :
219 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00) | | ( GetVeloc ity ( ) == 0.000000 e+00) )
220 TM 00000120969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 868 eva lua te s to 1 :
221 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00) | | ( GetVeloc ity ( ) == 0.000000 e+00) )
222 TM 00000122969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
223 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
224 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
225 TM 00000123969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
226 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
227 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
228 TM 00000124969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
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229 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
230 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
231 TM 00000125969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
232 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
233 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
234 TM 00000126969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
235 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
236 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
237 TM 00000127969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
238 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
239 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
240 TM 00000128969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
241 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
242 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
243 TM 00000129970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
244 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
245 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
246 TM 00000130969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
247 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
248 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
249 TM 00000131969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
250 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
251 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
252 TM 00000132969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
253 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
254 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
255 TM 00000133969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
256 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
257 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
258 TM 00000134969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
259 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
260 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
261 TM 00000135969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
262 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
263 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
264 TM 00000136969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
265 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
266 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
267 TM 00000137969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 904 eva lua te s to 1 :
268 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
269 | | ( GetPos it ion ( ) >= ( ctx−>dCurrentPos i t ion − 1.500000 e+02) ) )
270 TM 00000142970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 919 eva lua te s to 1 :
271 ( strcmp ( ctx−>pDMIValue , " S t a f f Respons ib le ") == 0)
272 TM 00000143969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
273 ( GetEmergencyActivation ( ) == 0)
274 TM 00000143969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
275 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
276 TM 00000143969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
277 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
278 TM 00000144969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
279 ( GetEmergencyActivation ( ) == 0)
280 TM 00000144969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
281 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
282 TM 00000144969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
283 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
284 TM 00000145969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
285 ( GetEmergencyActivation ( ) == 0)
286 TM 00000145969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
287 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
288 TM 00000145970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
289 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
290 TM 00000146969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 236 eva lua te s to 1 :
291 ( GetEmergencyActivation ( ) == 0)
292 TM 00000146969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 237 eva lua te s to 1 :
293 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
294 TM 00000146969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 238 eva lua te s to 1 :
295 ( ( GetVeloc ity ( ) < 1.010000 e+02) && ( GetVeloc ity ( ) > 9.900000 e+01) )
296 TM 00000148969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
297 ( GetEmergencyActivation ( ) == 0)
298 TM 00000148969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
299 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
300 TM 00000148969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
301 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
302 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
303 TM 00000148970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
304 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
305 TM 00000149969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
306 ( GetEmergencyActivation ( ) == 0)
307 TM 00000149969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
308 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
309 TM 00000149969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
310 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
311 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
312 TM 00000149971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
313 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
314 TM 00000150969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
315 ( GetEmergencyActivation ( ) == 0)
316 TM 00000150969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
317 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
318 TM 00000150969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
319 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
320 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
321 TM 00000150971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
322 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
323 TM 00000151969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 376 eva lua te s to 1 :
324 ( GetEmergencyActivation ( ) == 0)
325 TM 00000151969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 377 eva lua te s to 1 :
326 ( GetSe rv i c e In t en s i t y ( ) == 0.000000 e+00)
327 TM 00000151969 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 378 eva lua te s to 1 :
328 ( ( GetVeloc ity ( ) < ((180 ∗ 1.025000 e+00) + 1.000000 e+00) )
329 && ( GetVeloc ity ( ) > ((180 ∗ 1.025000 e+00) − 1) ) )
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330 TM 00000151971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 381 eva lua te s to 1 :
331 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
332 TM 00000153971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
333 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
334 TM 00000153971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
335 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
336 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
337 TM 00000154970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
338 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
339 TM 00000154971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
340 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
341 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
342 TM 00000155970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
343 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
344 TM 00000155971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
345 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
346 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
347 TM 00000156970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
348 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
349 TM 00000156970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
350 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
351 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
352 TM 00000157971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
353 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
354 TM 00000157971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
355 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
356 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
357 TM 00000158970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
358 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
359 TM 00000158970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
360 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
361 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
362 TM 00000159970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 312 eva lua te s to 1 :
363 ( strcmp ( ctx−>pDMIValue , "Current Train Speed i s too high ! " ) == 0)
364 TM 00000159970 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 313 eva lua te s to 1 :
365 ( ( GetSe rv i c e In t en s i t y ( ) > 0.000000 e+00)
366 | | ( GetVeloc ity ( ) <= (1.800000 e+02 ∗ 1.050000 e+00) ) )
367 TM 00000165971 AM 2 P PASS : @rttAssert expre s s i on in f i l e _sim_CEVC. rts , l i n e 41 eva lua te s to 1 :
368 ( strcmp ( ctx−>pDMIValue , " I s o l a t i o n ") == 0)
369 TM 00000166975 AM 2 R ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ TERMINATION OF AM 2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
370 ∗ WARNINGS: 0
371 ∗ FAILURES: 0
372 ∗ VERDICT : PASS
373 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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Glossary

