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Abstract

This thesis is concerned with extensions and applications of the theory of periodic unfolding
in the field of (mathematical) homogenization.

The first part extends the applicability of homogenization in domains with evolving
microstructure to the case of evolving hypersurfaces: We consider a diffusion-reaction
equation inside a perforated domain, where also surface diffusion and reaction takes place.
Upon a transformation to a referential geometry, we (formally) obtain a transformed set
of equations. We show that homogenization techniques can be applied to this transformed
formulation. Special emphasis is placed on possible nonlinear reaction rates on the surface,
a fact which requires special results for estimation and convergence results. In the limit,
we obtain a macroscopic system, where each point of the domain is coupled to a system
posed in the reference (micro-)geometry. Additionally, this reference geometry is evolving.

In a second part, we are concerned with an extension of the notion of periodic unfolding
to some Riemannian manifolds: We develop a notion of periodicity on nonflat structures
in a local fashion with the help of a special atlas. If this atlas satisfies a compatibility
condition, unfolding operators can be defined which operate on the manifold. We show
that continuity and compactness theorems hold, generalizing the well-known results
from the established theory. As an application of this newly developed results, we
apply the unfolding operators to a strongly elliptic model problem. Again, we obtain a
generalization of results well-known in homogenization. Moreover, we are also able to
show some additional smoothness-properties of the solution of the cell problem, and we
construct an equivalence relation for different atlases. With respect to this relation, the
limit problem is independent of the parametrization of the manifold.
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Zusammenfassung

Diese Dissertationsschrift befasst sich mit Erweiterungen und Anwendungen der Theorie
des ”Periodic Unfolding” auf dem Gebiet der Homogenisierung.

Im ersten Teil zeigen wir, dass Homogenisierung in Gebieten mit veränderlicher Mi-
krostruktur auch bei sich verändernden Hyperflächen angewandt werden kann: Wir
betrachten eine Diffusions-Reaktionsgleichung in einem Gebiet mit periodisch verteilten
Löchern, an deren Rändern ebenfalls Diffusion und Reaktion stattfindet. Nach Transfor-
mation der erhaltenen Gleichungen auf eine Referenzgeometrie erhalten wir (formal) ein
transformiertes Gleichungssystem. Wir zeigen, dass Homogenisierungstechniken auf diese
Formulierung des Problems angewendet werden können. Dabei betrachten wir insbeson-
dere nichtlineare Oberflächenreaktionsraten – dies macht weitere Resultate nötig, um
Konvergenzaussagen und Abschätzungen zu gewinnen. Im Grenzwert erhalten wir ein
System in der makroskopischen Geometrie, welches an jedem Punkt mit einem System in
der mikroskopischen Geometrie gekoppelt ist. Die Evolution der Struktur findet nur dort
statt.

Im zweiten Teil erweitern wir die Theorie des ”Periodic Unfolding” auf Riemannsche
Mannigfaltigkeiten: Wir entwickeln den Begriff der Periodizität für solche Objekte lokal
mit Hilfe eines ausgezeichneten Atlasses. Falls dieser eine Kompatibilitätsbedingung erfüllt,
können Entfaltungsoperatoren auf der Mannigfaltigkeit definiert werden. Wir zeigen, dass
sich viele Resultate aus der bisher entwickelten Theorie übertragen lassen. Als Anwendung
betrachten wir eine elliptische Modellgleichung. Im Grenzwert erhalten wir wiederum
eine Verallgemeinerung bekannter Resulate. Zusätzlich zeigen wir Glattheitseigenschaften
der Lösung des Zellproblems, und wir konstruieren eine Äquivalenzrelation für Atlanten.
Bezüglich dieser Relation ist der Grenzwert des homogenisierten Problems unabhängig
von der Parametrisierung.
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1 Introduction

Homogenization emerged during the 1960-1970s with the advent of more and more complex
materials, like fibre reinforced plastic, carbon fibre filaments and other composite materials
(see e.g. Chung [Chu10] for an overview). They are characterized by

• the existence of at least two length scales: A macroscopic scale on the level of the
whole object (ranging e.g. from km to cm), and a microscale defining the internal
structure (on the range of e.g. mm to nm);

• an internal structure which is given approximately by a periodic repetition of a
reference structure.

Since simulations of objects with a total size in the order of meters requiring a spatial
resolution of mm are not feasible even with modern computers, periodic homogenization
is a method to derive effective material properties by employing the periodic structure of
the underlying medium. This facilitates numerical simulations (see also the corresponding
chapter in this work).

Homogenization relies on a description of material properties in the form

Lεuε = f, (1.1)

where Lε is a known differential operator, uε is an unknown function and f is a given
right hand side. The variable ε refers to the scale of the microstructure. It is assumed
that the global structure can be obtained by a periodic repetition of a ε-scaled version of
a reference structure being defined on a so-called reference cell (commonly denoted in the
field by Y ). Therefore, we obtain a family of problems depending on the scale parameter
ε > 0.
One is now interested in showing that there exists a function u0 such that uε converges
to u0 in a suitable sense for ε→ 0, and that there exists a differential operator L0 such
that u0 fulfills

L0u0 = f.

This equation is then interpreted to represent an effective description of the material.

Several methods have been devised to obtain the effective material properties:

• The method of asymptotic expansion (see for example the book by Bensoussan,
Lions, and Papanicolaou [BLP78]) stipulates the existence of a series expansion of
the unknown function uε

uε(x) = u0(x,
x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + . . . ,

with functions u0 and ui, i = 1, 2, . . . . They depend on two variables x and y = x
ε ,

the first in the actual domain and the latter in the reference cell, extended by
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periodicity. By inserting this expansion into the problem (1.1) and comparing
terms of different orders of ε, one can derive equations for the summands on the
right hand side. Note, however, that this method is only a formal one, yielding no
mathematical proof of convergence.

• A mathematical proof of convergence can be obtained by the method of oscillat-
ing test functions developed by Tartar (see again [BLP78] or Cioranescu and
Donato [CD99]). Unfortunately, for complex problems this method becomes tedious
to apply.

• Therefore, Nguetseng and Allaire [Ngu89], [All92] developed the notion of two-
scale convergence, a special notion of convergence being suitable for the problems
described above. One advantage is that no special auxiliary functions have to be
constructed, but the method works on its own.

• The latest development in the field is the method of Periodic Unfolding (see
Cioranescu [CDG02], [CDZ06] or Damlamian [Dam05]). It is equivalent to two-
scale convergence, but instead of using a special notion of convergence, it relies
on ”established” types of convergence (like weak and strong convergence in Banach
spaces). This method has also been proven to be useful in the treatment of nonlinear
problems, see for instance Neuss-Radu [NRJ07].

Periodic homogenization has long been used in the mathematical community only –
however, results obtained by this technique seem to appear in the engineering literature
more often recently: In [BMSS11], Brandmeier, Müller et. al. investigate elastic properties
of solder materials in microelectronic devices. They derive effective material properties by
using several methods, including an asymptotic expansion of the above type. Similarly,
Bonnet [Bon07] investigates elastic properties of media with a periodic structure of fibers
with the help of (mathematical) well known asymptotic results.

This thesis deals with extensions of the method of periodic unfolding in mathematical
homogenization. In this work, the focus lies on two techniques: Homogenization with
evolving microstructure (developed by Alber [Alb00] and Peter [Pet07]) – allowing for
an evolution of the structure to be included in a homogenization setting, and the newly
developed homogenization on Riemannian manifolds – permitting to treat homogenization
problems on nonflat objects. The organization is as follows:

• In Chapter 2 we give an overview of heterogeneous catalysis and marine aggregates.
These chemical and biological processes represent real world applications with
respect to which the mathematical tools are developed.

• Chapter 3 extends the method of homogenization with evolving microstructure to
domains containing an evolving hypersurface.

• In Chapter 4 we extend the notion of Periodic Unfolding to some Riemannian
manifolds.

• Finally, in Chapter 5 we present some numerical simulations to illustrate the
effectiveness of the homogenization method.

The different chapters can be read independently of each other. However, the reader
should be familiar with the following two subjects: The notion of Periodic Unfolding –
we refer to the introductory works by Cioranescu and Damlamian [CDG08] and [Dam05]
and to Section 3.1.4 on page 33; and the basic constructions of differential geometry as
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they appear for example in Amann and Escher [AE01]. Especially Chapter 4 of this work
relies heavily on the definition of pushforwards and pullbacks, the tangential mapping
and local representations, local basis vectors etc.





2 Porous Materials in Biology and
Chemistry

In this chapter we describe several real life phenomena stemming from the fields of biology
and chemistry, namely marine aggregates and some aspects of heterogeneous catalysis.
In both cases, accurate and effective models are needed for the treatment of important
aspects, the estimation of material exchange and the enhancement of industrial and other
processes. We are going to deal with structures which – at least as an approximation
– possess a periodic structure. Thus, homogenization techniques should in principle be
applicable. On the other hand, however, all the examples also exhibit some features which
are not amenable to mathematical techniques and results known today. This will be the
guideline for the new tools and theorems we are going to develop in subsequent chapters.

2.1 Heterogeneous Catalysis

Where no further references are given, this section is based on Thomas and Thomas
[TT97] as well as Campbell [Cam88]. According to [TT97], a catalyst is

”[a] substance that increases the rate of attainment of chemical equilibrium
without itself undergoing chemical change.”

At the end of the 1990’s, 90% of all industrial processes involving chemistry used at least
one catalyst in one production stage. Areas where catalysts are needed include

• Fuel: Cracking of the heavy parts of crude oil; desulfurization of fuel to avoid the
poisoning of catalytic converters.

• Medicine: Fabrication of drugs.

• Food: Hydrogenation of fats to produce margarine which is not so prone to becoming
rancid; production of fertilizers for the food industry; production of high fructose
corn syrup from glucose syrup; production of L-aspartic acid (an artificial sweetener
known as Aspartame).

• Fabrics and building materials: Polymers like PVC or nylon, for example.

One has to distinguish between homogeneous and heterogeneous catalysis: The first refers
to the fact that the catalyst is present in the same phase as the reactant, whereas the latter
means that the phase of the catalysis is different from that of the reactants. This allows
for an easy separation of the catalyst from the products stemming from the reaction. Due
to that property, the majority of industrial relevant processes involve the heterogeneous
flavour of catalysis. In the sequel, we only deal with heterogeneous catalysis.



20 2 Porous Materials in Biology and Chemistry

2.1.1 Examples

Automobile Exhaust Catalysts

The emergence of catalytic converters for automobiles started in the 1970s in California,
due to a more restrictive legislation regarding exhaust gases.1 Prior to the introduction of
these ”catcons”, it contained larger amounts of carbon monoxide (CO), oxides of nitrogen
(NO and NO2, together named NOx) and hydrocarbons (termed HC). These gases are
toxic and are known to cause smog and acid rain. Furthermore, they also represent
effective greenhouse gases, contributing to global warming.

Inside the catalytic converter, these substances react to the less harmful nitrogen (N2),
carbon dioxide (CO2) and water H2O according to the schematic reactions

2CO +O2 −→ 2CO2

′HC′ +O2 −→ CO2 +H2O

as well as

2CO + 2NO −→ 2CO2 +N2

′HC′ +NO −→ CO2 +H2O+N2.

These reactions are facilitated by the noble metals platinum (Pt), rhodium (Rh), and
palladium (Pd). Due to their high price, there is a demand for an efficient converter
design. Nowadays, a honeycomb ceramic structure is used, consisting of channels oriented
in the direction of the flow of the exhaust gas. On the channel walls, highly porous
aluminum oxide (Al2O3, also known as aluminia) is attached such that the noble metals
are embedded inside the porous matrix. In addition, stabilizing chemical compounds such
as cerium oxide (Ce2O) and barium oxide (BaO) are added.

The effectiveness of a catalytic converter depends on several factors, among them the
distribution of the active components and the exhaust flow inside the converter. Since
an effective catalytic reaction only takes place in a narrow temperature range and under
sufficient feed of oxygen, these parameters have to be controlled as well. As one can see,
the design and operation of catalytic converters is a complex task. Since the processes
inside of it are not arbitrarily accessible, efficient simulations are very important in the
developmental process. In the future, this will even play a more important role due to
new legislation demanding an even further reduction of emissions.

Petroleum Processing

Crude oil harvested from drilling sites is of almost no direct use. First, it has to be
destilled in columns leading to products like liquid petroleum gas, naphtha and gas oil.
The latter two are treated further and finally yield fuel and petrol. Three important steps
in this process are reforming, cracking, and desulfurization:

1Comments on the history and development of automobile exhaust catalysts can be found in Ghandi,
Graham and McCabe [GGM03] as well as [TT97], for example.
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Reforming is the process of treating naphtha products such that one obtains gasoline
with higher octane numbers (which is needed for modern high performance engines). This
is obtained by catalytically restructuring hydrocarbons into more complex molecules.
Traditionally, one uses Pt on a porous Al2O3-support as a catalyst. The reaction takes
place at around 500°C at a pressure between 5 and 40 bar. Modern bimetallic catalysts
also contain iridium (Ir), rhenium (Re), or germanium (Ge).

The goal of cracking is to obtain a higher proportion of gasoline from crude oil. This is
achieved by catalytically breaking down carbon-carbon bounds of larger molecules to get
smaller ones while keeping the proportion of carcinogenic components low. This process
is carried out at about 500°C and 70 bar with the help of zeolites charged with rare-earth
metals. Zeolites are microporous minerals consisting of aluminum (Al), silicon (Si), and
oxygen (O). Due to their complex structure, they are used to control the size of molecules
which are ”allowed” to undergo the catalytic reaction.

Desulfurization has to be carried out prior to the above processing steps. It designates
the removal of unwanted elements (in this case sulfur) from crude oil. The reason for this
is that sulfur (S) poisons the catalyst: It (more or less) permanently attaches to the active
sites of it, thus reducing the catalytic effectiveness. Moreover, desulfurization improves
the color and stability of the final gasoline product. A prototypical reaction is given by

C2H5SH + H2 −→ C2H6 +H2S.

The process is carried out with the help of supported cobalt/molybdenium oxides or
nickel/tungsten oxides. Newer catalysts are based on molybdenium disulfide (MoS2).
Findings imply that the reactivity is different for edge and basal planes of the catalyst
(see Skrabalak and Suslick [SS05]) – thus, the surface structure of the catalyst plays an
important role. Hence, advanced manufacturing methods to obtain a high surface area
have recently been investigated: Figure 2.1 shows catalysts used in methanol fuel cell
electrodes manufactured by spray pyrolysis, see Bang, Han et. al. [BHS+07] for the results
as well as Kodas and Hampden-Smith [KHS99] for an introduction to the process. Similar
techniques are also used in the production of MoS2-catalysts for desulfurization in [SS05],
yielding structures closely resembling those shown in the figure.

2.1.2 Aspects of Physics and Modeling

Chemisorption

A catalyst facilitates reactions by adsorbing2 molecules to its surface (see again the
references cited at the beginning of this chapter). There, bonds between the atoms
are weakened, facilitating chemical reactions. Here, one has to distinguish between two
types of adsorption: Physical adsorption and chemisorption. Whereas the former is
characterized by van-der-Walls forces, the latter is established due to a rearrangement of
electrons and a rupture of chemical bonds. In heterogeneous catalysis, first the physical
adsorption keeps molecules in the vicinity of active sites, followed by chemisorption which

2Note that the term ”adsorption” designates the adhesion of substances to the surface of the adsorbate,
whereas ”absorption” means the incorporation of a substance into another one.
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Figure 2.1: Microscopic images of porous catalysts used in methanol fuel cells produced
by spray pyrolysis. Reprinted with permission from [BHS+07]. Copyright
2007 American Chemical Society.
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bounds the molecules closer to the surface. After adsorption, the excess energy of the
molecules is ”transformed” into a surface diffusion of the chemical species.

Modeling of the adsorption process is usually based on the proportionality principle (see
e.g. Böhm [Böh08]) and an exchange towards an equilibrium concentration: Denote by c
the concentration of a species in a bulk phase and by cΓ the corresponding concentration
on the catalyst’s surface, then a simple model would be to assume that desorption is
a constant process being proportional to cΓ, with adsorption being proportional to c.
Denoting the proportionality constants by ka (for adsorption) and kd (for desorption),
then the equilibrium between ad- and desorption is characterized by

kac = kdcΓ ⇐⇒ 0 = c− kd
ka
cΓ.

Setting H := kd
ka

as the Henry constant, exchange towards equilibrium would be charac-
terized by the Henry-type law

fexch(c, cΓ) = (c−HcΓ),

where fexch denotes a function characterizing the exchange of c and cΓ. Further details
can be found in Section 3.3.1. Usually, the constants ka and kd depend on temperature,
pressure, and the surface characteristics of the catalyst, among others.

Often, the number of active sites on the catalyst is limited. If this has to be taken into
account, one assumes additionally that adsorption is proportional to (cΓ,max − cΓ), where
cΓ,max characterizes the amount of free sites on the catalyst’s surface. In this case, the
proportionality principle yields for the equilibrium concentrations

kdcΓ = ka(cΓ,max − cΓ)c ⇐⇒ 0 =
kcΓ,maxc

kd + kac
− cΓ.

This yields fexch(c, cΓ) =
(kcΓ,maxc

kd+kac
− cΓ

)
, which is known as Langmuir adsorption kinetics

(and usually based on the partial pressures of the species, see [TT97]). Variants of this
formula can be obtained by assuming that adsorbed species occupy m ∈ N adsorption
sites and that desorption can only occur if l ∈ N molecules detach simultaneously from
the surface; in this case (where ’∼’ denotes proportionality)

adsorption ∼ (cΓ,max − cΓ)m, adsorption ∼ c and desorption ∼ clΓ

gives the equilibrium equation

kdc
l
Γ = ka(cΓ,max − cΓ)mc

as a starting point. More realistic models also involve hysteresis effects. Depending on
the pore size, the pore distribution and the interconnectivity, different hysteresis curves
have to be taken into account, see [TT97].

Since we are interested in developing new mathematical tools and not in an exact
simulation of adsorption kinetics, we will use Henry’s law throughout this work.
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Diffusional and Surface Effects

Molecules reach the active sites of the catalyst mainly by diffusion. In heterogeneous
catalysts, one distinguishes three types:

Bulk diffusion denotes the ”standard” diffusion found in most liquids. It is characterized
by the fact that collisions of molecules with each other are much more frequent than
collisions with the walls of the catalyst.
Inside small pores, one can find Knudsen diffusion. Here, collisions of the molecules
with the walls of the catalyst are much more frequent than collisions of molecules within
the liquid. Experimental findings imply that the corresponding diffusion coefficient DK

is proportional to the reciprocal of the surface area. As a side note, we would like to
point out that in applications of homogenization in R3, this corresponds to the choice
of the diffusion coefficient DK = ε2D, where ε > 0 is the scale parameter and D > 0
the dimensionless diffusion coefficient. Since the inclusion of such a coefficient in PDE
models leads to so called distributed microstructure models (see e.g. Hornung [Hor97] or
Clark [Cla98], Showalter and Visarraga [SV04] for mathematical results), we suggest to
investigate the applicability of such models in the field of catalysis.
Finally, surface diffusion denotes the diffusion of molecules on the surface of the catalyst
after having been adsorbed to it.

Reaction Rates

As seen above, the surface and pore distribution of the catalyst has important effects on
the catalytic reaction. Experiments suggest that its rate is proportional to the surface
area to the power of γ ∈ [12 , 1], with γ = 1 for wider pores and γ = 1

2 for narrow channels.
Similarly, one has to distinguish between diffusion-controlled and reaction-controlled
processes. We consider the example of a simple reaction

aA+ bB
k−→ cC + dD.

If the chemical reaction is rate determining (i.e. the supply of educts is high enough to
allow the reaction to take place with the highest possible velocity), the reaction velocity η
is given by the law of mass action. In this case, this yields η = kcaAc

b
B with corresponding

concentrations cA of A and cB of B. If the supply of one species, say A, is limited such
that the reaction becomes diffusion-controlled, Thomas and Thomas [TT97] (based on the
classical work of Thiele [Thi39]) argue that in this case the speed k has to be replaced by
the effective constant k

1
2 , and that the order of the reaction becomes aD = a+1

2 , yielding
the reaction rate ηD = k

1
2 caDA cbB. Special characteristics of adsorption sites can also lead

to reaction rates of the form η̃ = kcγA, with γ ∈ [0, 12 ], see Campbell [Cam88].

2.1.3 Recent Trends

In this section, we will summarize recent trends in manufacturing and simulation of
heterogeneous catalysts.

Concerning the catalysts used in industrial processes, more and more complex and
structured surfaces are used nowadays. If one wants to employ different catalysts at the
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same time, instead of simply ”mixing” the active substances, one constructs catalysts
with a well-designed distribution of the ingredients on a carrier substance. This leads
to so-called bifunctional catalysts with enhanced reaction rate and throughput. See e.g.
Blomsma, Martens and Jacobs [BMJ97] for the description of a bimetallic catalyst used
for the cracking of heptane or the works of Guo, Dong and their coworkers [GLDW10]
and [WGWD10] about the synthesis of bimetallic catalytic nanoparticles.
Moreover, one tries to integrate enzymes into catalytic settings. Enzymes are proteins,
occurring naturally in living organisms. They trigger catalytic reactions, with a rate one
to two orders of magnitude higher than that of man-made catalysts. However, enzymes
usually are present in a liquid phase, making them inconvenient for industrial processes
(see the beginning of Section 2.1). To overcome this drawback, one tries to attach
enzymes to the surface of a carrier material and thus immobilizing the active proteins
(see Sheldon [She07] for a description of corresponding methods). This has lead to very
efficient catalysts which can be used on an industrial scale, cf. for example Iso, Chen et.
al. [ICE+01]. In this reference, immobilized lipase is used to produce biodiesel.

Nowadays, the design and development of new catalysts is not possible without the use
of computers and efficient simulations. However, due to the number of complex processes
happening at different scales, a complete and satisfactory model is not yet available. Even
if all the processes could be modeled correctly, still the dimensional ”bridge” connecting
molecular interactions (size of 10−10 m) with the pores of the support material (size of
10−9 m to 10−8 m), the support itself (size of 10−3 m to 10−2 m) and finally the whole
catalyst (size of 10−1 m to 100 m) makes exact simulations infeasible due to limitations
in memory and computational power. Thus, only effective models focussing on a choice
of aspects can be used.
To allow for more detailed models taking into account hardware restrictions, the chemical
community became interested in multiscale-modeling recently: In [KNŠ+10], Kočí, Novák
and their coworkers proposed a computational 3-scale model for the oxidation of CO in
Al2O3-supported exhaust gas catalysts. Based on their model for the porous support
material in [KŠKM07], they examined

1. Simple packed Al2O3-particles supporting Pt-particles as a catalyst.

2. The porous washcoat formed by stacking the catalytic entities.

3. A channel from an automobile exhaust catalyst, where the walls are occupied by
the washcoat layer.

Progressing from one step to the other, the authors derived effective material properties
needed in the computations of the n-th step from the (n− 1)-th step, n = {2, 3}.
A similar approach was undertaken by Sundmacher, Pfafferodt and Heidebrecht to model
a steam reforming unit of a carbonate fuel cell: In [HPS11], they simulated a small
catalytic device (the ”Detailed Model” in their terminology). Lead from the appearance of
several reaction zones, they devised a meso-scale model (the ”Zone Model”) to explicitly
model such a behavior. This was then used to build a macro-model of the whole reforming
unit (the ”Phase Model”). Detailed descriptions of the first two simulations together with
a comprehensive list of material parameters can be found in [PHS+08]. For a description
of the industrial application and the reactions taking place, see [PHS10].



26 2 Porous Materials in Biology and Chemistry

2.2 Marine Aggregates

Marine aggregates are particles found in the pelagic zone of the oceans. They consist of
detritus, dead material and living organisms like phytoplancton and microorganisms, and
inorganic matter, for example clay minerals. Their size ranges from 500μm to some mm.
Aggregates smaller than 0.5mm in diameter are called microaggregates, whereas those
with size greater than 0.5mm are called marine snow (cf. Logan and Wilkinson [LW90]).
The concentration of marine aggregates in the water ranges from 1 to 10 aggregates per
litre in the surface water region, with numbers up to two orders of magnitude lower in the
deeper regions, see Alldredge and Silver [AS88]. One should keep in mind, however, that
the term ”marine aggregate” or ”marine snow” is applied to a whole family of particles,
ranging from fragile to robust and from porous to gelatinous, with very different shapes
and forms (like plates, shells, spheres etc.).

Due to the sinking of these aggregates to the seabed, a constant transportation process of
chemical and biological material to the sea floor is maintained. According to Fowler and
Knauer [FK86], this is the main process driving vertical fluxes in the ocean. Recently,
there has been renewed interest in this flux in the field of climate modeling: Marine
aggregates bury carbon in the seabed and thus can be an important factor when estimating
global warming (see Kiørboe [Kiø01]). However, Azam and Long [AL01] pointed out that
these processes have never been included into a global climate study: Up to now, it is
unknown whether the oceans are a source or a sink of carbon. Only after having obtained
these information, it is possible to estimate the effectiveness of methods to artificially
bury carbon in the sea, like putting iron in the sea water to enhance the production of
algae.

The genesis of marine aggregates begins with the formation of microaggregates – from the
remains of other organisms, mucus of plankton or fecal pellets. Due to Brownian motion
and fluid sheer in the water, microaggregates meet and coagulate to greater particles.
They stuck together due to van-der-Waals forces, biological glue, or mechanical surface
characteristics of the aggregates, see [Kiø01] and [AS88].
The breakdown and loss of aggregates is caused by several mechanisms: Due to shear
stress, the particle may be torn apart; or it may be consumed in part by plankton or as a
whole by fish (an event that, however, leads to the transformation to fecal pellets, which
constitute a source of aggregates). Moreover, bacterial colonies can lead to decomposition.
Finally, settlement of the marine snow on the sea floor is the main process of removal
from the water column (cf. the references cited above).

Inside the aggregate, microorganisms like algae and bacteria can be found in concentrations
one to three orders of magnitude higher than in the surrounding water (cf. [AS88]). They
stem from fecal pellets containing those organisms as well as organisms which were
attracted by the aggregate.
Therefore, marine aggregates are places of elevated biological and chemical activity.
Various biological and chemical reactions take place inside the aggregate, for instance the
production of ammonium and carbon dioxide. This leaves a plume of higher concentration
in the water. Additional substances exchanged with the surrounding water are oxygen,
nitrate, sulfur, minerals, dissolved organic material and trace metals. This trail is
attracting other microorganisms (see Kiørboe and Thygesen [KT01] for estimations via
simulations).
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In order to understand the transport and aggregation phenomena, one has to know the
advective and diffusive exchange of the aggregate with the surrounding water. Due to
[FK86], aggregates can be considered as a porous medium.
Flow around solid and porous particles has been studied by various authors: See for
example von Wolfersdorf [vW88] for the derivation of a potential flow past a porous
cylinder or the works of Jäger and Mikelić, [JM00] and [JM96] on the derivation of
boundary conditions between a porous medium and a free flow. In this context, see also
[DB10] for generalizations.
Simulations related to marine aggregates on the other hand are rare; they have been
carried out by Kiørboe et. al. [KPT01] as well as [KT01] in the case of a 2-dimensional
solid sphere. Here, the focus lies on the estimation of the plume behind the aggregate and
the attraction of microorganisms. Another related work is Bhattacharyya, Dhinakaran,
and Kahili [BDK06] on the simulation of a porous sphere by using a single-domain
approach.
Nevertheless, in these simulations the reactive, diffusive and advective processes inside
the marine aggregate have completely or partially been neglegted.

2.3 Implications for Research

As it has become clear in the previous two section, both industrial applications of
heterogeneous catalysis and marine aggregates are multi-scale systems: Whereas for
catalysts, one can at least distinguish between the catalytically active substance (e.g.
Pt-atoms), its carrier substance (e.g. porous Al2O3) and the whole unit (for instance a
catalytic converter to treat exhaust gases), marine snow can be considered on the level of
its constituents (for example fecal pellets or mucus), as an agglomerate (i.e. the whole
aggregate) and on the level of a large volume fraction of the sea, that is an ensemble of
sinking aggregates.

Since in both situations (at least as an approximation) the structure is given by a periodic
repetition of basic constituents, the methods and tools of periodic homogenization should
in principle be applicable (see Cioranescu and Donato [CD99] for an introduction to
the mathematical theory and Hornung [Hor97] for basic applications to porous media).
However, for a reasonable study of the processes above, the following features must be
taken into account:

Complex Multiscale Models

All situations discussed above possess at least three scales. While multiscale convergence
is well-developed in the field of homogenization (see the classical work of Allaire and
Briane [AB96] or the hints given at the end of the paper by Damlamian [Dam05]), all
applications so far only treat the case that the whole domain has the same multi-scale
structure. What is lacking is the possibility to create complex geometries on multiple
scales, such that different parts of the domain can be equipped with different structures.
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Processes on Evolving Surfaces

In the case of marine snow, the grazing of bacteria leads to a change of the surface of the
aggregates. However, important exchange- and chemical processes are happening at these
surfaces.
The concept of an evolution of the microstructure in homogenization has recently been
introduced by Peter and Meier – see [Pet06], [Pet07] and [Mei08]. In these works, however,
only reaction-diffusion processes in the bulk have been considered. The case of reaction
and diffusion on the surface of an evolving structure has not been treated so far.

Structured and Non-Flat Surfaces

While surface diffusion and reaction have been considered in some cases in the homogeniza-
tion literature (see e.g. Neuss-Radu [NR92] or Allaire, Damlamian, and Hornung [ADH95]),
all the processes only happened on a boundary with no structure in itself. Although there
are some works deriving surface equations with the help of two-scale convergence-like
constructions in Neuss-Radu and Jäger [NRJ07], no structured surface or nonflat domain
has been considered in the context of periodic homogenization to the knowledge of the
author. However, especially for the modeling of the fine structure of catalysts (cf. Figure
2.1), such an approach seems appropriate.

In this work, we investigate the latter two situations (see also the introduction): The next
chapter deals with diffusion-reaction processes on evolving surfaces inside a homogenization
setting; and the subsequent chapter is concerned with the development of a homogenization
calculus applicable to manifolds itself.



3 Homogenization of Evolving
Hypersurfaces

In this chapter we carry out a homogenization procedure for chemical processes in a
domain containing an array of embedded hypersurfaces. These surfaces are assumed to
evolve with time, where the evolution is a-priori known and might depend on the position
in the domain of interest.

Starting with the works of Alber [Alb00], Peter [Pet06], and Meier [Mei08], homogenization
together with an evolution of the microstructure has become an accepted tool when
deriving effective material properties. To the author’s knowledge, however, all works so
far concerned only an evolution of different subdomain structures. The evolution of an
embedded hypersurface has not yet been considered. This is the aim of this chapter.
There are two essential difficulties: First, the treatment of the evolution process of the
hypersurface; and second, the treatment of the nonlinearities in the reaction rates.

The outline is as follows: Transport theorems for evolving hypersurfaces are hard to find in
the literature. Thus for the convenience of the reader, we summarize the theorems which
are needed to derive reasonable mass balance equations in the introductory Section 3.1,
where we also give an overview of Periodic Unfolding. In Section 3.2 we present our
method of describing the domain with embedded hypersurfaces. In the next Section 3.3
we use these transport theorems to derive mass balance equations for a model reaction
taking place in the domain and on the hypersurface. After nondimensionalization, we
arrive at the equations to be homogenized. Existence theorems together with a-priori
estimates are derived in Sections 3.3.3 and 3.3.5. Finally, the rigorous homogenization
procedure is carried out in Section 3.4. We conclude this chapter with some remarks
concerning L∞-estimates for the solutions: In our approach, we tried to avoid the use of
these estimates since they impose some restrictions on the situation considered; however
when modeling real-life situations with some a-priori information at hand, they might be
useful in the treatment of nonlinearities.

3.1 Coordinate Systems, Transport Theorems and Periodic

Unfolding

3.1.1 Coordinate Transformations

In this section we recall some basic definitions and properties of coordinate transformations
in continuum mechanics, see e.g. Marsen and Hughes [MH94] for an introduction or Meier
[Mei08].

In this paragraph, let S := [0, T ) be a given time interval with T > 0 and let Ω0 ⊂ Rn,
n ∈ N be a given domain (which is assumed sufficiently regular). Assume that Σ ⊂ Ω0
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is a compact C2-hypersurface. Furthermore, let M ⊂ Rn be a smooth m-dimensional
submanifold of Rn with induced Riemannian metric. In the sequel, the reader should
keep the choices M = Ω0 and M = Σ in mind.

3.1.1 Definition.
A function ψ : S ×M −→ Rn is called a regular Ck-motion (k ∈ N0) if

1. ψ ∈ Ck(S ×M)

2. For all t ∈ S the function ψ(t, ·) : M −→ M(t) := ψ(t,M) is bijective, and the
inverse function is of class Ck(M(t)).

3. There exist constants c, C > 0 such that for the tangent map1 Tz ψ of ψ(t, ·) it holds

c ≤ detTz ψ ≤ C

for all (t, z) ∈ S ×M .

We define the linear map F (z) := Tz ψ for z ∈M . Note that due to the implicit function
theorem and condition 3 the function ψ−1 is continuously differentiable, which also gives
the existence of F−1 as a continuous linear function. We will use the notation F T to
denote the adjoint of F with respect to the induced Euclidean scalar product on M , and
F−T to denote the inverse of F T .

3.1.2 Transport Theorems

When deriving mass balance equations in a time-dependent set, one has to use transport
theorems for the differentiation of time-dependent integrals. For the usual domain-case,
these theorems are well-known in the mathematical and engineering literature (see e.g. the
references cited below); however for the hypersurface-case, only few works are available.
Here the reader is referred to the book by Slattery [Sla90] (from an engineering point of
view) and the paper by Bothe, Prüss, and Simonett [BPS05].

We begin by reviewing the well-known transport theorem of Reynold. Let ψ : S ×
Ω̄0 −→ Rn be a C1-motion. The (Lagrangian) velocity of the transformation is given by
ṽ(t, z) := ∂ψ

∂t (t, z) for (t, z) ∈ S × Ω̄0. The corresponding Eulerian velocity is then given
by

v(t, x) = ṽ(t, ψ−1(t, x)) for t ∈ S, x ∈ ψ(t, Ω̄0),

where the inverse is taken with respect to the spatial coordinates. With the notations
and definitions above, the following results holds:

3.1.2 Proposition (Reynold’s transport theorem).
Let c ∈ C1(S × Ω(t)), where Ω(t) = ψ(t,Ω0). It holds

d

dt

∫
Ω(t)

c(t, y) dy =

∫
Ω(t)

∂tc(t, y) dy +

∫
Ω(t)

div(cv)(t, y) dy.

1As a reminder: For M,N manifolds and a smooth map f : M → N the tangent map Tz f in z ∈ M is
a map Tz f : TzM −→ TzN defined as follows: Choose a v ∈ TzM , then there exists a δ > 0 and a
smooth curve γ : (−δ, δ) → M with γ(0) = z, γ′(0) = v. Define Tz f(v) = (f ◦ γ)′(0). One can show
that this definition is actually independent of the specific choice of the curve γ.
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Proof. See e.g. [Mei08] or [EGK08]. �

For the case of a hypersurface, we have the following result:

3.1.3 Proposition (Transport theorem for hypersurfaces).
Let ψ : S × Ω̄0 −→ Rn be a C2-motion and let Σ ⊂ Ω0 be a compact C2-hypersurface. Let
Γ(t) := ψ(t,Σ) be the transported material surface and let cΓ ∈ C1(S × Γ(t)). Then it
holds

d

dt

∫
Γ(t)

cΓ dσt =

∫
Γ(t)

(DcΓ
Dt

+ cΓ div
Γ(v)

)
dσt

=

∫
Γ(t)

(DcΓ
Dt

+ cΓ div
Γ(vΓ)− cΓκV

)
dσt.

Here σt denotes the surface measure on Γ(t), and κ(t, x) is the mean curvature of Γ(t) at
x. divΓ denotes the divergence-operator on Γ(t), and vΓ and V denote the tangential and
normal component of the velocity v:

vΓ := v − (v · ν)ν, V := v · ν.

Here ν denotes the outer unit normal vector. The term DcΓ
Dt is the Lagrangian derivative

of cΓ given by
DcΓ
Dt

(t, x) =
d

ds
cΓ(t+ s, ψ(t+ s, ψ−1(t, x)))

∣∣∣∣
s=0

.

The Lagrangian derivative appears due to the fact that one cannot consider the function
t �→ cΓ(t, x) for fixed x, since x can only be chosen from a set depending on t itself.

Proof. This is a reformulation of the result presented in [BPS05]. In that paper, the
Eulerian velocity v is given, and the transformation ψ is obtained as ψ(t, z) = φ(t; 0, z)
via the solution φ(t; t0, z0) of the ODE

φ′(t) = v(t, φ(t)), φ(t0) = z0

(neglecting the expression ”t0, z0” in φ). This gives the assertion for cΓ ∈ C1(S × Γ(t)),
where DcΓ

Dt (t, x) :=
d
dscΓ(t+ s, φ(t+ s; t, x))

∣∣
s=0

. Here φ(t+ s; t, x) = ψ(t+ s, ψ−1(t, x)).
�

These transport theorems are frequently used in order to derive balance equations.
However, one has to keep in mind that its use is only justified when the motion transports
the quantity under consideration. In our case, we deal with a structural change of the
domain which does not transport any substances itself. That is why we have to use
another transport theorem:

3.1.4 Proposition (Transport theorem).
Let c ∈ C1(S × Ω(t)). Extend c by 0 outside Ω(t) in Rn. Assume that Γ(t) is a smooth
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evolving hypersurface in the sense of Eck et. al. [EGK08]. Let Ω′ ⊂ Rn be an open control
volume. Then it holds

d

dt

∫
Ω′

c dx =

∫
Ω′∩Ω(t)

∂tc dx+

∫
Ω′∩Γ(t)

cV dσ.

Here V denotes again the normal velocity of the surface as above.

Proof. This is a special case of the transport theorem 7.3 in [EGK08], where we set the
function c to be 0 in one part of the domain. Note the direction of the normal vector,
which in the case of the cited reference is an inner normal vector. �

When deriving mass balance equations, one has to assume the regularity of the involved
functions – that is why we refrained from giving the most general results for weakly
differentiable functions in this section, which may be found in the literature.

3.1.3 Transformation Formulas

3.1.5 Definition.
Let c(t, x) be a scalar quantity and let j(t, x) be a tangential vector field defined in
(t, x) ∈ S ×M(t). Assume that c and j are sufficiently smooth. We associate to these
functions the so-called material representations c̃ and j̃ defined via

c̃(t, z) = c(t, ψ(t, z)) j̃(t, z) = j(t, ψ(t, z)) with (t, z) ∈ S × Ω̄0.

c and j are called quantities described in Eulerian coodinates, whereas c̃ and j̃ are described
in Lagrangian coordinates (or material coordinates).

In order to be able to transform equations defined in M(t) to M , we have to relate the
differential operators on the different manifolds. The following lemma gives these results
(�·, ·� denotes the Euclidean scalar product in Rn):

3.1.6 Lemma.
Let ∇x be the gradient and let divx be the divergence operator on M(t) induced by
the corresponding operators in Euclidean space. Analogously, let ∇z and divz be the
corresponding operators on M . Then the following relations hold:

∇x c = F−T ∇z c̃

divx(j) = divz(F
−1j̃)

∂tc = ∂tc̃− �F−T ∇z c̃, v�,

where v(t, z) = ∂tψ(t, z).

Proof. By the chain rule, we have for the derivative in z ∈M that Tz c̃ = Tψ(t,z)c ◦Tzψ =
Txc◦F . By the definition of the gradient on a Riemannian manifold, we have for v ∈ TzM

�∇z c̃(t, z), v� = Tz c̃(v) = Txc(Fv)

= �∇x c(t, x), Fv� = �F T ∇x c(t, x), v�



3.1 Coordinate Systems, Transport Theorems and Periodic Unfolding 33

where x = ψ(t, z). Thus we obtain ∇z c̃ = F T ∇x c, which by application of F−T to both
sides gives the first equality.

For the second equality, note that the divergence is the formal adjoint of the gradient
operator. Carrying out an integration by parts, we obtain for a smooth vector field
q̃ ∈ X(M) having compact support∫

M

�F−T ∇z c̃, q̃� dvolM = −
∫
M

c̃ divz(F
−1q̃) dvolM ,

which shows that divz(F−1·) is the adjoint to F−T ∇z; and thus the second equality follows.
The third relation follows by an application of the chain rule and the transformation
formula for the gradient. �

3.1.7 Lemma.
Denote by ν̃ the outward unit normal at Σ. The corresponding unit normal at Γ(t) is
given by

ν(t) =
F−T ν̃

|F−T ν̃| .

Proof. See e.g. [Mei08]. �

For the Lagrangian derivative, we have the following transformation result:

3.1.8 Lemma.
We use the assumptions and definitions of Proposition 3.1.3. Define the function c̃Γ in
Lagrangian coordinates via

c̃Γ(t, z) = cΓ(t, ψ(t, z)).

Then it holds
DcΓ
Dt

= ∂tc̃Γ.

Proof. By setting x = ψ(t, z) we obtain by definition of the Lagrangian derivative

DcΓ
Dt

(t, x) =
d

ds
cΓ(t+ s, ψ(t+ s, ψ−1(t, x)))

∣∣∣∣
s=0

=
d

ds
cΓ(t+ s, ψ(t+ s, z))

∣∣∣∣
s=0

=
d

ds
c̃Γ(t+ s, z)

∣∣∣∣
s=0

= ∂tc̃Γ(t, z). �

3.1.4 Overview of Periodic Unfolding

To facilitate convergence proofs in the field of homogenization, Nguetseng and Allaire
developed the notion of two-scale convergence, see [Ngu89] and [All92]. This notion
has been proven to be extremely useful, and a lot of extensions and generalizations
emerged: See for example the works of Neuss-Radu [NR96] and Allaire, Damlamian
and Hornung [ADH95] for convergence on periodic surfaces (similar to our situation) or
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0

Y

{z}

z

[z]

Figure 3.1: The construction of [z] and {z} for given z ∈ Ω.

Bourgeat, Mikelić and Wright [BMW94] as well as Zhikov [Zhi00] for extensions to a
stochastic microstructure and a more measure-theoretic approach. In this connection
see also Lukkassen and Wall [LW05] for a similar approach for monotone operators. A
characterization of admissible test functions may be found in Valadier [Val97]. For recent
developments in order to extend the notion of two-scale convergence to other classes
of functions (e.g. smooth functions or distributions) we refer the reader to the works
of Visintin [Vis04], [Vis06] and [Vis07]. Finally, see Lukkassen, Nguetseng and Wall
[LNW02] for a good summary of the method together with common caveats and errors.

Two-scale convergence uses special test functions and function spaces, whose character-
ization is difficult in some circumstances (see the references above). With the help of
the notion of Periodic Unfolding, developed by Cioranescu, Damlamian, and Griso in
[CDG02], one can use the usual weak convergence in Lp-spaces to treat homogenization
problems. Good introductory papers are available with the works of Damlamian [Dam05]
and Cioranescu, Donato and Zaki [CDZ06] (where specifically perforated domains are
treated). A general formulation, unifying all concepts, can be found in Holmbom, Silvfer
et al. [HSSW06]. The reader is especially referred to the newer work [CDG08], where also
a literature survey with applications of the method in various fields is contained.

In order to have the main results concerning two-scale convergence and Periodic Unfolding
at hand, we give an overview of the most important definitions and results:

As for the notation in the field of Periodic Unfolding, we have: Let z ∈ RN . Define [z]
to be the unique linear combination

∑N
j=1 kjej with k ∈ ZN and ej the j-th unit vektor,

j = 1, . . . , N , such that z− [z] ∈ Y . Define {z} = z− [z] (see also Figure 3.1). We denote
the reference cell by Y ; in this work, we assume that Y = [0, 1)n. For the definition of the
boundary unfolding operator, we assume that Y can be decomposed in two disjoint parts
Y = YS ∪ YR, such that YS is strictly included in Y . Let Ω ⊂ Rn be a given domain of
interest and define Ωε =

⋃
k∈Zn ε(k + YR) ∩ Ω as well as Γε =

⋃
k∈Zn ε(k + ∂YS) ∩ Ω.
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3.1.9 Definition.
For a function φ with domain Ω, let φ̂ be the function extended by 0 outside of Ω. We
define the following unfolding operators:

1. For φ : Ω −→ R define the unfolding operator

T ε(φ) : RN × Y −→ R

T ε(φ)(x, y) = φ̂(ε
[x
ε

]
+ εy).

2. For φΓ : Γε −→ R define the boundary unfolding operator

T ε
b (φΓ) : R

N × ∂YS −→ R

T ε
b (φΓ)(x, y) = φ̂Γ(ε

[x
ε

]
+ εy).

It is obvious that both operators are linear and that T ε(f · g) = T ε(f) · T ε(g) for
appropriate functions f and g (the same holds true for T ε

b ). We present some standard
results in the field of Periodic Unfolding, whose proofs can for example be found in
[CDZ06]:

3.1.10 Proposition.
Let p ∈ [1,∞), let φ, φ1 ∈ Lp(Ω) and φΓ, φ1Γ ∈ Lp(Γε).

1. The following integral identities hold:∫
Ω

φ(x) dx =
1

|Y |

∫
Ω×Y

T ε(φ)(x, y) dx dy,

∫
Γε

φΓ(x) dσx =
1

ε|Y |

∫
Ω×∂YS

T ε
b (φΓ)(x, y) dx dσy.

2. The operators T ε : Lp(Ω) −→ Lp(Ω × Y ) and T ε
b : Lp(Γε) −→ Lp(Ω × ∂YS) are

linear and continuous with norm estimate

‖T ε(φ)‖
Lp(Ω × Y )

≤ p
√
|Y | ‖φ‖

Lp(Ω)
,

‖T ε
b (φΓ)‖Lp(Ω × ∂YS)

≤ p
√
ε|Y | ‖φΓ‖Lp(Γε)

.

3.1.11 Proposition.
Let φ ∈W 1,p(Ω). Then εT ε(∇φ) = ∇y T ε(φ) a.e. in Ω×Y . Similarly, for φΓ ∈W 1,p(Γε)
one has εT ε

b (∇Γ φΓ) = ∇Γ
y T ε

b (φΓ) a.e. in Ω× ∂YS.

Proof. For the gradient in the domain, the result is well-known in Periodic Unfolding (see
above). For the surface gradient, denote by νε the unit normal vector for Γε(0), and by
νΓ the unit normal for Γ(0) = ∂YS . Due to the construction of the domain via summation
and scaling, it is obvious that νε(x) = νΓ(

{
x
ε

}
) and thus T ε(νε)(x, y) = νΓ(y). Now let

φΓ : Γε(0) −→ R be a smooth function. Extend φΓ to Ω in any smooth manner and
denote the extension by φ. Since T ε

b = T ε|Ω×∂YS
, we obtain due to the definition of the
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surface gradient

εT ε
b (∇Γ φΓ) = εT ε(∇φ− �∇φ, νε�νε)|Ω×∂YS

= ∇y T ε(φ)|Ω×∂YS
− �∇y T ε(φ)|Ω×∂YS

, νΓ�νΓ

= ∇Γ
y T ε

b (φΓ).

In this connection, note that the surface gradients only depend on the values of φΓ and
T ε
b (φΓ) on the respective surface, and thus the specific form of the extension φ plays no

role. �

For the convergence proof we need an extension operator, which is recalled in the following
lemma:

3.1.12 Lemma (Extension Operator).
Let u ∈ W 1,p(YR). Then there exists an extension ũ ∈ W 1,p(Y ) into all of Y and a
constant C > 0, independent of ε, such that ‖ũ‖

W1,p(Y )
≤ C ‖u‖

W1,p(YR)
. If u ∈ Lp(YF ),

the extension satisfies ‖ũ‖
Lp(Y )

≤ C ‖u‖
Lp(YR)

.

Let uε ∈ W 1,p(Ωε). There exists an extension ũε ∈ W 1,p(Ω) such that ‖ũε‖
W1,p(Ω)

≤
C ‖uε‖

W1,p(Ωε)
. If u ∈ Lp(Ωε), the extension satisfies ‖ũε‖

Lp(Ω)
≤ C ‖uε‖

Lp(Ωε)
. The

constant C is the same as above.

Proof. The proof can be found in Hornung and Jäger [HJ91] or in Chiadò, Dal Maso et.
al. [ACMP92]. �

In the following theorem, the subscript # indicates periodicity of functions with respect
to Y :

3.1.13 Theorem.
Let uε be a sequence in L2(Ω) such that uε → u strongly in L2(Ω). Then T ε(uε) −→ u
strongly in L2(Ω× Y ).

Let uε be a sequence in H1(Ωε), let uεΓ be a sequence in H1(Γε).

1. If ‖uε‖
L2(Ωε)

+ ‖∇uε‖
L2(Ωε)

is bounded independently of ε, then there exists a u0 ∈
H1(Ω) and a u1 ∈ L2(Ω;H1

#(Y )) such that along a subsequence the convergence

T ε(ũε) −⇀ u0 in L2(Ω× Y ),

T ε(∇ ũε) −⇀ ∇x u0 +∇y u1 in L2(Ω× Y )

holds for the extended functions ũε from the previous lemma. In that case also
ε ‖uε‖2

L2(Γε(0))
is bounded independently of ε, and along a subsequence it holds

T ε
b (u

ε) −⇀ u0 in L2(Ω× ∂YS).

2. If ‖uε‖
L2(Ωε)

+ ε ‖∇uε‖
L2(Ωε)

is bounded independently of ε, then there exists a
u ∈ L2(Ω;H1

#(Y )) such that along a subsequence the convergence

T ε(ũε) −⇀ u in L2(Ω× Y ),

T ε(∇ ũε) −⇀ ∇y u in L2(Ω× Y )
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holds for the extended functions ũε.

3. If ε ‖uεΓ‖
2
L2(Γε)

+ ε3
∥∥∇Γ uεΓ

∥∥2
L2(Γε)

is bounded independent of ε, then there exists a
uΓ ∈ L2(Ω;H1(∂YS)) such that

T ε
b (u

ε
Γ) −⇀ uΓ in L2(Ω× ∂YS),

εT ε
b (∇Γ uεΓ) −⇀ ∇Γ

y uΓ in L2(Ω× ∂YS).

3.1.14 Remark.
The same results also hold if the functions depend on an additional parameter, like
time. In this connection see e.g. Neuss-Radu [NR92] or the literature cited above. If
the sequence uε is defined on the whole of Ω, variants of the results for T ε(uε) from the
previous theorem hold. The reader is again referred to the works mentioned above or to
Section 4.2.7 in this work.

We finish this paragraph by presenting a generalized version of the usual trace inequality
which takes into account the dependence of the constants on the scale-factor ε:

3.1.15 Lemma (General trace inequality).
Fix k ∈ N0 and let u ∈ Hk+1(Ω). Then it holds

√
ε
( k∑
j=0

εj
∥∥∥(∇Γ)(j)u

∥∥∥
L2(Γε(0))

)
≤ C

(k+1∑
j=0

εj
∥∥∥∇(j) u

∥∥∥
L2(Ωε(0))

)

with a constant C > 0 independent of ε. Here ‖∇(j) u‖L2(Ωε) denotes the seminorm of the
j-th derivatives of u in Hk+1(Ωε); analogously for the spaces over Γε.

Proof. The continuous embedding Hk(∂YS) ↪→ Hk+1(YR) yields the trace estimate

k∑
j=0

∥∥∥(∇Γ)(j)w
∥∥∥2

L2(∂YS)

≤ K

k+1∑
j=0

∥∥∥∇(j)w
∥∥∥2

L2(YR)

for w ∈ Hk+1(YR). Using the boundary unfolding operator T ε
b (see Definition 3.1.9)

together with the results for the unfolding of gradients in Proposition 3.1.11 and the
inequality above, we obtain for u as above

ε(

∫
Γε

k∑
j=0

|εj(∇Γ)(j)u|2 dσ) ≤ C

|Y |

∫
Ω×∂YS

k∑
j=0

|(∇Γ
y )

(j)T ε
b (u)|2 dσy dx

≤ CK

|Y |

∫
Ω×YR

k+1∑
j=0

| (∇y)
(j)T ε(u)︸ ︷︷ ︸

=εj ∇(j)
x T ε(u)

|2 dy dx

≤ CK

∫
Ωε

k+1∑
j=0

ε2j |(∇)(j)u|2 dx.

