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Summary 
Ecotoxicological toxicity data serve as a basis to assess the hazard of a substance and help to 

decide whether a risk of adverse effects in the environment is likely. Toxicity tests are often 

restricted to simple single substance tests with short time periods of exposure. They only 

regard toxicity at a certain time point distinguishing only between acute or chronic toxicity. 

However, time consists of many timescales, like toxicodynamic, the dynamics of injury and 

recovery and toxicokinetic, the dynamics of absorption and elimination of a toxicant. 

Additionally, the exposure to hazardous compounds may not follow simple exposure patterns. 

Environmental concentrations of pollutants may fluctuate, due to variable emissions from 

anthropogenic sources such as the seasonal use of herbicides and storm runoff or flooding. As 

a result, organisms can be exposed to a multitude of different toxicants with complex time 

patterns.  

Taking these aspects into consideration, the aim of this study is to gain an insight into what 

influence time has on toxicity and how toxicity develops if the exposure follows complex 

time patterns. As a test organism Lemna minor, a limnic vascular plant was used due to its 

ecological importance and its convenience for the test pattern of this presented research. Test 

substances with different Mode of Actions were the herbicides Alachlor, Aclonifen, Ametryn, 

Prometon, Diuron and Paraquat. The tested metals were zinc, copper, cadmium and nickel. 

All these substances are of importance as environmental pollutants.  

Single substance toxicity over a set length of time was investigated for each substance. 

Concentration-response relationships were recorded at different points of time over a total of 

seven days. The results show that toxicokinetics as well as toxicodynamics are important and 

they are concentration-dependent and specific for each substance and its Mode of Action. 

This work stresses that it is important to consider toxicodynamic properties, which are often 

neglected in studies on toxicity and time. 

In the case of the metals, their uptake over time into the plants was investigated via AAS. It 

was shown that concerning the toxicity of the metals it is crucial how well a toxicant is 

absorbed. The internal concentrations of the metals were quite similar, despite their largely 

differing external EC50 values. There was however no correlation between toxicity over time 

and the total internal concentration over time. Instead the changing toxicity of the metals may 

apart from a cumulative damage be attributed to a dynamic distribution within the plant. 
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Though simple, the empiric Haber’s law and its derivations gave a good description of the 

toxicity-time relationship of the obtained data and thus may be a good tool to extrapolate 

toxicity for different time points in environmental hazard assessment. Additionally, the data 

fitted equations give information on whether the toxicity of a substance is more 

concentration-or time-dependent. The mechanistic model DEBtox, based on the assumption 

that toxicity is mainly determined by toxicokinetics, may be too simplistic. The results of this 

work show toxicokinetics and toxicodynamics are both important and should both be 

considered.  

All substances were investigated concerning the recovery potential of the plants after a three-

day pulse. Substances with a slow reversible Mode of Action/Mechanism of Action and time-

dependent toxicity showed a slow concentration-dependent recovery potential, whereas 

substances with a quick reversible Mode of Action/Mechanism of Action showed a 

concentration-independent fast recovery potential. 

The study with Lemna minor and fluctuating concentrations of Alachlor, copper or Diuron 

showed that the damage is either cumulative (Alachlor), that the plants are able to adapt 

(copper) or that the plants only show an increase of sensitivity over a short time due to fast 

recovery (Diuron). 

The order of application was crucial for the overall effect if Alachlor, copper and Diuron were 

combined sequentially. Different results were observed for the same combination of 

substances but in a different order.  

The predictive concepts Concentration Addition (CA) and Independent Action (IA) gave a 

good estimation of the toxicity of the mixtures studied with a constant composition. 

Concerning the sequential combination of Alachlor, Diuron and copper the two concepts were 

applicable within limits, as the sequence is not considered by these concepts.  

This work shows that the time factor is important. It is not only ‘the dose that makes a poison’ 

but also the time that makes a poison. Therefore, toxicity-time relationships and more 

complex exposure patterns should also be considered as worthy of investigation. Studies 

which take these aspects into account may help to refine the risk assessment for instance of 

crop protection and to indentify pulse sequences that may be less harmful to the environment 

than other usage patterns.  
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Zusammenfassung  
Ökotoxikologische Toxizitätstests bilden die Basis für die Gefährdungsabschätzung eines 

Stoffes und der Abschätzung des Risikos einer Umweltgefährdung. Toxizitätstests sind meist 

beschränkt auf einfache Einzelsubstanz-Tests mit kurzer Testzeit, die einen bestimmten 

Zeitpunkt betrachten und nur zwischen akuter und chronischer Toxizität unterscheiden. Die 

Zeit besteht jedoch aus unterschiedlichen Zeitverläufen wie die Toxikodynamik, die den 

zeitlichen Verlauf des verursachten Schadens durch eine toxische Substanz und dessen 

Reparatur betrachtet, und die Toxikokinetik, die den zeitlichen Verlauf der Aufnahme einer 

Substanz und Ausscheidung betrachtet. Zusätzlich kommen Chemikalien nicht einzeln vor 

und die tatsächlichen Umweltkonzentrationen von Chemikalien schwanken. Dies wird z.B. 

verursacht durch die saisonale Verwendung von Pflanzenschutzmitteln, punktuelle kurze 

Emission von Chemikalien, Strömungen, oder Regenfälle, die Schadstoffe in Gewässer 

eintragen. Das heißt, Organismen sind einer Vielzahl verschiedener Chemikalien mit 

komplexen Zeitmustern ausgesetzt.  

Unter Berücksichtigung der oben genannten Aspekte ist es das Ziel dieser Arbeit Einblick zu 

gewinnen, welchen Einfluss der Faktor Zeit auf die Toxizität und wie sich die Toxizität 

entwickelt wenn die Exposition gegenüber Stoffen komplexeren Zeitmustern folgt. Als 

Testorganismus wurde die limnische vaskuläre Pflanze Lemna minor verwendet. Diese 

Pflanze ist einerseits ökologisch wichtig aber auch für das Versuchsdesign bei dieser Arbeit 

besonders gut geeignet. Als Testsubstanzen mit unterschiedlichen Wirkweisen wurden die 

Metalle Zink, Kupfer, Cadmium und Nickel sowie die Pflanzenschutzmittel Alachlor, 

Aclonifen, Ametryn, Prometon, Diuron und Paraquat untersucht.  

Der zeitliche Verlauf der Einzelstofftoxizität wurde für jede Substanz untersucht, indem die 

Konzentrations-Wirkbeziehung zu mehreren Zeitpunkten über sieben Tage bestimmt wurde. 

Diese Arbeit zeigt dass, die Toxikokinetik und die Toxikodynamik beide wichtig, 

konzentrationsabhängig und für jede Substanz und seine Wirkweise spezifisch sind. Die 

Ergebnisse dieser Arbeit betonen, dass es wichtig ist auch die Toxikodynamik in Betracht zu 

beziehen. Dies wird oft vernachlässigt bei der Toxizität über die Zeit.  

Bei der Untersuchung der Metalle wurde zusätzlich mittels AAS der Verlauf der 

Metallaufnahme über die Zeit gemessen. Hier zeigte sich, dass die Toxizität der Metalle vor 

Allem durch ihre Aufnahme bestimmt wird. Die internen Konzentrationen der Metalle in den 

Pflanzen waren ähnlich, während die ermittelten externen EC50 Werte sehr unterschiedlich 

waren. Andererseits ließ sich die verändernde Toxizität über die Zeit nicht durch eine 
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veränderte interne Gesamtkonzentration erklären, sondern ist eher einer dynamische 

Verteilung der Metallkonzentration über die Zeit innerhalb der Pflanze und kumulativen 

Schäden zuzuschreiben.  

Es gibt unterschiedliche Ansätze, entweder empirische oder mechanistische, um die 

Toxizitäts-Zeit-Beziehung zu beschreiben. Obwohl ein sehr einfacher Ansatz, erwies sich das 

empirische Habersche Gesetz sowie dessen Variationen als eine gute Beschreibung der 

Toxizitäts-Zeit-Beziehung und könnte daher ein gutes Mittel sein, um bei der 

Gefährdungsabschätzung eines Stoffes die Toxizität über die Zeit zu extrapolieren. Das 

mechanistische Modell DEBTox basiert auf der Annahme, dass die Toxizität hauptsächlich 

durch die Toxikokinetik bestimmt wird. Aufgrund der in dieser Arbeit erstellten Daten muss 

jedoch geschlossen werden, dass diese Annahme zu einfach ist. Sowohl die Toxikokinetik als 

auch die Toxikodynamik sind beide wichtig und sollten daher beide in Betracht gezogen 

werden.  

