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ABSTRACT 

Fossiliferous limestones in shallow marine environments are important archives for the 

studies of paleontology, biostratigraphy, paleoenvironment and paleoclimatology as well 

as geodynamic evolution of their sedimentary basins. In the eastern Tethyan Himalaya, 

two areas, Tingri and Gamba, expose the best outcrops of the lower Paleogene larger 

foraminiferal limestones in Tibet. It provides a good chance to study the Paleocene-early 

Eocene larger foraminiferal evolution, the process of the India-Asia collision and foreland 

basin evolution, and the response of shallow marine environments to the Paleocene-

Eocene Thermal Maximum (PETM) and Carbon Isotope Excursion (CIE).    

Following the Oppel Zone’s principle, ten Shallow Benthic Zones (SBZs) ranging from 

SBZ 1 to 10 have been divided from one continuous section at Tingri, and five SBZs 

comprising SBZ 2, 3, 4, 5, and 7 are recognized from three separate sections at Gamba. 

During the Paleocene, the Larger Benthic Foraminifera (LBF) were characterized by 

high diversification of Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, and 

Operculina in the so-called ‘Lockhartia Sea’, and in the early Eocene it were Alveolina, 

Orbitolites, Nummulites, Assilina, and Discocyclina who dominated the Gamba and 

Tingri areas. The Paleocene LBF in Tibet showed earlier occurrence of generic and 

species diversity, and since SBZ 2, some genus (such as Lockhartia and Kathina) have 

evolved more than one species within a zonal time slice. It is inconsistent with the 

monospecific trait of K-strategist genera in Europe. Importantly, the Paleocene/Eocene 

(P/E) boundary in shallow-water environments is clearly identified at Tingri by measuring 

carbon isotopes from bulk carbonates, and it is situated in the upper part of SBZ 5 and 

associated with no evident biotic turnover of benthic foraminiferal communities. Notably, 

a transient but distinct Larger Foraminiferal Extinction and Origination (LFEO) event has 

been found in Tibet, which is characterized by the sudden disappearance of all 

Paleocene lamellar-perforate LBFs, such as Lockhartia, Kathina, Daviesina, Miscellanea, 

Ranikothalia, and Operculina, and the initial dominance of early Eocene porcellaneous 

forams of Alveolina and Orbitolites. The LFEO marks the boundary between SBZ 5 and 

6 in Tibet, and it might occur only in the low latitudinal areas of the Neo-Tethyan Ocean. 

Additionally, the LFEO coincides with the onset of the CIE recovery, and postdates the 

P/E boundary ~80 kyr according to age models of the PETM-CIE. The synchronicity of 

the LFEO and the initial recovery of the CIE imply that some possible mechanisms 

causing the rapid recovery of the CIE probably had also led to the LFEO in shallow-

water environments.   

Based on the high resolution larger foraminiferal biostratigraphy, eight microfacies types 

have been recognized from the Zhepure Shan limestones with special emphasis on the 
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paleoecology of the larger foraminifera. The general development of those microfacies 

at Tingri can be summarized by a carbonate ramp model with three subdivisions of inner 

ramp, mid-ramp, and outer ramp. Overall, microfacies analyses indicate that there was a 

deepening of depositional environment during the Paleocene and early Eocene in Tibet, 

which was interrupted by a sudden shallowing event at the P/E boundary. In addition to 

Tibet, the shallowing event has also been recognized from other shallow marine 

environments surrounding the Neo-Tethyan Ocean by some authors. Together with the 

opinion of a eustatic rise during the Paleocene-Eocene greenhouse world, the 

shallowing event may imply that a circum-Tethyan tectonic uplift once took place at the 

P/E boundary.     

Tectonically, the onset of continent-continent collision is accompanied by elimination of 

oceanic crust and development of a peripheral foreland basin on the subducting 

continental crust. In Tibet, the lower Paleogene limestones at Gamba and Tingri have 

been used to study the evolution of the northern Indian continental margin and further to 

constrain the timing of initial India-Asia collision. Based on our studies of stratigraphy, 

paleontology, sedimentology, and geochronology at Gamba and Tingri together with 

other previously published results, we propose that the tectonic uplift occurring at the 

P/E boundary represents the initial India-Asia continental collision in Tibet and time 

equivalence between the initial India-Asia collision and the PETM-CIE implies that the 

former probably also plays an important role in triggering the latter.     

The PETM is one of the main focuses in the geoscientific studies during the last 20 

years. The magnitude, duration, pattern of the negative CIE are key to constraints on the 

mass and tempo of light-carbon release during the PETM, which in turn play a crucial 

roles in determining possible light-carbon sources and mechanisms triggering the PETM. 

Here we show a high resolution CIE curve from the tropical shallow marine limestones in 

Tibet, and our results reveal that the pattern of the main CIE in the shallow marine is 

very similar to that from deep sea (ODP Site 690) except for a larger magnitude and an 

abrupt recovery in the former. We speculate that the CIE in the entire ocean followed 

certain regular steps to reach the most negative carbon isotope values during the PETM, 

and the magnitude of the negative CIE may gradually increase from the deep sea to 

shallow marine and land. Our work will provide important constraints on testing possible 

mechanisms triggering the PETM, and improve the current understanding of the PETM-

CIE in the shallow marine environments. 
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ZUSAMMENFASSUNG

Fossil-führende Flachwasserkalke sind wichtige Archive für Studien zur Paläontologie, 
Biostratigraphie, zur Rekonstruktion von Paläoklima und –umwelt sowie zur 
geodynamischen Entwicklung von Sedimentbecken. In zwei Gebieten des östlichen 
Tethys-Himalaya, in Tingri und Gamba, sind Kalksteine mit Großforaminiferen aus dem 
unteren Paläogen am besten aufgeschlossen. Sie bieten eine gute Möglichkeit zum 
Studium der Evolution von Großforaminiferen im unteren Paläogen, der 
Kollisionsgeschichte zwischen Indien und Asien und der damit verbundenen 
Entwicklung eines Vorlandbeckens sowie der Reaktionen im flachmarinen Bereich auf 
das Paläozän-Eozän Temperaturmaximum (PETM) und der entsprechenden Exkursion 
der Kohlenstoffisotope (CIE). 
 
Nach dem Prinzip der Oppel-Zone wurden zehn benthische Flachwasserzonen (SBZs), 
von SBZ 1 bis 10, in einem kontinuierlichen Profil in Tingri ausgehalten. Fünf solche 
Zonen, SBZ 2, 3, 4, 5 und 7, wurden in drei einzelnen Profilen in Gamba erkannt. 
Während des Paläozän zeichneten sich die benthischen Großforaminiferen (LBF) durch 
starke Diversifizierung von Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, 
und Operculina im sogenannten „Lockhartia-Meer“ aus, während im Eozän Alveolina,

Orbitolites, Nummulites, Assilina, und Discocyclina im Gebiet von Gamba und Tingri 
dominierten. Im Gegensatz zur monospezifischen Entwicklung der K-strategischen 
Gattungen in Europa tritt im Paläozän in Tibet schon früher eine größere Gattungs- und 
Artenvielfalt auf, und in einigen Gattungen (wie z.B. in Lockhartia und Kathina) haben 
sich ab der SBZ 2 mehr als eine Art entwickelt. Ein wichtiges Ergebnis ist die eindeutige 
Identifikation der Paläozän-Eozän Grenze in den Flachwasserkalken von Tingri anhand 
der Kohlenstoffisotopendaten vom Gesamtkarbonat. Diese Grenze befindet sich im 
oberen Teil der SBZ 5 und zeichnet sich nicht durch einen Umbruch in der 
Vergesellschaftung benthischer Foraminiferen aus. Ein bemerkenswertes Ereignis eines 
deutlichen und abrupten Faunenumbruchs (LFEO) mit Aussterben und Neuerscheinen 
von Arten wurde in Tibet beobachtet, charakterisiert durch das plötzliche Verschwinden 
aller lamellar-perforaten Großforaminiferen des Paläozän wie z.B. Lockhartia, Kathina, 
Daviesina, Miscellanea, Ranikothalia, und Operculina und die anfängliche Dominanz der 
frühen Porzellanschaler des Eozän durch Alveolina und Orbitolites. Dieses Ereignis 
(LFEO) markiert die Grenze zwischen SBZ 5 und 6 in Tibet und kommt möglicherweise 
nur in den niedrigen Breiten der Neotethys vor. Das LFEO ist zeitgleich mit dem Anstieg 
der Kohlenstoffisotope nach der negativen Exkursion und trat daher etwa 80 kyr nach 
der Paläozän-Eozän Grenze auf, entsprechend des Altersmodells dieser Exkursion. Das 
Zusammenfallen der LFEO mit der raschen Normalisierung der Isotopenwerte deuten 
auf einen gemeinsamen Mechanismus, der sowohl die Kohlenstoffisotope als auch die 
benthischen Foraminiferen der Flachwasserbereiche beeinflusste. 
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Mit Hilfe von hochauflösender Biostratigraphie mit Großforaminiferen wurden in den 
Kalksteinen des Zhepure Shan (Tingri) acht Mikrofaziestypen unterschieden, wobei ein 
besonderer Schwerpunkt auch auf der Palökologie der Großforaminiferen des Paläozän 
bis unteren Eozän lag. Ganz allgemein kann die mikrofazielle Entwicklung in Tingri mit 
dem Modell einer Karbonatrampe beschrieben werden, die in einen inneren, mittleren 
und äußeren Teil untergliedert war. Die Mikrofaziesanalyse deute auf einen generellen 
Vertiefungstrend des Ablagerungsraumes in Tibet während des Paleozän und unteren 
Eozän, der durch eine plötzliche Verflachung an der Paläozän-Eozän Grenze 
unterbrochen war. Dieses Verflachungsereignis wurde außer in Tibet auch in anderen 
Flachwassergebieten der Neotethys beobachtet. Im Hinblick auf die allgemeine 
Annahme eines globalen eustatischen Meeresspiegelanstiegs während der 
Treibhauswelt des Paläozän-Eozän könnte das Verflachungsereignis an der Paläozän-
Eozän Grenze als tektonische Hebung rund um die Tethys interpretiert werden. 
 
Tektonische Szenarien einer Kontinent-Kontinent Kollision zeichnen sich durch das 
Verschwinden ozeanischer Kruste aus und werden durch die Entwicklung eines 
peripheren Vorlandbeckens auf der subduzierten Ozeankruste gekennzeichnet. In Tibet 
wurden die Kalksteine des Paläogen von Gamba und Tingri benutzt, um die Entwicklung 
des nördlichen Randes der indischen Kontinentalplatte zu rekonstruieren sowie um den 
Zeitpunkt der Kollision zwischen Indian und Asien einzugrenzen. Basierend auf unseren 
Ergebnissen der Untersuchungen zur Stratigraphie, Paläontologie, Sedimentologie und 
Geochronologie sowie den Daten aus der Literatur schlagen wir vor, dass die 
tektonische Hebung an der Paläozän-Eozän Grenze den Beginn der Indien-Asien 
Kontinentalkollision in Tibet repräsentiert. Die zeitliche Übereinstimmung dieser Kollision 
mit der Kohlenstoffisotopenexkursion am PETM deutet darauf hin, dass letztere 
möglicherweise mit durch die Kollision ausgelöst wurde. 
 
Das PETM ist eines der zentralen Forschungsthemen der Geowissenschaften der 
letzten 20 Jahre. Dabei spielen Ausmaß und Ablauf der negativen CIE eine 
Schlüsselrolle zur Abschätzung der Menge und Geschwindigkeit des freigesetzten 
isotopisch leichten Kohlenstoffs während des PETM. Dies wiederum ist von großer 
Bedeutung für das Verständnis möglicher Quellen des isotopisch leichten Kohlenstoffs 
und der Auslösungsmechanismen des PETM. Unsere hochauflösende CIE-Kurve aus 
den tropischen Flachwasserkalken von Tibet zeigt in ihrem Ablauf sehr große 
Ähnlichkeit zu entsprechenden Kurven aus dem tiefen Ozean, allerdings ist die negative 
Exkursion im Flachwasser wesentlich stärker als im tiefen Wasser. Sie ist bezüglich der 
der Stärke jedoch zu einem gewissen Grade mit den Kurven vergleichbar, die von 
terrestrischen Profilen publiziert werden. Wir vermuten, dass der CIE des gesamten 
Ozeans in bestimmten Schritten zum Minimum der Kohlenstoffisotope am PETM abfällt, 
und die Stärke der Exkursion scheint graduell vom tiefen Ozean hin zum Flachwasser 
und Land anzusteigen. Unsere Resultate sind ein wichtiger Beitrag zur Überprüfung 
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möglicher Ursachen des PETMs in der Zukunft und tragen zweifellos zum besseren 
Verständnis der CIE am PETM in Flachwasserbereichen bei. 
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1. Introduction 

My study areas – Tingri and Gamba – are located in the Tethyan Himalaya of Tibet, 

where sedimentary rocks have recorded the history of the initial India-Asia collision and 

the closure of the Neo-Tethyan Ocean during the early Paleogene. In the thesis, I will 

mainly focus on the studies of the lower Paleogene limestones, which contain valuable 

information of the larger foraminiferal evolution, the initial India-Asia collision, and the 

Carbon Isotope Excursion (CIE) during Paleocene-Eocene Thermal Maximum (PETM).   

1.1 The early Paleogene larger foraminifera 

Foraminifera are non-tissue-forming one-celled marine protozoa (BouDagher-Fadel 

2008). Since the Paleozoic, foraminifera have existed in the Ocean and evolved more 

than 50,000 species (Hottinger 2001). By comparison with other more complicated, 

multicellular, tissue-forming invertebrate organisms, foraminifera usually have higher 

potential to be fossilized due to their larger population in the carbonate sediments. As a 

species, foraminifera showed rapid evolutionary process in the geologic history, and 

thus have been taken as one of the major biotic groups for the construction of 

biostratigraphy. Furthermore, foraminifera were also thought to represent ‘an ecosystem 

of their own by being comparatively independent of other biosystems’ (Hottinger 1997, 

2001), and thus commonly used as excellent ecological indicators to carry out 

paleoenvironmental interpretation and paleobathymetric reconstruction.     

According to their living strategy, foraminifera can be divided into two groups: planktonic 

and benthic foraminifera. The planktonic foraminifera usually float in the surface of the 

open ocean, whereas the benthic foraminifera can dwell in all depths of the ocean. The 

larger foraminifera basically belong to the benthic foraminifera, and they differ from small 

benthic foraminifera in having more complicated, internal structures and larger sizes (>3 

mm3 in volumes or >1 mm in diameter) (Hallock and Glenn 1986; Beavington-Penney 

and Racey 2004). Consequently, species determination of larger foraminifera has 

usually been conducted on the thin sections in which their internal structures are 

exposed. Under most circumstances, random cuttings of larger foraminifera exhibit quite 

different structures (Fig. 1), and only the axial and/or equatorial cuttings can afford the 

precise identification to the species level. Considering most fossilized larger foraminifera 

are preserved in the cemented limestones, to obtain the orientated cuttings of larger 

foraminiferal shells in randomly polished thin sections is usually a game of luck. So to 

collect samples densely in the field sections and prepare more thin sections from each 

sample are indispensable for studies of the larger foraminiferal biostratigraphy in the 

limestones.  



1 

8

Fig. 1 Aspect of different cuttings 
of Alveolina elliptica (Sowerby), 
1840. A and B show axial and 
equatorial cuttings, respectively, 
and 1 to 7 represent different 
oblique and tangential cuttings 
(from Hottinger 1974).  

Theoretically, the term of ‘species’ in larger foraminifera has been defined by 

‘quantitative morphological characters which are changing with time in one direction’ 

(Hottinger 2009). However, the morphology of larger foraminifera is affected not only by 

the internal genetic factor but also by external environmental conditions (Racey 1995), 

such as temperature, water depth, substrate, water energy, salinity, and so on. So it is 

rather difficult to assess the relative importance of morphological characters that can 

indicate the evolutionary trends. As a result, the diagnostic criteria of specific distinction 

are sometimes variable from different authors.  

Apart from the ambiguities in the specific identification, the criteria used to distinguish 

some sibling genera are not always consistent. For example, Blondeau (1972) divided 

the Family Nummulitidae into different genera (Nummulites, Assilina, Operculina, 

Ranikothalia etc.) on the basis of the features of ‘form of the spire, shape and 
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arrangement of the septa and chambers’. By contrast, Hottinger (1977) preferred 

choosing ‘shape and arrangement of stolons, sutural canals, and chambers’ as the 

diagnostic features. So, to resolve the above-mentioned questions, long-term taxonomic 

studies focused on a certain genera are needed, which, however, are not the objectives 

of the thesis. Therefore, with respect to the determination of the Paleocene and early 

Eocene larger foraminifera in Tibet, I simply followed the taxonomic descriptions given 

by Nuttall, Davies, Smout, Hottinger, Schaub etc. (see Chapter 2 for the details), who 

had once built the milestones in studying the taxonomy of the larger foraminifera in the 

Neo-Tethyan realm. 

Based on the determination of different species of larger foraminifera and the acquisition 

of their distribution in the sections, sequential biozones defined by the appearance and 

disappearance of certain species can be recognized, which have been used to 

designate the Shallow Benthic Zones (SBZ) in the western Neo-Tethyan realm (Serra-

Kiel et al. 1998). In Tibet, the construction of the SBZ was mainly built on the sections 

from the Tingri and Gamba areas. The biozones from the two areas can generally be 

correlated, and the index fossils of each biozone at Tingri and Gamba are approximately 

shared. Studies of the early Paleogene larger foraminiferal biostratigraphy in Tibet can 

be seen in Chapter 2. And in the light of great advantage of larger foraminifera for 

studying paleobathymetry and paleoecology of their sedimentary environments, the 

depositional evolution of the Zhepure Shan Formation at Tingri has been discussed in 

Chapter 3.     

1.2 Timing of the initial India-Asia continental collision 

The India-Asia collision is the most significant geologic event in the Cenozoic. It caused 

the closure of the Neo-Tethys equatorial seaway between India and Asia and the 

formation of high altitude and thick crust of the Tibetan Plateau, which in turn made a 

strong impact on the global ocean circulation and marine geochemistry (Richter et al. 

1992; Chesley et al. 2000; Le Houedec et al. 2012) and the Asian climate and river 

drainage patterns (Molnar et al. 1993; Clift and Blusztajn 2005). The timing of the initial 

India-Asia collision is one of the critical parameters for understanding the Tibetan 

Plateau formation and Himalayan Orogen evolution, and consequently has been paid 

special attention in the past. In spite of that, proposed ages for the initial India-Asia 

collision still vary greatly, ranging from the K/Pg boundary (~65 Ma) (Ding et al. 2005; 

Hu et al. 2012), to the P/E boundary (~56 Ma) (Garzanti 2008; Zhang et al. 2012) or the 

early Eocene (~50 Ma) (Zhu et al. 2005; Najman et al. 2010), and even to as late as the 

Eocene/Oligocene boundary (~34 Ma) (Aitchison et al. 2007).  
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The disagreements on timing of the initial India-Asia collision mainly result from the 

different understanding of the term ‘the initial India-Asia continental collision’ and 

correspondingly different working methods adopted. Theoretically, Searle et al. (1997) 

defined the collision as ‘the transition from marine to continental sedimentation within 

the suture zone’. By contrast, Rowley (1998) referred to ‘the elimination of Neo-Tethys 

oceanic lithosphere and the first development of a foreland basin on the Indian 

continent’ as the initial India-Asia continental collision. In essence, the first definition 

emphasizes the subaerial contact of the India and Asia plates whereas the second 

focuses on their subaqueous contact. Actually, the initial contact between the India and 

Asia continents occurred certainly in the ocean, and subsequently crustal shortening 

and thickening as well as topographical rising of the Indian and Asian continents drove 

the seawater out of the northern Indian continent, causing the closure of the eastern 

Neo-Tethyan Ocean and the India-Asia subaerial contact. Therefore, timing of the 

subaerial contact indicates only the minimum age of the continental collision while the 

first subaqueous contact of two continents represents the maximum age of the collision. 

Consequently, Rowley’s definition is more appropriate for the indication of the initial 

India-Asia continental collision. Surprisingly, the lag times between the subaerial and 

subaqueous contacts during the collisions are not always insignificant even over the 

geologic time scale, such as the Arabia-Eurasia collision in the Persian Gulf where the 

collision happened since the early Miocene but the marine environment still exists even 

now (Agard et al. 2005).  

Practically, a large variety of geologic methods have been adopted to constrain the age 

of the initial India-Asia collision, which mainly include (1) an abrupt decrease of the 

India-Asia convergence rate (Patriat and Achache 1984; Klootwijk et al. 1992; Copley et 

al. 2010; van Hinsbergen et al. 2011b), (2) paleolatitudinal overlap between the Tethyan 

Himalaya and the southernmost Lhasa block (Patzelt et al. 1996; Chen et al. 2010; 

Dupont-Nivet et al. 2010; Liebke et al. 2010; Yi et al. 2011), (3) ultrahigh-pressure 

metamorphism resulting from the northward subduction of the leading edge of Indian 

continental margin (de Sigoyer et al. 2000; Leech et al. 2005), (4) the latest marine 

sediments in the Tethyan Himalaya (Searle et al. 1987; Wang et al. 2002), (5) terrestrial 

faunal exchange between India and Asia (Jaeger et al. 1989; Clyde et al. 2003; 

Clementtz et al. 2011), (6) subsidence history of the northern Indian continental shelf 

(Rowley et al. 1998; Corfield et al. 2005), and (7) regional stratigraphy, sedimentology, 

and provenance analysis for dating the beginning of provenance change from India to 

Asia or the initial formation of a forebulge in the Tethyan Himalaya (namely the onset of 

a foreland basin) (Garzanti et al. 1987; Ding et al. 2005; Zhu et al. 2005; Wang et al. 