Taking the square root on both sides now gives the result. �
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3.2 Construction of the Domain

3.2.1 The General Setting

We consider a fixed domain Ω ⊂ Rn with piecewise smooth boundary. This domain
is divided into two parts: A pore space part ΩR (later called Ωε) and a solid part ΩS .
We assume that the following process happens in Ω: A substance A diffuses and reacts
inside ΩR. Other chemical species contributing to the reaction as well as its products are
not considered at this place; they might however easily be incorporated into the model.
The substance A is also present at the pore walls ∂ΩS , where it is denoted by AΓ. AΓ

undergoes diffusion and reaction on the pore boundary. Furthermore, there is an exchange
with the pore space.

The main feature of our model is the fact that the solid part changes with time – thus all
the domains presented above depend on a time-parameter t. This change might be due to
the chemical reaction (for example formation of crystals or precipitation/sedimentation
of the chemical educts/products). In this work we assume that the evolution of ΩS is
a-priori known.

The same model can be applied to biological processes, see Chapter 2. However, note
that there is an ongoing debate on whether to model such processes as a surface or as a
bulk reaction.2

3.2.2 The Periodic Homogenization Setting

In order to be able to use techniques from formal aymptotic analysis, we assume that our
domain is constructed in a locally periodic fashion (compare the works of Muntean et. al.
[FAZM11] and [vNM10]).

Evolution via Reference Cells

Let Y = [0, 1)n be a reference cell, divided into two parts YR =: YR(0) (the reaction part)
and YS =: YS(0) (the solid part), such that YS is strictly included in Y .

Since we assume the evolution of the domain to be a-priori known, we postulate the
existence of a function ψ : S × Ω× Y −→ Y such that

ψ(t, x, ·) : YR(0, x) −→ YR(t, x) and ψΓ(t, x, ·) := ψ(t, x)|∂YS
: Γ(0, x) −→ Γ(t, x)

are orientation-preserving motions of Rn for all (t, x) ∈ S × Ω. Here YR(t, x) :=
ψ(t, x, YR(0)) and Γ(t, x) := ψ(t, x, ∂YS(0)). We make the following assumptions:

3.2.1 Assumption.
For the regularity of the coordinate transformation, we assume:

• ψ ∈ C2(S; C3(Ω)× C3#(Y )).

2Private communication, MATCH-Workshop Analytical and Numerical Methods for Multiscale Systems,
Heidelberg.
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• Let ν(t, x, y) be the field of exterior normal vectors (with respect to YR(t, x)) on
Γ(t, x). We require ν(t, x, ·) ∈ C2(Γ(t, x))n for all (t, x) ∈ S × Ω.

Note that these strong assumptions are only needed to treat the nonlinear reaction rates
which we are going to use in our model. Concerning the structure of the motions, we
require

• ψ(0, x, ·) = Id for all x ∈ Ω.

• There exist constants c, C > 0 such that

c ≤ detTy ψ ≤ C, c ≤ detTy ψΓ ≤ C (3.1)

in S × Ω× Y .

• There exists a δ > 0 such that for all (t, x) ∈ S × Ω it holds:

dist(z, ∂Y ) > δ for all z ∈ Γ(t, x)

as well as
ψ(t, x, ·) = Id on

{
y ∈ Y : dist(y, ∂Y ) <

δ

2

}
.

Roughly speaking, this means that the surface in the reference cell never touches
the boundary in the course of its evolution.

We now construct a periodic domain: Choose a scale-parameter ε > 0 and define

Ωε(0) := Ω ∩ (
⋃

k∈Zn

ε(YR + k)), Γε(0) = Ω ∩ (
⋃

k∈Zn

ε(∂YS + k)),

i.e. we pave Ω by scaled and translated copies of YR. In order to apply the motion defined
above to each scaled and translated copy, we use the notation from periodic unfolding
(see Section 3.1.4) and define

ψε(t, x) := ψ(t, ε
[x
ε

]
,
{x
ε

}
).

Then we have

Ωε(t) = {ε
[x
ε

]
+ εψε(t, x);x ∈ Ωε(0)}

Γε(t) = {ε
[x
ε

]
+ εψε(t, x);x ∈ Γε(0)}.

Thus the ”global transformation” for fixed ε is given by φε(t, x) := ε
[
x
ε

]
+ εψε(t, x). Note

that similar ideas also appear in Peter [Pet06]. In the sequel, we need the two linear
maps F (t, x) : Rn −→ Rn as well as FΓ(t, x) : TxΓ

ε(0) −→ Tφε(x)Γ
ε(t) defined via the

tangential maps
F (t, x) := Tx φ

ε(t, x)

FΓ(t, x) := Tx φ
ε
Γ(t, x).

Note that F and FΓ also depend on ε, however we are not going to write down this
dependence explicitly. With F T and F T

Γ we denote the Hilbert-space adjoint of F and FΓ

with respect to �·, ·� and �·, ·�Γ.
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Since F is defined in Rn, we can equivalently characterize this map as a matrix F (t, x) =
∇φε(t, x), with F T being the usual transpose matrix.

3.2.2 Lemma.
For φε(t) : Ωε(0) −→ Ωε(t) and φεΓ(t) : Γ

ε(0) −→ Γε(t), φεΓ(t) := φε(t)|Γε(0) it holds

Tx φ
ε(t, x) = Ty ψ(t, ε

[x
ε

]
,
{x
ε

}
), Tx φ

ε
Γ(t, x) = Ty ψΓ(t, ε

[x
ε

]
,
{x
ε

}
),

where we used the identification TxΓ
ε(0) ∼= T{x

ε}∂YS. Thus especially c ≤ detF ≤ C,
c ≤ detFΓ ≤ C, and these bounds are independent of ε.

Proof. Since ψ = Id for {y ∈ Y : dist(y, ∂Y ) < δ
2}, we have φε(t, x) = Id(x) for

t ∈ [0, T ], x ∈M := {x ∈ Ω : dist(x,
⋃

k∈Zn ε(∂Y + k)) < ε δ2}. Thus

∇φε = Id = ∇y ψ on [0, T ]×M.

For x �∈M , we can find an open neighborhood of x with diameter less than ε δ2 that lies
entirely in one translated and scaled reference cell ε(Y +k′), k′ ∈ Zn. Therefore x �→ ε

[
x
ε

]
is constant in that neighborhood and by the chain rule

∇φε(t, x) = ε∇ψε(t, x) = ε(
1

ε
∇y ψ(t, ε

[x
ε

]
,
{x
ε

}
)).

Thus by the identification of ∇ with T in Rn we obtain the result.

For the second equality, let v ∈ TxΓε(0) and let γ : [−1, 1] −→ Γε(0) be a smooth curve
with γ′(0) = v. Then

Tx φ
ε
Γ(t, x)(v) =

d

ds
εψε(t, γ(s))

=
d

ds
εψ(t, ε

[
γ(s)

ε

]
,

{
γ(s)

ε

}
)

=
d

ds
εψ(t, ε

[
γ(s)

ε

]
, γ̃(s))

= Ty ψ(t,
[x
ε

]
,
{x
ε

}
)(v)

where we used the fact that
[
γ(s)
ε

]
is constant since γ is continuous, and that γ̃ = ε−1γ is

a smooth curve in ∂YS with εγ̃′(0) = v. Property (3.1) now yields the estimates. �

We construct the induced velocity field of the transformation: Let

ṽε(t, x) := ∂tφ
ε(t, x) = ε∂tψ(t, ε

[x
ε

]
,
{x
ε

}
)

be the velocity at (t, x) ∈ [0, T ]×Ωε(0)∪Γε(0) in referential coordinates. Then the velocity
in natural coordinates is given by vε = ∂tφ

ε(t, ((φε)−1(t, z)) for (t, z) ∈ [0, T ]×Ωε(t)∪Γε(t).
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Define

V ε := vε · νε the normal velocity,
vεM := vε − V ενε the tangential velocity,

κε := − divΓ(νε) the mean curvature.

Here νε(t, x) is the outer unit normal vector at (t, x) ∈ [0, T ]× Γε(t).

By the Transformation Lemma 3.1.7 we obtain for the corresponding quantities in
referential coordinates

Ṽ ε(t, x) = ε∂tψ(t, ε
[x
ε

]
,
{x
ε

}
) · F

−T
Γ (t, x)ν̃ε(x)

|F−T
Γ (t, x)ν̃ε(x)|

,

ṽεM (t, x) = ε∂tψ(t, ε
[x
ε

]
,
{x
ε

}
)− Ṽ ε(t, x)

F−T
Γ (t, x)ν̃ε(x)

|F−T
Γ (t, x)ν̃ε(x)|

,

κ̃ε(t, x) = − div(F−1(t, x)
F−T
Γ (t, x)ν̃ε(x)

|F−T
Γ (t, x)ν̃ε(x)|

),

where ν̃ε(x) is the unit normal at x ∈ Γε(0). Obviously ν̃ε has a representation ν̃ε(x) =
ν̃(
{
x
ε

}
), where ν̃ is the normal field on ∂YS .

In order to avoid technical difficulties, we assume that Γε(t) ∩ ∂Ω = ∅ for all t ∈ [0, T ].
This can for example be achieved if Ω is a rectangular domain of the form

Ω = ε0

n∏
i=1

(ai, bi) (3.2)

with ai, bi ∈ Z, ai < bi and an initial scaling factor ε0; or if Ω can be represented by a
scaled union of translated reference cells.

3.3 Derivation of the Equations

In this section we present the derivation and the full mathematical treatment of our ”basic”
equations.
We have the following situation in mind: We consider a chemical species which is present
in the domain Ωε(t) and on the boundary of the pores Γε(t). The species is subject to
diffusion and reaction both in the bulk and on the boundary, and an exchange between
the domain and the pore boundary takes place. We are only considering one species at
this place since our focus lies on the treatment of the evolving surfaces. However, all the
assumptions and methods which follow will be chosen in a way that they can also be
applied to systems with several species.

In order to simplify the derivations, we will drop the index ε for the moment.
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3.3.1 Mass Balance

Denote by c : S × Ω(t) −→ R the volume-concentration of the chemical species, and by
cΓ : S × Γ(t) −→ R its surface-concentration. Extend c by 0 outside Ω(t).
For simplicity, we assume that the mass densities of the species are constant (and w.l.o.g.
have a value of 1). Let f and fΓ be a volume- and surface source-term for the reaction.
We denote by fexch(c, cΓ) an exchange-term describing the exchange of the concentrations
along the boundary Γ(t). The diffusive flux in the domain and on the surface is assumed
to be given by Fick’s law, thus by q := −D∇ c as well as qΓ := −DΓ∇Γ cΓ. Here we use
∇Γ to denote a surface gradient (in this case on Γ(t)). Later, we will also use ∇Γ for
surface gradient on ∂YS and other surfaces. Since it is always clear from the context on
which surface the gradient has to be taken, we refrain from using a more specific notation.
The corresponding adjoint operators are denoted by divΓ.

Let Ω′ ⊂ Rn be a sufficiently regular open control set such that Ω′ ∩ Γ(t) does not have a
nonzero n− 2-dimensional surface measure.

We can now derive the following balance equations in the domain (for a detailed introduc-
tion into the idea of these considerations see Böhm [Böh08] or Eck, Garcke, and Knabner
[EGK08]):

d

dt

∫
Ω′

c dx = −
∫
∂Ω′

q · ν dσ +

∫
Ω′

f(c) dx−
∫

Ω′∩Γ(t)

fexch(c, cΓ) dσ

⇔
∫
Ω′

∂tc+ div(q) dx+

∫
Ω′∩Γ(t)

cV − q · ν dσ =

∫
Ω′

f(c) dx−
∫

Ω′∩Γ(t)

fexch(c, cΓ) dσ, (3.3)

where we used Proposition 3.1.4 and the fact that∫
∂Ω′

q · ν dσ =

∫
(∂Ω′∩Ω̄(t))∪(Γ(t)∩Ω′)

q · ν dσ −
∫

Γ(t)∩Ω′

q · ν dσ

=

∫
Ω′∩Ω(t)

div(q) dx−
∫

Ω′∩Γ(t)

q · ν dσ

=

∫
Ω′

div(q) dx−
∫

Ω′∩Γ(t)

q · ν dσ,

keeping in mind that q = 0 in Ω(t)C . Choosing Ω′ such that Ω̄′ ⊂ Ω(t) in (3.3), one
obtains by the arbitrariness of the set

∂tc+ div(q) = f(c) in Ω(t). (3.4)

Arguing similarly for Ω′ ∩ Γ(t) leaves

q · ν − cV = fexch(c, cΓ) on Γ(t). (3.5)

In order to derive balance equations on the surface, let Γ′
0 ⊂ Γ(0) and set Γ′(t) = ψ(t,Γ′

0).
The mass balance on the surface reads as follows, where τ denotes the n− 2-dimensional
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measure on ∂Γ′(t):

d

dt

∫
Γ′(t)

cΓ dσ = −
∫

∂Γ′(t)

qΓ · νΓ dτ +

∫
Γ′(t)

fexch(c, cΓ) + fΓ(cΓ) dσ

⇔
∫

Γ′(t)

(DcΓ
Dt

+ divΓ(qΓ) + c divΓ(vΓ)− cΓκV
)
dσ =

∫
Γ′(t)

fΓ(cΓ) + fexch(c, cΓ) dσ

by the divergence theorem for divΓ and Proposition 3.1.3. By the arbitrariness of Γ′(t)
we obtain

DcΓ
Dt

+ divΓ(qΓ) + c divΓ(vΓ)− cΓκV = fΓ(cΓ) + fexch(c, cΓ) on Γ(t). (3.6)

We would like to point the reader to one important aspect of these derivations: We assumed
that the motion of the domain Ω(t) does not have an effect on the bulk concentration itself.
Such an effect could be caused by advective fluxes stemming from a carrier substance. As
stated above, we chose to neglect such a substance. For these reasons we have to chose
the Transport Theorem 3.1.4 when deriving the mass balance equations in the bulk.
The situation is different when we consider the surface concentration: Even with no
exchange with the bulk part, no source term and zero flux (i.e. qΓ = 0), a change of the
solid surface would change the surface concentration of the substance. That is why we
have to consider a moving reference surface-element Γ′(t) when deriving the mass balance
equations on the surface.

In order to obtain a closed system at Γ(t), one condition has to be added. Among the
possibilities are:

1. In the case of an instantaneous exchange, one keeps fexch as a formal expression to
equal the equations and adds an equilibrium condition in the form

cΓ = γ(c)

with a known function γ. This is often used for free boundary problems (see e.g.
[BPS05]). Cf. also the work of Ptashnyk and Roose [PR10] for a homogenization
procedure involving such a boundary condition.

2. One specifies fexch. If one assumes a slow exchange towards an equilibrium of
concentrations of the form c = HcΓ with a Henry constant H, one can choose

fexch(c, cΓ) = k(c−HcΓ)

(see also Section 2.1.2). Sometimes in the literature (see again [BPS05]) the term
with the normal velocity is dropped in the exchange conditions (3.5). That is why
we are also going to investigate

fexch(c, cΓ) = k(c−HcΓ)− cV.

Introducing initial conditions c0 : Ω(0) −→ R as well as outer boundary conditions
cext : S × Ω(t) −→ R we obtain the following full system from (3.4), (3.5) and (3.6):
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Bulk equations:

∂tc− div(D∇ c) = f(c) in S × Ω(t)

−D∇ c · ν − cV = fexch(c, cΓ) on S × Γ(t)

−D∇ c · ν = c− cext on S × ∂Ω(t)
c(0, ·) = c0(·) in Ω(0)

(3.7a)
(3.7b)
(3.7c)
(3.7d)

Surface equations:

DcΓ
Dt

− divΓ(DΓ∇Γ cΓ) + cΓ div
Γ vM − cΓκV

−fΓ(cΓ) = fexch(c, cΓ) on S × Γ(t)

cΓ(0, ·) = c0,Γ(·) on Γ(0)

(3.8a)
(3.8b)

Here vM is the tangential and V the normal velocity of Γ, and κ denotes the mean
curvature. The expression DcΓ

Dt is the time derivative along the moving interface. Fix the
model case i ∈ {1, 2}, then we are going to investigate

fexch(c, cΓ) = −δi2cV + k(x−HcΓ)

where δij is the Kronecker delta. Keep in mind that the choice i = 1 is more reasonable
from a modeling point of view.

3.3.2 Nondimensionalization

In order to have a reasonable scaling of our equations in the ε-periodic domain at hand,
we carry out a nondimensionalization procedure. We introduce the following characteristic
parameters:

• Characteristic time T

• Characteristic lenght of the domain L; characteristic length of the boundary LΓ

• Characteristic concentration in the domain C; characteristic concentration on the
surface CΓ

• Characteristic tangential velocity VT ; characteristic normal velocity VN
• Characteristic mean curvature K

Later, we will impose assumptions on these quantities which make their relations clear.

In order to derive the nondimensionalized equations, define the new quantities

c̄(t, x) =
1

HC
c(tT, xL), c̄Γ(t, x) =

1

CΓ
cΓ(tT, xL)

v̄Γ(t, x) =
1

VT
vΓ(tT, xL), V̄ (t, x) =

1

VN
V (tT, xL), κ̄(t, x) =

1

K
κ(tT, xL)
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and keep the following transformation rules in mind

∂tc = (HC
1

T
)∂tc̄, div(D∇ c) = (HC

1

L2
) div(D∇ c̄),

D∇ c · ν = (HC
1

L
)D∇ c̄ · ν, divΓ(DΓ∇Γ cΓ) = (CΓ

1

L2
) divΓ(DΓ∇Γ c̄Γ),

cΓ div
Γ(vΓ) = (CΓVT

1

L
)c̄Γ div

Γ(v̄Γ), cΓκV = (CΓKVN )v̄Γκ̄V̄ .

For the transformation of the Lagrangian derivative, we have the following lemma:

3.3.1 Lemma.
It holds

DcΓ
Dt

= (CΓ
1

T
)
Dc̄Γ
Dt

.

Proof. We use the characterization of D
Dt as given in the proof of Proposition 3.1.3. Define

the shorthand notation ĉΓ(s; τ,X) := cΓ(s, φ(s; τ,X)), where we consider ĉΓ as a function
of s only. We obtain

Dc̄Γ
Dt

(t, x) =
d

ds
c̄Γ(t+ s, φ(t+ s; t, x))

∣∣∣∣
s=0

=
1

CΓ

d

ds
cΓ(T (t+ s), φ(T (t+ s); tT, xL))

∣∣∣∣
s=0

=
1

CΓ

d

ds
ĉΓ(T (t+ s);Tt, xL)

∣∣∣∣
s=0

=
T

CΓ

d

ds
ĉΓ(tT + s;Tt, xL)

∣∣∣∣
s=0

=
T

CΓ

DcΓ
Dt

(tT, xL),

where we used the usual chain rule of differentiation in the fourth line. �

Inserting these formulas into equations (3.7) and (3.8), we obtain for the processes itself

∂tc̄− div(D̄∇ c̄) = g(c̄)

with
D̄ = D

T

L2
, g(c̄) =

T

HC
f(HCc̄)

as well as

Dc̄Γ
Dt

− divΓ(D̄∗
Γ∇Γ c̄Γ) +

VTT

L
c̄Γ div

Γ(v̄Γ)− (KVNT )c̄Γκ̄V̄ − gΓ(c̄Γ) = gexch(c̄, c̄Γ)

with

D̄∗
Γ = DΓ

T

L2
, gΓ(c̄Γ) =

T

CΓ
fΓ(CΓc̄Γ), gexch(c̄, c̄Γ) =

T

CΓ
fexch(HCc̄, CΓc̄Γ).
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For the boundary conditions, we obtain on the inner parts

−D̄∇ c̄ · ν − TVN
L

c̄V̄ =
CΓ

HCL
gexch(c̄, c̄Γ)

as well as on the outer boundary

−D̄∇ c̄ · ν =
T

L
(c̄− 1

HC
cext).

For our specific choice of fexch, we obtain

CΓ

HCL
gexch(c̄, c̄Γ) =

T

HCL
fexch(HCc̄, CΓc̄Γ) = −δi2

LΓ

L
c̄V̄ + k

T

L
c̄− kTCΓ

LC
c̄Γ.

Looking at these results, one sees that D̄, g, gΓ and gexch are already in dimensionless
form, since these expressions relate quantities in the domain with scales of the domain
and surface-quantities with its corresponding scales. In order to deal with the remaining
terms, we make the following assumptions:

3.3.2 Assumption.
For the characteristic parameters we assume the following:

1. The ratio of length scales is of order ε, i.e. LΓ
L = ε.

2. The ratio of the diffusivities is given by DΓ
D ≈

(
LΓ
L

)2
.

3. For the velocities we have VN = VT = LΓ
T .

4. For the mean curvature K = 1
L .

5. The characteristic concentrations are related via the Henry equilibrium relation
CΓ = HC.

6. The exchange at the pore boundaries is controlled by a dimensionless factor k̃ = k T
LΓ

stemming from the surface-scale.

Now we obtain for the remaining terms

D̄∗
Γ = DΓ

T

L2
Γ

L2
Γ

L2
= ε2D̄Γ

with a constant D̄Γ of surface-order 1, as well as

VNT

L
=
VTT

L
=
LΓ

L
= ε, KVNT =

LΓ

L
= ε, k

T

L
= k

T

LΓ

LΓ

L
= εk̃.

Switching back to the old name of the terms, we arrive at the following nondimensionalized
system of equations:

∂tc
ε − div(D∇ cε) = freac(c

ε) in S × Ωε(t)

−D∇ cε · ν = ε[δi1c
εV ε + k(cε −HcεΓ)] on S × Γε(t)

−D∇ cε · ν = cε − cext on S × ∂Ω(t)
cε(0, ·) = c0(·) in Ω(0)

(3.9a)
(3.9b)
(3.9c)
(3.9d)
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as well as

DcεΓ
Dt

− ε2 divΓ(DΓ∇Γ cεΓ) + εcεΓ div
Γ vεM − εcεΓκεV ε

−fΓ(cεΓ) = −δi2cεV ε + k(cε −HcεΓ) on Γε(t)

cεΓ(0, ·) = c0,Γ(·) on Γε(0)

(3.10a)
(3.10b)

The choice i ∈ {1, 2} corresponds to the form of fexch discussed above.

Since our focus lies on the rigorous treatment of a homogenization process in a domain
with an evolving hypersurface, we tried to keep our model rather simple. For more
realistic models (capturing more features of specific processes), the reader is referred to
the following references:
A detailed model of crystal formation is presented in the work of van Duijn and Pop,
[vDP04]. An upscaling approach using the model (based on a free boundary problem)
can be found in van Noorden, Pop et. al. [vNPEH10].
Furthermore, we did not include any carrier substance for the chemical reaction into
our model. This would lead to an advective flux-term. If the underlying velocity is
divergence-free, such a process might easily be incorporated into the homogenization
setting (see e.g. the works of Hornung, Jäger and Mikelić [HJ91] and [HJM94]). If the
divergence does not vanish, one can use more recent techniques like for instance the
method of two-scale convergence with drift by Allaire, Mikelić and Piatnitski [AMP10].

3.3.3 Existence and Uniqueness of a Solution

Transformation to a Fixed Domain

The equations (3.9) and (3.10) represent one example of so-called equations in noncylin-
drical domains. Usually, they appear in the theory of the Navier-Stokes equations, see e.g.
the works of Inoue, Wakimoto [IW77], Miyakawa, Teramoto [MT82] or Miranda and Ferrel
[MF97]. The common approach to treat these types of equations is the transformation to
a fixed domain. Several techniques can be used:

1. One transforms the equations formally by using the results given in Section 3.1.3.
This is used in most works on problems in noncylindrical domains, for instance in
the references cited above.

2. One writes down a weak formulation of the problem in natural coordinates and uses
integral transformations to obtain a weak formulation in referential coordinates.
This rigorous method is used for example in [Mei08], where a two-scale parabolic
system is transformed. After the transformation, a degenerate parabolic system is
obtained which is solved by using methods presented in Showalter [Sho97].

Under some regularity assumptions on the transformation, both approaches are equiva-
lent.3 Since our focus lies mainly on the derivation of effective equations via homogeniza-
tion, we use the first approach at this place.

3Meier and Peter, private communications.
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Note that in order to use the second approach, it is recommended to employ weak
formulations which do not rely on the existence of the time derivative ∂tcε and ∂tcεΓ. Such
approaches can for example be found in [Sho97] or [Mei08].4

By using the transformation formulas in Section 3.1.3 we obtain for the transformed
quantities c̃ε and c̃εΓ:

∂tc̃
ε −∇ c̃ε · F−1ṽε− div(DF−1F−T ∇ c̃ε) = f̃(c̃ε) in S × Ω(0)

−DF−T ∇ c̃ε · ν̃ = δi1c̃
εṼ ε + εk̃(c̃ε −Hc̃εΓ) on S × Γε(0)

−DF−T ∇ c̃ε · ν̃ = c̃ε − c̃ext on S × ∂Ω
c̃ε(0, ·) = c̃0 in Ω(0)

(3.11a)

(3.11b)

(3.11c)
(3.11d)

∂tc̃
ε
Γ − ε2 divΓ(DΓF

−1
Γ F−T

Γ ∇Γ c̃εΓ) + c̃εΓ div
Γ(F−1

Γ ṽεM )

−c̃εΓκ̃Ṽ ε − f̃Γ(c̃εΓ) = −δi2
1

ε
c̃εṼ ε + k̃(c̃ε −Hc̃εΓ) on S × Γε(0)

c̃εΓ(0, ·) = c̃0,Γ on Γε(0)

(3.12a)

(3.12b)

where

F = Tx φ
ε FΓ = Tx φ

ε
Γ,

cf. Section 3.2.2. Note that F and FΓ depend on ε, however we do not write this
dependence explicitely. The missing factors of ε as compared to equations (3.9) and (3.10)
stem from the fact that the definition of ṽε from Section 3.2.2 already contains a factor
of ε, the underlying ”dimensionless” velocity there is given by ∂tψ, see page 40.

3.3.3 Assumption.
For the coefficients and the data of the problem, we assume the following:

• D,DΓ > 0 (this assumption can easily be generalized to functions or matrices).

• k̃ ∈ C1(0, T ; C2(Ω̄)), k̃ ≥ 0

• cext ∈ H1(0, T ;L2(∂Ω)), cext ≥ 0

• c̃0 ∈ H3(Ω)

• c̃0,Γ ∈ H4(Ω)

4The deeper reason for this need is a missing characterization of the dual spaces of Lp-spaces in
noncylindrical domains: Lp(S;X(s))-spaces can only be defined for scales of Banach-spaces X(s)
ranging from C∞

0 (Ω(s)) up to X(s) = Lp(Ω(s)). A usual setting for parabolic problems would involve
function spaces like Lp(S;W−1,q(Ω(s))). Of course, such a space can formally be defined as the dual
space of Lp∗(S;W 1,q∗(Ω(s))). However, one lacks an embedding of the form Lp(S;W−1,q(Ω(s))) ⊂
Lp(S;Y ):
The main difficulty is to find a Banach space Y which is reasonable and ”big enough” to contain
all W−1,q(Ω(s)). Due to passing to dual spaces, inclusions like W 1,p

0 (Ω(s)) ⊂ W 1,p
0 (Ω) turn into

W−1,p′(Ω) ⊂ W−1,p′(Ω(s)) – where the space to the right is not even contained in a space of measures.
This illustrates the difficulties of finding a suitable space Y . (Since the set of distributions does not
form a Banach space, it is not obvious how to construct a space like Lp(S;D′(Ω(s))), which would be
a good candidate). Since this part of the work [Mei08] received great attention, it is recommended to
further investigate these types of function spaces.
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• The Henry constant H fulfills H > 0

• f̃ , f̃Γ : Ω×R −→ R are continuous and Lipschitz-continuous in the second argument
with constant L > 0 independent of the first argument.

• f̃Γ is also Lipschitz-continuous in the first argument with constant LΓ > 0 indepen-
dent of the second argument

For the estimation of terms involving the reaction functions f̃ and f̃Γ, we need the
following lemma.

3.3.4 Lemma.
With the assumptions above, there exists a constant C > 0 such that

|f̃(x, z)| ≤ C(1 + |z|) and |f̃Γ(x, z)| ≤ C(1 + |z|).

Proof. We only prove the first result, the second follows completely analogously. It holds

|f̃(x, z)| ≤ |f̃(x, z)− f̃(x, 0)|+ |f̃(x, 0)|
≤ L|z − 0|+ ‖f̃(·, 0)‖L∞(Ω̄) ≤ C(1 + |z|)

due to the Lipschitz-continuity of f̃ in the second argument and the continuity in the
first. �

In the sequel, we will keep the notations f̃(c̃ε) and f̃Γ(c̃
ε
Γ) etc. from equations (3.11a),

(3.12a) to designate the functions (t, x) �→ f̃(x, c̃ε(t, x)) and (t, x) �→ f̃Γ(x, c̃
ε
Γ(t, x)).

3.3.5 Lemma.
For all ε > 0 and (t, x, x′) ∈ [0, T ]×Ω×Γε(0), the linear operators F−1(t, x)F−T (t, x) as
well as F−1

Γ (t, x′)F−T
Γ (t, x′) are symmetric, bounded and positive definite in the sense that

there exist constants d0,K > 0 (independent of ε, t, x and x′) such that for all ξ, ξ′ ∈ Rn

and ξ̃, ξ̃′ ∈ Tx′Γε(0)

|�F−1(t, x)F−T (t, x)ξ, ξ′�| ≤ K|ξ||ξ′| and d0|ξ|2 ≤ �F−1(t, x)F−T (t, x)ξ, ξ�

|�F−1
Γ (t, x′)F−T

Γ (t, x′)ξ̃, ξ̃′�Γ| ≤ K|ξ̃|Γ|ξ̃′|Γ and d0|ξ̃|2Γ ≤ �F−1
Γ (t, x′)F−T

Γ (t, x′)ξ̃, ξ̃�Γ.

Here �·, ·� denotes the usual scalar product in Rn, whereas �·, ·�Γ denotes the scalar product
(i.e. the Riemannian metric) on Γε(0), which is given as the induced scalar product from
Rn. The corresponding norms are denoted by | · | and | · |Γ.

Proof. The symmetry of the linear operators is clear. Due to Lemma 3.2.2, we obtain
estimates on the eigenvalues of the maps as well. A spectral decomposition now yields
the estimates (see e.g. [Dob09], pages 31ff). �

Weak Formulation

In order to derive a solution theory for the coupled system, we use a weak formulation of
the equations similar to Zeidler [Zei90]. We need the following spaces, where we fix the
parameter ε > 0 for the rest of this section:
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3.3.6 Definition.
In the sequel, we will use the following function spaces:

H := L2(Ωε(0))

V := H1(Ωε(0))

V := L2(0, T ;V )

W := {u ∈ V : u′ ∈ V∗}

HΓ := L2(Γε(0))

VΓ := H1(Γε(0))

VΓ := L2(0, T ;VΓ)

WΓ := {u ∈ V : Γ : u′ ∈ V∗
Γ}

Note that the sequences V ⊂ H ⊂ V ∗ and VΓ ⊂ HΓ ⊂ V ∗
Γ form evolution triples.

3.3.7 Definition.
The weak formulation of Problem (3.11), (3.12) is given by: Find (c̃ε, c̃εΓ) ∈ W ×WΓ such
that for all (φ, φΓ) ∈ V × VΓ it holds

d

dt
(c̃ε(t), φ)H + a1(c̃ε(t), φ; t) + a2(c̃ε(t), φ; t)

+a3(c̃ε(t), φ; t) = b(φ; t, c̃ε, c̃εΓ) a.e. [0, T ]

c̃ε(0) = c̃0

(3.13a)
(3.13b)

as well as

d

dt
(c̃εΓ(t), φΓ)HΓ

+ a1Γ(c̃
ε
Γ(t), φΓ; t) + a2Γ(c̃

ε
Γ(t), φ; t)

= bΓ(φ; t, c̃
ε, c̃εΓ) a.e. [0, T ]

c̃εΓ(0) = c̃0,Γ.

(3.14a)
(3.14b)

Here the following (bi-)linear forms are used:

a1(c, φ; t) := (DF−T (t)∇ c, F−T (t)∇φ)H
a2(c, φ; t) := (∇ c · F−1(t)ṽε(t), φ)H

a3(c, φ; t) := ε(k̃(t)c|Γε(0), φ|Γε(0))HΓ
+ (δi1Ṽ

εc|Γε(0), φ|Γε(0))HΓ
+ (c|∂Ω, φ|∂Ω)L2(∂Ω)

b(φ; t, c̃ε, c̃εΓ) := (f̃(c̃ε(t)), φ)H + ε(k̃(t)Hc̃εΓ(t), φ|Γε(0))HΓ
+ (cext(t), φ|∂Ω)L2(∂Ω)

and

a1Γ(cΓ, φΓ; t) := ε2(DΓF
−T
Γ (t)∇Γ cΓ, F

−T
Γ (t)φΓ)HΓ

a2Γ(cΓ, φΓ; t) := ([divΓ(F−1
Γ (t)ṽεM (t))− κ̃(t)Ṽ ε(t) + k̃(t)H]cΓ, φΓ)HΓ

bΓ(φΓ; t, c̃
ε, c̃εΓ) := (f̃Γ(c̃

ε
Γ(t)), φΓ)HΓ

+ (k̃(t)c̃ε(t), φΓ)HΓ
− δi2

ε
(Ṽ ε(t)c̃ε(t)|Γε(0), φΓ)HΓ

Formally, the weak formulation is obtained by multiplying (3.11a) by φ and carrying out
an integration by parts; analogously for (3.12a) by multiplying with φΓ.

3.3.8 Lemma.
Fix t ∈ [0, T ], c̃ε ∈ L2(0, T ;V ) as well as c̃εΓ ∈ L2(0, T ;HΓ). The following maps are
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linear and continuous between the indicated spaces:

aj(·, ·; t) : V × V −→ R, j ∈ {1, 2, 3}
b(·; t, c̃ε, c̃εΓ) : V −→ R

ajΓ(·, ·; t) : VΓ × VΓ −→ R, j ∈ {1, 2}
bΓ(·; t, c̃ε, c̃εΓ) : VΓ −→ R

Moreover, a2, a3, a2Γ are compact.

Proof. These results are standard in the theory of parabolic equations, see e.g. Zeidler
[Zei90]. See also the assumed regularity for the data and Corollary 3.3.11. �

We are going to prove the following theorem:

3.3.9 Theorem.
There exists a unique weak solution (c̃ε, c̃εΓ) ∈ W ×WΓ in the sense of Definition 3.3.7.

This theorem will be proven in the next section. Basically, the result is obtained by
carrying out the following steps:

1. We consider the decoupled and linearized system: We solve the weak formulation
with right hand sides b(φ; t, c̄, c̄Γ) and bΓ(φΓ; t, c̄, c̄Γ), where c̄ and c̄Γ are given
functions. We can use the linear theory of parabolic equations to obtain the
existence result in this case.

2. Next, we still consider the decoupled problem, but with nonlinear right hand sides
given by b(φ; t, c̃ε, c̄Γ) and bΓ(φΓ; t, c̄, c̃εΓ). We obtain existence in this case by using
the Leray-Schauder principle based on appropriate a-priori estimates.

3. Finally, we consider the full system. By using the solution operators from the
previous step, we prove the existence of a fixed point for the surface equations
via the Leray-Schauder principle. This gives the existence of a solution of the full
system.

4. By estimating the difference of two possible solutions, one shows the uniqueness of
the solution of the system.

We are also going to use the following regularity result, which is by no means optimal:

3.3.10 Proposition.
The solution (c̃ε, c̃εΓ) is contained in the space

H1(0, T ;V )×H1(0, T ;VΓ).

Proof. Since the right hand sides of the problem are functionals in H
3
4 (Ωε(0)) and HΓ as

well, well-known parabolic regularity results apply, see for instance [Wlo92] or [LSU88].
By using a bootstrapping argument, one can gain arbitrary regularity provided the data
of the problem are sufficiently smooth. �

We conclude this paragraph with an estimate that we are going to use frequently:
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3.3.11 Corollary.
For φ ∈ V , φΓ ∈ VΓ it holds

a1(φ, φ; t) ≥ d0 ‖∇φ‖2H as well as a1Γ(φΓ, φΓ; t) ≥ d0
∥∥∇Γ φΓ

∥∥2
HΓ

;

and for u ∈ V, uΓ ∈ VΓ we obtain

T∫
0

a1(u(t), u(t); t) dt ≥ d0 ‖∇u‖2L2(0, T ;H)

T∫
0

a1Γ(uΓ(t), uΓ(t); t) dt ≥ d0
∥∥∇Γ uΓ

∥∥
L2(0, T ;HΓ)

Proof. Integration over the pointwise estimates on the right hand side of Lemma 3.3.5
yields the result. �

3.3.4 Proof of the Existence- and Uniqueness-Theorem

Note that in this section, we do not consider the dependence of constants on ε explicitely,
i.e. all the appearing constants might depend on the scale factor.

The following well-known lemma is used frequently:

3.3.12 Lemma (Ehrling’s inequality).
Let X,Y, Z be Banach-spaces with compact embedding X ↪→ Y and continuous embedding
Y ↪→ Z. Then for each δ > 0 there exists a constant C(δ) > 0 such that

‖u‖
Y
≤ δ ‖u‖

X
+ C(δ) ‖u‖

Z

for all u ∈ X.

Proof. Assume that the asserted inequality is not true. Then there exists a δ > 0 and a
sequence (un) ∈ XN with

‖un‖Y > δ ‖un‖X + n ‖un‖Z . (3.15)

for all n ∈ N. Dividing by ‖un‖X , we may assume that ‖un‖X = 1. Due to the compact
embedding, there exists a u ∈ Y such that along a subsequence un −→ u in Y . Due to
the second embedding we thus also have un −→ u in Z. Neglecting the right term on the
right hand side in (3.15) we obtain ‖u‖

Y
> δ, thus u �= 0. Neglecting the left term on the

right hand side of the same equation, we get after division by n the relation ‖u‖
Z
= 0,

thus u = 0 – which is a contradiction. �

3.3.13 Corollary.
We will often use the preceding lemma in the following variants:
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• With the sequence H1(Ω) ↪→ H
3
4 (Ω) ↪→ L2(Ω) we obtain

‖u‖
L2(∂Ω)

≤ ‖u‖
H

1
4 (∂Ω)

≤ ‖u‖
H

3
4 (Ω)

≤ δ ‖u‖
H1(Ω)

+ C(δ) ‖u‖
L2(Ω)

≤ Cδ ‖∇u‖
L2(Ω)

+ C(δ) ‖u‖
L2(Ω)

for u ∈ H1(Ω).

• Squaring both sides of the previous estimate gives ‖u‖2
L2(∂Ω)

≤ Cδ ‖∇u‖2
L2(Ω)

+

C(δ) ‖u‖2
L2(Ω)

. Integrating over [0, T ] for a u ∈ L2(0, T ;H1(Ω)) thus gives the
analogous estimate for Bochner-spaces:

‖u‖2
L2(0, T ;L2(∂Ω))

≤ Cδ ‖∇u‖2
L2(0, T ;L2(Ω))

+ C(δ) ‖u‖2
L2(0, T ;L2(Ω))

This estimate is used for various boundary terms in the sequel as well as for spaces
over Ωε(0).

Decoupled, Linearized Equations

3.3.14 Lemma.
The forms a1+a2+a3 and a1Γ+a

2
Γ are regular Gårding forms, i.e. the embeddings H ↪→ V

and HΓ ↪→ VΓ are compact and there exist constants C,CΓ > 0 and K,KΓ ∈ R such that

a1(φ, φ; t) + a2(φ, φ; t) + a3(φ, φ; t) ≥ C ‖φ‖2
V
−K ‖φ‖2

H
and

a1Γ(φΓ, φΓ; t) + a2Γ(φΓ, φΓ; t) ≥ CΓ ‖φΓ‖2VΓ
−KΓ ‖φΓ‖2HΓ

.

Proof. We start by estimating the different terms seperately: Due to Corollary 3.3.11 we
have

a1(φ, φ; t) ≥ d0 ‖∇φ‖2L2(Ωε(0))
= d0 ‖φ‖2V − d0 ‖φ‖2H .

Next we have

|a2(φ, φ; t)| ≤
∥∥F−1(t)v(t)

∥∥
L∞([0, T ] × Ωε(0))

‖∇φ‖
L2(Ωε(0))

‖φ‖
L2(Ωε(0))

≤ Cδ ‖φ‖2
V
+ C(δ) ‖φ‖2

H

by the scaled Young’s inequality, thus

a2(φ, φ; t) ≥ −Cδ ‖φ‖2
V
− C(δ) ‖φ‖2

H
.

For the estimation of a3 note that

|a3(φ, φ; t)| ≤ (ε‖k̃‖L∞([0, T ] × Γε(0)) + ‖δi1Ṽ ε‖L∞([0, T ] × Γε(0))) ‖φ‖2L2(Γε(0))
+ ‖φ‖2

L2(∂Ω)

≤ C ‖φ‖2
L2(Γε(0) ∪ ∂Ω)

≤ C ‖φ‖
H

3
4 (Ωε(0))

.

By using Ehrling’s inequality for L2(Ωε(0)) ⊂ H
3
4 (Ωε(0)) ⊂ H1(Ωε(0)) and arguing

similarly as for a2, we obtain

a3(φ, φ; t) ≥ −Cδ ‖φ‖2
V
− C(δ) ‖φ‖2

H
.
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By summing up, one sees that

(a1 + a2 + a3)(φ, φ; t) ≥ (d0 − 2Cδ) ‖φ‖2
V
− (d0 + 2C(δ)) ‖φ‖2

H
,

thus choosing δ small enough gives the first estimate.

The estimation of the boundary terms a1Γ and a2Γ follows along the same lines and is left
to the reader. �

3.3.15 Proposition.
Let c̄ ∈ L2(0, T ;H), ĉ ∈ V and c̄Γ ∈ L2(0, T ;HΓ) be given. Then there exist (c̃ε, c̃εΓ) ∈
W ×WΓ such that

d

dt
(c̃ε(t), φ)H + a1(c̃ε(t), φ; t) + a2(c̃ε(t), φ; t)

+a3(c̃ε(t), φ; t) = b(φ; t, c̄, c̄Γ) a.e. [0, T ] (3.16a)
c̃ε(0) = c̃0 (3.16b)

holds for all φ ∈ V and

d

dt
(c̃εΓ(t), φΓ)HΓ

+ a1Γ(c̃
ε
Γ(t), φΓ; t) + a2Γ(c̃

ε
Γ(t), φ; t) = bΓ(φ; t, ĉ, c̄Γ) a.e. [0, T ]

c̃εΓ(0) = c̃0,Γ

holds for all φΓ ∈ VΓ. Moreover, the estimates

‖c̃ε‖W ≤ C(‖b(·; ·, c̄, c̄Γ)‖L2(0, T ;V ∗) + ‖c̃0‖H) (3.17)
‖c̃εΓ‖WΓ

≤ C(‖bΓ(·; ·, c̄, c̄Γ)‖L2(0, T ;V ∗
Γ )

+ ‖c̃0,ext‖HΓ
) (3.18)

are valid with some constant C > 0.

Proof. Due to the estimates in Lemma 3.3.14, we can use Theorem 23.A in [Zei90] to
obtain the assertions. In connection with this also note Remark 23.25 in this reference. �

For the moment we neglect the dependence of b on c̄Γ and that of bΓ on c̄. Thus the
proposition above gives us solution operators

S : L2(0, T ;H) −→W
S(c̄) = c̃ε

and
SΓ : L2(0, T ;HΓ) −→WΓ

SΓ(c̄Γ) = c̃εΓ
.

Decoupled, Nonlinear Equations

We begin by showing some properties of the operators S and SΓ:

3.3.16 Lemma.
The operators S and SΓ as defined above are Lipschitz-continuous.

Proof. Let c̄1 and c̄2 be two functions in L2(0, T ;H). Then the difference S(c̄1)− S(c̄2)
solves the problem (3.16) with initial value zero and right hand side b(φ; t, c̄1, c̄Γ) −
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b(φ; t, c̄2, c̄Γ). Thus the estimate (3.17) gives

‖c̃ε‖W ≤ C ‖b(·; ·, c̄1, c̄Γ)− b(·; ·, c̄2, c̄Γ)‖L2(0, T ;V ∗) .

Now

|b(φ; t, c̄1, c̄Γ)− b(φ; t, c̄2, c̄Γ)| = |(f̃(c̄1(t)), φ)H − (f̃(c̄2(t)), φ)H |
≤
∥∥∥(f̃(c̄1(t))− (f̃(c̄2(t))

∥∥∥
H

‖φ(t)‖
H

≤ L ‖c̄1(t)− c̄2(t)‖H ‖φ(t)‖V

due to the Lipschitz-continuity of f̃ . Now integration in time gives

‖b(·; ·, c̄1, c̄Γ)− b(·; ·, c̄2, c̄Γ)‖L2(0, T ;V ∗) ≤ L ‖c̄1 − c̄2‖L2(0, T ;H)
,

and the result for S follows. A similar argument applies to SΓ as well. �

Now we can give an existence proof for the decoupled nonlinear system:

3.3.17 Proposition.
Consider the operators S and SΓ as self-maps S : L2(0, T ;H) −→ L2(0, T ;H) and
SΓ : L2(0, T ;HΓ) −→ L2(0, T ;HΓ). Then these operators possess a fixed point in their
domains of definition, that is a solution of the problems: Find (c̃ε, c̃εΓ) ∈ W ×WΓ with

d

dt
(c̃ε(t), φ)H + a1(c̃ε(t), φ; t) + a2(c̃ε(t), φ; t)

+a3(c̃ε(t), φ; t) = b(φ; t, c̃ε, c̄Γ) a.e. [0, T ] (3.19a)
c̃ε(0) = c̃0 (3.19b)

for all φ ∈ V , and

d

dt
(c̃εΓ(t), φΓ)HΓ

+ a1Γ(c̃
ε
Γ(t), φΓ; t) + a2Γ(c̃

ε
Γ(t), φ; t) = bΓ(φ; t, ĉ, c̃

ε
Γ) a.e. [0, T ] (3.20a)

c̃εΓ(0) = c̃0,Γ (3.20b)

for all φΓ ∈ VΓ, with given functions ĉ ∈ V and c̄Γ ∈ L2(0, T ;HΓ).

Proof. Since the embeddings W ↪→ L2(0, T ;H) and W : Γ ↪→ L2(0, T ;HΓ) are compact
and continuous, the operators S and SΓ as given in the proposition are compact and
continuous as well.

We want to apply the Leray-Schauder principle to show the existence of a fixed point.
Therefore we have to derive estimates for a solution of the scaled equations

c̃ε = λS(c̃ε) and c̃εΓ = λSΓ(c̃
ε
Γ), λ ∈ (0, 1].

These equations correspond to the Problems (3.19) and (3.20), with right hand sides
replaced by λb and λbΓ and initial values λc̃0 and λc̃0,Γ, resp.

We begin with the bulk equation, considered on a smaller time-intervall [0, s], s > 0. Due
to the continuous embedding {u ∈ L2(0, s;V ), ∂tu ∈ L2(0, s;V ∗)} ⊂ C([0, s];H), estimate
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(3.17) yields
‖c̃ε(s)‖

H
≤ C(λ ‖b(·; ·, c̃ε, c̄Γ)‖L2(0, s;V ∗) + λ ‖c̃0‖H).

Similarly to the proof of the previous lemma, we obtain

|b(φ; t, c̃ε, c̄Γ)| ≤ ‖f̃(c̃ε(t))‖H ‖φ‖H + ‖ε ˜k(t)Hc̄Γ(t)‖L2(Γε(0)) ‖φ‖L2(Γε(0))
+ ‖cext‖L2(∂Ω)

‖φ‖
L2(∂Ω)

≤ (L ‖c̃ε(t)‖
H
+ C) ‖φ‖

V
,

where we used the Lipschitz-continuity of f̃ and f̃(0) = 0. Integration over [0, s] and
insertion in the right hand side of the above estimate gives

‖c̃ε(s)‖2
H
≤ λ(CL

s∫
0

‖c̃ε(s)‖2
H

ds+K) ≤ CL

s∫
0

‖c̃ε(s)‖2
H

ds+ TK ∀s ∈ [0, T ],

thus Gronwalls lemma implies a bound on ‖c̃ε‖
L∞(0, T ;H)

independent of λ, thus also on
‖c̃ε‖

L2(0, T ;H)
. The same argument also applies to the surface equations. Therefore we

can employ the Leray-Schauder principle to obtain the existence of a fixed point of the
operators S and SΓ. �

Thus for given ĉ ∈ V and c̄Γ ∈ L2(0, T ;HΓ), we obtain solutions of the decoupled nonlinear
problems. This gives us two solution operators

T : L2(0, T ;HΓ) −→W
T (c̄Γ) = c̃ε

and
TΓ : L2(0, T ;V ) −→WΓ

TΓ(c̄) = c̃εΓ
.

Full System

A solution of the full system is clearly given by fixed point of the map(
c̄Γ
c̄

)
�→
(
TΓ(c̄)
T (c̄Γ)

)
. (3.21)

In a lot of situtions, one can show that this map is contracting on C([0, T ];L2(Ω×Γε(0))),
which then gives a fixed point due to Banach’s theorem. However, this approach does not
work at this place, since the regularity c̃ε ∈ C([0, T ];L2(Ω)) is not enough to ensure the
existence of the trace c̃ε|Γε(0), which is needed in the solution of (3.20).

Therefore we use the following approach: Assume that we have a fixed point of the map
TΓ ◦T : L2(0, T ;HΓ) −→ L2(0, T ;HΓ) given by c̄Γ = TΓ(T (c̄Γ)). Define c̄ := T (c̄Γ). Then
obviously c̄Γ = TΓ(c̄), and (c̄Γ, c̄) is a fixed point of the map given in (3.21). This means
that (c̄Γ, c̄) is a solution of the full system!

3.3.18 Lemma.
The operators T and TΓ as defined above are Lipschitz continuous.

Proof. The result follows along the same lines as Lemma 3.3.16. �

3.3.19 Proposition.
Consider the operator TΓ ◦ T : L2(0, T ;HΓ) −→ L2(0, T ;HΓ). Then there exists a fixed
point of TΓ ◦ T .
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Proof. Since the embedding WΓ ↪→ L2(0, T ;HΓ) is compact and continuous, the operator
TΓ ◦ T is compact and continuous (see also the previous lemma). Thus we can again use
the Leray-Schauder principle to obtain the result. Thus we have to consider the equation

c̄Γ = λTΓ(T (c̄Γ)), λ ∈ (0, 1],

i.e. the system

d

dt
(c̄Γ(t), φΓ)HΓ

+ a1Γ(c̄Γ(t), φΓ; t) + a2Γ(c̄Γ(t), φ; t) = λbΓ(φ; t, T (c̄Γ), c̄Γ) a.e. [0, T ]

c̄Γ(0) = λc̃0,Γ ∀φΓ ∈ VΓ,

where T (c̄Γ) =: c̄ satisfies

d

dt
(c̄(t), φ)H + a1(c̄(t), φ; t) + a2(c̄(t), φ; t) + a3(c̄(t), φ; t) = b(φ; t, c̄, c̄Γ) a.e. [0, T ]

c̃ε(0) = c̃0 ∀φ ∈ V

We will first derive estimates for ‖c̄‖
L2(0, T ;V )

. Subsequently, these estimates are used in
the estimation of ‖c̄Γ‖L2(0, T ;HΓ)

independent of λ.

Since
‖b(·; ·, c̄, c̄Γ)‖2L2(0, s;V ∗) ≤ L ‖c̄‖2

L2(0, s;H)
+ C ‖c̄Γ‖2L2(0, s;HΓ)

+ C, (3.24)

equation (3.17) adapted to the intervall [0, s] together with the embedding into C([0, s];H)
yield as in the proof of Proposition 3.3.17

‖c̄(s)‖2
H
≤ ‖c̄‖2{u ∈ L2(0, s;V ); ∂tu ∈ L2(0, s;V ∗)}

≤ L ‖c̄‖2
L2(0, s;H)

+ C ′ ‖c̄Γ‖2L2(0, s;HΓ)
+ C.

Gronwalls lemma implies that

‖c̄‖
L2(0, T ;H)

≤ TC + TC ′ ‖c̄Γ‖2L2(0, T ;HΓ)
.