Alle Substanzen wurden hinsichtlich ihres Erholungspotentials nach einer dreitägigen 

Exposition untersucht. Substanzen mit einem langsam reversiblen Wirkmechanismus und 

einer zeitbestimmten Toxizität zeigten eine langsame konzentrationsabhängige Erholung, 

während Substanzen mit einem schnell reversiblen Wirkmechanismus ein 

konzentrationsunabhängiges schnelles Erholungspotential zeigten.  

Untersuchungen mit Lemna minor und fluktuierenden Konzentrationen von Alachlor, Kupfer 

oder Diuron zeigten, dass der verursachte Schaden entweder kumulativ (Alachlor) ist, die 

Pflanzen sich anpassen (Kupfer) oder nur eine kurze Phase erhöhter Empfindlichkeit aufgrund 

des schnellen Erholungspotentials beobachtbar ist (Diuron).  

Die Sequenz ist wichtig, wenn Substanzen sequentiell miteinander kombiniert werden. Diese 

zeigen die Untersuchungen dieser Arbeit wenn Alachlor, Kupfer und Diuron miteinander 

kombiniert wurden. Unterschiedliche Ergebnisse konnten beobachtet werden bei der gleichen 

Kombination aber einer unterschiedlichen Sequenz.  

Die Vorhersagekonzepte Konzentrationsadditivität (CA) und Unabhängige Wirkung (IA) 

lieferten gute Vorhersagen der Mischungstoxizität von untersuchten Mischungen mit einer 

konstanten Zusammensetzung. Wurden Alachlor, Kupfer und Diuron jedoch sequentiell 

miteinander kombiniert waren diese Vorhersagekonzepte nur bedingt anwendbar, da die 

Konzepte die Sequenz nicht berücksichtigen.  
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Diese Arbeit zeigt: Zeit ist wichtig. Nicht nur ‚die Dosis macht das Gift’ sondern auch die 

Zeit macht das Gift. Daher sollten Toxizitäts-Zeit-Beziehung und komplexere 

Expositionsmuster bei Untersuchungen ebenfalls in Betracht gezogen werden. 

Untersuchungen, die diese Aspekte berücksichtigen, könnten zum Beispiel zur Verfeinerung 

der Risikobewertung von Pflanzenschutzmitteln und ihrer Anwendung beitragen und solche 

Pulssequenzen identifizieren, die weniger schädigend auf die Umwelt wirken. 





1 

1 Introduction 

1.1 Environmental pollution and the assessment of its hazards 
Due to their beneficial properties chemicals have found a broad acceptance and are being used 

in our everyday life in homes and workplaces as well as in agricultural and industrial 

production. The profitable use of metals as alloys or salts dates back to the Iron Age. In 

comparison, the beneficial use of synthetic organic compounds started just before and 

especially after World War II when synthetic chemistry rapidly evolved and provided almost 

boundless possibilities for developing new chemicals (Jastorff et al., 2003). However, apart 

from their advantages, chemicals also pose a variety of problems. This is not an exclusively 

modern concern. Though not on a modern scale, even in Greco-Roman times for instance 

pollution was caused due to unreduced effluents. Apart from wastes, smoke and odour, 

pollutants of that time that were released from gold refineries or separated from silver ore 

were lead and mercury. As ingredients of paints and dyes, arsenic and lead were part of daily 

used products. Hughes (1994) assumes that such pollution may even have been a contribution 

to the decline of these cultures.  

The awareness of the negative impacts of synthetic chemicals lagged behind the evolution of 

synthetic chemistry and increased in the sixties of the last century. This awareness was 

substantiated by incidences such as accidental spills as in the case of Seveso (1976). Apart 

from risks of chemicals on humans, Rachel Carson’s book ‘Silent spring’ published in 1962 

deals with the impact of the organochlorine pesticides DDE, DDT and DDD on humans and 

wildlife, which triggered a growing interest in the emerging field of environmental toxicology 

(Walker, 2006) and is often believed to be the naissance of environmental awareness 

(Winiwarter and Knoll, 2007). Up until the sixties there was only a minimal awareness of 

ecological problems related to the release of chemicals into the environment and little 

attention had been paid to environmental risk assessment whereas the risk assessment of 

toxicants on humans was relatively well researched (Walker, 2006).  

1.1.1 Current status of the regulation of chemicals 
Nowadays, several legislative acts have been set into force in order to manage the uses of 

chemicals and to restrict their danger to humans and the environment. For instance, the new 

European regulation for the “Regulation, Evaluation, Authorisation and Restriction of 

Chemicals”(REACH) inaugurated in June 2007 considers industrial chemicals and created a 

single system for industrial chemicals which had been regulated unequally depending on the 

date they had been introduced onto the market (Council of the European Communities, 2006). 
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The directive 91/414/EEC regulates plant protection products such as herbicides (Council of 

the European Communities, 1991). To regain and retain a good environmental status of 

waterbodies the Water Frame Directive (WFD) has been inaugurated (European Parliament et 

al., 2001).  

Environmental protection and management strategies rely on the estimation of the hazard a 

chemical may pose on ecosystems (Forbes and Forbes, 1994). Ideally, tests designed to assess 

the hazard of a chemical should reflect the situation in the environment as realistically as 

possible. However, this conflicts with practical constraints such as limited resources (budget, 

time, manpower) and social issues (e.g. animal welfare) (Junghans et al., 2008). Also the 

sheer number of chemicals which need to be assessed and the complexity of the environment 

make an in-depth risk assessment unfeasible. In addition to that, the regulation of chemicals 

favours clear and decisive results of standardised tests. Hence, effect assessment is generally 

restricted to simple standardized toxicity experiments although environmental risk assessment 

aims to protect the structure and functioning of ecological systems of higher biological 

organisation (Junghans et al., 2008). A test system consists of one species as a representative 

of an organism, of a compartment such as freshwater and representative of a trophic level. 

Based on the toxicity data of these representative organisms which are mainly fish, algae and 

daphnids, a predicted no observed effect concentration (PNEC) is generated. Depending on 

the uncertainty an additional uncertainty or assessment factor may be applied. The PNEC-

value is compared with the predicted environmental concentration (PEC), which is based on 

an exposure assessment of the substance regarded. Based on the obtained PEC/PNEC ratios, a 

quantitative risk-characterization is carried out. The risk assessment of pesticides is performed 

in a particular way. In contrast to the estimation of PEC/PNEC ratios, so-called “toxicity 

exposure ratios” (TER) are estimated (EC50/PEC) to determine whether the risk to an 

organism is acceptable or not.  

In regulation substances are generally regarded singly and the tests conducted to assess the 

toxicity of a substance refer to a certain time point either determining acute or chronic 

toxicity. How toxicity evolves over time under simple or complex exposure scenarios is 

generally not the subject of the hazard assessment of chemicals. This approach however 

hardly describes the full consequence of a toxic substance on something as complex as an 

ecosystem nor does it sufficiently reflect the real site situation of hazardous chemicals in the 

environment either released on purpose or accidentally. Referring to the use and release of 

chemicals into the environment, organisms are exposed to a cocktail of pollutants in 
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concentrations with long time-scales or complex time patterns. However, to assess the hazard 

of each pollutant considering the different time scales and time patterns of its occurrence in 

the environment is not feasible. Nor is it practicable to assess the mixture toxicity of each 

possibly occurring mixture. In order to circumvent the conduction of additional testing due to 

practical constraints and to tackle this problem, approaches try to extrapolate, model or 

predict the hazard of such real site situations. Those approaches, which are the subject of this 

work, will be introduced in the following chapters.  

1.2 The relation between toxicity and time 
Time can be regarded as the time point or time course. Both play an important role in toxicity. 

Chronotoxicity and chronopharmacology deal with the time point a toxicant is applied. This 

field of toxicology deals with time-of-day effects and takes into account the chronobiology of 

organisms. The term chronopharmacology was coined in the early 1960s and especially 

investigates the efficiency pharmaco-therapeutics or the toxicity of chemicals in workplaces 

depending on the time of day (Dhami et al., 1997). 

Focusing on the time course, toxicity depends on exposure, which is a function of dose and 

time. Though both parameters have the same importance, toxicologists have rather focused on 

the dependency of dosage and toxicity than time and toxicity (Rozman and Doull, 2000).  

Time is often only regarded in a semi quantitative manner, distinguishing between acute and 

chronic toxicity. Compared to dosage, which is a simple variable as it only depends on the 

number of molecules, the variable time is multidimensional. Time consists of many 

timescales, like toxicodynamics, toxicokinetics and frequency and duration of exposure 

(Rozman, 2000). Toxicokinetics deals with the dynamic change between absorption and 

elimination of a toxicant, whereas toxicodynamics studies the dynamic change between injury 

and recovery. Absorption occurs faster than elimination and injury occurs faster than repair. 

Thus, elimination, which includes the processes of excretion, distribution and 

biotransformation, determines toxicokinetics. In analogy, recovery, which includes 

reversibility, repair and determines the toxicodynamics (Rozman and Doull, 2000).  