2011; Hu et al. 2012; Zhang et al. 2012). On one hand, these different methods have 

improved our understanding of the continent-continent collision; on the other hand, their 
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theoretical and/or practical limitations on dating the initial India-Asia collision have also 

caused (at least partly) the present confusion of the proposed collision ages. 

Wu et al. (2008) have published a comprehensive review on the timing of the initial 

India-Asia continental collision, and they pointed out that the sudden slowdown of the 

India-Asia convergence rate (method 1) may reflect the onset of the continental collision, 

but the possibility of an intrinsic decrease of the Indian oceanic spreading rate can also 

not be completely ruled out. Concerning method 2, they thought that the great dispute 

over the size of ‘Greater India’ (Ali and Aitchison 2005; van Hinsbergen et al. 2011b) 

and the lack of enough paleomagnetic data from the Asian continent greatly affected the 

validity of the method. In reality, although a large number of new paleomagnetic data 

from the southern Lhasa block have been published in 2010 (Chen et al. 2010; Dupont-

Nivet et al. 2010; Liebke et al. 2010; Sun et al. 2010; Tan et al. 2010), their proposed 

ages for timing of the India-Asia collision varied still greatly from ~60 Ma to ~42 Ma. 

Moreover, the ultrahigh-pressure rocks have only been reported in the western 

Himalaya (de Sigoyer et al. 2000; Leech et al. 2005), and the dating methods of 

eclogites (method 3) either have relatively larger error bars or are questioned by some 

geologists (O’Brien 2006). Methods 4 and 5 essentially indicate the subaerial contact 

between the India and Asia, and thus may provide only a minimum age for the collision. 

Method 6 is highly dependent on the biostratigraphic precision and resolution of the 

selected sedimentary sections, and it is also affected by the uncertainties from water 

depth of depositional environments and sea-level fluctuations (Corfield et al. 2005). 

Therefore, any updates of biostratigraphy, paleoenvironmental interpretations and sea-

level changes will influence the calculation of the subsidence history. Exceptionally, 

method 7 is developed to date the onset of a foreland basin on the Tethyan Himalaya by 

following Rowley’s definition. Theoretically it has the potential to provide the most robust 

age for the collision, and therefore has been used by us to constrain the initial India-Asia 

collision in Chapter 4.   

1.3 The PETM-CIE 

The PETM event was firstly reported by Kennett and Stott in 1991 through their 

investigations on the cores of Ocean Drilling Project 690, and since that more than 400 

papers dealing with the PETM have been published (McInerney and Wing 2011 and 

references therein). Past studies show that the PETM occurred at ~55-56 Ma 

(Westerhold et al. 2009; Jaramillo et al. 2010), and lasted for ~120-220 ka (Farley and 

Eltgroth 2003; Röhl et al. 2007; Aziz et al. 2008; Murphy et al. 2010). The climate, 

environment and biota during the PETM experienced drastic changes, including a more 

than 4° to 5°C global warming (Zachos et al. 2003), highly seasonal precipitation 

(Schmitz and Pujalte 2007), rapid ocean acidification and shallowing of the calcite 
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compensation depth (Zachos et al. 2005), abrupt reversal of deep-ocean circulation 

(Nunes and Norris 2006), planktonic foraminiferal diversification (Kelly et al. 1996), 

nannoplankton extinction and origination (Gibbs et al. 2006), shallow-water larger 

benthic foraminifera extinction and origination (Zhang et al. submitted), deep-water 

benthic foraminiferal extinction (Thomas and Shackleton 1996), and mammalian 

dispersal (Bowen et al. 2002). Most importantly, a sudden and distinct negative CIE has 

been found globally, from sediments, rocks, fossils, to organic matters both in the ocean 

(Bains et al. 1999) and on land (Koch et al. 1992). The magnitude and duration of the 

negative CIE have been adopted to evaluate the mass and tempo of light-carbon 

release, and those two parameters in turn provide the main constraints on the possible 

triggers and sources leading to the PETM-CIE. Theoretically, a massive release of 13C-

depleted carbon from the lithosphere to the ocean-atmosphere system has been 

generally accepted to interpret changes of climate, environment, carbon cycle, and 

ecosystems. However, some fundamental questions with respect to the PETM-CIE are 

still in dispute.  

a) Although the CIE curve from ODP 690 (Bains et al. 1999) is generally thought to 

represent the most complete record of carbon isotopic variations during the 

PETM, the possibility of incomplete sedimentary records in ODP 690 due to low 

sedimentation rates and ocean acidification during the PETM (Zachos et al. 2005) 

still cannot be totally ruled out. Moreover, no two CIE curves having similar 

structures have been reported until now. Thus, the true, detailed processes of the 

negative CIE are still unclear; 

b) Both the magnitude (McInerney and Wing 2011 and references therein) and the 

duration of the negative CIE (Farley and Eltgroth 2003; Röhl et al. 2007; Murphy 

et al. 2010) are still debated. The disagreements on them have fostered the 

growth of different hypotheses for not only the onset of the CIE, such as methane 

hydrate dissociation (Dickens et al. 1997), thermogenic methane from intrusive 

volcanism (Svensen et al. 2004), desiccation and oxidation of organic matter 

(Higgins and Schrag 2006), and thawing permafrost at the two poles (DeConto et 

al. 2012), but also the recovery of the CIE, including terrestrial silicate weathering 

(Dickens et al. 1997; Kelly et al. 2005) and regrowth of carbon stocks in the 

biosphere or shallow lithosphere (Bowen and Zachos 2012);       

c) Given that the magnitude and duration of the negative CIE are clear, most 

assumptions proposed for triggering the PETM-CIE were formulated only to meet 

the demand of the general mass and rate of light-carbon release, and none of 

them has been used to explain the detailed variations within the CIE curve; 
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d) There is still no solid evidence which is obtained from the geologic records and 

can directly confirm the exact sources of light-carbon release. 

Up to now, the studies of the PETM-CIE from the marine realm were mostly conducted 

on hemipelagic or pelagic sections from ODP and IODP, where both sediments and 

fossils are supposed to preserve their original 13C and 18O values. However, the 

stratigraphic thickness of the PETM-CIE from deep oceans is generally thin, with 0.15 m 

from ODP Site 865 (Kelly et al. 1996), 0.42 and 0.8 m from ODP Sites 999 and 1001 

(Bralower et al. 1997), 0.2 m from ODP Site 1051 (Katz et al. 1999), 0.25 m from ODP 

Site 1209 (Zachos et al. 2003), and ~1 m from ODP Site 690 (Kelly et al. 2005). The thin 

sedimentary records are caused by low sedimentation rates and carbonate dissolution 

due to ocean acidification (Zachos et al. 2005), which to some extent impede the further 

studies of the PETM-CIE.  

In Tibet, our preliminary investigations on bulk carbonate 13C show that the CIE is 

recorded in a ~9 m thick nodular limestones at Tingri. The thickness is ~9 times thicker 

than that from ODP 690 and ~6 times than that from the Global boundary Stratotype 

Section and Point (GSSP) in Dababiya (Aubry et al. 2007), indicating that there was a 

high sedimentation rate of the shallow-water limestones in the Tingri area during the 

PETM. Importantly, the similarity of the CIE structures at Tingri and ODP 690 not only 

confirms, for the first time, the validity of the CIE structures (such as small variations of b, 

c, d, e, f, g) from ODP 690 (Bains et al. 1999), but also provides a extended sedimentary 

section for the multidisciplinary studies of the PETM-CIE in the future. Discussions with 

this respect will be presented in Chapter 5. 
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Abstract 

The Paleocene-early Eocene Larger Benthic Foraminifera (LBF) in the far eastern Neo-

Tethyan Ocean of Tibet still remain unknown. Detailed studies on the LBF will not only 

contribute to the construction of high resolution biostratigraphy for shallow-water 

limestones in Tibet, but also improve our understanding of the larger foraminiferal 

evolution in the eastern Neo-Tethyan Ocean. Based on one continuous section at Tingri 

and three separate sections at Gamba, ten Shallow Benthic Zones (SBZs) ranging from 

SBZ 1 to 10 have been designated. In Tibet, the Paleocene LBFs are characterized by 

high diversification of Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, and 

Operculina. By comparison with those in Europe, the Paleocene LBFs in Tibet evolved 

much earlier with progressively generic and species diversity during SBZ 2-5. Adult 

dimorphism and large shell size of some LBFs as well as diversity differentiation 

between genera and species in the LBFs initiated as early as SBZ 3 in Tibet, suggesting 

that the occurrence of the Larger Foraminifera Turnover (LFT) was probably not 

synchronous in the entire Neo-Tethyan Ocean, because the LFT in Europe was 

generally thought to occur at the beginning of SBZ 5. During the early Eocene, the LBFs 

were evidently decreased on the generic level and increased on the species level, and 

some successful genera (Alveolina, Orbitolites, Nummulites, Assilina, Discocyclina) had 

gained predominance in the entire Neo-Tethyan Ocean, which is nearly identical to the 

evolution of the early Eocene LBFs in Europe and indicates a high-degree 

homogenization of the LBF in the entire Neo-Tethyan Ocean. The Paleocene-Eocene 

boundary in the shallow-water environments is clearly determined at Tingri, and it is 

situated in the upper part of SBZ 5 and associated with no evident biotic turnover of 

shallow benthic foraminiferal communities. Possible diachroneity of the LFT in the Neo-

Tethyan Ocean and evident lagging of the Paleocene-Eocene Thermal Maximum 

(PETM) behind the LFT imply that the LFT could only be the result of a natural 

evolutionary process and has no linkage with the PETM. Notably, a transient but distinct 

Larger Foraminiferal Extinction and Origination (LFEO) event has been found in Tibet, 

characterized by the sudden disappearance of all Paleocene lamellar-perforate LBFs, 

such as Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, and Operculina, and 

the initial dominance of early Eocene porcellaneous forms of Alveolina and Orbitolites. 

The LFEO marks the boundary between SBZ 5 and 6, and might only occur in the low 

latitudinal areas of the Neo-Tethyan Ocean. Additionally, the LFEO coincides with the 

onset of the Carbon Isotope Excursion (CIE) recovery, and postdates the Paleocene-

Eocene boundary ~80 kyr according to age models of the CIE. The synchronicity of the 

LFEO and the initial recovery of the CIE implies that some mechanisms causing the 

rapid recovery of the CIE probably had also led to the LFEO in the shallow-water 

environments of the low latitudinal areas.   
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2.1 Introduction 

Based mainly on the detailed studies of Paleocene-Eocene Alveolinids and Nummulitids 

by Hottinger (1960) and Schaub (1981), 20 Shallow Benthic Zones (SBZs) have been 

divided for the time interval of Paleocene and Eocene by Serra-Kiel et al. (1998). These 

SBZs have been used successfully to construct high resolution biostratigraphy in the 

shallow-water environments where were dominated by the Larger Benthic Foraminifera 

(LBF) (Scheibner et al. 2005; Drobne et al. 2011). However, the work from Hottinger 

(1960) and Schaub (1981) was mainly conducted in the western Neo-Tethyan Ocean of 

Europe. Direct application of the SBZs in the eastern Neo-Tethyan Ocean and regionally 

stratigraphic correlations of the shallow-water environments between Europe and Asia 

still remain to some extent ambiguous. 

The eastern Neo-Tethyan Ocean was once named ‘Ranikot Sea’ (Davies 1938) or 

‘Lockhartia Sea’ (Hottinger 1998) mainly owing to high diversity of the Paleocene 

Lockhartia from the Ranikot and Lockhart formations in the Indus basin. Geographically 

the Lockhartia Sea covers a huge area at least from Tibet in the east to the Persian Gulf 

in the west (Davies 1938). After a rough investigation on Alveolina from Pakistan, 

Hottinger (1971) came to a conclusion that ‘the larger foraminifera contained in these 

Far Eastern shallow water formations are similar to but not identical with Mediterranean 

assemblages’. In the recent 20 years, great progresses on larger foraminiferal 

biostratigraphy have been achieved in India and Pakistan by Butt (1991), Weiss (1993), 

Jauhri (1996, 1998), Ferràndez-Cañadell (2002), and Sameeni and Butt (2004), and a 

rough SBZ following those in Europe has been tentatively built in the Indus Basin by 

Afzal et al. (2010).  

Compared with India and Pakistan, Tibet was paleogeographically located in the 

easternmost Neo-Tethyan Ocean during the Paleocene and Eocene, which provides a 

unique chance to study the Paleocene-Eocene larger foraminiferal evolution. Although 

systematic descriptions on the Paleocene-Eocene LBF in Tibet has been reported about 

20 years ago (He et al. 1976; Zhang 1988; Wan 1990, 1991), a detailed biostratigraphic 

work following the concept of the SBZs is still missing. Therefore, further investigations 

on the Paleocene-Eocene LBF in Tibet can not only improve our understanding of the 

larger foraminiferal evolution in the east, but also consummate the SBZs within the 

entire Neo-Tethyan Ocean. 

This paper presents a first-hand detailed study of the Paleocene-early Eocene LBFs in 

Tibet, and shows high generic and species diversity of the LBFs during SBZ 2-10 in the 

eastern Neo-Tethyan Ocean. Our results indicate that the Paleocene LBFs might evolve 

more early in the east than those in the west, and the occurrence of the Larger 
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Foraminifera Turnover (LFT) was probably not synchronous in the entire Neo-Tethyan 

Ocean. Besides, a Larger Foraminiferal Extinction and Origination (LFEO) event is firstly 

found by us, which occurred at the boundary of SBZ 5 and 6 and coincided with the 

initial recovery of the Carbon Isotope Excursion (CIE). More importantly, based on a 

high resolution carbon isotopic variations at the P-E boundary, the P-E boundary in the 

shallow-water environment has been placed in the upper part of SBZ 5 by us, which 

conflicts with the opinion that the P-E boundary was located at the boundary between 

SBZ 4 and 5 (Orue-Etxebarria et al. 2001; Scheibner et al. 2005; Pujalte et al. 2009a, 

2009b; Scheibner and Speijer 2009), but is in agreement with the time interval for the P-

E boundary recommended by Serra-Kiel et al. (1998) and Hottinger (2001). 

2.2 Geologic setting and lithostratigraphy 

The Tethyan Himalaya of Tibet is bounded to the Lhasa Terrane by the Indus-Yarlung 

Zangbo Suture (IYS) to the north, and neighbours on the High Himalaya crystalline 

sequences by the South Tibet Detachment System (STDS) to the south (Yin and 

Harrison 2000) (Fig. 1). After the Lhasa Terrane rifted from Gondwana supercontinent in 

the Triassic (Liu and Einsele 1994), the Tethyan Himalaya persisted at the northernmost 

Indian continent, representing a passive continental margin environment until the end of 

the Paleocene (Zhang et al. 2012). Paleozoic to Cretaceous marine sedimentary strata 

are widely exposed within the Tethyan Himalaya, whereas the Paleocene-lower Eocene 

shallow-water limestones mainly crop out near the counties of Gamba and Tingri.  

 

Fig. 1 Schematic geological map of the Tethyan Himalaya showing the study areas of Tingri and Gamba 
in Tibet, modified from Zhang et al. (2012). Abbreviations: STDS, South Tibet Detachment System; ZGT, 
Zhongba-Gyangze Thrust; YZMT, Yarlung Zangbo Mantle Thrust; IYS, Indus-Yarlung Zangbo Suture; 
GCT, Great Counter Thrust; GT, Gangdese Thrust. 
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At Gamba and Tingri, the Paleocene limestones rich in LBFs were interpreted to 

represent a carbonate platform on the Indian passive continental margin (Willems 1993; 

Willems et al. 1996). At the P-E boundary, the India-Asia continental collision led to the 

flexure of the Indian continental margin and initial development of a foreland basin on 

the Tethyan Himalaya. Subsequently, owing to the maintenance of tectonic-induced 

uplift at Gamba and Tingri, the LBFs still highly thrived in these areas until the end of the 

Ilerdian. At the beginning of the Cuisian, southward migration of the foreland basin and 

arrival of a foredeep depozone to Gamba and Tingri caused a deepening of the 

depositional environment, which drowned the early Eocene carbonate ramp and 

terminated the Paleocene-early Eocene larger foraminiferal evolution in the areas 

(Zhang et al. 2012).  

Lithologically, the entire Paleocene-lower Eocene foraminifera-bearing carbonate 

sequences are named ‘Zhepure Shan Formation’ at Tingri and ‘Zongpu Formation’ at 

Gamba. Both of them overlie the quartz sandstones of the Jidula Formation and underlie 

the green marls/shales and lithic-rich sandstones of the Youxia Formation (Willems 1993; 

Zhu et al. 2005). The Paleocene-lower Eocene carbonate sequence can be subdivided 

into four members, from bottom to top: the cyclic limestones of Member A, the massive 

limestones of Member B, the nodular limestones of Member C, and the massive 

limestones of Member D (Fig. 2). The cyclic limestones comprise 7 cycles, and although 

the lower part of each cycle is usually covered by weathered carbonate debris, the 

upward lithological change from marls, nodular limestones to thin-bedded limestones in 

every cycle can be easily recognised in the field. The massive limestones are ~30-70 m 

thick and show no evident lithological changes. In the nodular limestones, the nodules 

and the surrounding matrix contain identical fossil assemblages, and based on 

paleontological, sedimentological and diagenetic evidence, the nodular limestones were 

interpreted to have been formed by differential diagenesis but not by allochthonous 

redeposition (Willems 1993). 

2.3 Materials and methods 

In Tibet, two key locations for studies of the Paleocene-early Eocene LBFs are situated 

in the surroundings of the Tingri and Gamba County. All the samples presented in the 

paper were collected from the two areas. At Tingri, one continuous Paleocene-lower 

Eocene carbonate sequence was measured in 2009 (Section 09ZS), and about 450 

samples were taken from the ~400 m thick Zhepure Shan Formation in 2009, 2010 and 

2011. Sampling density is ~1-1.5 m/sample at the basal 60 m where the LBFs are 

relatively barren and ~0.5-1 m/sample for the rest of the section. At Gamba, three 

separate sections ZP, ZM and F were measured in 1983 and 1992, and they together 

constitute a ~350 m thick carbonate sequence of the Zongpu Formation which is 
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lithologically comparable to the Zhepure Shan Formation at Tingri. Totally ~170 samples 

have been taken at Gamba.  

 

Fig. 2 Generalized lower Paleogene lithological column in Tibet. See fig. 3 for explanations of the 
lithological symbols. 

About 1000 thin sections have been polished from these samples and ~10,000 

photomicrographs have been taken to study the Paleocene-early Eocene LBFs. For 
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some of the late Ilerdian Nummulites and Assilina, orientated thin sections have been 

polished from isolated specimens.   

Determinations of the Paleocene-early Eocene LBF are mainly based on taxonomic 

descriptions given by Nuttall (1925), Davies (1927, 1930, 1932, 1940, 1952), Gill (1953), 

Smout (1954), Hottinger (1960, 1974, 2009), Sen Gupta (1963), He et al. (1976), Dorbne 

(1977), Caus et al. (1980), Schaub (1981), Leppig (1988), Zhang (1988), Wan (1990, 

1991), Butt (1991), Racey (1995), Jauhri (1996, 1998), Hottinger et al. (1998), 

Ferràndez-Cañadell (2002), Sameeni and Butt (2004), and Cherchi and Schroeder 

(2005). Especially, Hottinger’s unpublished monograph on ‘Paleogene rotaliids’ greatly 

contributed to the determination of some Paleocene LBFs. The shallow benthic zones in 

Tibet are defined by the appearance and disappearance of larger foraminiferal species 

in the time gradient (Hottinger 2001), essentially following the principle of Oppel Zone 

(Pignatti 1998; Serra-Kiel et al. 1998). 

Besides, in order to spike the position of the P-E boundary at Tingri, 372 fresh carbonate 

rocks with no reworked components or petrographically visible diagenetic alterations or 

veins from the Zhepure Shan Formation were prepared for measurements of carbon 

isotopes. The 13C measurements were conducted on a Finnigan MAT 251 

Spectrometer at MARUM (University of Bremen), and the results were calibrated to the 

PDB with standard deviation of <0.05‰ for 13C.  

2.4 Biostratigraphy 

Although no planktonic foraminifera or calcareous nannoplankton has been found from 

the Zhepure Shan Formation, the recognition of P 6-7 planktonic foraminifera and NP 12 

nannoplankton immediately overlying the Zhepure Shan limestones reveals an 

equivalent age of SBZ 10 for the termination of the LBFs at Tingri (Zhang et al. 2012). At 

Gamba, P 3 planktonic foraminifera of the angulata zone has been reported at the base 

of the Zongpu Formation (Willems 1993), which is roughly equal to time interval of the 

top of SBZ 1 and the base of SBZ 2.  

Following the Oppel Zone’s principle and calibrated by the data from planktonic 

foraminifera, the Zhepure Shan Formation at Tingri can be divided into 10 SBZs ranging 

from SBZ 1 to 10 (Fig. 3). At Gamba, the Zongpu Formation roughly lasts from SBZ 2 to 

7, and the deposition of a conglomerate layer between SBZ 5 and 7 indicates a 

sedimentary hiatus, accounting for the missing SBZ 6 (Fig. 4). There is no LBF but algae 

and small benthic foraminifera in SBZ 1 (Fig. 5). The main LBFs dominating time interval 

of SBZ 2-10 are presented in Figs. 6-9 with their biostratigraphic ranges in Figs. 3-4. The 

larger foraminiferal zonations are presented in Figs. 10-11 and described as follows. 
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         Fig. 3 Larger foraminiferal biostratigraphy and carbon isotopic variations of the Zhepure Shan Formation at Tingri. 
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  Fig. 4 Larger foraminiferal biostratigraphy of the Zongpu Formation at Gamba. Carbon isotopic curve is from Zhang et al. (2012). See fig. 3 for 
explanations of the lithological symbols. 
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SBZ 1 

SBZ 1 is tentatively subdivided into two parts. The lower part (SBZ 1A) is dominated 

mainly by udoteacean algae Halimeda. Small benthic foraminifera (rotalina, miliolina, 

textularina) and dasycladacean algae start to appear in the upper part (SBZ 1B). No 

LBFs have been found in SBZ 1 (Fig. 5). 