Going back to estimate (3.17) together with the result (3.24), we see that

‖c̄‖
L2(0, T ;V )

≤ ‖c̄‖W ≤ C + C ′ ‖c̄Γ‖L2(0, T ;HΓ)
. (3.25)

Now we return to the estimation of c̄Γ as given by the formulation above: Similar to the
above derivation, it holds

‖bΓ(·; ·, c̄, c̄Γ)‖2L2(0, s;V ∗
Γ )
≤ L ‖c̄Γ‖2L2(0, s;HΓ)

+ C ‖c̄‖
L2(0, s;HΓ)

≤ L ‖c̄Γ‖2L2(0, s;HΓ)
+ C ‖c̄‖

L2(0, s;V )
,

thus inequality (3.18) on [0, s] yields together with the continuous embedding {u ∈
L2(0, s;VΓ); ∂tu ∈ L2(0, s;V ∗

Γ )} ↪→ C(0, s;HΓ)

‖c̄Γ(s)‖2HΓ
≤ λ(C + C ′ ‖c̄Γ‖2L2(0, s;HΓ)

)

≤ C + C ′ ‖c̄Γ‖2L2(0, s;HΓ)
.
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Now Gronwall’s lemma implies that ‖c̄Γ‖L2(0, T ;HΓ)
is bounded independent of λ. Thus

the Leray-Schauder principle applies. �

3.3.20 Proposition.
The solution of the full nonlinear system (3.13), (3.14) is unique.

Proof. Let (c̄1, c̄1Γ) and (c̄2, c̄2Γ) be two solutions of the full system. Then the difference
(c, cΓ) := (c̄1, c̄1Γ)− (c̄2, c̄2Γ) fulfills the equations (3.13) and (3.14) with right hand sides
b(φ; t, c̄1, c̄1Γ)− b(φ; t, c̄2, c̄2Γ) as well as bΓ(φΓ; t, c̄1, c̄1Γ)− bΓ(φΓ; t, c̄2, c̄2Γ) and initial value
0. The proof is now based on testing the weak formulations with (c, cΓ) and estimating
the terms appropriately. Finally, one arrives at

‖c(s)‖2
H
+ ‖cΓ(s)‖2HΓ

≤ C ‖c‖2
L2(0, s;H)

+ C ‖cΓ‖L2(0, s;HΓ)
,

such that Gronwall’s lemma implies that ‖c(s)‖2
H
+ ‖cΓ(s)‖2HΓ

≤ 0 a.e., which gives the
result. Since we carry out similar calculations in Sections 3.3.5 and 3.5.1, we do not give
the full details at this place. �

Proof of Theorem 3.3.9. Existence is obtained by Proposition 3.3.19, whereas the
uniqueness-result is contained in Proposition 3.3.20. �

3.3.5 A-priori Estimates

In this section we prove a-priori estimates for the solution of the Problems (3.11) and
(3.12). Since we need to treat the dependence on the scale-factor ε explicitly, we are not
using the abtract approach from Section 3.3.3. Instead, we choose specific test functions
for the weak formulation and estimate the terms obtained by this procedure.

We are going to prove the following result:

3.3.21 Theorem (A-priori estimates).
There exists a constant C > 0, independent of ε, such that for the solutions c̃ε and c̃εΓ of
the Problems (3.11) and (3.12) the following estimates hold:

• The functions c̃ε, c̃εΓ fulfill the bounds

‖c̃ε‖
L∞(0, T ;L2(Ωε(0)))

+ ‖∇ c̃ε‖
L2(0, T ;L2(Ωε(0)))

≤ C

ε
1
2 ‖c̃εΓ‖L∞(0, T ;L2(Γε(0)))

+ ε
3
2

∥∥∇Γ c̃εΓ
∥∥

L2(0, T ;L2(Γε(0)))
≤ C.

• For the corresponding time derivatives, we have the estimates

‖∂tc̃ε‖L∞(0, T ;L2(Ωε(0)))
+ ‖∇ ∂tc̃ε‖L2(0, T ;L2(Ωε(0)))

≤ C

ε
1
2 ‖∂tc̃εΓ‖L∞(0, T ;L2(Γε(0)))

+ ε
3
2

∥∥∇Γ ∂tc̃
ε
Γ

∥∥
L2(0, T ;L2(Γε(0)))

≤ C.

Before presenting the proofs, we give some estimates for the data:

3.3.22 Lemma.
The following estimates hold:
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• ‖Ṽ ε‖L∞([0, T ] × Ω) ≤ Cε

•
∥∥divΓ(F−1

Γ ṽεM )
∥∥

L∞([0, T ] × Ω)
≤ C

• ‖εκ̃ε‖
L∞([0, T ] × Ω)

≤ C, thus especially ‖κ̃εṼ ε‖L∞([0, T ] × Ω) ≤ C

• ‖ṽε‖
L∞([0, T ] × Ω)

≤ Cε

• ‖k̃‖L∞([0, T ] × Ω) ≤ C

• ‖∂tṼ ε‖L∞([0, T ] × Ω) ≤ Cε

•
∥∥divΓ(∂t(F−1

Γ ṽεM ))
∥∥

L∞([0, T ] × Ω)
≤ C

• ‖ε∂tκ̃ε‖L∞([0, T ] × Ω)
≤ C, thus especially ‖∂t(κ̃εṼ ε)‖L∞([0, T ] × Ω) ≤ C

• ‖∂tṽε‖L∞([0, T ] × Ω)
≤ Cε

• ‖∂tk̃‖L∞([0, T ] × Ω) ≤ C

•
∥∥∂t(F−1F−T )

∥∥
L∞([0, T ] × Ω)

≤ C

•
∥∥∥∂t(F−1

Γ F−T
Γ )

∥∥∥
L∞([0, T ] × Ω)

≤ C

Proof. All the estimates follow by using the regularity of the auxiliary functions. We
elaborate on some of the terms: We have

ṽε(t, x) = ∂tφ
ε(t, x) = ε∂tψ(t, ε

[x
ε

]
,
{x
ε

}
),

where ψ is bounded in L∞([0, T ]× Ω× Y ). Since the transformed normal vector

F−T
Γ ν̃ε

|F−T
Γ ν̃ε|

=
(∇y ψ

−1(t,
[
x
ε

]
,
{
x
ε

}
))T ν̃(

{
x
ε

}
)

|(∇y ψ−1(t,
[
x
ε

]
,
{
x
ε

}
))T ν̃(

{
x
ε

}
)|

is bounded independent of ε, we obtain an estimate for Ṽ ε as well. Next we get

divΓ(F−1
Γ ṽεM )(t, x) =

1

ε
divΓy

(
∇Γ

y ψΓ

(
t,
[x
ε

]
,
{x
ε

})
· ε∂tψΓ

(
t,
[x
ε

]
,
{x
ε

}))
= divΓy

(
∇Γ

y ψΓ

(
t,
[x
ε

]
,
{x
ε

})
· ∂tψΓ

(
t,
[x
ε

]
,
{x
ε

}))
,

the right hand side being bounded independently of ε by the regularity assumptions on ψ.
Moreover

εκ̃ε(t, x) = −ε div
(
F−1 F

−T
Γ ν̃ε

|F−T
Γ ν̃ε|

)
(t, x)

= − divy

(
∇y ψ

−1
(
t,
[x
ε

]
,
{x
ε

}) (∇y ψ
−1(t,

[
x
ε

]
,
{
x
ε

}
))T ν̃(

{
x
ε

}
)

|(∇y ψ−1(t,
[
x
ε

]
,
{
x
ε

}
))T ν̃(

{
x
ε

}
)|
)
,

again with a bounded right hand side due to the regularity assumptions on ψ and ν̃. The
estimation of the remaining terms follows along the same lines. �
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Bounds for the Functions

We begin with the following estimates:

3.3.23 Proposition.
There exists a constant C ≥ 0 independent of ε such that

‖c̃ε‖
L∞(0, T ;L2(Ωε(0)))

+ ‖∇ c̃ε‖
L2(0, T ;L2(Ωε(0)))

≤ C,

ε ‖c̃εΓ‖L∞(0, T ;L2(Γε(0)))
+ ε

3
2

∥∥∇Γ c̃εΓ
∥∥

L2(0, T ;L2(Γε(0)))
≤ C.

Proof. Choose φ = c̃ε(t) in (3.13a), φΓ(t) = εc̃εΓ(t) in (3.14a) and integrate from 0 to t.
We estimate the terms in each equation separately: For the bulk equation we obtain

t∫
0

∫
Ωε(0)

d

dt
|c̃ε|2 dx dt =

1

2
‖c̃ε(t)‖2

H
− 1

2
‖c̃0‖2H ;

d0 ‖∇ c̃ε‖2L2(0, t;H)
≤

t∫
0

(DF−T ∇ c̃ε, F−T ∇ c̃ε)H dt;

t∫
0

|(∇ c̃ε · F−1vε, c̃ε)H | dt ≤
∥∥F−1vε

∥∥
L∞([0, T ] × Ωε(0))

(

t∫
0

‖∇ c̃ε‖
H
‖c̃ε‖

H
dt)

≤ Cεδ ‖∇ c̃ε‖2
L2(0, t;H)

+ C(δ)ε ‖c̃ε‖2
L2(0, t;H)

;

t∫
0

|ε(k̃c̃ε + δi1Ṽ
εc̃ε, c̃ε)HΓ

| dt ≤ (‖k̃‖L∞([0, T ] × Ωε(0)) + ‖Ṽ ε‖L∞([0, T ] × Ωε(0)))

t∫
0

ε ‖c̃ε‖2
HΓ

dt

≤ C(‖c̃ε‖2
L2(0, t;H)

+ ε2 ‖∇ c̃ε‖2
L2(0, t;H)

)

(see also Lemma 3.1.15 with k = 0), together with

t∫
0

|(c̃ε, c̃ε)L2(∂Ω)| dt ≤ ‖c̃ε‖2L2(0, t;H
1
4 (∂Ω))

≤ Cδ ‖∇ c̃ε‖2
L2(0, t;H)

+ C(δ) ‖c̃ε‖2
L2(0, t;H)

by Corollary 3.3.13. Moreover

t∫
0

|(f̃(c̃ε), c̃ε)H | dt ≤ C(1 + ‖c̃ε‖
L2(0, t;H)

) ‖c̃ε‖
L2(0, t;H)

≤ C + C ‖c̃ε‖2
L2(0, t;H)

;

t∫
0

ε(k̃(t)Hc̃εΓ(t), c̃
ε(t))HΓ

dt ≤ ‖Hk̃‖L∞(Ωε(0))(‖c̃εΓ‖L2(0, t;HΓ)
‖c̃ε‖

L2(0, t;HΓ)
)

≤ Cε ‖c̃εΓ‖2L2(0, t;HΓ)
+ Cε ‖c̃ε‖2

L2(0, t;HΓ)

≤ Cε ‖c̃εΓ‖2L2(0, t;HΓ)
+ C(‖c̃ε‖2

L2(0, t;H)
+ ε2 ‖∇ c̃ε‖2

L2(0, t;H)
);
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t∫
0

(cext(t), c̃
ε)L2(∂Ω) dt ≤ C ‖c̃ε‖

L2(0, t;L2(∂Ω))
≤ C + C ‖c̃ε‖2

L2(0, t;L2(∂Ω))

≤ C + Cδ ‖∇ c̃ε‖2
L2(0, t;H)

+ C(δ) ‖c̃ε‖2
L2(0, t;H)

.

For the surface equation we get

t∫
0

∫
Γε(0)

d

dt
ε|c̃εΓ|2 dx dt =

ε

2
‖c̃εΓ(t)‖2HΓ

− ε

2
‖c̃0,Γ‖2HΓ

;

d0ε
3 ‖∇ c̃εΓ‖2L2(0, t;HΓ)

≤
t∫

0

ε3(DΓF
−T
Γ (t)∇Γ c̃εΓ(t), F

−T
Γ (t)∇Γ c̃εΓ(t))HΓ

dt;

t∫
0

ε([divΓ(F−1
Γ (t)ṽεM (t))− κ̃(t)Ṽ ε(t) + k̃(t)H]c̃εΓ(t), c̃

ε
Γ(t))HΓ

dt

≤ ε(
∥∥∥| divΓ(F−1

Γ ṽεM )|+ |κ̃Ṽ ε|+ |k̃H|
∥∥∥

L∞([0, T ] × Ω)

) ‖c̃εΓ‖2L2(0, t;HΓ)

≤ Cε ‖c̃εΓ‖2L2(0, t;HΓ)
;

t∫
0

ε(f̃Γ(c̃
ε
Γ(t)), c̃

ε
Γ(t))HΓ

dt ≤ Cε(1 + ‖c̃εΓ‖L2(0, t;HΓ)
) ‖c̃εΓ‖L2(0, t;HΓ)

≤ Cε+ Cε ‖c̃εΓ‖2L2(0, t;HΓ)

and finally

t∫
0

ε((k̃(t) +
δi2
ε
Ṽ ε)c̃ε(t), c̃εΓ(t))HΓ

≤ ε

∥∥∥∥|k̃|+ |1ε Ṽ ε|
∥∥∥∥

L∞([0, T × Ω])

‖c̃ε‖
L2(0, t;HΓ)

‖c̃εΓ‖L2(0, t;HΓ)

≤ Cε ‖c̃εΓ‖2L2(0, t;HΓ)
+ C(‖c̃ε‖2

L2(0, t;H)
+ ε2 ‖∇ c̃ε‖2

L2(0, t;H)
).

Now we put everything together; note that the first two estimates for each equation are
used on the left hand side of the following relation, whereas all the remaining terms
are put on the right hand side: Adding up (3.13a) with φ = c̃ε(t), and (3.14a) with
φΓ(t) = εc̃εΓ(t) (both integrated from 0 to t) gives with the help of the estimates above

‖c̃ε(t)‖2
H
+ (d0 − Cε2 − Cεδ) ‖∇ c̃ε‖2L2(0, t;H)

+ ε ‖c̃εΓ(t)‖2HΓ
+ Cε3

∥∥∇Γ c̃εΓ
∥∥2

L2(0, t;HΓ)

≤ C + C(δ) ‖c̃ε‖
L2(0, t;H)

+ Cε ‖c̃εΓ‖L2(0, t;HΓ)
.

Choose δ and ε small enough such that (d0 − Cε2 − Cεδ) > 0, then neglecting the terms
containing a gradient gives with the help of Gronwall’s inequality

‖c̃ε(t)‖2
H
≤ C for almost all t ∈ [0, T ]

ε ‖c̃εΓ(t)‖2HΓ
≤ C for almost all t ∈ [0, T ],
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which gives the bounds in L∞(0, T ;H). Due to the continuous embedding L∞([0, T ]) ↪→
L2([0, T ]), we get the same bounds in L2(0, T ;H) and L2(0, T ;HΓ), resp. Inserting these
bounds in the right hand side of the last estimate for t = T gives the remaining estimate
on the gradients. �

Bounds for the Time-Derivatives

For the estimation of the nonlinear reaction rates, we need the following lemma:

3.3.24 Lemma.
Let c ∈ H1(0, T ;L2(Ωε(0))) and cΓ ∈ H1(0, T ;L2(Γε(0))). Then it holds

‖∂tf̃(·, c)‖L2(0, T ;L2(Ωε(0))) ≤ L ‖∂tc‖L2(0, T ;L2(Ωε(0)))
,

‖∂tf̃Γ(·, cΓ)‖L2(0, T ;L2(Γε(0))) ≤ L ‖∂tcΓ‖L2(0, T ;L2(Γε(0)))
.

Proof. The proof is carried out in several steps: First we show the estimate for smooth
c: Choose a c ∈ C1([0, T ] × Ωε(0)). Fix a δ > 0 and let 0 < h < δ. Due to the
Lipschitz-continuity of f̃ , we obtain the estimate∣∣∣∣∣ f̃(x, c(t+ h, x))− f̃(x, c(t, x))

h

∣∣∣∣∣
2

≤ L2

h2
|c(t+ h, x)− c(t, x)|2 . (3.26)

Now the left hand side converges to |∂tf̃(x, c(t, x))|2 for h→ 0, whereas the right hand
side goes to L2|∂tc(t, x)|2. Integration over [0, T − δ]× Ωε(0) yields

T−δ∫
0

∫
Ωε(0)

|∂tf̃(x, c(t, x))|2 dx dt ≤
T∫
0

∫
Ωε(0)

L2|∂tc(t, x)|2 dx dt.

Since δ is arbitrary, the first assertion holds for smooth c.

In a second step, we show the existence of ∂tf̃(c) for c ∈ H1(0, T ;L2(Ωε(0))): Assume
that c has the latter regularity. Due to Lemma 3.3.4, f̃ is a map L2(0, T ;L2(Ωε(0))) −→
L2(0, T ;L2(Ωε(0))), thus f̃(·,c(·+h,·))−f̃(·,c(·,·))

h ∈ L2(0, T − δ;L2(Ωε(0))). Integrating the
estimate (3.26), one obtains

T−δ∫
0

∫
Ωε(0)

∣∣∣∣∣ f̃(x, c(t+ h, x))− f̃(x, c(t, x))
h

∣∣∣∣∣
2

dx dt ≤
T−δ∫
0

∫
Ωε(0)

L2

h2
|c(t+ h, x)− c(t, x)|2 dx dt

−→
T−δ∫
0

∫
Ωε(0)

L2 |∂tc(t, x)|2 dx dt,

which shows that f̃(·,c(·+h,·))−f̃(·,c(·,·))
h is bounded in L2(0, T − δ;L2(Ωε(0))) independent

of h. By the theorem of Eberlein-Shmulyian, there exists a gδ ∈ L2(0, T − δ;L2(Ωε(0)))
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such that along some sequence hn → 0

f̃(·, c(·+ hn, ·))− f̃(·, c(·, ·))
hn

−⇀ gδ in L2(0, T − δ;L2(Ωε(0))).

Now choose a φ ∈ C∞0 (0, T ) with supp(φ) ⊂ (δ, T − δ) and fix a v ∈ L2(0, T ;L2(Ωε(0))).
By the integration by parts-formula for difference quotients (see e.g. [Mei08], Lemma
B.2.3), we obtain

T∫
δ

∫
Ωε(0)

φ(t)− φ(t− h)
h

f̃(x, c(t, x))v(x) dx dt

= −
T−δ∫
0

∫
Ωε(0)

f̃(x, c(t+ h, x))− f̃(x, c(t, x))
h

φ(t)v(x) dx dt

+
1

h

t+h∫
t

∫
Ωε(0)

φ(τ)f̃(x, c(τ, x))v(x) dx dτ

∣∣∣∣∣
t=T−δ

t=0︸ ︷︷ ︸
=0

.

For h = hn → 0 the left hand side converges to
∫ T
δ

∫
Ωε(0) φ

′(t)f̃(x, c(t, x))v(x) dx dt, and

the right hand side to −
∫ T−δ
0

∫
Ωε(0) gδ(t, x)φ(t)v(x) dx dt and thus

T∫
0

∫
Ωε(0)

φ′(t)f̃(x, c(t, x))v(x) dx dt = −
T∫
0

∫
Ωε(0)

gδ(t, x)φ(t)v(x) dx dt

for some extension of gδ. By the definition of weak time-derivatives (see e.g. Zeidler
[Zei90]), this means that gδ(t, x) = ∂tf̃(x, c(t, x)) on [δ, Tδ]. Since the derivative is unique,
we can construct such functions on a increasing sequence of sets to obtain the function
∂tf̃(x, c(t, x)) ∈ L2(0, T ;L2(Ωε(0))). In this connection note that the estimate for this
time derivative can actually be chosen independent of δ.

Finally, by density of C1([0, T ]× Ωε(0)) in H1(0, T ;L2(Ωε(0))) the first estimate follows.
The proof of the remaining estimate follows along the same lines. �

3.3.25 Proposition.
There exists a constant C ≥ 0 independent of ε such that

‖∂tc̃ε‖L∞(0, T ;L2(Ωε(0)))
+ ‖∇ ∂tc̃ε‖L2(0, T ;L2(Ωε(0)))

≤ C,

ε
1
2 ‖∂tc̃εΓ‖L∞(0, T ;L2(Γε(0)))

+ ε
3
2

∥∥∇Γ ∂tc̃
ε
Γ

∥∥
L2(0, T ;L2(Γε(0)))

≤ C.

Proof. We carry out the proof by differentiating the defining equations for c̃ε and c̃εΓ,
(3.11) and (3.12) with respect to time in order to derive the defining equations for ∂tc̃ε

and ∂tc̃εΓ. Using a test function approach similar to 3.3.23, we obtain the estimates. For
a justification of this technique, see Wloka [Wlo92], Section 27.
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We obtain the following equations:

∂ttc̃
ε −∇ ∂tc̃ε · F−1ṽε −∇ c̃ε · ∂t(F−1ṽε)− div(DF−1F−T ∇ ∂tc̃ε)

− div(D∂t(F
−1F−T )∇ c̃ε) = ∂tf̃(c̃

ε) in Ω(0)

(−DF−T ∇ ∂tc̃ε−D∂tF−T ∇ c̃ε) · ν̃ = δi1∂tc̃
εṼ ε + δi1c̃

ε∂tṼ
ε

+ εk̃(∂tc̃
ε −H∂tc̃εΓ) + ε∂tk̃(c̃

ε −Hc̃εΓ) on Γε(0)

(−DF−T ∇ ∂tc̃ε−D∂tF−T ∇ c̃ε) · ν̃ = ∂tc̃
ε − ∂tc̃ext on ∂Ω

∂tc̃
ε(0, ·) = c̃1 in Ω(0).

Here the initial condition is given by

c̃1 = f̃(0, c̃0)− div(DF−1(0)F−T (0)∇ c̃0),

see [Wlo92]. We obtain

‖c̃1‖V ≤ ‖f(0, c̃0)‖H + ‖∇ f(0, c̃0)‖H + C ‖c̃0‖H2(Ωε(0))
+ C ‖∇ c̃0‖H2(Ωε(0))

≤ C + C ‖c̃0‖H + L ‖∇ c̃0‖H + C ‖c̃0‖H3(Ωε(0))

≤ C ‖c̃0‖H3(Ωε(0))
≤ C

with bounds independent of ε. Here we used Rademacher’s theorem for ∇ f(0, c̃0), the
Lipschitz-continuity of f̃ , and the regularity and boundedness of F . Similarly we get

∂ttc̃
ε
Γ − ε2 divΓ(DΓF

−1
Γ F−T

Γ ∇Γ ∂tc̃
ε
Γ)− ε2 divΓ(DΓ∂t(F

−1
Γ F−T

Γ )∇Γ c̃εΓ)

+ ∂tc̃
ε
Γ div

Γ(F−1
Γ ṽεM ) + c̃εΓ div

Γ(∂t(F
−1
Γ ṽεM ))− ∂tc̃εΓκ̃εṼ ε − c̃εΓ∂t(κ̃εṼ ε)− ∂tf̃(c̃εΓ)

= −δi2
ε
∂tc̃

εṼ ε − δi2
ε
c̃ε∂tṼ

ε + k̃(∂tc̃
ε −H∂tc̃εΓ) + ∂tk̃(c̃

ε −Hc̃εΓ) on Γε(0)

∂tc̃
ε
Γ(0, ·) = c̃1,Γ on Γε(0)

with an initial condition

c̃1,Γ = f̃Γ(0, c̃0,Γ)− ε2 divΓ(F−1
Γ F−T

Γ ∇ c̃0,Γ).

Using the same arguments as above, we obtain that c̃1,Γ ∈ VΓ (which is needed for the
regularity result of [Wlo92]); however we do not get reasonable bounds in the space VΓ.
Since we only need estimates in HΓ in the estimation of the time derivatives, the following
inequality is sufficient: Due to the general trace inequality 3.1.15 we have

√
ε ‖c̃1,Γ‖HΓ

≤
√
ε
∥∥∥f̃Γ(0, c̃0,Γ)∥∥∥

HΓ

+ ε
5
2

∥∥∥divΓ(F−1
Γ F−T

Γ ∇Γ c̃0,Γ)
∥∥∥

HΓ

≤ C
√
ε+ C

√
ε ‖c̃0,Γ‖HΓ

+ Cε
5
2 ‖c̃0,Γ‖H2(Γε(0))

≤ C + C
√
ε ‖c̃0,Γ‖HΓ

+ Cε
3
2

∥∥∇Γ c̃0,Γ
∥∥

HΓ
+ Cε

5
2

∥∥∇Γ∇Γ c̃0,Γ
∥∥

HΓ

≤ C + C ‖c̃0,Γ‖H + Cε ‖∇ c̃0,Γ‖H + Cε2 ‖∇∇ c̃0,Γ‖H + Cε3 ‖∇∇∇ c̃0,Γ‖H
≤ C + C ‖c̃0,Γ‖H3(Ω)

≤ C

independent of ε.
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The weak formulation of the problems above reads: Find (∂tc̃
ε, ∂tc̃

ε
Γ) ∈ W ×WΓ such

that for all (φ, φΓ) ∈ V × VΓ it holds

d

dt
(∂tc̃

ε, φ)H + (DF−T ∇ ∂tc̃ε, F−T ∇φ)H + (D∂t(F
−1F−T )∇ c̃ε,∇φ)H

− (∇ ∂tc̃ε · F−1ṽε, φ)H − (∇ c̃ε · ∂t(F−1ṽε), φ)H + (δi1∂tc̃
εṼ ε, φ)HΓ

+ (δi1c̃
ε∂tṼ

ε, φ)HΓ

+ ε(k̃(∂tc̃
ε −H∂tc̃εΓ), φ)HΓ

+ ε(∂tk̃(c̃
ε −Hc̃εΓ), φ)HΓ

− (∂tc̃
ε − ∂tc̃ext, φ)L2(∂Ω)

= (∂tf̃(c̃
ε), φ)H (3.27)

and

d

dt
(∂tc̃

ε
Γ, φΓ)HΓ

+ε2(DΓF
−T
Γ ∇Γ ∂tc̃

ε
ΓF

−T
Γ ∇Γ φΓ)HΓ

+ε2(DΓ∂t(F
−1
Γ F−T

Γ )∇Γ c̃εΓ,∇Γ φΓ)HΓ

+ (∂tc̃
ε
Γ div

Γ(F−1
Γ ṽεM ), φΓ)HΓ

+ (c̃εΓ div
Γ(∂t(F

−1
Γ ṽεM )), φΓ)HΓ

− (∂tc̃
ε
Γκ̃

εṼ ε, φΓ)HΓ

− (c̃εΓ∂t(κ̃
εṼ ε), φΓ)HΓ

− (∂tf̃Γ(c̃
ε
Γ), φΓ)HΓ

= −δi2
ε
(∂tc̃

εṼ ε, φΓ)HΓ
− δi2

ε
(c̃ε∂tṼ

ε, φΓ)HΓ
+ (k̃(∂tc̃

ε −H∂tc̃εΓ), φΓ)HΓ

+ (∂tk̃(c̃
ε −Hc̃εΓ), φΓ)HΓ

, (3.28)

both supplemented with the corresponding initial conditions.

We now use (∂tc̃
ε(t), ε∂tc̃

ε
Γ(t)) as a test function and integrate from 0 to t. Again we start

by estimating each term seperately: For the bulk equation we obtain:

t∫
0

∫
Ωε(0)

d

dt
|∂tc̃ε|2 dx dt =

1

2
‖∂tc̃ε(t)‖2H −

1

2
‖c̃1‖2H ;

d0 ‖∇ ∂tc̃ε‖2L2(0, t;H)
≤

t∫
0

(DF−T ∇ ∂tc̃ε, F−T ∇ ∂tc̃ε)H dt;

t∫
0

|(∇ ∂tc̃ε · F−1ṽε, ∂tc̃
ε)H | dt ≤

∥∥F−1ṽε
∥∥

L∞([0, T ] × Ωε(0))
(

t∫
0

‖∇ ∂tc̃ε‖H ‖∂tc̃ε‖H dt)

≤ Cεδ ‖∇ ∂tc̃ε‖2L2(0, t;H)
+ C(δ)ε ‖∂tc̃ε‖2L2(0, t;H)

;

t∫
0

|ε(k̃∂tc̃ε + δi1Ṽ
ε∂tc̃

ε, ∂tc̃
ε)HΓ

| dt ≤ (‖k̃‖L∞([0, T ] × Ωε(0)) + ‖Ṽ ε‖L∞([0, T ] × Ωε(0)))

t∫
0

ε ‖∂tc̃ε‖2HΓ
dt

≤ C(‖∂tc̃ε‖2L2(0, t;H)
+ ε2 ‖∇ ∂tc̃ε‖2L2(0, t;H)

)

(see also Lemma 3.1.15 with k = 0), as well as

t∫
0

|(∂tc̃ε, ∂tc̃ε)L2(∂Ω)| dt ≤ ‖∂tc̃ε‖2L2(0, t;H
1
4 (∂Ω))

≤ Cδ ‖∇ ∂tc̃ε‖2L2(0, t;H)
+ C(δ) ‖∂tc̃ε‖2L2(0, t;H)
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by Corollary 3.3.13. Similarly

t∫
0

|(∂tf̃(c̃ε), ∂tc̃ε)H | dt ≤ CL ‖∂tc̃ε‖2L2(0, t;H)
;

t∫
0

ε(k̃(t)H∂tc̃
ε
Γ(t), ∂tc̃

ε(t))HΓ
dt ≤ ε‖Hk̃‖L∞(Ωε(0))(‖∂tc̃εΓ‖L2(0, t;HΓ)

‖∂tc̃ε‖L2(0, t;HΓ)
)

≤ Cε ‖∂tc̃εΓ‖2L2(0, t;HΓ)
+ Cε ‖∂tc̃ε‖2L2(0, t;HΓ)

≤ Cε ‖∂tc̃εΓ‖2L2(0, t;HΓ)
+ C(‖∂tc̃ε‖2L2(0, t;H)

+ ε2 ‖∇ ∂tc̃ε‖2L2(0, t;H)
);

t∫
0

(∂tcext(t), ∂tc̃
ε)L2(∂Ω) dt ≤ C ‖∂tc̃ε‖L2(0, t;L2(∂Ω))

≤ C + C ‖∂tc̃ε‖2L2(0, t;L2(∂Ω))

≤ C + Cδ ‖∇ ∂tc̃ε‖2L2(0, t;H)
+ C(δ) ‖∂tc̃ε‖2L2(0, t;H)

.

Moreover, we have

t∫
0

|(D∂t(F−1F−T )∇ c̃ε,∇ ∂tc̃ε)H | dt ≤ D
∥∥∂t(F−1F−T )

∥∥
L∞([0, T ] × Ω)

‖∇ c̃ε‖
L2(0, T ;H)

‖∇ ∂tc̃ε‖L2(0, t;H)

≤ C(δ) ‖∇ c̃ε‖2
L2(0, T ;H)

+ Cδ ‖∇ ∂tc̃ε‖2L2(0, t;H)
≤ C(δ) + Cδ ‖∇ ∂tc̃ε‖2L2(0, t;H)

;

t∫
0

|(∇ c̃ε∂t(F−1ṽε), ∂tc̃
ε)H | dt ≤

∥∥∂t(F−1ṽε)
∥∥

L∞([0, T ] × Ω)
‖∇ c̃ε‖

L2(0, T ;H)
‖∂tc̃ε‖L2(0, t;H)

≤ C + C ‖∂tc̃ε‖2L2(0, t;H)
;

t∫
0

|(δi1c̃ε∂tṼ ε, ∂tc̃
ε)HΓ

| dt ≤ ‖∂tṼ ε‖L∞([0, T ] × Ω) ‖c̃ε‖L2(0, T ;HΓ)
‖∂tc̃ε‖L2(0, t;HΓ)

≤ Cε ‖c̃ε‖
L2(0, T ;HΓ)

‖∂tc̃ε‖L2(0, t;HΓ)
≤ Cε ‖c̃ε‖2

L2(0, T ;HΓ)
+ Cε ‖∂tc̃ε‖2L2(0, t;HΓ)

≤ C(‖c̃ε‖2
L2(0, T ;H)

+ ε2 ‖∇ c̃ε‖2
L2(0, T ;H)

) + C(‖∂tc̃ε‖2L2(0, t;H)
+ ε2 ‖∇ ∂tc̃ε‖2L2(0, t;H)

)

≤ C + C(‖∂tc̃ε‖2L2(0, t;H)
+ ε2 ‖∇ ∂tc̃ε‖2L2(0, t;H)

);

t∫
0

ε|(∂tk̃(c̃ε −Hc̃εΓ), ∂tc̃ε)HΓ
| dt ≤ ‖(1 +H)∂tk̃‖L∞([0, T ] × Ω)(ε ‖c̃ε‖2L2(0, T ;HΓ)

+ ε ‖c̃εΓ‖2L2(0, T ;HΓ)

+2ε ‖∂tc̃ε‖2L2(0, t;HΓ)
)

≤ C(‖c̃ε‖2
L2(0, T ;H)

+ ε2 ‖∇ c̃ε‖2
L2(0, T ;H)

) + C + C(‖∂tc̃ε‖2L2(0, t;H)
+ ε2 ‖∇ ∂tc̃ε‖2L2(0, t;H)

)

≤ C + C(‖∂tc̃ε‖2L2(0, t;H)
+ ε2 ‖∇ ∂tc̃ε‖2L2(0, t;H)

).
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For the surface equations we obtain analogously

t∫
0

∫
Γε(0)

d

dt
ε|∂tc̃εΓ|2 dx dt =

ε

2
‖∂tc̃εΓ(t)‖2HΓ

− ε

2
‖c̃1,Γ‖2HΓ

;

d0ε
3 ‖∇ ∂tc̃εΓ‖2L2(0, t;HΓ)

≤
t∫

0

ε3(DΓF
−T
Γ ∇Γ ∂tc̃

ε
Γ, F

−T
Γ (t)∇Γ ∂tc̃

ε
Γ)HΓ

dt;

t∫
0

ε([divΓ(F−1
Γ ṽεM )− κ̃Ṽ ε + k̃H]∂tc̃

ε
Γ, ∂tc̃

ε
Γ)HΓ

dt

≤ ε(
∥∥∥| divΓ(F−1

Γ ṽεM )|+ |κ̃Ṽ ε|+ |k̃H|
∥∥∥

L∞([0, T ] × Ω)

) ‖∂tc̃εΓ‖2L2(0, t;HΓ)

≤ Cε ‖∂tc̃εΓ‖2L2(0, t;HΓ)
;

t∫
0

ε(∂tf̃Γ(c̃
ε
Γ), ∂tc̃

ε
Γ(t))HΓ

dt ≤ +CLε ‖∂tc̃εΓ‖2L2(0, t;HΓ)
;

t∫
0

ε((k̃ +
δi2
ε
Ṽ ε)∂tc̃

ε, ∂tc̃
ε
Γ)HΓ

≤ ε

∥∥∥∥|k̃|+ |1ε Ṽ ε|
∥∥∥∥

L∞([0, T × Ω])

‖∂tc̃ε‖L2(0, t;HΓ)
‖∂tc̃εΓ‖L2(0, t;HΓ)

≤ Cε ‖∂tc̃εΓ‖2L2(0, t;HΓ)
+ C(‖∂tc̃ε‖2L2(0, t;H)

+ ε2 ‖∇ ∂tc̃ε‖2L2(0, t;H)
)

as well as

t∫
0

ε3|(DΓ∂t(F
−1
Γ F−T

Γ )∇Γ c̃εΓ,∇Γ ∂tc̃
ε
Γ)HΓ

| dt ≤ ε3DΓ‖∂t(F−1
Γ F−T

Γ )‖L∞([0, T ] × Ω)

·
∥∥∇Γ c̃εΓ

∥∥
L2(0, T ;HΓ)

∥∥∇Γ ∂tc̃
ε
Γ

∥∥
L2(0, t;HΓ)

≤ ε3(C(δ)
∥∥∇Γ c̃εΓ

∥∥2
L2(0, T ;HΓ)

+ Cδ
∥∥∇Γ ∂tc̃

ε
Γ

∥∥2
L2(0, t;HΓ)

) ≤ C(δ) + Cε3δ
∥∥∇Γ ∂tc̃

ε
Γ

∥∥2
L2(0, t;HΓ)

;

t∫
0

ε([divΓ(∂t(F
−1
Γ ṽεM ))− ∂t(κ̃Ṽ ε)]c̃εΓ, ∂tc̃

ε
Γ)HΓ

dt

≤ ε
∥∥∥| divΓ(∂t(F−1

Γ ṽεM ))|+ |∂t(κ̃Ṽ ε)|
∥∥∥

L∞([0, T ] × Ω)

‖c̃εΓ‖L2(0, T ;HΓ)
‖∂tc̃εΓ‖L2(0, t;HΓ)

≤ Cε ‖c̃εΓ‖2L2(0, T ;HΓ)
+ Cε ‖∂tc̃εΓ‖2L2(0, t;HΓ)

≤ C + Cε ‖∂tc̃εΓ‖2L2(0, t;HΓ)
;

t∫
0

ε|(∂tk̃(c̃ε −Hc̃εΓ) +
δi2
ε
∂tṼ

εc̃ε, ∂tc̃
ε
Γ)HΓ

| dt ≤ C

∥∥∥∥|(1 +H)∂tk̃|+ |
1

ε
∂tṼ

ε|
∥∥∥∥

L∞([0, T ] × Ω)

·(ε ‖c̃ε‖2
L2(0, T ;HΓ)

+ ε ‖c̃εΓ‖2L2(0, T ;HΓ)
+ 2ε ‖∂tc̃εΓ‖2L2(0, t;HΓ)

)

≤ C(‖c̃ε‖2
L2(0, T ;H)

+ ε2 ‖∇ c̃ε‖2
L2(0, T ;H)

) + C + Cε ‖∂tc̃εΓ‖2L2(0, T ;HΓ)

≤ C + Cε ‖∂tc̃εΓ‖2L2(0, T ;HΓ)
.
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We now use the first two estimates for each equation on the left hand side of the following
relation; all the remaining terms are put on the right hand side: Adding up (3.27) with
φ = ∂tc̃

ε(t), and (3.28) with φΓ(t) = ε∂tc̃
ε
Γ(t) and integrating from 0 to t gives due to the

estimates above

‖∂tc̃ε(t)‖2H + (d0 − Cε2 − Cεδ) ‖∇ ∂tc̃ε‖2L2(0, t;H)
+ ε ‖∂tc̃εΓ(t)‖2HΓ

+ (C − C ′δ)ε3
∥∥∇Γ ∂tc̃

ε
Γ

∥∥2
L2(0, t;HΓ)

≤ C(δ) + C(δ) ‖∂tc̃ε‖L2(0, t;H)
+ Cε ‖∂tc̃εΓ‖L2(0, t;HΓ)

.

Choose δ and ε small enough such that (d0 − Cε2 − Cεδ) > 0 as well as (C − C ′δ) > 0.
Neglecting the terms containing a gradient for a moment gives with the help of Gronwall’s
inequality

‖∂tc̃ε(t)‖2H ≤ C for almost all t ∈ [0, T ]

ε ‖∂tc̃εΓ(t)‖2HΓ
≤ C for almost all t ∈ [0, T ],

which gives the bounds in L∞(0, T ;H). Again, due to the continuous embedding
L∞([0, T ]) ↪→ L2([0, T ]), we get the same bounds in L2(0, T ;H) and L2(0, T ;HΓ), resp.
Inserting these bounds in the right hand side of the last estimate for t = T gives the
remaining estimate on the gradients. �

3.4 Homogenization of the Evolving-Surface Model

3.4.1 Convergence Results

Due to the estimates from Theorem 3.3.21, we obtain the following proposition:

3.4.1 Proposition.
There exists a function c0 ∈ L2(0, T ;H1(Ω)) with ∂tc0 ∈ L2(0, T ;L2(Ω)) and functions
c1 ∈ L2(0, T ;L2(Ω;H1

#(Y ))) as well as c0Γ ∈ L2(0, T ;L2(Ω;H1(∂YS))) such that along a
subsequence of ε the following convergence statements hold:

c̃ε −⇀ c0 in L2(0, T ;H1(Ω))

∂tc̃
ε −⇀ ∂tc

0 in L2(0, T ;L2(Ω))

c̃ε −→ c0 in L2(0, T ;L2(Ω))

(3.29)

(3.30)

(3.31)

for the extension of c̃ε according to Lemma 3.1.12, as well as

T ε(c̃ε) −→ c0 in L2(0, T ;L2(Ω))

T ε(∇ c̃ε) −⇀ ∇x c
0 +∇y c

1 in L2(0, T ;L2(Ω× Y ))

T ε(∂tc̃
ε) −⇀ ∂tc

0 in L2(0, T ;L2(Ω))

T ε
b (c̃

ε) −⇀ c0 in L2(0, T ;L2(Ω× ∂YS))

(3.32)

(3.33)

(3.34)

(3.35)
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and
T ε
b (c̃

ε
Γ) −⇀ c0Γ in L2(0, T ;L2(Ω× ∂YS))

εT ε
b (∇Γ c̃εΓ) −⇀ ∇Γ

y c
0
Γ in L2(0, T ;L2(Ω× ∂YS))

T ε
b (∂tc̃

ε
Γ) −⇀ ∂tc

0
Γ in L2(0, T ;L2(Ω× ∂YS))

(3.36)

(3.37)

(3.38)

Proof. For the extended function c̃ε we have the estimate ‖c̃ε‖
L2(0, T ;H1(Ω))

≤ C, which
gives (3.29) due to weak compactness. Analogously, since ‖∂tc̃ε‖L2(0, T ;L2(Ω))

≤ C there
exists a g ∈ L2(0, T ;L2(Ω)) such that ∂tc̃ε −⇀ g in that space. By standard results,
this forces g = ∂tc

0 in weak sense (see e.g. Zeidler [Zei90], Proposition 23.19). Now
the compact embedding {u ∈ L2(0, T ;H1(Ω)); ∂tu ∈ L2(0, T ;L2(Ω))} ↪→ L2(0, T ;L2(Ω))
yields (3.31).

This last strong convergence statement together with the first result in Theorem 3.1.13
gives the strong convergence (3.32). Similarly, the same theorem leads to (3.33) and
(3.35).
In order to obtain the result for the time derivative, first note that T ε(∂tc̃

ε) is bounded in
L2(0, T ;L2(Ω× YR)), thus there exists a g′ in that space such that along a subsequence
T ε(∂tc̃

ε) −⇀ g′. Now choose a φ ∈ C∞0 ([0, T ]× Ω× YR) and unfold the integral identity∫ T
0

∫
Ω ∂tc̃

ε(t, x)φ(t, x, xε ) dx dt = −
∫ T
0 c̃ε(t, x)∂tφ(t, x,

x
ε ) dx dt. Since T ε(φ(t, x, xε )) →

φ(t, x, y) as well as T ε(∂tφ(t, x,
x
ε ))→ ∂tφ(t, x, y) strongly, we get

T∫
0

∫
Ω×Y

T ε(∂tc̃
ε)T ε(φ(t, x,

x

ε
)) dy dx dt = −

T∫
0

∫
Ω×Y

T ε(c̃ε)T ε(∂tφ(t, x,
x

ε
)) dy dx dt

↓ ↓
T∫
0

∫
Ω×Y

g′(t, x, y)φ(t, x, y) dy dx dt = −
T∫
0

∫
Ω×Y

c0(t, x)∂tφ(t, x, y) dy dx dt

for ε→ 0. Thus by using the same argument as above g′ = ∂tc
0, which is (3.34).

Due to the boundedness properties ε ‖c̃εΓ‖
2
L2(0, T ;HΓ)

+ ε3 ‖c̃εΓ‖
2
L2(0, T ;HΓ)

≤ C, Theorem
3.1.13 gives the convergences (3.36) and (3.37). Finally, the convergence for the time
derivative follows as in the bulk-case. �

3.4.2 Treatment of the Nonlinear Reaction Rates

The weak convergence (3.36) is not enough to pass to the limit in the nonlinear reaction
rate f̃Γ. However, since the set on which c̃εΓ is defined varies with ε, we cannot expect any
convergence in a H1(Γε)-space. Thus we have no compact embedding at hand. The best
result which can be obtained is the strong convergence of the unfolded sequence T ε

b (c̃
ε
Γ).

As we will see below, this result is sufficient to pass to the limit.

In order to prove this result, we follow the approach suggested by Neuss-Radu and Jäger
in [NRJ07]. It is based on the Kolmogoroff compactness criterion, which is recalled next
for the convenience of the reader:
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3.4.2 Theorem (Kolmogoroff compactness criterion).
Let 1 ≤ p <∞. Let G ⊂ RN be a bounded open set. A bounded set S ⊂ Lp(G) is compact
if and only if it is p-mean equicontinuous, i.e. for all η > 0 there exists a δ > 0 such that
for all h ∈ R with |h| < δ it holds

sup
u∈S

∫
G

|u(x+ h)− u(x)|p dx ≤ η.

Proof. See e.g. Hanche-Olsena and Holden [HOH10] for a modern proof or Rafeiro [Raf09]
for extensions. �

We are going to show the following theorem:

3.4.3 Theorem.
The set {T ε

b (c̃
ε
Γ)}ε>0 is compact in L2([0, T ] × Ω × ∂YS), thus along a subsequence we

have the strong convergence

T ε
b (c̃

ε
Γ) −→ c0Γ in L2([0, T ]× Ω× ∂YS). (3.39)

The proof is carried out in several steps: First, we show that {T ε
b (c̃

ε
Γ)} fulfills the

Kolmogoroff compactness criterion in t and y. The difficult part is to show the criterion
in x. As it will turn out, a Taylor expansion of k̃, F−1, Ṽ ε etc. will allow us to gain a
useful power of h in the estimates. Together with the strong convergence of c̃ε, this forces
the criterion to hold.

Proof. Step 1: Compactness criterion in t and y.
Let e be one of the unit vectors e1, . . . , en of Rn and let h > 0. A Taylor expansion gives

‖T ε
b (c̃

ε
Γ)(t, x, y + he)− T ε

b (c̃
ε
Γ)(t, x, y)‖L2([0, T ] × Ω × ∂YS)

≤ Ch ‖∇y T ε
b (c̃

ε
Γ)‖L2([0, T ] × Ω × ∂YS)

.

Since ‖∇y T ε
b (c̃

ε
Γ)‖L2([0, T ] × Ω × ∂YS)

is bounded independent of ε (see Proposition 3.1.10),
the criterion can be satisfied in y. A similar argument with ‖∂tT ε

b (c̃
ε
Γ)‖L2([0, T ] × Ω × ∂YS)

gives the same result in the variable t.

Step 2: Reduction to a simpler estimate.
In the sequel we will assume that Ω can always be represented by a union of scaled and
translated reference cells, see also the remarks accompanying equation (3.2) in Section 3.2.
Fix ε > 0 and let I ⊂ Zn be an index set such that

Ω =
⋃
i∈I

ε(Y + i) =:
⋃
i∈I

εYi.

Note that x ∈ εYi ⇔
[
x
ε

]
= i. Fix i ∈ I. For given ξ ∈ Rn subdivide εYi as follows: For

k ∈ {0, 1}n define

εY k
i :=

⎧⎨
⎩x ∈ εYi : ε

⎡
⎣x+

{
ξ
ε

}
ε

ε

⎤
⎦ = ε(i+ k)

⎫⎬
⎭
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εYi
(0,1) εYi

(1,1)

εYi
(0,0) εYi

(1,0)

{    }ε
ξ2
ε

{    }ε
ξ1
ε

εYi

Figure 3.2: Illustration of the sets εY k
i in the two-dimensional case for ξ =

(
ξ1
ξ2

)
.

(see also Figure 3.2 for the two-dimensional case). It holds εYi =
⋃

k∈{0,1}n εY
k
i . Now

∥∥T ε
b (c̃

ε
Γ)(t, x+ ξ, y)− T ε

b (c̃
ε
Γ)(t, x, y)

∥∥2
L2([0, T ] × Ω × ∂YS)

=
∑
i∈I

T∫
0

∫
εYi

∫
∂YS

|c̃εΓ(t, ε
[
x+ ξ

ε

]
+ εy)− c̃εΓ(t, ε

[x
ε

]
+ εy)|2 dσy dx dt

=
∑
i∈I

∑
k∈{0,1}n

T∫
0

∫
εY k

i

∫
∂YS

|c̃εΓ(t, ε(i+ k +

[
ξ

ε

]
) + εy)− c̃εΓ(t, εi+ εy)|2 dσy dx dt

≤
∑
i∈I

∑
k∈{0,1}n

T∫
0

∫
εYi

∫
∂YS

|c̃εΓ(t, ε(i+ k +

[
ξ

ε

]
) + εy)− c̃εΓ(t, εi+ εy)|2 dσy dx dt,

which by undoing the unfolding operation and remarking that i =
[
x
ε

]
is equal to

∑
k∈{0,1}n

ε

T∫
0

∫
Γε(0)

|c̃εΓ(t, x+ ε(

[
ξ

ε

]
+ k))− c̃εΓ(t, x)|2 dσ dt.

For given small h > 0, we can choose an ε small enough such that |ε
[
ξ
ε

]
+ εk| < h.

This amounts to saying that in order to obtain the compactness criterion in x for T ε
b (c̃

ε
Γ),

it is sufficient to obtain estimates for given l ∈ Zn, |lε| < h of

ε ‖c̃εΓ(t, x+ lε)− c̃εΓ(t, x)‖2L2([0, T ] × Γε(0))
. (3.40)
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Step 3: Estimation of the Difference-PDE.
In order to estimate the norm (3.40), we introduce the following assumptions and defi-
nitions: We assume that Ω is of rectangular shape. We extend c̃εΓ to the whole Rn by
successively reflecting c̃εΓ with respect to the planes {(x1, . . . , xn) : xi = 0} for i = 1, . . . , n,
followed by an extension by periodicity (see [NRJ07] for the details). For a function q
defined on [0, T ]× Rn set

ql(t, x) := q(t, x+ lε)

δq := ql − q

and note that for a similar function ρ we have

qlρl − qρ = ql(δρ) + (δq)ρ = ρl(δq) + (δρ)q. (3.41)

Define g̃ = divΓ(F−1
Γ ṽεM ) − κ̃εṼ ε and consider the difference δc̃εΓ = (c̃εΓ)

l − c̃εΓ. By
subtracting the weak formulations of (c̃εΓ)

l and c̃εΓ, we obtain

d

dt
((c̃εΓ)

l − c̃εΓ, η)HΓ
+ ε2(DΓ(F

−1
Γ F−T

Γ )l∇(c̃εΓ)
l −DΓF

−1
Γ F−T

Γ ∇ c̃εΓ,∇ η)HΓ

+ (g̃l(c̃εΓ)
l − g̃c̃εΓ, η)HΓ

= (f̃ lΓ((c̃
ε
Γ)

l)− f̃Γ(c̃εΓ), η)HΓ

+ (k̃l(c̃ε)l − k̃c̃ε, η)HΓ
− (Hk̃l(c̃εΓ)

l −Hk̃c̃εΓ, η)HΓ

for η ∈ HΓ. We use η = εδc̃εΓ as a test function, integrate from 0 to t and estimate the
terms with the help of (3.41): We obtain

t∫
0

d

dt
ε((c̃εΓ)

l − c̃εΓ, δc̃εΓ)HΓ
dt = ε ‖δc̃εΓ(t)‖2HΓ

− ε ‖δc̃0,Γ‖2HΓ

and

t∫
0

ε3(DΓ(F
−1
Γ F−T

Γ )l∇(c̃εΓ)
l −DΓF

−1
Γ F−T

Γ ∇ c̃εΓ,∇ δc̃εΓ)HΓ
dt

=

t∫
0

ε3(DΓδ(F
−1
Γ F−T

Γ )∇(c̃εΓ)
l,∇ δc̃εΓ)HΓ

dt+

t∫
0

ε3(DΓF
−1
Γ F−T

Γ ∇ δc̃εΓ,∇ δc̃εΓ)HΓ
dt

=: I1 + I2

with the estimates

I2 ≥ ε3d0 ‖∇ δc̃εΓ‖2L2(0, t;HΓ)

|I1| ≤ ε3DΓ

∥∥∥δ(F−1
Γ F−T

Γ )
∥∥∥

L∞([0, T × Ω])︸ ︷︷ ︸
≤Cε

·2 ‖∇ c̃εΓ‖2L2(0, t;HΓ)︸ ︷︷ ︸
≤Cε−3

≤ Cε,
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since ‖∇ δc̃εΓ‖HΓ
≤ 2 ‖∇ c̃εΓ‖HΓ

and by Taylor expansion of F−1
Γ F−T

Γ . Next

t∫
0

ε|(g̃l(c̃εΓ)l − g̃c̃εΓ, η)HΓ
| dt =

t∫
0

ε|(g̃lδc̃εΓ, δc̃εΓ)HΓ
| dt+

t∫
0

ε|(δg̃c̃εΓ, δc̃εΓ)HΓ
| dt

≤ ε ‖g̃‖
L∞([0, T ] × Ω)

‖δc̃εΓ‖2L2(0, t;HΓ)
+ Cε ‖δg̃‖

L∞([0, T ] × Ω)︸ ︷︷ ︸
≤Cε

(‖c̃εΓ‖2L2(0, T ;HΓ)︸ ︷︷ ︸
≤Cε−1

+ ‖δc̃εΓ‖2L2(0, t;HΓ)
)

≤ Cε+ Cε ‖δc̃εΓ‖2L2(0, t;HΓ)

and

t∫
0

ε|(f̃ lΓ((c̃εΓ)l)− f̃Γ(c̃εΓ), δc̃εΓ)HΓ
| dt ≤

t∫
0

ε|(f̃ lΓ((c̃εΓ)l)− f̃Γ((c̃εΓ)l), δc̃εΓ)HΓ
| dt

+

t∫
0

ε|(f̃Γ((c̃εΓ)l)− f̃Γ(c̃εΓ), δc̃εΓ)HΓ
| dt ≤ εLΓ ‖δc̃εΓ‖L2(0, t;HΓ)

+ εL ‖δc̃εΓ‖2L2(0, t;HΓ)

≤ Cε+ Cε ‖δc̃εΓ‖2L2(0, t;HΓ)

due to the Lipschitz-continuity of f̃Γ in both arguments. Since

ε ‖c̃ε‖2
L2(0, T ;HΓ)

≤ C ‖c̃ε‖2
L2(0, T ;H)

+ Cε2 ‖∇ c̃ε‖2
L2(0, T ;H)

≤ C

as well as

ε ‖δc̃ε‖2
L2(0, T ;HΓ)

≤ C ‖δc̃ε‖2
L2(0, T ;H)

+ Cε2 ‖∇ δc̃ε‖2
L2(0, T ;H)

≤ C ‖δc̃ε‖2
L2(0, T ;H)

+ 2Cε2 ‖∇ c̃ε‖2
L2(0, T ;H)

(3.42)

≤ C ‖δc̃ε‖2
L2(0, T ;H)

+ Cε,

we obtain the estimate

t∫
0

ε|(k̃l(c̃ε)l − k̃c̃ε, δc̃εΓ)HΓ
| dt ≤

t∫
0

ε|((δk̃)c̃ε, δc̃εΓ)HΓ
| dt+

t∫
0

ε|(k̃δc̃ε, δc̃εΓ)HΓ
| dt

≤ C
∥∥∥δk̃∥∥∥

L∞([0, T ] × Ω)︸ ︷︷ ︸
≤Cε

(ε ‖c̃ε‖2
L2(0, T ;HΓ)

+ ε ‖δc̃εΓ‖2L2(0, t;HΓ)
)

+C
∥∥∥k̃∥∥∥

L∞([0, T ] × Ω)

(ε ‖δc̃ε‖2
L2(0, T ;HΓ)

+ ε ‖δc̃εΓ‖2L2(0, t;HΓ)
)

≤ Cε+ Cε ‖δc̃εΓ‖2L2(0, t;HΓ)
+ C ‖δc̃ε‖2

L2(0, T ;H)
.
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For the last term we get

t∫
0

ε|(Hk̃l(c̃εΓ)l −Hk̃c̃εΓ, δc̃εΓ)HΓ
| dt ≤

t∫
0

ε|(H(δk̃)(c̃εΓ)
l, δc̃εΓ)HΓ

| dt

+

t∫
0

ε|(Hk̃δc̃εΓ, δc̃εΓ)HΓ
| dt

≤ CH
∥∥∥δk̃∥∥∥

L∞([0, t] × Ω)︸ ︷︷ ︸
≤Cε

(ε ‖c̃εΓ‖2L2(0, T ;HΓ)︸ ︷︷ ︸
≤C

+ε ‖δc̃εΓ‖2L2(0, t;HΓ)
) + εH

∥∥∥k̃∥∥∥
L∞([0, T ] × Ω)

‖δc̃εΓ‖2L2(0, t;HΓ)

≤ Cε+ Cε ‖δc̃εΓ‖2L2(0, t;HΓ)
.