There are several different approaches, which try to describe toxicity over time. Time to event 

models approach time and toxicity by determining a time point including duration and 

intensity of exposure at which a defined response occurs (Crane et al. 2002; Karman 2000 et 

al.).Other models assume a time-dependent or time-independent threshold. The idea is that a 

toxicant causes an effect if the internal concentration in an organism of the toxicant exceeds 



Introduction 

4 

this threshold. (Kooijman, 2000b; Legierse et al., 1999; Verhaar et al., 1999; Bedaux and 

Kooijman, 1994). Another approach additionally includes the damage a toxicant causes in 

order to describe the toxicity over time (Lee J-H et al., 2002). Apart from these refined 

mechanistic models, there are also approaches, which describe the toxicity-time empirically 

(Ahlers et al., 2006; Länge et al., 2004; Rozman and Doull, 2000).  

In this work, special focus is put onto the approach of Rozman and Doull, who promote the 

relatively simple approach of Haber and Bliss. This simple empirical approach will be 

compared to and discussed with the mechanistic approach of Kooijman, who developed the 

dynamic energy budget theory (DEB) and its spinoff the Dynamic Energy Budget Toxicity 

model (DEBtox).  

1.2.1 Haber’s Rule and its derivations 
Rozman and Doull are advocates for an extrapolation method which dates back to 1900 

(Rozman and Doull, 2000; Schramm et al., 2002; Rozman, 2005; Rozman and Doull, 2001a; 

Rozman and Doull, 2001b; Rozman 2000). Warren quantitatively linked the relationship 

between dose and time the first time (Rozman and Doull, 2001b; Warren, 1900). Ostwald and 

Dernoscheck (1910) modified Warren’s formula in analogy with the adsorption isotherm to  

c� •t=k.   (1) 

In this equation c is the concentration, which is exponentiated by the power term � and 

multiplied by the exposure-time t. The product is constant which is expressed by the constant 

k.  

Haber (1924) used the simplest version of dose/time relationship.  

c•t=k  (2) 

Though this equation was only mentioned in a footnote by Haber, the equation became 

‘Haber’s rule’ and was most frequently confirmed by entomologists (Rozman, 2000). 

Bliss (1940) concluded from his observations that departures from the Haber equation can be 

either described by the equation introduced by Ostwald and Dernoscheck (1910) or by 

introducing a power term for the time (t). 

c•t�=k  (3) 
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If the hyperbolic equations are logarithmically transformed or plotted on log-log paper, the 

equations become linear and thus can be easily solved by hand.  

Though these equations are simple, they demand some experimental preconditions as Rozman 

illustrates (Rozman 2000). According to Rozman, these preconditions should be fulfilled for 

aquatic ecotoxicological experiments and therefore Haber’s rule or the derivations from it 

should be suitable to describe the change of toxicity over time. Whether this is the case, will 

be investigated. Additionally, these equations may give insight into which extent toxicity is 

time- or concentration-dependent as stated by Miller et al. (Miller et al., 2000), which may be 

linked to the Mode of Action (MoA) of the tested substance. 

1.2.2 The DEBtox approach  
Compared to the approach for which Rozman and Doull strongly stand up for and which can 

be easily solved by hand on log-log paper, the Dynamic Energy Budget Toxicity model 

(DEBtox) is mathematically more challenging and thus needs considerable processor capacity 

(Bedaux and Kooijman, 1994; Kooijman, 2000b). The aim of DEBtox is the derivation of a 

threshold value which is called the No Effect Concentration (NEC). This NEC is a model 

parameter and is the concentration of the chemical which does not cause any effect after 

prolonged exposure. The NEC has been suggested as an alternative to the time-dependent No 

Observed Effect Concentration (NOEC). In contrast, the NOEC is not a model parameter but 

one of the test concentrations of the regarded test and always linked to the test duration. This 

value is important concerning the regulation of chemicals as it used for the derivation of the 

PNEC.  

DEBtox is based on the Dynamic Energy Budget concept (DEB), which deals with the 

acquisition of energy by an individual organism and its utilisation for growth, reproduction 

and survival. Finding similarities between different organisms, Kooijman, the founder of this 

theory, tried to establish a mathematical framework which captures the energy budget of such 

organisms as diverse as ‘zebras, beetles and bacteria’. The organisms are treated as a dynamic 

system with a mass and energy balance. This framework is described in detail in (Kooijman, 

2000a). The DEBtox model was developed as a by-product of the DEB theory. According to 

DEBtox a toxicant disturbs and changes the energy balance of an organism. The NEC concept 

is based on the idea that each molecule may have an effect, thus the NEC is zero on the 

molecular level. However according to the model, on the level of the organism regulation 

systems cancel these effects out to some extent and thus the NEC is not zero. Hence, if the 

external concentration is smaller than the NEC, no effect is observable. According to the 
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model, toxicity is determined by the concentration of the toxicant alone. It is assumed that the 

hazard rate is proportional to the concentration of the toxicant in the organism if the internal 

concentration exceeds this internal threshold concentration. The DEBtox model is based on 

first order kinetics. The uptake rate is proportional to the environmental concentration and the 

elimination rate is proportional to the toxicant density in the body. A detailed mathematical 

description of the model has been provided by Bedaux and Kooijman (1994).  

1.3 Variable exposure patterns: Pulsed and fluctuating exposure  
As investigations (Kreuger, 1998; Reinert et al., 2002) of the aquatic environment have 

shown, the environmental concentrations of hazardous substances in the environment are not 

continuous but fluctuate. This is due to the seasonal use of pesticides and the resulting surface 

runoff, spills, spray drift, and herbicide loss from agricultural fields after rainfall. But this 

may not only be the case for substances released intentionally into the environment. 

Concentrations of heavy metals in the environment also fluctuate, due to e.g. tidal currents, 

storm runoff flooding or changes in speciation (Alagarsamy, 2006; Shomar et al., 2005; 

Montes-Botella and Tenoria, 2003; Broman et al., 1994). 

Periods of intense exposure might be followed by episodes with a relatively low or no 

exposure. Thus the risk assessment based on continuous exposure may not provide an 

appropriate estimate of a toxic effect as organism may be exposed to toxicants present in 

pulses. Under these circumstances if a single toxicant pulse occurs, organism may recover. 

Many authors have thus proposed to additionally conduct recovery experiments (Reinert et 

al., 2002; Van Straalen et al., 1992; McCahon and Pascoe, 1990; Wright, 1976). 

Investigations on the recovery potential are often conducted in the context of directive 

91/414/EEC concerning the placing of plant protection products on the market (Council of the 

European Communities, 1991). Nevertheless, even the ecotoxicological hazard assessment of 

substances non-intentionally entering the aquatic environment, such as heavy metals, would 

be improved by considering the recovery potential. Consequently, the Guidelines for 

Ecological Risk Assessment of the U.S: EPA, suggest not only to consider the nature and 

intensity of potential effects and its spatial as well as temporal scales, but also the potential for 

recovery (US Environmental Protection Agency, 1998). 

The damage a toxic substance causes may be a crucial issue for the recovery potential. Apart 

from ‘How much damage?’ which is linked to the dosage, ‘What kind of damage?’ may also 

be important to quantify the recovery potential. Thus, this work investigates the recovery 

potential from exposure pulses to substances causing different physiological damages and 
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different exposure concentrations. Since the tests are conducted with Lemna minor, a vascular 

plant, especially herbicides, where the Mode of Action and the underlying biochemical 

mechanism are well investigated, are tested. Metals are included as they allow an easy 

investigation of the dependency of recovery on elimination or detoxification by measuring the 

internal metal concentration. Furthermore, this work investigates, whether repeated pulses 

may lead to cumulative effects or adaptation  

1.4 Mixture toxicity 
Apart from the exposure to single substances with complex time patterns, organisms in 

aquatic ecosystems are typically exposed to a multitude of pollutants, either simultaneously or 

sequentially. Due to the high spatial and temporal variability of the concentrations of the 

individual toxicants, an experimental effect assessment of all conceivable mixtures is not 

feasible. But predictive approaches using information on the toxicities of individual 

compounds may allow an estimation of the overall toxicity of a given chemical mixture. Two 

concepts, Concentration Addition (CA) and Independent Action (IA), can be used for such a 

purpose. 

CA proceeds from the assumption that all components of a mixture act similarly. This concept 

can be traced back to the work of Frei (1913) and Loewe and Muischnek (1926) who 

developed this concept for two component mixtures. Berenbaum (1985) defined this concept 

for a mixture with n compounds as follows: 

n
i

i 1 i

c 1
ECx=

=�    (4) 

In this equation, ci is the concentration of the i-th substance present in the mixture. ECxi is the 

individual concentration of the i-th substance causing the same effect x as the total mixture. 