 

Fig. 5 Thin section photomicrographs of representative microfacies in SBZ 1. (a) Udoteacean algae-
dominated packstone in SBZ 1A, sample 52, Tingri; (b) Small bethic foraminifera-dasycladacean algae 
wackstone in SBZ 1B, sample 91, Tingri. U: Udoteacean algae; R: Rotaliids; T: Textulariids; D: 
Dasycladacean algae. 

SBZ 2 

The base of SBZ 2 is defined by the first appearance of Rotorbinella skourensis, Rotalia 

implumis1, Lockhartia retiata, L. prehaimei, Kathina aquitanica2, K. pernavuti, K. cf.

selveri, and Daviesina danieli. Among them, the dominant LBFs are Rotorbinella

skourensis, Lockhartia retiata and Daviesina danieli. 

SBZ 3 

The base of SBZ 3 is defined by the first appearance of Lockhartia haimei, L. roeae, 

Miscellanites primitivus, Keramosphaerinopsis haydeni, Daviesina khatiyahi, and D.

tenuis. Among them, Lockhartia haimei, L. roeae, Daviesina khatiyahi, D. tenuis and 

Keramosphaerinopsis haydeni dominate SBZ 3. Keramosphaerinopsis haydeni can be 

taken as an index fossil for SBZ 3 owing to its high abundance and limited 

biostratigraphic range. 

 

1 From Hottinger’s unpublished monograph on ‘Paleogene rotaliids’ 
2 From Hottinger’s unpublished monograph on ‘Paleogene rotaliids’ 
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Fig. 6 The Paleocene LBFs in Tibet. (1) Rotorbinella skourensis Pfender, 1938. Sample Zm 1, Gamba; (2) 
Rotalia implumis Hottinger. Sample 187, Tingri; (3) Rotalia cf. newboldi d’Archiac & Haime, 1853. Sample 
218, Tingri; (4) Lockhartia retiata Sander, 1992. Sample Zp 18, Gamba; (5) Lockhartia prehaimei Smout, 
1954. Sample Zp 10, Gamba; (6) Lockhartia roeae Davies, 1930. Sample Zm 10, Gamba; (7) Lockhartia 
aff. roeae Davies, 1930. Sample 214, Tingri; (8) Lockhartia haimei Davies, 1927. Sample Zp 42, Gamba; 
(9) Lockhartia altispira Smout, 1954. Sample Zp 57, Gamba; (10) Lockhartia aff. conditi Nuttall, 1926. 
Sample 228, Tingri; (11) Lockhartia conditi Nuttall, 1926. Sample 300, Tingri; (12) Lockhartia hunti Ovey, 
1947. Sample 452, Tingri; (13) Lockhartia tipperi Davies, 1926. Sample Fm 40, Gamba; (14) Lockhartia 
megapapulata Hu, 1976. Sample 259, Tingri; (15) Lockhartia sp., sample 205, Tingri; (16) Kathina 
aquitanica Hottinger. Sample 140, Tingri; (17) Kathina pernavuti Sirel, 1972. Sample Zp 12, Gamba; (18) 
Kathina cf. selveri Smout, 1954. Sample 132, Tingri; (19) Kathina nammalensis Smout & Haque, 1956. 
Sample Fr 7, Gamba; (20) Fallotella sp., sample 244, Tingri; (21) Orbitosiphon punjabensis Davies, 1937. 
Sample 287, Tingri; (22) Setia tibetica Douvillé, 1916. Sample 230, Tingri; (23) Miscellanites primitivus 
Rahaghi, 1983. Sample Zp 30, Gamba; (24) Daviesina danieli Smout, 1954. Sample Zp 54, Gamba; (25) 
Daviesina khatiyahi Smout, 1954. Sample Zp 27, Gamba; (26) Daviesina tenuis Tambareau, 1967. 
Sample 200, Tingri; (27) Daviesina sp., sample 228; (28) Daviesina langhami Smout, 1954. Sample 261, 
Tingri; (29-30) Keramosphaerinopsis haydeni H. Douvillé, 1916. Sample 173 & Zp 38, Tingri & Gamba; 
(31) Aberisphaera gambanica Wan, 1991. Sample Zp 60, Gamba. 

SBZ 4 

The base of SBZ 4 is defined by the first appearance of Rotalia cf. newboldi, Lockhartia 

altispira, L. aff. roeae, L. aff. conditi, Kathina nammalensis, Aberisphaera gambanica, 

Setia tibetica, Daviesina langhami, Ranikothalia sindensis, and Operculina cf. canalifera, 

and the last occurrence of Rotalia implumis, Lockhartia retiata, L. roeae, Kathina cf.

selveri, Miscellanites primitivus, and Keramosphaerinopsis haydeni. Among them, 

Lockhartia haimei, L. megapapulata, L. aff. roeae, L. aff. conditi, Aberisphaera

gambanica, Rotalia cf. newboldi, Kathina nammalensis, Setia tibetica, Ranikothalia 

sindensis, and Daviesina langhami appear in high abundance. Aberisphaera gambanica 

can be taken as an index fossil for SBZ 4. 

SBZ 5 

The base of SBZ 5 is defined by the first appearance of Lockhartia conditi, L. tipperi, L.

hunti, Miscellanea miscella, M. minor, Ranikothalia nuttalli, R. savitriae, R. thalicus, R.

sahnii, Operculina patalensis, O. subsalsa, O. jiwani, and Orbitolites sp., and in the 

upper part of SBZ 5, M. dukhani, M. complanata, M. cf. miscella and Alveolina 

vredenburgi start to appear. The top of SBZ 5 is characterized by the sudden 

disappearance of all lamellar-perforate LBFs, such as Miscellanea, Operculina, 

Lockhartia, Kathina, and Daviesina. The index fossils for SBZ 5 are Miscellanea miscella, 

Ranikothalia nuttalli, and Alveolina vredenburgi. 

SBZ 6 

The base of SBZ 6 is characterized by the dominance of small benthic foraminifera 

(mainly Lenticulina) together with Alveolina and Orbitolites. In the lower part of SBZ 6, 

Alveolina and Orbitolites are very low in abundance, and in the upper part, Alveolina 
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ellipsoidalis, A. cf. subtilis, A. agerensis, A. conradi, A. tibeticus, and Orbitolites sp. start 

to appear in higher abundance.  

 

Fig. 7 The Paleocene LBFs in Tibet. (1-2) Miscellanea miscella d’Archiac & Haime, 1853. Sample 292 & 
298, Tingri; (3) Miscellanea dukhani Smout, 1954. Sample 304, Tingri; (4) Miscellanea complanata Sheng 
& Zhang, 1976. Sample Fm 39, Gamba; (5) Miscellanea minor Sheng & Zhang, 1976. Sample Fm 5, 
Gamba; (6) Miscellanea cf. miscella d’Archiac & Haime, 1853. Sample Fm 19, Gamba; (7) Ranikothalia 
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nuttalli Davies, 1927. Sample Fm 21, Gamba; (8) Ranikothalia sahnii Davies, 1952. Sample Fm 41, 
Gamba; (9) Ranikothalia thalicus Davies, 1927. Sample 265, Tingri; (10) Ranikothalia savitriae Davies, 
1952. Sample Fm 49, Gamba; (11) Ranikothalia sindensis Davies, 1927. Sample 260, Tingri; (12) 
Orbitolites sp., sample 254, Tingri; (13) Operculina patalensis Davies, 1937. Sample Fm 8, Gamba; (14-15) 
Operculina subsalsa Davies, 1937. Sample 285 & 287, Tingri; (16) Operculina cf. canalifera d’Archiac & 
Haime, 1853. Sample 228, Tingri; (17) Operculina jiwani Davies, 1937. Sample Fr 12, Gamba; (18) 
Alveolina vredenburgi Davies & Pinfold, 1937. Sample 54, Gamba. 

SBZ 7 

The base of SBZ 7 is defined by the first appearance of Alveolina pasticillata, A. cf.

tumida, A. cf. subpyrenaica, A. moussoulensis, A. aragonensis, A. elliptica nuttalli, 

Orbitolites tingriensis, O. bellatulus, O. longjiangicus, and O. disciformis, and in the 

upper part Nummulites mamilla and N. subramondi appear in low abundance. Generally, 

Alveolina and Orbitolites show high abundance in this biozone. Lockhartia hunti, L.

conditi, and L. tipperi appear again, but they are very low in abundance and much 

smaller in size compared with those in SBZ 5.   

SBZ 8 

SBZ 8 is dominated by Nummulites, and its base is defined by the first appearance of 

Nummulites globulus and N. atacicus and the last occurrence of A. agerensis, A. 

tibeticus, A. pasticillata, and A. moussoulensis.  

SBZ 9 

SBZ 9 is defined by the first appearance of Alveolina citrea, Discocyclina sowerbyi, D. 

dispansa, Assilina leymeriei, A. sublaminosa, and A. subspinosa, and the last 

occurrence of Nummulites mamilla, N. subramondi, N. globulus, N. atacicus. Although 

Nummulites is still high in abundance in the lower SBZ 9, Assilina and Discocyclina start 

to gain the dominance of this biozone.  

SBZ 10 

This youngest SBZ is defined by the first appearance of Nummulites fossulata coexisting 

with Discocyclina and Assilina. Nummulites fossulata was firstly found in France where it 

was coexistent with Nummulites aquitanica (SBZ 10) and Nummulites praelucasi (SBZ 

10-11), indicating a possible stratigraphic range of SBZ 10-11 (Cizancourt 1945). 

Although it has been proposed to represent a Late Cuisian to earliest Lutetian age (SBZ 

12-13) in Oman (Racey 1995), it did appear as early as SBZ 10 in Tibet. The SBZ 10 

LBFs appear exclusively in the topmost 6 m of the Zhepure Shan Formation, 

representing the base of SBZ 10. 
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Fig. 8 The early Eocene LBFs in Tibet. (1) Alveolina cf. subtilis Hottinger, 1960. Sample Fm 55, Gamba; (2) 
Alveolina agerensis Gaemers, 1978. Sample 417, Tingri; (3) Alveolina pasticillata Schwager, 1883. 
Sample 459, Tingri; (4) Alveolina ellipsoidalis Schwager, 1883. Sample Fm 28, Gamba; (5) Alveolina cf.
tumida Hottinger, 1960. Sample 432, Tingri; (6) Alveolina cf. subpyrenaica Leymerie 1846. Sample Fm 25, 
Gamba; (7) Alveolina moussoulensis Hottinger, 1960. Sample Fm 25, Gamba; (8) Alveolina conradi 
Sameeni & Butt, 2004. Sample 412, Tingri; (9) Alveolina tibeticus Sheng & Zhang, 1976. Sample 424, 
Tingri; (10) Alveolina aragonensis Hottinger, 1960. Sample 439, Tingri; (11) Alveolina elliptica nuttalli 
Davies, 1940. Sample 468, Tingri; (12) Alveolina citrea Drobne, 1977. Sample 490, Tingri; (13) Orbitolites 
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tingriensis Zhang, 1988. Sample Fm 25, Gamba; (14) Orbitolites bellatulus Zhang, 1988. Sample Ff 35, 
Gamba; (15) Orbitolites longjiangicus Zhang, 1988. Sample Fm 25, Gamba; (16) Orbitolites disciformis 
Zhang, 1988. Sample 481, Tingri. 

 

Fig. 9 The early Eocene LBFs in Tibet. (1) Nummulites subramondi Harpe, 1883. Sample 471, Tingri; (2) 
Nummulites mamilla Fichtel & Moll, 1803. Sample 482, Tingr; (3-5) Nummulites globulus Leymerie, 1846. 
Sample 478 & isolated specimen, Tingri; (6-8) Nummulites atacicus Leymerie, 1846. Isolated specimen, 
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Tingri; (9-10) Assilina leymeriei d’Archiac & Haime, 1853. Isolated specimen, Tingri; (11) Assilina 
subspinosa Davies, 1937. Sample 498, Tingri; (12) Assilina sublaminosa Gill, 1953. Sample 492, Tingri; 
(13) Discocyclina dispansa Sowerby, 1840. Sample 499, Tingri; (14) Discocyclina sowerbyi Nuttall, 1926. 
Sample 492, Tingri; (15) Nummulites fossulata de Cizancourt, 1946. Sample 493, Tingri. 

2.5 The Paleocene-early Eocene larger foraminiferal evolution in Tibet 

Similar to other shallow marine environments of the Neo-Tethyan Ocean, there is 

completely no K-strategist LBF in Tibet during the period of SBZ 1, and it was thought to 

be the result of a mass extinction of the LBFs after the Cretaceous-Tertiary boundary 

(Hottinger 2001). In SBZ 2, a gradual appearance of some Paleocene LBFs, such as 

Rotorbinella, Rotalia, Lockhartia, Kathina, and Daviesina, represents the beginning of 

generic diversification of the LBF during the evolutionary process. Although the LBFs 

during this period have been proposed to evolve mainly towards the direction of 

increasing the number of new genera (Hottinger 2001), some LBFs, such as Lockhartia 

and Kathina, did start to develop different species.  

The following two biozones (SBZ 3-4) are characterized by progressively generic 

diversification and distinct species diversity of the LBFs. Some new genera 

(Keramosphaerinopsis, Miscellanites, Aberisphaera, Fallotella, Setia, Ranikothalia, and

Operculina) appear in the eastern Neo-Tethyan Ocean, and Lockhartia shows high 

diversity on the species level. The formation of the so-called ‘Lockhartia Sea’ probably 

initiates in SBZ 3. At that time, Keramosphaerinopsis haydeni (SBZ 3) has already 

shown distinct adult dimorphism and large shell size (Cherchi and Schroeder 2005) (Fig. 

6-29, 30), implying that the advantage of two different life strategies had been taken by 

some LBFs to adapt environmental changes of seasonality (Hottinger 1998). 

In SBZ 5, Lockhartia, Miscellanea, Ranikothalia and Operculina exhibit the highest 

species diversification, and adult dimorphism and large shell dimensions can be easily 

recognized from those LBFs. Although the abundance and diversity of Alveolina and 

Orbitolites are very low in SBZ 5, the existence of Alveolina vredenburgi (index fossil of 

SBZ 5) represents the first appearance of Alveolina in Tibet and indicates the beginning 

of the Ilerdian stage. 

In SBZ 6, all Paleocene lamellar-perforate LBF, such as Lockhartia, Kathina, Daviesina, 

Miscellanea, Ranikothalia, and Operculina, disappear suddenly, and the only two 

surviving genera, Alveolina and Orbitolites, gradually dominate this biozone. Since then, 

most of the early Eocene LBFs in Tibet have also been reported in Europe, which 

implies the vanishing of the so-called ‘Lockhartia Sea’ and indicates high-degree 

homogenization of the early Eocene LBF in the entire Neo-Tethyan Ocean.      
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Fig. 10 Stratigraphic distributions of the Paleocene LBFs in Tibet. 
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Fig. 11 Stratigraphic distributions of the early Eocene LBFs in Tibet. 

SBZ 7-8 are mainly dominated by Alveolina, Orbitolites, and Nummulites with the former 

two genera thriving in SBZ 7 and the latter one in SBZ 8. Some species of Lockhartia 

appear again but with very low abundance and smaller size. In SBZ 9-10, Alveolina, 

Orbitolites, and Nummulites are gradually substituted by Discocyclina and Assilina, 

which reveals a deepening of the depositional environment (Hottinger 1997) and has 

been interpreted to be caused by the arrival of a foredeep in the foreland basin (Zhang 

et al. 2012). Generally, the early Eocene larger foraminiferal evolution in Tibet reflects a 

complete success of Alveolina, Orbitolites, Nummulites, Discocyclina and Assilina during 

the process of the Global Community Maturation (GCM) (Hottinger 2001), and the 

decline of the LBFs at the very beginning of the Cuisian in Tibet was clearly caused by 

local tectonic activities owing to the India-Asia collision (Zhang et al. 2012).  
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2.6 Comparison of the Paleocene-early Eocene LBF between the 

eastern and western Neo-Tethyan Ocean 

 

Fig. 12 Evolution of larger foraminiferal generic and species diversity during the Paleocene-early Eocene 
in Tibet. Note that the red dotted line above SBZ 7 indicates uncertainty of species evolution. 

During the early Eocene, the Evolution of the LBFs is similar or nearly identical in the 

entire Neo-Tethyan Ocean, characterized by the dominance of highly diversified 

Alveolina, Orbitolites, Nummulites, Discocyclina and Assilina. However during the 

Paleocene, the LBFs show distinct differences between the east (Tibet, Pakistan, India, 

Persian Gulf) and the west (Spain). In the east, carbonate ramps were mainly dominated 

by the LBFs, which had been taken as a major carbonate producer for the construction 

of carbonate ramps. Evolution of the LBFs is characterized by high diversification of 

Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, and Operculina during SBZ 3-

5 and early differentiation between genera and species diversifications since SBZ 3 (Fig. 

12). It seems to be that Lockhartia and Kathina might have only fully evolved in the 

eastern Neo-Tethyan Ocean. By contrast, carbonate platforms in the west were mainly 

dominated by coralgal reefs during most time of the Paleocene (Scheibner and Speijer 
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2008), and Miscellanea, Daviesina, Ranikothalia, Assilina, and Glomalveolina are some 

frequently reported genera during SBZ 4-5 (Hottinger 1998).  

In the west, the LFT was defined as the ‘start of adult dimorphism and large shell size’ in 

the LBF evolution by Hottinger (1998). It took place at the boundary between SBZ 4 and 

5, and has been clearly illustrated by the evolution of Ilerdian Alveolina and Nummulites 

from the Tremp and Campo sections in Spain (Hottinger and Schaub 1960). However in 

Tibet, two lines of evidence, early differentiation of diversity between genera and species 

in the Paleocene LBF and early occurrence of adult dimorphism and large shell size in 

some LBFs, such as Keramosphaerinopsis haydeni (SBZ 3), Daviesina langhami (SBZ 

4-5), Miscellanea miscella (SBZ 5), imply that the Paleocene LBF evolved more early in 

Tibet than those in the west. As a result, the LFT probably also took place earlier in the 

east. Given that the LFT in the entire Neo-Tethyan Ocean occurred not synchronously, 

we support the opinion that the LFT reflects only the result of naturally evolutionary 

processes, and has no relationship with the Paleocene-Eocene Thermal Maximum 

(PETM) (Hottinger 1998).  
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Fig. 13 Thin section photomicrographs showing changes of the larger foraminifera at the P-E boundary. 
Note that there was no change of larger foraminifera at the onset of the CIE, however, a sudden 
disappearance of all Paleocene lamellar-perforate LBFs, such as Miscellanea, Ranikothalia, Lockhartia, 
Operculina, Kathina, and Orbitosiphon and the initial dominance of porcellaneous forams of Alveolina 
occurred at the onset of the CIE recovery, which has been tentatively named ‘Larger Foraminiferal 
Extinction and Origination (LFEO)’ by us. All the photomicrographs were taken from the continuous 
section at Tingri. A: Alveolina; K: Kathina; L: Lockhartia; Le: Lenticulina; Mil: Miliolids; Mis: Miscellanea; 
Op: Operculina; Or: Orbitosiphon; R: Rotaliids; T: Textulariids. 

At the boundary between SBZ 5 and 6, a distinct LFEO event is found by us for the first 

time. The LFEO is characterized by the sudden disappearance of all Paleocene 

lamellar-perforate LBF, such as Miscellanea, Ranikothalia, Operculina, Lockhartia, 

Kathina, and Daviesina, followed by the initial dominance of porcellaneous forms of 

Alveolina and Orbitolites (Figs. 13 c, d). It coincided with the onset of the CIE recovery, 

and the stratigraphic thickness covering the LFEO at Tingri is less than 30 cm, indicating 

that the LFEO probably occurred within ~10 kyr and postdated the P-E boundary ~80 kyr 

according to the age models for the CIE (Röhl et al. 2007; Murphy et al. 2010). The 

LFEO can be clearly recognized in the Tingri area of Tibet, and it has also been roughly 

reported in other low latitudinal areas of Pakistan (Afzal et al. 2010), Iran (Bagherpour 

and Vaziri 2011), Slovenia (Zamagni 2009), and even Egypt (Scheibner et al. 2005; 

Scheibner and Speijer 2008, 2009). In the middle latitude of Spain, however, it seems 

there is no interruption of the LBF evolution since Alveolina and Nummulites started to 

dominate the shallow water environment in SBZ 5. So, we tentatively speculate that the 

LFEO probably represents a transient but distinct shallow-water biotic event in the low 

latitudinal areas of the Neo-Tethyan Ocean. The coincidence of the LFEO and the onset 

of the CIE recovery implies that the PETM probably had a negligible impact on the LBF, 

however, some possible mechanisms causing the sudden recovery of the CIE (Bowen 

and Zachos 2010) might also lead to the LFEO in shallow water environments.     

We tentatively ascribe the different evolution of the Paleocene LBF between the east 

and the west to the latitudinal effect in the Neo-Tethyan Ocean (Scheibner and Speijer 

2008). Paleogeographically, the Neo-Tethyan Ocean was located close to the equator to 

the east and gradually extended into the middle latitude to the west. During the 

Paleocene, reef-building corals were not able to tolerate the rising temperature in low 

latitudes during the long-term global warming (Zachos et al. 2001) and retreated from 

the east to the west in the Neo-Tethyan Ocean (Scheibner and Speijer 2008), which 

might leave an ecological niche for the LBFs to thrive in the eastern Neo-Tethyan Ocean. 