Putting everything together and neglecting the terms containing a gradient on the left
hand side, we obtain the estimate

ε ‖δc̃εΓ(t)‖2HΓ
≤ Cε ‖δc̃εΓ‖2L2(0, t;HΓ)

+ Cε ‖δc̃0,Γ‖2HΓ
+ Cε+ C ‖δc̃ε‖2

L2(0, T ;H)

which gives due to Gronwall’s inequality

ε ‖δc̃εΓ‖2L2(0, T ;HΓ)
≤ Cε ‖δc̃0,Γ‖2HΓ

+ Cε+ C ‖δc̃ε‖2
L2(0, T ;H)

.

Inserting the estimate

ε ‖δc̃0,Γ‖2HΓ
≤ C ‖δc̃0,Γ‖2H + Cε2 ‖∇ δc̃0,Γ‖2H
≤ C ‖δc̃0,Γ‖2H + 2Cε2 ‖∇ c̃0,Γ‖2H
≤ C ‖δc̃0,Γ‖2H + Cε,

we finally arrive at

ε ‖δc̃εΓ‖2L2(0, T ;HΓ)
≤ C ‖δc̃0,Γ‖2L2(Ω)

+ Cε+ C ‖δc̃ε‖2
L2(0, T ;L2(Ω))

. (3.43)

Note that ‖δc̃0,Γ‖H1(Ω)
≤ 2 ‖c̃0,Γ‖H1(Ω)

≤ C independent of ε. By an analogous argument,
we see that δc̃ε is bounded in {u ∈ L2(0, T ;H1(Ω)); ∂tu ∈ L2(0, T ;H−1(Ω))}. These
spaces are compactly embedded in L2(Ω) and L2(0, T ;L2(Ω)), resp.; thus ‖δc̃0,Γ‖2H and
‖δc̃ε‖2

L2(0, T ;L2(Ω))
satisfy the Kolmogoroff compactness criterion!

Therefore, for all μ > 0 there exists a h > 0 such that for all l with |lε| < h we have

‖δc̃0,Γ‖2L2(Ω)
≤ μ

3C
, ‖δc̃ε‖2

L2(0, T ;L2(Ω))
≤ μ

3C
, and ε ≤ μ

3C
.

Upon insertion into (3.43) we get

ε ‖δc̃εΓ‖2L2(0, T ;HΓ)
≤ η,

which proves in conjunction with (3.40) that T ε
b (c̃

ε
Γ) satisfies the Kolmogoroff compactness

criterion in the variable x. �
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3.4.4 Remark.
If one takes a look at estimate (3.42) and the considerations that follow, one sees that
it is essentially the strong convergence of c̃ε on the boundary which forces the unfolded
boundary concentrations to converge strongly.

3.4.5 Remark.
As stated before, we did not want to rely on estimates in L∞ for the concentrations at this
place. If, however, such estimates are available, one can reduce the regularity assumptions
on the data in the estimates above. In this case, it is sufficient to require only regularity
of the type g̃ ∈ H1(Ω), k̃ ∈ H1(Ω).

3.4.3 The Limit Problem

In order to give the limit problem, we need some auxiliary functions which are defined in
the following lemma:

3.4.6 Lemma.
We have the following convergences:

1. T ε(F−1)(t, x, y) −→ ∇y ψ
−1(t, x, y) =: F−1

y (t, x, y) in C([0, T ]× Ω× YR)
2. T ε

b (F
−1
Γ )(t, x, y) −→ ∇Γ

y ψ
−1(t, x, y) =: F−1

Γ,y(t, x, y) in C([0, T ]× Ω× ∂YS)

3. T ε
b (ν̃

ε)(t, x, y) −→ F−T
y (t,x,y)ν̃(y)

|F−T
y (t,x,y)ν̃(y)| =: νy(t, x, y) in C([0, T ]× Ω× ∂YS)

4. 1
εT ε

b (ṽ
ε)(t, x, y) −→ ∂tψ(t, x, y) =: ṽ(t, x, y) in C([0, T ]× Ω× ∂YS)

5. 1
εT ε

b (Ṽ
ε)(t, x, y) −→ ∂tψ(t, x, y) · νy(t, x, y) =: Ṽ (t, x, y) in C([0, T ]× Ω× ∂YS)

6. 1
εT ε

b (ṽ
ε
M )(t, x, y) −→ ṽ(t, x, y) − (ṽ(t, x, y) · νy(t, x, y))νy(t, x, y) =: ṽM (t, x, y) in

C([0, T ]× Ω× ∂YS)
7. εT ε

b (κ̃
ε)(t, x, y) −→ divy(F

−1
Γ,y(t, x, y)νy(t, x, y)) =: κ̃y(t, x, y) in C([0, T ]×Ω× ∂YS)

Note that the convergence statements also hold in the corresponding L2-spaces.

Proof. We have (cf. the definitions in Section 3.2.2)

T ε(F−1)(t, x, y) = T ε((∇φε)−1)(t, x, y) = T ε((∇y ψ
ε)−1)(t, x, y)

= ∇y ψ
−1(t, ε

[
ε
[
x
ε

]
+ εy

ε

]
,

{
ε
[
x
ε

]
+ εy

ε

}
)

= ∇y ψ
−1(t, ε

[x
ε

]
, y)

−→ ∇y ψ
−1(t, x, y),

due to ε
[
x
ε

]
→ x and the continuity of ψ−1. See also Lemma 3.2.2. The second assertion

follows analogously. For the third property use the fact that T ε
b (fg) = T ε

b (f)T ε
b (g) and
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T ε
b (|f |) = |T ε

b (f)| together with the usual rules for products and quotients of limits. Next

1

ε
T ε
b (ṽ

ε)(t, x, y) =
1

ε
T ε(∂tφ

ε)(t, x, y) = T ε(∂tψ
ε)(t, x, y)

∂tψ(t, ε

[
ε
[
x
ε

]
+ εy

ε

]
,

{
ε
[
x
ε

]
+ εy

ε

}
)

= ∂tψ(t, ε
[x
ε

]
, y)

−→ ∂tψ(t, x, y).

For the fifth and sixth assertion use the same arguments as above. Similarly

εT ε
b (κ̃

ε)(t, x, y) = εT ε
b (div(F

−1ν̃ε))(t, x, y) = divy(T ε
b (F

−1)T ε
b (ν̃

ε))(t, x, y)

−→ divy(F
−1
Γ,y(t, x, y)νy(t, x, y)). �

3.4.7 Theorem (Homogenized System).
The limit functions from Proposition 3.4.1 satisfy the equations

|YR(0)|∂tc0 − div(D∗∇ c0) + δi1c
0

∫
∂YS

Ṽ dσy = |YR(0)|f̃(c0)

−
∫

∂YS

k̃(c0 −Hc0Γ) dσy in [0, T ]× Ω

−D∗∇ c0 · ν = |Y |(c0 − cext) on [0, T ]× ∂Ω
c0(0) = c̃0 in Ω

and

∂tc
0
Γ − divΓy (DΓF

−1
Γ,yF

−T
Γ,y ∇Γ

y c
0
Γ) + c0Γ div

Γ
y (F

−1
Γ,y ṽM )− c0Γκ̃yṼ

= f̃Γ(c
0
Γ) + k̃(c0 −Hc0Γ)− δi2c0Ṽ in [0, T ]× Ω× ∂YS

c0Γ(0, x, y) = c̃0,Γ(x) in Ω× ∂YS ,

where the effective diffusivity matrix D∗ is given by

D∗(t, x) =
∫

YR(0)

DF−1
y (t, x, y)F−T (t, x, y)([δij ]

n
i,j=1 + [

∂wj

∂yi
(t, x, y)]ni,j=1) dy.

D∗ is symmetric and positive definite. Here wj for j = 1, . . . , n is a parameter-dependent
solution of the cell problem

− divy(D(F−1F−T )(t, x, y)∇y wj(t, x, y)) = divy(D(F−1F−T )(t, x, y)ej) in YR(0)

−D(F−1F−T )(t, x, y)∇y wj(t, x, y) · ν(y) = D(F−1F−T )(t, x, y)ej · ν(y) on ∂YS

wj(t, x, ·) is Y -periodic
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The surface equation and the cell problem correspond to a problem with an evolving
structure in the reference cell Y , the evolution given by the motion (t, y) �→ ψ(t, x, y) for
fixed x ∈ Ω. We are going to prove this theorem in several steps:

3.4.8 Proposition.
In the bulk part, the limit functions satisfy the following weak two-scale system: For all test
functions φ0 ∈ C∞([0, T ]; C∞(Ω̄)) with φ0(0) = φ0(T ) = 0 and φ1 ∈ C∞([0, T ]× Ω̄× Y ),
periodic in y with φ1(0) = φ1(T ) = 0 it holds c0(0) = c̃0 and

|YR(0)|
T∫
0

∫
Ω

∂tc
0φ1 dx dt+

T∫
0

∫
Ω

∫
YR(0)

DF−1
y F−T

y (∇x c
0 +∇y c

1)(∇x φ0 +∇y φ1) dy dx dt

+

T∫
0

∫
Ω

∫
∂YS

k̃(c0 −Hc0Γ)φ0 + δi1c
0Ṽ φ0 dσy dx dt+ |Y |

T∫
0

∫
∂Ω

(c0 − cext)φ0 dσx dt

= |YR(0)|
T∫
0

∫
Ω

f̃(c0)φ0 dx dt (3.44)

Proof. We are going to use φ0(t, x) + εφ1(t, x,
{
x
ε

}
) =: φ0(t, x) + εφε1(t, x) =: φε(t, x)

as a test function in the weak formulation (3.13). We first consider the term∫ T
0

∫
Ωε(0)

d
dt c̃

ε
Γ(t)φ

ε dx dt. Since d
dt(c̃

ε(t), φε)H = 〈∂tc̃ε, φε〉V , we get upon unfolding

T∫
0

∫
Ωε(0)

∂t(t, x)c̃
ε
Γ(φ0(t, x) + εφ1(t, x

{x
ε

}
)) dx dt

=

T∫
0

∫
Ω

∂tc̃
ε
Γ(t, x)χYR(0)(

{x
ε

}
)(φ0(t, x) + εφ1(t, x

{x
ε

}
)) dx dt

=
1

|Y |

T∫
0

∫
Ω

∫
Y

T ε(∂tc̃
ε
Γ)(t, x, x)χYR(0)(y)(T ε(φ0) + εT ε(φε1))(t, x, y) dy dx dt

=
1

|Y |

T∫
0

∫
Ω

∫
YR(0)

T ε(∂tc̃
ε
Γ)(t, x, y)(T ε(φ0) + εT ε(φε1))(t, x, y) dy dx dt

−→ 1

|Y |

T∫
0

∫
Ω

∫
YR(0)

∂tc
0(t, x)φ0(t, x) dy dx dt
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due to convergence (3.34) and T ε(φ0)→ φ0 as well as εT ε(φε1)→ 0. Next

T∫
0

∫
Ωε(0)

D(F−1F−T ∇ c̃εΓ · ∇(φ0 + εφε1) dx dt

=
1

|Y |

T∫
0

∫
Ω

∫
YR(0)

DT ε(F−1)T ε(F−T )T ε(∇ c̃εΓ)(T ε(∇x φ0) +∇y T ε(φε1)) dy dx dt

−→ 1

|Y |

T∫
0

DF−1
y F−T

y (∇x c
0 +∇y c

1) · (∇x φ0 +∇y φ1) dy dx dt,

where we used (3.33), Lemma 3.4.6 as well as T ε(∇φ0) → ∇φ0 and T ε(ε∇φε1) =
∇y T ε(φε1)→ ∇y φ1. Moreover

T∫
0

∫
Ωε(0)

∇ c̃εΓ · F−1ṽε(φ0 + εφε1) dx dt −→ 0

since ‖ṽε‖
L∞ ≤ Cε and the other terms are bounded. For the boundary terms we obtain

ε

T∫
0

∫
Γε(0)

δi1
ε
c̃εṼ ε(φ0 + εφε1) + k̃c̃ε(φ0 + εφε1)−Hk̃c̃εΓ(φ0 + εφε1) dσx dt

=
1

|Y |

T∫
0

∫
Ω

∫
∂YS

δi1
1

ε
T ε
b (Ṽ

ε)T ε
b (c̃

ε)(T ε
b (φ0) + εT ε

b (φ
ε
1))

+T ε
b (k̃)T ε

b (c̃
ε)(T ε

b (φ0) + εT ε
b (φ

ε
1))−HT ε

b (k̃)T ε
b (c̃

ε
Γ)(T ε

b (φ0)

+εT ε
b (φ

ε
1)) dσy dx dt

−→ 1

|Y |

T∫
0

∫
Ω

∫
∂YS

δi1Ṽ c
0φ0 + k̃(c0 −Hc0Γ) dσy dx dt

due to (3.35), (3.36) as well as Lemma 3.4.6 and T ε
b (φ0)→ φ0, εT ε

b (φ
ε
1)→ 0.

Since the first embedding in the chain {u ∈ L2(0, T ;H1(Ω)); ∂tu ∈ L2(0, T ;H−1(Ω))} ↪→
L2(0, T ;H

3
4 (Ω)) ↪→ L2(0, T ;L2(∂Ω)) is compact, (3.29) implies that c̃ε −→ c0 strongly

in L2(0, T ;L2(∂Ω)), thus

T∫
0

∫
∂Ω

(c̃εΓ − cext)(φ0 + εφε1) dx dt −→
T∫
0

∫
∂Ω

(c̃εΓ − cext)φ0 dx dt.

Finally, due to the strong convergence (3.32), we have almost everywhere convergence
along a subsequence of T ε(c̃ε) towards c0. Since f̃ is continuous, we obtain along that
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subsequence

T ε(f̃(c̃εΓ))(t, x, y) = f̃(ε
[x
ε

]
+ εy, T ε(c̃εΓ)(t, x, y)) −→ f̃(x, c0(t, x, y)) a.e.

Since c̃ε converges strongly in L2(0, T ;L2(Ω)), there exists a subsequence (still denoted
by ε) and a majorizing function v ∈ L2(0, T ;L2(Ω)) such that |c̃ε(t, x)| ≤ v(t, x) for all
ε and almost all (t, x) ∈ [0, T ] × Ω. Thus, due to Lemma 3.3.4, we obtain the bound
|T ε(f̃(c̃ε))(φ0 + εφε1)| ≤ C(1 + |c̃ε|) ≤ C(1 + v). Since the right hand side is square
integrable, with integral bounded independent of ε, Lebesgues dominated convergence
theorem yields that

T∫
0

∫
Ωε(0)

f̃(c̃ε)((φ0 + εφε1)) dx dt =
1

|Y |

T∫
0

∫
Ω

∫
YR(0)

T ε(f̃(c̃ε))(T ε(φ0) + εT ε(φε1)) dy dx dt

−→ 1

|Y |

T∫
0

∫
Ω

∫
YR(0)

f̃(c0)φ0 dy dx dt =
|YR(0)|
|Y |

T∫
0

∫
Ω

f̃(c0)φ0 dx dt.

Putting everything together, we obtain the integral identity of the proposition.

In order to recover the initial condition, choose a φ0 ∈ C∞(0, T ; C∞(Ω̄)) with φ0(T ) = 0.
We have

∫ T
0

∫
Ω ∂tc̃

εφ0 dx dt = −
∫ T
0

∫
Ω c̃

ε∂tφ0 dx dt−
∫
Ω c̃0φ0(0) dx. Passing to the limit

on both sides gives

T∫
0

∫
Ω

∂tc
0φ0 dx dt = −

T∫
0

∫
Ω

c0∂tφ0 dx dt−
∫
Ω

c̃0φ0(0) dx,

thus c0(0) = c̃0. �

3.4.9 Proposition.
Concerning the surface part of the equations, the limit functions satisfy the following weak
two-scale system: For all test functions φΓ ∈ C∞([0, T ] × Ω̄ × ∂YS), periodic in y with
φΓ(0) = φΓ(T ) = 0 it holds c0Γ(0, x, y) = c̃0,Γ(x) and

T∫
0

∫
Ω

∫
∂YS

∂tc
0
ΓφΓ dσy dx dt+

T∫
0

∫
Ω

∫
∂YS

DΓF
−1
Γ,yF

−T
Γ,y ∇Γ

y c
0
Γ · ∇Γ

y φΓ dσy dx dt

+

T∫
0

∫
Ω

∫
∂YS

c0Γ div
Γ
y (F

−1
Γ,y ṽM )φΓ dσy dx dt−

T∫
0

∫
Ω

∫
∂YS

c0Γκ̃yṼ φΓ dσy dx dt

=

T∫
0

∫
Ω

∫
∂YS

f̃Γ(c
0
Γ)φΓ dσy dx dt+

T∫
0

∫
Ω

∫
∂YS

k̃(c0 −Hc0Γ)φΓ dσy dx dt

−
T∫
0

∫
Ω

∫
∂YS

δi2c
0Ṽ φΓ dσy dx dt.
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Proof. We use εφΓ(t, x,
{
x
ε

}
) =: εφεΓ(t, x) as a test function in the weak formulation

(3.14). We get for the different terms via boundary unfolding

ε

T∫
0

∫
Γε(0)

∂tc̃
ε
Γφ

ε
Γ dσx dt =

1

|Y |

T∫
0

∫
Ω

∫
∂YS

T ε
b (∂tc̃

ε
Γ)T ε

b (φ
ε
Γ) dσy dx dt

−→
T∫
0

∫
Ω

∫
∂YS

∂tc
0
ΓφΓ dσy dx dt

due to (3.38) and T ε
b (φ

ε
Γ)→ φΓ. Moreover (note (3.37) and Lemma 3.4.6)

ε

T∫
0

∫
Γε(0)

ε2DΓF
−1
Γ F−T

Γ ∇Γ c̃εΓ · ∇Γ φεΓ dσx dt

=
1

|Y |

T∫
0

∫
Ω

∫
∂YS

DΓT ε
b (F

−1
Γ )T ε

b (F
−T
Γ )εT ε

b (∇ c̃εΓ) · εT ε
b (∇φεΓ) dσy dx dt

=
1

|Y |

T∫
0

∫
Ω

∫
∂YS

DΓT ε
b (F

−1
Γ )T ε

b (F
−T
Γ )εT ε

b (∇ c̃εΓ) · ∇Γ
y T ε

b (φ
ε
Γ) dσy dx dt

−→ 1

|Y |

T∫
0

∫
Ω

∫
∂YS

DΓF
−1
Γ,yF

−T
Γ,y ∇Γ

y c
0
Γ · ∇Γ

y φΓ dσy dx dt.

With (3.36) and the unfolding result for the tangential part of the velocity we obtain

ε

T∫
0

∫
Γε(0)

c̃εΓ div
Γ(F−1

Γ ṽεM )φεΓ dσx dt

=
1

|Y |

T∫
0

∫
Ω

∫
∂YS

T ε
b (c̃

ε
Γ)εT ε

b (div
Γ(F−1

Γ

1

ε
ṽεM ))T ε

b (φ
ε
Γ) dσy dx dt

=
1

|Y |

T∫
0

∫
Ω

∫
∂YS

T ε
b (c̃

ε
Γ) div

Γ
y (T ε

b (F
−1
Γ )

1

ε
T ε
b (ṽ

ε
M ))T ε

b (φ
ε
Γ) dσy dx dt

−→ 1

|Y |

T∫
0

∫
Ω

∫
∂YS

c0Γ div
Γ
y (F

−1
Γ,y ṽM )φΓ dσy dx dt.
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Analogously

ε

T∫
0

∫
Γε(0)

c̃εΓκ̃
εṼ εφεΓ dσx dt =

1

|Y |

T∫
0

∫
Ω

∫
∂YS

T ε
b (c̃

ε
Γ)εT ε

b (κ̃
ε)
1

ε
T ε
b (Ṽ

ε)T ε
b (φ

ε
Γ) dσy dx dt

−→ 1

|Y |

T∫
0

∫
Ω

∫
∂YS

c0Γκ̃yṼ φΓ dσy dx dt.

The limit for the remaining terms can be obtained by the same way as for the corresponding
terms in the proof of the last proposition. Putting everything together, we obtain the
result for the integral identity.

In order to obtain the initial condition, choose a φΓ ∈ C∞([0, T ]× Ω̄× ∂YS), periodic in
y with φΓ(T ) = 0 and set φεΓ = φΓ(t, x,

{
x
ε

}
) as above. We have

ε

T∫
0

∫
Γε(0)

∂tc̃
ε
Γφ

ε
Γ dσx dt = −ε

T∫
0

∫
Γε(0)

c̃εΓ∂tφ
ε
Γ dσx dt− ε

∫
Γε(0)

c̃0,Γφ
ε
Γ(0) dσx.

Upon unfolding we obtain

1

|Y |

T∫
0

∫
Ω

∫
∂YS

T ε
b (∂tc̃

ε
Γ)T ε

b (φ
ε
Γ) dσy dx dt =

1

|Y |

T∫
0

∫
Ω

∫
∂YS

T ε
b (c̃

ε
Γ)T ε

b (∂tφ
ε
Γ) dσy dx dt

−
∫
Ω

∫
∂YS

T ε
b c̃0,ΓT ε

b (φ
ε
Γ(0)) dσy dx.

Since T ε
b c̃0,Γ → c̃0,Γ in L2(Ω× ∂YS) we get in the limit

1

|Y |

T∫
0

∫
Ω

∫
∂YS

∂tc
0
ΓφΓ dσy dx dt =

1

|Y |

T∫
0

∫
Ω

∫
∂YS

c0Γ∂tφΓ dσy dx dt−
∫
Ω

∫
∂YS

c̃0,ΓφΓ(0) dσy dx,

which shows that also the asserted initial condition is valid. �

We now come back to equation (3.44) and show how this formulation can be split into
a bulk equation and a cell problem: Define the functions wj(t, x, ·) for j = 1, . . . , n and
given (t, x) ∈ [0, T ]× Ω via

− divy(DF
−1(t, x, y)F−T (t, x, y)∇y wj(t, x, y))

= divy(DF
−1(t, x, y)F−T (t, x, y)ej) in YR(0)

−DF−1(t, x, y)F−T (t, x, y)∇y wj(t, x, y) · ν = DF−1(t, x, y)F−T (t, x, y)ej · ν on ∂YS
wj(t, x, ·) is Y -periodic in y.
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3.4.10 Lemma.
Fix (t, x) ∈ [0, T ] × Ω and write wj(·) = wj(t, x, ·). Then there exists a solution to the
above problem in H1

#(YR(0)) which is unique up to constants.

Proof. Multiplying the first equation with a test function φ ∈ H1
#(YR(0)) and integrating

both sides by parts yields∫
YR(0)

DF−1
y (t, x)F−T

y (t, x)∇y wj · ∇y φ dy = −
∫

YR(0)

DF−1
y (t, x)F−T

y (t, x)ej · ∇y φ dy

(3.45)
for all φ ∈ H1

#(YR(0))/R. This is a well defined weak formulation in H1
#(YR(0))/R, thus

the Lax-Milgram lemma gives the existence of a wj in that function space. �

3.4.11 Remark.
Results concerning the smoothness of wj in direction of t and x can be obtained by using
the implicit function theorem for Banach-spaces, see [Dob09]. In short, the differentiability
properties of the matrix F carry over to the solution wj .

Proof of Theorem 3.4.7. Choosing φ0 = 0 in (3.44), one obtains the equation

T∫
0

∫
Ω

∫
YR(0)

DF−1
y F−T

y (∇x c
0 +∇y c

1)(∇y φ1) dy dx dt = 0,

which upon an integration by parts gives the strong formulation

− divy(DF
−1
y F−T

y (∇x c
0 +∇y c

1)) = 0 in YR(0)

−DF−1
y F−T y(∇x c

0 +∇y c
1) · ν = 0 on ∂YS

c1 is y-periodic in YR(0).

Here we are looking for a function c1 ∈ H1(YR(0))/R. Making the ansatz

c1 =

n∑
j=1

∂c0

∂xj
wj ,

a short calculation using the definition of wj shows that c1 solves the problem above. Next,
we choose φ1 = 0 in (3.44) and consider the term I :=

∫ T
0

∫
Ω

∫
YR(0)DF

−1
y F−T

y (∇x c
0 +

∇y c
1)∇x φ0 dy dx dt. Carrying out an integration by parts, we get

I = −
T∫
0

∫
Ω

∫
YR(0)

divx(DF
−1
y F−T

y (∇x c
0 +∇y c

1))φ0 dy dx dt

+

T∫
0

∫
∂Ω

∫
YR(0)

DF−1
y F−T

y (∇x c
0 +∇y c

1)φ0 · ν dy dσx dt
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= −
T∫
0

∫
Ω

divx

( ∫
YR(0)

F−1
y F−T

y (∇x c
0 +∇y c

1) dy
)
φ0 dx dt

+

T∫
0

∫
∂Ω

( ∫
YR(0)

DF−1
y F−T

y (∇x c
0 +∇y c

1) · ν dy
)
φ0 dσx dt.

By the form of c1, we now obtain that∫
YR(0)

DF−1
y F−T

y (∇x c
0 +∇y c

1) dy =

∫
YR(0)

DF−1
y F−T

y (∇x c
0 +

n∑
j=1

∂c0

∂xj
∇y wj) dy

=

∫
YR(0)

DF−1
y F−T ([δij ]

n
i,j=1 + [

∂wj

∂yi
]ni,j=1)∇x c

0 dy

= D∗∇x c
0,

where D∗ is defined in the assertion of the theorem. Inserting this term in the above
integrals and arguing with the fundamental lemma of variational calculus, we obtain the
strong form of the bulk equations from the result of Proposition 3.4.8. Similarly, since

T∫
0

∫
Ω

∫
∂YS

DΓF
−1
Γ,yF

−T
Γ,y ∇Γ

y c
0
Γ · ∇Γ

y φΓ dσy dx dt

= −
T∫
0

∫
Ω

∫
∂YS

divΓy (DΓF
−1
Γ,yF

−T
Γ,y ∇Γ

y c
0
Γ)φΓ dσy dx dt

we can apply the same argument to the result of Proposition 3.4.9 to deduce the strong
form of the surface equations.

It remains to show that D∗ is positive definite: To begin with, fix i, j ∈ {1, . . . , n}. All
gradients that appear in the sequel are always considered with respect to the variable y.
Now we choose φ = wi in (3.45) to obtain∫

YR(0)

DF−1
y (t, x)F−T

y (t, x)∇wj · ∇wi dy = −
∫

YR(0)

DF−1
y (t, x)F−T

y (t, x)ej · ∇wi dy

=

∫
YR(0)

DF−1
y (t, x)F−T

y (t, x)∇ yj · ∇wi dy,

where – by abuse of notation – we used yj to denote the function yj : Rn −→ R,(
y1
...
yn

)
�−→ yj . This gives

∫
YR(0)

DF−1
y (t, x)F−T

y (t, x)(∇ yj −∇wj) · ∇wi dy = 0. (3.46)
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Since the j-th column of D∗ is given by∫
YR(0)

DF−1
y (t, x)F−T

y (t, x)(ej −∇wj) dy =

∫
YR(0)

DF−1
y (t, x)F−T

y (t, x)(∇ yj −∇wj) dy,

we get

(D∗)ij =
∫

YR(0)

DF−1
y (t, x)F−T

y (t, x)(∇ yj −∇wj) · ei dy

=

∫
YR(0)

DF−T
y (t, x)(∇ yj −∇wj) · F−T

y (t, x)∇ yi dy

=

∫
YR(0)

DF−T
y (t, x)(∇ yj −∇wj) · F−T

y (t, x)(∇ yi −∇wi) dy

by (3.46). This last equation clearly shows that D∗ is symmetric. Next, let ξ ∈ Rn be a
vector and define ζ =

∑n
j=1(yj − wj)ξj , then by the last identity

ξTD∗ξ =
n∑

i,j=1

∫
YR(0)

DF−T
y (t, x)(∇ yj −∇wj)ξj · F−T

y (t, x)(∇ yi −∇wi)ξi dy

=

∫
YR(0)

DF−T
y (t, x)

n∑
j=1

[(∇ yj −∇wj)ξj ] · F−T
y (t, x)

n∑
i=1

[(∇ yi −∇wi)ξi] dy

=

∫
YR(0)

DF−T
y (t, x)∇ ζ · F−T

y (t, x)∇ ζ dy ≥ d0

∫
YR(0)

| ∇ ζ|2 dy ≥ 0.

This proves that D∗ is positive. Assume that there exists a ξ ∈ Rn such that ξTD∗ξ = 0.
In that case, by the last result we obtain ∇ ζ = 0, i.e. ζ = const. or

n∑
i=1

ξiyi =
n∑

i=1

ξiwi(t, x, y) + const.

for (t, x) ∈ [0, T ]×Ω and y ∈ YR(0). Whereas the right hand side is periodic in y, the left
hand side is periodic in y only for ξ = 0. This shows the definiteness of D∗ and finishes
the proof of Theorem 3.4.7. �

3.4.12 Proposition.
The solution (c0, c0Γ) of the limit problem from Theorem 3.4.7 is unique.

Proof. This result can be proven as in Proposition 3.3.20 by choosing adequate test
functions. �

Due to this last proposition, we do not only get convergence along a subsequence, but
convergence of the whole sequence (c̃ε, c̃εΓ).
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3.5 Appendix: L∞-estimates for the solutions

In this section we present one possible approach which can be used to estimate the
solution (c̃ε, c̃εΓ) of the evolving hypersurface-problem in the space L∞([0, T ]× Ω). One
can use the standard regularity theory for parabolic problems (see e.g. Ladyzhenskaya,
Solonnikov, and Uralt’ceva [LSU88]) to obtain such estimates for fixed ε; however, to use
them in the homogenization process, one has to have an explicit control on the estimates
in terms of ε.

In the sequel, we prove an abstract comparison principle which is independent of the
scale parameter. One then has to construct special upper and lower solutions to obtain
estimates on the solution. For further information about this way of obtaining estimates,
see e.g. Knabner [Kna91], Friedmann [FK92], Meier [Mei08] for works on similar situations
as ours or Pao [Pao92] for the general theory.

The advantage of this approach is that it allows the reader to exploit additional information
when applying our results to real life problems. We illustrate this with the example of a
hypersurface which is only growing (or shrinking), i.e. the normal velocity is negative (or
positive) everywhere and with additional assumptions on the reaction rates f̃ and f̃Γ.

3.5.1 Abstract Comparison Principle

We start by defining weak upper and lower solutions:

3.5.1 Definition (Weak Upper and Lower Solutions).
We say that

1. (c̄ε, c̄εΓ) ∈ W ×WΓ is a weak upper solution of Problem (3.13) and (3.14) if for all
(φ, φΓ) ∈ V × VΓ with φ, φΓ ≥ 0 it holds

d

dt
(c̄ε(t), φ)H + a1(c̄ε(t), φ; t) + a2(c̄ε(t), φ; t) + a3(c̄ε(t), φ; t)

≥ b(φ; t, c̄ε, c̄εΓ, cext) a.e. [0, T ] (3.47a)
c̄ε(0) ≥ c̃0 (3.47b)

and

d

dt
(c̄εΓ(t), φΓ)HΓ

+ a1Γ(c̄
ε
Γ(t), φΓ; t) + a2Γ(c̄

ε
Γ(t), φ; t)

≥ bΓ(φ; t, c̄
ε, c̄εΓ) a.e. [0, T ] (3.48a)

c̄εΓ(0) ≥ c̃0,Γ. (3.48b)

2. (cε, cεΓ) ∈ W ×WΓ is a weak lower solution of problem (3.13) and (3.14) if for all
(φ, φΓ) ∈ V × VΓ with φ, φΓ ≥ 0 it holds

d

dt
(cε(t), φ)H + a1(cε(t), φ; t) + a2(cε(t), φ; t) + a3(cε(t), φ; t)

≤ b(φ; t, cε, cεΓ, cext) a.e. [0, T ] (3.49a)
cε(0) ≤ c̃0 (3.49b)
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and

d

dt
(cεΓ(t), φΓ)HΓ

+ a1Γ(c
ε
Γ(t), φΓ; t) + a2Γ(c

ε
Γ(t), φ; t)

≤ bΓ(φ; t, c
ε, cεΓ) a.e. [0, T ] (3.50a)

cεΓ(0) ≤ c̃0,Γ. (3.50b)

Here b is given by b(φ; t, c̃ε, c̃εΓ, cext) = (f̃(c̃ε(t)), φ)H + ε(k̃(t)Hc̃εΓ(t), φ|Γε(0))HΓ
+

(cext(t), φ|∂Ω)L2(∂Ω). The form of the other terms can be found in Definition 3.3.7.

3.5.2 Theorem (Comparison Principle).
Let (c̄ε, c̄εΓ) be a weak upper solution with initial conditions c̄0 and c̄0,Γ and boundary
condition c̄ext. Let (cε, cεΓ) be a weak upper solution with initial conditions c0 and c0,Γ and
boundary condition cext. In the case i = 2, assume that sign(Ṽ ε) ≤ 0.

If c0 ≤ c̄0 a.e., c0,Γ ≤ c̄0,Γ a.e. and cext ≤ c̄ext a.e., then the inequalities

cε ≤ c̄ε

cεΓ ≤ c̄εΓ

hold almost everywhere in [0, T ]× Ωε(0) and [0, T ]× Γε(0), resp.

The restriction on sign(Ṽ ε) means that in the model case i = 2 the solid part is only
allowed to grow.

Proof. Define c := cε− c̄ε as well as cΓ := cεΓ− c̄εΓ. Subtract equation (3.47a) from (3.49a)
and subtract equation (3.48a) from (3.50a). This gives

d

dt
(c(t), φ)H + a1(c(t), φ; t) + a2(c(t), φ; t) + a3(c(t), φ; t)

≤ b(φ; t, cε, cεΓ, cext)− b(φ; t, c̄ε, c̄εΓ, c̄ext) a.e. [0, T ]

c(0) ≤ 0

as well as

d

dt
(cΓ(t), φΓ)HΓ

+ a1Γ(cΓ(t), φΓ; t) + a2Γ(cΓ(t), φ; t)

≤ bΓ(φ; t, c
ε, cεΓ)− bΓ(φ; t, c̄ε, c̄εΓ) a.e. [0, T ]

cΓ(0) ≤ 0.

We choose φ = c+ as a test function in the first equation and φΓ = εc+Γ in the second and
integrate from 0 to t. Since the sign and the position of each individual term is important
in the following estimate, we use the symbolic notation A (≤) B to underline that the
term A appears on the left hand side of the inequality, whereas B appears on the right.
We start by estimating the terms in the bulk equation seperately:

t∫
0

d

dt
(c, c+)H dt =

t∫
0

d

dt
(c+, c+)H dt =

1

2

∥∥c+(t)∥∥2
H
− 1

2

∥∥c+(0)∥∥2
H
;
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since c+(0) = 0, this gives ‖c+(t)‖
H
(≤). Next

d0
∥∥∇ c+∥∥2

L2(0, t;H)
≤

t∫
0

(DF−T ∇ c+, F−T ∇ c+)H dt =

t∫
0

(DF−T ∇ c, F−T ∇ c+)H dt

and thus d0 ‖∇ c+‖2L2(0, t;H)
(≤). We use

(≤)
t∫

0

|(∇ c · F−1ṽε, c+)H | dt =
t∫

0

|(∇ c+ · F−1ṽε, c+)H | dt

≤ C(δ)
∥∥c+∥∥2

L2(0, t;H)
+ Cεδ

∥∥∇ c+∥∥2
L2(0, t;H)

,

see also the proof of Proposition 3.3.23. This yields the estimate −Cεδ ‖∇ c+‖2
L2(0, t;H)

(≤)
C(δ) ‖c+‖2

L2(0, t;H)
. Moreover

(≤) −
t∫

0

ε(k̃c, c+)HΓ
dt = −

t∫
0

ε(k̃c+, c+)HΓ
dt ≤ 0;

(≤)
t∫

0

|(δi1Ṽ εc, c+)HΓ
| dt =

t∫
0

|(δi1Ṽ εc+, c+)HΓ
| dt ≤ Cε

∥∥c+∥∥2
L2(0, t;HΓ)

≤ C
∥∥c+∥∥2

L2(0, t;H)
+ Cε2

∥∥∇ c+∥∥
L2(0, t;H)

,

which gives −Cε2 ‖∇ c+‖
L2(0, t;H)

(≤) C ‖c+‖2
L2(0, t;H)

. Next

(≤)
t∫

0

|(c, c+)L2(∂Ω)| dt =
t∫

0

|(c+, c+)L2(∂Ω)| dt ≤ C(δ)
∥∥c+∥∥2

L2(0, t;H)
+ Cδ

∥∥∇ c+∥∥2
L2(0, t;H)

and thus −Cδ ‖∇ c+‖2
L2(0, t;H)

(≤) C(δ) ‖c+‖2
L2(0, t;H)

. For the terms stemming from the
right hand side of the bulk equations we obtain

(≤)
t∫

0

(f̃(cε)− f̃(c̄ε), c+)H dt ≤ L

t∫
0

(cε − c̄ε, c+)H dt = L

t∫
0

(c, c+)H dt

= L

t∫
0

(c+, c+)H dt = L
∥∥c+∥∥2

L2(0, t;H)

and

(≤)
t∫

0

(cext − c̄ext︸ ︷︷ ︸
≤0

, c+)H dt ≤ 0
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as well as

(≤)
t∫

0

ε(k̃HcΓ, c
+)HΓ

dt =

t∫
0

ε(k̃Hc+Γ , c
+)HΓ

−ε(k̃Hc−Γ , c+)HΓ︸ ︷︷ ︸
≤0

dt

≤
t∫

0

ε(k̃Hc+Γ , c
+)HΓ

dt ≤ Cε
∥∥c+Γ∥∥2L2(0, t;HΓ)

+ Cε
∥∥c+∥∥2

L2(0, t;HΓ)

≤ Cε
∥∥c+Γ∥∥2L2(0, t;HΓ)

+ C
∥∥c+∥∥2

L2(0, t;H)
+ Cε2

∥∥∇ c+∥∥2
L2(0, t;H)

.

This gives −Cε2 ‖∇ c+‖2
L2(0, t;H)

(≤) Cε
∥∥c+Γ∥∥2L2(0, t;HΓ)

+ C ‖c+‖2
L2(0, t;H)

.

Now we come to the surface equation:

t∫
0

d

dt
ε(cΓ, c

+
Γ )H dt =

t∫
0

d

dt
ε(c+Γ , c

+
Γ )H dt =

1

2
ε
∥∥c+Γ (t)∥∥2HΓ

− 1

2
ε
∥∥c+Γ (0)∥∥2HΓ

Due to c+Γ (0) = 0 we obtain ε
∥∥c+Γ (t)∥∥2HΓ

(≤) 0. Next

d0ε
3
∥∥∇Γ c+Γ

∥∥2
L2(0, t;HΓ)

≤
t∫

0

ε3(DF−T
Γ ∇Γ c+Γ , F

−T
Γ ∇Γ c+Γ )HΓ

dt

=

t∫
0

ε3(DF−T
Γ ∇Γ c, F−T

Γ ∇Γ c+Γ )HΓ
dt

and thus d0ε3
∥∥∇Γ c+Γ

∥∥2
L2(0, t;HΓ)

(≤) 0. Now

(≤)
t∫

0

ε|([divΓ(F−1
Γ ṽεM )− κ̃Ṽ ε + k̃H]cΓ, c

+
Γ )HΓ

| dt

=

t∫
0

ε|(divΓ(F−1
Γ ṽεM − κ̃Ṽ ε + k̃H)c+Γ , c

+
Γ )HΓ

| dt

≤ Cε
∥∥c+Γ∥∥2L2(0, t;HΓ)

.

Finally

(≤)
t∫

0

ε(f̃Γ(c
ε
Γ)− f̃Γ(c̄εΓ), c+Γ )HΓ

dt ≤ L

t∫
0

ε(cεΓ − c̄εΓ, c+Γ )HΓ
dt

= L

t∫
0

ε(cΓ, c
+
Γ )HΓ

dt = L

t∫
0

ε(c+Γ , c
+
Γ )HΓ

dt = L
∥∥c+Γ∥∥2L2(0, t;HΓ)
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as well as

(≤)
t∫

0

ε(k̃c, c+Γ )HΓ
− δi2(Ṽ εc, c+Γ )HΓ

dt

=

t∫
0

ε(k̃c+, c+Γ )HΓ
−ε(k̃c−, c+Γ )HΓ︸ ︷︷ ︸

≤0

−δi2(Ṽ εc+, c+Γ )HΓ
+δi2(Ṽ

εc−, c+Γ )HΓ︸ ︷︷ ︸
≤0

dt

≤ Cε
∥∥c+Γ∥∥L2(0, t;HΓ)

∥∥c+∥∥
L2(0, t;HΓ)

≤ Cε
∥∥c+Γ∥∥2L2(0, t;HΓ)

+ C
∥∥c+∥∥2

L2(0, t;H)
+ Cε2

∥∥∇ c+∥∥2
L2(0, t;H)

by the assumption on sign(Ṽ ε). Adding up the estimates for the bulk and for the surface
equation, we obtain∥∥c+(t)∥∥2

H
+ ε

∥∥c+Γ (t)∥∥2HΓ
+ (d0 − Cεδ − Cε2)

∥∥∇ c+∥∥2
L2(0, t;H)

+ d0ε
3
∥∥∇Γ c+Γ

∥∥
L2(0, t;HΓ)

≤ C
∥∥c+∥∥

L2(0, t;H)
+ Cε

∥∥c+Γ∥∥L2(0, t;HΓ)
.

Choosing δ small enough, we can neglect the terms on the left hand side containing
gradients. Then Gronwall’s inequality shows that∥∥c+(t)∥∥2

H
+ ε

∥∥c+Γ (t)∥∥2HΓ
≤ 0,

which means that c+ = 0 as well as c+Γ = 0. This implies c = cε− c̄ε ≤ 0, cΓ = cεΓ− c̄εΓ ≤ 0,
which is the asserted inequality. �

3.5.2 Positivity of the Solutions

With the help of the comparison principle of Theorem 3.5.2 we can show that – under
mild assumptions – the solutions of the evolving surface problem are positive (which is
reasonable for concentrations):

3.5.3 Proposition.
Assume that f̃(x, 0) ≥ 0, f̃Γ(x, 0) ≥ 0 for all x ∈ Ω as well as c̃0 ≥ 0, c̃0,Γ ≥ 0 and
cext ≥ 0. In the model case i = 2, assume further that sign(Ṽ ε) ≤ 0. Then the solutions
of problems (3.13) and (3.14) are non-negative, i.e.

c̃εΓ ≥ 0 as well as c̃εΓ ≥ 0.

Proof. By the assumption on the reaction rates, the zero function (0, 0) is a weak lower
solution for initial values and exterior boundary values zero. The comparison principle
now yields the result. �

3.5.3 Boundedness of the Solution

If we are in the model case i = 1 and assume that the solid domain is shrinking at all
points, we can show that the concentrations are bounded by a constant:
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3.5.4 Proposition.
Assume that i = 1 and sign(Ṽ ε) ≥ 0. Let there exists a constant M > 0 such that
cext, c̃0, c̃0,Γ ≤M . Moreover, assume that the reaction rates satisfy the estimate f̃(x, u) ≤
Au, f̃Γ(x, u) ≤ Au for a constant A > 0 and all u ≥ M , x ∈ Ω. Then there exists a
constant M∞ > 0 independent of ε such that

c̃ε ≤M∞ as well as c̃εΓ ≤M∞.

Proof. We make the following ansatz for an upper weak solution: Set

c̄(t, x) =Meλt and c̄Γ(t, x) =
1

H
c̄(t, x).

The parameter λ will be determined later. We will insert these functions into the equation
(3.47a) and consider the scalar products in the bulk and on the surface separately. Since
d
dt(c̄, φ)H = λ(c̄, φ)H , ∇ c̄ = 0 and −(f̃(c̄), φ)H ≥ −(Ac̄, φ)H for positive φ ∈ V , we obtain
from the bulk scalar products the condition

λ(c̄, φ)H − (f̃(c̄), φ)H ≥ λ(c̄, φ)H − (Ac̄, φ)H
!
≥ 0 ∀φ ≥ 0

which leads to the condition
λ−A ≥ 0. (3.51)

Since c̄ − cext ≥ 0 we can neglect the contribution from the term (c̄ − cext, φ)L2(∂Ω). It
remains

ε(k̃(c̄−Hc̄Γ))HΓ
+ (δi1Ṽ

εc̄, φ)HΓ
= (δi1Ṽ

εc̄, φ)HΓ

!
≥ 0 ∀φ ≥ 0.

Due to the assumption on sign(Ṽ ε) in case i = 1, this condition is always satisfied.

We now consider equation (3.48a). We use d
dt(c̄Γ, φΓ)HΓ

= λ(c̄Γ, φΓ)HΓ
, ∇Γ c̄Γ = 0,

c̄−Hc̄Γ = 0 and −(f̃Γ(c̄), φΓ)HΓ
≥ −(Ac̄Γ, φΓ)HΓ

to obtain

λ(c̄Γ, φΓ)HΓ
+ ([divΓ(F−1

Γ ṽεM )− κ̃Ṽ ε]c̄Γ, φΓ))HΓ
− (Ac̄Γ, φΓ)HΓ

!
≥ 0 ∀φΓ ≥ 0

which leads to the condition

λ+ divΓ(F−1
Γ ṽεM )− κ̃Ṽ ε −A ≥ 0. (3.52)

Choosing λ large enough, one can always satisfy conditions (3.51) and (3.52) independently
of the scale parameter. Then c̄ ≤MeλT and the comparison principle implies the bound
on the solutions. �



4 Periodic Unfolding on Compact
Riemannian Manifolds

4.1 Introduction

In this chapter we present an unfolding approach for compact Riemannian manifolds in
Rm. The main idea is to stipulate the existence of a designated atlas A such that locally
the image of a chart is ε-periodic in the usual (Rn-)sense. By requiring a compatibility
condition for the charts, we are able to transfer most of the basic results from the theory
of Periodic Unfolding to Riemannian manifolds.
This chapter is organized as follows: In Section 4.2 we introduce the notion of periodicity
with respect to a given atlas and present the local unfolding operators. Afterwards we
prove results which are well-known for the usual Periodic Unfolding in the context of
manifolds. In the next Section 4.3 we show that a spherical zone, i.e. the part of the
sphere lying between two parallel planes, fulfills the assumptions on the charts when
considering spherical coordinates. Finally, we present the homogenization procedure for
an elliptic model problem on a Riemannian manifold. One can think of this as an example
of a simple stationary reaction-diffusion or heat equation. This is done in Section 4.4.
To show that the new notion of unfolding is compatible with the established one, we
consider two multiscale problems in Section 4.5. For the convenience of the reader, we
finally collect some results about function spaces on manifolds in Section 4.6, having the
character of an appendix.

In applications, we have to restrict ourselves to compact manifolds since we can only
define unfolding operators locally, acting on charts. We will then use a partition of unity
to ”patch” the local results together. Since this partition of unity is finite, no problems
arise with the exchange of limit processes. In order to generalize this concept to arbitrary
Riemannian manifolds, one would have to introduce and prove some decay-properties of
the functions and operators involved.

The reader should have some familiarity with the notion of Periodic Unfolding as it appears
in the literature. We refer to Section 3.1.4 and the papers by Cioranescu, Damlamian et.
al. [CDG08] as well as [Dam05]. Moreover, basic knowledge of differential geometry is
required (for instance to the extend of Amann and Escher [AE01]).

4.2 Unfolding Operators on Riemannian Manifolds

In this section, let M ⊂ Rm be a n-dimensional Riemannian manifold (with or without
boundary in the sense of Schwarz [Sch95]): We denote an atlas by

A = {(Uα, φα);α ∈ I}
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with some index set I and the charts φα : Uα −→ Vα. Here for α ∈ I, Vα is an open
subset (with respect to the relative topology) of Rn

uα
, where Rn

uα
:= {x ∈ Rn; �uα, x� ≥ 0}

is a halfspace characterized by some vector uα �= 0, and �·, ·� denotes the Euclidean scalar
product. The boundary ∂M of M is then given by ∂M = {z ∈M ; ∃α ∈ I : �φα(z), uα� =
0}. On M , let there be given a smooth Riemannian metric gM ∈ Γ(TM∗ ⊗ TM∗) with
local representation

∑n
i,j=1 gij dx

i ⊗ dxj . Finally, denote by Y := [0, 1]n (or any other
rectangular connected subset of Rn) the reference cell in Rn, endowed with the topology
of the torus. We consider a fixed sequence εi −→ 0 with εi > 0, i ∈ N. As usual in the
theory of homogenization, we denote this sequence and its elements by ε. Moreover, we
will also use the same letter ε to denote subsequences.

To be able to prove our main results, we require the manifold M and the metric gM to be
at least of class C1. However for a concrete application, the reader should keep in mind
that more regularity might be required to be able to define suitable Sobolev-spaces, see
Section 4.6.

4.2.1 Periodicity with Respect to Charts

We start with a more or less philosophical definition of periodicity on a manifold. Note
that similar ideas appear in the article by Neuss, Neuss-Radu, and Mikelić [NNRM06]
and the current work of Maria Neuss-Radu.1

4.2.1 Definition.
We say that an object is εA -periodic, if it is Y -periodic in Rn after transformation with a
chart φ from a designated atlas A .