The quotient ci/ECxi has been termed the toxic unit by Sprague (1970). The total effect of the 

mixture is unchanged as long as the sum of all toxic units remains constant. This implies that 

a mixture component can be replaced totally or in part by any other component with the same 

toxic unit. 

The concentration of each component can be expressed as a fraction of the total concentration 

if the ratio of the mixture components is known. Accordingly equation 1 can be rewritten as 

1n
i

Mix
i 1 i

p ECx
ECx

−

=

� �
=� �

� �
�   (5) 
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ECmix is the total concentration of the mixture provoking x% effect, and pi the fraction of 

component i in the mixture. 

In contrast, IA is based on the idea of dissimilarly acting components in a mixture with 

different target sites but triggering a common toxicological endpoint. This concept was first 

formulated by Bliss (1939) and is as the following for a two-component mixture: 

Mix 1 2 1 2E(c ) E(c ) E(c ) E(c ) E(c )= + − ⋅   (6) 

where E(c1) and E(c2) are the effects of substance 1 and 2 if applied singly in concentrations 

c1 and c2. E(cmix) is the predicted joint effect caused by the total concentration mix 1 2c c c= + . 

For a multi-component mixture the equation can be extended as follows: 

)](1[1)(
1

i

n

i
Mix cEcE −−= ∏

=

  (7) 

E(cMix) is the predicted effect of a n-compound mixture, cMix is the total concentration of the 

mixture, ci is the individual concentration of the i-th compound in the mixture and E(ci) the 

effect of this concentration if the compound is applied alone. 

The prerequisites for the prediction of mixture toxicity are the knowledge of what substances 

are in the mixture as well as the single substance dose relationship of the substances. For a 

Concentration Addition prediction the EC values are needed whereas the Independent Action 

concept predicts the mixture toxicity on the basis of the effects of the single substances.  

As mentioned the concept CA presumes similar acting toxicants. ‘Similar acting’ may be 

understood as substances with the same target site (Pöch, 1991) or substances with a common 

toxicological response (Berenbaum, 1985). Bliss (1939) proposed toxicants should have 

parallel concentration response curves if they are strictly similar but this was discarded by 

Plackett and Hewlett (1948). However, regardless whether the substances act similarly or 

dissimilarly both concepts only hold true if there are no interactions between the toxicants. 

Interactions may occur due to toxicokinetic or toxicodynamic interaction. Toxicokinetic 

interactions involve the alteration of metabolism or influence on uptake whereas 

toxicodynamic interactions involve a physiological alteration making the organism more or 

less sensitive (Plackett and Hewlett, 1948). This means the toxicity may be higher than 

predicted (synergistic) or lower than predicted (antagonistic).  



The test organism Lemna minor 

9 

Mixture toxicities have been successfully predicted using these concepts. Investigations have 

been made especially with pesticides with known and distinct Modes of Action/Mechanism of 

Action. It could be shown in many works with various organisms, that CA gave a good 

prediction of the mixture toxicity of substances with similar action (Backhaus et al., 2004; 

Backhaus et al., 2003; Drost et al., 2003; Junghans et al., 2003; Faust et al., 2001; Altenburger 

et al., 2000). For mixtures with independent acting substances IA made good predictions 

(Faust et al., 2003; Backhaus et al., 2000; Hermens and Leeuwangh, 1982). Though many of 

the investigated mixtures were designed on the basis of their EC50 ratios, good predictions are 

not restricted to this ratio, as studies with EC1 ratios have shown (Faust e al., 2003; 

Altenburger et al., 2000; Grimme et al., 2000; Backhaus et al., 1997). Significant mixture 

effects were also observed if substances were combined in concentrations below or at their 

NOEC (Walter et al., 2002; Silva et al., 2002). Hence, even low effect concentrations or 

concentrations which are defined as not having an effect, contribute to an overall mixture 

toxicity. Yet, it has been stressed that the effect data have to be of good quality if predictions 

are based on IA (Faust et al., 2003; Altenburger et al., 2000). This is not always the case, 

especially for low effect concentrations. As CA overestimated the mixture toxicity of 

dissimilar acting substances and gave good prediction of the toxicity of similar acting 

components, this concept is suggested as a general solution to assess mixture toxicity on the 

basis of the precautionary principle (Faust et al., 2003; Faust et al., 2000). 

All the above mentioned studies are artificially designed. An environmental realistic mixture 

based on an average European agricultural situation in springtime was investigated by 

Junghans et al (Junghans et al., 2006) and CA and IA gave a good assessment of the overall 

toxicity. 

So far the concepts proved to be good prediction tools for mixture toxicity. However all 

studies investigated mixtures of constant qualitative and quantitative composition. This is not 

necessarily the case. If exposure occurs in fluctuating concentrations, organisms may be 

exposed to substances one at a time but nevertheless show combination effects. To which 

extent mixture toxicity can be assessed by the concepts IA and CA in such scenarios has not 

yet been analysed. It is therefore the aim of this work to analyse whether these concepts are 

applicable for mixtures which do not have a constant qualitative and quantitative composition. 

1.5 The test organism Lemna minor
Lemna minor is frequently used in ecotoxicological research as a representative of higher 

aquatic plants. In 2006 both the OECD and ISO published final test guidelines (Organisation 
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for Economic Co-operation and Development (OECD), 2006; International Organization for 

Standardization (ISO), 2006). Lemnas are attractive test organisms, not only because of their 

important ecological functions and widespread occurrence. The plants are also easy to 

cultivate and handle, have a high growth rate under laboratory conditions (Lewis, 1995) and 

are highly sensitive to various pollutants (Fairchild et al., 1998; Fairchild et al., 1997). The 

plant size is small, but the fronds are large enough to be easily counted with the naked eye. 

This facilitates non-destructive, repeated measurements of growth patterns. The plants can be 

easily transferred into different media during testing which was particularly important for the 

studies on recovery and sequential exposure. 

Lemnoideae belong to the Araceae family and comprise the Landoltia, Lemna, Spirodela, 

Wolffia and Wolffiella genera. Lemna minor is a limnic vascular plant commonly found in 

fresh water or brackish water in a cool temperate climate. Except for the southern hemisphere 

this plant is distributed almost worldwide (Landolt, 2009). As a part of a balanced ecosystem, 

they serve as an important food source for various water birds and fish and provide habitat for 

invertebrates (Wang, 1990). They consist of fronds floating on the surface water, which form 

colonial aggregates of two or more fronds in a colony. Lemna minor has single ovules and 

propagate vegatitivly and thus represent clones (Landolt, 1975). As Lemna minor mainly 

grows two-dimensionally on the water surface, the growth may not only be established on the 

basis of frond counting as suggested in the test guidelines. Alternatively, growth can be 

measured by determining the frond area. 

The growth rate of these plants can be observed by frond counting or by measuring the frond 

area. The shape and frond size can be influenced by external factors (Landolt, 1975) such as 

toxic stress. As young fronds are small and may be overseen, the number of fronds counted 

depends on the experimenter. Additionally, the growth rate of the plant rather depends on the 

frond size than the frond number (Eberius et al., 2002) and thus the determination of the 

growth rate on the basis of the frond area should be preferred. 

1.6 Possible variables influencing toxicity over time 

1.6.1 The substances and their mechanism or mode of action 
The Mode of Action (MoA) represents the cellular, physiological or organism-level effects of 

exposure to chemicals whereas the Mechanism of Action (MeoA) requires information on 

how a substance reacts on a molecular level with the target site. There is however no clear cut 

line between these two terms and contradictory definitions can be found (Escher and Hermens 
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2002). Recently Escher et al. (2011) classified the MeoA as the primary action of toxicant 

action on the molecular level which causes and is followed by the secondary action, the 

physiological effect or that is the MoA. Nevertheless, the differentiation between both terms 

remains ambiguous as the authors state. Concerning the introduced herbicides there is 

sufficient knowledge on how these substances react on a molecular level, hence their MeoA. 

Nevertheless the herbicides are grouped in accordance with the physiological responses they 

provoke i.e. their MoA. Concerning the metals there is however a lack of knowledge on how 

metals react on a molecular level in detail to provoke a particular effect. Therefore their 

introduction mainly focuses on physiological effects i.e. their MoA. If information on the 

molecular mechanism is available and this work uses the term MeoA otherwise the term MoA 

is used.  

Main target sites of toxicants are membranes, proteins and genetic material (Escher and 

Hermens, 2002). The same chemical may operate by a number of MoAs. Different 

concentrations may have different or additional effects. Apart from specific MeoAs as 

introduced for the herbicides substances can also evolve unspecific effects. For instance, the 

interaction with membranes which is believed to cause narcosis, the so called base-line 

toxicity, is an intrinsic property of every chemical (Escher et al., 2006).  