Additionally, higher temperature in low latitudinal areas (Sewall et al. 2004) and overall 

oligotrophic conditions during the Paleocene (Scheibner and Speijer 2008) might 

accelerate the LBF evolution in the eastern Neo-Tethyan Ocean, leading to early 

differentiation of genera and species diversification and forming the unique ‘Lockhartia 
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Sea’. However, what on earth resulted in the LFEO and the vanishing of the ‘Lockhartia 

Sea’ close to the P-E boundary is still enigmatic.  

2.7 The P-E boundary in the SBZs 

The P-E boundary was officially defined by the beginning of the CIE (Aubry and Ouda 

2003), and is located at the base of P 5b and NP 9b in the plankton zones (Dupuis et al. 

2003). In the shallow benthic zones, however, there are still two main contrasting 

opinions concerning the P-E boundary. Serra-Kiel et al. (1998) and Hottinger (1998, 

2001) proposed a time interval for the P-E boundary, stretching roughly from the upper 

part of SBZ 5 to the middle part of SBZ 7. In contrast, Scheibner and Speijer (2009) and 

Pujalte et al. (2009a, 2009b) suggested to locate the P-E boundary at the transition of 

SBZ 4 and 5, coinciding with the base of the Ilerdian and the LFT (Fig. 14).  

 

Fig. 14 Comparison of the proposed positions for the P-E boundary in the Shallow Benthic Zones by 
different authors and carbon isotopic variations close to the P-E boundary at Tingri. The geologic time 
scale is revised from Berggren et al. (1995), and planktonic foraminifera, calcareous nannoplankton and 
shallow benthic zones are based on Berggen et al. (1995), Martini (1971) and Serra-Kiel et al. (1998), 
respectively. 

In the western Neo-Tethyan realm, the P-E boundary in the shallow-water environment 

has been well studied in Spain and Egypt where the upper Paleocene-lower Eocene 

limestones are relatively well preserved. In Spain, sedimentological studies from some 

shallow marine sections showed that there was a deposition of non-marine strata close 

to the P-E boundary (Pujalte et al. 2009a, 2009b). The non-marine strata unconformably 
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overlie the SBZ 4 strata and underlie the SBZ 5 marine limestones, and thus the 

boundary between SBZ 4 and 5 (or the base of the Ilerdian) is ambiguous owing to the 

lack of in-situ LBFs from the non-marine sediments. Notably, the P-E boundary defined 

by the onset of the CIE is recorded in the upper part of the non-marine strata in spite of 

poor expression of the CIE from soil carbonate nodules (Schmitz and Pujalte 2003; 

Pujalte et al. 2009a, 2009b). Therefore, the relationship between the non-marine interval 

and the base of the Ilerdian is key to constraining the P-E boundary in the shallow 

benthic zonations. Although the base of the Ilerdian was redefined in the stratotype 

section of Tremp and was proposed to be placed at the base of the Claret Conglomerate 

in order to take the base of the Ilerdian as the P-E boundary (Pujalte et al. 2009a), the 

designation is somehow not reasonable because the foundation of the Ilerdian Stage 

was originally based on the evolution of the LBFs. Thus, the true base of the Ilerdian can 

only be spiked through the determination of in-situ LBFs from a complete shallow marine 

section, not through arbitrary assignment according to the onset of the CIE. 

Consequently, it is not suitable to study the relationship of the P-E boundary and the 

base of the Ilerdian on the basis of the sections with the deposition of non-marine strata 

at the P-E boundary. In Egypt, Scheibner and Speijer (2009) have investigated the P-E 

boundary near the Galala Mountain where most of the studied sections recording the 

upper Paleocene to lower Eocene limestones represent a continental slope environment. 

In those sections, the SBZ 4 strata defined by Hottingerina lukasi (SBZ 4) contain the 

SBZ 5 index fossils such as Miscellanea miscella and Ranikothalia nuttalli (Hottinger 

1971; Jauhri 1996; Serra-Kiel et al. 1998), and some index species of both SBZ 5 and 6 

co-exist in the combinational biozones of SBZ 5/6. The ambiguous zonations among 

SBZ 4, 5 and 6 in this area probably result from the erosion and/or reworking in the 

continental slope setting. So, although the authors having studied the Paleocene-

Eocene shallow-water platforms in Spain and Egypt proposed that the P-E boundary 

was coincidently located at the boundary between SBZ 4 and 5, no convincing evidence 

from the LBFs has been presented to precisely spike the boundary between SBZ 4 and 

5 in these localities. In addition, the distinctness and completeness of the CIEs 

measured from soil carbonate nodules and bulk limestones in Spain and Egypt were 

strongly affected by diagenetic overprint and/or low resolution sampling, which to some 

extent also blurs the recognition of the P-E boundary. Thus, clearly defined SBZs from a 

continuous shallow marine section with no sedimentary hiatus at the P-E boundary and 

a high resolution CIE record from the same section are indispensable to clarify the P-E 

boundary in shallow marine environment. 

In the eastern Neo-Tethyan realm of Tibet, the section at Tingri represents the 

deposition of the complete shallow marine limestones covering the period of the 

Paleocene to early Eocene. The carbon isotopes measured from bulk limestone show 
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that an expanded CIE is recorded in a ~9 m thick marine nodular limestone. A high 

resolution sampling (20 cm/sample) and measurements of carbon isotopes (unpublished 

data) exhibit nearly identical patterns of the CIE with those from the reference section of 

ODP 690 (Bains et al. 1999), which implies that a complete sedimentary record at the P-

E boundary is preserved at Tingri. The expanded CIE curve clearly shows that the P-E 

boundary falls into the upper part of SBZ 5 (Fig. 14), which is straddled by 

biostratigraphic ranges of some typical index fossils of SBZ 5, such as Alveolina 

vredenburgi, Miscellanea miscella, and Ranikothalia nuttalli (Hottinger 1971; Jauhri 1996; 

Hottinger et al. 1998; Serra-Kiel et al. 1998), and associated with no evident biotic 

turnover of the shallow benthic communities (Figs. 13 a, b). Consequently, our results 

suggest that the P-E boundary should be placed at the beginning of the time intervals 

recommended by Hottinger (1998, 2001) and Serra-Kiel et al. (1998). Thus, it fits well 

with the P-E boundary in plankton zones through interzonal correlation schemes 

provided by Serra-Kiel et al. (1998), but is inconsistent with the work from Scheibner and 

Speijer (2009) and Pujalte et al. (2009a, 2009b). Additionally, it also suggests that the 

LFT was only the result of evolutionary processes, and has no relationship with the 

PETM because the occurrence of the LFT in the entire Neo-Tethyan Ocean clearly 

predated the drastically climatic and environmental changes during the PETM.   

2.8 Conclusions 

On the basis of our studies of the Paleocene-early Eocene LBFs in Tibet, 10 biozones 

from SBZ 1 to 10 have been established from the Zhepure Shan Formation at Tingri. At 

Gamba, the deposition of the Zongpu Formation started from SBZ 2 and terminated in 

SBZ 7. Totally, 72 species from 19 genera have been identified, and their 

biostratigraphic ranges in the shallow benthic zones have been tentatively assigned. In 

Tibet, the Paleocene LBFs show high diversity of Lockhartia, Kathina, Daviesina, 

Miscellanea, Ranikothalia, and Operculina. The differentiation between genera and 

species diversity and the beginning of adult dimorphism and large shell size from some 

LBF took place as early as SBZ 3, indicating that occurrence of the LFT was not 

synchronous in the entire Neo-Tethyan Ocean and the LFT might take place earlier in 

the east than in the west. During the early Eocene, some successful genera of Alveolina,

Orbitolites, Nummulites, Assilina, and Discocyclina gained their predominance in the 

Neo-Tethyan Ocean, and the LBFs showed a high-extent homogenization in the Neo-

Tethyan Ocean. In addition, a transient LFEO event has been found by us. It occurred at 

the boundary between SBZ 5 and 6, and coincided with the beginning of the CIE 

recovery, implying that some possible mechanisms causing the sudden CIE recovery 

probably also led to the LFEO in the low latitudinal areas. Importantly, high resolution 

carbon isotopic variations and well-defined SBZs at Tingri clearly demonstrate that the 
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P-E boundary is located at the upper part of SBZ 5, not at the boundary between SBZ 4 

and 5 proposed by some authors.  
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Abstract

The Zhepure Shan Mountain area near Tingri County exposes the most complete 

sedimentary record of the lower Paleogene limestones in the Tethyan Himalaya of south 

Tibet, and it provides a good chance to study the evolution of larger foraminifera and 

their depositional environments. Based on the ~400 m thick limestones of the Zhepure 

Shan Formation at Tingri and the high resolution biostratigraphy, eight microfacies types 

have been designated with special emphasis on the paleoecology of the larger 

foraminifera. Five microfacies types in the Paleocene consist of algal limestones with 

small benthic foraminifera (MF 1) in SBZ 1, larger rotaliidae packstones with algae (MF 2) 

in SBZs 2-3, rotaliidae-nummulitidae packstones with algae (MF 3) in SBZ 4, and 

miscellaneidae-nummulitidae-rotaliidae floatstones with dasycladacean algae (MF 4), 

and proximal tempestites (MF 5) in SBZ 5. Three microfacies types in the early Eocene 

are Alveolina packstones/floatstones with Orbitolites (MF 6) in SBZs 6-7, Nummulites-

Alveolina floatstones with Orbitolites (MF 7) in SBZs 7-8, and Discocyclina-Assilina 

floatstones with Nummulites (MF 8) in SBZs 9-10. Generally, the development of the 

microfacies assemblages can be summarized by a carbonate ramp model with an inner 

ramp depositing MFs 1, 2, 3, and 6, a mid-ramp with MFs 3, 4, 5, and 7, and an outer 

ramp with MF 8. Overall, microfacies analyses suggest that there was a deepening of 

depositional environments during the Paleocene and early Eocene at Tingri, which was 

interrupted by a sudden shallowing event at the Paleocene/Eocene (P/E) boundary. In 

addition to the Tingri area of Tibet, the shallowing event has also been reported from 

other shallow marine environments surrounding the Neo-Tethyan Ocean. Together with 

the opinion of a eustatic rise at the P/E boundary, the shallowing event may imply that 

there was a circum-Tethyan tectonic uplift once taking place close to the P/E boundary.     

3.1 Introduction 

During the last decade, special attention has been paid on the lower Paleogene larger 

foraminiferal limestones in the Neo-Tethyan realm, and some related studies include 

larger foraminiferal biostratigraphy and biogeography (Özcan et al. 2006; Less et al. 

2007; Afzal et al. 2009, 2010; Drobne and osovi  2009; Scheibner and Speijer 2009; 

Drobne et al. 2011), sedimentary facies and carbonate platform evolution ( osovi  et al. 

2004; Scheibner et al. 2007; Scheibner and Speijer 2008; Zamagni et al. 2008; 

Bagherpour and Vaziri 2011; Höntzsch et al. 2011), response of larger foraminifera to 

the Paleocene-Eocene Thermal Maximum (PETM) (Hottinger 1998; Scheibner et al. 

2005; Zamagni 2009), and the P/E boundary in the Shallow Benthic Zones (SBZs) 

(Pujalte et al. 2009; Scheibner and Speijer 2009). The growing interest in studying the 

lower Paleogene larger foraminiferal limestones is partly due to the establishment of the 

SBZs in 1998 (Serra-Kiel et al. 1998), which makes it possible to study the evolution of 
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the Paleocene-Eocene carbonate platform with high time resolution. Furthermore, the 

PETM was a transient warming event with drastic paleoenvironmental perturbations, and 

has caused different biotic effects on land, in the shallow marine environments and deep 

seas (e.g., mammalian dispersal, larger foraminiferal extinction and origination, benthic 

foraminiferal extinction event) (Thomas and Shackleton 1996; Hottinger 1998; Bowen et 

al. 2002; Zhang et al. submitted). Consequently, to understand the response of the 

shallow benthic communities to the PETM will contribute to predicting changes of 

shallow marine ecosystem with anthropogenic global warming in the coming future. In 

addition, a distinct negative Carbon Isotope Excursion (CIE) associated with the PETM 

has been recognized globally (McInerney and Wing 2011, and references therein), from 

paleosol carbonates and mammalian tooth enamel on land (Koch et al. 1992) to 

sediments and foraminiferal shells in the ocean (Kelly et al. 1996; Bains et al. 1999). 

Owing to the synchronicity of the CIE in the ocean and on land, the onset of the CIE can 

represent a globally correlatable chronostratigraphic level, and thus has been adopted to 

define the P/E boundary (Aubry et al. 2007). According to this geochemical criterion, the 

P/E boundary occurs in the uppermost part of the Clarkforkian North American Land 

Mammal age on land (Bowen et al. 2001), the middle part of Zone NP 9 (calcareous 

nannofossils) and the lower part of Zone P 5 (planktonic foraminifera) in open marine 

settings (Berggren and Pearson 2005). However in the shallow marine environments, 

convincing evidence showing the precise location of the P/E boundary within the SBZs is 

still missing (Serra-Kiel et al. 1998). So, to spike the P/E boundary in the shallow marine 

environments is also a strong drive for biostratigraphers and paleontologists. 

Most of above-mentioned studies on the larger foraminiferal limestones have been 

conducted in the western Neo-Tethyan realm, such as Spain, Slovenia, Turkey, Iran, 

and Egypt (Scheibner et al. 2007; Zamagni et al. 2008; Özcan et al. 2010; Bagherpour 

and Vaziri 2011; Höntzsch et al. 2011). In the east, especially the Tethyan Himalaya of 

south Tibet, high altitude and abominable climate assuredly impeded the scientific 

investigations. Therefore, only primary investigations have been conducted on the 

Paleocene-Eocene limestones in the past, which include systematic descriptions of 

larger foraminifera and microfacies analyses (He et al. 1976; Zhang 1988; Wan 1990, 

1991; Willems 1993; Willems et al. 1996). Unfortunately, microfacies analyses carried 

out by Willems et al. (1993) were based on some incomplete sections, and the 

construction of larger foraminiferal biostratigraphy (Willems et al. 1996) was relatively 

rough compared with the SBZs in the west (Serra-Kiel et al. 1998). Therefore, further 

microfacies studies with high resolution biostratigraphy are necessary in order to 

improve our understanding of time-dependent changes of depositional environments at 

Tingri. Based mainly on a new, complete Paleocene-lower Eocene section (Section 

09ZS), we have constructed a high resolution biostratigraphy at Tingri by following the 
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concept of the SBZs (Zhang et al. submitted). By integrating our new biostratigraphic 

work, here we will discuss the Paleocene and early Eocene development of microfacies 

and depositional environments in the Tingri area of Tibet.  

 3.2 Geologic setting

The Tethyan Himalaya lies between the Lhasa Terrane to the north and the High 

Himalaya to the south (Yin and Harrison 2000), and consists of upper Precambrian to 

lower Paleogene sedimentary and metasedimentary rocks. Before the initial India-Asia 

continental collision, the Tethyan Himalaya represents the north-facing Indian passive 

continental margin, deepening from a shallow shelf environment in the south (e.g., Tingri 

and Gamba areas) to a continental slope and oceanic basin in the north (e.g., 

Sangdanlin area) (Liu and Einsele 1994). The India-Asia continental collision at the P/E 

boundary initiated the development of an underfilled peripheral foreland basin in the 

Tethyan Himalaya (Rowley 1998; Zhang et al. 2012), causing a flexural subsidence (a 

foredeep) at the proximal part (e.g., Sangdanlin area) and a flexural uplift (a forebulge) 

at the distal part (e.g., Tingri and Gamba areas) (DeCelles and Giles 1996). Owing to 

progressively southward migration of the foreland basin, the distal part of the basin 

experienced a tectonically-driven subsidence history with firstly shallowing, then 

deepening, and eventually shallowing processes (DeCelles et al. 1998), and formed 

vertical superpositions of the so-called ‘underfilled trinity’ such as in the Alpine foreland 

basin, representing the sequential dominance by the depozones of the forebulge, the 

foredeep, and the wedge-top (Sinclair 1997). The lower Paleogene sedimentary strata in 

the Tethyan Himalaya have been used to perfectly demonstrate the complete 

geodynamic evolution of the northernmost Indian continent from a passive continental 

margin to an underfilled peripheral foreland basin (Garzanti et al. 1987; Zhang et al. 

2012). After the initial continental collision, continuous convergence between the India 

and Asia continents caused crustal shortening and uplift of the Himalayan Orogen to the 

altitude of ~5000 m, which deformed and eroded most of the Paleogene sedimentary 

strata in the Tethyan Himalaya (Yin and Harrison 2000). As a result, the Paleocene-

lower Eocene limestones in south Tibet are only sporadically preserved in the areas 

near Tingri, Gamba, and Guru (Fig. 1).  

The studied Section 09ZS is located at the south flank of the Zhepure Shan Mountain 

near Tingri County. From the bottom to top, the Section 09ZS consists of the Jidula, 

Zhepure Shan, Youxia, and Shenkeza formations (Figs. 2 and 3). The lower Danian 

Jidula Formation is mainly composed of calcareous quartz sandstones, which was 

interpreted as a seaward prograding delta plain (Willems et al. 1996). Above the Jidula 

Formation, the Danian-Ilerdian larger foraminiferal limestones of the Zhepure Shan 

Formation are the focus of this study. Conformably overlying the Zhepure Shan 
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Formation, the Cuisian Youxia Formation consists of greenish-gray marls and shales 

intercalated with thin-bedded green-colored sandstone and limestone beds. Marls and 

shales are rich in planktonic foraminifera and calcareous nannofossils, and tabular 

sandstone beds having numerous flute casts have recorded the first Asian-derived 

detritus in the Tingri area (Zhu et al. 2005). Thus, the Youxia Formation was interpreted 

to have been deposited in an outer shelf environment and represent the arrival of a 

foredeep depozone to the Tingri area (Zhu et al. 2005). Upward, the Shenkeza 

Formation is composed of red mudstones and shales interbedded with lens-shaped 

sandstones, indicative of a continental fluvial channel and floodplain environment. A 

paleosol horizon at the basal Shenkeza Formation suggests an unconformable contact 

between the Youxia and Shenkeza formations, which marks the transition from the latest 

marine sediments to the first continental sediments in the Tethyan Himalaya, and implies 

changes of depozones from a foredeep to a wedge top in the Tingri area as the result of 

southward migration of the foreland basin (Zhang et al. 2012). 

 

Fig. 1 Schematic geological map of the Tethyan Himalaya showing the study areas of Tingri and Gamba in 
Tibet, modified from Zhang et al. (2012). Abbreviations: STDS, South Tibet Detachment System; ZGT, 
Zhongba-Gyangze Thrust; YZMT, Yarlung Zangbo Mantle Thrust; IYS, Indus-Yarlung Zangbo Suture; 
GCT, Great Counter Thrust; GT, Gangdese  
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Fig. 2 Satellite image (from Google Earth) showing the locations of the Jidula, Zhepure Shan, Youxia, and 
Shenkeza formations in Section 09ZS near the Zhepure Shan Mountain. 

3.3 Materials and methods 

The Section 09ZS has been logged and described in 2009. About 450 limestone 

samples from the Zhepure Shan Formation have been collected for polishing thin 

sections. The samples are named after Arabic numbers consecutively from 1 to 321 and 

then from 408 to 500, and the absence of sample numbers between 322 and 407 is 

owing to our sampling strategy. In the laboratory, at least one thin section has been 

prepared from each sample, and most of the thin sections have relatively bigger sizes (9 

cm × 6 cm or even larger) in order to fully investigate textural and compositional features 

of the samples. Textural classifications originally proposed by Dunham (1962) and later 

expanded by Embry and Klovan (1971) are adopted to describe the samples. Through 

transmitted-light microscopy, four categories (rare, few, common, abundant) have been 

used to evaluate relative abundance of carbonate grains in thin sections. Determination 

of microfacies types is mainly based on rock textures, fossil assemblages (mainly 

calcareous algae and larger benthic foraminifera), and other biogenic and abiogenic 

carbonate particles (Flügel 2004). Owing to the limited space of a figure suitable for 

publication purpose, only representative samples used for microfacies analysis are 

presented in Figs. 4-7. All samples and thin sections used for this study are placed in the 

Department of Geosciences, University of Bremen, Germany. 
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3.4 Litho- and bio- stratigraphy of the Zhepure Shan Formation  

 

Fig. 3 Generalized lower Paleogene lithological column at Tingri with the biostratigraphy adopted from 
Zhang et al. (submitted). Photos are taken from the eastern side of the section. See Fig. 7 for explanations 
of the lithological symbols. 

The carbonate sequence of the Zhepure Shan Formation in Section 09ZS is ~ 400 m 

thick, and consist of four lithologically distinct members, including cyclic limestones of 

Member A, massive limestones of Member B, nodular limestones of Member C, and 

massive limestones of Member D from the bottom to top (Fig. 3).  