For example, if we take a smooth εY -periodic function f : Y −→ R and a φα ∈ A ,
then f̃ := f ◦ φα = φ∗αf is εA -periodic on Uα. One can also think of M itself being
εα-periodic, if we image M to represent a material body whose properties (for example
heat conductivity etc.) vary in an εA -periodic way. We need the following compatibility
condition:

4.2.2 Definition (UC-criterion).
The atlas A is said to be compatible with unfolding (UC) if for all α, β ∈ I with
Uα ∩ Uβ �= ∅ and for all ε there exists a k(ε) ∈ Zn such that

φα = φβ + ε

n∑
i=1

ki(ε)ei in Uα ∩ Uβ , (4.1)

where ei denotes the i-th unit vector in Rn.

This definition immediately yields the following lemma by definition of {·} (see page 34):

4.2.3 Lemma.
Let φα and φβ be two charts of an UC-atlas A with Uα ∩ Uβ �= ∅. For all admissible ε
and x ∈ Uα ∩ Uβ it holds {

φα(x)

ε

}
=

{
φβ(x)

ε

}
.

1Private communication, Workshop ”Scale transitions in chemistry and biology”, Edinburgh 2012.
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4.2.4 Lemma.
Let φα = (x1, . . . , xn) and φβ = (x̃1, . . . , x̃n) be two charts of an UC-atlas A with
Uα ∩ Uβ �= ∅. For the tangent vectors, the identity

∂

∂xi
=

∂

∂x̃i
, i = 1, . . . , n

holds in Uα ∩ Uβ.

Proof. Fix ε > 0. Then there is a k(ε) ∈ Zn such that φα = φβ + K, where K =
ε
∑n

i=1 ki(ε)ei. This identity also yields φ−1
α (z) = φ−1

β (z −K) for z ∈ Vα. Now by the
definition of ∂

∂xi
and the chain rule we obtain for z = φα(x), x ∈ Uα ∩ Uβ with the help

of the tangent map (see page 30)

∂

∂xi
(x) = Tφα(x)(φ

−1
α )(ei)

= Tz(φ
−1
α )(ei) = Tz−K(φ−1

β )(ei)

= Tφβ(x)(φ
−1
β )φβ(x)(ei) =

∂

∂x̃i
(x),

since z −K = φβ(x). �

If M satisfies the UC-criterion, then by Lemma 4.2.4 there exist n smooth vector fields
Xi =

∂
∂xi , i = 1, . . . , n such that (X1(x), . . . , Xn(x)) constitutes a basis for TxM for all

x ∈ M . This means that the manifold M is necessarily parallelizable. Moreover, if we
denote by [·, ·] the Lie bracket then we obtain [Xi, Xj ] = 0 for all i, j ∈ {1, . . . , n} (since
the coefficients of the Xi’s are constant). It is an open question whether these conditions
are also sufficient.2

4.2.2 Unfolding on Charts

We can now define local unfolding operators for functions, vector fields and forms. Note
that the usual unfolding operator T ε on Rn maps objects defined on a set Ω to objects
defined on Ω × Y . Translated to the language of manifolds, an object defined on M
should be mapped to an object defined on the product manifold M × Y (which is indeed
a manifold with boundary since Y has empty boundary, see e.g. Amann, Escher [AE01]).

4.2.5 Definition.
Choose a chart φ ∈ A with corresponding domain U ⊂M .

1. For a function f : U −→ R we define

T ε
φ (f) = (φ× Id)∗ T ε(φ∗f), (4.2)

where T ε denotes the usual unfolding operator in Rn. Obviously T ε
Id = T ε.

2In this case, at least locally the existence of a chart, having the given vector fields as local basis vectors
is ensured, see e.g. Michor [Mic08], Theorem 3.17.
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2. For a vector field F ∈ X(U) define analogously

T ε
φ (F ) = (φ× Id)∗ T ε(φ∗F ). (4.3)

3. For a k-form η ∈ Ωk(U) with η =
∑

(j) a(j) dx
(j) set

T ε
φ (η) =

∑
(j)

T ε
φ (a(j)) dy

(j), (4.4)

where the forms dy(j) stem from the trivial chart Id for Y .

Here X(U) denotes the set of smooth vector fields on U , and for η we use the representation

η =
∑
(j)

a(j) dx
(j) :=

∑
(j)∈Jk

a(j) dx
(j),

where Jk = {(j) = (j1, . . . , jk) ∈ Nk; 1 ≤ j1 < · · · < jk ≤ n} as well as dx(j) =
dxj1 ∧ · · · ∧ dxjk . The a(j)’s are the scalar coefficients of the k-forms dx(j) constituting a
basis of Ωk(U). (See also Section 4.6.6.)

4.2.6 Remark.
Note that we have the following implications (see also the next lemma):

1. f : U → R =⇒ T ε
φ (f) : U × Y → R

2. F ∈ X(U) =⇒ T ε
φ (F ) ∈ X(Y )U

3. η ∈ Ωk(U) =⇒ T ε
φ (η) ∈ Ωk(Y )U

4.2.7 Remark.
For a scalar function f : U −→ R we obtain the following explicit form for T ε

φ (f):

T ε
φ (f)(x, y) = f(φ−1(ε

[
φ(x)

ε

]
+ εy)).

The following lemma shows that the definition of T ε
φ (F ) and T ε

φ (η) is compatible:

4.2.8 Lemma.
Let F =

∑n
i=1 F

i ∂
∂xi ∈ X(U) be a vector field with coefficients F i : U → R, i = 1, . . . , n.

Then

T ε
φ (F ) =

n∑
i=1

T ε
φ (F

i)
∂

∂yi
,

where ∂
∂yi

is the tangent vector with respect to the trivial chart Id of Y .

Proof. The pushforward φ∗ ∂
∂xi of ∂

∂xi is equal to ei. Thus

T ε
φ (F ) = (φ× Id)∗ T ε(φ∗F )

= (φ× Id)∗ T ε(
n∑

i=1

(F i ◦ φ−1) · ei)
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=
n∑

i=1

(φ× Id)∗ T ε(φ∗F
i)
∂

∂yi

=

n∑
i=1

T ε
φ (F

i)
∂

∂yi
,

since ei = Id∗( ∂
∂yi

). �

4.2.3 Properties of the Unfolding Operator

4.2.9 Lemma.
Choose a chart φ ∈ A with corresponding domain U ⊂ M . Let f, g : U −→ R be two
functions. The unfolding operator T ε

φ respects summation and multiplication, i.e. it holds

T ε
φ (f + g) = T ε

φ (f) + T ε
φ (g) and T ε

φ (f · g) = T ε
φ (f) · T ε

φ (g)

We give a proof which is slightly too general, in oder to facilitate generalizations:

Proof. For the sum, note that pushforwards, pullbacks and T ε are linear operators. The
multiplication of two scalar functions can be expressed by the wedge product due to
f · g = f ∧ g. Since pullbacks and pushforwards commute with ∧, we obtain

T ε
φ (f · g) = (φ× Id)∗ T ε(φ∗(f ∧ g))

= (φ× Id)∗ T ε(φ∗f ∧ φ∗g) = (φ× Id)∗ T ε(φ∗f · φ∗g)
= (φ× Id)∗ [T ε(φ∗f) ∧ T ε

φ (φ∗g)]

= (φ× Id)∗ T ε(φ∗f) ∧ (φ× Id)∗ T ε(φ∗g)

= T ε
φ (f) · T ε

φ (g) �

4.2.10 Corollary.
For a scalar function f : U −→ R and a matrix-valued function A : U −→ Rn×n with
A = (aij), we obtain for k, p ∈ N

1. T ε
φ (f

k
p ) = T ε

φ (f)
k
p

2. T ε
φ (
√
f) =

√
T ε
φ (f)

3. T ε
φ (detA) = det T ε

φ (A), where T ε
φ is applied to the entries of A.

4. T ε
φ (|f |) = |T ε

φ (f)|

Proof. For the first identity, note that by the preceding lemma we have

T ε
φ (f

k
p )p = T ε

φ (f
k) = T ε

φ (f)
k.

Now taking the p-th root on both sides gives the result. For the second result choose
k = 1, p = 2, whereas for the third note that the determinant is a polynomial in the
entries of A, thus Lemma 4.2.9 applies as well. For the last statement use the identity
|f | =

√
f2 and the second assertion of this corollary. �
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The following lemma shows that some sort of ”calculation” with the charts is possible.

4.2.11 Lemma.
Let φ1, φ2 : U −→ Rn be two charts defined on a common open set U ⊂M and fix ε > 0.
Then the equivalence

T ε
φ1

= T ε
φ2

⇐⇒ T ε
φ2◦φ−1

1
= T ε

Id

holds for the scalar unfolding operators.

Note that in this assertion we do not give exact function spaces on which an identity
like T ε

φ1
= T ε

φ2
is supposed to hold. In the proof we are going to use arbitrarily smooth

functions, such that by using density results, if necessary, the asserted equalities hold on
a wide range of function spaces like C∞(M), C(M) or L2(M).

Proof. Choose a f : U −→ R (and note the remarks at the beginning of this paragraph).
We have that

T ε
φ1
(f) = T ε

φ2
(f)⇔ T ε((φ1)∗f) ◦ (φ1 × Id) = T ε((φ2)∗f) ◦ (φ2 × Id)

⇔ T ε((φ1)∗f) = T ε((φ2)∗f) ◦ (φ2 ◦ φ−1
1 × Id)

⇔ (φ2 ◦ φ−1
1 × Id)∗ T ε((φ2)∗f) = T ε((φ1)∗f)

which upon choosing a function g via f = g ◦ φ1 yields

⇔ (φ2 ◦ φ−1
1 × Id)∗ T ε( g ◦ φ1 ◦ φ−1

2︸ ︷︷ ︸
=g◦(φ2◦φ−1

1 )−1

) = T ε(g)

⇔ (φ2 ◦ φ−1
1 × Id)∗ T ε((φ2 ◦ φ−1

1 )∗g) = T ε(g)

⇔ T ε
φ2◦φ−1

1
(g) = T ε

Id(g).

Since f and g are arbitrary, the result follows. �

We conclude this section with a result which shows that the unfolding operators are well
defined on sets where two charts overlap. Later, we will use this result to define a global
unfolding operator on the whole manifold M .

4.2.12 Proposition.
Let φα and φβ be two charts of an UC-atlas A with Uα ∩ Uβ �= ∅. Then

T ε
φα

= T ε
φβ

on Uα ∩ Uβ

Proof. We first show the result for the scalar unfolding operator. Thus let f : Uα∩Uβ −→
R be a scalar function. Since A is a UC-atlas, we have (compare Lemma 4.2.4) φα =
φβ + εK(ε), where K(ε) =

∑n
i=1 ki(ε)ei with k(ε) ∈ Zn. Then φ−1

α (z) = φ−1
β (z − εK(ε))

and

T ε
φα
(f)(x, y) = f(φ−1

α (ε

[
φα(x)

ε

]
+ εy))

= f(φ−1
β (ε

[
φα(x)

ε

]
+ εy − εK(ε)))
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= f(φ−1
β (ε

[
φβ(x) + εK(ε)

ε

]
︸ ︷︷ ︸

=

[
φβ(x)

ε

]
+K(ε)

+εy − εK(ε)))

= f(φ−1
β (ε

[
φβ(x)

ε

]
+ εy)) = T ε

φβ
(f)(x, y).

This shows the result for the first operator from Definition 4.2.5. Since the correspondence
∂
∂xi ∼ ∂

∂yi
and dxi ∼ dyi is unique due to Lemma 4.2.4, the result follows for the other

operators as well (cf. also Lemma 4.2.8). �

4.2.4 Unfolding and Derivatives

Exterior Derivatives of Forms

Let d be the exterior derivative on M and let dy be the exterior derivative in Y . Similar
to the equality εT ε(∇ f) = ∇y T ε(f) for the unfolding of functions f : Rn −→ R we
obtain:3

4.2.13 Proposition.
Let φ : U −→ Rn be a chart, let η ∈ Ωk(U). Then

εT ε
φ (dη) = dyT ε

φ (η). (4.5)

Proof. Let f ∈ Ω0(U) be a scalar function. Then df =
∑n

i=1
∂f
∂xi dx

i. Due to the
construction of εT ε

φ (df), we have to consider the term εT ε
φ (

∂f
∂xi ) first. Since for the

unfolding operator on Rn we have εT ε( ∂
∂xi ·) = ∂T ε(·)

∂yi
, we obtain

εT ε
φ (
∂f

∂xi
) = ε(φ× Id)∗ T ε(φ∗

∂f

∂xi
) (4.6a)

= ε(φ× Id)∗ T ε(
∂(φ∗f)
∂xi

) (4.6b)

= (φ× Id)∗
∂(T ε(φ∗f))

∂yi
(4.6c)

=
∂T ε

φ (f)

∂yi
. (4.6d)

Thus

εT ε
φ (df) = ε

n∑
i=1

T ε
φ (
∂f

∂xi
) dyi =

n∑
i=1

∂T ε
φ (f)

∂yi
dyi = dyT ε

φ (f).

3Note that the exterior derivative is the ”natural” notion of derivation on a manifold. This can also be
seen by comparing the identity (4.5) with (4.7): While the former can be obtained directly, the latter
involves more objects and auxiliary constructions for its proof.
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Now let η ∈ Ωk(U). The form η has a representation

η =
∑
(j)

a(j) dx
(j)

with scalar functions a(j), see page 94. Now by the preceding part of the proof

εT ε
φ (dη) = ε

∑
(j)

T ε
φ (da(j)) ∧ dy(j)

=
∑
(j)

dyT ε
φ (a(j)) ∧ dy(j) = dyT ε

φ (η). �

Gradients

We now investigate the unfolding of gradients. For this, we have to take care of the
Riemannian metric gM ∈ Γ(TM∗ ⊗ TM∗) in the following way:

4.2.14 Definition.
Let φ : U −→ Rn be a chart, U ⊂M . For fixed x ∈ U , ε > 0 associate to the Riemannian
metric gM on U a (x, ε)-dependent metric g(x,ε)Y on Y via g(x,ε)Y (x, ·) = T ε

φ (gM )(x, ·) in
the sense that

T ε
φ (gM ) = T ε

φ (
∑
i,j

gij dx
i ⊗ dxj) =

∑
i,j

T ε
φ (gij) dy

i ⊗ dyj .

T ε
φ (gM ) is indeed a Riemannian metric: For x ∈ U , the matrix G(x) = [gij(x)]i,j=1,...,n

consisting of the metric coefficients gij at x is symmetric, invertible and positive definite.
Since this is a pointwise property, the same holds true for the matrix T ε

φ (G)(x, y) containing
the unfolded metric coefficients T ε

φ (gij)(x, y), where x ∈ M and y ∈ Y . Thus the
expression

∑
i,j T ε

φ (gij)(x, ·) dyi ⊗ dyj defines (at least locally) a Riemannian metric on
Y . Since the atlas for Y consists only of the trivial chart Id, this metric is well-defined
on the whole reference cell.
Finally, by taking into account the exact form of the unfolded coefficients T ε

φ (gij)(x, y) =

gij(φ
−1(ε

[
φ(x)
ε

]
+εy)), one sees that for x and ε treated as parameters the metric g(x,ε)Y (y)

is smooth in y.

The following proposition shows that the unfolding operator is compatible with respect
to the metrics defined above:

4.2.15 Proposition.
Let φ : U −→ Rn be a chart, and let F,G ∈ X(U). Then

T ε
φ (gM (F,G))(x, y) = g

(x,ε)
Y (T ε

φ (F )(x, y), T ε
φ (G)(x, y)).

This result generalizes the relation T ε(�F,G�) = �T ε(F ), T ε(G)�, where F and G are
vector fields in Rn, and �·, ·� is the usual Euclidean scalar product.



4.2 Unfolding Operators on Riemannian Manifolds 99

Proof. We prove the assertion in local coordinates: Let F =
∑

i F
i ∂
∂xi and G =

∑
iG

i ∂
∂xi

be two vector fields. Then gM (F,G) =
∑

ij gijF
iGj and thus by the properties of T ε

φ we
obtain

T ε
φ (gM (F,G)) =

∑
ij

T ε
φ (gij)T ε

φ (F
i)T ε

φ (G
j) = g

(x,ε)
Y (T ε

φ (F ), T ε
φ (G))

since T ε
φ (F ) =

∑
i T ε

φ (F
i) ∂

∂yi
. �

Note that since smooth functions are dense in L2TU and the unfolding operator is
continuous acting on vector fields in L2 (see Corollary 4.2.25 below), the same result also
holds true for L2-vector fields.

In the sequel, we denote the gradient on M with respect to gM by ∇M , and the gradient
on Y with respect to g(x,ε)Y by ∇(x,ε)

Y . We obtain the following result for the unfolding of
gradients:

4.2.16 Proposition.
Let φ : U −→ Rn be a chart, and let f : U −→ Rn be a differentiable function. Then the
identity

εT ε
φ (∇M f)(x, y) = ∇(x,ε)

Y T ε
φ (f)(x, y) (4.7)

holds.

Proof. Again, we use local coordinates: We have that ∇M f =
∑

i,j g
ij ∂f

∂xi
∂

∂xj , where
G−1 := [gij ]i,j=1,...,n is the inverse of G := [gij ]i,j=1,...,n. Keeping in mind the construction
of gij via the matrix of cofactors, gij = det(G)−1 · (−1)i+j detG′

ji (where detG′
ji denotes

the (j, i)-th minor ofG), one can apply the rules from Corollary 4.2.10 to obtain T ε
φ ([g

ij ]) =

T ε
φ ([gij ]

−1) = T ε
φ ([gij ])

−1. Now we obtain

εT ε
φ (∇M f)(x, y) = ε[(φ× Id)∗ T ε(

∑
i,j

gij ◦ φ−1∂(f ◦ φ−1)

∂xi
ej)](x, y)

= [(φ× Id)∗
∑
i,j

T ε(gij ◦ φ−1)
∂T ε(f ◦ φ−1)

∂yi
ej ](x, y)

=
∑
i,j

T ε
φ (g

ij)(x, y)
∂T ε

φ (f)

∂yi
(x, y)

∂

∂yj
= ∇(x,ε)

y T ε
φ (f),

where we used the considerations for T ε
φ (G

−1) in the last equality. �

Again, the same results hold for weakly differentiable vector fields due to density. In the
same manner one obtains:

4.2.17 Lemma.
Let φ : U −→ Rn be a chart, and let F ∈ X(U) be a vector field. Then

εT ε
φ (divM F )(x, y) = div

(x,ε)
Y T ε

φ (F )(x, y).
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Proof. In local coordinates, we have for F =
∑

i F
i ∂
∂xi

εT ε
φ (divM F )(x, y) = εT ε

φ

[ 1√
|G|

∑
i

∂(
√
|G|F i)

∂xi

]

=
1√

|T ε
φ (G)|

∑
i

∂(
√
|T ε

φ (G)|T ε
φ (F

i))

∂yi

= div
(x,ε)
Y T ε

φ (F )

due to the identity (4.6). �

We conclude this section by showing that the Riesz isomorphisms are compatible with
unfolding as well:

4.2.18 Proposition.
Let φ : U −→ Rn be a chart. We consider the Riesz isomorphisms

ΘM : X(U) −→ Ω1(U) and

Θ
(x,ε)
Y : X(Y ) −→ Ω1(Y )

belonging to gM and g(x,ε)Y , where x and ε are treated as parameters. For the unfolding
operators acting on vector fields and on forms, the identity

T ε
φ ◦ΘM (·)(x, y) = Θ

(x,ε)
Y ◦ T ε

φ (·)(x, y)

holds.

Proof. Let F ∈ X(U) with local representation F =
∑

i F
i ∂
∂xi . Then ΘMF =∑

i,j gij F
i dxj and thus

T ε
φ (ΘMF )(x, y) = [

∑
i,j

T ε
φ (gij)T ε

φ (F
i) dyj ](x, y)

= Θ
(x,ε)
Y ◦ T ε

φ (F )(x, y). �

4.2.19 Corollary.
Similarly we obtain

T ε
φ ◦Θ−1

M (·)(x, y) = (Θ
(x,ε)
Y )−1 ◦ T ε

φ (·)(x, y).

Proof. Let η ∈ Ω1(U), then

T ε
φ (η)(x, y) = T ε

φ (ΘM (Θ−1
M η))(x, y) = Θ

(x,ε)
Y T ε

φ (Θ
−1
M η).

Now apply (Θ
(x,ε)
Y )−1 on both sides. �
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4.2.5 Integral Identities

We now consider a n-dimensional compact Riemannian manifold M ⊂ Rm with Rieman-
nian metric gM and UC-compatible atlas A = {(Uα, φα);α ∈ I}. Since the manifold is
compact, the index set I can be chosen as finite. Moreover, we denote by {πα;α ∈ I}
a smooth (finite) partition of unity subordinate to the covering {Uα}. All the other
prerequisites of the previous section remain valid.

We start by defining a global unfolding operator:

4.2.20 Definition.
The global unfolding operator T ε

A with respect to the atlas A is defined as

T ε
A (·)(x, y) = T ε

φα
(·)(x, y) for x ∈ Uα.

Due to the compatibility result in Proposition 4.2.12, an equivalent definition is given by

T ε
A (·) =

∑
α∈I

παT ε
φα
(·|Uα).

4.2.21 Lemma.
Let f ∈ C(M̄), then

T ε
φα
(f |Uα) −→ f |Uα in L∞(Uα × Y ).

Proof. An analogous result holds true for the usual unfolding operator T ε (see e.g. the
works cited in Section 3.1.4). Due to the continuity of the charts and of the function f ,
we obtain

T ε((φα)∗f |Uα) −→ (φα)∗f |Uα in L∞(Vα × Y ).

By application of the continuous function (φα×Id)∗ on both sides we obtain the result. �

Since suppπα ⊂⊂ Uα holds for the partition of unity and I is finite, there exists a δ∗ > 0,
where δ∗ := minα∈I dist[supp((φα)∗πα), ∂Vα]. In the sequel we will always assume ε < δ∗.
In integral and norm expressions we will additionally use the two manifolds M × Y and
M × Y (x,ε); here M × Y is endowed with the volume form dvolM dy =

√
|G| dx dy,

whereas for M × Y (x,ε) we use the volume form T ε
A (
√
|G|) dx dy. Note that since we are

dealing with compact manifolds, all volume-forms generate norms which are mutually
equivalent! Similar to Lemma 4.4.7 one can show that the constant of equivalence can be
chosen independent of the parameters x and ε.

In order to motivate the next definition, we start with the following observation: Assume
f ∈ L1(M). The next proposition shows that the estimate ‖T ε

A(f)‖L1(M × Y )
<∞ holds.

Due to ε < δ∗, we have that supp(T ε
φα
(πα)) ⊂ φα(Uα)× Y and thus∫

M

f dvolM =
∑
α∈I

∫
φα(Uα)

(φα)∗(πα)(φα)∗f(φα)∗
√
|G| dx (4.8a)

=
∑
α∈I

1

|Y |

∫
φα(Uα)×Y

T ε((φα)∗(πα))T ε((φα)∗f)T ε((φα)∗
√
|G|) dy dx (4.8b)
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=
∑
α∈I

∫
Uα×Y

T ε
φα
(πα)T ε

φα
(f)T ε

φα
(
√
|G|) dy dx. (4.8c)

We obtain the estimate∣∣∣∫
M

f dvolM − 1

|Y |

∫
M×Y

T ε
A (f)T ε

A (
√
|G|) dy dx

∣∣∣
=
∣∣∣∫
M

f dvolM − 1

|Y |
∑
α∈I

∫
Uα×Y

παT ε
φα
(F )T ε

φα
(
√
|G|) dy dx

∣∣∣
≤
∑
α∈I

1

|Y |

∫
Uα×Y

|πα − T ε
φα
(πα)| · |T ε

φα
(f)|T ε

φα
(
√
|G|) dy dx

≤ Cr(ε) ‖T ε
A (f)‖

L1(M × Y )
,

where we used the fact that |πα − T ε
φα
(πα)| ≤ r(ε) for some function r : R+ −→ R with

r(ε) −→ 0 as ε→ 0 and the norm equivalence ‖·‖
L1(M × Y (x,ε))

with ‖·‖
L1(M × Y )

. Therefore
we define

4.2.22 Definition.
A sequence {f ε} in L1(M) is said to fulfill the unfolding criterion on manifolds (UCM) if
there exists a function r : R+ −→ R such that r(ε) −→ 0 as ε→ 0 and∫

M

f ε dvolM =
1

|Y |

∫
M×Y

T ε
A (f ε)T ε

A (
√
|G|) dy dx+ r(ε).

We write in this case∫
M

f ε dvolM � 1

|Y |

∫
M×Y

T ε
A (f ε)T ε

A (
√
|G|) dy dx.

4.2.23 Example.
Keeping the next proposition in mind, the following (sequences of) functions fulfill the
(UCM)-criterion:

• f ∈ L1(M).

• {f ε} ⊂ L1(M) such that ‖f ε‖
L1(M)

is bounded independently of ε.

• Since the functions are defined on a compact manifold, the same is true if we replace
L1(M) with Lp(M) with 1 ≤ p ≤ ∞.

4.2.24 Proposition.
The operators

T ε
A : Lp(M) −→ Lp(M × Y (x,ε))

are linear and continuous with operator norm less than ((1+card(I)δ))|Y |)
1
p , where δ > 0

is arbitrary and ε ≤ ε0(δ).

Proof. Step 1: p = 1
Choose a small δ > 0. Since T ε

φα
(πα) −→ πα in C(Ūα × Y ), there exists an ε0(δ) > 0 such
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that for all ε ≤ ε0(δ)
T ε
φα
(πα) ≥ πα − δ.

By making ε0 smaller, if necessary, this can be obtained uniformly for all α ∈ I. Now let
f ∈ L1(M), then∫

M

πα|f | dvolM ≥ 1

|Y |

∫
Uα×Y

T ε
φα
(πα)|T ε

φα
(f)|T ε

φα
(
√
|G|) dy dy

≥ 1

|Y |

∫
Uα×Y

(πα − δ)|T ε
φα
(f)|T ε

φα
(
√
|G|) dy dx.

Thus

1

|Y |

∫
Uα×Y

πα|T ε
φα
(f)|T ε

φα
(
√
|G|) dy dy ≤ 1

|Y |

∫
Uα×Y

(δ + T ε
φα
(πα))|T ε

φα
(f)|T ε

φα
(
√
|G|) dy dx.

By using the same derivations as in (4.8), one gets

1

|Y |

∫
Uα×Y

δ|T ε
φα
(f)|T ε

φα
(
√
|G|) dy dx = δ

∫
Uα

|f | dvolM ≤ δ

∫
M

|f | dvolM

as well as

1

|Y |

∫
Uα×Y

T ε
φα
(πα)|T ε

φα
(f)|T ε

φα
(
√
|G|) dy d =

∫
Uα

πα|f | dvolM .

Now summation over α ∈ I yields

1

|Y |

∫
M×Y

πα|T ε
φα
(f)|T ε

φα
(
√
|G|) dy dy ≤ (1 + card(I)δ)

∫
M

f dvolM

which is the result for p = 1.

Step 2: 1 < p <∞
Using the product rule from Corollary 4.2.10, we obtain for f ∈ Lp(M)

‖T ε
A (f)‖p

Lp(M × Y (x,ε))
= ‖T ε

A (fp)‖
L1(M × Y (x,ε))

≤ (1 + card(I)δ)|Y | ‖fp‖
L1(M)

= (1 + card(I)δ)|Y | ‖f‖p
Lp(M)

.

Now taking the p-th root on both sides yields the result. �

4.2.25 Corollary.
Take a vector field F ∈ X(M) and set f := gM (F, F ). Then

‖T ε
A (F )‖2

L2(M × Y (x,ε))
=
∥∥∥g(x,ε)Y (T ε

A (F ), T ε
A (F ))

∥∥∥
L1(M × Y (x,ε))

= ‖T ε
A (f)‖

L1(M × Y (x,ε))

≤ (1 + card(I)δ)|Y | ‖f‖
L1(M)

= (1 + card(I)δ)|Y | ‖F‖2
L2(M)

,
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and we see that T ε
A is also a continuous map for L2-vector fields with the same operator

norm as in the scalar case.

4.2.6 Convergence Statements

4.2.26 Lemma.
Let w ∈ Lp(M) with p ∈ [1,∞). Then

T ε
A (w) −→ w in Lp(M × Y ).

An analogous result holds for w ∈ Ck(M), k ∈ N0.

Proof. Let w ∈ C1(M). Then

‖T ε
A (w)− w‖p

Lp(M × Y )
=

∫
M×Y

|T ε
A (w)− w|p

√
|G| dy dx

≤ C max
(x,y)∈M×Y

|T ε
A (w)(x, y)− w(x)| −→ 0,

since T ε
A (w)→ w pointwise in L∞(M × Y ) due to Lemma 4.2.21. By density, the result

follows for Lp. Looking at the estimate above, the other assertion is obvious. �

4.2.27 Lemma.
Let {wε} ⊂ Lp(M), p ∈ [1,∞) be a sequence such that wε −→ w in Lp(M) for some
w ∈ Lp(M). Then

T ε
A (wε) −→ w in Lp(M × Y ).

Proof. We have

‖T ε
A (wε)− w‖

Lp(M × Y )
= ‖T ε

A (wε)− T ε
A (w) + T ε

A (w)− w‖
Lp(M × Y )

≤ ‖T ε
A (wε − w)‖

Lp(M × Y )
+ ‖T ε

A (w)− w‖
Lp(M × Y )

≤ C ‖T ε
A (wε − w)‖

Lp(M × Y (x,ε))
+ ‖T ε

A (w)− w‖
Lp(M × Y )

≤ C ‖wε − w‖
Lp(M)

+ ‖T ε
A (w)− w‖

Lp(M × Y )
−→ 0,

where we used (starting from the second line) the norm equivalence ‖·‖
Lp(M × Y )

with
‖·‖

Lp(M × Y (x,ε))
, the continuity of T ε

A , see Proposition 4.2.24, as well as the previous
lemma. �

4.2.28 Proposition.
Let {wε} ⊂ Lp(M), p ∈ [1,∞) be a sequence such that T ε

Aw
ε −⇀ ŵ in Lp(M ×Y ), where

ŵ ∈ Lp(M × Y ). Then wε converges weakly to w in Lp(M), where

w :=

∫
Y

ŵ dy.

Proof. Choose a ψ ∈ Lp′(M). Since weakly convergent sequences are bounded, the
product wεψ is a bounded sequence in L1(M) and thus fulfills the UCM-criterion. Thus
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we obtain ∫
M

wεψ dvolM �
∫

M×Y

T ε
A (wε)T ε

A (ψ)T ε
A (
√
|G|) dy dx.

Since T ε
A (wε)⇀ ŵ, T ε

A (ψ)→ ψ and T ε
A (
√
|G|)→

√
|G| (see Lemma 4.2.26) we obtain

in the limit for ε→ 0 ∫
M×Y

ŵψ
√
|G| dy dx =

∫
M

(∫
Y

ŵ dy
)
ψ dvolM

which proves the assertion. �

4.2.7 Unfolding of Gradients in the Hilbert-Space Setting

In this section we consider sequences wε in H1(M). We analyze two different situations: In
the first one, we assume that we have a bound on the gradient of the form ε ‖∇M wε‖

L2 ≤ C
with a constant C independent of ε. We call this a situation with ”weak gradient estimates”.
Secondly, we assume that we have the stronger bound ‖∇M wε‖

L2 ≤ C without the factor
of ε.

The main difficulty is that the usual results like T ε(∇uε) −⇀ ∇x u0 +∇y u1 relate two
objects which cannot be coupled on general manifolds: Whereas ∇x u0 corresponds to
∇M u0 and is thus a vector field on M , the term ∇y u1 represents a vector field in Y !
This is why, in the general case, a transport operator (·)Y appears, which maps vector
fields on M to vector fields in Y .

In the sequel, we need three different gradient operators, which we denote by ∇M , ∇(x,ε)
Y

and ∇(x)
Y :

• ∇M denotes the gradient on M with respect to the metric gM .

• For fixed x ∈ M and ε > 0, ∇(x,ε)
Y denotes the gradient on Y with respect to the

parameter-dependent metric g(x,ε)Y .

• Finally, for fixed x ∈M the operator ∇(x)
Y is defined to be the gradient on Y with

respect to the parameter-dependent metric g(x)Y := limε→0 T ε
A (gM )(x, ·), i.e. with

respect to the metric on Y with metric coefficients g(x)Y ( ∂
∂yi
, ∂
∂yj

) = gij(x).

We will use the same index notation for divergence operators, which are defined as the
(formal) negative L2-adjoint of the corresponding gradient operators.

Using Weak Gradient Estimates

4.2.29 Theorem.
Let {wε} ⊂W 1,2(M) be a sequence such that

‖wε‖
L2(M)

≤ C

ε ‖∇M wε‖
L2TM

≤ C,
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with a constant C > 0 independent of ε. Then there exists a w ∈ L2(M ;W 1,2
# (Y )) such

that along a subsequence

T ε
A (wε) −⇀ w in L2(M × Y )

εT ε
A (∇M wε) −⇀ ∇(x)

Y w in L2(M ;L2TY ),

where by abuse of notation we use ∇(x)
Y w to denote a function (x, y) �→ ∇(x)

Y w(x, y).

Proof. Due to Proposition 4.2.16 we have εT ε
A (∇M wε) = ∇(x,ε)

Y T ε
A (wε) and thus the norm

estimate shows that
∥∥T ε

A (wε)
∥∥

L2(M × Y )
as well as

∥∥∥∇(x,ε)
Y T ε

A (wε)
∥∥∥

L2(M × Y )

are bounded

independent of ε. Thus there exist limits w ∈ L2(M × Y ) and ξ ∈ L2(M ;L2TY ) such
that along a subsequence

T ε
A (wε) −⇀ w in L2(M × Y )

∇(x,ε)
Y T ε

A (wε) −⇀ ξ in L2(M ;L2TY ).

It remains to show that ξ = ∇(x)
Y w. To this end, choose a test function ψ ∈

C∞0 (M ; C∞# (Y ))n and consider the term
∫
M×Y g

(x,ε)
Y (∇(x,ε)

Y T ε
A (wε), ψ)T ε

A (
√
|G|) dy dx.

Upon an integration by parts with respect to the metric g(x,ε)Y we obtain∫
M×Y

g
(x,ε)
Y (∇(x,ε)

Y T ε
A (wε), ψ)T ε

A (
√
|G|) dy dx = −

∫
M×Y

T ε
A (wε) div

(x,ε)
Y ψT ε

A (
√
|G|) dy dx.

Since the metric coefficients gij are smooth, we obtain that T ε
A (gij)→ gij . This implies

that div
(x,ε)
Y ψ → div

(x)
Y ψ and g

(x,ε)
Y → g

(x)
Y in the sense that if χε −⇀ χ in L2TY and

ηε −→ η in L2TY , then g(x,ε)Y (χε, ηε) −→ g
(x)
Y (χ, η). Thus passing to the limit ε→ 0 in

the previous expression yields∫
M×Y

g
(x)
Y (ξ, ψ) dy dvolM = −

∫
M×Y

w div
(x)
Y ψ dy dvolM .

Choosing a test function ψ such that div(x)Y ψ = 0, we see that ξ is orthogonal to divergence-
free functions in the variable y. We can thus use Hodge-theory (see for example Agricola
and Friedrich [AF02]) to obtain that ξ can be represented as a gradient with

ξ = ∇(x)
Y ζ, ζ ∈ L2(M ;W 1,2

# (Y )).

Inserting this form for ξ in the last integral identity and carrying out another integration
by parts, we see that ∫

M×Y

(w − ζ) div(x)y ψ dy dvolM = 0

for all ψ. Since the set of all functions {div(x)y ψ;ψ ∈ C∞0 (M ; C∞# (Y ))n} is dense in
the set L2(M ;L2

0(Y )) = L2
0(M × Y ) of functions with mean value 0, we obtain that
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(w − ζ) ⊥ L2
0(M × Y ), i.e. w = ζ +K with some constant K. Thus

∇(x)
Y w = ∇(x)

Y ζ = ξ,

which finishes the proof. �

Transport Operators

In order to be able to give the convergence result when we have stronger estimates on the
gradient, we need some preparatory constructions and results:

4.2.30 Definition.
For a vector field F ∈ X(M) we define a transport operator (·)Y with

(·)Y : X(M) −→ X(Y )M

F �−→ FY ,

where for F =
∑

i F
i ∂
∂xi the field FY is defined via

FY (x, y) =
∑
i

F i(x)
∂

∂yi
.

Analogously, we construct a transport operator which maps vector fields on Y to vector
fields on M :

4.2.31 Definition.
For a vector field G ∈ X(Y ) we define a transport operator (·)M with

(·)M : X(Y ) −→ X(M)Y

G �−→ GM ,

where for G =
∑

iG
i ∂
∂yi

the field GM is defined via

GM (x, y) =
∑
i

Gi(y)
∂

∂xi
.

4.2.32 Remark.
Note that Lemma 4.2.4 allows a one-to-one correspondence between ∂

∂xi and ∂
∂yi

even
across different charts, thus the transport operators are well defined.

We will use the same operators on parameter-dependent vector fields; e.g. for F̃ ∈ X(M)Y ,
F (x, y) =

∑
i F

i(x, y) ∂
∂xi we set F̃Y (x, y) =

∑
i F

i(x, y) ∂
∂yi

(analogously for a G̃ ∈ X(Y )M

and (·)M ). We obtain the following results:

4.2.33 Lemma.
Let Vi ∈ X(M)Y , Wi ∈ X(Y )M for i = 1, 2. Then

•
(
(V1)Y

)
M

= V1,
(
(W1)M

)
Y
=W1,
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• g
(x)
Y (W1,W2) = gM

(
(W1)M , (W2)M

)
,

• gM (V1, V2) = g
(x)
Y

(
(V1)Y , (V2)Y

)
.

Proof. For the first assertion observe that for V1 =
∑

i V
i
1

∂
∂xi we have

(
(V1)Y

)
M

=(∑
i V

i
1

∂
∂yi

)
M

=
∑

i V
i
1

∂
∂xi = V1. The result for W1 follows along the same

lines. The second assertion follows due to the identity g
(x)
Y (W1,W2)(x, y) =∑

i,j gij(x)W
i
1(x, y)W

j
2 (x, y) = gM

(
(W1)M , (W2)M

)
(x, y). The last assertion is an easy

corollary of the first two statements. �

Since the transport operators are defined pointwise, we can extend their definition to
L2-vector fields such that the above identities hold almost everywhere.

Using Stronger Gradient Estimates

4.2.34 Lemma.
Assume that {wε} is a sequence in W 1,2(M) which converges strongly to some w ∈
W 1,2(M). Then

T ε
A (wε) −→ w strongly in L2(M × Y )

T ε
A (∇M wε) −→ (∇M w)Y strongly in L2(M ;L2TY ).

Proof. The first statement follows due to the compact embedding W 1,2(M) ↪→ L2(M)
and Lemma 4.2.27. For the second statement, note that it holds (∇M wε −∇M w)→ 0
in L2(M). Since T ε

A is continuous, we get that (T ε
A (∇M wε) − T ε

A (∇M w)) −→ 0 in
L2(M ;L2TY ) as well. Thus we have to characterize limε→0 T ε

A (∇M w): Locally we have
for a chart φ

T ε
φ (∇M w)(x, y) = T ε

φ (
∑
i,j

gij
∂w

∂xi
∂

∂xj
)(x, y)

=
∑
i,j

T ε
φ (g

ij)(x, y)︸ ︷︷ ︸
→gij(x)

T ε
φ (
∂w

∂xi
)(x, y)︸ ︷︷ ︸

→ ∂w

∂xi

∂

∂yj

−→
∑
i,j

gij(x)
∂w

∂xi
∂

∂yj
= (∇M w)Y ,

which gives the result. �

We are now able to prove the main result of this paragraph:

4.2.35 Theorem.
Let {wε} ⊂W 1,2(M) be a sequence such that

‖wε‖
L2(M)

≤ C

‖∇M wε‖
L2TM

≤ C
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with a constant C > 0 independent of ε. Then there exists a w ∈ W 1,2(M) and a
ŵ ∈ L2(M ;W 1,2

# (Y )) such that along a subsequence

T ε
A (wε) −→ w in L2(M × Y )

T ε
A (∇M wε) −⇀ (∇M w)Y +∇(x)

Y ŵ in L2(M ;L2TY ),

where by abuse of notation we use ∇(x)
Y w to denote a function (x, y) �→ ∇(x)

Y w(x, y).

Proof. Step 0 Existence of w:
Since the bounds are equivalent to the fact that the sequence {wε} is bounded in W 1,2(M),
we obtain the existence of a w ∈ W 1,2(M) such that along a subsequence wε −⇀ w in
W 1,2(M). Due to the compact embedding W 1,2(M) ↪→ L2(M), wε converges strongly in
L2(M) to w.

Step 1 (∇M w)Y ∈ L2(M × Y ):
We have the estimate

‖(∇M w)Y ‖L2(M × Y )
= ‖lim T ε

A (∇M w)‖
L2(M × Y )

≤ lim ‖T ε
A (∇M w)‖

L2(M × Y )

≤ C ‖∇M w‖
L2(M)

by the continuity of T ε
A , thus (∇M w)Y ∈ L2(M × Y ).

Step 2 Existence of a weak limit:
Since

‖T ε
A (∇M wε)‖

L2(M × Y )
≤ ‖T ε

A (∇M wε)‖
L2(M × Y (x,ε))

≤ C ‖∇M wε‖
L2(M)

≤ C

with a bound independent of ε, we obtain that
(
T ε

A (∇M wε)− (∇M w)Y

)
is bounded in

L2(M × Y ). Thus there exists a ξ ∈ L2(M × Y ) such that along a subsequence

T ε
A (∇M wε)− (∇M w)Y −⇀ ξ.

It remains to show that ξ = ∇(x)
Y ŵ for a function ŵ in L2(M ;W 1,2

# (Y )).

Step 3 Construction of an auxiliary vector field:
Let φ : U −→ Rn be a chart. Choose a function ψ ∈ C∞0 (M ; C∞# (Y )n) with div

(x)
Y ψ = 0.

For x ∈ U , ε > 0 define locally ψ̂ε(x) = ψ(x,
{

φ(x)
ε

}
). We want to test T ε

A (∇M wε) −
(∇M w)Y with ψ̂ε – however this function is a vector field in Y , not on M ! Thus we
interpret ψ̂ε(x) for fixed x ∈ U as a constant vector field in Y and define via the tangential
map Tφ−1

ψε(x) := (Tφ(x)φ
−1)ψ̂ε(x).

This is a vector field in U . In order to determine the limit of T ε
φ (ψ

ε), we calculate

(φ∗ψ
ε)(z) = (Tφ−1(z)φ)(Tzφ

−1)︸ ︷︷ ︸
=Id

ψ(φ−1(z),
z

ε
) = ψ(φ−1(z),

z

ε
)
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and thus T ε(φ∗ψε)(z, y) = ψ(φ−1(ε
[
z
ε

]
+ εy), y). This finally gives the convergence

property

T ε
φ (ψ

ε)(x, y) = (φ× Id)∗ T ε(φ∗ψ
ε) = ψ(φ−1(ε

[
φ(x)

ε

]
+ εy), y) −→ ψ(x, y)

in the space of smooth functions.

For two charts φα, φβ with Uα ∩ Uβ �= ∅, note that by the (UC)-condition ψ̂ε(x) :=

ψ(x,
{

φα(x)
ε

}
) = ψ(x,

{
φβ(x)

ε

}
). The argument used in the proof of Lemma 4.2.4 shows

(by using an arbitrary vector instead of ei) that for the tangent maps the identity

Tφα(x)φ
−1
α = Tφβ(x)φ

−1
β

holds. Thus ψε(x) = (Tφα(x)φ
−1
α )ψ̂ε(x) = (Tφβ(x)φ

−1
β )ψ̂ε(x) on Uα ∩ Uβ . By this identity,

ψε is well defined on the whole manifold M .

Step 4 An auxiliary integral identity:
Now consider the identity∫

M

gM (∇M wε −∇M w,ψε) dvolM = −
∫
M

(wε − w) div(x)Y ψε dvolM .

By the usual arguments, we can apply the unfolding operator to both sides and obtain
(in the sense of �)∫

M×Y

g
(x,ε)
Y

(
T ε

A (∇M wε)− T ε
A (∇M w), T ε

A (ψε)
)
T ε

A (
√
|G|) dy dx

= −
∫

M×Y

[T ε
A (wε)− T ε

A (w)]
1

ε
div

(x,ε)
Y T ε

A (ψε)T ε
A (
√
|G|) dy dx.

(4.9)

For the left hand side, we obtain the following expression and limit:∫
M×Y

g
(x,ε)
Y

(
T ε

A (∇M wε)− (∇M w)Y︸ ︷︷ ︸
−⇀ξ

+(∇M w)Y − T ε
A (∇M w)︸ ︷︷ ︸

−→0

, T ε
A (ψε)

)
T ε

A (
√
|G|) dy dx

−→
∫

M×Y

g
(x)
Y (ξ, ψ) dy dvolM .

Here we used the fact that T ε
A (
√
|G|)→

√
|G|, that g(x,ε)Y converges to g(x)Y (see above),

and the result from step 3.

For the right hand side, we will show that 1
ε div

(x,ε)
Y T ε

A (ψε) is bounded independent of
ε. Since (T ε

A (wε)− T ε
A (w))→ 0, the right hand side thus converges to 0, and we obtain

from (4.9) ∫
M×Y

g
(x)
Y (ξ, ψ) dy dvolM = 0 (4.10)
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for all ψ ∈ C∞0 (M ; C∞# (Y )n) with div
(x)
Y ψ = 0.

In order to show the bound on div
(x,ε)
Y T ε

A (ψε), we split the term into the following sum:

div
(x,ε)
Y T ε

A (ψε) = div
(x,ε)
Y T ε

A (ψε)− div
(x)
Y T ε

A (ψε)︸ ︷︷ ︸
=:D1

+div
(x)
Y T ε

A (ψε)− div
(x)
Y ψ︸ ︷︷ ︸
=0︸ ︷︷ ︸

=:D2

We will need the following two arguments (A) and (B), which hold for a C1-function
g :M −→ R: By Taylor expansion of g ◦ φ−1 we obtain

(A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x)− T ε
φ (g)(x, y) = g(φ−1 ◦ φ(x))− g(φ−1(ε

[
φ(x)

ε

]
+ εy))

= (g ◦ φ−1)′(φ(x))[φ(x)− ε
[
φ(x)

ε

]
+ εy] + O(ε2)

= ε(g ◦ φ−1)(φ(x))[−
{
φ(x)

ε

}
+ y] + O(ε2)

= O(ε).

Similarly, by employing the chain rule, we get

(B)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂(T ε
φ (g))

∂yi
=
∂[g(φ−1(ε

[
φ(x)
ε

]
+ εy))]

∂yi

= ε(g ◦ φ−1)′(ε

[
φ(x)

ε

]
+ εy)

= O(ε).

In the sequel, we will indicate where to use each argument. For D1 we obtain in local
coordinates

−D1 = − div
(x,ε)
Y T ε

φ (ψ
ε)(x, y) + div

(x)
Y T ε

φ (ψ
ε)(x, y)

=

(
1√
|G|(x)

− 1√
T ε
φ (|G|)(x, y)

)
︸ ︷︷ ︸

(A)

∑
i

∂

∂yi
[
√
|G|(x)T ε

φ (ψ
ε,i)(x, y)]

+
1√

T ε
φ (|G|)(x, y)

(∑
i

∂

∂yi
[
√
|G|(x)T ε

φ (ψ
ε,i)(x, y)−

√
T ε
φ (|G|)(x, y)T ε

φ (ψ
ε,i)(x, y)]

)

= O(ε) +
1√

T ε
φ (|G|)(x, y)

(∑
i

(
√
|G| −

√
T ε
φ (|G|)(x, y))︸ ︷︷ ︸

(A)

∂ψε,i

∂yi

+
∑
i

ψε,i
∂(T ε

φ (
√
|G|)(x, y))
∂yi︸ ︷︷ ︸
(B)

)

= O(ε)
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(since all other terms not covered by (A) or (B) are smooth and bounded). For D2 we
have

D2 = div
(x)
Y T ε

φ (ψ
ε)(x, y)− div

(x)
Y ψ(x, y)

=
1√
|G|(x)

∑
i

√
|G|(x) ∂

∂yi
[T ε

φ (ψ
ε,i)− ψi](x, y)

=
1√
|G|(x)

∑
i

√
|G|(x) ∂

∂yi
[ψi(φ−1(ε

[
φ(x)

ε

]
+ εy), y)− ψi(x, y)]

=
1√
|G|(x)

∑
i

√
|G|(x)ε ∂

∂xi
[ψi ◦ (φ−1 × Id)](ε

[
φ(x)

ε

]
+ εy, y)

+
1√
|G|(x)

∑
i

√
|G|(x) [∂ψ

i

∂yi
(φ−1(ε

[
φ(x)

ε

]
+ εy), y)− ∂ψi

∂yi
(x, y)]︸ ︷︷ ︸

(A)

= O(ε).

Thus D1+D2
ε ≤ C, which is the desired bound.

Step 5 Representation as a gradient, limits:
Equation (4.10) shows that ξ is orthogonal to divergence-free functions in the variable y
on the set M × Y . By using Hodge theory as in the proof of Theorem 4.2.29, we obtain
thus the representation

ξ = ∇(x)
Y ŵ for some ŵ ∈ L2(M ;W 1,2

# (Y )).

To sum up, we have obtained the existence of a ŵ ∈ L2(M ;W 1,2
# (Y )) with T ε

A (∇M wε)−
(∇M w)Y −⇀ ∇(x)

Y ŵ, which is equivalent to

T ε
A (∇M wε) −⇀ (∇M w)Y +∇(x)

Y ŵ.

This finishes the proof of the theorem. �

4.3 Example for a Chart-Periodic Manifold

Up to now it is not clear whether there exist manifolds (apart from the trivial ones) which
satisfy the UC-criterion from Definition 4.2.2. In this section we show how a spherical
zone can be equipped with an atlas that satisfies the compatibility condition. For this
we make use of polar coordinates. A reminder about the main facts is given in the next
paragraph. Note that we do not distinguish between row- and column-vectors.

There is a large amount of literature available on polar and spherical coordinates. At this
place, we only refer the reader to the overviews given in the encyclopedic books [Zei04] or
[BSMM07].
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r

P

φ

x

y

Figure 4.1: Representation of the point P in polar coordinates with radius r and angle ϕ.

4.3.1 Reminder on Polar Coordinates

4.3.1 Definition.
Let (x, y) ∈ R2, (x, y) �= 0 be a point in the plane given in Cartesian coordinates. We call
the pair (r, ϕ) ∈ [0,∞)× [0, 2π) the representation of (x, y) in polar coordinates if

x = r cosϕ

y = r sinϕ.

We will loosely write r(x, y) and ϕ(x, y) for the polar representation of a given (x, y). Vice
versa we also use x(r, ϕ) and y(r, ϕ). We have the following functional representation:4

4.3.2 Lemma.
We have the calculation rules

x(r, ϕ) = r cosϕ

y(r, ϕ) = r sinϕ
as well as

r(x, y) =
√
x2 + y2

ϕ(x, y) =

⎧⎪⎨
⎪⎩
arccos

x√
x2 + y2

for y ≥ 0

2π − arccos
x√

x2 + y2
for y < 0

.

4There are several ways to define a correspondence between polar and Cartesian coordinates, see the
references. We chose a representation which is well suited to our subsequent application to the
spherical zone.



114 4 Periodic Unfolding on Compact Riemannian Manifolds

λα

λβ

0 1

1 2
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C

C

D

D

D

Figure 4.2: Illustration of the charts λα and λβ .

4.3.2 An Atlas for the Unit Circle

Let S1 := {(x, y) ∈ R2;x2 + y2 = 1} be the unit circle in R2. We define the quadrants
H1, . . . , H4 of the Cartesian coordinate system as

H1 := {(x, y) ∈ R2;x ≥ 0, y ≥ 0}, H2 := {(x, y) ∈ R2;x ≤ 0, y ≥ 0},
H3 := {(x, y) ∈ R2;x ≤ 0, y ≤ 0}, H4 := {(x, y) ∈ R2;x ≥ 0, y ≤ 0}.

We would like to make S1 a manifold. Therefore we introduce the charts λα and λβ
defined as follows: The set S1\H4 is open; there we define the bijection

λα : S1\H4 −→ (0,
3

2
)

(x, y) �−→ λα(x, y) :=

⎧⎪⎨
⎪⎩
arccosx

π
for y ≥ 0

2− arccosx

π
for y < 0

.