Herbicides 

Herbicides acting on photosynthesis, PS2 system 

Triazines 
The s-triazines are used as active ingredients of herbicides and they are ubiquitous pollutants 

that are frequently found together or in close timely proximity in freshwater systems. Atrazine 

is the most frequently detected and most intensively studied representative of this group 

(Gfrerer et al., 2002; Garmouma et al., 2001; Clark and Goolsby, 2000; Müller et al., 2000; 

Thurman and Cromwell, 2000; Pempkowiak et al., 2000; Chevreuil et al., 1999; Clark et al., 

1999). All herbicidal s-triazines target photosystem II where they compete with 

plastoquinone, the electron transporter at the reducing site. The N-3 of the triazine ring-

system and the amino nitrogen at position 2 form hydrogen bonds to a peptide nitrogen and a 

serin residue. In this reversible procedure s-triazines can displace the natural electron acceptor 

plastoquinone, which causes an interruption of the electron transport (Mackay and O’Malley, 

1993; Oettmeier, 1999; Oettmeier and Hilp, 1991). This electron transport is a light dependant 

procedure. Thus, this interruption has the same effect as if the plant were put into darkness. S-

triazine exposure may also induce severe photo-oxidative stress, as the readily available 
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oxidative potential from excited pigments results in the production of Reactive Oxygen 

Species (ROS), which then irreversibly damage the proteins of the electron transport chain 

(Hock et al., 1995). Photooxidative stress can also occur under normal photosynthesis. Plants 

have thus developed defence mechanisms. The D1 protein, part of the electron transport 

chain, is especially vulnerable to photooxidation. Thus this protein has a rapid turnover rate. 

PSII inhibitors prohibit this turnover, which subsequently leads to irreversible photooxidative 

damage. 

Diuron 
Diuron is used as a total control of weeds and mosses on non-crop areas (Tomlin, 1994). 

Diuron belongs to the phenylurea. Like the triazines, Diuron acts on the photosynthetic 

system, interrupting the electron transport at the reducing site of PSII and inhibiting the 

turnover of the D1 protein. Thus, the effects of Diuron are the same as for the triazines. 

Diuron and the triazines have the equal binding niche, namely the binding site of the 

electrontransporter plastochinon PQB. However, triazines resistant mutants are nevertheless 

susceptible to Diuron which indicates a different binding. (Hock et al., 1995) 

Herbicides acting on photosynthesis, PS1 system 

Paraquat 
Paraquat is used for control of broad-leaved weeds and grasses in a variety of different crops 

and for general weed control (Tomlin, 1994). Paraquat belongs to the bipyridines or so called 

„quats „due to the quaternary nitrogen. It is one of the early found herbicides in the fifties of 

the last century. Like Diuron and the triazines Paraquat acts on the photosynthetic system 

however at the PSI site at the exterior of the thylacoide-membrane as an electron-scavenger. 

Here the positively charged protein PsaD-Gens passes on two electrons to the iron-sulphur 

complex containing ferrodoxin. As Paraquat itself is positively charged, the electron transfer 

probably does not occur directly at the PsaD-Gens protein but from ferrodoxin (Bowyer and 

Camilleri, 1987). As Paraquat can only collect one electron, this substance thus converts into 

a radical with an unpaired electron, which is passed on to oxygen, which converts, into a 

superoxide-anion that finally evokes oxidative stress. As the superoxide-anion is relatively 

stable, it can diffuse into to other cell compartments. Hence, oxidative stress and damage does 

not necessarily occur in the photosynthetic compartment. 
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Herbicides acting outside the chloroplasts 

Aclonifen 
Aclonifen belongs to the nitrodiphenylethers and is used as pre-emergence control of grass 

and broad-leaved weeds especially in potatoes (Tomlin, 1994; Hock et al., 1995b). It blocks 

the protoporphyrinogen-oxidase (PPGO). Due to its structure with two aromatic rings and the 

position of the rings, it resembles one half of protoporphyrinogen IX (PPGIX). PPGIX is a 

precursor of porphyrin, which forms chlorophyll or cytochromes. Because of this 

resemblance, Aclonifen probably occupies one half of the binding site of PPGIX. 

Consequently, the enzyme PPGO is blocked which normally oxidises the PPGIX to 

protoporphyrin (PPIX). This oxidation can also occur spontaneously but under normal 

conditions this oxidation is controlled by PPGO. If however, this enzyme is blocked, as it is 

the case if Aclonifen is present, the uncontrolled formation of PPIX takes place. Like 

chlorophyll, this substance is activated by light and then transfers this activation energy onto 

oxygen, which converts into the harmful singulett oxygen. This may not only occur on 

chloroplasts but also in mitochondria, as the target enzyme exists in both organelles. (Hock et 

al., 1995) 

Alachlor 
Alachlor belongs to the diverse group of chloracetamides. The growth of annual grasses is 

especially effected by these herbicides (Tomlin, 1994). Although this substance class has been 

known for long time and has been thoroughly studied, the molecular MeoA is not fully 

understood. The effect on growth does not occur immediately. The cell growth as well as the 

cell division is affected by this substance class (Deal and Hess, 1980). Changes of the lipid 

composition and the gradual inhibition of lipid synthesis over time were observed on cells of 

kidney beans by Chang et al. (1985). This substance class has the property of alkylation 

(Fuerst, 1987). Thus, chloracetamides may react with the nucleophilic thiol-group (-SH) of 

proteins releasing chloride or an aryloxy residual. This hypothesis has been underpinned by 

Molin et al. (1990). Hence, the alkylation of enzyme-thiol groups and coenzyme A (CoA-SH) 

has been discussed as a MeoA. 

Metals  
Although some metals are essential nutrients, excess concentrations of all heavy metals lead 

to various toxic effects such as oxidative stress and inhibition of enzymes (Dietz et al., 1999; 

Pohlmeier, 1999). Copper and zinc belong to the essential metals. Nickel has been put 

forward as being essential for legumes (Ernst, 1998), and pecan (Wood et al., 2004). As no 

biological/biochemical functions are known for cadmium, it is characterised as non-essential.  
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According to the Pearson concept zinc, cadmium, nickel and copper belong to the so-called 

borderline group and are therefore able to form stable complexes with all categories of ligands 

such as oxygen, sulphur and nitrogen containing compounds like proteins (Nieboer and 

Richardson, 1980). As proteins are potential ligands for these metals, this property is utilized 

in the case of copper and zinc. These metals play vital roles in the physiology of the cell, e.g. 

as part of the prosthetic group in enzymes or they can structure proteins, e.g. in the so-called 

zinc-fingers of various DNA-binding proteins. Not designated chelatation with proteins may 

however lead to structure and functioning loss of enzymes.  

Except for copper all metals chosen, show no redox-activity under physiological 

circumstances. Thus, copper can cause oxidative stress directly generating ROS. However 

many studies have shown that even the other metals cause lipid-peroxidation, induce 

enzymatic antioxidative responses and change the glutathione and ascorbate level indicating 

oxidative stress (Teisseire and Vernet, 2000; Gallego et al., 1999; Cuypers et al., 1999; 

Baccouch et al., 1998; Chaoui et al., 1997; Weckx and Clijsters, 1997; Gallego et al., 1996; 

Weckx Clijsters, 1996; Subhadra et al., 1991). The function loss of proteins might be one way 

oxidative stress is evoked.  

1.6.2 Detoxification in plants 

Pesticide biotransformation/detoxification 
Plants have a general procedure for dealing with xenobiotics. The major route of 

detoxification is the oxidative, reductive or hydrolytic enzymatic transformation with the aim 

of producing functional groups in order to conjugate these groups with endogenous 

compounds such as glutathione, sugars or organic acids or to make them more vulnerable to 

further steps of metabolism (Hoagland et al., 2001b). Some of the enzymes are constitutively 

expressed whereas the formation of other enzymes needs to be induced (Hoagland et al, 

2001b). Due to the broad substrate specifities of some enzymes, these enzymes detoxify 

endogenous as well as exogenous compounds. Thus, the modification of enzymes for 

pesticide metabolism is not necessary (Hoagland et al., 2001a) and pesticide resistance 

develops rather due to the modification of the target site than the modification of the 

metabolism (Saari, 1999). Esterase can also play a role in pesticide activation. Some 

herbicides have been specifically developed to exploit this metabolic pathway. The acid form 

of these pesticides is the active agent but as esters they are better absorbed by the plant. 
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Glucolysation and amino acid conjugation are dominant as glucose and amino acids are 

abundant in plants (Hall et al., 2001). Conjugation causes a higher molecular weight, 

enhanced water solubility, enhanced susceptibility to further transformation and decreased 

mobility of the compound. As plants lack excretory systems these modified compounds are 

generally compartmentalized into the vacuole the cell wall lignin or vascular tissue (Hall et 

al., 2001). For instance ATP-dependant pumps recognize the glutathione moiety and transport 

the glutathione-conjugates from the cytoplasm into the vacuole. For glucose or aminoacides 

conjugates such have not yet been discovered (Hall et al, 2001).  