ANTLR ANother Tool for Language Recognition is the name of a parser generator that uses
LL(*) parsing. 36

API An application programming interface is a specification intended to be used as an interface
by software components to communicate with each other. 145, 147, 215, 222, 229, 269

ARINC The Aeronautical Radio, Incorporated is a major provider of transport communica-
tions and systems engineering solutions for eight industries: aviation, airports, defence,
government, healthcare, networks, security, and transportation. 67

ATP Automatic Train Protection provides automatic train stopping if active limits (speed or
distance) are ignored. 11, 12, 14, 20, 35, 79, 186, 190, 218, 227, 232, 280

Backdoor A Backdoor is a hidden method for bypassing normal computer authentication
systems. 20, 66

BNF The Backus-Naur Form is a meta syntax that can be used to describe context-free
grammars. 30, 31, 36, 278

C In computing, C is a general-purpose programming language. 96, 215, 222, 229, 233

C++ C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose pro-
gramming language. 23, 40, 43, 44, 46–48, 50, 52–54, 74, 80, 96, 107, 122, 131, 132, 134,
147–149, 151, 154–156, 160, 162–164, 169–171, 173, 175, 176, 178, 209, 215, 241, 251, 257,
261, 282

CASE-Tool A Computer-Aided Software Engineering Tool is used for assistance in the devel-
opment cycle in software development. 21

CIM In software engineering, a Computational-Independent Model is a model of a software
system that is independent of any computational formalisms or aspects. 141, 148, 179,
209, 212, 213

CMOF The Complete Meta Object Facility describes the complete set of elements of MOF. 25

CORBA The Common Object Request Broker Architecture is a standard defined by the OMG
that enables software components written in multiple computer languages and running
on multiple computers to work together, i.e. it supports multiple platforms. 74, 75, 147,
279

CPU The Central Processing Unit or the processor is the portion of a computer system that
carries out the instructions of a computer program and is the primary element carrying
out the computer’s functions. 69, 71–74, 280
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DIN Deutsches Institut für Normung e.V. is the German national organization for standardisa-
tion and is the ISO member body. 58, 59, 62

DMI A Driver Machine Interface is an ETCS vehicle device. 14, 87, 89, 122, 127, 128, 131,
154, 181, 183, 186, 196, 200, 206, 211, 213, 215, 218, 219, 221–223, 225, 227, 229, 231, 233

DOM The Document Object Model is a cross-platform and language-independent convention
for representing and interacting with objects in HTML, XHTML, and XML documents.
160, 170

DSL A Domain-Specific Language is a software modelling language that is highly specialized
for a certain problem domain. 2, 3, 6, 21–23, 26, 28, 30, 35–37, 39, 62, 65, 79–81, 120,
121, 141, 159, 225, 235, 279–281, 283

DSM Domain-Specific Modelling is a modern software engineering method related to a certain
problem domain. 2, 3, 21–23, 26, 28, 30, 31, 35, 37, 43, 61, 62, 65, 76, 80, 235, 281