The idea is to use a polar representation of the unit circle, thus r ≡ 1. Moreover, in order
to be able to define a periodic structure, we want the circle to correspond to the interval
[0, 2), thus we divide the polar angle ϕ by π. Analogously, we define for S1\H2

λβ : S1\H2 −→ (1,
3

2
+ 1)

(x, y) �−→ λβ(x, y) := λα(−x,−y) + 1.

The idea of λβ is to ”continue” the parametrization defined on S1 ∩H3, see Figure 4.2
and the next lemma.
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Keeping in mind the construction of the polar coordinates, we can easily give the inverse
functions to λα and λβ : With the notation of Lemma 4.3.2 one obtains(

x
y

)
(λα) =

(
cos(πλα)
sin(πλα)

)
as well as

(
x
y

)
(λβ) =

(
− cos(π(λβ − 1))
− sin(π(λβ − 1))

)
.

Since S1\H4 and S1\H2 cover S1 and the charts defined above are smooth, A :=
{(S1/H4, λα), (S

1/H2, λβ)} is an atlas for S1. We now show that this atlas satisfies the
UC-condition:

4.3.3 Lemma.
For (x, y) ∈ S1 ∩H3 it holds λα(x, y) = λβ(x, y), whereas for (x, y) ∈ S1 ∩H1 we have
λα(x, y) = λβ(x, y)− 2.

Proof. The proof is based on the following calculation rule for the arcus cosine: It holds
arccos(−x) = π − arccos(x) and thus for (x, y) ∈ S1 ∩H3, i.e. −y ≥ 0 we obtain

λβ(x, y) = λα(−x,−y) + 1 =
arccos(−x)

π
+ 1 =

π − arccos(x)

π
+ 1

= 2− arccos(x)

π
= λα(x, y),

whereas for (x, y) ∈ S1 ∩H1 (⇒ −y ≤ 0) it holds

λβ(x, y) = λα(−x,−y) + 1 = 2− arccos(−x)
π

+ 1 = 2 +
arccos(x)

π
= λα(x, y) + 2. �

4.3.4 Lemma.
For ε ∈ { 1n ;n ∈ N}, the atlas A satisfies the UC-criterion.

Proof. The assertion is more or less obvious; on S1 ∩H3 one has λα = λβ + ε0e1, whereas
on S1 ∩H1 one gets

λα = λβ + ε · (−2

ε
e1)︸ ︷︷ ︸

∈Z

(here e1 = 1 is the unit vector in R). �

4.3.3 Reminder on Spherical Coordinates

We recall the notion of spherical coordinates:5

4.3.5 Definition.
Let (x, y, z) ∈ R3, (x, y, z) �= 0, (x, y, z) �= ±(0, 0, 1) be a point in the 3-dimensional space
given in Cartesian coordinates. We call the pair (r, ϕ, θ) ∈ [0,∞)× [0, 2π)× (−π

2 ,
π
2 ) the

5Note again that different notions of these coordinate system exist in the literature. We choose one
with the application in the last paragraph of this section in mind.
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r

P

φ

θ

x

y

z

Figure 4.3: Representation of the point P in spherical coordinates with radius r and
angles ϕ and θ.

representation of (x, y, z) in spherical coordinates if

x = r cos(ϕ) cos(θ)

y = r sin(ϕ) cos(θ)

z = r sin(θ).

For the inverse map, we have the representation

r(x, y, z) =
√
x2 + y2 + z2

ϕ(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩
arccos

x√
x2 + y2

for y ≥ 0

2π − arccos
x√

x2 + y2
for y < 0

θ(x, y, z) = arcsin(
z√

x2 + y2 + z2
).

4.3.4 Application to a Spherical Zone

Let S2 := {(x, y, z) ∈ R3;x2 + y2 + z2 = 1} be the unit sphere in R3 (hence r ≡ 1).
Similarly to the 2-dimensional constructions we define the sets

H1 := {(x, y, z) ∈ R2;x ≥ 0, y ≥ 0}, H2 := {(x, y, z) ∈ R2;x ≤ 0, y ≥ 0},
H3 := {(x, y, z) ∈ R2;x ≤ 0, y ≤ 0}, H4 := {(x, y, z) ∈ R2;x ≥ 0, y ≤ 0}.
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Figure 4.4: Illustration of the function D on the reference cell [0, 1]2. The dark color
corresponds to the value of 1, the light color to the value of 0.

We will consider the spherical zone

Z := {(x, y, z) ∈ S2; |z| ≤
√
2

2
}

with subsets Z1 := {(x, y, z) ∈ Z;−1
2 < z ≤

√
2
2 } as well as Z2 := {(x, y, z) ∈ Z;−

√
2
2 ≤

z < 1
2}. We want to give Z the structure of a manifold with boundary. Therefore we

introduce the four charts λ̃αi and λ̃βi, i = 1, 2, as follows (see page 92 for the definition
of Rn

u):

λ̃α1 : Z1\H4 −→ (0,
3

2
)× (−2

3
− 1, 0] ⊂ R2(

0
−1

)

(x, y, z) �−→ λ̃α(x, y, z) :=

⎛
⎜⎜⎝
λα(

(x, y)√
x2 + y2

)

arcsin(z)

π/4
− 1

⎞
⎟⎟⎠ ,

λ̃α2 : Z2\H4 −→ (0,
3

2
)× [0,

2

3
+ 1) ⊂ R2(

0
1

)

(x, y, z) �−→ λ̃α(x, y, z) :=

⎛
⎜⎜⎝
λα(

(x, y)√
x2 + y2

)

arcsin(z)

π/4

⎞
⎟⎟⎠

as well as

λ̃β1 : Z1\H1 −→ (1,
3

2
+ 1)× (−2

3
− 1, 0] ⊂ R2(

0
−1

)

(x, y, z) �−→ λ̃β(x, y, z) :=

⎛
⎜⎜⎝
λβ(

(x, y)√
x2 + y2

)

arcsin(z)

π/4
− 1

⎞
⎟⎟⎠ ,
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λ̃β2 : Z2\H1 −→ (1,
3

2
+ 1)× [0,

2

3
+ 1) ⊂ R2(

0
1

)

(x, y, z) �−→ λ̃β(x, y, z) :=

⎛
⎜⎜⎝
λβ(

(x, y)√
x2 + y2

)

arcsin(z)

π/4
+ 1

⎞
⎟⎟⎠

with λα, λβ defined as above. The scaling is chosen in a way that the ”latitude” is
parametrized by [0, 2) (corresponding to the unit circle case), and the ”longitude” has
arc length 2. In this connection, note that π

6 = arcsin(12) and π
4 = arcsin(

√
2
2 ), which

accounts for the scaling factor in the second coordinate of λ̃i(x, y, z), i ∈ {α1, α2, β1, β2}.
Keeping the construction of the spherical coordinates as well as the inversion formulas for
the unit circle in mind, one sees that the inverse maps are given by⎛

⎝xy
z

⎞
⎠(λ̃1α1

λ̃2α1

)
=

⎛
⎝cos(πλ̃1α1) cos(

π
4 (λ̃

2
α1 + 1))

sin(πλ̃1α1) cos(
π
4 (λ̃

2
α1 + 1))

sin(π4 (λ̃
2
α1 + 1))

⎞
⎠ ,

⎛
⎝xy
z

⎞
⎠(λ̃1α2

λ̃2α2

)
=

⎛
⎝cos(πλ̃1α2) cos(

π
4 (λ̃

2
α2 − 1))

sin(πλ̃1α2) cos(
π
4 (λ̃

2
α2 − 1))

sin(π4 (λ̃
2
α2 − 1))

⎞
⎠

as well as ⎛
⎝xy
z

⎞
⎠(λ̃1β1

λ̃2β1

)
=

⎛
⎜⎝− cos(π(λ̃1β1 − 1)) cos(π4 (λ̃

2
β1 + 1))

− sin(π(λ̃1β1 − 1)) cos(π4 (λ̃
2
β1 + 1))

sin(π4 (λ̃
2
β1 + 1))

⎞
⎟⎠ ,

⎛
⎝xy
z

⎞
⎠(λ̃1β2

λ̃2β2

)
=

⎛
⎜⎝− cos(π(λ̃1β2 − 1)) cos(π4 (λ̃

2
β2 − 1))

− sin(π(λ̃1β2 − 1)) cos(π4 (λ̃
2
β2 − 1))

sin(π4 (λ̃
2
β2 − 1))

⎞
⎟⎠ .

With the help of Lemma 4.3.3, one can easily see that the following identities hold:

λ̃α1 − λ̃α2 = − ( 02 ) in (Z1 ∩ Z2)\H4

λ̃β1 − λ̃β2 = − ( 02 ) in (Z1 ∩ Z2)\H1

λ̃α1 − λ̃β1 =
{

( 00 ) in Z1 ∩H3

− ( 20 ) in Z1 ∩H1

λ̃α2 − λ̃β2 =
{

( 00 ) in Z2 ∩H3

− ( 20 ) in Z2 ∩H1

λ̃α1 − λ̃β2 =
{
− ( 02 ) in Z1 ∩ Z2 ∩H3

− ( 22 ) in Z1 ∩ Z2 ∩H1

λ̃α2 − λ̃β1 =
{
− ( 02 ) in Z1 ∩ Z2 ∩H3

− ( 22 ) in Z1 ∩ Z2 ∩H1

.
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(a) ε = 1 (b) ε = 1
2

(c) ε = 1
4

(d) ε = 1
8

Figure 4.5: Illustration of periodicity on a spherical zone: We plot the function Dε as
defined on page 120 with respect to the atlas constructed in Section 4.3.4.
The dark color corresponds to the value of 1, the light color to the value of 0.

4.3.6 Lemma.
For ε ∈ { 1n ;n ∈ N}, the atlas

A := {(Z1\H4, λ̃α1), (Z2\H4, λ̃α2), (Z1\H1, λ̃β1), (Z2\H1, λ̃β2)}

satisfies the UC-criterion.

Proof. The calculation from above shows that for each choice of i, j ∈ {α1, α2, β1, β2}
there exists δij , γij ∈ {−1, 0, 1} such that λ̃i = λ̃j + 2δije1 + 2γije2 on the domain where
the charts overlap. Thus

λ̃i = λ̃j + ε · 2δij
ε
e1 + ε · 2γij

ε
e2.

Since 2δij
ε ,

2γij
ε ∈ Z for all ε ∈ { 1n ;n ∈ N}, the UC-criterion is fulfilled for the atlas A . �

4.3.7 Remark.
As a note, we would like to point out that a consideration of a full sphere is not possible
without further technicalities. This is not a limitation of the method presented in this
chapter, but a limitation of the spherical coordinates itself. They do not allow a unique
representation of the north- and south-poles, hence of the full sphere.
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Figure 4.6: Illustration of another choice of the Function D on the reference cell [0, 1]2.
The dark color corresponds to the value of 1, the light color to the value of 0.

4.3.5 Example for a Periodic Function on a Spherical Zone

In order to illustrate what we mean by a function to be “periodic” in non-flat coordinates,
or εA -periodic, choose a function D : Y −→ R which is periodically extended (in the
usual sense). For example, D might represent heat conductivity or permeability of a
composite material. Then define for ε ∈ { 1n ;n ∈ N}

Dε : Z −→ R

x �−→ Dε(x) = D(

{
λ̃i(x)

ε

}
)

for x in the domain of λ̃i, i ∈ {α1, α2, β1, β2}. Due to the UC-criterion (see Lemma 4.2.3),
the function Dε is well defined on Z. For the unfolding of that function, we obtain
T ε

A (Dε)(x, y) = D(y). This clarifies the notion that a function is periodic with respect to
some chart (or atlas).

To give an even more concrete example, we specify the function D as

D(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 for 0 ≤ y1 <

1
2 and 0 ≤ y2 <

1
2

0 for 1
2 ≤ y1 < 1 and 1

2 ≤ y2 < 1

1 for 0 ≤ y1 <
1
2 and 1

2 ≤ y2 < 1

1 for 1
2 ≤ y1 < 1 and 0 ≤ y2 <

1
2

.

This function is illustrated in Figure 4.4. Applied to the spherical zone, we obtain Figure
4.5. Another choice for D is given in Figure 4.6, with the corresponding spherical zones
shown in Figure 4.7.
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(a) ε = 1
2

(b) ε = 1
4

Figure 4.7: Illustration of periodicity on a spherical zone: This structure is obtained by a
similar function Dε, where the corresponding ”base”-function is depicted in
Figure 4.6. The dark color corresponds to the value of 1, the light color to
the value of 0.

4.4 Application to a Reaction-Diffusion-Problem

In this section we show how one can apply the results for the unfolding operator T ε
A to a

simple (standard) elliptic homogenization problem. One can think of this problem as the
stationary solution to a heat conduction or reaction-diffusion problem on an εA -periodic
manifold.

To fix the notation, let M ⊂ Rm be a n-dimensional Riemannian manifold (with boundary)
of class C2. We assume the boundary ∂M of M to be sufficiently smooth. Denote the
atlas by

A = {(Uα, φα);α ∈ I}
with some index set I and the charts φα : Uα −→ Vα. On M , let there be given a smooth
Riemannian metric gM ∈ Γ(TM∗⊗TM∗). Moreover, denote by Y := [0, 1)n the reference
cell in Rn. Finally, we assume that the structure we are investigating is εA -periodic,
where the atlas A fulfills the UC-criterion.
As an example, the reader can keep the spherical zone together with the atlas from the
preceding section in mind.

Let D ∈ C#(Y ) be a fixed periodic function such that 0 < d0 ≤ D ≤ D0 for some
positive constants d0 and D0. For ε > 0 we define the function Dε : M −→ R via
Dε(x) := D

({
φα(x)

ε

})
for x ∈ Uα. Due to the UC-condition we obtain D

({
φα(x)

ε

})
=

D
({

φβ(x)
ε

})
for x ∈ Uα∩Uβ . Thus, the functionDε is well-defined. Dε can be interpreted

as heat conductivity or diffusivity of M for fixed ε > 0.

Let c > 0 be a constant and let f ∈ L2(M) be a source term. We are considering the
problem: Find uε ∈ H1

0 (M) with

− divM (Dε∇M uε) + cuε = f in M
uε = 0 on ∂M.

(4.11a)
(4.11b)
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The weak formulation of this problem reads as

∫
M

DεgM (∇M uε,∇M ϕ) dvolM +

∫
M

cuεϕ dvolM =

∫
M

fϕ dvolM ∀ϕ ∈ H1
0 (M). (4.12)

Formally, the weak formulation is obtained by multiplication of Equation (4.11a) with
a suitable test function ϕ and subsequent integration by parts, taking into account the
boundary condition (4.11b). Existence of a solution for fixed ε > 0 is obtained easily by
using the Lax-Milgram lemma.

4.4.1 A-priori Estimates and Limits

We have the following a-priori estimates:

4.4.1 Lemma.
There exists a constant C > 0 independent of ε such that

‖uε‖
H1(M)

≤ C.

Proof. We use ϕ = uε as a test function in the weak formulation (4.12). Due to the
bounds on D, we obtain

d0 ‖∇M uε‖2
L2TM

+ c ‖uε‖2
L2(M)

≤ Cδ ‖f‖2L2(M)
+ δ ‖uε‖2

L2(M)
.

Choosing δ = 1
2c, we obtain the desired bound with C2 =

Cδ‖f‖2L2(M)

min{d0, c2}
. �

Theorem 4.2.35 and the usual compactness results and embeddings now show that there
exits a u ∈ H1(M) and a û ∈ L2(M ;H1

#(Y )) such that along a subsequence

uε −⇀ u in H1(M)

uε −→ u in L2(M)

T ε
A (uε) −→ u in L2(M × Y )

T ε
A (∇M uε) −⇀ (∇M u)Y +∇(x)

Y û in L2(M ;L2TY ).

4.4.2 Lemma.
For the limit u we have u ∈ H1

0 (M), that is u = 0 on ∂M .

Proof. We have the embeddings H1(M) ↪→ H
1
2 (∂M) ↪→ L2(∂M), where the last embed-

ding is compact. This gives uε −→ u in L2(∂M), i.e.

u|∂M = lim
ε→0

(uε|∂M ) = 0

in the sense of L2(∂M). �



4.4 Application to a Reaction-Diffusion-Problem 123

4.4.2 The Limit Problem

In order to derive the limit problem, we choose two test functions ϕ1 ∈ C∞0 (M) and
ϕ2 ∈ C∞0 (M ; C∞# (Y )) and define

ϕε(x) := ϕ1(x) + εϕ2

(
x,

{
φα(x)

ε

})
for x ∈ Uα.

We need the following auxiliary result:

4.4.3 Lemma.
We have

• T ε
A (Dε)(x, y) = D(y),

• T ε
A (∇M ϕε) −→ (∇M ϕ1)Y +∇(x)

Y ϕ2 in L∞(M × Y ),

• T ε
A (ϕε) −→ ϕ1 in L∞(M × Y ).

Proof. Keeping Remark 4.2.7 about the explicit form of T ε
φα

in mind, we obtain for x ∈ Uα

T ε
A (Dε)(x, y) = D

⎛
⎝
⎧⎨
⎩
ε
[
φα(x)

ε

]
+ εy

ε

⎫⎬
⎭
⎞
⎠ = D(y).

Next, we have due to the unfolding rules for gradients (see Proposition 4.2.16)

T ε
A (∇M ϕε) = T ε

A (∇M ϕ1) +∇(x,ε)
Y T ε

A (ϕ2).

For the first term on the right hand side we obtain for x ∈ Uα the convergence

T ε
φα
(∇M ϕ1)(x, y) = T ε

φα
(
∑
i,j

gij
∂ϕ1

∂xi
∂

∂xj
)(x, y)

=
∑
i,j

T ε
φα
(gij)(x, y)︸ ︷︷ ︸
→gij(x)

T ε
φα
(
∂ϕ1

∂xi
)(x, y)︸ ︷︷ ︸

→ ∂ϕ1
∂xi

∂

∂yj

−→
∑
i,j

gij(x)
∂ϕ1

∂xi
∂

∂yj
= (∇M ϕ1)Y

in C(M × Y ). For the second term, we have due to Remark 4.2.7

∇(x,ε)
Y T ε

φα
(ϕ2)(x, y) = ∇(x,ε)

Y ϕ2(φ
−1
α (ε

[
φα(x)

ε

]
+ εy), y)

=
∑
i,j

T ε
φα
(gij)(x, y)

∂ϕ2

∂yi
(φ−1

α (ε

[
φα(x)

ε

]
+ εy), y)

∂

∂yj
,
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where ∂ϕ2

∂yi
has to be understood as derivative with respect to the second variable. Since

T ε
φα
(gij)→ gij as well as

φ−1
α (ε

[
φα(x)

ε

]
︸ ︷︷ ︸

→φα(x)

+ εy︸︷︷︸
→0

) −→ φ−1
α (φα(x)) = x (4.13)

(due to the continuity of φα), we obtain by using the continuity of ∂ϕ2

∂yi
that

∇(x,ε)
Y T ε

φα
(ϕ2)(x, y) −→

∑
i,j

gij(x)
∂ϕ2

∂yi
(x, y)

∂

∂yj
= ∇(x)

Y ϕ2(x, y).

The last assertion follows along the same lines by using the boundedness of ϕ2, Re-
mark 4.2.7 and equation (4.13). �

We choose ϕ = ϕε as a test function in the weak formulation (4.12). Since all the terms
appearing under the integrals in (4.12) are bounded in L1(M) independently of ε, these
terms satisfy the UCM-criterion, and we can unfold the integral identity with respect to �.
Keeping in mind the rules for products (Lemma 4.2.9), for the unfolding of gradients
(Proposition 4.2.16) and for the unfolding of the Riemannian metric (Proposition 4.2.15),
we obtain the expression

1

|Y |

∫
M×Y

D(y)g
(x,ε)
Y

(
T ε

A (∇M uε), T ε
A (∇M ϕε)

)
(x, y) T ε

A (
√
|G|)(x, y) dy dx

+
1

|Y |

∫
M×Y

cT ε
A (uε)(x, y)T ε

A (ϕε)(x, y) T ε
A (
√
|G|)(x, y) dy dx

=
1

|Y |

∫
M×Y

T ε
A (f)(x, y)T ε

A (ϕε)(x, y) T ε
A (
√
|G|)(x, y) dy dx+ r(ε)

with r(ε) → 0 as ε → 0. Taking the limit on both sides and keeping in mind the
convergence statements from above, one obtains the two-scale formulation of the limit
problem

1

|Y |

∫
M×Y

D(y)g
(x)
Y

(
(∇M u)Y +∇(x)

Y û, (∇M ϕ1)Y +∇(x)
Y ϕ2

)
dy dvolM

+

∫
M

cuϕ1 dy dvolM =

∫
M

fϕ1 dy dvolM .

(4.14)

By density of test functions, this holds for all (ϕ1, ϕ2) ∈ H1
0 (M)× L2(M ;H1

#(Y )). Since
the structure of the limit problem is not clear due to the first term, we give the strong
formulation in the next theorem:
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4.4.4 Theorem.
The limit function u satisfies the homogenized equation

− divM (B∇M u) + cu = f in M

u = 0 on ∂M,
(4.15)

where the linear operator B is constructed with the help of the following parameter-
dependent cell problem: For fixed x ∈ M and i = 1, . . . , n, find wi(x) ∈ H1

#(Y )\R,
solution of

− div
(x)
Y (D(y)∇(x)

Y wi(x, y)) = div
(x)
Y (D(y)

∂

∂yi
) in Y

y �−→ wi(x, y) is Y -periodic.

Then we define a tensor A as Ak
i (x, y) :=

∑
j g

kj(x)∂wi

∂yj
(x, y), and the linear operator B

as

Bk
i (x) :=

∫
Y

D(y)(δki +Ak
i (x, y)) dy.

Moreover, the corresponding tensor B̃ with lowered index, i.e. B̃ki :=
∑

j gkjB
j
i is sym-

metric and positive definite.

Proof. Step 1 The cell problem:
We start with the weak formulation (4.14). Choosing ϕ1 = 0, one obtains
1
|Y |
∫
M×Y D(y)g

(x)
Y

(
(∇M u)Y + ∇(x)

Y û,∇(x)
Y ϕ2

)
dy dvolM = 0. Upon integration by

parts, this yields

−
∫

M×Y

div
(x)
Y

(
D
[
(∇M u)Y +∇(x)

Y û
])
ϕ2 dy dvolM = 0 ∀ϕ2 ∈ L2(M ;H1

#(Y )),

whose strong form is given by: For fixed x ∈M , find û(x) ∈ H1
#(Y ) such that

− div
(x)
Y (D(y)∇(x)

Y û(x, y)) = div
(x)
Y (D(y)(∇M u)Y (x, y)) in M

y �−→ û(x, y) is Y -periodic.
(4.16)

To ”factor out” the term (∇M u)Y , we construct a solution of the cell problem for
i = 1, . . . , n, given by: Find a solution wi(x) ∈ H1

#(Y )\R of

− div
(x)
Y (D(y)∇(x)

Y wi(x)(y)) = div
(x)
Y (D(y)

∂

∂yi
) in Y

y �−→ wi(x)(y) is Y -periodic.
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The weak formulation of this problem∫
Y

D(y)g
(x)
Y

(
∇(x)

Y wi,∇(x)
Y ϕ

)
dy = −

∫
Y

D(y)g
(x)
Y

( ∂

∂yi
,∇(x)

y ϕ
)
dy ∀ϕ ∈ H1

#(Y )\R

(4.17)
is well defined in the indicated function space and thus a solution wi exists, which is
unique up to constants (see also Lemma 4.4.6 and Section 4.4.3 for a detailed investigation
of the cell problem). Define û(x, y) =

∑
iwi(x, y)(∇M u(x))i. The following calculation

shows that this û is a solution of (4.16): While the periodicity in the variable y is obvious,
we have

− div
(x)
Y (D∇(x)

Y û) = −
n∑

i=1

(∇M u)i div
(x)
Y (D∇(x)

Y wi)

= div
(x)
Y

(
D

n∑
i=1

(∇M u)i
∂

∂yi

)
= div

(x)
Y (D(∇M u)Y ).

Step 2 The homogenized problem:
We now choose ϕ2 = 0 in (4.14) to obtain 1

|Y |
∫
M×Y D(y)g

(x)
Y

(
(∇M u)Y +

∇(x)
Y û, (∇M ϕ1)Y

)
dy dvolM +

∫
M cuϕ1 dy dvolM =

∫
M fϕ1 dy dvolM . Inserting

û and using Lemma 4.2.33, this is equivalent to

1

|Y |

∫
M×Y

D(y)gM

(
∇M u+

n∑
i=1

(∇M u)i(∇(x)
Y wi)M ,∇M ϕ1

)
dy dvolM

+

∫
M

cuϕ1 dy dvolM =

∫
M

fϕ1 dy dvolM .

Upon an integration by parts, we obtain the following strong form:

− divM

(∫
Y

D[∇M u+

n∑
i=1

(∇M u)i(∇(x)
Y wi)M ] dy

)
+ cu = f in M

u = 0 on ∂M.

It remains to characterize the expression

K(x, y) := D(y)[∇M u(x) +

n∑
i=1

(∇M u(x))i(∇(x)
Y wi(x, y))M ].

Written component-wise, we obtain

K(x, y) =
∑
k

D(y)
(
(∇M u(x))k +

∑
i,j

(∇M u(x))igkj(x)
∂wi(x, y)

∂yj

) ∂

∂xk

=
∑
k,i,j

D(y)
(
δki (∇M u(x))i + (∇M u(x))igkj(x)

∂wi(x, y)

∂yj

) ∂

∂xk
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=
∑
k,i

D(y)
(
δki +

∑
j

gkj(x)
∂wi(x, y)

∂yj

)
(∇M u(x))i

∂

∂xk
.

Another expression is given by K(x, y) =
∑

k,iD(y)(δki + (∇(x)
Y wi(x, y))

k)(∇M u(x))i ∂
∂xk .

The part x �→ δki +
∑

j g
kj(x)∂wi(x,y)

∂yj
corresponds to a linear map in tensorial notation.

We set A(x, y) := [
∑

j g
kj(x)∂wi(x,y)

∂yj
]ki . Since Id = [δki ]

k
i , we can apply (Id+A(·, y)) to

∇M u to obtain
K(·, y) = D(y)(Id+A)(∇M u).

Integrating over y, we get the expression B∇M u as stated in the theorem. Note however
that at this point we do not know if B is a real tensor, i.e. invariant under coordinate
changes. This is due to the fact that the lower index i stems from an index number (of
the function wi) and not from a tensorial expression itself. On the other hand, the upper
index k stems from a tensorial expression, and thus B is contravariant in this index.
We overcome this difficulty with the result of step 3: There it is shown that the expression
B̃ = [B̃ki], corresponding to B with a lowered index k, is symmetric. Since B is
contravariant in k, B̃ is covariant in k and thus, due to the symmetry, also in i. Therefore
B has to be covariant in i as well, and B is finally a well-defined mixed tensor corresponding
to a linear map acting on vector fields.

Step 3 Properties of the homogenized linear operator:
Define B̃ki =

∑
j gkjB

j
i . In order to show that B̃ is symmetric, we start with the weak

formulation of the cell problem (4.17) for i = α, where we use ϕ = wβ as a test function
(α, β ∈ {1, . . . , n}),6∫

Y

D(y)g
(x)
Y

(
∇(x)

Y wα,∇(x)
Y wβ

)
dy = −

∫
Y

D(y)g
(x)
Y

( ∂

∂yα
,∇(x)

y wβ

)
dy.

In component notation, this reads as

∑
i,j

∫
Y

D(y)gij(∇(x)
Y wα)

i(∇(x)
Y wβ)

j dy = −
∑
j

∫
Y

D(y)gαj(∇(x)
Y wβ)

j dy.

Since gαj =
∑

i δ
i
αgij , above expression is equivalent to

∑
i,j

∫
Y

D(y)gij [(∇(x)
Y wα)

i + δiα](∇
(x)
Y wβ)

j dy = 0. (4.18)

Now we have

B̃βα =
∑
i

gβi[

∫
Y

D(y)(Id+A(·, y)) dy]iα =
∑
i

∫
Y

D(y)gβi

(
δiα +

∑
k

gik
∂wα

∂yk

)
dy

=
∑
i

∫
Y

D(y)gβi

(
δiα + (∇(x)

Y wα)
i
)
dy =

∑
i,j

∫
Y

D(y)δjβgij

(
δiα + (∇(x)

Y wα)
i
)
dy.

6We switch to greek letters for the index of the functions w in order to make the following considerations
more readable.
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Adding the expression (4.18), we get

B̃βα =
∑
i,j

∫
Y

D(y)gij

(
δjβ + (∇(x)

Y wβ)
j
)(
δiα + (∇(x)

Y wα)
i
)
dy.

We easily see that B̃βα = B̃αβ . Since α, β ∈ {1, . . . , n} is arbitrary, B̃ is symmetric.

Next, we show that B̃ is positive. To this end, let V be a vector field on M . Then

∑
α,β

B̃αβV
αV β =

∑
i,j,α,β

∫
Y

D(y)gij

(
δjβ + (∇(x)

Y wβ)
j
)(
δiα + (∇(x)

Y wα)
i
)
V αV β dy

=
∑
i,j

∫
Y

D(y)gij
∑
β

V β
(
δjβ + (∇(x)

Y wβ)
j
)∑

α

V α
(
δiα + (∇(x)

Y wα)
i
)
dy (4.19)

=
∑
i,j

∫
Y

D(y)gijζ
iζj dy ≥ 0

since D is positive and the gij ’s are the coefficients of a Riemannian metric. Here
ζi =

∑
β V

β
(
δjβ + (∇(x)

Y wβ)
j
)
.

We show that B̃ is definite: Let V again be a vector field on M and assume that V �= 0.
Let

∑
α,β B̃αβV

αV β = 0. Keeping in mind the definition of B̃, the index-free version of
the second line of the previous considerations (4.19) reads as

∑
α,β

B̃αβV
αV β =

∫
Y

D(y)gM ((Id+A)V, V ) dy =

∫
Y

D(y)gM ((Id+A)V, (Id+A)V ) dy

The assumption
∑

α,β B̃αβV
αV β = 0 is equivalent to gM ((Id+A)V, (Id+A)V ) = 0

due to the positivity of D. Using the transport operator, this is equivalent to
g
(x)
Y

(
(Ĩd+A)(V )Y , (Ĩd+A)(V )Y

)
= 0, which in turn is equivalent to (Ĩd+A)(V )Y = 0.

Here (Ĩd+A) is a map acting on a parameter-dependent vector field W on Y via

∑
i

W i(x, y)
∂

∂yi
�−→

∑
i,j

[δji + (∇(x)
Y wi(x, y))

j ]W i(x, y)
∂

∂yj
.

Consider for i = 1, . . . , n the auxiliary functions ηi : (Y −→ R)M given by ηi(x, y) =∑
j gij(x)y

i. It holds

∇(x)
Y ηi =

∑
k,l

gkl
∂ηi

∂yl
∂

∂yk
=
∑
k,l

∑
j

gklgij
∂yj

∂yl︸︷︷︸
=δjk

∂

∂yk

=
∑
k,l

gklgil︸ ︷︷ ︸
=δik

∂

∂yk
=

∂

∂yi
.
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Note that ηi corresponds to the function y �→ yi in the corresponding proof from
homogenization in Rn, and ∂

∂yi
corresponds to the unit vector ei.

With the help of this auxiliary function ηi, we obtain

0 = (Ĩd+A)(V )Y =
∑
i

∇(x)
Y (ηi − wi)V i =

∑
i

∇(x)
Y [(ηi − wi)V i],

since V i depends only on x ∈M and not on y ∈ Y . Therefore
∑

i(η
i − wi)V i = const.,

with a constant depending on x but not on y. This amounts to saying that∑
i

ηi(x, y)V i(x)− const(x) =
∑
i

wi(x, y)V i(x). (4.20)

Since V �= 0, there exists a x ∈M with V (x) �= 0. Then (using matrix notation)∑
i

ηi(x, y)V i(x) =
∑
i,j

gij(x)y
jV i(x)

=

⎛
⎜⎝V

1(x)
...

V n(x)

⎞
⎟⎠

T

G(x)

⎛
⎜⎝y

1

...
yn

⎞
⎟⎠

=

⎛
⎜⎝G(x)

⎛
⎜⎝V

1(x)
...

V n(x)

⎞
⎟⎠
⎞
⎟⎠

T

·

⎛
⎜⎝y

1

...
yn

⎞
⎟⎠ .

Since

(
V 1(x)

...
V n(x)

)
�= 0 and G(x) is invertible, G(x)

(
V 1(x)

...
V n(x)

)
is not equal to 0 as well and

thus ⎛
⎜⎝G(x)

⎛
⎜⎝V

1(x)
...

V n(x)

⎞
⎟⎠
⎞
⎟⎠

T

·

⎛
⎜⎝y

1

...
yn

⎞
⎟⎠ �= 0

for some choice of y �= 0. Especially, this expression is not Y -periodic in y. However, the
right hand side of (4.20) is periodic in y. Thus we have reached a contradiction. This
shows that

∑
α,β B̃αβV

αV β = 0 implies V = 0 and finishes the proof of the theorem. �

Why is the matrix B̃ so important? This is due to the fact that it appears ”naturally”
in the weak formulation of the homogenized problem: Upon multiplication with a test
function ϕ ∈ H1

0 (M) and integration by parts, problem (4.15) reads as∫
M

gM (B∇M u,∇M ϕ) dvolM +

∫
M

cuϕ dvolM =

∫
M

fϕ dvolM . (4.21)
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The first term can now be written in component notation as

gM (B∇M u,∇M ϕ) =
∑
i,j

∑
α

gijB
j
α(∇M u)α(∇M ϕ)i

=
∑
i,α

B̃iα(∇M u)α(∇M ϕ)i =: gB(∇M u,∇M ϕ).

Due to the properties of B̃, gB is a symmetric and coercive bilinear form on M , and the
lemma of Lax-Milgram can be applied to the weak formulation (4.21) above to obtain
the existence and uniqueness of a solution u.

As a corollary to the fact that the solution of the homogenized problem is unique, we
note:

4.4.5 Corollary.
The convergence properties from Section 4.4.1 hold for the whole sequence {uε}.

4.4.3 Dependence of the Cell Problem on the Parameter

We investigate the dependence of the solution of the cell problem wi on the parameter
x ∈M . As a preparation for the subsequent Section 4.4.4, we will deal with a generalized
cell problem. In order to carry out the proofs with full mathematical rigor, we need to
distinguish between two different Riemannian metrics on the reference cell Y : First, the
metric induced by the Euclidean scalar product on Rn (i.e. with metric coefficients δij).
To indicate the use of this metric, we write the reference cell as Y in the corresponding
spaces. Second, we need the reference cell with metric given by the coefficients gij(x),
where x ∈M is fixed. For this we will use Y (x) as notation. Note that since Y (considered
as a set) is compact, both metrics are equivalent. In Lemma 4.4.7, we will show that
the corresponding constants can be chosen independently of x ∈M . Please note that we
need at least C2-regularity for the charts and the atlas in this section.

For a given vector field Q ∈ L2TY in Y (see Section 4.6.4 for the notation) consider the
problem: Find wx

Q ∈ H1
#(Y )/R such that for fixed x ∈M

− div
(x)
Y (DY ∇(x)

Y wx
Q) = div

(x)
Y (DYQ) in Y

y �−→ wx
Q(y) is Y -periodic.

(4.22a)

(4.22b)

We will also use the notation wQ(x, y) = wx
Q(y). The weak formulation of this problem is

given by: Find wx
Q ∈ H1

#(Y )/R such that∫
Y

D(y)g
(x)
Y (∇(x)

Y wx
Q,∇

(x)
Y φ) dy = −

∫
Y

D(y)g
(x)
Y (Q,∇(x)

Y φ) dy (4.23)

for all φ ∈ H1
#(Y )/R.

We begin with some preparatory results:
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4.4.6 Lemma.
There exists a unique solution of Problem (4.23) in H1

#(Y )/R, i.e. the solution is unique
up to constants in H1

#(Y ).

Proof. Define for u, v ∈ H1
#(Y )/R and fixed x ∈M the bilinear form

a(u, v) :=

∫
Y

D(y)g
(x)
Y (∇(x)

Y u,∇(x)
Y v) dy

and the linear map

b(v) = −
∫
Y

D(y)g
(x)
Y (Q,∇(x)

Y v) dy.

Since 0 < d0 ≤ D ≤ D0 and g(x)Y is a scalar product, we obtain by the Cauchy-Schwarz
inequality

|b(v)| ≤ D0

∫
Y

g
(x)
Y (Q,∇(x)

Y v) d ≤ D0

(∫
Y

g
(x)
Y (Q,Q) dy

) 1
2
(∫
Y

g
(x)
Y (∇(x)

Y v,∇(x)
Y v) dy

) 1
2
.

The next lemma shows that
∫
Y g

(x)
Y (∇(x)

Y v,∇(x)
Y v) dy ≤ C‖∇(x)

Y v‖2
L2TY

, where TY is
endowed with the standard metric induced by Rn. Since Q ∈ L2TY , we have similarly∫
Y g

(x)
Y (Q,Q) dy ≤ C ‖Q‖2

L2TY
<∞. Thus b is a linear and continuous map on H1

#(Y )/R.

Arguing similarly for a, one obtains |a(u, v)| ≤ C‖∇(x)
Y u‖L2TY ‖∇(x)

Y v‖L2TY , which shows
that a is bilinear and continuous. Using the subsequent lemma again, one gets

c
∥∥∥∇(x)

Y u
∥∥∥2

L2TY

≤ d0

∫
Y

g
(x)
Y (∇(x)

Y u,∇(x)
Y u) dy ≤ a(u, u).

Since ‖·‖
L2TY

and ‖·‖
L2TY (x) are equivalent norms (with a constant independent of x ∈M),

we can use the Poincaré inequality ‖u‖
H1

#(Y (x))/R
≤ C‖∇(x)

Y u‖L2TY (x) to obtain that a is
coercive as well. Now the Lemma of Lax-Milgram yields the existence of a weak solution
of the generalized cell problem. �

4.4.7 Lemma.
The norms ‖·‖

L2(Y )
and ‖·‖

L2(Y (x))
as well as ‖·‖

L2TY
and ‖·‖

L2TY (x) are equivalent, where
the constant in the estimate does not depend on x ∈M .

Proof. We start by showing that there exist constants d0, D0 > 0 independent of x ∈M
such that

d0|ξ|2 ≤
∑
i,j

gij(x)ξ
iξj ≤ D0|ξ|2 holds for ξ ∈ Rn.
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To this end, set S := {ξ ∈ Rn : |ξ|2 = 1}. S is compact. Since M is compact as well, the
set M × S is compact by Tychonov’s Theorem. Define

Λ :M × S −→ R

(x, ξ) �−→
∑
i,j

gij(x)ξ
iξj .

Λ is clearly continuous on a compact set, thus there exists d0 := minM×S Λ and D0 :=
maxM×S Λ <∞. Since the metric g is (pointwise) positive definite, Λ > 0 and therefore
d0 > 0. Replacing ξ by η

|η| , η ∈ Rn arbitrary, one obtains

d0|η|2 ≤
∑
i,j

gij(x)η
iηj ≤ D0|η|2

with constants independent of x ∈ M . Similarly, x �→
√
| detG(x)| is continuous

on the compact set M with
√

detG(x) > 0 for x ∈ M , thus there exist d̃0 :=
minx∈M

√
detG(x) > 0 and D̃0 := maxx∈M

√
detG(x) <∞.

Now for f ∈ L2(Y ) we obtain

d̃0 ‖f‖2L2(Y )
= d̃0

∫
Y

f2 dy ≤
∫
Y

f2
√
|G(x)| dy = ‖f‖2

L2(Y (x))

≤ D̃0

∫
Y

f2 dy = D̃0 ‖f‖2L2(Y )

(4.24)

and thus the equivalence of ‖·‖
L2(Y )

and ‖·‖
L2(Y (x))

with a constant independent of x ∈M .

Let F ∈ L2TY , then

d0 ‖F‖2L2TY
= d0

∫
Y

∑
i

(F i)2 dy ≤
∫
Y

∑
i,j

gij(x)F
iF j dy = ‖F‖2

L2TY (x)

≤ D0

∫
Y

∫
Y

∑
i

(F i)2 dy = D0 ‖F‖2L2TY
,

which gives the desired norm equivalence, again independent of x ∈M . �

4.4.8 Remark.
Note that the correct definition of the norm in L2TY (x) would be

‖F‖
L2TY (x) =

∫
Y

gij(x)F
iF j

√
|G(x)| dy.

However, arguing similarly as in (4.24), one can omit the factor
√
|G(x)| and still obtain

equivalent norms. This is done in this work.

4.4.9 Lemma.
The constant C in the Poincaré inequality ‖u‖

H1
#(Y (x))/R

≤ C‖∇(x)
Y u‖L2TY (x), where u ∈

H1
#(Y )/R, does not depend on x ∈M .
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Proof. The inverse matrix of G = [gij ] is positive definite as well. Thus arguing as in the
preceding proof, one obtains positive constants d̂0, D̂0 such that

d̂0|η|2 ≤
∑
i,j

gij(x)ηiηj ≤ D̂0|η|2.

This gives for u ∈ H1(Y )

d̂0 ‖∇Y u‖2L2TY
= d̂0

∫
Y

∑
i

( ∂u
∂yi

)2
dy ≤

∫
Y

gij(x)
∂u

∂yi
∂u

∂yj
dy =

∥∥∥∇(x)
Y u

∥∥∥2
L2TY

≤ D̂0

∫
Y

∑
i

( ∂u
∂yi

)2
dy = D̂0 ‖∇Y u‖2L2TY

.

For u ∈ H1
#(Y )/R we obtain due to Poincarés inequality

‖u‖2
H1

#(Y (x))
= ‖u‖2

L2(Y (x))
+ ‖∇(x)

Y u‖2
L2TY (x) ≤ C ‖u‖2

L2(Y )
+ C ‖∇Y u‖2L2TY

≤ C ‖∇Y u‖2L2TY
≤ C‖∇(x)

Y u‖2L2TY ,

where all the appearing constants are independent of x ∈M . �

We prove the following estimate for the solution of the cell problem:

4.4.10 Lemma.
There exists a constant C > 0, independent of x ∈M , such that for the solution wx

Q of
(4.22) it holds

‖wQ(x, ·)‖L2(Y )
+ ‖∇(x)

Y wQ(x, ·)‖L2TY ≤ C.

Proof. Use φ = wx
Q as a test function in (4.23). With the notation of the proof of Lemma

4.4.6, we obtain

c‖∇(x)
Y wx

Q‖2L2TY ≤ a(wx
Q, w

x
Q) = b(wx

Q) ≤ D0 ‖Q‖L2TY
‖∇(x)

Y wx
Q‖L2TY .

Using a scaled version of Young’s inequality, it holds

‖Q‖
L2TY

‖∇(x)
Y wx

Q‖L2TY ≤
δ

2
‖∇(x)

Y wx
Q‖2L2TY +

1

2δ
‖Q‖2

L2TY

for all δ > 0. Choosing δ = d0, we arrive at d0
2 ‖∇

(x)
Y wx

Q‖2L2TY
≤ C ‖Q‖2

L2TY
≤ C

independent of x. Now the Poincaré inequality and equivalence of norms shows that
‖wx

Q‖L2(Y ) ≤ C‖∇(x)
Y wx

Q‖L2TY ≤ C. �

The main idea to treat the dependence of wQ on the parameter x is the use of the Implicit
Function Theorem for Banach Spaces. Similar arguments can be found in [Dob09] or in
the dissertation thesis of Heuser [Heu08]. For the convenience of the reader, we recall the
main theorem here:

4.4.11 Theorem (Implicit Function Theorem).
Let X,Y and Z be Banach spaces over R. Let F : U(x0, y0) ⊆ X×Y −→ Z be a mapping
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defined on an open neighbourhood U(x0, y0) of x0 ∈ X, y0 ∈ Y with F(x0, y0) = 0. Assume
that the total derivative in y-direction DyF exists in U(x0, y0), and ((DyF)(x0, y0))−1

exists as a continuous linear operator. Assume also that F and DyF are continuous in
(x0, y0). Then the following holds:

1. There exist r0, r > 0 such that: For all x ∈ X with ‖x− x0‖X ≤ r0 there exists
exactly one y(x) ∈ Y with F(x, y(x)) = 0 and ‖y(x)− y0‖Y ≤ r.

2. If F is m-times continuously differentiable in a neighbourhood of (x0, y0), then y(·)
is also m-times continuously differentiable in a neighborhood of x0.

3. For the derivative Dxy(x) it holds

Dxy(x) = −DyF(x, y(x))−1 ◦ DxF(x, y(x)). (4.25)

Proof. See Zeidler [Zei86], Theorem 4.B. �

Since the manifold M is not a Banach space and thus no valid parameter space for the
theorem above, we have to recast the problem in local coordinates: To this end, let
ϕ : U ⊂M −→ V be a chart. Considering the cell problem locally around ϕ(x) = z in V ,
we obtain the equation

− div
(ϕ−1(z))
Y (D(y)∇(ϕ−1(z))

Y wQ(ϕ
−1(z), y)) = div

(ϕ−1(z))
Y (D(y)Q(y)).

This leads to an operator D with

D : V ×H1
#(Y )/R −→ (H1

#(Y )/R)′

(z, w) �−→ − div
(ϕ−1(z))
Y (D∇(ϕ−1(z))

Y w +DQ)

such that for the solution of the cell problem w
(ϕ−1(z))
Q it holds D(ϕ−1(z), w

(ϕ−1(z))
Q ) = 0.

In order not to obfuscate the notation in the sequel, we will write wQ(z, ·) and gij(z) etc.
to express the functions locally, i.e. wQ(z, ·) := wQ(ϕ

−1(z), ·), gij(z) := gij(ϕ
−1(z)) and

so on. The following lemmas show that the prerequisites of Theorem 4.4.11 are fulfilled.

4.4.12 Lemma.
Choose (z0, w0) ∈ V ×H1

#(Y )/R. The total derivative DwD exists, and (DwD(z0, w0))
−1

exists as a continuous linear operator.

Proof. The operator D is linear, thus its derivative is the operator itself: DwD(z0, w0)[w] =
D(z0, w) for w ∈ H1

#(Y )/R. For h ∈ (H1
#(Y )/R)′, the lemma of Lax-Milgram gives the

unique solvability of D(z0, w) = h, see Lemma 4.4.6. Thus (DwD(z0, w0))
−1 exists.

The usual estimates show that for the solution ‖w‖
H1

#(Y )/R
≤ C ‖h‖

(H1
#(Y )/R)′ , therefore

(DwD(z0, w0))
−1 is continuous as well. A similar proof with more details can be found in

[Dob09]. �

4.4.13 Lemma.
Choose (z0, w0) ∈ V ×H1

#(Y )/R. D and DwD are continuous in (z0, w0).
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Proof. Let zn → z0 in Rn and wn → w0 in H1
#(Y )/R. We have to estimate the operator

norm ‖D(zn, wn)−D(z0, w0)‖. Now

‖D(zn, wn)−D(z0, w0)‖ = sup
‖φ‖H1

#(Y )/R≤1

∣∣∣∫
Y

Dg
(zn)
Y (∇zn

Y wn,∇zn
Y φ) dy

−
∫
Y

Dg
(z)
Y (∇(z)

Y w,∇z
Y φ) dy

∣∣∣
= sup

‖φ‖H1
#(Y )/R≤1

∣∣∣∫
Y

D
( n∑
i,j=1

gij(zn)
∂wn

∂yi
∂φ

∂yj
−

n∑
i,j=1

gij(z)
∂w0

∂yi
∂φ

∂yj
)∣∣∣

≤ sup
‖φ‖H1

#(Y )/R≤1

[∣∣∣∫
Y

D
n∑

i,j=1

(
gij(zn)− gij(z)

)∂wn

∂yi
∂φ

∂yj
dy
∣∣∣

+
∣∣∣∫
Y

D
n∑

i,j=1

gij(z)
(∂wn

∂yi
− ∂w0

∂yi

) ∂φ
∂yj︸ ︷︷ ︸

=g
(z)
Y ∇(z)

Y (wn−w0),∇(z)
Y φ)

dy
∣∣∣
]

≤ sup
‖φ‖H1

#(Y )/R≤1

(
CD0 sup

i,j
|gij(zn)− gij(z)| ‖wn‖H1

#(Y )/R
‖φ‖

L2(Y )

+ CD0

∥∥∥∇(z)
Y (wn − w0)

∥∥∥
L2(Y )

∥∥∥∇(z)
Y φ

∥∥∥
L2(Y )

)
≤ CD0 sup

i,j
|gij(zn)− gij(z)| ‖wn‖H1

#(Y )/R
+ CD0 ‖wn − w0‖H1

#(Y )/R
−→ 0,

since gij ◦ ϕ−1 is continuous. This shows that D is continuous. Arguing similarly for
DwD , one obtains

‖DwD(zn, wn)−DwD(z0, w0)‖ = sup
‖φ‖H1

#(Y )/R≤1
‖DwD(zn, wn)[φ]−DwD(z0, w0)[φ]‖(H1

#(Y )/R)′

= sup
‖φ‖H1

#(Y )/R≤1
‖D(zn, φ)−D(z0, φ)‖(H1

#(Y )/R)

≤ CD0 sup
i,j
|gij(zn)− gij(z)| −→ 0.

Thus DwD is continuous as well. �

4.4.14 Lemma.
Choose (z0, w0) ∈ V ×H1

#(Y )/R. D is continuously differentiable in (z0, w0).

Proof. We start by considering the partial derivatives in z first: Let h ∈ H1
#(Y )/R and

el be the l-th unit vector with l ∈ {1, . . . , n}. Lowering the index in the vector field Q,
we obtain

D(z0, w0)(h) =

∫
Y

D
n∑

i,j=1

gij(z0)(
∂w0

∂yi
+

n∑
k=1

gik(z0)Q
k)
∂h

∂yj
dy
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and thus

∂

∂zl
(D(z0, w0)(h)) = lim

δ→0

D(z0 + δel, w0)−D(z0, w0)

δ

= lim
δ→0

∫
Y

D

n∑
i,j=1

gij(z0 + δel)− gij(z0)
δ

(∂w0

∂yi

+
n∑

k=1

gik(z0 + δel)− gik(z0)
δ

Qk
) ∂h
∂yj

dy

=

∫
Y

D

(
n∑

i,j=1

(gij)′(z0)
(∂w0

∂yi
+

n∑
k=1

gik(z0)Q
k
)

+ gij(z0)

n∑
k=1

(gik)
′(z0)Q

k

)
∂h

∂yj
dy.

by the product rule. The limit exists by Lebesgue’s dominated convergence theorem,
since the gij ◦ ϕ−1’s and the gij ◦ ϕ−1’s are continuously differentiable and bounded. We
see that

∂

∂zl
D(z0, w0) : V ×H1

#(Y )/R −→ (H1
#(Y )/R)′.

Since (gij ◦ ϕ)′ and (gij ◦ ϕ)′ are continuous for i, j = 1, . . . , n, arguing as in the proof
of Lemma 4.4.13 yields that ∂

∂zl
D is continuous. l is arbitrary, thus DzD exists as a

continuous operator. The other direction DwD has been treated before. �

We are now ready to proof the main theorem:

4.4.15 Theorem.
For the solution wQ of the cell problem (4.22) it holds

wQ ∈ Ω1
0(M,H1

#(Y )/R).

Note that a result like wQ ∈ C1(M ;H1
#(Y )/R) would not be meaningful, since it is

not clear in which sense the derivative of wQ has to be understood. Therefore we have
to consider the derivatives of wQ locally and ”patch” them together in a way which is
automatically independent of the actual coordinate description.

Proof. Due to Lemmas 4.4.12 and 4.4.13, we can apply the implicit function theorem
to obtain that the the solution of the equation D(z, w) = 0 can be parametrized by
a function w ∈ C(V,H1

#(Y )/R). w is a solution of problem (4.22) for x = ϕ−1(z),
z ∈ V fixed. By uniqueness of this solution, it has to hold w(z, y) = wQ(ϕ

−1(z), y).
Thus wQ(ϕ

−1(·), ·) ∈ C(V ;H1
#(Y )/R), which leads (via pullback to the manifold) to

wQ ∈ C(U ;H1
#(Y )/R). Since the chart (and therefore U) are arbitrary, the estimate from

Lemma 4.4.10 shows that

wQ ∈ C(M ;H1
#(Y )/R) = Ω0

0(M,H1
#(Y )/R).
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We now consider the partial derivative ∂wQ(ϕ−1(z),y)

∂zl
. Keeping in mind Lemma 4.4.14, ∂wQ

∂zl

exists in C(V,H1
#(Y )/R) by the implicit funtion theorem. Employing equation (4.25), we

get (with el being the l’th unit vector)

∂wQ(ϕ
−1(z), y)

∂zl
= DzwQ(ϕ

−1(z), y)[el]

= −DwD(z, wQ(z, y))
−1 ◦ DzD(z, wQ)[e

l].