Metal detoxification 
It is important for plants to acquire essential metals as micronutrients, but also to regulate 

their concentrations to prevent intoxication. Unlike pesticides metals are not vulnerable to 

transformation. Thus the strategy to overcome a metal intoxication or to control an excess 

metal concentration is immobilisation by means of chelatation to cystein-rich phytochelatines 

(Tsuji et al., 2002; Kwan and Smith, 1990a; Grill et al., 1987), sequestration in the vacuole 

and binding to organic acids (Krotz et al., 1989; Mathys, 1977) or reduction of the internal 

metal concentration via efflux (Hall and Williams, 2003; Williams et al., 2000). The 

formation of polypeptides is strongly induced by heavy metals and the strength of the 

induction depends on the metal species (Grill et al., 1985). These cystein rich polypeptides 

supply many thiol groups for binding metals but also prove themselves to be good 

antioxidants (Tsuji et al., 2002) and may be involved in the transport of cadmium into the 

vacuole (Vögeli-Lange and Wagner, 1990). 

1.7 Research questions 
Generally, toxicity studies focus on the question what concentration or dose is necessary to 

cause a certain effect (e.g. EC50) or what concentration is tolerable for not causing an 

observable effect (e.g. NOEC). Toxicity studies generally focus on the dose of toxicant, 

testing various concentrations under continuous exposure conditions. Time is only regarded 

semi-quantitatively distinguishing between acute toxicity and chronic toxicity. However, time 

is equally important to the dose and only very few studies have investigated the relationship 

between toxicity and time so far. Studies that have been conducted are for example the works 

by Ashauer et al. (2006a, 2006b, 2007a, 2007b, 2007c), Hassold (2009) and Valloton (2008).  

Time consists of many timescales, like toxicodynamic, the dynamic of injury and recovery 

and toxicokinetic, the dynamic of absorption and elimination of a toxicant. Are all timescales 

important? Studies often only consider toxicokinetics. However, toxicodynamics i.e. the 
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quality of the damage which is linked the MeoA and MoA may be an important factor that 

determines the toxicity-time-relationship. Therefore substances with different MeoA and 

MoA are investigated. Additionally, the uptake and elimination over time may determine the 

toxicity. As the internal metal concentration is easily measurable this issue has been 

investigated for the metals. Apart from the quality of the damage the quantity of damage may 

be also important. Different effect concentrations of the same substance may lead to different 

toxicity-time relationships. Therefore this work additionally analyses whether the toxicity-

time relationships differ for different effect-concentrations.  

There are different approaches, either empiric or mechanistic, which deal with the toxicity-

time relationship. Originating from pharmacology, a simple empiric approach was developed 

at the beginning of the 20th century by Warren (1900) and modified by Ostwald and 

Dernoscheck (1910) and Bliss (1940). Haber (1924) simplified the equation even further in 

the 20s and also became its eponym, Haber’s Law. It demands some experimental 

preconditions in order to observe Haber’s Law (Rozmann, 2000). Whether these 

preconditions are met by the test used in this work and whether Haber’s Law or its derivations 

are observable with the data achieved from this work will be investigated. DEBtox (Bedaux 

and Kooijman, 1994; Kooijman, 2000b) is a mechanistic model, which is based on 

assumptions concerning the factors that determine the toxicity-time-relationship. Whether 

these assumptions are sufficient, will be discussed on the basis of the findings of this work. 

The exposure to pollutants is not necessarily continuous. A high concentration of a pollutant 

may be followed by a low concentration or no pollutant at all. This leads to complex exposure 

patterns. Aquatic organisms can therefore be exposed to single or repeated pulses of 

hazardous substances. If single pulses occur the organism may recover depending on the 

quality and quantity of the damage and the detoxification capability. The MoA and MeoA of a 

substance may give a conclusion on the recovery potential. If aquatic organisms are exposed 

to repeated pulses or fluctuating concentrations of a hazardous substance, different effects 

may be observed. The damage may cumulate, the organism may adapt or the history of 

exposure may have no impact at all. It may be possible to draw conclusions on the basis of 

investigated recovery potentials. 

Apart from the exposure to single substances organisms in aquatic ecosystems are typically 

exposed to a multitude of pollutants. Considering different toxicity-time relationships for the 

different substances investigated the question arises how mixture toxicity changes over time if 

substances are combined. Additionally, mixtures are not necessarily of constant composition 
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as concerning quality and quantity. Different substances may occur in pulses at different time 

points. Can conclusions be drawn on the basis of the preceding studies of this work? So far 

the concepts CA and IA have proved to be good prediction tools for mixture toxicity for 

mixtures of constant qualitative and quantitative composition (Backhaus et al., 2004; 

Backhaus et al., 2003; Drost et al., 2003; Faust et al., 2003; Junghans et al., 2003; Faust et al., 

2001; Altenburger et al., 2000; Backhaus et al., 2000; Hermens and Leeuwangh, 1982). If 

exposure occurs in fluctuating concentrations, organisms may be exposed to substances one at 

a time but nevertheless show combination effects. The extent to which mixture toxicity can be 

assessed by the concepts IA and CA in such scenarios is analysed. 

Considering all the aspects mentioned above following major research questions will be 

investigated: 

• If the exposure to a single hazardous substance is continuous, how does time determine 

toxicity and which factors are important for the toxicity-time-relationship?  

• If the exposure to a single hazardous substance is not continuous but occurs in pulses or 

fluctuates; how does the toxicity change and what determines toxicity over time? Is there 

a recovery after a single pulse and what aspects determine the recovery potential?  

• If the exposure occurs to mixtures under simple and complex exposure conditions, how 

does mixture toxicity change over time and is it predictable? What additional aspects may 

need to be taken into account if considering more complex exposure conditions.
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2 Materials and methods 

2.1 Technical Equipment 

atomic adsorption 
spectrometer (AAS) 

Perkin Elmer, PE 2880 

automatic image evaluation 
system 

LemanTEC Scanalyser,
LemnaTEC GmbH 

inductively-coupled-plasma 
optical-emission-spectrometer 
(ICP-OES) 

Thermo-Electron Corporation, 
Trace Scan 

graphite-tube atomic 
absorption spectrometer 
(AAS) 

Thermo-Electron Corporation, 
Solar M 

high performance liquid 
chromatograph (HPLC) 

a Merck Hitachi 
chromatography system 

with: 

L-6200A intelligent pump 

AS-2000a autosampler 

Merck supersper RP18selctB 
125/3,1 column 

L-4250 UV-VIS detector 

D-2300 chromato-integrator 

flow injection analyser (FIA) Foss Tecator, FIAstar 

camera Canon, PowershotA60 

temperated chamber Jürgens, Typ KLT 4 

neon lights Osram, 18W/25 universal white 

six well plates Greiner Biochemica 

Erlenmeyer flasks Schott Duran 

Table 1: technical equipment used in this work
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2.3 Cultivation of the duckweed 
Initial plant material was kindly provided by Dr. Rolf Altenburger (Helmholtz Zentrum 

Umweltforschung Leipzig-Halle, Germany) and by Dr. Nina Cedergreen (Royal Veterinary 

and Agricultural University (KVL), Frederiksberg, Denmark).  

Lemna minor was cultivated according to DIN AK, 2001. The plants were grown in sterilised 

Steinberg medium (3,46 mM KNO3, 1,25 mM Ca(NO3)2, 0,66 mM KH2PO4, 0,072 mM 

K2HPO4, 0,41 mM MgSO4, 1,94 �M H3BO3, 0,63 �M ZnSO4, 0,18 �M Na2MoO4, 0,91 �M 

MnCl2, 2,81 �M FeCl3, 4,03 �M EDTA ;pH 5,5+/-0,2) in a temperated chamber (Jürgens, 

Typ KLT 4, 25 +/-2°C). The chamber was continuously illuminated (Osram, 18W/25, 

universal-white, 85-125 µE/m² x sec). With the exception of the chamber temperature which 

was modified to 24 +/-2°C these test conditions are identical to the DIN and ISO standard 

finalized in 2006 (International Organization for Standardization (ISO), 2006;Organisation for 

Economic Co-operation and Development (OECD), 2006). 

In order to conserve the original defined Lemna, the plants were kept as a stock culture on 

agar consisting of 1,5 % agar containing Steinberg medium. The stock culture was kept sterile 

in an Erlenmeyer flask which was closed with a cotton plug. The flasks were stored on a shelf 

with normal daylight and day and night rhythm. 

Lemnas used for testing were pre-cultured prior to use. The plants were then grown in normal 

Steinberg medium in a temperated chamber with continuous light as described above in open 

Erlenmeyer flasks. For testing the growth rate of the test plants had a doubling time of 2,5 

days and the plants had young, rapidly growing colonies with bright green colour without 

visible lesions, chlorosis or necrosis. The colonies chosen for testing consisted of three or four 

fronds. 