EBNF The Extended Backus-Naur Form extends the BNF about operators to define the
occurrence of expressions. 31

Eclipse Eclipse is a popular FLOSS IDE. 36, 61, 279

Ecore Ecore is a meta meta model very similar to MOF that is used by EMF. 28, 36, 37, 241

EMF The Eclipse Modelling Framework is a Java-based software framework for model driven
software development. 28, 36, 241, 278, 279

EMOF Essential Meta Object Facility describes the essential set of elements of MOF. 25, 26

EN European standards for products and services. 58–62, 66, 236

ERA The European Railway Agency is one of the official agencies in the European Union. 13

ETCS The European Train Control System is a component of the standardized European
train traffic control system. 1–3, 6, 13–20, 35, 36, 52, 65, 79–81, 83, 85, 89, 91, 95, 96, 98,
103, 105, 107, 108, 110, 120, 122, 126, 127, 132, 133, 137, 139, 141, 143, 153, 154, 179,
181, 183, 186, 190, 194, 200–202, 205, 206, 208, 209, 211, 212, 218, 222, 223, 225, 227,
229–231, 233, 235–237, 278–282

EUPL The European Union Public License is a FLOSS software license that has been created
and approved by the European Commission. 20

Eurobalise Discrete data transfer element used in ETCS similar to a transponder in the rails.
14, 16, 17

Euroloop Semi-continuous data transfer element used in ETCS. 14, 16

Euroradio Standard for data transfer encryption. 14–16
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EVC An European Vital Computer is an ETCS vehicle device. 14, 16, 18, 20, 52, 80, 81, 83–85,
93, 98, 99, 122, 126–128, 132, 137, 139, 141, 143, 145, 153–156, 159, 174, 176, 178, 181,
186, 192, 200, 211–213, 218, 219, 222, 223, 225, 229, 231, 233, 234, 236

FAA The Federal Aviation Administration is an agency of the United States Department of
Transportation with authority to regulate and oversee all aspects of civil aviation in the
U.S. 281

FLOSS Free/Libre Open-source software is, additionally to OSS, distributed under licenses
that allow users to use, study, and change the software / source code. 4, 5, 12, 13, 19, 20,
37, 57, 61, 62, 65, 69, 76, 122, 149, 160, 162, 169, 174, 178, 233, 235, 237, 241, 278, 281

FRS The Function Requirements Specification describes all functional requirements of a system
and is typically used as input for the SRS. 13

FS Full Supervision is an ETCS Mode. 17, 80

GEF The Graphical Editing Framework is an Eclipse plug-in, which provides graphical func-
tionality. 36

GMF The Graphical Modelling Framework is an Eclipse plug-in that combines EMF and GMF
for creating DSLs. 36, 279

GOPPRR The Graph, Objects, Properties, Ports, Roles, and Relationships is an extension of
the GOPRR meta meta model. 2, 3, 40, 42–44, 46–48, 50, 52–54, 61, 62, 79, 80, 85, 97,
107, 108, 120, 148, 159, 160, 162–164, 166, 169–171, 173–176, 178, 179, 209, 236, 241,
242, 249, 257, 265, 266

GOPRR Graphs, Objects, Relationships, and Roles is a meta meta model. 2, 31, 32, 34–37,
39, 40, 43, 44, 46, 47, 50, 52, 53, 174–176, 178, 179, 235–237, 241, 279, 281

GSM-R Global System for Mobile Communications is an international wireless communications
standard for railway communication and applications. 14–16

GUI In computing, a graphical user interface is a type of user interface that allows users to
interact with electronic devices with images rather than text commands. 23, 122, 128,
132, 154

hypervisor In computing, a hypervisor, also called virtual machine monitor (VMM), allows
multiple operating systems to run concurrently on a host computer. 71–76, 178, 236