Thus ∂wQ

∂zl
solves (in weak formulation)

∫
Y

Dg
(z)
Y (∇(z)

Y

∂wQ(z)

∂zl
,∇(z)

Y φ) dy = −
∫
Y

D
( n∑
i,j=1

(gij(z))′(
∂wQ

∂yi
+

n∑
k=1

gik(z)Q
k)

+ gij(z)

n∑
k=1

(gik(z))
′Qk

) ∂h
∂yj

dy

for all h ∈ H1
#(Y )/R. Using φ =

∂wQ

∂zl
as a test function, using the coercivity of the left

hand side yields the estimate

d0

∥∥∥∥∇(z)
Y

∂wQ(z, ·)
∂zl

∥∥∥∥
L2TY

≤ CD0 sup
x∈M

i,j∈{1,...,n}

(|gij |+ |(gij)′|+ |(gij)′|)
∥∥∥∇(z)

Y wQ

∥∥∥
L2Y

·
∥∥∥∥∇(z)

Y

∂wQ(z)

∂zl

∥∥∥∥
L2TY

.

Therefore (arguing similarly as in the proof of Lemma 4.4.10 with Young’s inequality), by
Poincaré’s inequality we arrive at∥∥∥∥∂wQ(z, ·)

∂zl

∥∥∥∥
L2(Y )

+

∥∥∥∥∇(z)
Y

∂wQ(z, ·)
∂zl

∥∥∥∥
L2TY

≤ C,

where the constant C can be chosen independent of x ∈M .

We can now construct the exterior derivative dxwQ locally in ϕ(x) = z by setting

n∑
i=1

∂wQ

∂zi
dzi = ϕ∗(dxwQ)|U .

The representation formula in Proposition 4.6.26 shows that the left hand side defines
a form in Ω0

1(ϕ(U), H
1
#(Y )/R). By Definition 4.6.29, the arbitrariness of the chart ϕ

and the estimate above, this gives a form dxwQ ∈ Ω0
1(M,H1

#(Y )/R). This finishes the
proof. �

4.4.4 Equivalent Atlases

In this section we construct an equivalence relation between certain UC-atlases for M
and show that all equivalent atlases lead to the same limit problem (4.15). We begin
by considering the transformation behaviour of the cell problem. To this end, let Y and
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Z be two rectangular subsets of Rn, representing two reference cells. We assume both
cells to be equipped with the chart Id and denote the local basis vectors by ∂

∂yi
(for Y )

and ∂
∂zi

(for Z), i = 1, . . . , n. The corresponding dual forms are denoted by dyi and dzi,
respectively.

Let there be given two scalar functions DY : Y −→ R and DZ : Z −→ R, representing
e.g. material properties as above. In order to obtain the same ”physical” situation, DY

and DZ have to be related, see the next lemma.

4.4.16 Lemma.
Let φ : Y −→ Z be a coordinate transformation between the reference cells. As above,
define g(x)Y =

∑
i,j gij(x) dy

i⊗ dyj and g(x)Z =
∑

i,j gij(x) dz
i⊗ dzj and assume that there

exists a λ > 0 such that both metrics are related by λg(x)Z = φ∗g
(x)
Y . Furthermore, assume

that DZ = φ∗DY .

For given vector fields Q ∈ TY in Y and H ∈ TZ in Z consider the generalized cell
problems: Find wQ

Y ∈ H1
#(Y )/R and wH

Z ∈ H1
#(Z)/R such that for fixed x ∈M

− div
(x)
Y (DY ∇(x)

Y wQ
Y ) = div

(x)
Y (DYQ) in Y

y �−→ wQ
Y (x, y) is Y -periodic

(4.26a)

(4.26b)

and
− div

(x)
Z (DZ ∇(x)

Z wH
Z ) = div

(x)
Z (DZH) in Z

z �−→ wH
Z (x, z) is Z-periodic.

(4.27a)

(4.27b)

Then it holds

λφ∗w
Q
Y = wφ∗Q

Z as well as φ∗(∇(x)
Y wQ

Y ) = ∇
(x)
Z wφ∗Q

Z .

Proof. Keep the relations div(x)Z ◦φ∗ = φ∗ ◦div(x)Y as well as ∇(x)
Z ◦φ∗ = 1

λφ∗ ◦∇
(x)
Y in mind,

which hold due to the asserted relation between the metrics on Y and Z, see [AE01].
Application of φ∗ to equation (4.26a) now yields

−φ∗[div(x)Y (DY ∇(x)
Y wQ

Y )] = φ∗div
(x)
Y (DYQ)

⇐⇒ − div
(x)
Z (φ∗DY φ∗[∇(x)

Y wQ
Y ]) = div

(x)
Z (φ∗DY φ∗Q)

⇐⇒ − div
(x)
Z (DZ ∇(x)

Z (λφ∗w
Q
Y )) = div

(x)
Z (DZφ∗Q).

Since the solution of (4.27) (with H = φ∗Q) is unique (see Lemma 4.4.6), we obtain
λφ∗w

Q
Y = wφ∗Q

Z . Application of ∇(x)
Z to both sides of this identity finally gives

∇(x)
Z wφ∗Q

Z = λ∇(x)
Z (φ∗w

Q
Y ) = φ∗(∇(x)

Y wQ
Y ). �

4.4.17 Remark.
An analogous argument as in the proof above shows that for α, β ∈ R and H1, H2 ∈ TZ
it holds

αwH1
Z + βwH2

Z = wαH1+βH2

Z .

In the sequel, we assume the following:
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Sk

φ1 φ2

Figure 4.8: Illustration of Assumption 4.4.18. A 2-dimensional manifold (below) is mapped
to the unit cube in R2 with the help of two different atlases A 1 := {ϕ1} and
A 2 := {ϕ2}. The map Sk = ϕ2 ◦ ϕ−1

1 (see Example 4.4.25) can be extended
to a linear map R2 → R2.

4.4.18 Assumption.
Let the manifold M be equipped with two atlases A 1 = {φ1α : U1

α −→ V 1
α ;α ∈ I} and

A 2 = {φ2α : U2
α −→ V 2

α ;α ∈ Ĩ}, both satisfying the UC-criterium, with some finite index
sets I and Ĩ. Assume that whenever U1

α ∩ U2
β �= ∅ for some α ∈ I, β ∈ Ĩ, then the

coordinate transformation φ2β ◦ (φ1α)−1 is the restriction of some linear map F̃ : Rn −→ Rn

to V 1
α . The next lemma shows that this map F̃ is unique across different charts, thus

it is not restrictive to assume the existence of one linear map F : Rn −→ Rn such that
φ2β ◦ (φ1α)−1 = F |V 1

α
for all suitable index pairs.

Furthermore, assume that F |Y : Y −→ Z is a coordinate transformation between the
reference cells such that for the functions DY and DZ representing material properties,
we have DZ = (F |Y )∗DY .

Examples of situations which satisfy these assumptions will be given later. An illustration
is given in Figure 4.8. We now show the asserted uniqueness of the transformation F and
collect further results needed for subsequent derivations:

4.4.19 Lemma.
Let α, α̃ be two indices with V 1

α ∩ V 1
α̃ �= ∅. Choose β, β̃ such that U1

α ∩ U2
β �= ∅ and

U1
α̃ ∩ U2

β̃
�= ∅. Then φ2β ◦ (φ1α)−1 = φ2

β̃
◦ (φ1α̃)−1 in V 1

α ∩ V 1
α̃ . Thus the linear map F̃ is

unique for all index pairs.

Proof. Due to the UC-criterion, there exists K, K̃ ∈ Rn such that φ1α̃ = φ1α+K as well as
φ2
β̃
= φ2β + K̃. This implies (φ1α̃)

−1(·) = (φ1α)
−1(· −K), see also the proof of Lemma 4.2.4.

Since φ2β ◦ (φ1α)−1 as well as φ2
β̃
◦ (φ1α̃)−1 are supposed to be linear, it holds φ2β ◦ (φ1α)−1 =

D(φ2β ◦ (φ1α)−1) and φ2
β̃
◦ (φ1α̃)−1 = D(φ2

β̃
◦ (φ1α̃)−1), where D denotes the total derivative.
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By the chain rule, we obtain

D[φ2
β̃
◦ (φ1α̃)−1] = D[φ2β((φ

1
α)

−1(· −K)) + K̃] = D[φ2β ◦ (φ1α)−1].

This implies the asserted equality and the uniqueness of the linear map F̃ . �

The next lemma shows that the description of material properties is independent of the
atlas:

4.4.20 Lemma.
It holds

Dε(x) = DY (
φ1α(x)

ε
) = DZ(

φ2β(x)

ε
)

for x ∈ U1
α ∩ U2

β .

Proof. Since F = φ2β ◦ (φ1α)−1 is linear, one has
φ2
β◦(φ1

α)
−1(φ1

α(x))

ε = φ2β ◦ (φ1α)−1(φ
1
α(x)
ε ).

This gives

Dε(x) := DZ(
φ2β(x)

ε
) = DZ(

φ2β ◦ (φ1α)−1(φ1α(x))

ε
) = DZ(φ

2
β ◦ (φ1α)−1︸ ︷︷ ︸

=F

(
φ1α(x)

ε
))

= (F ∗DZ)(
φ1α(x)

ε
).

Since DZ = F∗DY ⇔ DY = F ∗DZ , the last expression is equal to DY (
φ1
α(x)
ε ), which

finishes the proof. �

In the sequel, we will use the index notation of coordinate transformations in differential
geometry (see e.g. Zeidler [Zei88] or Amann/Escher [AE01]): Let φ1α ∈ A1, φ

2
β ∈ A2 such

that U1
α ∩ U2

β �= ∅. Writing φ1α = (x1, . . . , xn) and φ2β = (x̃1, . . . , x̃n) for the components
of the charts, one uses the notation ∂x̃i

∂xj (x) to denote the ij-th entry of the Jacobian
matrix of φ2β ◦ (φ1α)−1 at φ1α(x), x ∈ U1

α ⊂M .

Note two peculiarities due to the Assumptions 4.4.18: First, ∂x̃i

∂xj (x) corresponds to the
ij-th entry in the matrix representation of the linear map F ; and second, due to Lemma
4.4.19, this value is constant on all of M . Furthermore, we will ”switch” between the
interpretations of φ2β ◦ (φ1α)−1 being a coordinate transformation for M and for Y without
using a specific notation.

4.4.21 Lemma.
It holds

(F |Y )∗g(x)Y = g
(x)
Z .

Proof. By the usual transformation rules for tensor fields, the Riemannian metric g on
M has the two local representations

g =
∑
i,j

gij dxi ⊗ dxj as well as g =
∑
i,j

g̃ij dx̃i ⊗ x̃j ,
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where the coefficients are related via the identity g̃lk =
∑

i,j gij
∂xi

∂x̃l
∂xj

∂x̃k . By the construction
of the induced metric on the reference cell, we obtain the metrics

g
(x)
Y =

∑
i,j

gij(x) dy
i ⊗ dyj and g

(x)
Z =

∑
i,j

g̃ij(x) dz
i ⊗ dzj .

Let X ∈ TZ be a vector field in Z, with local representation X =
∑

iX
i ∂
∂zi

. By the
transformation rules for vector fields, the local representation of F ∗X ∈ TY is given by∑

i(
∑

lX
l ∂xi

∂x̃l )
∂
∂yi

. We obtain for this X and a similar vector field Y ∈ TZ

[F∗g
(x)
Y ](X,Y ) = g

(x)
Y (F ∗X,F ∗Y ) =

∑
i,j

(
gij(x) · [

∑
l

X l ∂x
i

∂x̃l
] · [
∑
k

Y k ∂x
j

∂x̃k
]
)

=
∑
l,k

g̃lk(x)X
lY k = g

(x)
Z (X,Y ).

This shows that F∗g
(x)
Y = g

(x)
Z . �

4.4.22 Lemma.
For the volumes of the reference cells, the identity

|Y | = | det(F−1)| |Z|

holds.

Proof. Keeping in mind that F∗(dy1 . . .dyn) = | det(F−1)|dz1 . . .dzn, we obtain by the
transformation formula for integrals that

|Y | =
∫
Y

1 dy1 . . . dyn =

∫
Z

| det(F−1)| dz1 . . . dzn

= | det(F−1)|
∫
Z

1 dz1 . . . dzn = | det(F−1)| |Z|. �

We now present the main result of this section:

4.4.23 Theorem.
Under the Assumptions 4.4.18, the limit problem (4.15) is independent of the atlas Ai,
i = 1, 2.

Proof. Taking a look at the proof of Theorem 4.4.4 (and especially step 2), we have to show
that the expression 1

|Y |
∫
Y D[∇M u +

∑n
i=1(∇M u)i(∇(x)

Y wi)M ] dy has an ”appropriate”
transformation behaviour. Put in the framework used in this section, we have to compare
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the terms (see the expression K in the proof mentioned above)

∑
i,k

DY (δ
i
k + (∇(x)

Y wei
Y )k)(∇M u)i

∂

∂xk
and

∑
i,k

DZ(δ
i
k + (∇(x)

Z wei
Z )k)(∇M u)i

∂

∂x̃k
.

Note that here (∇M u)i in both formulas does not signify the same mathematical ex-
pression! In the first formula, (∇M u)i denotes the i-th component with respect to the
local basis ∂

∂xk , whereas in the second formula the same term is the i-th component
with respect to the local basis ∂

∂x̃k . To avoid this notational confusion, we use the
representation ∇M u =

∑
iX

i ∂
∂xi . Then, by the transformation rules for vector fields,

∇M u =
∑

i(
∑

lX
l ∂x̃i

∂xl )
∂
∂x̃i . Now we see that (∇M u)i = Xi in the first expression, and

(∇M u)i =
∑

lX
l ∂x̃i

∂xl =: X̃i in the second.

Step 1 Transformation of the individual terms:
We have

F∗[
∑
l,m

δml (∇M u)l
∂

∂xm
] = F∗[

∑
l,m

δml X
l ∂

∂xm
] =

∑
l,m,i,k

δkiX
l ∂x̃

i

∂xl
∂xm

∂x̃k
∂

∂xm
=
∑
i,k

δki X̃
i ∂

∂x̃k
.

Due to Lemma 4.4.21, we can use the transformation lemma for the cell problems (with
λ = 1, see Lemma 4.4.16) and Remark 4.4.17 to obtain

F∗[
∑
i,k

(∇(x)
Y wei

Y )kXi ∂

∂xk
] =

∑
i,k,m

(∇(x)
Y wei

Y )kXi (
∂x̃m

∂xk
∂

∂x̃m
)︸ ︷︷ ︸

= ∂

∂xk

=
∑
i,m

∑
k

∂x̃m

∂xk
(∇(x)

Y wei
Y )k

︸ ︷︷ ︸
=(F∗ ∇(x)

Y w
ei
Y )m

Xi ∂

∂x̃m

=
∑
i,m

(∇(x)
Z wF∗ei

Z )mXi ∂

∂x̃m

=
∑
i,m

(∇(x)
Z w

∑
k

∂x̃k

∂xi
ek

Z )mXi ∂

∂x̃m

=
∑
k,m

(∇(x)
Z wek

Z )m(
∑
i

Xi∂x̃
k

∂xi
)
∂

∂x̃m

=
∑
k,m

(∇(x)
Z wek

Z )mX̃k ∂

∂x̃m
.

Step 2 Transformation of the integrals:
Keeping in mind F∗DY = DZ , F∗(dy1 . . . dyn) = | det(F−1)|dz1 . . . dzn and the formulas
derived in step 1, we can apply the pushforward F∗ to the integral 1

|Y |
∫
Y DY [∇M u +
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∑n
i=1(∇M u)i(∇(x)

Y wei
Y )M ] dy to obtain

F∗
[ 1

|Y |

∫
Y

(∑
i,k

DY (δ
i
k + (∇(x)

Y wei
Y )k)(∇M u)i

∂

∂xk

)
dy1 . . . dyn

]

=
1

|Y |

∫
Z

F∗DY

(
F∗[
∑
i,k

δikX
i ∂

∂xk
] + F∗[

∑
i,k

(∇(x)
Y wei

Y )kXi ∂

∂xk
]
)
F∗[dy

1 . . . dyn]

=
1

|Y | | det(F
−1)|

∫
Z

DZ

(∑
l,m

δlmX̃
m ∂

∂x̃l
+ (∇(x)

Z wem
Z )lX̃m ∂

∂x̃l

)
dz1 . . . dzn.

Since | det(F−1)|
|Y | = 1

|Z| , we finally get that the last term is equal to

1

|Z|

∫
Z

DZ(
∑
i,k

δik + (∇(x)
Z wei

Z )k)X̃i ∂

∂x̃k
dz,

which is (written with respect to the local basis ∂
∂x̃k ) nothing else than 1

|Z|
∫
Z DZ [∇M u+∑n

i=1(∇M u)i(∇(x)
Z wei

Z )M ] dz. Thus we see that the expression constituting the ho-
mogenized problem is invariant under a change of the atlas which satisfies Assump-
tions 4.4.18. �

Before giving an example, we show that the class of atlases satisfying the assumptions
given above constitutes an equivalence relation:

4.4.24 Proposition.
Let A and B be two atlases for M , both satisfying the UC-criterion. We write A ∼ B
to denote that the couple (A ,B) satisfies the Assumptions 4.4.18. Then the relation ’∼’
is an equivalence relation on the set of UC-atlases.

This result tacitly assumes that there exist reference cells YA (belonging to A ) and YB

(belonging to B) etc. as well as ”material-property” functions DYA
and DYB

as stated
above.

Proof. Let A ,B,C be UC-atlases. Due to Lemma 4.4.19, we only have to consider a
suitable pair of charts for each atlas-combination. Therefore we are not going to consider
the domains and codomains of each chart explicitly.

Denote by FA B the linear map φB ◦ φ−1
A , which is obtained for charts φA ∈ A , φB ∈ B.

Since φA ◦ φ−1
A = Id, clearly FA A = Id. Due to Id∗DYA

= DYA
we have A ∼ A .

Now let A ∼ B. Due to the invertibility of the charts, FA B is invertible with
φA ◦ φ−1

B = (φB ◦ φ−1
A )−1 = F−1

A B. As FA B is linear, its inverse is linear as well and
therefore FBA = F−1

A B. If DYB
= (FA B)∗DYA

, application of (FBA )∗ to both sides of
the equality yields DYA

= (FBA )∗DYB
. Thus B ∼ A .

Finally, let A ∼ B and B ∼ C . For φC ∈ C we obtain

φC ◦ φ−1
A = φC ◦ φ−1

B︸ ︷︷ ︸
=FBC

◦φB ◦ φ−1
A︸ ︷︷ ︸

=FA B

,
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which gives the linear map FA C = FBCFA B. Due to

(FA C )∗DYA
= (FBC )∗(FA B)∗DYA

= (FBC )∗DYB
= DYC

,

we obtain A ∼ C . This concludes the proof. �

To give an example of a periodic homogenization with different atlases, consider the
following situation:

4.4.25 Example.
Let Ω ⊂ R2 be a domain. We equip Ω with two different atlases, each consisting of one
chart: A1 := {Id : Ω −→ Ω} as well as A2 := {Sk : Ω −→ Sk(Ω)}, where the map Sk is
given by

Sk : Rn −→ Rn(
x1
x2

)
�−→

(
x2
x1

)
.

As reference cells, we use Y1 = [0, 1]2 (for A1) and Y2 = [0, 1]2 (for A2). Furthermore,
let DY1 : Y1 −→ R be a function (representing material properties in the first reference
cell) and set DY2(y1, y2) := DY1(y2, y1).

Since Sk ◦ Id−1 = Sk : Ω −→ Sk(Ω) can be trivially extended to the linear map Sk,
defined on the whole of Rn, and since Sk : Y1 −→ Y2 is a coordinate transformation of
the reference cells such that DY2 = Sk∗DY1, the Assumption 4.4.18 is fulfilled. Letting
Dε(x) = DY1(

x
ε ) and f ∈ L2(Ω), the homogenization limit of the Problem (4.11)

Find uε ∈W 1,2
0 (Ω) such that:

− div(Dε∇uε) + cu = f in Ω

uε = 0 on ∂Ω

is identical with respect to both distinguished atlases A1 and A2.

4.4.26 Example.
In the situation of the preceding example, one can also consider A1 := {Id : Ω −→ Ω}
and A2 := {2 Id : Ω −→ 2 Id(Ω)}, with reference cells Y1 = [0, 1]2 as well as Y2 = [0, 2]2

and functions DY1 as above with DY2(y1, y2) = DY1(
y1
2 ,

y2
2 ). Here

2 Id : Rn −→ Rn(
x1
x2

)
�−→

(
2x1
2x2

)
.

4.5 Application to Multiscale Problems

In this section we show that the tools we developed for the unfolding on Riemannian
manifolds can be used together with the usual methods of periodic unfolding. To this
end, we consider a simple multiscale setting in R2, which is outlined in the sequel. We are
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ε

{ "δ"

Figure 4.9: Illustration of the multi-scale setting used in this section.

not going into details with the uniqueness and existence proofs as well as the estimates
for the solutions, but focus on the derivation of the effective equations.

Let Y1 := [0, 1]2 be a first reference cell, and let YS := B 1
3
(12 ,

1
2) ⊂ Y1 be an open ball of

radius 1
3 around the center of Y1. We consider YS to be a solid inclusion in the reference

cell and YF := Y \ȲS to be a part of the reference cell filled with a fluid. The boundary
between the two parts is denoted by Γ := ∂YS . Furthermore, let Y2 := [0, 1] be a second
reference cell. Let A = {ϕα, ϕβ} be an atlas for Γ as follows: We use the constructions
from Section 4.3.2 and define ϕi(x, y) = λi(3x, 3y), i = α, β. The inverse maps are then
given by ϕ−1

i = 1
3λ

−1
i , i = α, β. One can easily see that A fulfills the UC-criterion.

Now let Ω ⊂ R2 be the domain of interest. Choose two scaling parameters ε > 0 (for Y1)
and δ > 0 (for Y2). Set

Ωε := Ω ∩
∑
k∈Z2

ε(YF + k) and Γε := Ω̄ ∩
∑
k∈Z2

ε(Γ + k).

Let the two functions D : Ω × Y1 −→ R as well as DΓ : Ω̄ × Y2 −→ R be given. (They
correspond to the diffusivity in Ω and on Γ.) We assume that D and DΓ are continuous,
periodic with respect to the argument in the corresponding reference cell, and bounded
in the following way: Let there exist constants 0 < d0 < D0 and 0 < d1 < D1 such that
d0 ≤ D ≤ D0 as well as d1 ≤ DΓ ≤ D1.

Define Dε(x) := D(x,
{
x
ε

}
Y1
) as well as

Dεδ
Γ := DΓ

(
x,

{
ϕi(
{
x
ε

}
Y1
)

δ

}
Y2

)
,
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Y1

Y2

YF

YS

Γ

Figure 4.10: The reference cells used for the construction of the domain.

where i ∈ {α, β} is chosen such that
{
x
ε

}
Y1

is in the domain of ϕi. Due to the UC-criterion,

the expression
{

ϕi({x
ε}Y1 )
δ

}
Y2

is well-defined independently of i.

On Γε, we use the Riemannian metric g induced by the Euclidean scalar product. Thus
for the metric coefficient it holds g1,1 ≡ 1. This implies that (g

(y1,δ)
Y2

)11 ≡ 1 ≡ (g
(y1)
Y2

)11

and ∇(y1,δ)
Y2

= ∇(y1)
Y2

= ∇Y2 (independent of y1 ∈ Y1) as well.

4.5.1 Diffusion and Exchange on a Periodically Structured Boundary

We consider the following problem: For given right hand side f ∈ H1(0, T ;L2(Ω)), initial
values u0 ∈ H1(Ω) and u0,Γ ∈ H2(Ω) and exchange coefficients a, b > 0 find uεδ and uεδΓ
such that

∂tu
εδ − div(Dε∇uεδ) = f in Ωε (4.28a)

−Dε∇uεδ · ν = ε(auεδ − buεδΓ ) on Γε (4.28b)

uεδ = 0 on ∂Ω (4.28c)

uεδ(0, ·) = u0 in Ωε (4.28d)

as well as

∂tu
εδ
Γ − ε2 divΓ(Dεδ

Γ ∇Γ uεδΓ ) = auεδ − buεδΓ on Γε (4.29a)

uεδΓ (0, ·) = u0,Γ on Γε. (4.29b)

4.5.1 Proposition.
There exists a unique solution

uεδ ∈ L2(0, T ;H1(Ωε)), ∂tu
εδ ∈ L2(0, T ;L2(Ωε))

uεδΓ ∈ L2(0, T ;H1(Γε)) ∂tu
εδ
Γ ∈ L2(0, T ;L2(Γε))

of Problem (4.28), (4.29).
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Proof. This is a special case of Theorem 3.3.9 and the results in Section 3.3 (with obvious
modifications), where no evolution of the microstructure takes place (and thus F = Id). �

4.5.2 Proposition.
There exists a constant C > 0, independent of ε, δ, such that

‖uεδ‖L2(0, T ;L2(Ωε)) + ‖∇uεδ‖L2(0, T ;L2(Ωε)) ≤ C

ε‖uεδΓ ‖L2(0, T ;L2(Γε)) + ε
3
2 ‖∇Γ uεδΓ ‖L2(0, T ;L2(Γε)) ≤ C

}
(4.30)

as well as

‖∂tuεδ‖L2(0, T ;L2(Ωε)) + ‖∇ ∂tuεδ‖L2(0, T ;L2(Ωε)) ≤ C

ε‖∂tuεδΓ ‖L2(0, T ;L2(Γε)) + ε
3
2 ‖∇Γ ∂tu

εδ
Γ ‖L2(0, T ;L2(Γε)) ≤ C.

}
(4.31)

Proof. This is again a special case of the results for evolving hypersurfaces (with obvious
modifications), see Section 3.3.5. Equation (4.30) follows by inserting uεδ and uεδΓ as test
functions in the weak formulation of Problems (4.28) and (4.29), resp. To obtain (4.31),
one can differentiate the equations defining uεδ and uεδΓ , and use ∂tuεδ as well as ∂tuεδΓ as
test functions. �

Using the continuity of the unfolding operators and the compactness results for T ε, T ε
b

and T δ
A (cf. Theorems 4.2.29 and 4.2.35), we obtain that along a subsequence

T ε(uεδ) −→ u in L2(0, T ;L2(Ω× YF ))
T ε(∇uεδ) −⇀ ∇u+∇Y1 u1 in L2(0, T ;L2(Ω× YF ))
T ε
b (u

εδ) −⇀ u in L2(0, T ;L2(Ω× Γ))

T δ
A T ε

b (u
εδ
Γ ) −⇀ uΓ in L2(0, T ;L2(Ω× Γ))

εT δ
A T ε

b (∇Γ uεδΓ ) −⇀ (∇Y1,Γ uΓ)Y2 +∇Y2 uΓ,1 in L2(0, T ;L2(Ω× Γ× Y2))
T ε(∂tu

εδ) −⇀ ∂tu in L2(0, T ;L2(Ω× YF ))
T δ

A T ε
b (∂tu

εδ
Γ ) −⇀ ∂tuΓ in L2(0, T ;L2(Ω× Γ))

with functions

u ∈ L2(0, T ;H1(Ω))

u1 ∈ L2(0, T ;L2(Ω;H1
#(YF )))

uΓ ∈ L2(0, T ;L2(Ω;H1(Γ)))

uΓ,1 ∈ L2(0, T ;L2(Ω× Γ;H1
#(Y2))).

Now we choose test functions φ ∈ C([0, T ]; C∞0 (Ω)), φ1 ∈ C([0, T ]; C∞0 (Ω; C∞# (YF ))) as well
as φΓ ∈ C([0, T ]; C∞0 (Ω; C∞(Γ))), φΓ,1 ∈ C([0, T ]; C∞0 (Ω; C∞(Γ; C∞# (Y2)))) and construct

φε(t, x) = φ(t, x) + εφ1

(
t, x,

{x
ε

}
Y1

)
φεδΓ (t, x) = φΓ

(
t, x,

{x
ε

}
Y1

)
+ εφΓ,1

(
t, x,

{x
ε

}
Y1

,

{
ϕi(
{
x
ε

}
Y1
)

δ

}
Y2

)
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with i ∈ {α, β}. Note that T ε(φε)→ φ, T ε(∇φε)→ ∇φ+∇Y1 φ1. Moreover

T δ
A T ε

b (φ
ε
Γ)(t, x, y1, y2) = φΓ

(
t, ε
[x
ε

]
+ ε
(
ϕ−1
i (δ

[
ϕi(y1)

δ

]
+ δy2)

)
, ϕ−1

i

(
δ

[
ϕi(y1)

δ

]
+ δy2

))

+ εφΓ,1

(
t, ε
[x
ε

]
+ ε
(
ϕ−1
i (δ

[
ϕi(y1)

δ

]
+ δy2)

)
, ϕ−1

i

(
δ

[
ϕi(y1)

δ

]
+ δy2

)
, y2

)

−→ ϕΓ(t, x, y1)

(this convergence also holds in C([0, T ]× Ω× Y1 × Y2)) and

εT δ
A T ε

b (∇Γ φεΓ)(t, x, y1, y2) = T δ
A

(
∇Γ,Y1 T ε

b (φ
ε
Γ)
)
(t, x, y1, y2)

= T δ
A

(
∇Γ,Y1

[
φΓ

(
t, ε
[x
ε

]
+ εy1, y1

)
+ εφΓ,1

(
t, ε
[x
ε

]
+ εy1, y1,

{
ϕi(y1)

δ

}
Y2

)])

−→
(
(∇Γ,Y1 φΓ)Y2 +∇Y2 φΓ,1

)
(t, x, y1, y2),

cf. Lemma 4.4.3. Here we used the notation ∇(y1)
Y2

= ∇Y2 , since the operator on the left
hand side does not depend on y1.

We now come to the unfolding of the bulk problem. Its weak formulation (with test
function φε) is given by

T∫
0

∫
Ωε

∂tu
εδφε dx dt+

T∫
0

∫
Ωε

Dε∇uεδ∇φε dx dt

=

T∫
0

∫
Ωε

fφε dx dt− ε
T∫
0

∫
Γε

(auεδφε − buεδΓ φε) dσx dt.

Unfolding of the first term of the last integral on the right hand side with T ε
b , the second

term with T δ
A T ε

b , and unfolding of the remaining integrals with T ε (with respect to �)
yields

1

|Y1|

T∫
0

∫
Ω

∫
YF

T ε(∂tu
εδ)T ε(φε) dy1 dx dt

+
1

|Y1|

T∫
0

∫
Ω

∫
YF

T ε(Dε)T ε(∇uεδ)T ε(∇φε) dy1 dx dt

=
1

|Y1|

T∫
0

∫
Ω

∫
YF

T ε(f)T ε(φε) dy1 dx dt− 1

|Y1|

T∫
0

∫
Ω

∫
Γ

aT ε
b (u

εδ)T ε
b (φ

ε) dσy1 dx dt

+
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

bT δ
A T ε

b (u
εδ
Γ )T δ

A T ε
b (φ

ε) dy2 dσy1 dx dt.
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Passing to the limit, we obtain

1

|Y1|

T∫
0

∫
Ω

∫
YF

∂tu(t, x)φ(t, x) dy1 dx dt

+
1

|Y1|

T∫
0

∫
Ω

∫
YF

D(x, y1)(∇u(t, x) +∇Y1 u1(t, x, y1))

· (∇φ(t, x) +∇Y1 φ1(t, x, y1)) dy1 dx dt

=
1

|Y1|

T∫
0

∫
Ω

∫
YF

f(t, x)φ(t, x) dy1 dx dt− 1

|Y1|

T∫
0

∫
Ω

∫
Γ

au(t, x)φ(t, x) dσy1 dx dt

+
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

buΓ(t, x, y1)φ(t, x) dy2 dσy1 dx dt.

For the surface problem, we obtain in the weak form

T∫
0

∫
Γε

∂tu
εδ
Γ φ

εδ
Γ dσx dt+

T∫
0

∫
Γε

Dεδ
Γ ∇Γ uεδΓ ∇Γ φεδΓ dσx dt

=

T∫
0

∫
Γε

auεδφεδΓ dσx dt−
T∫
0

∫
Γε

buεδΓ φ
εδ
Γ dσx dt,

which upon multiplication with ε and unfolding with T δ
A T ε

b yields

1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

T δ
A T ε

b (∂tu
εδ
Γ )T δ

A T ε
b (φ

εδ
Γ ) dy2 dσy1 dx dt

+
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

T δ
A T ε

b (D
εδ
Γ )gY2

(
T δ

A (∇Y1,Γ T ε
b (u

εδ
Γ )),

T δ
A (∇Y1,Γ T ε

b (φ
εδ
Γ ))

)
dy2 dσy1 dx dt

=
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

aT δ
A T ε

b (u
εδ)T δ

A T ε
b (φ

εδ
Γ ) dy2 dσy1 dx dt

− 1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

bT δ
A T ε

b (u
εδ
Γ )T δ

A T ε
b (φ

εδ
Γ ) dy2 dσy1 dx dt.
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Passing to the limit, we obtain

1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

∂tuΓ(t, x, y1)φΓ(t, x, y1) dy2 dσy1 dx dt

+
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

DΓ(x, y2)gY2

(
(∇Y1,Γ uΓ(t, x, y1))Y2 +∇Y2 uΓ,1(t, x, y1, y2),

(∇Y1,Γ φΓ(t, x, y1))Y2 +∇Y2 φΓ,1(t, x, y1, y2)
)
dy2 dσy1 dx dt

=
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

au(t, x)φΓ(t, x, y1) dy2 dσy1 dx dt

+
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

buΓ(t, x, y1)φΓ(t, x, y1) dy2 dσy1 dx dt.

Using the techniques outlined previously in this work, we arrive at the following strong
form of the limit problem:

4.5.3 Theorem.
The limit functions u, uΓ satisfy the following problem:

P∂tu(t, x)−
1

|Y1|
div(D̃(x)∇u(t, x)) = Pf(t, x)− |Γ|

|Y1|
au(t, x)

+
1

|Y1|

∫
Γ

buΓ(t, x, y1) dσy1 in Ω

u = 0 on ∂Ω

u(0, ·) = u0 in Ω

with the matrix (D̃(x))ij = (
∫
YF
D(x, y1)(δij +

∂wi
∂y1,j

(x, y1)) dy1), P = |YF |
|Y1| and the cell

problem

− divY1(D(x, y1)∇Y1 wi(x, y1)) = divY1(D(x, y1)ei) in YF

D(x, y1)∇Y1 wi(x, y1) · ν = 0 on Γ

y1 �−→ wi(x, y1) is Y1-periodic,

together with

∂tuΓ(t, x, y1)− divY1,Γ(D̃Γ(x)∇Y1,Γ uΓ(t, x, y1)) = au(t, x)− buΓ(t, x, y1) on Γ

uΓ(0, x, ·) = u0,Γ(x),
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where D̃Γ(x) = (
∫
Y2
DΓ(x, y2)(1 +

∂w
∂y2

(x, y2)) dy2) and w fulfills

− divY2(DΓ(x, y2)∇Y2 w) = divY2(DΓ(x, y2) · 1) in Y2

y2 �−→ w(x, y2) is Y2-periodic.

4.5.2 Periodic Exchange Coefficient

In addition to the assumptions and constructions at the beginning of this section, let
h : Ω× Y2 −→ R be continuous. Define

hεδ(x) = h(x,

{
φi(
{
x
ε

}
Y1
)

δ

}
Y2

).

We consider the following problem with a periodic exchange coefficient: Find uεδ such
that

∂tu
εδ − div(Dε∇uεδ) = f in Ωε (4.32a)

Dε∇uεδ · ν = εDεδ
Γ (uεδ − hεδ) on Γε (4.32b)

uεδ = 0 on ∂Ω (4.32c)

uεδ(0, ·) = u0 in Ωε. (4.32d)

The following result can be obtained by standard methods:

4.5.4 Proposition.
Assume f ∈ H1(0, T ;L2(Ω)) and u0 ∈ H1(Ω). Let Dε and Dεδ

Γ be given as above.
Then there exists a unique weak solution uεδ ∈ L2(0, T ;H1(Ωε)) ∩ H1(0, T ;L2(Ωε)) of
Problem (4.32), and the estimate

‖uεδ‖L2(0, T ;H1(Ωε)) + ‖∂tuεδ‖L2(0, T ;L2(Ωε)) ≤ C

holds with a constant C > 0 independent of ε, δ.

Due to the compactness results, we obtain the following convergences (along subsequences):

T ε(uεδ) −→ u in L2(0, T ;L2(Ω× YF ))
T ε(∇uεδ) −⇀ ∇u+∇Y1 u1 in L2(0, T ;L2(Ω× YF ))
T ε(∂tu

εδ) −⇀ ∂tu in L2(0, T ;L2(Ω× YF )),

where u ∈ L2(0, T ;H1(Ω)), u1 ∈ L2(0, T ;L2(Ω;H1
#(YF ))). Note that

T δ
A T ε

b (D
εδ
Γ )(t, x, y1, y2) −→ DΓ(x, y2)

T δ
A T ε

b (h
εδ)(t, xy1, y2) −→ h(x, y2)
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uniformly. Using the test function φε as above, we obtain in the weak formulation

T∫
0

ε∫
Ω

∂tu
εδ dx dt+

T∫
0

ε∫
Ω

Dε∇uεδ∇φε dx dt

=

T∫
0

ε∫
Ω

fφε dx dt+ ε

T∫
0

∫
Γε

Dεδ
Γ (uεδ − hεδ)φε dσx dt.

Upon unfolding, we obtain with respect to �

1

|Y1|

T∫
0

∫
Ω

∫
YF

T ε(∂tu
εδ)T ε(φε) dy1 dx dt

+
1

|Y1|

T∫
0

∫
Ω

∫
YF

T ε(Dε)T ε(∇uεδ)T ε(∇φε) dy1 dx dt

=
1

|Y1|

T∫
0

∫
Ω

∫
YF

T ε(f)T ε(φε) dy1 dx dt+
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

T δ
A T ε

b (D
εδ)
(
T δ

A T ε
b (u

εδ)

− T δ
A T ε

b (h
εδ)
)
T δ

A T ε
b (φ

ε) dy2 dy1 dx dt.

Passing to the limit yields

1

|Y1|

T∫
0

∫
Ω

∫
YF

∂tu(t, x)φ(t, x) dy1 dx dt

+
1

|Y1|

T∫
0

∫
Ω

∫
YF

D(x, y1)(∇u(t, x) +∇Y1 u1(t, x, y1))

· (∇φ(t, x) +∇Y1 φ1(t, x, y1)) dy1 dx dt

=
1

|Y1|

T∫
0

∫
Ω

∫
YF

f(t, x)φ(t, x) dy1 dx dt

+
1

|Y1||Y2|

T∫
0

∫
Ω

∫
Γ

∫
Y2

DΓ(x, y2)(u(t, x)− h(x, y2))φ(t, x) dy2 dσy1 dx dt.

If we recast this formulation into the strong form, we obtain the following:
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4.5.5 Theorem.
The limit function u satisfies the following problem:

P∂tu(t, x)−
1

|Y1|
div(D̃(x)∇u(t, x)) = Pf(t, x) +

|Γ|
|Y2|

∫
Y2

DΓ(x, y2)
(
u(t, x)

− h(x, y2)
)
dy2 in Ω

u = 0 on ∂Ω

u(0, ·) = u0 in Ω,

where P, D̃ and the cell problem are the same as in Theorem 4.5.3.

4.6 Appendix: Function Spaces on Manifolds

In this section we collect some results about Lebesgue and Sobolev spaces on manifolds,
with a focus on the constructions used for the unfolding on manifolds and the application
treated in Section 4.4. In the sequel, let M ⊂ Rm be a n-dimensional compact Riemannian
manifold of class C1 with metric g ∈ Γ(TM∗ ⊗ TM∗). Further assumptions on the
smoothness of M will be imposed later. Note that the compactness of M facilitates a lot
of results and proofs – thus the reader should keep in mind that noncompact situations
require special attention!

Although there is a large amount of literature available on Sobolev-spaces on domains
(see e.g. the classical references Maz’ja [Maz85], Adams and Fournier [AF03] or Kufner,
John, and Fučik [KJF77]), there is no concise treatise of Sobolev spaces on manifolds
available which covers the results needed for the unfolding theory. Therefore we point the
reader to the following works: Emmanuel Hebey considers the spaces for different classes
of Riemannian manifolds, with a strong emphasis on embeddings and best constants, see
[Heb96], [Heb99] and especially [HR08]. Additional results can also be found in the book
of Rosenberg [Ros97] or other literature on global analysis (see also Jost [Jos98]). Sobolev
spaces on manifolds with applications to partial differential equations in mind are treated
in Wloka [Wlo92] and Taylor [Tay97].

4.6.1 Lebesgue-Spaces

We follow the derivations in [AE01], where the proof of the following statements can be
found as well: A subset A ⊂ M is called (Lebesgue-)measurable, if for all x ∈ A there
exists a chart (φ, U) with x ∈ U such that φ(A ∩ U) is Lebesgue-measurable in Rn. The
set M of all measurable subsets of M is called the Lebesgue σ-Algebra of M .

Let A = {(φi, Ui), i ∈ {1, . . . , k}} be a finite atlas for M . Let {πi, i = 1, . . . , k} be a
partition of unity, subordinate to {Ui, i = 1, . . . , k}. For A ∈ M, one can define the
measure

volM (A) :=

∫
A

1 dvolM :=

k∑
i=1

∫
φi(A∩Ui)

(φi)∗πi · (φi)∗
√
|G| dλn.
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4.6.1 Lemma.
A function f :M −→ R is measurable iff φ∗f : φ(U) −→ R is measurable for all charts
(φ, U) ∈ A.

4.6.2 Proposition.
A measurable function f :M −→ R is in Lp(M) for 1 ≤ p <∞ iff (φ∗|f |p)φ∗

√
|G| is in

L1(φ(U)) for all charts (φ, U) ∈ A. We have the identity

∫
M

f dvolM =
k∑

i=1

∫
Ui

πif dvolM =
k∑

i=1

∫
φi(Ui)

(φi)∗πi · (φi)∗f · (φi)∗
√
|G| dλn

for all f ∈ L1(M).

4.6.3 Lemma.
It holds

• Each continuous scalar function on M is measurable.

• The set C0(M) is dense in Lp(M) for all 1 ≤ p <∞.

4.6.2 Sobolev-Spaces for Scalar Functions

Here we require more regularity for the manifold: Let M be of class Cl,κ. Again, let
A = {(φi, Ui), i ∈ {1, . . . , k}} be a finite atlas for M , and let {πi, i = 1, . . . , k} be a
partition of unity, subordinate to {Ui, i = 1, . . . , k}. We will follow the derivations in
[Wlo92] and prove some results needed for the unfolding on manifolds and its applications.
To this end, fix l ∈ R≥0 and κ ∈ [0, 1). Choose an order of differentiability r ≤ l + κ if
l + κ is an integer; or r < l + κ otherwise. Let p ∈ [1,∞) be an order of integration.

4.6.4 Definition.
Let u :M −→ R be measurable. u belongs to the Sobolev space W r,p(M) if

(φi)∗(u · πi) : φi(Ui) −→ R

is an element of W r,p(φi(Ui)) for all i ∈ {1, . . . , k}.

4.6.5 Lemma.
W r,p(M) is a Banach space with the norm

‖u‖p
Wr,p(M)

=
k∑

i=1

‖(φi)∗(u · πi)‖pWr,p(φi(Ui))
.

For p = 2, this norm is induced by a scalar product

(u,w)r =
k∑

i=1

((φi)∗(u · πi), (φi)∗(w · πi))W r,2(φi(Ui)),

and hence W r,2(M) is a Hilbert space.
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The reader is pointed to the fact that we are not going to use these norms in the sequel,
but we will endow the Sobolev-spaces with an equivalent norm, see below.

4.6.6 Proposition.
The space Cl,κ(M) is dense in W r,p(M).

Proof. Let u ∈ W r,p(M). Set ui = u · πi for i = 1, . . . , k, i.e. u =
∑

i ui and (φi)∗ui ∈
W r,p

0 (φi(Ui)). Since C∞0 (φi(Ui)) is dense in W r,p
0 (φi(Ui)), for each n ∈ N there exists a

wi,n ∈ C∞0 (φi(Ui)) such that

‖(φi)∗ui + wi,n‖Wr,p(φi(Ui))
≤ 1

n · k .

Extend the wi,n by 0 and define w =
∑k

i=1wi,n ◦ φi. Then clearly w ∈ Cl,κ(M) and by
the definition of the norm

‖u− w‖
Wr,p(M)

≤ 1

n
. �

Note that the smoothness of the charts φi limits the smoothness of the functions wi,n.

The following result is crucial in a lot of proofs and constructions:

4.6.7 Proposition.
On a compact manifold, all Riemannian metrics are mutually equivalent.

Proof. See e.g. [HR08]. �

Thanks to this proposition, we can introduce an equivalent norm on W r,p(M) by carrying
out all the integrations with respect to the volume measure volM on M , i.e. one integrates
in φi(Ui) with respect to (φi)∗

√
|G|λn. The case p = 2, r = 1 is considered in the following

lemma:

4.6.8 Lemma.
For the Hilbert space W 1,2(M), an equivalent scalar product is given by

(u,w)1 =

∫
M

u · w dvolM +

∫
M

g(∇M u,∇M w) dvolM . (4.33)

Especially, u ∈ W 1,2(M) if and only if u ∈ L2(M) and ∇M u ∈ L2TM (see the next
section).

Proof. The norm given in Lemma 4.6.5 can be written as

‖u‖2
W1,2(M)

=

k∑
i=1

∫
φi(Ui)

((φi)∗u)
2 + g̃(∇(φi)∗u,∇(φi)∗u) dvolM ,

where g̃ denotes the Riemannian metric induced by the Euclidean scalar product with
metric coefficients g̃ij = δij . We first show that the inner product in (4.33) induces an
equivalent norm for g = g̃.
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To this end, denote by W 1,2(M) the Hilbert space as defined in Lemma 4.6.5, and let
W̃ 1,2(M) be the completion of Cl,κ(M) with respect to the norm induced by the scalar
product (4.33) (where we use g = g̃). To see that W̃ 1,2(M) is a well-defined Hilbert space,
we refer the reader to the works of Hebey cited above. We show that there exists a constant
C > 0 such that ‖·‖

W1,2(M)
≤ C ‖·‖

W̃1,2(M)
, thus the injection j : W̃ 1,2(M) −→ W 1,2(M)

is linear and continuous: Let u ∈ C∞(M), then∫
M

(πiu)
2 dvolM +

∫
M

∇(πiu) · ∇(πiu) dvolM

≤ C

∫
M

u2 dvolM +

∫
M

(∇u · ∇u+ u2∇πi · ∇πi + 2u∇πi · ∇u) dvolM

≤ C

∫
M

u2 dvolM + C

∫
M

∇u · ∇u dvolM ,

where we used the fact that the functions πi are continuously differentiable and bounded
and Youngs inequality on the last summand. Upon summation over i, we obtain the
norm inequality for smooth functions. By density of C∞(M) in both spaces, the estimate
follows.

Now we show that the range of j is closed. Choose a sequence un ∈ W̃ 1,2(M) such that
jun −→ w for some w ∈W 1,2(M). Since jun is a bounded set in W 1,2(M), we see that
for all i = 1, . . . , k the functions πiun and ∇(πiun) are bounded independent of n ∈ N

in L2(M) and L2(TM), resp. Upon summation over the index i, we obtain that un
is bounded in L2(M) and that ∇un is bounded in L2(TM) – thus {un} is a bounded
set in W̃ 1,2(M). Since W̃ 1,2 is reflexive (see [Heb96]), we can extract a subsequence
(still denoted by un) such that un −⇀ u for some u ∈ W̃ 1,2(M). Since j is continuous
and linear, it is also weakly continuous, thus jun −⇀ ju. By the uniqueness of the
limits, we obtain ju = w, i.e. the range of j is closed. The open mapping theorem now
yields that j is surjective and has a continuous inverse. This amounts to saying that
‖·‖

W̃1,2(M)
≤ C ‖·‖

W1,2(M)
, which shows that both norms are equivalent.

Due to Proposition 4.6.7, we can now choose any Riemannian metric on M to obtain a
norm equivalent to ‖·‖

W̃1,2(M)
. This finishes the proof of the lemma. �

4.6.9 Remark.
Analogously, we can define Sobolev spaces for functions with values in Rn. This is done
component-wise via the identification W r,p(M ;Rn) = (W r,p(M))n.

In applications, one also needs generalizations of Sobolev spaces with vanishing trace on
the boundary of a domain. This is considered next:

Denote by Cl,κ0 (M) the set of functions u ∈ Cl,κ(M) such that supp(u) ⊂M0.

4.6.10 Definition.
The function space W r,p

0 (M) is defined to be the completion of Cl,κ0 (M) with respect to the
W r,p(M)-norm.
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4.6.3 Embeddings, Traces and the Poincaré Inequality

In this section, we cite some results for Sobolev spaces on manifolds with boundary. Since
for our applications (see Section 4.4) we only need the Hilbert space case, we focus on the
exponent p = 2 and on compact manifolds, following Taylor [Tay97]. Results for arbitrary
exponents p ∈ [1,∞], for noncompact manifolds or for manifolds without boundary can
be found in the books of Hebey [Heb96], [Heb99] and in the classical reference Aubin
[Aub82]. In short, most of the well-known results for Sobolev spaces on domains in Rn

also hold for compact Riemannian manifolds with or without boundary. Note that the
compactness plays a crucial role!

We use the same assumptions as in the previous section.

4.6.11 Theorem.
Let M have dimension n ∈ N. Then for k ∈ N0, the space W r,2(M) is continuously
embedded in

C(M̄) if r >
n

2
,

Ck(M̄) if r >
n

2
+ k,

Ck,α(M̄) if r =
n

2
+ k + α with α ∈ (0, 1).

4.6.12 Theorem.
For any r ≥ 0 and σ > 0, the embedding W r+σ,2(M) ↪→W r,2(M) is compact.

4.6.13 Theorem.
Assume that the boundary ∂M of M is not empty and of class C1. Then for r > 1

2 there
exists a linear and continuous map

τ :W r,2(M) −→W r− 1
2
,2(∂M),

the trace map, such that τu = u|∂M for smooth functions u.

4.6.14 Proposition.
We have the characterization

W 1,2
0 (M) = {u ∈W 1,2(M) : τu = 0}.

4.6.15 Theorem (Poincaré inequality).
Assume that the boundary ∂M of the compact manifold M is not empty. Then there
exists a constant C > 0 (depending on M) such that ‖u‖

L2(M)
≤ C ‖du‖

L2T∗M for all
u ∈W 1,2

0 (M). Since ‖du‖
L2T∗M = ‖∇M u‖

L2TM
, this is equivalent to the inequality

‖u‖
L2(M)

≤ C ‖∇M u‖
L2TM

for all u ∈W 1,2
0 (M).

4.6.16 Remark.
The last theorem states that ‖∇u‖

L2TM
induces an equivalent norm on W 1,2

0 (M). The
spaces L2TM and L2T ∗M are defined in the next section.
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4.6.4 L2-spaces of Vector Fields, Tensor Fields, and Forms

We follow [AE01]: Let Θg : X(M) −→ Ω1(M) be the Riesz isomorphism induced by the
metric g. The expression

(u,w) =

∫
M

g(u,w) dvolM

defines a scalar product for vector fields u,w ∈ X(M), i.e. for smooth sections of the
tangent bundle TM . Via the Riesz isomorphism, one can define an induced scalar product
for 1-forms α, β ∈ Ω1(M), that is smooth sections of the cotangent bundle T ∗M by letting

(α, β)∗ =
∫
M

g∗(α, β) dvolM :=

∫
M

g(Θ−1
g α,Θ−1

g β) dvolM .

Similarly, one obtains induced metrics for tensor products: Let ũ = u1 ⊗ · · · ⊗ ul and
w̃ = w1 ⊗ · · · ⊗ wl for l ∈ N be smooth sections of the product bundle

⊗l TM , then set

(ũ, w̃)l =

∫
M

gl(ũ, w̃) dvolM :=

∫
M

det[g(ui, wj)]i,j=1,...,l dvolM .