Member A is ~165 m thick with its base covered by weathered sedimentary debris, and 

therefore the contact between the underlying Jidula Formation and the overlying 
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Zhepure Shan Formation is unclear. The cyclic limestones comprise 7 cycles, and the 

thickness of each cycle is ~15-25 m except for the first cycle at the base having a 

thickness of >40 m. Each cycle is composed of lithologically soft marls and/or nodular 

limestones in the lower part and nodular limestones and/or medium to thickly bedded or 

massive limestones in the upper part. Compared with the limestones in the upper part, 

soft marls in the lower part are susceptible to physical erosion, which results in 

morphologically clear-cut concave surfaces in the lower part and forms visually striking 

cyclic limestones (Fig. 3). The lithological changes from marls, nodular limestones, to 

medium to thickly bedded or massive limestones in each cycle indicate that there is an 

upward decrease of clay contents and increase of carbonate contents. Member B is ~70 

m thick and comprises mainly grey massive limestones with intercalations of medium to 

thickly bedded nodular limestones. Member C has a thickness of ~90 m, and consists of 

nodular limestones and a few thin and medium limestone beds. Vertically, several 

morphologically distinct sedimentary packages with the thicknesses of ~1-10 m can be 

recognized. The typical limestone assemblage in the package comprises matrix-

supported nodular limestone at the bottom, nodular limestone with fitted fabric type in 

the middle, and nodular limestone with layering beds or thinly to medium bedded 

limestone at the top. The transition between different limestones is gradational. Member 

D is ~75 m thick and its majority is dominated by monotonous massive limestones. The 

top of Member D includes a ~4 m nodular limestone layer, which is overlain by ~6 m 

thinly bedded marly limestones. Continuing upwards, green marls and sandstones of the 

Youxia Formation rest conformably upon Member D.  

The biostratigraphy of the Zhepure Shan Formation is mainly based on the 

determination of larger benthic foraminifera. Following the Oppel Zone’s principle and 

the concept of SBZ proposed by Serra-Kiel et al. (1998), totally 10 SBZs ranging from 

SBZ 1 to 10 have been divided. Member A represents the time interval of SBZs 1-2, and 

Member B belongs to SBZ 3 and the lower part of SBZ 4. Upwards, the upper part of 

SBZ 4, and SBZs 5-6 are all contained in Member C with the P/E boundary in the upper 

part of SBZ 5. In the end, Member D represents time interval from SBZ 7 to the 

lowermost of SBZ 10. (Fig. 3) (Zhang et al. submitted).  

3.5 Microfacies description and interpretation 

MF 1 Algal limestones with small benthic foraminifera  

Description 

MF 1 occurs at the lower part of Member A with a thickness of ~105 m, including the first 

four cycles of the cyclic limestones. Biostratigraphically it belongs to SBZ 1 (Fig. 4). MF 
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1 consists of poorly sorted udoteacean algal (mainly Halimeda and Ovulites) floatstones 

and grainstones in the first cycle (Fig. 8A and B) and dasycladacean algal wackestones 

and grainstones with small benthic foraminifera in the overlying three cycles (Fig. 8C). In 

the first cycle, Ovulites and large skeletal grains of Halimeda (~2-12 mm long) with 

micrite envelops are quite abundant, and echinoderms, gastropods, bivalves, and 

ostracods are some main subordinate organisms, which appear also frequently and 

sometimes have relatively high abundance. Selective dolomitization is a quite distinctive 

diagenetic phenomenon in this interval, occurring mainly in the matrix of floatstones and 

forms euhedral dolomite rhombohedrons. In the overlying three cycles, dasycladacean 

green algae (e.g., Cymopolia) and small benthic foraminifera with porcellaneous-walled 

miliolina, conical agglutinated textulariina, and hyaline-walled rotaliina start to take the 

place of Halimeda in spite of their low abundance. Both abundance and diversity of 

subordinate organisms decrease, and ostracods is the only one appearing continuously. 

Finely broken thalli of erect, articulated corallinacean red algae (e.g., Jania) with a few

Lockhartia and Kathina occur at the upper boundary of MF 1. In the entire MF 1, 

occurrences of terrestrial quartz and peloids as well as fecal pellets are common, and 

coral exists but with very low abundance and frequency. In addition, geopetal fabrics can 

occasionally be recognized in some grainstones.  

Interpretation 

MF 1 is interpreted to have been formed in a coastal, nutrient-rich, open, shallow lagoon 

with a nearby sand shoal. Udoteacean and dasycladacean green algae are mostly 

common in a normal saline, low-energy environment with water depths of a few meters 

and with sand or mud bottoms (Wray 1977; Flügel 2004), and the diversification of the 

Paleocene Halimeda was also thought to indicate a nutrient-rich, open lagoonal 

environment (Dragastan and Herbig, 2007). The co-existence of dominant 

floatstones/wackestones and subordinate grainstones points to a generally low but 

sometimes high energy environment, and implies alternating dominance of environment 

by the lagoon and the sand shoal. Frequent occurrences of detrital quartz imply that the 

lagoon was close to a shoreline and affected by terrestrial influx, causing the nutrient-

rich condition in the lagoon.  
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Fig. 4 Distribution and relative abundance of main fossil components and carbonate particles from the Zhepure Shan Formation characterizing 
MF 1. Note that the red sample numbers in Figs. 4-7 are selected to show the representative microfacies in Figs. 8-9.   
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MF 2 Larger rotaliidae packstones with Keramosphaerinopsis and algae  

Description 

MF 2 occurs in the upper part of Member A and the lower part of Member B, which 

biostratigraphically represents the time interval of SBZ 2 and 3 (Fig. 5). MF 2 is 

characterized by lamellar-perforate larger rotaliidae packstones with calcareous algae. 

Dominant components of the rotaliidae in MF 2 are composed of Lockhartia, Kathina, 

Rotalia, Rotorbinella, and Daviesina in SBZ 2 (Fig. 8D) and with an addition of 

porcellaneous Keramosphaerinopsis in SBZ 3 (Fig. 8E). Although smaller benthic 

foraminifera still occur frequently, MF 2 is gradually taken over by so-called ‘K-strategist’ 

larger foraminifera (Hottinger 1983). Generally, calcareous algae thriving in MF 1 are still 

relatively abundant in MF 2 except that the content of Halimeda shows an up-section 

decrease. Moreover, corallinacean red algae occur quite frequently by comparison with 

those in MF 1. The occurrences of echinoderms, gastropods, bivalves, and ostracods 

with high frequency and low abundance can be recognized, and corals in colony can be 

found occasionally. The input of terrestrial detrital quartz is still quite frequent, and 

peloids, ooids, and fecal pellets are some common non-skeletal carbonate grains.  

Interpretation 

Larger foraminifera are referred to a certain group of benthic foraminifera usually having 

complex internal structures and larger size with > 3 mm3 in volumes or > 1 mm in 

diameter (Hallock and Glenn1986). They prefer to shallow (< 120-140 m), warm, 

oligotrophic marine environment, and many, if not all, larger foraminifera harbor 

symbiontic algae in their chamber endoplasm. Different classes of symbiotic algae 

preferentially utilize different light quality (including intensity and wavelength) 

(Leutenegger 1984), and so depth distributions of larger foraminifera are mainly 

constrained by light throughout its impact on symbiontic algae. Consequently, larger 

symbiont-bearing foraminifera are regarded as a good indicator for bathymetric analyses 

(Hottinger 1997). During the early to middle Paleocene, the co-occurrence of Lockhartia, 

Rotalia and Daviesina was interpreted to indicate the shallower part of the upper photic 

zone with water depth of <40 m (Hottinger 1997). The existence of a large number of 

Keramosphaerinopsis also points to a relatively shallow, well-lit environment because 

the porcellaneous imperforate walls are composed of optically cryptocrystalline lathes, 

rods or needles of magnesium calcites arranged randomly in the outer wall layer, which 

functions as inhibition of strong light penetration and specially adapts for very shallow 

marine environment (Hottinger 2006). Although frequent occurrences of corallinacean 

red algae are indicative of a relatively agitated water body, the dominant limestone 
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    Fig. 5 Distribution and relative abundance of main fossil components and carbonate particles from the Zhepure Shan Formation characterizing MF 2. 
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texture of packstones and well preserved fossils in MF 2 show that there was still a low 

to moderate energy environment. The existence of detrital quartz probably reveals that 

the depositional environment is still affected by terrestrial input. Collectively, MF 2 is 

interpreted as the offshore part of an inner ramp with water depth of < 40 m. 

MF 3 Rotaliidae-nummulitidae packstones with Aberisphaera and algae

 Description 

MF 3 occurs in the upper part of Member B and the lower part of Member C, which 

biostratigraphically represents the time interval of SBZ 4 (Fig. 6). The main biota in MF 3 

include Lockhartia, Kathina, Rotalia, Rotorbinella, Daviesina, Aberisphaera, Setia, 

Ranikothalia, Operculina, Fallotella, and Orbitosiphon (Fig. 8F and G). Occurrences of 

corallinacean red algae and udoteacean green algae are gradually decreasing up-

section, and other subordinate organisms in MF 3 are quite similar to those in MF 2. 

With respect to non-skeletal grains, a decrease of detrital quartz content and increase of 

fecal pellets can be seen by comparison with those in MF 2. 

Interpretation 

The larger foraminiferal assemblage in MF 3 exhibits a mixture of some major 

foraminifera from MF 2 and MF 4. Common occurrences of fecal pellets imply that the 

environment has low water energy, normal oxygen concentration, and reduced 

sedimentation rate, which are favorable for normal activities of fecal pellet producers 

(Flügel 2004). By comparison with the depositional environments of MF 2 and MF 4, MF 

3 represents a transitional setting between an inner ramp and a mid-ramp environment. 

MF 4 Miscellaneidae-nummulitidae-rotaliidae floatstones with dasycladacean 

algae

Description 

MF 4 occurs in the upper part of Member C, and biostratigraphically represents the time 

interval of SBZ 5 (Fig. 6). MF 4 is characterized by larger miscellaneidae-nummulitidae-

rotaliidae assemblages together with dasycladacean algae. Major larger foraminifera 

consist of Lockhartia, Kathina, Rotalia, Rotorbinella, Setia, Ranikothalia, Operculina, 

Orbitosiphon, and Miscellanea (Figs. 8H and 9C). Importantly, Alveolina and Orbitolites, 

two porcellaneous-walled larger foraminifera dominating mainly the Eocene Neo-

Tethyan Ocean, have firstly appeared in MF 4. Alveolina are very low both in abundance 

and frequency, and fragmentary skeletons of Orbitolites mainly appear at the base of MF 

4 (Fig. 8H). Both abundance and frequency of udoteacean green algae and 

corallinacean red algae decrease greatly, and dasycladacean algae are the only group 
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of calcareous algae which still thrived in the latest Paleocene. In spite of low frequency, 

corals (e.g. Actinacis cognata?) still existed in the larger foraminifera-dominated shallow 

marine environment. 

Interpretation 

In the late Paleocene, the co-occurrence of Lockhartia, Daviesina, Ranikothalia, and

Miscellanea is indicative of deeper part of the upper photic zone with water depth of ~40-

80 m (Hottinger 1997). Although Alveolina and Orbitolites are generally thought to 

inhabit in a shallower water body (less than 40 m), most of them are quite fragmentary 

and mainly distributed in the lower part of MF 4 where the tempestites in MF 5 have 

formed. Therefore, it probably implies that Alveolina and Orbitolites in MF 4 have 

experienced syndepositional reworking and are transported from some neighboring 

shallower areas to the deeper-water places. So, MF 4 is interpreted as to indicate a 

relative deeper mid-ramp environment.     

MF 5 Alternating layers of densely packed grainstones and mudstones   

Description 

MF 5 occurs in the middle part of Member C, and is sandwiched within the lower part of 

MF 4 (Fig. 6). A few millimeter thick intercalations of light-colored bioclast-dominated 

grainstone beds and dark-colored lime mudstone beds with a distinct boundary are the 

major feature of MF 5, and sometimes isolated mudstone lithoclasts are scattered in the 

grainstone beds and form centimeter-sized irregular-shaped micrite clasts (Fig. 9A and B) 

or vice versa. Grainstones are composed of chaotic accumulations of carbonate grains 

with highly variable sizes, including non-skeletal grains of peloids and relatively well-

preserved skeletal grains from ecologically mixed biota, such as corallinacean red algae, 

small miliolids, Lockhartia, Daviesina, Miscellanea, Ranikothalia, Operculina, Orbitolites, 

and other subordinate organisms. Mudstones are devoid of fossils. 

Interpretation 

MF 5 is interpreted to represent proximal tempestites deposited in a mid-ramp 

environment where storm wave might have affected the sedimentary environment. The 

alternating layers indicate rapidly changing hydrodynamic environments, and probably 

result from periodically storm-driven turbiditic redeposition of the shallower-water 

bioclasts into a low-energy, relatively deeper-water environment. The admixture of mud- 

or grainstone clasts may indicate an escape structure caused by benthic organisms as 

reaction to episodically turbiditic material input. In comparison with mud-dominated distal  
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 Fig. 6 Distribution and relative abundance of main fossil components and carbonate particles from the Zhepure Shan Formation characterizing   
MFs 3, 4, 5, and 6. 
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tempestites, coarse-grained grainstones with bioclast-supported fabric in MF 5 exhibit 

distinct proximal features of storm beds (Flügel 2004).    

MF 6 Alveolina packstones/floatstones with Orbitolites

Description 

MF 6 ranges from the topmost 10 m of Member C to the lower 20 m of Member D, which 

biostratigraphically represents SBZ 6 and the lower part of SBZ 7 (Figs. 6 and 7). MF 6 

is mainly dominated by the porcellaneous-walled, lenticular- and oval-shaped Alveolina 

admixed with subordinate flat, disc-shaped Orbitolites and small benthic foraminifera 

(Fig. 9D and E). By comparison with the Paleocene microfacies types, MF 6 contains 

almost no hyaline-walled larger foraminifera and calcareous algae. The distinct change 

of the larger foraminiferal assemblage from MF 4 (Fig. 9C) to MF 6 (Fig. 9D) was called 

‘Larger foraminiferal extinction and origination’ (Zhang et al. submitted). Generally, in the 

lower part of MF 6, Alveolina are formed with relatively small sizes and fine regular 

coilings and without flosculinizations (the thickening of the basal wall in the equatorial 

region of the test). Their original morphology is distorted by diagenetic compaction and 

their internal structures are obscured by meteoric diagenesis. With respect to small 

benthic foraminifera, numerous tiny, biconvex-shaped, hyaline-walled rotaliids (e.g., 

Lenticulina) occur in great amount (Fig. 9D). Detrital quartz and fecal pellets occur 

frequently, however, other subordinate biota are very rare. In the upper part of MF 6, 

diagenetic overprints on Alveolina decrease largely, and cylindrical Alveolina with large 

sizes and flosculinizations start to appear in high abundance (Fig. 9E). Colonial corals 

can be seen, and the only one surviving Paleocene larger foraminifera, Lockhartia, starts 

to re-appear again, however, with small sizes, low abundance and highly reduced 

specific diversity. 

Interpretation 

Paleoecological studies on the Eocene Alveolina in the Neo-Tethyan realm have 

suggested that the existence of in situ Alveolina is indicative of a shallow inner ramp with 

water depth of less than 40 m, especially when it is associated with Orbitolites (Hallock 

and Glenn 1986; Hottinger 1997; Beavington-Penney and Racey 2004, and references 

therein). Besides, test shapes of larger foraminifera are thought to be a compromise 

between hydrodynamic factors and light, and therefore thick, lenticular or oval shapes of 

larger foraminiferal tests are interpreted to be formed for adapting strong light and 

turbulence in a shallower marine environment (Hallock and Glenn 1986). Thus, MF 6 at 

Tingri is interpreted to represent a well-lit, agitated, inner ramp setting.  
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Fig. 7 Distribution and relative abundance of main fossil components and carbonate particles from the Zhepure Shan Formation characterizing 
MFs 6, 7, and 8. 
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Fig. 8 Photomicrographs showing the representative microfacies and dominant fossil components during 
the Paleocene (SBZ 1-5) at Tingri. a Sandy Halimeda-Ovulites grainstone of MF 1, sample 09ZS48. b 
Halimeda floatstone of MF 1, sample 09ZS51. c Algal grainstone with small benthic foraminifera of MF 1, 
sample 09ZS110. d Lockhartia-Kathina-Rotalia/Rotorbinella packstone with algae of MF 2, sample 
09ZS144. e Lockhartia-Kathina-Daviesina-Keramosphaerinopsis packstone of MF 2, sample 09ZS173. f
Daviesina-Aberisphaera packstone of MF 3, sample 09ZS216. g Daviesina-Lockhartia-Ranikothalia-Setia 
packstone of MF 3, sample 09ZS228. h Orbitolites-Miscellanea-Setia-Rotalia floatstone of MF 4, sample 
09ZS254. Abbreviations in Figs. 8 and 9: Ab, Aberisphaera; Al, Alveolina; As, Assilina; Co, Coral; C, 
Corallinacean algae; D, Dasycladacean algae; Da, Daviesina; Di, Discocyclina; H, Halimeda; Ka, Kathina; 
Ke, Keramosphaerinopsis; Lo, Lockhartia; Le, Lenticulina; M, Miliolina; Mi, Miscellanea; Nu, Nummulites; 
Orb, Orbitolites; Or, Orbitosiphon; O, Ovulites. Ra, Ranikothalia; Ro, Rotalia/Rotorbinella; S, Setia; T, 
Textulariina. 

MF 7 Nummulites-Alveolina floatstones with Orbitolites

Description 

 MF 7 occurs in the main body of Member D, and represents the biostratigraphic range 

of the upper SBZ 7 and SBZ 8 (Fig. 7). Limestones in MF 7 show distinctly bimodal 

textures, with large foraminiferal tests (up to several centimeters) floating in a matrix of 

fine carbonate muds. The major biotic assemblage in MF 7 is composed of spherical, 

thick-walled Nummulites and Alveolina (Fig. 9F). In spite of frequent occurrences of 

fragmentary Orbitolites, their abundance in MF 7 is obviously less than those of 

Nummulites and Alveolina. The Eocene Lockhartia which re-appears in MF 6 still exists 

in MF 7, however, small rotaliids once thriving in MF 6 have lost their ubiquity. 

Dasycladacean and corallinacean algae appear again, and a few planktonic foraminifera 

can occasionally be seen at the top of MF 7.  

Interpretation 

Studies on some extant symbiont-bearing larger foraminifera show that habitat of 

nummulitids hosting diatoms as symbiontic algae has the highest flexibility of depth 

distribution, because blue and green lights preferably utilized by diatoms have more 

variable penetration depth (between 0 and 130 m) than red, yellow, and green lights 

used by chlorophyceans and rhodophyceans as well as dinophyceans (Leutenegger 

1984). Therefore, Nummulites usually have a wider ecological range, and may indicate a 

mid-ramp setting when associated with Alveolina and Orbitolites (Racey 1994) and an 

outer ramp environment when associated with Assilina and Discocyclina (Luterbacher 

1998). Besides, the existence of a few planktonic foraminifera may be an indicator of a 

deeper environment. Collectively, the larger foraminiferal assemblage of Nummulites 

and Alveolina in MF 7 is thus interpreted to indicate a typical mid-ramp environment with 

water depth of ~40-80 m (Hottinger 1997).         
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Fig. 9 Photomicrographs showing the representative microfacies and dominant fossil components during 
the latest Paleocene to early Eocene (SBZ 5-10) at Tingri. a Polymict limestone breccia of MF 5, sample 
09ZS264. b Interlayering of fossil-rich grainstone and fossil-poor mudstone of MF 5, sample 09ZS265. c 
Miscellanea-Orbitosiphon-Ranikothalia-Lockhartia floatstone of MF 4, sample 09ZS304. d Alveolina 
packstone with small Rotaliina (such as Lenticulina) of MF 6, sample 09ZS307. e Alveolina-Orbitolites 
floatstone of MF 6, sample 09ZS419. f Nummulites-Alveolina floatstone of MF 7, sample 09ZS468. g 
Assilina-Discocyclina floatstone with thin-walled Nummulites (Nummulites fossulata) of MF 8, sample 
09ZS493. h Discocyclina-Assilina floatstone of MF 8, sample 09ZS500.  

MF 8 Discocyclina-Assilina floatstones with Nummulites

Description 

MF 8 occurs at the topmost ~6-7 m of Member D, which biostratigraphically represents 

SBZ 9 and the base of SBZ 10 (Fig. 7). The floatstones in MF 8 is dominated by the 

predominant Discocyclina and Assilina with subordinate Nummulites (Fig. 9G and H). 

With ~1 m thickness of the base of MF 8, the co-existence of predominant Nummulites 

and subordinate Alveolina, Assilina and Discocyclina represents the transition between 

MF 7 and MF 8. Upwards, Alveolina and Orbitolites disappear completely, and 

Nummulites decreases dramatically in abundance. Large, thick-walled, spherical-shaped 

Nummulites with high specific diversity in MF 7 are substituted by the small-sized, thin-

walled Nummulites fossulata (Fig. 9G). Moreover, very fine detrital quartz with good 

sorting and high abundance are evenly distributed in the matrix of the floatstones.     

Interpretation 

The Eocene elongate Discocyclina and Assilina with thin-walled Nummulites was 

interpreted to live in the lower photic zone with water depth of ~80-120 m (Hottinger 

1997), indicating an outer ramp environment (Gilham and Bristow 1998; Luterbacher 

1998; Racey 1994). The thinning of chamber walls in lamellar-perforate foraminifera was 

thought to be caused by a slow-down of the biomineralisation process, which in turn 

resulted from an increase of dissolved CO2 in the water due to the decreasing rates of 

turbulence with the deepening of depositional environments (Hottinger 1997). Thus, MF 

8 represents an outer ramp environment with the water depth of ~80-120 m. 