2.4 Estimation of the growth rate 
Experiments with the triazines and the heavy metals were conducted using the frond number 

as the endpoint. During this work, a new method to determine the growth rate was established 

and thus the for experiments with the herbicides Alachlor, Aclonifen, Diuron and Paraquat the 

total area of the plant was used as an indicator of growth. 

2.4.1 Growth pattern 
As exemplified with Lemna minor exposed to Ametryn (Figure 1) and Paraquat (Figure 2) 

shown in the growth pattern of untreated Lemna minor and Lemna minor during exposure was 
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exponential in all cases. An exposure led to a concentration-dependent reduction in the 

growth rate, while the growth pattern itself was unchanged. There was no difference whether 

growth was measured via frond number or the whole area of the plant. Stagnancy in growth 

was not observed (Figure 1 and Figure 2). 

Ametryn
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Figure 1∗∗∗∗: Exponential growth pattern of Lemna minor based on frond number.  
Concentrations refer to incubation with Ametryn 
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Figure 2: Exponential growth pattern of Lemna minor based on frond area.  
Concentrations refer to incubation with Paraquat. 
                                                     
∗ figure 1 has already been published elsewhere; see Drost W, Backhaus T, Vassilakaki M, Grimme LH (2003): 
Mixture of s-triazines toxicity to Lemna minor under conditions of simultaneous and sequential exposure. 
Fresenius Environmental Bulletin 12(6): 601-607 
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2.4.2 Estimation of the growth rate via frond counting 
Tests based on frond number were conducted in Erlenmeyer flasks (Schott, Duran glass). 

According to the DIN AK, 2000 the test starts with 12 fronds and the endpoint is the growth 

rate at day seven. However, in order to detect a time dependence of toxicity of a substance, 

the test was modified and counting of the fronds was started at the third day of testing. 

Furthermore, the test was started with 24 fronds instead of the recommended 12. Tests 

conducted with initial 12 fronds led to scattered plots and as this leads to a less precise 

determination of the effect concentration values at day three the initial frond number was thus 

doubled. The fronds were counted every 24 hours starting at day three. 

2.4.3 Estimation of the growth rate via frond area 
Test plants were taken from a pre culture as described above. Instead of Erlenmeyer flasks the 

test plants were placed in six well plates with lids (Greiner Biochemical). Each well was filled 

with 10 mL solution. Four wells of each plate were used for testing the concentration response 

relationship of a substance whereas two wells were used for control plants. Each well was 

equipped with one or two colonies with three or four fronds. The area of the fronds was 

established by means of photography. The camera was adjusted parallel to the plant area or 

the six well respectively and the whole plate was photographed. The frond area was analysed 

with Photoshop (Vers. 7.0, Adobe Systems, San Jose, USA) by establishing the pixel number 

of the assigned area. The pixel number of the fronds was referred to a so called „dummy 

Lemna“ with a well-known mm² area which was added to the six well plates when 

photographed and which was also analysed with Photoshop.  

2.4.4 Determination of the endpoint 
For all tests the growth rate µ was used as the endpoint which is calculated on the basis of the 

number of fronds: 

12

)ln()ln(
12

tt
FF

µ tt

−
−

=   (1) 

or if the growth rate was based on the frond area: 

12

)ln()ln(
12

tt
AA

µ tt

−
−

=   (2) 

Ft1 and Ft2 are the frond numbers at day t1 and day t2 of the experiment, respectively. µ is 

based on the assumption of an exponential growth and gives an average of the growth during 
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the time period from the start of the experiment to day t2. The growth rate based on frond area 

was calculated likewise. Growth inhibition was calculated in the following way: 

% 100 1 sample

control

µ
inhibition

µ
� �

= × −� �
� �

  (3) 

2.4.5 Preparation of the test solutions 

Herbicides 
The herbicides investigated were purchased in the highest available purity from Riedel de 

Haën (Seelze, Germany) or Merck (Darmstadt, Germany). From each compound a stock 

solution in methanol (p.a.) was prepared and stored at -20°C. Prior to testing an aqueous 

solution was prepared from these stocks by evaporating the methanol under a gentle stream of 

N2 and adding the necessary volume of bi-distilled water. This solution was kept strongly 

stirred in the dark for at least 24 hours prior to testing to allow the test compound to dissolve 

completely. Subsequently the dilution to obtain the investigated concentrations of the test 

substances was carried out. Afterwards, the growth medium was added to the dilutions in a 

twofold concentration. Except for Paraquat the stability of the tested herbicides over an 

incubation period of 7 days was checked via HPLC. All test substances proved to be stable 

within +/- 10% of the starting concentration. 

Metals 
The four metals tested (copper, zinc, nickel and cadmium) were used in the highest available 

purity and were purchased from Riedel de Haën (Seelze, Germany) and Merck (Darmstadt, 

Germany). Zinc and copper were used as chlorides, nickel and cadmium as sulphates. 

Aqueous stock solutions in bi-distilled water were prepared and test solutions were made 

taking the necessary aliquots from the stock solutions. The growth medium in a twofold 

concentration was added after preparing the various test concentrations. The concentrations of 

the heavy metals were checked via AAS and proved to be constant over time. 

2.5 Test procedures 

2.5.1 Standard toxicity test 
Toxicity studies were conducted in accordance with the guidelines ((International 

Organization for Standardization (ISO), 2006; Organisation for Economic Co-operation and 

Development (OECD), 2006). For the determination of concentration-response curves the 

plants were exposed to a geometric concentration series of each test substance. At least five 
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concentrations, covering 0-100% effect were tested in triplicates (frond counting) or 

quadruples (frond area). For all tested substances complete concentration response curves 

were recorded after the standard exposure duration of seven days as well as after an exposure 

of three, five and six days. For data based on frond number, complete concentration response 

curves were also recorded at day four. 

2.5.2 Recovery experiments 
In the case of recovery experiments the plants were exposed three days to the previously 

determined ECxd3 concentrations. The fronds from each treatment were counted or the frond 

area was acquired for the determination of the growth rate over the first three days. Fronds of 

each sample were subsequently transferred into fresh nutrient medium restarting with 24 

fronds if the growth rate was established by means of frond counting. The recovery was then 

recorded for another seven days observing the growth rate. 

2.5.3 Sequential exposure 
In order to interpret the influence of a pre-exposure on the concentration response relationship 

of a second substance, the substances were combined using a fixed level of the first substance 

combined with varying concentrations of the second substance. This means, the plants were 

pre-treated in the same manner as in the recovery experiments but the plants were 

subsequently exposed to a second substance instead.
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Figure 3: scheme of a sequential exposure: pre-exposure to a single concentration of substance 1, 
subsequent exposure to different concentrations of substance 2 

2.5.4 Mixture toxicity experiments 
Mixture experiments were designed on the basis of the predictions made by CA and the 

substances were mixed in the relation of their EC50 ratios a fixed ratio. The predictions were 

calculated using the fits of the single concentration response curves. The total concentration 

of the mixture was systematically varied. At least five concentrations, covering the assumed 

0-100% effects predicted by CA were tested in triplicates (frond counting) or quadruples 

(frond area).  

2.6 Calculations 

2.6.1 Concentration response modelling 
For the determination of concentration-response curves the plants were exposed to a 

geometric concentration series of each test substance. At least five concentrations, covering 0-

100% effect were tested in triplicates (frond counting) or quadruples (frond area). The 

concentrations given in the concentration response curves are the nominal concentrations. The 

dilution factor was dynamically adjusted to the steepness of the concentration-response curves 

as determined from previous range-finding experiments. For the determination of 

concentration-response curves the plants were exposed to a geometric concentration series of 

each test substance. Biometrical concentration response modelling was carried out with SAS 

(Vers. 8.2, SAS-Institute, Cary, USA) or Sigma Plot (Vers. 10.0, Sysdat Software Inc., ) using 

one of the following three-parametric generalized logit models (Scholze et al., 2000). 
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or four parametric Weibull fit 
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where 321  , , θθθ  are the three parameters to be estimated. 95% approximate confidence limits 

were calculated using the standard Wald-based approach of SAS proc nlin. (Statistical 

significances were calculated using the standard two-sided t-test (�=0.95)). 

2.6.2 Calculation of the mixtures 
Simultaneous mixture experiments were designed on the basis of the predictions made by 

Concentration Addition (CA). The predictions were based on the single substance 

concentration-response curves. As the mixture components were set to be present in a 

constant proportion p in the mixture (pi=ci/cmix), the individual concentrations ci of each 

component provoking x% effect in the mixture can be calculated as  

mixii ECxpc =   (4) 

and the formula for CA as presented in chapter 1 is rewritten as 

1n

1i i

i
mix

ECx
pECx

−

=
�
�

�
�
�

�= �   (5) 

Hence, the effect concentrations for the mixture as predicted by CA were calculated based on 

the respective proportions and on the basis of the single substance effect concentrations. 