Similarly, for α̃ = α1 ⊗ · · · ⊗ αl, β̃ = β1 ⊗ βl smooth sections of
⊗l T ∗M we define

(α̃, β̃)l∗ =
∫
M

gl∗(α̃, β̃) dvolM :=

∫
M

det[g∗(αi, βj)]i,j=1,...,l dvolM .

Since the set
∧l T ∗M is a closed vector subspace of

⊗l T ∗M , we can also define the
induced inner product for two l-forms α1 ∧ · · · ∧ αl and β1 ∧ · · · ∧ βl in Ωl(M) as

(α1 ∧ · · · ∧ αl, β1 ∧ · · · ∧ βl)l∗ =
∫
M

det[g∗(αi, βj)]i,j=1,...,l dvolM .

4.6.17 Definition.
Let M be any of the sets TM, T ∗M,

⊗l TM,
⊗l T ∗M,

∧l T ∗M with l ∈ N. Similar to
Rosenberg [Ros97], denote by C0M the set of continuous sections of M with compact
support. The set L2M is defined to be the completion of C0M with respect to the induced
scalar product on M as defined above (where – as usual – maps are identified which
coincide exept on a set of measure 0).

We finish this paragraph with a result concerning the local behaviour of vector fields in
L2:

4.6.18 Lemma.
Let X ∈ L2TM and let (φ, U) be a chart with φ = (x1, . . . , xn). Assume that X can be
represented in U as X =

∑n
i=1X

i ∂
∂xi . Then Xi ∈ L2(U) for i = 1, . . . , n.
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Proof. Due to Proposition 4.6.7, we can endow M with an equivalent metric g̃ induced
by the Euclidean metric in Rm with metric coefficients δij . Then we obtain

∫
U

(Xi)2 dx ≤
∫
U

n∑
j=1

(Xj)2 dx =

∫
U

g̃(X,X) dx ≤ C

∫
M

g(X,X) dvolM <∞,

which gives the desired result. �

4.6.5 Sobolev-Spaces of Sections of a Vector Bundle

For the manifold M with Riemannian metric g let (E, π,M) be a vector bundle over M .
We denote by Cl,κE the space of Cl,κ-smooth sections of E. Again, we assume that M is
of class Cl,κ. We use the same definitions for r, p as in Section 4.6.2.

Let (φ, U) be a bundle chart; note that φ : π−1(U) −→ U × Rs for some (fixed) s ∈ N.
Denote by pr1 and pr2 the projections on the first and second component of the image of
φ.

Since E is a manifold, E can be equipped with a σ-Algebra as in Section 4.6.1. Hence
the notion of a measurable section s :M −→ E makes sense. Following Jost [Jos98], we
can give the following definition:

4.6.19 Definition.
A measurable section s : M −→ E is contained in the Sobolev space W r,pE if for all
bundle charts (φ, U) it holds

pr2 ◦ φ ◦ s|U ∈W r,p(U ;Rs).

Let {(φi, Ui), i = 1, . . . , k} be a finite bundle atlas (with corresponding partition of unity
{πi, i = 1, . . . , k}). The norm on W r,pE is defined as

‖s‖p
Wr,pE

=

k∑
i=1

‖πi · pr2 ◦ φ ◦ s‖pWr,p(U ;Rs)
.

This definition makes sense, since we obtain with the help the bundle projection π that
π ◦ s|U : U −→ U . Due to π = pr1 ◦ φ, we have pr1 ◦ φ ◦ s|U : U −→ U and thus
φ ◦ s|U : U −→ U × Rs.

4.6.20 Proposition.
Assume that all bundle charts are of class Cl,κ. Let r ≤ l + κ if l + κ is an integer; let
r < l + κ otherwise. Then the set Cl,κE is dense in W r,pE.

Proof. For u ∈ W r,pE, we construct a local approximation as in the proof of Proposi-
tion 4.6.6. By density of C∞(U ;Rs) in W r,p(U ;Rn), there exists a wn ∈ C∞(U ;Rs) such
that

‖pr2 ◦ φ ◦ s|U − wn‖Wr,p(U ;Rs)
≤ 1

n
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for n ∈ N. Set w̃n(z) = φ−1(z, wn(z)) for z ∈M , then pr2 ◦ φ ◦ w̃n = wn and

‖s|U − w̃n‖Wr,p(U ;E)
≤ 1

n
. �

4.6.6 Forms with Values in a Banach Space

In this section we present a generalization of the concept of differential forms (i.e. mul-
tilinear maps taking values in R) to Banach-space valued forms. They are needed for
an exact treatment of the dependence of the cell-problem on the parameter x ∈M , see
Section 4.4.3. We will mostly follow Cartan [Car70], to which the reader is also referred
for proofs and further results.

In this section, let E,F,G,H be Banach spaces. Denote by Lk(E;F ), k ∈ N, the set of
all multilinear antisymmetric maps

f : E × · · · × E︸ ︷︷ ︸
k-times

−→ F

such that f(x1, . . . , xk) = 0 if xi = xj for some index pair i, j ∈ {1, . . . , k}, i �= j.
Lk(E;F ) is a closed linear subspace of the Banach space of multilinear maps from Ek to
F .

Basic Notions

4.6.21 Definition (Exterior Product).
Assume that there exists a continuous bilinear map Φ : F ×G −→ H. Let f ∈ Lk(E;F )
and g ∈ Ll(E;G) with k, l ∈ N. There exists a unique form

f ∧
Φ
g ∈ Lk+l(E;H)

defined by

f ∧
Φ
g(x1, . . . , xk+l) =

∑
σ

ε(σ)Φ(f(xσ(1), . . . , xσ(k)), g(xσ(k+1), . . . , xσ(k+l))),

where the sum is taken over all permutations σ of {1, . . . , k+l} such that σ(1) < · · · < σ(k)
and σ(k + 1) < · · · < σ(k + l). The map (f, g) �→ f ∧

Φ
g is bilinear, anticommutative and

associative.

4.6.22 Definition (Differential Forms).
Let U ⊂ E be open. A map

ω : U −→ Lk(E;F )

is called a differential form in U of degree k ∈ N with values in F . If ω is n-times
continuously differentiable (as a map between Banach spaces), we call ω of class Cn and
write ω ∈ Ωn

k(U,F ).
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4.6.23 Remark.
Defined to operate pointwise, the exterior product generalises to a map

∧
Φ
: Ωn

k(U,F )× Ωn
l (U,G) −→ Ωn

k+l(U,H).

4.6.24 Definition (Exterior Derivative).
Let ω ∈ Ωn

k(U,F ) with n ≥ 1. The form dω ∈ Ωn−1
k+1(U ;F ) defined by

dω(x)(x1, . . . , xn) =

k∑
i=0

(−1)iDω(x)[xi](x1, . . . , x̂i, . . . , xk)

is called exterior derivative of ω. Here x ∈ U , (x0, x1, . . . , xk) ∈ Ek+1. Dω : U −→
L(E;Lk(E;F )) denotes the total derivative of ω, L(E;G) being the set of linear maps
from E to G, and (x0, . . . , x̂i, . . . , xk) = (x0, . . . , xi−1, xi+1, . . . , xk) is the vector with the
i-th component removed.

4.6.25 Proposition (Coordinate Transformations).
Let U be an open subset of the Banach space E, and let U ′ be an open subset of a Banach
space E′. Assume that there exists a map φ′U −→ U of class Cn+1. Then for ω ∈ Ωn

k(U,F ),
the pullback φ∗ω (defined as in the case of Rm) is a form φ∗ω ∈ Ωn

k(U
′, F ), and φ∗ is a

linear mapping
φ∗ : Ωn

k(U,F ) −→ Ωn
k(U

′, F ).

Moreover, φ∗ commutes with the exterior product and the exterior derivative.

Representation Formulas for E = Rm

In the case of a finite dimensional Banach space E, one obtains special representation
formulas. We will tacitly identify E with Rm, m ∈ N in the results that follow.

4.6.26 Proposition.
Let U ⊂ Rm and ω ∈ Ωn

k(U,F ). Then ω can be uniquely written as

ω =
∑

1≤i1≤···≤ik≤m

ci1,...,ik(·) dxi1 ∧ · · · ∧ dxik ,

where ∧ denotes the usual wedge-product in Rm and ci1,...,ik ∈ Cn(U ;F ).

4.6.27 Proposition.
Let f : U −→ F be a scalar C1-function, i.e. f ∈ Ω1

0(U,F ). Then

df =

m∑
i=1

∂f

∂xi
dxi.

4.6.28 Lemma.
Let ω ∈ Ω1

k(U,F ) be represented as in Proposition 4.6.26. Then

dω =
∑

1≤i1≤···≤ik≤m

dci1,...,ik ∧ dxi1 ∧ · · · ∧ dxik .
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Forms on Manifolds

The constructions in [Car70] do not treat forms defined on manifolds (with values in a
Banach space). We give the corresponding generalizations in the sequel: Let M be a
compact manifold of dimension m ∈ N with corresponding atlas A of class Cl, l ∈ N.

4.6.29 Definition.
Let k ∈ N, k < l. A map ω :

⋃
{x}∈M{x} × TxM

k −→ F is said to be a differential
form of degree k over M with values in F (Notation: ω ∈ Ωn

k(M,F )), if for all charts
φ : U → Rm for the restriction ω|U of ω to U it holds

φ∗ω|U ∈ Ωn
k(φ(U), F ),

where φ∗ω|U is understood as a map φ(U)× (Rm)k −→ F .

4.6.30 Lemma.
The definition above is independent of the coordinate representation φ and thus well-defined.

Proof. Let φ : U → Rm and φ̃ : Ũ → Rm be two charts with V := U ∩ Ũ �= ∅.
Note that φ̃ ◦ φ−1 : φ(V ) −→ φ̃(V ) is a Cl-coordinate transformation. Assuming that
φ∗ω|V ∈ Ωn

k(φ(V ), F ), we can apply Proposition 4.6.25 to obtain that

φ̃∗ω|V = (φ̃ ◦ φ−1)∗ ◦ φ∗ω|V = [(φ̃ ◦ φ−1)−1]∗ ◦ φ∗ω|V ∈ Ωn
k(φ̃(V ), F ). �

4.6.31 Lemma.
For F = R, Definition 4.6.29 yields the usual well-known differential forms on manifolds.

Proof. For φ∗ω|U ∈ Ωn
k(φ(U),R) we obtain a representation due to Proposition 4.6.26 of

the form
φ∗ω|U =

∑
1≤i1≤···≤ik≤m

ci1,...,ik dxi1 ∧ · · · ∧ dxik

with coefficient functions ci1,...,ik ∈ Cn(φ(U)). Taking a look at the usual definition of a
differential form on a manifold, the right hand side is simply the local representation of
the form ω ∈ Ωn

k(M) in U . Thus the two definitions coincide. �



5 Numerical Simulations

In this chapter, we describe a numerical simulation of the results obtained in Section 4.5.
We implement a variant of the multiscale problem (4.28) and (4.29) (diffusion and
exchange on a periodically structured boundary) in Comsol Multiphysics for (ε, δ) =
(0.1, 0.5) and (ε, δ) = (0.2, 0.5). Moreover, we simulate the homogenized problem given
in Theorem 4.5.3 for comparison. This is done to show the efficiency and effectiveness
of the homogenization method. Note, however, that this chapter serves an illustrational
purpose – an independent contribution to the field of numerical analysis is not aspired.

Other implementations of effective equations and upscaling methods can be found in the
literature: Arbogast proposes in [Arb89] a finite element scheme for a double porosity
model, see also [Arb88] for the background of the model. Newer developments in this
direction can be found in chapter 10 ”Computational Aspects of Dual Porosity Models”
in Hornung [Hor97]. In [EKK02], Eck and his coworkers derive a two-scale model for
dendritic growth. Numerical simulations are carried out by imposing a cell problem on
each node of the domain. See also [Eck04] and the unpublished work of Magnus Redeker
(Stuttgart). Simulations of homogenization models with evolving microstructure can be
found in Peter and Böhm [PB09], with applications to carbonation in concrete. For a
more detailed exposition, the reader is referred to Peter [Pet06]. Finally, newer Galerkin
schemes for nonlinear reaction diffusion problems, which might lead to corresponding
numerical techniques, can be found in the work of Muntean and Neuss-Radu [MNR10]
(see also [ML10] for corresponding convergence results).
Related numerical methods can also be found under the key words heterogeneous multiscale
method (see e.g. E, Ming, and Zhang [EMZ04]) and XFEM- or FE2-methods (see for
instance Feyel [Fey03] and the works cited therein). In this connection, the reader is also
referred to the book by Efendiev and Hou [EH09].

5.1 Formulation of the Problems

We consider a rectangular domain Ω = [0, 0.8] × [0, 0.6] in R2. Denote the reference
cell for the domain by YF := [0, 1]2\YS , where YS = B 1

4
(12 ,

1
2) is a solid inclusion with

boundary Γ = ∂YS . The reference cell for the boundary is given by Y2 := [0, 1]. Set
Ωε := Ω ∩∑k∈Z2 ε(YF + k), and Γε := Ω̄ ∩∑k∈Z2 ε(Γ + k).

The Periodic Problem is given by: Find uεδ and uεδΓ , solution of

∂tu
εδ − div(Dε∇uεδ) = 0 in [0, 1]× Ωε

−Dε∇uεδ · ν = ε(auεδ − buεδΓ ) on [0, 1]× Γε

−Dε∇uεδ · ν = 0 on [0, 1]× ∂Ω
uεδ(0, ·) = u0 in Ω
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(a) The function step1. (b) The function stepboundary.

Figure 5.1: The auxiliary functions used in the construction of the periodic diffusion
coefficients.

as well as

∂tu
εδ
Γ − ε2 divΓ(Dεδ

Γ ∇Γ uεδΓ ) = auεδ − buεδΓ on [0, 1]× Γε

uεδΓ (0, ·) = u0,Γ on Γε.

We make the following choices for the coefficients etc.: We choose a = b = 1
2 , the initial

value in the bulk as the constant u0 ≡ 1 and the initial value on the boundary as the
linear function u0,Γ(x1, x2) = 4x1x2.
For the diffusion coefficients, we construct the auxiliary step functions step1 (having
range [0.2, 1]) and stepboundary (having range [0.07, 0.5]); see Figure 5.1. Then choose
D(y1, y2) = 10−1step1(y1)step1(y2) and DΓ(z) = stepboundary(z) and construct the
periodic coefficients Dε as well as Dε

Γ as in Section 4.5 on page 145.

The Cell Problems are given by: Find w1, w2 and w, solutions of

− divy(D(y)∇Y wi(y)) = divy(D(y)ei) in YF
D(y)∇y wi(y) · ν = 0 on Γ

y �−→ wi(y) is Y1-periodic,

for i = 1, 2 as well as

− divz(DΓ(z)∇z w(z)) = divz(DΓ(z)) in Y2
z �−→ w(z) is Y2-periodic.

The diffusion coefficients are the same as constructed above.
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Periodic Problems ε = 0.2 ε = 0.1

# Elements in the domain 3724 16074
# Elements in each hole model 50 50

Table 5.1: Number of mesh elements for the periodic problems.

The Homogenized Problem is given by: Find u and uΓ, solution of

P∂tu(t, x)− div(D̃(x)∇u(t, x)) = |Γ|au(t, x)−
∫
Γ

buΓ(t, x, y1) dσy1 in [0, 1]× Ω

D̃(x)∇u(t, x) · ν = 0 on [0, 1]× ∂Ω
u(0, ·) = u0 in Ω

as well as

∂tuΓ(t, x, y)− divy,Γ(D̃Γ(x)∇y,Γ uΓ(t, x, y))

= |Γ|au(t, x)− buΓ(t, x, y) on [0, 1]× Ω× Γ (5.3a)
uΓ(0, x, ·) = u0,Γ(x) on Γ, (5.3b)

Here P = |YF | = 1− 1
16π, |Γ| = π

2 , and the effective diffusion tensors are given by D̃ =

(D̃ij)i,j=1,2 with D̃ij = (
∫
YF
D(y)(δij − ∂wi

∂yj
(y)) dy) and D̃Γ = (

∫
Y2
DΓ(z)(1 +

∂w
∂z (z)) dz).

The other terms have already been described above.

5.2 Numerical Implementation

We solve the problems above by the Method of Finite Elements, using Comsol Multi-
physics. Comsol is a commercial PDE-solver with strong emphasis on the treatment
of complex coupled physical and engineering problems, see e.g. the manual [COM10] or
Zimmerman [Zim06].

All problems are solved on a triangular Delaunay-mesh of element size ”fine” (details can
be found below). The mesh is fixed, i.e. no adaptive mesh refinement or remeshing is used.
The time-dependent problems are discretized in time by using a backward differentiation
formula (BDF) with time step 0.1. Initialization takes place by using a step with the
backward Euler method. Finally, the resulting algebraic equations are solved by using
Pardiso, an explicit solver for large sparse linear systems of equations, see Schenk and
Gärtner [SG04]. This also applies to the stationary cell problems.

The Periodic Problems are implemented using the ”Transport of Diluted Species”-
module. We construct a 2D-domain with the periodic arrangement of holes and add a
1D-model for each hole boundary, representing a parametrization in arc length normalized
to the interval [0, 1]. The problems are then coupled using a ”General Extrusion”-operator.
Informations on the mesh and the running time can be found in Tables 5.1 and 5.2. The
latter refers (in all simulations) to an Intel Core2Duo processor with 2GHz, being supplied
with 1GB RAM.
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Figure 5.2: The triangulation of the domain for the periodic problem for ε = 0.2.

Periodic Problems ε = 0.2 ε = 0.1

# Degrees of freedom 2653 11112
Running Time 42s 405s

Table 5.2: Number of degrees of freedom and running time for the periodic problems.

The Cell Problems use the 2D reference geometry YF and the 1D interval Y2. The
implementation is based on the ”Convection-Diffusion”-module, where the mean value
property of the solutions is ensured by using an integration operator and imposing a
pointwise constraint. All cell problems are solved simultaneously. Further information
can be found in Tables 5.3 and 5.4.

By using the ”derived values” feature in Comsol, one can calculate the effective diffusion
tensors by using a 4th order numerical integration scheme. This yields

D̃ =

[
0.02615 6.103 · 10−4

6.103 · 10−4 0.02615

]
as well as D̃Γ = 0.1364.

The Homogenized Problem is implemented on the 2D-domain Ω using the ”Convection-
Diffusion”-module for the function u. In order to implement the parameter-dependent
boundary equation, we need the following Lemma:

Cell Problems
# Elements in YF 558
# Elements in Y2 50

Table 5.3: Number of mesh elements for the cell problems.
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Figure 5.3: The triangulation of the domain for the periodic problem for ε = 0.1.

Cell Problems
# Degrees of freedom 2501
Running Time 16s

Table 5.4: Number of degrees of freedom and running time for the cell problems.

5.2.1 Lemma.
Let uΓ : [0, 1] × Ω −→ R be a solution of the following parameter-dependent ODE: For
fixed x ∈ Ω solve

∂tuΓ(t, x) = |Γ|au(t, x)− |Γ|buΓ(t, x)
uΓ(0, x) = u0,Γ(x).

By defining ũΓ(t, x, y) := uΓ(t, x) for y ∈ Γ, the function ũΓ is a solution of (5.3).

Proof. Consider ũΓ as given above. Since clearly ∇y,Γ ũΓ = 0, this function satisfies
equation (5.3). Since the solution of this parabolic problem is unique, we obtain the
assertion. �

This result means that the solution of problem (5.3) is constant in y! Therefore, we solve
the boundary problem by implementing an ODE-problem in each point of the domain
via the ”General-Form-PDE”-module. Details on the mesh and the running time can be
found in Tables 5.5 and 5.6. Note that the problem is solved again fully coupled.
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Figure 5.4: The triangulation for the cell problem.

Homogenized Problem
# Elements in the domain 692

Table 5.5: Number of mesh elements for the homogenized problem.

5.3 Results

5.3.1 The Periodic Problems

The results of the simulation of the periodic problem for ε = 0.2 can be found in
Figures 5.10 and 5.11 (see page 173 f). The first figure shows the bulk concentration at
times t = 0, 0.2, 0.5, 0.7, 1. At t = 0, the concentration is given by the uniform initial
concentration. Then, an exchange between the domain and the boundaries of the solid
parts starts, leading to a loss of substance in the lower and left part of the domain and a
gain in the upper right part. Investigating the part [0, 0.2]× [0, 0.2] of the domain Ω at
time t = 0.5, one sees that the concentration gradients are higher in the lower left part
of that subdomain and smaller in the upper right part. This is due to the fact that the
diffusivity is small in the former subset of the subdomain, whereas the high diffusivity in
the latter parts leads to a more evenly distributed concentration. Of course, the same
applies basically to the surrounding of each solid part.

Homogenized Problem
# Degrees of freedom 2902
Running Time 6s

Table 5.6: Number of degrees of freedom and running time for the homogenized problem.
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Figure 5.5: The triangulation of the domain for the homogenized problem.

Concerning the concentration on the boundary, the evolution of it is shown in Figure 5.11.
Note that the position of the graph in the diagram corresponds to the position of the
boundary in the domain. For an interpretation of these graphs, we exemplarily refer to
Figure 5.6: Since the initial concentration on the boundary (the lowest curve) has a range
in [0.05, 0.32], which is lower than the initial concentration in the domain, substance flows
from the bulk to the boundary. Thus, the concentration there is increasing as seen in the
graph. Moreover, boundary diffusion has a smoothing effect on the concentration profile.
Since the diffusion coefficient Dεδ

Γ is especially low in the arc-length range [0, 0.2]∪ [0.5, 0.7]
and high in [0.3, 0.5] ∪ [0.8, 1], we see that the ”steepness” of the concentration profile
changes only litte on the former set, but is leveled out on the latter. If one considers
the boundary in the upper left corner of the domain (cf. Figure 5.11), one sees that an
exchange from the boundary to the domain takes place, since the initial concentration on
the boundary is higher than the initial concentration in the bulk.

Analougous results for ε = 0.1 can be found in Figures 5.12 and 5.13, see page 175 f.

5.3.2 The Cell Problems

The solution of the bulk cell problems w1 and w2 in YF is depicted in Figure 5.7. The
solution of the cell problem w on Y2 is given in Figure 5.8.

5.3.3 The Homogenized Problem

Simulation results obtained for the homogenized problem are depicted in Figures 5.14
and 5.15, cf. page 177 f.

Comparing the solutions of the homogenized with the periodic problems, one sees that
the qualitative behaviour is captured quite well, and the maxima and minima of the
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Figure 5.6: The evolution of the the boundary concentration of the third boundary in the
last row.

solutions differ in the order of 10−2. Here, one should keep in mind that the values of ε are
choosen rather large to ensure computational feasibility. For a more detailed comparisson,
we compute the integral over the bulk concentrations for fixed time. Since T ε(uε)→ u
strongly in L2(Ω× YF ) and thus also in L1(Ω× YF ), we obtain∫

Ωε

uε dx =

∫
Ω×YF

T ε(uε) dy dx −→
∫

Ω×YF

u dy dx = |YF |
∫
Ω

u dx.

Thus for a reasonable analysis, we have to compare the integral over the concentration of
the periodic problems with a scaled integral over the bulk concentration of the homogenized
problem. This is done in Figure 5.9. Taking into account the scaling of the axis of
ordinates, one finds a good agreement of the quantity taken into consideration, with a
possible tendency of the homogenized concentration to underestimate those of the periodic
problems.

The big advantage of the homogenized model is the fast computational time: Computing
both the cell problems and the homogenized solution needs 22s, compared to 42s and
405s for the periodic problems.
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(a) Solution of the cell problem w1.

(b) Solution of the cell problem w2.

Figure 5.7: Solutions of the cell problems for the reference cell YF .
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Figure 5.8: Solution of the cell problem for the reference cell Y2.

Figure 5.9: Comparisson of the total substance in the domain.
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6 Conclusions

In this work we extended the methods and techniques of (mathematical) homogenization.
This was done with a focus on biological and chemical reaction-diffusion processes as
outlined in Chapter 2: Some important modeling aspects of these applications have not
been considered in the literature so far as outlined in Section 2.3. Out of these, we chose
to further investigate the case of an evolution of microstructure combined with surface
reaction and diffusion, as well as the treatment of processes on structured surfaces and
other ”nonflat” objects. These problems were treated in subsequent chapters:

In Chapter 3, we first collected some necessary mathematical tools for the modeling and
analysis of processes on evolving domains. In this work, we used the framework of homog-
enization after transformation to a fixed setting, developed by Peter and Meier (see the
references given in the corresponding chapter): Formal application of the transformation
rules given in Section 3.1.3 lead to a system of transformed equations in Section 3.3.3.
After proving existence and uniqueness results together with appropriate a-priori esti-
mates, we applied the method of homogenization to obtain (in the limit) a macroscopic
problem coupled with a family of problems posed on the microstructure, in which also
the evolution of the domain takes place. These results can be found in Section 3.4.3.

The case of a ”periodic surface” is considered in Chapter 4. We developed a notion
of periodicity on Riemannian manifolds whose atlas satisfies a specific compatibility
condition. This allowed for the construction of generalized unfolding operators, see
Section 4.2. There it was also shown that well-known properties (in the case of the
”usual” operator), integral identities and compactness results generalise to Riemannian
manifolds. As an application, we considered an elliptic model problem (e.g. stationary
heat conduction) on a manifold in Section 4.4. In this connection, we were able to show
additional properties of the cell problem and to construct an equivalence relation for
different atlases. It turned out that the limit problem is independent of the choice of an
atlas with respect to this relation. Finally, we showed that unfolding in domains of Rn

and on manifolds is ”compatible” and can be applied together in one problem. This was
illustrated in Section 4.5 with the help of a multiscale problem.

Finally, as a demonstration of homogenization techniques, we numerically implemented
this multiscale problem in Comsol for two choices of the scale parameter. The simulations
showed a fair agreement of the complex problems with the homogenized one.

6.1 Overview of New Results

We give an overview of the most important results which – to the knowledge of the
author – have not appeared in the mathematical literature so far:

Concerning the case of an evolution of the microstructure, we point the reader to the
following aspects:
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• The system of equations (3.9) and (3.10) has not been considered so far in
the context of periodic homogenization. Note especially the appearance of terms
involving the normal velocity and the mean curvature of the surface. This also
applies to the set of transformed equations (3.11), (3.12).

• In Theorem 3.4.7 we give the limit system which is obtained by homogenization
of the previous equations. The result that in this case the surface evolution takes
place in the microstructure is new.

The treatment of Riemannian manifolds is new in the field of homogenization. We consider
the following results as the most important aspects:

• The Definitions 4.2.1 of periodicity on a manifold and 4.2.2 of the UC-criterion.

• Definition 4.2.20 of a global unfolding operator on the manifold together with its
properties.

• The compactness Theorems 4.2.29 and 4.2.35. In the proof, we rely on a variant
of the Helmholtz decomposition and thus avoid the use of scale-splitting operators
as in most part of the literature (see e.g. [CDG08]).

• The application to an elliptic model problem in Theorem 4.4.4.

• The construction of an equivalence relation for different atlases (see As-
sumption 4.4.18) which shows that homogenization is ”robust” with respect to
parametrizations.

6.2 Open Problems

In this section we collect possible extensions of the current work: Concerning both
main subjects of this thesis, a next step could be to apply the techniques to real world
applications. For the case of porous catalysts, a good starting point might be the paper by
Pfafferodt, Heidebrecht et. al. [PHS+08], where material parameters are presented. In this
connection, see also the conclusions in Heidebrecht, Pfafferodt and Sundmacher [HPS11],
where the need for a sound mathematical treatment of application problems in catalysis
is expressed.

For the field of homogenization with evolving microstructure, we suggest the following
extensions:

• The idea of a locally periodic structure (see the works of Fatima, van Noorden,
and Muntean [FAZM11] and [vNM10]) seems to be related to our construction of
the domain in Section 3.2. While in the papers cited above the homogenization is
carried out only formally, our method could lead to a rigorous proof.

• In this work, the evolution of the domain was assumed to be given. A more realistic
setting would include a coupling between the evolution of the domain and the
processes in the bulk and on the boundary (similar to [Mei08] and [Pet06]).

• All methods developed so far do not allow a change of the topology of the domain.
However, in real world situations, phenomena like coalescence (e.g., of air bubbles)
happen frequently. We expect that such processes cannot be treated by coordinate
transformations, but would recommend an investigation of phase field and level set
methods in the context of homogenization.
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Concerning homogenization on Riemannian manifolds, we propose to investigate the
following subjects:

• We only treated stationary problems in this work – thus it seems reasonable to
extend the method to time-dependent (e.g. parabolic) problems as well. Since time
appears in the context of periodic unfolding as an additional parameter (see for
example [NR92]), it should be relatively easy to include. In this context, one can
also try to work out the case of time-dependent Riemannian metrics, or metrics
depending on other parameters (as in the field of gradient flows, see Chill and
Fasangova [CF10] for an introduction).

• We only proved compactness results for gradients in the Hilbert space W 1,2(M), see
Theorems 4.2.29 and 4.2.35. Especially for nonlinear problems, one needs similar
results for functions in W 1,p(M) with 1 ≤ p ≤ ∞, p �= 2. A proof could be based
on a version of the Hodge- or Helmholtz decomposition in Lp(M)-spaces.

• The manifold M was assumed to be compact. For the case of non-compact manifolds,
one would have to control the ”overlap” of the partition of unity in a reasonable
way to get corresponding results.

• Finally, we constructed an equivalence relation for atlases leading to the same limit
problem. It would be interesting to investigate the case of non-equivalent atlases:
Up to now, it is not clear what happens in this case. Do such atlases lead to different
limit problems? Moreover, what is the maximal class of atlases leading to the same
limit?





Bibliography

[AB96] Grégoire Allaire and M. Briane. Multiscale convergence and reiterated
homogenization. Proceedings of the Royal Society of Edinburgh, 126A:297–
342, 1996.

[ACMP92] E. Acerbi, V. Chiadò, G. Dal Maso, and D. Percivale. An extension theo-
rem from connected sets, and homogenization in general periodic domains.
Nonlinear Analysis, Theory, Methods & Applications, 18(5):481–496, 1992.

[ADH95] Grégoire Allaire, Alain Damlamian, and Ulrich Hornung. Two-scale conver-
gence on periodic surfaces and applications. In Alain Bourgeat, C. Carasso,
Stephan Luckhaus, and Andro Mikelić, editors, Mathematical Modelling of
Flow Through Porous Media, pages 15–25. World Scientific, 1995.

[AE01] Herbert Amann and Joachim Escher. Analysis III. Birkhäuser, Basel, Boston,
Berlin, 2001.

[AF02] Ilka Agricola and Thomas Friedrich. Global Analysis: Differential Forms
in Analysis, Geometry, and Physics, volume 52 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, Rhode Island,
2002.

[AF03] Robert A. Adams and John J.F. Fournier. Sobolev Spaces. Academic Press,
Amsterdam, Boston, New York, second edition, 2003.

[AL01] Farooq Azam and Richard A. Long. Sea snow microcosms. Nature, 414:495–
498, 2001.

[Alb00] Hans-Dieter Alber. Evolving microstructure and homogenization. Continuum
Mechanics and Thermodynamics, 12:235–286, 2000.

[All92] Grégoire Allaire. Homogenization and two-scale convergence. SIAM Journal
for Mathematical Analysis, 23(6):1482–1518, 1992.

[AMP10] Grégoire Allaire, Andro Mikelić, and Andrey Piatnitski. Homogenization
approach to the dispersion theory for reactive transport through porous
media. SIAM Journal for Mathematical Analysis, 42(1):125–144, 2010.

[Arb88] Todd Arbogast. The double porosity model for single phase flow in naturally
fractured reservoirs. In M.F. Wheeler, editor, Numerical Simulations in Oil
Recovery, pages 23–45. Springer, 1988.

[Arb89] Todd Arbogast. Analysis of the simulation of single phase flow through
a naturally fractured reservoir. SIAM Journal for Numerical Analysis,
26(1):12–29, 1989.



184 BIBLIOGRAPHY

[AS88] Alice L. Alldredge and Mary W. Silver. Characteristics, dynamics and
significance of marine snow. Progress in Oceanography, 20:41–82, 1988.

[Aub82] Thierry Aubin. Nonlinear Analyis on Manifolds. Monge-Ampère Equations,
volume 252 of Grundlehren der mathematischen Wissenschaften. Springer,
New York, Heidelberg, Berlin, 1982.

[BDK06] S. Bhattacharyya, S. Dhinakaran, and Arzhang Khalili. Fluid motion around
and through a porous cylinder. Chemical Engineering Science, 61:4451–4461,
2006.

[BHS+07] Jin Ho Bang, Kookil Han, Sara E. Skrabalak, Hasuck Kim, and Kenneth S.
Suslick. Porous carbon supports prepared by ultrasonic spray pyrolysis
for direct methanol fuel cell electrodes. Journal of Physical Chemistry C,
111:10959–10964, 2007.

[BLP78] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. Asymp-
totic Analysis for Periodic Structures. North-Holland, 1978.

[BMJ97] E. Blomsma, J.A. Martens, and P.A. Jacobs. Isomerization and hydrocracking
of heptane over bimetallic bifunctional PtPd/H-Beta and PtPd/USY Zeolite
catalysts. Journal of Catalysis, 165:241–248, 1997.

[BMSS11] A. Brandmair, W. Müller, M. Savenkova, and S. Sheshenin. A multi-
scale homogenization technique applied to the elastic properties of solders.
Technische Mechanik, 31(2):156–170, 2011.

[BMW94] Alain Bourgeat, Andro Mikelić, and Steve Wright. Stochastic two-scale
convergence in the mean and applications. Journal für die reine und die
angewandte Mathematik, 456:19–51, 1994.

[Böh08] Michael Böhm. Skript zur Mathematischen Modellierung. Universität
Bremen, 2008.

[Bon07] Guy Bonnet. Effective properties of elastic periodic composite media with
fibers. Journal of the Mechanics and Physics of Solids, 55:881–889, 2007.

[BPS05] Dieter Bothe, Jan Prüss, and Gieri Simonett. Well-posedness of a two-phase
flow with soluble surfactant. Progress in Nonlinear Differential Equations
and Their Applications, 64:37 – 61, 2005.

[BSMM07] I.N. Bronshtein, K.A. Semendyayev, Gerhard Musiol, and Heiner Mühlig.
Handbook of Mathematics. Springer, 2007.

[Cam88] Ian McIntyre Campbell. Catalysis at Surfaces. Chapman and Hall, London,
1988.

[Car70] Henri Cartan. Differential Forms. Hermann, Paris, 1970.

[CD99] Doina Cioranescu and Patrizia Donato. An Introduction to Homogenization.
Oxford Univ. Press, Oxford, 1999.



BIBLIOGRAPHY 185

[CDG02] Doina Cioranescu, Alain Damlamian, and Georges Griso. Periodic unfolding
and homogenization. Comptes Rendus de l’Académie des Sciences Paris,
Series I, 335:99–104, 2002.

[CDG08] Doina Cioranescu, Alain Damlamian, and Georges Griso. The periodic
unfolding method in homogenization. SIAM Journal for Mathematical
Analysis, 40(4):1585–1620, 2008.

[CDZ06] Doina Cioranescu, Patrizia Donato, and Rached Zaki. The periodic unfolding
method in perforated domains. Portugaliæ Mathematica, 63(4):467–496, 2006.

[CF10] Ralph Chill and Eva Fasangova. Gradient Systems. Lecture Notes of the
13th International Internet Seminar. Matfyzpress, Prague, 2010.

[Chu10] Deborah D. L. Chung. Composite Materials: Science and Applications.
Springer, London, 2010.

[Cla98] G. W. Clark. Derivation of microstructure models of fluid flow by homoge-
nization. Journal of Mathematical Analysis and Applications, 226:364–376,
1998.

[COM10] COMSOL AB. COMSOL Multiphysics User’s Guide. 2010.

[Dam05] Alain Damlamian. An elementary introduction to periodic unfolding.
GAKUTO International Series Math.Sci. Appl., 24:119–136, 2005.

[DB10] Sören Dobberschütz and Michael Böhm. A transformation approach for the
derivation of boundary conditions between a curved porous medium and a
free fluid. Comptes Rendus Mécanique, 338(2):71–77, 2010.

[Dob09] Sören Dobberschütz. Derivation of boundary conditions at a curved contact
interface between a free fluid and a porous medium via homogenisation
theory, 2009. Diplomarbeit, Universität Bremen.

[Eck04] Christof Eck. A two-scale phase field model for liquid-solid phase transi-
tions of binary mixtures with dendritic microstructure. Habilitationsschrift,
University of Erlangen-Nürnberg, 2004.

[EGK08] Christof Eck, Harald Garcke, and Peter Knabner. Mathematische Model-
lierung. Springer, Berlin, Heidelberg, 2008.

[EH09] Yalchin Efendiev and Thomas Y. Hou. Multiscale Finite Element Methods:
Theory and Applications. Surveys and Tutorials in the Applied Mathematical
Sciences. Springer, New York, 2009.

[EKK02] Christof Eck, Peter Knabner, and Sergey Korotov. A two-scale method for the
computation of solid–liquid phase transitions with dendritic microstructure.
Journal of Computational Physics, 178(1):58–80, 2002.

[EMZ04] Weinan E, Pingbing Ming, and Pingwen Zhang. Analysis of the heterogeneous
multiscale method for elliptic homogenization problems. Journal of the
American Mathematical Society, 18(1):121–156, 2004.



186 BIBLIOGRAPHY

[FAZM11] Tasnim Fatima, Nasrin Arab, Evgeny P. Zemskov, and Adrian Muntean.
Homogenization of a reaction-diffusion system modeling sulfate corrosion in
locally periodic perforated domains. Journal of Engineering Mathematics,
69:261–276, 2011.

[Fey03] Frédéric Feyel. A multilevel finite element method (FE2) to describe the
response of highly non-linear structures using generalized continua. Computer
Methods in Applied Mechanics and Engineering, 192(28-30):3233–3244, 2003.

[FK86] Scott W. Fowler and George A. Knauer. Role of large particles in the
transport of elements and organic compounds through the oceanic water
column. Progress in Oceanography, 16:147–194, 1986.

[FK92] Avner Friedman and Peter Knabner. A transport model with micro- and
macro-structure. Journal of Differential Equations, 98(2):328–354, 1992.

[GGM03] H.S. Gandhi, G.W. Graham, and R.W. McCabe. Automotive exhaust
catalysis. Journal of Catalysis, 216:433–442, 2003.

[GLDW10] Shaojun Guo, Jing Li, Shaojun Dong, and Erkang Wang. Three-dimensional
Pt-on-Au bimetallic dendritic nanoparticle: One-step, high-yield synthesis
and its bifunctional plasmonic and catalytic properties. Journal of Physical
Chemistry C, 114(15337-15342), 2010.

[Heb96] Emmanuel Hebey. Sobolev Spaces on Riemannian Manifolds, volume 1635
of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, New York,
1996.

[Heb99] Emmanuel Hebey. Nonlinear Analysis on Manifolds: Sobolev Spaces and
Inequalities, volume 5 of Courant Lecture Notes in Mathematics. American
Mathematical Society, Providence, Rhode Island, 1999.

[Heu08] Philip Heuser. Homogenization of quasilinear elliptic-parabolic equations
with respect to measures. PhD thesis, Universität Heidelberg, 2008.

[HJ91] Ulrich Hornung and Willi Jäger. Diffusion, convection, adsorption and
reaction of chemicals in porous media. Journal of Differential Equations,
92:199–225, 1991.

[HJM94] Ulrich Hornung, Willi Jäger, and Andro Mikelić. Reactive transport through
an array of cells with semi-permeable membranes. Mathematical Modelling
and Numerical Analysis, 28(1):59–94, 1994.

[HOH10] Harald Hanche-Olsena and Helge Holden. The Kolmogorov–Riesz compact-
ness theorem. Expositiones Mathematicae, 28(4):385–394, 2010.

[Hor97] Ulrich Hornung. Homogenization and Porous Media. Springer, New York,
1997.

[HPS11] Peter Heidebrecht, Matthias Pfafferodt, and Kai Sundmacher. Multiscale
modelling strategy for structured catalytic reactors. Chemical Engineering
Science, 66:4389–4402, 2011.



BIBLIOGRAPHY 187

[HR08] Emmanuel Hebey and Frédéric Robert. Handbook of Global Analysis, chapter
Sobolev Spaces on Manifolds. Elsevier, Amsterdam, 2008.

[HSSW06] Anders Holmbom, Jeanette Silfver, Nils Svanstedt, and Niklas Wellander. On
two-scale convergence and related sequential compactness topics. Applications
of Mathematics, 51(3):247–262, 2006.

[ICE+01] Mamoru Iso, Baoxue Chen, Masashi Eguchi, Takashi Kudo, and Surekha
Shrestha. Production of biodiesel fuel from triglycerides and alcohol using
immobilized lipase. Journal of Molecular Catalysis B: Enzymatic, 16:53–58,
2001.

[IW77] Atsushi Inoue and Minoru Wakimoto. On existence of solutions of the
Navier-Stokes equation in a time dependent domain. Journal of Mathematical
Sciences, The University of Tokyo, Section 1A, 24:303–319, 1977.

[JM96] Willie Jäger and Andro Mikelić. On the boundary condition at the contact
interface between a porous medium and a free fluid. Ann. Sc. Norm. Sup.
Pisa, Classe Fis. Mat. Ser. IV, 23(3):403–465, 1996.

[JM00] Willie Jäger and Andro Mikelić. On the interface boundary condition of
Beavers, Joseph, and Saffman. SIAM Journal of Applied Mathematics,
60(4):1111–1127, 2000.

[Jos98] Jürgen Jost. Riemannian Geometry and Geometric Analysis. Springer,
Berlin, Heidelberg, 1998.

[KHS99] Toivo T. Kodas and Mark J. Hampden-Smith. Aerosol processing of materials.
VCH-Wiley, Weinheim, 1999.

[Kiø01] Thomas Kiørboe. Formation and fate or marine snow: small-scale processes
with large-scale implications. Scientia Marina, 65 (Suppl. 2):57–71, 2001.

[KJF77] Alois Kufner, Oldrich John, and Svatopluk Fučik. Function Spaces. Publish-
ing House of the Czechoslovak Academy of Sciences, Prag, 1977.

[Kna91] Peter Knabner. Mathematische Modelle für Transport und Sorption gelöster
Stoffe in porösen Medien, volume 36 of Methoden und Verfahren der mathe-
matischen Physik. Peter Lang, Frankfurt/M., Bern, New York, Paris, 1991.

[KNŠ+10] Petr Kočí, Vkadimír Novák, František Štěpánek, Miloš Marek, and Milan
Kubíček. Multi-scale modelling of reaction and diffusion in porous catalysts.
Chemical Engineering Science, 65:412–419, 2010.

[KPT01] Thomas Kiørboe, Helle Ploug, and Uffe H. Thygesen. Fluid motion and solute
distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity
of nutrients in the pelagic environment. Marine Ecology Progress Series,
211:1–13, 2001.

[KŠKM07] Petr Kočí, František Štěpánek, Milan Kubíček, and Miloš Marek. Modelling
of micro/nano-scale concentration and temperature gradients in porous
supported catalysts. Chemical Engineering Science, 62:5380–5385, 2007.



188 BIBLIOGRAPHY

[KT01] Thomas Kiørboe and Uffe H. Thygesen. Fluid motion and solute distribution
around sinking aggregates. II. Implications for remote detection by colonizing
zooplankters. Marine Ecology Progress Series, 211:15–25, 2001.

[LNW02] Dag Lukkassen, Gabriel Nguetseng, and Peter Wall. Two-scale convergence.
International Journal of Pure and Applied Mathematics, 2(1):35–86, 2002.

[LSU88] Olga Aleksandrovna Ladyzhenskaya, Vsevolod Alekseevich Solonnikov, and
Nina Nikolaevna Uralt’ceva. Linear and Quasi-linear Equations of Parabolic
Type, volume 23 of Translations of Mathematical Monographs. American
Mathematical Society, Providence, Rhode Island, 1988.

[LW90] Bruce E. Logan and Daniel B. Wilkinson. Fractal geometry of marine snow
and other biological aggregates. Limnology and Oceanography, 35(1):130–136,
1990.

[LW05] Dag Lukkassen and Peter Wall. Two-scale convergence with respect to
measures and homogenization of monotone operators. Journal of Function
Spaces and Applications, 3(2):125–161, 2005.

[Maz85] Vladimir G. Maz’ja. Sobolev Spaces. Springer, Berlin, 1985.

[Mei08] Sebastian Arend Meier. Two-Scale Models for Reactive Transport and Evolv-
ing Microstructure. PhD thesis, Universität Bremen, 2008.

[MF97] Manuel Milla Miranda and Juan Límaco Ferrel. The Navier-Stokes equation
in noncylindrical domain. Journal of Computational and Applied Mathemat-
ics, 16(3):247–265, 1997.

[MH94] Jerrold E. Marsden and Thomas J.R. Hughes. Mathematical Foundations of
Elasticity. Dover, 1994.

[Mic08] Peter W. Michor. Topics in Differential Geometry, volume 93 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, Rhode
Island, 2008.

[ML10] Adrian Muntean and Omar Lakkis. Rate of convergence for a galerkin
scheme approximating a two-scale reaction-diffusion system with nonlinear
transmission condition. ArXiv Preprint 1002.3793v1, 2010.

[MNR10] Adrian Muntean and Maria Neuss-Radu. A multiscale galerkin approach
for a class of nonlinear coupled reaction–diffusion systems in complex media.
Journal of Mathematical Analysis and Applications, 373(2):705–718, 2010.

[MT82] Tetsuro Miyakawa and Yoshiaki Teramoto. Existence and periodicity of
weak solutions of the Naver-Stokes equations in a time dependent domain.
Hiroshima Mathematical Journal, 12:513–528, 1982.

[Ngu89] Gabriel Nguetseng. A general convergence result for a functional related to
the theory of homogenization. SIAM Journal for Mathematical Analysis,
20(3):608–623, 1989.



BIBLIOGRAPHY 189

[NNRM06] Nicolas Neuss, Maria Neuss-Radu, and Andro Mikelić. Effective laws for the
Poisson equation on domains with curved oscillating boundaries. Applicable
Analysis, 85(5):479–502, 2006.

[NR92] Maria Neuss-Radu. Homogenization techniques, 1992. Diplomarbeit, Uni-
versität Heidelberg.

[NR96] Maria Neuss-Radu. Some extensions of two-scale convergence. Comptes
Rendus de l’Académie des Sciences Paris, Series I, 322:899–904, 1996.

[NRJ07] Maria Neuss-Radu and Willi Jäger. Effective transmission conditions for
reaction-diffusion processes in domains seperated by an interface. SIAM
Journal on Mathematical Analysis, 39(3):687–720, 2007.

[Pao92] Chia-Ven Pao. Nonlinear parabolic and elliptic equations. Plenum Press,
New York, 1992.

[PB09] Malte Andreas Peter and Michael Böhm. Multiscale modelling of chemical
degradation mechanisms in porous media with evolving microstructure.
Multiscale Modeling & Simulation, 7(4):1643–1668, 2009.

[Pet06] Malte Andreas Peter. Coupled reaction–diffusion systems and evolving
microstructure: Mathematical modelling and homogenisation. PhD thesis,
Universität Bremen, 2006.

[Pet07] Malte Andreas Peter. Homogenisation in domains with evolving microstruc-
ture. Comptes Rendus Mécanique, 335:357–362, 2007.

[PHS+08] Matthias Pfafferodt, Peter Heidebrecht, Kai Sundmacher, Uwe Würtenberger,
and Marc Bednarz. Multiscale simulation of the indirect internal reforming
unit (IIR) in a molten carbonate fuel cell (MCFC). Industrial & Engineering
Chemistry Research, 47:4332–4341, 2008.

[PHS10] Matthias Pfafferodt, Peter Heidebrecht, and Kai Sundmacher. Stack modeling
of a molten carbonate fuel cell (MCFC). Fuel Cells, 4:619–635, 2010.

[PR10] Mariya Ptashnyk and Tiina Roose. Derivation of a macroscopic model for
transport of strongly sorbed solutes in the soil using homogenization theory.
SIAM Journal of Applied Mathematics, 70(7):2097–2118, 2010.

[Raf09] Humberto Rafeiro. Kolmogorov compactness criterion in variable exponent
Lebesgue spaces. Proceedings A. Razmadze Math. Inst., 150:105–113, 2009.

[Ros97] Steven Rosenberg. The Laplacian on a Riemannian Manifold. An Introduc-
tion to Analysis on Manifolds, volume 31 of London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, 1997.

[Sch95] Günther Schwarz. Hodge Decomposition – A Method for Solving Boundary
Value Problems, volume 1607 of Lecture Notes in Mathematics. Springer,
Berlin, Heidelberg, 1995.



190 BIBLIOGRAPHY

[SG04] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of
linear equations with PARDISO. Future Generation Computer Systems,
20(3):475–487, 2004.

[She07] Roger A. Sheldon. Enzyme immobilization: The quest for optimum perfor-
mance. Advanced Synthesis & Catalysis, 349:1289–1307, 2007.

[Sho97] Ralph E. Showalter. Monotone Operators in Banach Spaces and Nonlinear
Partial Differential Equations. American Mathematical Society, Providence,
Rhode Island, 1997.

[Sla90] John C. Slattery. Interfacial Transport Phenomena. Springer, Berlin, Hei-
delberg, New York, 1990.

[SS05] Sara E. Skrabalak and Kenneth S. Suslick. Porous MoS2 synthesized by ul-
trasonic spray pyrolysis. Journal of the Americal Chemical Society, 127:9990–
9991, 2005.

[SV04] Ralph E. Showalter and D. B. Visarraga. Double diffusion models from
a highly-heterogeneous medium. Journal of Mathematical Analysis and
Applications, 295:191–210, 2004.

[Tay97] Michael E. Taylor. Partial Differential Equations I. Basic Theory, volume
115 of Applied Mathematical Sciences. Springer, New York, 1997.

[Thi39] E. W. Thiele. Relation between catalytic activity and size of particle.
Industrial and Engineering Chemistry, 31(7):916–920, 1939.

[TT97] John Meurig Thomas and W. John Thomas. Principles and Practice of
Heterogeneous Catalysis. VCH-Wiley, Weinheim, 1997.

[Val97] Michel Valadier. Admissible test functions in two-scale convergence. Portu-
galiæ Mathematica, 54(2):147–164, 1997.

[vDP04] C. J. van Duijn and I. S. Pop. Crystal dissolution and precipitation on
porous media: Pore scale analysis. Journal für die reine und die angewandte
Mathematik, 577:171–211, 2004.

[Vis04] Augusto Visintin. Some properties of two-scale convergence. Rendiconti
Lincei Scienze Fisiche e Naturali, 15(9), 2004.

[Vis06] Augusto Visintin. Towards a two-scale calculus. ESAIM: Control, Optimiza-
tion and Calculus of Variations, 12:371–397, 2006.

[Vis07] Augusto Visintin. Two-scale convergence of first-order operators. Journal
for Analysis and its Applications, 26:133–164, 2007.

[vNM10] Tycho L. van Noorden and Adrian Muntean. Homogenization of a locally-
periodic medium with areas of low and high diffusivity. ArXiv Preprint
1003.3979v1, 2010.



BIBLIOGRAPHY 191

[vNPEH10] Tycho L. van Noorden, Sorin Pop, Anozie Ebigbo, and Rainer Helmig. An
upscaled model for biofilm growth in a thin strip. Water Resources Research,
46:W06505, 2010.

[vW88] Lothar von Wolfersdorf. Potential flow past a circular cylinder with permeable
surface. Zeitschrift für angewandte Mathematik und Mechanik, 1:11–19, 1988.

[WGWD10] Dan Wen, Shaojun Guo, Yizhe Wang, and Shaojun Dong. Bifunc-
tional nanocatalyst of bimetallic nanoparticle/TiO2 with enhanced perfor-
mance in electrochemical and photoelectrochemical applications. Langmuir,
26(13):11401–11406, 2010.

[Wlo92] Joseph Wloka. Partial Differential Equations. Cambridge University Press,
Cambridge, 1992.

[Zei86] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications
I. Fixed-Point Theorems. Springer, New York, 1986.

[Zei88] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications IV. Ap-
plication to Mathematical Physics. Springer, New York, 1988.

[Zei90] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications
IIa. Linear Monotone Operators. Springer, New York, 1990.

[Zei04] Eberhard Zeidler. Oxford Users’ Guide to Mathematics. Oxford University
Press, New York, 2004.

[Zhi00] V.V. Zhikov. On an extension of the method of two-scale convergence and
its applications. Sbornik: Mathematics, 191(7):973–1014, 2000.

[Zim06] William B.J. Zimmerman. Multiphysics Modelling with Finite Element Meth-
ods. Series on stability, vibration, and control of systems. World Scientific,
2006.