3.6 An early Paleogene carbonate ramp at Tingri  

A carbonate ramp usually refers to a carbonate depositional system, which is attached 

to a shoreline at one end and extends to a basin at the other end through a very low-

gradient slope (< 1°) (Burchette and Wright 1992). It differs from a carbonate platform in 

having no distinct slope break (Flügel 2004). As the contemporary sedimentary strata 

depositing between the shallow marine environments (such as Tingri and Gamba) and 

deep ocean (such as Sangdanlin and Gyangze) are completely eroded by the India-Asia 

collision and the subsequent uplift of the Himalayan Orogen, the evidence indicating 
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whether there was a distinct slope break or not in the Tethyan Himalaya is therefore not 

existent. However, carbonate ramps are generally thought to be common in times when 

frame- and reef-building organisms were rare (Flügel, 2004), and many studies have 

adopted carbonate ramp models to interpret the Paleogene larger foraminifera-

dominated carbonate buildups in the Neo-Tethyan realm (Beavington-Penney and 

Racey, 2004 and references therein; osovi  et al. 2004; Zamagni et al. 2008; Afzal et 

al. 2011; Bagherpour and Vaziri, 2011; Höntzsch et al. 2011). Consequently, we 

tentatively use the standard carbonate ramp model with subdivisions of an inner ramp, 

mid-ramp and outer ramp (Burchette and Wright 1992) to describe the depositional 

environments of the Zhepure Shan Formation at Tingri (Fig. 10). 

 

Fig. 10 A schematic carbonate ramp model showing changes of depositional environments of the Zhepure 
Shan Formation from the Paleocene to early Eocene. MSL: Mean sea level; FWWB: Fair-weather wave 
base; SWB: Storm wave base.   

In the earliest Danian, deposition of the Jidula sandstones containing the Skolithos 

ichnofacies at Tingri were thought to represent the formation of a seaward prograding 

delta plain (Willems et al. 1996). Afterwards, calcareous algal limestones with small 

benthic foraminifera in MF 1 are indicative of the nutrient-rich, open-marine, shallow 

lagoon and sand shoal in an inner ramp with water depth of a few meters. The lagoon 

was closely attached to the Indian landmass to the south and frequently affected by the 

influx of terrestrial quartz from the hinterland. During the Selandian and early Thanetian, 

some larger foraminifera (mainly rotaliidae) including Lockhartia, Rotalia/Rotorbinella, 

Kathina, Daviesina, and Keramosphaerinopsis appeared gradually and finally dominated 

MF 2. Those larger foraminifera probably inhabited the lower part of the inner ramp with 
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water depth less than 40 m, and represented the earliest recovery of the Paleocene 

larger foraminifera after the K/T mass extinction in the Neo-Tethyan Ocean. At Tingri, 

MF 3 is characterized by a mixture of dominant larger benthic foraminifera of rotaliidae 

from MF 2 and nummulitidae from MF 4, and thus indicates a transitional environment 

between them. In the latest Paleocene, highly diversified larger benthic foraminifera of 

miscellaneidae and nummulitidae as well as rotaliidae in MF 4 together with interlayered 

tempestites (MF 5) suggest a mid-ramp environment with water depth of ~40-80 m.  

During the early Eocene, the Zhepure Shan limestones were dominated successively by 

three larger foraminiferal assemblages, which are the Alveolina-Orbitolites assemblage, 

the Nummulites-Alveolina-Orbitolites assemblage, and the Discocyclina-Assilina-

Nummulites assemblage. Many former studies on the early Eocene larger foraminifera in 

the western Neo-Tethyan Ocean (Beavington-Penney and Racey, 2004 and references 

therein) agreed that those three larger foraminiferal assemblages usually inhabited the 

inner ramp, mid-ramp, and outer ramp, respectively, and indicated a steadily deepening 

trend of depositional environments from less than 40 m to ~120 m (Hottinger 1997). In 

the end, the carbonate ramp at Tingri was drown at the very beginning of the Cuisian 

owing to the continually deepening of depositional environments triggered by the India-

Asia collision (Zhang et al. 2012), and the Zhepure Shan limestones were eventually 

covered by the green sandstones and mudstones/marls of the Youxia Formation from an 

outer shelf environment (Zhu et al. 2005).     

3.7 Circum-Tethyan tectonic uplift at the P/E boundary 

Microfacies analyses from Section 09ZS at Tingri show that gradually deepening 

processes of depositional environments occurred both in the Paleocene and early 

Eocene, which, however, had been interrupted by an abrupt and short-termed 

shallowing event close to the P/E boundary. The shallowing event is revealed by the 

sudden change of larger foraminiferal assemblages from the relatively deeper-water 

dwellers of Miscellanea-Ranikothalia-Operculina-Lockhartia-Kathina-Daviesina in MF 4 

to the shallower-water dwellers of Alveolina-Orbitolites in MF 6.  The changes of larger 

foraminiferal assemblages have been referred as ‘Larger Foraminiferal Extinction and 

Origination’ (Zhang et al. submitted), and are to be found in many low paleolatitudinal 

areas of the Neo-Tethyan Ocean (~0°-30°N), including the Tethyan Himalaya of Tibet, 

the lower Indus basin of Pakistan (Afzal et al. 2010), the Oman Mountains of northern 

Oman (Haynes et al. 2010), the southern Galala Mountains area of Egypt (Scheibner et 

al. 2005), the Zagros basin of Iran (Bagherpour and Vaziri, 2011), and the Kastamonu 

region of Northern Turkey (Özgen-Erdem et al. 2005). In the middle paleolatitudinal 

areas (>~30°N), the shallowing of depositional environments has also been reported in 

the northwestern Adriatic carbonate platform of Slovenia and the Pyrenean platform of 
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Spain. In Slovenia, the upper Paleocene Trstelj Formation is composed of Assilina, 

Discocyclina, and Lacazinids admixed with red algae, and indicates a mid-ramp 

environment. Upwards it is superimposed by the lower Eocene Alveolina-Nummulites 

Limestone formed on an inner ramp (Zamagni et al. 2008). In Spain, the shallowing 

event is expressed through a more explicit way by the deposition of continental beds 

between the uppermost Paleocene and the lowermost Eocene shallow marine 

carbonates in the Campo and Tremp sections (Scheibner et al. 2007; Pujalte et al. 2009). 

Collectively, we tentatively assume that there was a circum-Tethyan shallowing event 

during the latest Paleocene to earliest Eocene (Fig. 11).     

 

Fig. 11 The global paleogeographic map at the P/E boundary (Scotese 2011) with numbers showing the 
locations of some major shallow marine carbonate depositions on the periphery of the Neo-Tethyan 
Ocean. 1: Tibet; 2: Pakistan; 3: Oman; 4: Egypt; 5: Iran; 6: Turkey; 7: Slovenia; 8: Spain. 

In Tibet, the shallowing event and associated changes of larger foraminiferal 

assemblages coincide with the well-known negative CIE during the PETM (Zhang et al. 

submitted). And in Egypt, time equivalence between changes of larger foraminiferal 

assemblages and the CIE has once been taken as the main evidence arguing for the 

assumption that drastically climatic changes of the PETM led to the larger foraminiferal 

turnover (Scheibner et al. 2005). Moreover, studies on the P/E boundary in Spain 

showed that the CIE was recorded in the continental beds overlying the uppermost 

Paleocene shallow marine sediments, revealing the synchronicity of the shallowing 

event and the PETM-CIE. So, we conclude that the circum-Tethyan shallowing event 

occurred close to the P/E boundary.   
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At the P/E boundary, a eustatic rise has been recognized by studying dinoflagellate 

cysts, grain size fractions, and organic biomarkers in some widely separated sections 

from the Arctic Ocean, New Jersey shelf, western United States, North Sea, Russia, the 

southern Tethyan margin, and New Zealand (Sluijs et al. 2008). Because the duration of 

the PETM-CIE (~100-200 kyr) was relatively short over the geologic time scale (Röhl et 

al. 2007; Murphy et al. 2010), and both the circum-Tethyan shallowing event and the 

eustatic rise coincided with the PETM-CIE. Thus, we may speculate that there is time 

equivalence between the shallowing event and the eustatic rise. Consequently, the 

shallowing event in the context of a global transgression suggests that a circum-Tethyan 

tectonic uplift probably occurred at the P/E boundary and caused the widespread 

shallowing events surrounding the Neo-Tethyan Ocean.  

3.8 Conclusions 

Totally, eight microfacies types have been recognized in the Zhepure Shan Formation at 

Tingri. Among them, five facies in the Paleocene consist of algal limestones with small 

benthic foraminifera, larger rotaliidae packstones with algae, rotaliidae-nummulitidae 

packstones with algae, and miscellaneidae-nummulitidae-rotaliidae floatstones with 

dasycladacean algae, and proximal tempestites. Three facies in the early Eocene 

include Alveolina packstones and floatstones with Orbitolites, Nummulites-Alveolina 

floatstones with Orbitolites, and Discocyclina-Assilina floatstones with Nummulites.  

A carbonate ramp model is adopted to summarize the development of microfacies and 

depositional environments, and a general deepening of depositional environments has 

been revealed by changes from an inner ramp to a mid-ramp in the Paleocene, and from 

an inner ramp, through a mid-ramp, to an outer ramp in the early Eocene. Notably, a 

shallowing event taking place close to the P/E boundary had interrupted the deepening 

processes. Contemporary shallowing events have also been reported from other areas 

surrounding the Neo-Tethyan Ocean. Combined with the opinion of a eustatic rise at the 

P/E boundary, the shallowing event has been tentatively assumed to represent a circum-

Tethyan tectonic uplift occurring at the P/E boundary.          
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Abstract

The onset of continent-continent collision is accompanied by elimination of oceanic crust 

and development of a peripheral foreland basin on the subducting continental crust. 

However, owing to the progressively southward migration of the foreland basin, the 

appearance of flexural uplift (forebulge) will predate that of flexural subsidence (foredeep) 

at the distal location (such as Gamba and Tingri). Consequently, to trace and date the 

forebulge may provide a better constraint on the India-Asia collision. At Gamba and 

Tingri, our studies on the stratigraphy, paleontology, and paleoenvironment show that 

depositional cessation of the limestones occurred at Shallow Benthic Zone 7 (SBZ 7, 

~54-55 Ma) in the Gamba area and at the base of SBZ 10 (~52.8 Ma) in the  Tingri area. 

At Gamba, a conglomerate layer within the upper Zongpu Formation is proposed to 

represent formation of the forebulge at the onset of the foreland basin, and coincidence 

of the conglomerate layer with the Carbon Isotope Excursion (CIE) provides a precise 

age of ~56 Ma (the Paleocene/Eocene boundary) for the possible initial India-Asia 

continental collision. Our results not only provide a reliable and precise age for the India-

Asia collision but, for the first time, report time equivalence between the India-Asia 

collision and the CIE in Tibet.

4.1 Introduction 

After more than 30 years of intense international geoscientific attention, the questions of 

when and where the initial India-Asia continental collision occurred as well as the size of 

‘Greater India’ before the initial collision are still in dispute. Proposed ages for the onset 

of this collision range from ~65 Ma (Ding et al. 2005; Cai et al. 2011) or even earlier 

(Willems et al. 1996), to ~55-50 Ma (Garzanti et al. 1987; Searle et al. 1997; Zhu et al. 

2005; Green et al. 2008; Najman et al. 2010), and even as late as ~34 Ma (Aitchison et 

al. 2007). Models for the collision vary from diachronous, starting from Ladakh in the 

west (Rowley 1998) or south central Tibet in the middle (Ding et al. 2005), to 

synchronous across the entire northern Indian continental margin (Zhu et al. 2005; 

Green et al. 2008). The question of diachroneity or synchronicity depends on the reliable 

and accurate dating of the initial collision. Moreover, authors arguing for a relatively 

larger ‘Greater India’ have usually preferred an earlier collision age (Patzelt et al. 1996), 

and vice versa. Consequently, reliable and precise dating of the initial India-Asia 

collision is the key to solving these collision-related questions.  

The various dates for the initial collision result from different definitions of the term ‘initial 

India-Asia continental collision’ and the correspondingly different working methods 

adopted. Plate-motion (Patriat and Achache 1984), paleomagnetism (Chen et al. 2010; 

Liebke et al. 2010), stratigraphic, sedimentological, paleontological, and structural 
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evidence (Garzanti et al. 1987; Searle et al. 1988; Willems et al. 1996; Clementz et al. 

2011), as well as subsidence history of the northern Indian continental shelf (Rowley 

1998; Corfield et al. 2005), and subduction-related magmatism and metamorphism 

(Leech et al. 2005; St-Onge et al. 2010) have all been used to constrain the collision. 

During the last decade, Rowley’s definition of the initial India-Asia continental collision 

(Rowley 1998) – the time of elimination of Neo-Tethys oceanic lithosphere and the first 

development of a foreland basin on the Indian continent – has become generally 

accepted, and the expected onset of a foreland basin has been used to constrain the 

initial continental collision. 

 

Fig. 1 The idealized sedimentary sequences in an underfilled peripheral foreland basin, showing vertical 
superpositions of different depozones and subsidence history resulting from migration of a foreland basin 
towards the craton (revised from Sinclair (1997) and DeCelles et al. (1998)). Stars represent the ages 
proposed to constrain the India-Asia collision by different authors, and see Fig. 3 for explanations of the 
symbols. 

When continent-continent collision started, development of a peripheral foreland basin 

on the subducting continental plate would cause flexural subsidence (foredeep) at the 

proximal location and flexural uplift (forebulge) at the distal location (DeCelles and Gile 

1996). As a result, timing of the initial collision can be obtained by dating the occurrence 

of either the foredeep in the proximal location (such as the northern Tethyan Himalaya) 

or the forebulge in the distal location (such as the southern Tethyan Himalaya). However, 
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deep water siliciclastic rocks in the foredeep are usually devoid of diagnostic fossils, 

which may hinder the construction of high resolution biostratigraphy (such as Wang et al. 

2011’s studies at Sangdanlin). In contrast, shallow-water limestones rich in fossils in the 

forebulge (such as Gamba and Tingri) can provide high-resolution biostratigraphy and 

therefore may better constrain the onset of a peripheral foreland basin.  

In the south Tethyan Himalaya, evidence of the earliest Asian-derived detritus (Zhu et al. 

2005; Najman et al. 2010) and accelerated tectonic subsidence (Rowley 1998) has been 

proposed to indicate the arrival of the foredeep and thus the India-Asia collision. 

However, a considerable lag time between the initial collision and those events may 

exist, because the foredeep and related flexural subsidence would firstly occur in the 

northern Tethyan Himalaya and then move to the southern Tethyan Himalaya as the 

foreland basin was migrating southward (DeCelles et al. 1998). By an alternate method, 

the larger foraminifera-bearing limestones underlying the foredeep deposition probably 

represent the forebulge deposits that resulted from flexural uplift; thus, these limestones 

can be used to better constrain the initial India-Asia continental collision. Consequently, 

one of the most direct and precise ways to constrain the onset of a peripheral foreland 

basin marking the India-Asia collision is to identify the forebulge at the distal location and 

date it with high resolution (Sinclair 1997) (Fig. 1). 

4.2 Regional stratigraphy 

The Tethyan Himalaya is situated on the northern Indian continental margin. It is 

sandwiched between the Lhasa Terrane to the north and the High Himalaya to the south 

(Yin and Harrison 2000) (Fig.2). Structurally it can be subdivided into the southern and 

northern zones by the Lhagoi Kangri anticline (Ding et al. 2005). Paleozoic to lower 

Paleogene marine sedimentary strata are widely exposed in the Tethyan Himalaya, and 

the spatial distribution of carbonates and shales in the south and pelites and turbiditic 

mudstones in the north suggests a northward deepening environment from continental 

shelf to slope, and ultimately to deep sea (Liu and Einsele 1994).  

Gangdese forearc region and the Northern Tethyan Himalaya 

To the north of the Indus-Yarlung Tsangpo suture zone, the northern subduction of Neo-

Tethyan oceanic crust beneath the Asian continent resulted in the formation of the 

middle-late Cretaceous Gangdese forearc basin, which was filled by the hemipelagic 

shales and sandsheets of the Xigaze Group (Dürr 1996). Overlying the Xigaze Group 

are the upper Maastrichtian larger foraminifera-bearing limestones of the Qubeiya Fm. 

The Quxia conglomerate, unconformably resting on the Qubeiya Fm, was proposed to 

indicate an arc-continental collision or the India-Asia continental collision at the 
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Cretaceous-Paleogene (K/Pg) boundary (Ding et al. 2005). The Paleocene to lower 

Eocene Jilazi Fm is made up of larger foraminiferal limestones and coarse sandstones 

and is unconformably overlain by the upper Oligocene-lower Miocene continental 

Gangrinboche conglomerate (Fig. 3).  

Fig. 2 (A) Inset map with major tectonic units and boundaries in Tibet. (B) Schematic geological map of the 
Tethyan Himalaya of Tibet showing the study areas of Tingri and Gamba, modified from Ding et al. (2005). 
Abbreviations: MBT, Main Boundary Thrust; MCT, Main Central Thrust; STDS, South Tibet Detachment 
System; ZGT, Zhongba-Gyangze thrust; YZMT, Yarlung Zangbo Mantle thrust; IYS, Indus-Yarlung 
Zangbo Suture; GCT, Great Counter thrust; GT, Gangdese thrust; BNS, Bangong Nujiang Suture; JS, 
Jinsha Suture; KS, Kunlun Suture. 

In the northern Tethyan Himalaya, although a newly published stratigraphy at 

Sangdanlin by Wang et al. (2011) is inconsistent with the former stratigraphic work (Ding 

et al. 2005), a general consensus has been reached. The upper Cretaceous-Paleocene 

quartz-rich sandstones siltstones, and shales have been sourced from the Indian 

continent, and a deeper water environment was revealed by the intercalated layers of 

radiolarian-bearing cherts. Upwards, the lower-middle Eocene sediments show a 

coarsening upwards trend from shales to pebbly sandstones, whereby the Asian-derived 

detritus is proposed to indicate the onset of the India-Asia collision (Ding et al. 2005; 

Wang et al. 2011) (Fig. 3).  
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Fig. 3 Integrated chrono- and biostratigraphic time scale with sections from Tingri and Gamba of the 
southern Tethyan Himalaya (Najman et al., 2010; Wang et al., 2002; Willems and Zhang, 1993a; Willems, 
1993b; Willems et al., 1996; Zhu et al., 2005), Sangdanlin of the northern Tethyan Himalaya (Ding et al., 
2005; Wang et al., 2011) and Tso Jiangding of the forearc region (Ding et al., 2005). The biozonations of 
planktonic foraminifera, calcareous nannofossils, and larger benthic foraminifers are adopted from 
Berggren et al. (1995), Martini (1971), and Serra-Kiel et al. (1998), respectively. Time scale is based on 
Berggren et al. (1995). 
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Southern Tethyan Himalaya 

Our two working areas are located within the southern Tethyan Himalaya, near the 

towns of Tingri and Gamba. At Gamba, the upper Cretaceous limestones and 

calcareous marls of the Zongshan Fm, rich in planktonic and epiplanktonic organisms 

indicative of an open continental shelf environment (Willems and Zhang 1993a), are 

overlain by the upper Maastrichtian to lower Paleocene shoreface deposits of the Jidula 

Fm, which comprise Indian-derived quartz sandstones. At Tingri, however, about 225 m 

of sandstone turbidites and mixed carbonate-siliciclastic reworked sediments of the 

Zhepure Shanpo Fm are sandwiched between the Zongshan and Jidula Fms. The 

Zhepure Shanpo Fm are interpreted to have been deposited in locally restricted 

submarine fans on a continental slope and to represent the onset of the India-Asia 

collision (Willems et al. 1996) (Fig. 3).  

Larger foraminifera-bearing marine limestones above the Jidula Fm are relatively well 

preserved at Tingri and Gamba. At Tingri, limestone sequences of the Zhepure Shan Fm 

(about 450 m thick) form a continuous lithological section composed of four lithologically 

distinct members. At the base, cyclic limestones consist of seven cycles, each of which 

is composed of a transition from calcareous marls, sometimes nodular, to limestones. 

These are overlain by the first massive limestones. Continuing upwards, the nodular 

limestones and the overlying second massive limestones represent the upper part of the 

Zhepure Shan Fm. At Gamba, although the limestones of the Zongpu Fm have 

undergone deformation and faulting during the India-Asia collision, the stratigraphic 

combination of several isolated lithological columns reveals limestone sequences similar 

to those at Tingri. 

On top of the Paleogene limestone sequences, green marls and siltstones and red 

mudstones and siltstones are exposed. At Tingri, the green beds, with disputed 

stratigraphic ages from late Ypresian to Bartonian (Fig. 3), were interpreted to have 

been deposited in a marine outer-shelf environment (Zhu et al. 2005). The red beds 

above are the subject of even more controversy, regarding not only their age but also 

their depositional environment (Wang et al. 2002; Zhu et al. 2005), which has resulted in 

different names for the two sedimentary sequences. Thus, the green and red beds were 

named the Enba and Zhaguo members, respectively, by Wang et al. (2002) and the 

Youxia and Shenkeza Fms by Zhu et al. (2005). We suggest adopting the stratigraphic 

nomenclatures proposed by Zhu et al. (2005), owing to their proper sedimentological 

interpretations and relatively accurate age determination (Fig. 3). 

At Gamba, our investigations are mainly based on section F, measured by Willems and 

Zhang (1993). The lithological column at Tingri has been investigated by several authors 
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and was called the ‘Qumiba section’ by Wang et al. (2002) and Najman et al. (2010) and 

the ‘Shenkeza section’ by Zhu et al. (2005). More detailed geological description of the 

Gamba and Tingri areas can be found in these publications. 

4.3 Methods 

About 70 samples from the Zongpu Fm at Gamba and 430 samples from the Zhepure 

Shan Fm at Tingri were collected during field trips in 1983, 1986, and 2009. About 800 

thin sections were prepared and ~7000 light-microscope photos were taken for the 

construction of the larger foraminiferal biostratigraphy and paleoenvironmental analysis. 

To obtain additional biostratigraphic information from the Tingri area, two samples at the 

boundary between the Zhepure Shan and Youxia Fms were washed and sieved to 

collect planktonic foraminifera, and smear slides of 15 samples from the Youxia Fm were 

prepared for the investigation of calcareous nannofossils.  