IDE An integrated development environment also known as integrated design environment or
integrated debugging environment is a software application that provides comprehensive
facilities to computer programmers for software development. 5, 36, 278

IOR An Interoperable Object Reference is a CORBA or RMI-IIOP reference that uniquely
identifies an object on a remote CORBA server. 75
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IPC In computing, Inter-process communication is a set of methods for the exchange of data
among multiple threads in one or more processes. 121, 122, 143, 164

IS Isolation is an ETCS Mode. 18, 80

Java Java is a modern, object-oriented programming language. 22, 28, 36, 74, 280

Java bytecode Java bytecode is generated by Java compilers and interpreted by the Java
virtual machine and therefore is (mostly) platform independent. 22

LZB Linienförmige Zugbeeinflussung is a cab signalling and train protection system used on
selected German and Austrian railway lines as well as the AVE in Spain. 12

MA In ATP, a Moving Authority allows a train to move about a certain distance. 186, 190,
192, 223

MDA Model-driven architecture is a software design approach for the development of software
systems. It provides a set of guidelines for the structuring of specifications, which are
expressed as models. 3, 39, 50, 158, 164, 209, 211, 234–236, 281

MERL The MetaEdit+ Reporting Language is a script language used in MetaEdit+ to define
code generators of graphical models. 37, 43, 44, 47, 50, 107, 108, 175, 176, 265, 266

meta meta model Model language that can be used to describe or define a DSL / meta model.
2, 3, 6, 22, 23, 25, 28, 29, 32, 34–37, 39, 40, 43, 44, 46, 47, 50, 52–54, 62, 65, 79, 97, 148,
162, 164, 179, 235, 237, 241, 278–280

meta model Domain-Specific model language / DSL. 2, 3, 6, 7, 23, 25, 28, 29, 31, 32, 35–37,
39, 40, 43, 46, 47, 50, 52–54, 61, 62, 65, 66, 79–81, 83–85, 97, 98, 108–110, 115, 116,
119–122, 124, 126–128, 130, 131, 137, 149, 158, 162–164, 166, 169, 173, 175, 178, 179,
183, 201, 209, 225, 234–237, 241, 242, 248, 280, 281

MMU The Memory Management Unit is a computer component responsible for handling
memory accesses requested by the CPU. 69, 74

moc The metaobject compiler is a tool that is run on the sources of a Qt program. It interprets
certain macros from the C++ code as annotations and uses them to generate added C++
code with Meta Information about the classes used in the program. 143

MOF The Meta Object Facility is a meta meta model using the UML. 23, 25, 26, 28, 29, 36,
40, 50, 54, 162, 237, 241, 242, 277, 278

NL Non Leading is an ETCS Mode. 19

NP No Power is an ETCS Mode. 18, 80, 84

OCL The Object Constraint Language is used to define constraints for UML models. 47, 48,
50, 52–54, 80, 97, 100, 107, 120, 162, 169, 170, 178, 235, 242
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OEM An original equipment manufacturer manufactures products or components that are
purchased by another company and retailed under that purchasing company’s brand
name. 5

OID The Object Identifier is formatted as a special string and used within MetaEdit+, which
is always unique within a GOPRR project. 44, 170, 173, 175, 176

OMG The Object Management Group is a consortium that originally aimed at setting standards
for distributed object-oriented systems and is now focused on modelling (programs,
systems and business processes) and model-based standards. 23, 158, 277, 282

open model An open model is in a DSL or a MDA a concrete meta model instance / model
that is developed and published under the principles of OSS / FLOSS. 65, 66, 69, 72, 74,
75, 79, 80, 281

open model software Software developed by DSM or in a MDA based on open models. 2, 7,
66, 69, 75, 76, 234–236

openETCS openETCS is the concept to use and provide ETCS software under the principles
of FLOSS. 3, 5–7, 19, 20, 36, 46, 52, 53, 61, 66, 79–81, 83, 84, 98, 108–110, 115, 116,
119–122, 124, 126–128, 130, 131, 133, 134, 136, 141, 145, 147–149, 153–156, 158–160, 162,
163, 166, 169–171, 173–176, 178, 179, 183, 201, 202, 205, 209, 211–213, 215, 218, 223,
225, 234, 236, 237, 248, 249, 251, 255, 257, 261, 265, 267