Through careful inspection under the microscope, about 70 fresh carbonate rocks of the 

Zongpu Fm without reworked components or petrographically visible diagenetic 

alterations or veins were prepared for measurements of carbon isotopes. The 13C 

measurements were conducted on a Finnigan MAT 251 Spectrometer at MARUM 

(University of Bremen), and the results were calibrated to the PDB with standard 

deviation of <0.05‰. 

4.4 Biostratigraphy 

Our biostratigraphic work is based on the determination of larger foraminifera, planktonic 

foraminifera and calcareous nannofossils, mainly focusing on the limestones of the 

Zhepure Shan and Zongpu Fms and the marls of the Youxia Fm. For the limestone 

sequences, the concept of the Shallow Benthic Zonation (SBZ) (Serra-Kiel et al. 1998) 

was adopted to describe the larger foraminiferal biostratigraphy. For the planktonic 

foraminifera and calcareous nannofossils, we have used the biozonations proposed by 

Berggren et al. (1995) and Martini (1971), respectively.  

Larger foraminifera 

In the eastern Neo-Tethys (Pakistan, India, Tibet), the larger foraminiferal assemblage of 

Miscellanea miscella and Ranikothalia nuttalli represents SBZ 5 (Jauhri 1996; Hottinger 

2009). In Tibet, SBZ 6 is dominated by very primitive Alveolina species with small sizes 

and fine regular coilings. The frequent appearances of Alveolina with flosculinizations 

(the thickening of the basal wall in the equatorial region of the test) represent SBZ 7. In 

SBZ 8-9, Nummulites start to dominate the carbonate ramp with the coexistence of 
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Alveolina, and the assemblage of Assilina, Nummulites and Discocyclina indicates SBZ 

10 (Fig. 4).  

 

Fig. 4 Photomicrographs of diagnostic larger foraminifera from the topmost limestones of the Zongpu Fm 
at Gamba (A-B) and the Zhepure Shan Fm at Tingri (C-I). (A) Alveolina ovicula (Nuttall), Sample Fm 25; 
(B) Alveolina moussoulensis (Hottinger), Sample Fm 25; (C) Assilina granulosa (d’Archiac); (D) Assilina 
sublaminosa (Gill); (E) Assilina laminosa (Gill); (F) Discocyclina dispansa (Sowerby); (G) Discocyclina 
sowerbyi (Nuttall); (H-I) Nummulites fossulata (de Cizancourt). Note that larger foraminifera from Tingri 
occurring only within the uppermost 6 m of the Zhepure Shan Fm indicate the base of SBZ 10, and 
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Alveolina ovicula and A. moussoulensis at Gamba represent SBZ 7. See Fig 9B. for their precise locations 
in the section.    

At Tingri, Assilina granulosa (d’Archiac), A. sublaminosa (Gill), A. laminosa (Gill), 

Discocyclina dispansa (Sowerby), D. sowerbyi (Nuttall), and Nummulites fossulata (de 

Cizancourt) appear exclusively within the uppermost 6 m of the Zhepure Shan Fm, 

representing the base of SBZ 10 (Fig. 4). Although these species from the eastern Neo-

Tethys realm have not been assigned to the SBZ before now (Serra-Kiel et al. 1998), the 

reason to allocate them to SBZ 10 is that the co-occurrence of Nummulites fossulata 

with Nummulites aquitanica (SBZ 10) in France (Cizancourt 1945) provides an age of 

SBZ 10 for the larger foraminiferal assemblage. 

At Gamba, Alveolina ovicula (Nuttall) and A. moussoulensis (Hottinger) at the top of the 

Zongpu limestones constrain the termination of the Zongpu Fm to SBZ 7 (Fig. 4), 

because Alveolina moussoulensis is one of the index fossils for SBZ 7 (Serra-Kiel et al. 

1998).  

Planktonic foraminifera and Calcareous nannofossils 

At Tingri, although most of late Cretaceous and Paleocene plankton in the Youxia Fm 

were reworked, the presence of youngest age-diagnostic planktonic foraminifers, such 

as Acarinina pseudotopilensis, A. soldadoensis, A. esnaensis and A. wilcoxensis provide 

an age of P 6-7 for the boundary between the Zhepure Shan and Youxia Fms. Moreover, 

the diagnostic coccoliths in the green marls give a depositional age of NP 12 for the 

Youxia Fm (Fig. 5). These results fit well with the larger foraminiferal biostratigraphy (Fig. 

3).  

4.5 Paleoenvironmental and paleobathymetric analysis  

The symbiont-bearing benthic larger foraminifera usually live in the photic zone (<120 m) 

of warm, oligotrophic, neritic environments. They are sensitive to depth distribution, and 

have been successfully used for paleoenvironmental and paleobathymetric 

reconstructions (Hallock and Glenn 1986; Hottinger 1997; Green et al. 2008). From the 

late Paleocene to early Eocene, larger foraminiferal associations with Miscellanea-

Ranikothalia, Alveolina-Orbitolites, Nummulites-Alveolina, and Assilina-Discocyclina 

inhabited at the depths of ~40-80 m, <~40 m, ~40-80 m, and ~80-120 m, respectively 

(Hottinger 1997). Besides, changes of associations from Alveolina-Orbitolites, Alveolina, 

Nummulites-Alveolina, Assilina-Discocyclina have also been proposed to indicate a 

gradually deepening process on the Eocene carbonate ramp (Racey 1994; Beavington-

Penney and Racey 2004).  
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Fig. 5 List of coccolith abundances from the Youxia Fm at Tingri. 

At Gamba and Tingri, the Miscellanea-Ranikothalia assemblage of SBZ 5 indicates a 

generally shallow-water environment. During SBZ 6, a sudden uplift and erosion 

occurred at Gamba, depositing a ~2 m thick conglomerate layer with a dominance of 

reworked pebbles derived from upper Paleocene limestones. During SBZ 7, the uplifted 

area started to subside gradually, however, the assemblage of Alveolina-Orbitolites 

implies that water depth was still very shallow. Above SBZ 7, a remarkable deepening 

occurred at Gamba, as revealed by deposition of the Youxia Fm rich in planktonic 

foraminifers and coccoliths. And the green marls and siltstones in the Youxia Fm are 

occasionally intercalated by thin-bedded limestones with reworked Paleogene larger 

foraminifera-bearing limestone clasts, indicating the slight erosion at some local areas 

nearby (Fig. 6). 
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Fig. 6 Representative sedimentary facies from the latest Paleocene to early Eocene at Gamba and Tingri 
with paleobathymetric changes. Photo of Ff 34 was taken from a polished rock slab, the others are 
photomicrographs. The scale bars represent 20 mm in Ff 34, 1 mm in Fr28, and 2 mm in all other images. 
At Gamba, the limestones at the SBZ 5 (Fr17) are rich in late Paleocene larger foraminifera (Miscellanea-
Ranikothalia assemblage). The conglomerate with dominant pebbles of late Paleocene limestones (Ff34) 
represents a flexural uplift and erosion at Gamba. Above SBZ 7, the change of depositional environments 
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from shallow water with Alveolina-Orbitolites assemblage (Fm57) to deeper water with planktonic 
foraminifera (Fm32) and Asian-derived siltstones (Fr28) indicates a sudden deepening event and the 
arrival of the foredeep to Gamba. At Tingri, a shallowing period during the SBZ 6-7 followed by an evident 
deepening event is also revealed by changes of the larger foraminiferal assemblages. Note that the 
deepening event occurred earlier at Gamba than that at Tingri. 

As with Gamba, the shallowing event during the earliest Eocene is documented at Tingri 

as well, by the change from a Miscellanea-Ranikothalia assemblage in SBZ 5 to 

Alveolina in the SBZ 6-7. However, a continuous larger foraminiferal record and absence 

of a conglomerate layer above SBZ 5 suggest that Tingri may have had a 

paleotopographically deeper depositional environment. A gradual deepening started in 

SBZ 8-9, and afterwards the assemblage of Assilina-Discocyclina together with 

planktonic foraminifera reflected the sudden deepening at the beginning of SBZ 10 (Fig. 

6). 

4.6 The initial India-Asia continental collision 

During the late Maastrichtian up to the K/Pg boundary, both the depositions of a 

conglomerate layer from the Zhepure Shanpo Fm at Tingri and the Quxia conglomerate 

at Tso Jiangding were proposed to indicate the initial India-Asia collision (Willems et al. 

1996; Ding et al. 2005) (Fig. 3). However, the upper Maastrichtian conglomerate layer at 

Tingri is not observed at Gamba (Willems and Zhang 1993a), implying that it represents 

only a local sedimentary phenomenon. Moreover, the overlying thick Paleocene-lower 

Eocene limestones are widely distributed across the entire northern Indian continental 

margin (Garzanti et al. 1987; Willems et al. 1996; Green et al. 2008), indicating a stable 

carbonate ramp environment during the Paleocene (Willems 1993b). Both of them 

conflict with the idea that the initial collision occurred at the late Maastrichtian and led to 

deposition of the conglomerate at Tingri. At Tso Jiangding, the K/Pg collision was 

originally interpreted with two contrasting models: India-Asia continental collision or India 

continent-island arc collision. So the possibility of the India-Asia collision at the K/Pg 

boundary needs more solid evidence. 

In the southern Tethyan Himalaya, the Paleogene sedimentary sequences on the Indian 

continental margin are generally consistent from Zanskar in the west to Tingri/Gamba in 

the east, starting from lower Paleocene Indian-derived sandstones, to middle 

Paleocene-lower Eocene limestones, then to lower Eocene green marls and Asian-

derived siltstones, and with red mudstones and siltstones at the top. All sedimentary 

sequences are roughly comparable to the underfilled trinity in the Alpine foreland basin 

(Sinclair 1997) (Fig. 7).  
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Fig. 7 Simplified 
Paleocene-lower 
Eocene 
lithostratigraphic 
correlation between 
the western (Zanskar) 
(Garzanti et al., 1987; 
Green et al., 2008) 
and eastern (Tingri 
and Gamba) Tethyan 
Himalaya. 

 

During the early Eocene, the firstly shallowing and then deepening events at Gamba and 

Tingri occurred in the context of global sea-level rising (Miller et al. 2005; Sluijs et al. 

2008), which would imply that the changes of paleo-water depths were mainly caused by 

regional tectonics, not eustasy. Therefore, the deepening trends recorded at Gamba and 

Tingri may imply transition from the forebulge to the foredeep due to the migration of 

flexural subsidence from the northern Tethyan Himalaya to the southern Tethyan 

Himalaya. As a result of our biostratigraphic and sedimentological data, onset of the 

deepening event occurred earlier at Gamba than that at Tingri, suggesting that Gamba 

was situated closer to the orogenic belt of the Asian continent and underwent earlier 

flexural subsidence (Fig. 8). Consequently, the appearance of the forebulge at Gamba 

would also predate that at Tingri, and the forebulge at Gamba can provide a better 

constraint on the initial India-Asia continental collision. 
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Fig. 8 The paleogeographic positions of Gamba and Tingri at the P/E boundary. Two dotted lines show the 
forebulge depozone with possible erosional areas (white patches). Note that Gamba was located at a 
paleotopographically higher position and was closer to the orogenic belt of the Asian continent. Not to 
scale. 

At Gamba, deposition of the conglomerate layer within the Zongpu limestones was 

accompanied by a distinct shallowing event, which may reflect the occurrence of flexural 

uplift owing to the India-Asia continental collision. Coincidentally, a pronounced Carbon 

Isotope Excursion (CIE) appeared just below the conglomerate layer (Fig. 9). Although 

the assumption that the India-Asia collision triggered or partly affected the CIE still 

needs detailed argumentation (Higgins and Schrag 2006), time equivalence of the two 

events does provide an accurate age of ~56 Ma (the P/E boundary) for the India-Asia 

continental collision (Aubry et al. 2007; Westerhold et al. 2009; Jaramillo et al. 2010).  

To the north of Gamba and Tingri (e.g., Sangdanlin), the Paleocene deep-water 

siliciclastic sequences in the northern Tethyan Himalaya show no evidence of flexural 

uplift (tectonic-induced shallowing event) for the existence of a possible older forebulge. 

Therefore, the P/E boundary forebulge developing at Gamba probably represents the 

earliest forebulge at the onset of the foreland basin, and not the one caused by the 

subsequent lateral migration of foreland basin (DeCelles et al. 1998). Consequently, the 

age of the P/E boundary recorded in the conglomerate layer of the Zongpu Fm may 

indicate a possibly maximum age of the initial India-Asia continental collision. Moreover, 

in combination with the results from Ladakh/Zanskar (Garzanti et al. 1987; Garzanti 

2008; Green et al. 2008), the quasi-synchronicity of the India-Asia collision in the 

western and eastern Tethyan Himalaya is supported by us (Zhu et al. 2005; Green et al. 

2008). 
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Fig. 9 (A) Upper Paleocene to lower Eocene lithological column at Gamba (Willems and Zhang, 1993a), 
with the 

13
C curve measured from bulk carbonate. (B) An enlargement of part of Fig. 9A, showing the 

details of changes of lithology and carbon isotopes from the latest Paleocene to the earliest Eocene. The 
identification of different depozones of the foreland basin and the positions of the samples for 
biostratigraphy and paleobathymetric analysis are presented on the right side of the lithological column. 
Note that the deposition of the conglomerate layer occurred coincidentally with the CIE. 

In addition, although the width of a foreland basin depends on the flexural rigidity of the 

underlying lithosphere and the nature of the orogenic belt, the distance from the 

forebulge to the orogenic belt is normally less than ~500 km (DeCelles and Giles 1996; 

Rowley 1998). Based on our conclusion that the conglomerate layer in the upper 

Zongpu Fm represents the first forebulge at the onset of foreland basin, we speculate 

that the maximum distance between Gamba and the southernmost part of the Asian 

continent was less than ~500 km at the P/E boundary. 

4.7 Reinterpretation of timing of provenance change at Sangdanlin 

At Sangdanlin, Wang et al. (2011) have studied petrology, detrital Cr-spinel 

geochemistry, and detrital zircon U-Pb ages from the Upper Cretaceous-Eocene 

sandstones, and provided new evidence on provenance change in the area adjacent to 

the Indus-Yarlung Zangbo suture zone. Lithic sandstones at the bottom of the 

Sangdanlin formation were proposed to record the first arrival of Asian-derived detritus 

(Wang et al. 2011). Because no age-diagnostic fossil were found in the sandstones, the 

utilization of the mean U-Pb age of the youngest detrital zircon population was used to 
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infer the maximum depositional age (Kapp et al. 2007; Dickinson and Gehrels 2009).  

Based on the original data of detrital zircon U-Pb ages (sample 06SDL14-1) from Wang 

et al. (2011) and the method recommended by Dickinson and Gehrels (2009), the 

maximum depositional age of 54.9±1.6 Ma was obtained for the sandstones containing 

the first Asian-derived detritus (Fig. 10).  

 

Fig. 10 The 
mean age of 
the youngest 
zircon grains 
overlapping in 
age at 2ó from 
sandstone 
06SDL14-1 at 
Sangdanlin. 
Original data 
from Wang et 
al. (2011). 

 

 

The Paleocene radiolarian assemblage in the red chert immediately below the 

Sangdanlin formation produced a youngest age of ~56 Ma (Ding et al. 2003). In the 

lower Eocene radiolarian zone ~20 m above the lithic sandstones (Wang et al. 2011), 

Buryella clinata-Thursocyrtis ampla, was identified by Li et al. (2007). Buryella clinata 

belongs to RP8 (Sanfilippo and Nigrini 1988), providing a numerical age of ~53.2-50.3 

Ma according to the 2004 geological time scale (Gradstein et al. 2004); thus the age of 

54.9±1.6 Ma derived from isotope geochronology fits well with the biostratigraphy from 

both the underlying and overlying strata, and consequently provenance change at 

Sangdanlin may have occurred close to the P/E boundary. 
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4.8 A tectonic model for the early Paleogene India-Asia convergence

Based on our studies of the stratigraphy, paleontology and sedimentology, together with 

other previously published results (Garzanti et al. 1987; Willems and Zhang 1993a; 

Willems 1993b; Critelli and Garzanti 1994; Willems et al. 1996; Ding et al. 2005; Zhu et 

al. 2005; Green et al. 2008; Najman et al. 2010; Wang et al. 2011), a new tectonic 

reconstruction is proposed here to interpret the lower Paleogene stratigraphy on the 

northern Indian and southern Asian continental margins (Fig. 11).  

During the Paleocene, the Neo-Tethys oceanic crust continued to subduct beneath the 

Asian continent. The Paleocene siliciclastic rocks in the Tethyan Himalaya (e.g., 

Denggang Fm at Sangdanlin, Jidula Fm at Gamba and Tingri) mainly consisted of 

Indian-derived detritus, indicating a passive continental margin environment on the 

northern Indian continent. Besides, the relatively stable environment led to the 

deposition of ~400 m Paleocene limestone in the southern Tethyan Himalaya. At Tso 

Jiangding, the Quxia conglomerate and the lower part of Jialazi limestones were 

deposited in the Gangdese forearc basin (Fig. 11a).  

At the P/E boundary, the initial India-Asia continental collision occurred quasi-

synchronously in the west (Ladakh/Zanskar) and east (Gamba), and a foreland basin 

formed on the northern Indian continental margin. In the northern Tethyan Himalaya, a 

foredeep started to develop at Sangdanlin with the deposition of the Sangdanlin Fm and 

the lower Zheya Fm, and an abrupt provenance change from India to Asia in the 

Sangdanlin Fm was detected by provenance analyses (Wang et al. 2011). To the south, 

flexural uplift generated the possible first forebulge at Gamba, and led to a shallowing of 

the depositional environment. The conglomerate layer in the upper Zongpu Fm shows 

that the uplift might even have exposed Gamba above sea level and formed an 

unconformity within the Zongpu limestones. Compared to Gamba, Tingri might have had 

a relatively deeper depositional environment and didn’t undergo subaerial exposure, 

depositing the continuous limestone sequences of the Zhepure Shan Fm. At Tso 

Jiangding, the upper Jialazi limestones intercalated by sandstones and conglomerates 

were probably deposited in a subaqueous wedge-top depozone (Fig. 11b).   

In the early Eocene, through the gradual migration of the foreland basin towards the 

Indian continent, pebbly sandstones and conglomerates of the upper Zheya Fm at 

Sangdanlin (Ding et al. 2005) were probably deposited in the wedge top of the foreland 

basin. In the southern Tethyan Himalaya, the foredeep firstly arrived at Gamba and then 

Tingri. The Youxia Fm rich in planktonic foraminifera and coccoliths shows a distinct 

provenance change from the Indian to Asian sources (Zhu et al. 2005; Najman et al. 

2010), indicating the foredeep deposition in an underfilled foreland basin. The sudden 
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deepening of depositional environment drowned the early Eocene carbonate ramp and 

led to the complete disappearance of the larger foraminifera at Gamba and Tingri. To 

the south of Gamba and Tingri, southward migration of flexural uplift caused formation of 

another forebulge probably in High Himalaya (?), which resulted in erosion of the 

underlying marine strata and shed the reworked late Cretaceous and Paleocene 

plankton into the Youxia Fm (Fig. 11c).  

 

Fig. 11 Simplified plate tectonic model illustrating basin evolution from Paleocene to Eocene, not to scale. 
The arrows indicate sediment dispersal directions and sources, and the abbreviation of ‘SL’ represents 
sea level.  

Finally, the red beds of the Shenkeza Fm at the top of Paleogene marine sequences 

might have been deposited in a subaerial wedge-top depozone of foreland basin or 
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piggy-back basin, representing the first continental sediment during the Cenozoic (Critelli 

and Garzanti 1994; Zhu et al. 2005) (Fig. 11d).    

4.9 Conclusions 

1. Deposition of the Paleogene larger foraminifera-bearing limestones of the Zongpu 

Fm at Gamba and the Zhepure Shan Fm at Tingri ceased at SBZ 7 (~54-55 Ma) and 

the base of SBZ 10 (~52.8 Ma), respectively, and the depositional age of the Youxia 

Fm at Tingri is NP 12 (~51-52.8 Ma). 

2. Compared with Tingri, Gamba was located closer to the orogenic belt of the Asian 

continent, and exhibited a shallower water depth at the P/E boundary. 

3. The conglomerate layer immediately above the SBZ 5 at Gamba represents 

deposition in the forebulge, which is probably the first forebulge corresponding to the 

onset of the foreland basin, and therefore may provide the maximum age of the initial 

India-Asia continental collision. 

4. The coincidence of the CIE and the conglomerate layer provides a precise age of 

~56 Ma for the initial India-Asia continental collision, and the quasi-synchronicity of 

the collision in the west (Ladakh) and east (Gamba) is supported by us. 
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Abstract

The magnitude, duration, and pattern of the negative Carbon Isotope Excursion (CIE) 

are key to constraining the mass and rate of light-carbon release during the Paleocene-

Eocene Thermal Maximum (PETM), which in turn play crucial roles in determining 

possible light-carbon sources and mechanisms triggering the PETM. Here we present a 

high-resolution CIE curve from the shallow marine limestones in Tibet, and the duration 

of each phase within the CIE has been tentatively estimated. The CIE in Tibet consists 

of three distinct 13C declines and two smaller 13C shifts. Each decline in 13C lasted 

for ~1-10 kyr, and the smaller shifts had longer duration of ~25-40 kyr. The CIE curve 

from Tibet shows a similar pattern to the one at Ocean Drilling Program (ODP) Site 690, 

suggesting that the CIE throughout the entire ocean followed particular steps toward the 

most negative carbon isotope values. However, the magnitude of the negative CIE in 

Tibet is clearly larger than it is at ODP Site 690, implying that the magnitude might 

gradually increase from the deep seas to shallow marine environments. Our work will, to 

some extent, improve the current understanding of the PETM-CIE event. 

5.1 Introduction 

The PETM was a transient global warming event occurring at ~56 Ma (Kennett and Stott 

1991; Zachos et al. 2001; Jaramillo et al. 2010), and generally its cause has been 

proposed to be a massive release of light carbon from the lithosphere into the ocean-

atmosphere-biosphere system (Thomas and Shackleton 1996). The PETM was 

accompanied by drastic climatic and environmental perturbations as well as biotic 

changes (Bowen et al. 2002; Zachos et al. 2005; Nunes and Norris 2006; Schmitz and 

Pujalte 2007), and one of its characteristic features was an abrupt negative CIE taking 

place both in the ocean and on land (Kennet and Stott 1991; Bowen et al. 2001). The 

magnitude of the CIE reveals key information about the mass of light-carbon release and 

the possible mechanisms triggering the PETM (Dickens et al. 1997; Svensen et al. 2004; 

Higgins and Schrag 2006; DeConto et al. 2012). Past studies of the CIE suggested that 

there may be a difference in the magnitudes of the excursion from the deep oceans into 

shallow marine and terrestrial areas (McCarren et al. 2008; Tipple et al. 2011). Generally, 

the magnitudes of the negative CIE are relatively smaller in deep oceans (~2.5-4‰ in 

ODP Site 690) (Kennett and Stott 1991; Bains et al. 1999) and larger on land (~4.5-8‰ 

in the Bighorn Basin) (Bowen et al. 2001) (Fig. 1). Although Bowen et al. (2004) 

assumed the large magnitudes of the terrestrial CIE to have been amplified by increases 

in humidity and soil moisture, this assumption fails to explain the terrestrial-plant CIE 

from the wet Arctic setting (Pagani et al. 2006).  
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In addition, the detailed pattern of the CIE during the PETM is still uncertain because no 

two CIE curves with similar patterns have been reported from different sections. 

Although the high-resolution CIE measured from bulk carbonates at ODP Site 690 has 

been generally regarded as the most representative one (Bains et al. 1999), the 

possibility of carbonate dissolution due to ocean acidification (Zachos et al. 2005) still 

cannot be totally ruled out. 

Most investigations on the CIE have been performed in the middle to high latitude deep 

seas and in terrestrial areas (McInerney and Wing 2011), but the shallow marine 

environment, as a possible link between land and deep sea, has been rather neglected. 

Here we report a high-resolution CIE curve from the Tethyan Himalaya of Tibet and 

discuss the magnitude, duration, and pattern of the CIE in the tropical shallow marine 

environment. 

 

Fig. 1 Global paleogeographic map at the Paleocene-Eocene boundary (Scotese 2011). Showing our 
working area (Tingri) and two other representative locations for the PETM studies in deep sea (ODP Site 
690) and on land (Bighorn Basin). Background colors show relative elevation/bathymetric depth.  

5.2 Study area, materials, and methods 

The study area is located near the county of Old Tingri in south Tibet, which represented 

the northernmost Indian continental margin when a shallow water carbonate ramp was 

deposited there during the early Paleogene (Willems et al. 1996) (Fig. 1). ~30 m thick 

nodular limestones with interbedded marls and thin-bedded limestones have been 

studied, and 150 limestone samples were collected with vertical sampling intervals of 

~20 cm. The samples were freshly broken in order to select homogeneous micrites with 
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no evident reworked components or petrographically visible diagenetic alterations. The 

micrites were microdrilled using a dentist’s drill and measured for carbon and oxygen 

isotopes. The 13C and 18O values were measured on a Finnigan MAT 251 

Spectrometer at MARUM (University of Bremen), and the results were calibrated to the 

PDB with standard deviation of <0.05‰ for the 13C and <0.07‰ for the 18O. The 

measurements of Total Carbon (TC) and Total Organic Carbon (TOC) were conducted 

on a LECO CS200 elemental analyser at the Faculty of Geosciences (University of 

Bremen), and the precision for both is better than 1%. The content of CaCO3 was 

calculated by the equation CaCO3 [wt. %] = [TC (wt. %)-TOC (wt. %)] ×8.33. 

5.3 Discussion 

The main CIE is preserved in the nodular limestones at Tingri, and the nodular 

limestones are rich in larger benthic foraminifera. The assemblages of larger 

foraminifera, which include the genera Miscellanea, Ranikothalia, Lockhartia, Daviesina, 

Kathina in the latest Paleocene and Alveolina, Orbitolites in the earliest Eocene (Zhang 

et al. 2012), indicate a water depth of < ~80 m at the P/E boundary (Hottinger 1997). 

The origin of the nodular limestones at Tingri was discussed by Willems (1993), and 

based on paleontological, sedimentological and diagenetic evidence the nodular 

limestones have been interpreted as being formed by differential diagenesis, rather than 

allochthonous redeposition. 

It is well known that 13C and 18O data from bulk carbonates are generally sensitive to 

diagenesis. However, we are confident that the effects of diagenesis on the 13C are 

insignificant because (1) background values of high 13C and low 18O indicate that the 

limestones experienced water-rock interaction within a closed system such that the 18O 

values were strongly altered while the pristine 13C values were still preserved (Marshall 

1992) (Fig. 2); (2) low TOC contents (< 0.4%) and no evident correlation between TOC% 

and 13C (Fig. 3 A & B) argue against the effect of organic matter degradation on 13C; 

(3) Similarity of the patterns of the CIEs at Tingri and the geographically very distant 

section of ODP Site 690 is solid evidence for the good preservation of the 13C signal at 

Tingri (Fig. 3 A & D); (4) The larger foraminifera as well as other fossils in the limestones 

are still perfectly preserved (Zhang et al. 2012).  

The completeness of the CIE records from the deep seas has commonly been 

questioned owing to the possible effect of ocean acidification; however, the content of 

~90-100% CaCO3 in the nodular limestones (Fig. 3C) clearly suggests that ocean 

acidification did not affect the shallow water carbonate deposition in Tibet. Evaluations of 

diagenetic overprints and high CaCO3 contents in the limestones suggest that the CIE at 
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Tingri probably represents a complete record of shallow water carbon isotope variations 

during the PETM. 

 

Fig. 2 Crossplot diagram of 
13

C and 
18

O. Possible diagenetic processes are shown by different paths 
from marine carbonate (M) to diagenetic limestone (D) with different effects on the original 

13
C and 

18
O 

values (Marshall 1992). Note that most of the background 
13

C and 
18

O values measured from bulk 
carbonates at Tingri fall into the junction area of the water-rock interaction between a closed system and 
an open system, indicating that the 

13
C values were not altered by diagenetic overprints. 

The pattern in the negative CIE at Tingri is nearly identical to that from ODP Site 690, 

except for the large magnitude and rapid recovery of the CIE in the former. Each phase 

of the main CIE defined at ODP Site 690 (Fig. 3D) can be recognized at Tingri (Fig. 3A). 

The similarity of the CIE patterns not only confirms that the CIE at ODP Site 690 (Bains 

et al. 1999) was not significantly affected by ocean acidification, but also implies that the 

CIE during the PETM probably followed certain steps throughout the ocean to attain its 

lowest values.   

At Tingri, the magnitude of the negative CIE is ~6.5‰, which is distinctly larger than the 

magnitudes reported from deeper bathyal-abyssal environments (Bains et al. 1999; John 

et al. 2008), but to some degree consistent with those from terrestrial records (Bowen 

2001; Pagani et al. 2006). This difference may imply that the magnitudes of the negative 

CIE are not uniform within the entire ocean-atmosphere-biosphere system, and probably 

increase gradually from the deep sea to shallow marine and land. 
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Fig. 3 The shallow marine limestones at Tingri with 
13

C (A), TOC% (B), and CaCO3% (C). Figure D 
shows the 

13
C curve from ODP Site 690, with lower-case letters labeling each phase in the main CIE 

(Bains et al. 1999). Note that the patterns of the CIEs at Tingri (A) and ODP Site 690 (D) are highly similar 
except for a larger magnitude and an abrupt initial recovery in the former. The SBZ refers to the Shallow 
Benthic Zones and the designation of the main CIE is adopted from Farley and Eltgroth (2003). 

At Tingri, the main CIE is recorded in the ~9.2 m thick, highly homogeneous nodular 

limestones, for which we tentatively assume a constant sedimentation rate. Furthermore, 

there is agreement between the extraterrestrial 3He age model and the orbital age model 

with regard to the duration of the main CIE at ODP Site 690 (Farley and Eltgroth 2003; 

Röhl et al. 2007), and the two age models are adopted to indicate the duration of the 

CIE at Tingri owing to the similarity of their CIE patterns. Consequently, the average 

sedimentation rate of the nodular limestones and the duration of each phase in the main 

CIE at Tingri can be roughly calculated (Table 1). 

At Tingri, the sedimentation rate was ~11 cm/kyr during the main CIE, and it decreased 

significantly to ~4 cm/kyr at the onset of the CIE recovery. This is roughly consistent with 

the findings at other continental margins (John et al. 2008), but in contrast to those in 

deep sea environments (Farley and Eltgroth 2003). The relatively high sedimentation 

rate during the main CIE indicates that continental margins were probably carbon sinks 

during the PETM. 



5 

114

Table 1 The CIE at Tingri with the 
3
He age model (Farley and Eltgroth 2003) and the orbital age model 

(Röhl et al. 2007). Note that the sedimentation rate and estimated ages are based on the age models and 
an assumed constant sedimentation rate of the homogeneous nodular limestones. 

Phases of the CIE
 

Age models (kyr) The CIE record in the shallow marine limestones at Tingri 

Stages Letters 
3
He 

model 
Orbital   
model 

Lithology 
Thickness 

(cm) 

Magnitude 
of the CIE 

(‰) 

Sedimentation 
rate (cm/kyr) 

Estimated 
ages (kyr) 

Pre-CIE b ~45 ~31 
Marl + nodular 

Limestone 
345  ~7.7-11.1  

Main CIE 

c 

~80 ~84 

Highly 
homogeneous  

nodular 
limestone 

15 -3.6 

~11-11.5 

1.3-1.4 

d 295 -0.3 25.7-26.8 

e 40 -1.4 3.5-3.6 

f 455 1 40-41.4 

g 115 -2.4 10-10.5 

Initial 
Recovery 

h ~30 ~21 Marl 100 3.6 ~3.3-4.8  

The main CIE at Tingri comprises three distinct declines (phases c, e, g) and two slightly 

negative or even positive shifts (phases d, f) in 13C. Each of the 13C declines took 

place within ~1-10 kyr, probably reflecting rapid and spasmodic releases of light carbon. 

The most abrupt and drastic light-carbon release (phase c) occurred at the onset of the 

CIE, lasted for ~1 kyr, and led to a ~3.6‰ 13C decline in the shallow marine 

environment. In contrast, the other two 13C declines (phases e, g) show evident 

decreases in magnitude and increases in duration, probably implying two relatively 

small-scale light-carbon releases. Phases d and f lasted for a relatively longer time (~25-

40 kyr), and the positive 13C shift in phase f probably indicates there was already some 

positive feedback in the ocean, even during the longer-term process of generally 

negative drifting of the 13C. 

The initial recovery (phase h) is preserved in a ~1 m thick marl layer, and indicates an 

apparently rapid rebound of the carbon isotopes, which is quite contrast to the more 

gradual increase in 13C values at ODP Site 690. The initial recovery led to a ~3.6‰ 
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positive shift in 13C, which is coincidently identical to the magnitude of the 13C decline 

at the onset of the CIE. Assuming that the 3He-based age model for the CIE is correct 

(Farley and Eltgroth 2003), the ~3.6‰ positive 13C shift within a time period of ~30 kyr 

supports the premise that an accelerated sequestration of organic carbon, not by 

weathering of silicates alone, may exist at the initial recovery of the CIE (Bowen and 

Zachos 2010). 

5.4 Conclusions

The CIE in the Tethyan Himalaya of Tibet is recorded in the ~9 m thick limestones with a 

paleo-water depth of < ~80 m. The 13C values from bulk carbonates have not been 

altered by diagenetic overprints, and ocean acidification during the PETM did not affect 

carbonate deposition. For the first time, the CIE curves with similar patterns have been 

found from two geographically distant locations – Tibet and ODP Site 690, which 

suggests that the 13C variations during the PETM followed certain steps throughout the 

ocean. However, the magnitude of the negative CIE in Tibet is clearly larger than at 

ODP Site 690, implying that it may increase gradually from the deep seas to shallow 

marine environments. The main CIE consists of three distinct 13C declines and two 

minor 13C shifts. Each 13C decline lasted for ~1-10 kyr, and each minor shift had the 

duration of ~25-40 kyr. We tentatively speculate that there was already some positive 

feedback during the end of the main CIE, and a rapid recovery of the CIE did occur after 

the light-carbon release.   
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6. Conclusions and future perspectives 

6.1 Conclusions 

The work in the thesis was based on ~900 samples collected mainly from four sections 

(sections ZP, ZM, and F at Gamba, and section 09ZS at Tingri) in the Tethyan Himalaya 

of Tibet. The studies of ~2000 thin sections and ~900 geochemical measurements of 

carbon and oxygen isotopes, TOC, and CaCO3% from these samples have reached the 

following conclusions: 

1. With respect to the larger foraminifera, 72 species from 19 genera have been 

identified from the Paleocene-lower Eocene limestones in south Tibet, and their 

biostratigraphic ranges in the Shallow Benthic Zones (SBZs) have been 

tentatively assigned. 

2. In Tibet, the Paleocene larger benthic foraminifera show high species diversity of 

Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, and Operculina. The 

differentiation between genera and species diversity probably started since the 

middle Paleocene. After that some genera had evolved more than one species in 

the so-called ‘Lockhartia Sea’, which doesn’t correspond with the monospecific 

trait of K-strategist genera during the early period of the Global Community 

Maturation cycle in Europe (Hottinger 2001). In the early Eocene, some 

successful genera of Alveolina, Orbitolites, Nummulites, Assilina, and

Discocyclina gained their predominance in the Neo-Tethyan Ocean, and the 

larger foraminifera showed a high-extent homogenization in the entire Neo-

Tethyan Ocean. 

3. A transient Larger Foraminiferal Extinction and Origination (LFEO) event has 

been found in the low latitudinal areas of the eastern Neo-Tethyan Ocean, which 

is characterized by the sudden disappearance of all Paleocene lamellar-perforate 

larger benthic foraminifera, such as Miscellanea, Ranikothalia, Operculina, 

Lockhartia, Kathina, and Daviesina, and the following dominance of 

porcellaneous forams of Alveolina and Orbitolites. It occurs at the boundary 

between SBZ 5 and 6, and coincides with the beginning of the CIE recovery at 

Tingri, which implies that some mechanisms causing the sudden CIE recovery 

(Bowen and Zachos 2010) probably also led to the LFEO during the PETM. 

4. Following Oppel Zone’s principle, 10 biozones from SBZ 1 to 10 have been 

established from the Zhepure Shan Formation at Tingri. At Gamba, the deposition 

of the Zongpu Formation started from SBZ 2 and terminated in SBZ 7. 
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5. High resolution carbon isotopic variations and well-defined SBZs at Tingri clearly 

show that the P-E boundary is located at the upper part of SBZ 5, not at the 

boundary between SBZ 4 and 5 proposed by some authors (Scheibner et al. 

2005; Pujalte et al. 2009). 

6. With special emphasis on the paleoecology of the larger foraminifera, eight 

microfacies types have been recognized in the Zhepure Shan Formation at Tingri. 

Microfacies analysis suggests there were a gradual deepening of depositional 

environment during the Paleocene and early Eocene and a sudden shallowing 

event at the Paleocene-Eocene boundary. 

7. In addition to Tibet, the shallowing event at the Paleocene-Eocene boundary has 

also been reported from other shallow marine environments surrounding the Neo-

Tethyan Ocean. Moreover, the sudden shallowing event was taking place under 

the background of a eustatic rise (Sluijs et al. 2008), and consequently reflects a 

regional tectonic uplift. The shallowing event is tentatively named ‘Circum-

Tethyan tectonic uplift’, and in Tibet it is ascribed to the initial India-Asia 

continental collision. 

8. High resolution CIE records have been obtained in the nodular limestones of the 

Zhepure Shan Formation at Tingri, and the CIE curve shows nearly identical 

pattern with the one from deep sea (Bains et al. 1999). However, the magnitude 

of the negative CIE in the shallow marine is evidently larger than it is from the 

deep sea (Kennett and Stott 1991; Bains et al. 1999), but to some extent 

consistent with the magnitudes from terrestrial records (Bains et al. 2003; Pagani 

et al. 2006). We propose that the CIE in the entire ocean has followed certain 

regular steps to reach the most negative carbon isotope values during the PETM, 

and the magnitude of the negative CIE may gradually increase from the deep sea 

to shallow marine and land. 

6.2 Future perspectives 

The investigations of the lower Paleogene larger foraminiferal limestones in the thesis 

have demonstrated the great potential of the shallow-water limestones for studying 

biostratigraphy, paleoenvironment and paleoclimatology as well as basin evolution. 

However, in order to further understand the lower Paleogene limestones in south Tibet, 

the following aspects still need to be paid more attention. 

1. The origin of the nodular limestones in Member C of the Zhepure Shan Formation 
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The nodular limestones have been reported from different time periods during the 

geologic history, such as in the Devonian, Permian, Jurassic, and Paleocene, which 

usually exhibit densely packed nodules with only few matrix or scattered nodules floating 

in a matrix with like/unlike character. The nodular limestones could be formed in deeper 

marine and slope environments (such as the Jurassic ‘Ammonitico rosso’ facies of the 

Alpine-Mediterranean region) or shallow marine environments (such as Member C of the 

Zhepure Shan limestones on a carbonate ramp). Broadly speaking, the origins of the 

nodular limestones have been explained by diagenetic, sedimentary and tectonic 

processes (Flügel 2004). In the Tingri area, the detailed pattern of the CIE curve 

recorded in the nodular limestones are nearly identical to the one from the reference 

section ODP 690 (Bains et al. 1999), which implies that the up-down sequences of 

different nodules during their depositional processes are still kept orderly in the nodular 

limestones. Thus, allochthonous redeposition through mechanical processes during 

sedimentation can be generally excluded from the possible origins. However, how 

diagenetic and/or tectonic processes resulted in the formation of the nodular limestones 

still need further study. 

2. The impact of the PETM-CIE on the shallow marine environment 

The knowledge of the response of shallow marine environments to the PETM-CIE is 

relatively rare, which to a great extent owes to the lack of the findings of complete, in-

situ shallow marine sedimentary sections covering the P-E boundary. In Spain, tectonic 

uplift during the PETM-CIE led to the deposition of continental sediments in most of 

shallow marine sections, such as Campo and Tremp sections (Pujalte et al. 2009). And 

in Egypt, most of the studied sections in the Galala Mountains are located in continental 

slopes (Scheibner and Speijer 2009), where redeposition of carbonate sediments and 

fossils during the period of sedimentation was inevitable. All those blur not only the 

precise location of the P-E boundary in the SBZs but also the response of shallow 

marine environments to the PETM-CIE. In the Tingri area of south Tibet, we found the 

perfect paleontological, sedimentary, and carbon isotopic records from the shallow 

marine environment during the PETM. Our present results suggest that the Paleocene 

larger foraminifera showed no response to the onset of the CIE, however, a sudden 

change of larger foraminiferal assemblages (LFEO) coincides with the initial recovery of 

the CIE. Therefore, how to understand the biotic changes in the shallow marine 

environment during the PETM will be the focus of our research in the next step.   

3. The implication of diachronous terminations of the limestones at Tingri and Gamba 

In Tibet, our studies suggest that the lower Paleogene larger foraminiferal limestones 

both at Tingri and Gamba were drowned in the early Eocene owing to the arrival of 
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foredeep depozones, which in turn was interpreted to be a result of progressively 

southward migrations of a foreland basin. Moreover, biostratigraphic evidence shows 

that the termination of the limestones at Gamba (~54-55 Ma) is ~1 Ma earlier than that 

at Tingri (~52.8 Ma). The ~ 1 Ma time lag of the limestones’ termination between Gamba 

and Tingri implies that the Gamba area might fall into the foredeep depozone ~ 1Ma 

earlier than the Tingri area. If we take the average convergence velocity (between India 

and Asia) of ~50-100 Km/Ma during the early Eocene into account (Klootwijk et al. 1992; 

Guillot et al. 2003), a general conclusion can be reached that Gamba area was located 

at least ~50-100 Km closer to the suture zone than Tingri in the early Eocene. However, 

comparison of the actual locations of the two areas shows that Tingri is even slightly 

closer to the suture zone than Gamba at present. Therefore, changes of the positions of 

Gamba and Tingri relative to the suture zone since ~55 Ma probably contain important 

information for understanding the paleotopography of the southernmost Asia and the 

northernmost India before the India-Asia collision and the kinematic processes during 

the India-Asia collision.         

4. Further studies of the PETM-CIE in Tibet 

In Tibet, the shallow marine section at Tingri records an extended, complete CIE with its 

detailed pattern almost identical to that from ODP 690 (Bains et al. 1999). In order to 

improve the understanding of the PETM-CIE in the shallow marine environments and 

make the best use of the section at Tingri, further multidisciplinary studies, such as 3He-

based and cycle-based age models (Röhl et al. 2007; Murphy et al. 2010), lipid 

biomarkers (Peckmann and Thiel 2004; Birgel and Peckmann 2008) for the possible 

evidence which may directly reveal the sources of light-carbon release, boron isotopes 

for paleo-seawater pH and atmospheric CO2 concentrations (Pearson and Palmer 2000; 

Kasemann et al. 2005), and strontium isotopes for seawater chemistry and high 

resolution isotopic stratigraphy (Veizer et al. 1999; McArthur et al. 2001), are worth re-

investigating on the nodular limestones of Member C in the Zhepure Shan Formation.      
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