OS On Sight is an ETCS Mode. 17

OSS Open-source software is distributed with public source code. 12, 13, 19, 36, 57, 61, 65,
69, 76, 169, 233, 235, 279, 281

PIM In software engineering, a Platform-Independent Model is a model of a software system
that is independent of the specific technological platform used to implement it. 141, 143,
145, 147–149, 151, 154, 155, 159, 160, 174, 212, 215, 218, 236

PSM A platform-specific model is a model of a software that is linked to a specific technological
platform. For example, a specific programming language, operating system, document
file format or database.. 141, 145, 147, 148, 151, 154, 155, 159, 160, 174, 178, 211–213,
215, 217–219, 222, 223, 229, 236, 269

PT Post Trip is an ETCS Mode. 18, 80

PZB Punktförmige Zugbeeinflussung is an intermittent cab signalling system and train protec-
tion system used in Germany, Austria, Slovenia, Croatia, Romania, Israel and on one
line in Canada. 12

Radio-Infill Radio based semi-continuous data transfer facility. 14

RTCA The Radio Technical Commission for Aeronautics develops guidance documents related
to the FAA. 58, 60
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RV Reversing is an ETCS Mode. 19

SB Stand By is an ETCS Mode. 18, 80, 84

SE STM European is an ETCS Mode. 19

SF System Failure is an ETCS Mode. 18, 80

SH Shunting is an ETCS Mode. 17

SIL The safety-integrity-level describes the performance of a safety-function. 59

SL Sleeping is an ETCS Mode. 17

SN STM national is an ETCS Mode. 19

SR Staff Responsible is an ETCS Mode. 17, 80

SRS The System Requirements Specification describes all necessary requirements of a system.
13, 35, 79–81, 83, 96, 97, 120, 137, 143, 154, 179, 181, 183, 186, 194, 196, 200–202, 209,
218, 225, 235–237, 279

STL The Standard Template Library is a C++ software library that later evolved into the
C++ Standard Library. 44

STM Specific Transmission Module is an ETCS Mode used for compatibility with national
train control systems or a corresponding hardware component connection to a national
train control system with ETCS. 14–17, 19, 206

SWSIL The software safety-integrity-level describes the performance of a software safety-
function. 59, 60, 236, 237

TOPCASED TOPCASED is a toolkit plug-in for Eclipse for the development of safety-critical
systems in the avionics domain. 61

TR Trip is an ETCS Mode. 18, 80

UML The Unified Modelling Language can describe parts of object-oriented software. 7, 21, 23,
25, 26, 29, 43, 47, 50, 61, 121, 122, 124, 126, 131, 133, 134, 136, 137, 141, 143, 147–149,
155, 159, 160, 163, 164, 171, 178, 183, 212, 213, 215, 218, 219, 221, 233, 241, 255, 261,
267, 280

UN Unfitted is an ETCS Mode. 17, 80

VM A virtual machine is a software implementation of a machine (i.e. a computer) that
executes programs like a physical machine. 52, 53, 69, 71–74, 174, 236

XMI The XML Metadata Interchange is an OMG standard for exchanging meta data informa-
tion via XML. 37, 61, 178, 215, 269
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XML The Extensible Markup Language is a set of rules for encoding documents electronically.
28–30, 37, 40, 43, 46, 47, 50, 52–54, 75, 108, 145, 147, 160, 162, 164, 166, 170, 174, 175,
209, 248, 249, 265, 266, 278, 282, 283

XSD The XML Schema Definition defines grammar for XML. 28–30, 46, 47, 61, 170

Xtext Xtext is a plug-in for Eclipse for creating textual DSLs. 36
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