Using eq. (5) the total concentrations of each mixture giving 1-99% effect were calculated in 

steps of 1%. The resulting 99 concentration/effect pairs were plotted to obtain complete 

concentration response curves.  
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In contrast to CA, which is based on effect concentrations, Independent Action(IA) combines 

independent probabilities of an event and can only be calculated from effects. To calculate 

mixture effects as predicted by IA for complete concentration response curves, the 

concentration-response relationship obtained for CA was used as a starting point. For each 

effect concentration, previously calculated for CA, the concentration of each individual 

component ci present in the mixture was calculated as ci=piECxmix. Based on the re-arranged 

regression models and parameter estimates describing the concentration response 

relationships of the single substances, the corresponding individual effects E(ci) for each 

substance were subsequently calculated at each concentration. Hence, using these single 

effects, the predicted mixture effect E(cmix) was calculated according to Independent Action, 

where cmix is the sum of all single concentrations ci.  

))c(E1(1)c(E
n

1i
imix ∏

=

−−=    (6) 

Again all concentration-effect pairs were plotted to obtain the predicted curve.  

Combination effects caused by a sequential exposure to different substances were also 

predicted with the two concepts CA and IA. Though the plants were not exposed to mixtures 

but to single substances sequentially the concepts CA and IA were applied as a mixture may 

occur in the organism. Opposite to the simultaneous exposure to different substances the 

experiment was not designed on basis of the prediction but the predictions were made on the 

basis of the experiments, which means in the case of CA the effects were calculated to the 

given concentrations iteratively. 
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2.7 Chemical analysis 

2.7.1 High Liquid Chromatography (HPLC) 
Samples of the test solutions were taken at the beginning and ending of the experiment in 

order to control the concentration and stability of the substances. The analysis was conducted 

with a reversed phase column (Merck Supersper RP18selectB 125/3.1) and a bi-distilled water 

and acetonitril mixture. The substances were detected with a UV-VIS detector (Merck Hitachi 

L-4250 UV-VIS). 

substance mobile phase detection 

wavelength 

[nm] 

injection 

volume 

[�l] 

flow rate 

[ml/min] 

Aclonifen 50% 0,01M 

phosphate buffer 

50% acetonitril 

238 40 1 

Alachlor 50% bidest 

50% acetonitril 
215 50 1 

Ametryn 50% 

amoniumacetate 

50% acetonitril 

220 20 1 

Diuron 50% 0,01M 

phosphate buffer 

50% acetonitril 

215 40 1 

Prometon 50% 

amoniumacetate 

50% acetonitril 

220 20 1 

Table 3: analytical settings for the detection and quantification of the test substances 

2.7.2 Atomic Absorption Spectroscopy (AAS) 
Samples of the metal test solutions were taken at the beginning and ending of the experiments 

to control the concentrations. In order to determine internal metal concentrations, the fronds 
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from each sample were dried to complete dryness at 60 C° and weighed. They were then 

digested in 4 ml of a 1:1 solution of 30% H2O2 and 65% HNO3 in plastic tubes at 80°C. 

Afterwards, each sample was dried and then re-dissolved in 1 ml 0.3% HNO3. Metal 

concentrations were determined using a Trace Scan inductively-coupled-plasma optical-

emission-spectrometer (ICP-OES) for zinc and copper and a Solar M graphite-tube atomic 

absorption spectrometer (AAS) for nickel and cadmium (both Thermo-Electron Corporation, 

Dreieich, Germany). The analysis was performed by a contract laboratory (Medizinisches 

Labor Bremen, Haferwende 12, 28357 Bremen). For copper and zinc mixture experiments the 

metal concentration in the plants were detected with a Perkin Elmer 2880 atomic-absorption 

spectrometer. 

Statistical significances of the metal concentrations in the different plant samples were 

calculated using the standard two-sided t-test (�=0.95). 

2.7.3 Flow Injection Analysis (FIA) 
To assure that the zinc toxicity was not caused by a lack of phosphate due to precipitation as 

zinc phosphate, the total phosphorus content of the growth medium was measured 

colormetrically as a yellow phosphomolybdic acid via flow injection analysis (Fiastar, Foss 

Tecator, Denmark). The isopolyacid is transferred into the phosphorus containing 

heteropolyacid. The oxidation state of both elements phosphorus and molybdate remains 

unchanged. 

12(NH4)6Mo7O24+H3PO4+72H3O+ �7H3[P(Mo3O10)4]+72NH4
++108H2O 
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3 Results 

3.1 Proceeding 
This work investigates with the toxicity of herbicidal acting compounds and heavy metals on 

Lemna minor. The tested substances were categorized into herbicides with different modes of 

action (Aclonifen, Alachlor, Ametryn, Diuron, and Paraquat), the triazines Ametryn and 

Prometon, and heavy metals (copper, zinc, nickel and cadmium). In accordance with the 

categorization of the substances, the results are divided into two groups, the herbicides and 

the heavy metals. The results are presented in accordance with the questioning of this work. 

The results are presented in the following order starting with single substance toxicity over 

time observed for continuous exposure regimes, followed by the observed toxicity and the 

observed recovery potential if exposure to single substances occurs in pulses, and closes with 

observed combination effects of mixtures of substances occurring simultaneously and in a 

constant composition and the combination of substances occurring sequentially. The data of 

the triazines as well as the heavy metals were based on the frond number whereas the data of 

the remaining herbicides were based on frond area. 

3.2 Continuous exposure to single substances 

3.2.1 Visually recorded effects  

Herbicides 
Due to the different MoA of the investigated herbicides, a variability of effects could be seen 

on Lemna minor. With the exception Paraquat, morphological changes of Lemna minor

became especially visible at high effect concentrations. Therefore in order to illustrate the 

effects pictures were chosen, where the plants had been exposed to the respective highest 

applied concentration in the test as shown in Figure 4. All pictures were taken after a seven-

day exposure. In the case of Aclonifen exposed plants daughter fronds showed a loss of 

pigments leading to pale green fronds. Both concentrations of Aclonifen (0,31μmol/l and 

5μmol/l) caused the same level of growth inhibition, nevertheless there was a clear difference 

when comparing the degree of pigment loss. Alachlor exposed plants showed a normal green 

colour but dwarfish daughter fronds. Plants appeared normal if exposed to PSII inhibitors 

such as Diuron and Ametryn. They showed normal healthy green fronds but the colonies 

disintegrated at high effect concentrations. Necrosis and chlorosis was recorded for Paraquat-

exposed plants leading to speckled green and white fronds or totally necrotic white fronds at 

high effect concentrations. 
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Figure 4: visually recordable effects of herbicides on Lemna minor:
All pictures were taken after a seven day exposure. The pictures are enlarged in order to better illustrate 
the visually recordable effects. The exposure concentration is indicated in the picture 

control
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Metals 
The photographs of cadmium and nickel and exposed Lemna were taken by means of 

LemnaTec with a light source from under the plants, whereas normal photography with 

daylight was utilized for copper and zinc exposed plants (Figure 5). All indicated 

concentrations had an effect of approximately 50% growth inhibition and the pictures were 

taken after a seven-day exposure. In general all plants were smaller than the control plants and 

showed concentration-dependent chlorosis and necrosis. Nickel contaminated plants had 

chlorotic daughter fronds whereas in all other cases chlorosis started from the tip of the 

mother fronds. Due to the rising toxicity of zinc over time zinc, exposed plants were severely 

damaged after seven days with white necrotic fronds and disintegrated colonies. 

Figure 5: visually recordable effects of metals on Lemna minor:
All pictures were taken after a seven day exposure. The pictures are enlarged in order to better illustrate 
the visually recordable effects. The exposure concentration is indicated in the picture. 

control

control
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3.2.2 Observed toxicity-concentration response relation over time 

Herbicides 

 Ametryn Prometon 

day EC50 EC50(day 3)

/EC50(day x)

EC75/ 

EC25

EC50 EC50(day 3)

/EC50(day x)

EC75/ EC25

3 0,117  3,82 2,563  3,30 

4 0,104 1,13 3,67 2,700 0,95 3,39 

5 0,088 1,34 3,84 2,600 0,99 3,33 

6 0,083 1,41 3,50 2,666 0,96 3,72 

Table 4: growth inhibition of herbicides based on frond number:  
The EC50 values at different days of the experiment are displayed for comparison. The EC50 values are 
given in �mol/l. The EC50(day3) /EC50(day x )ratio provides and estimates the dynamics of toxicity for different 
exposure times. The EC75/EC25 ratio of the triazines gives an indication of the average steepness of the 
curve in the middle effect region 

For all tested substances complete concentration response curves were recorded after the 

standard exposure duration of seven days as well as after an exposure of three, five and six 

days. For data based on frond number, which is the case for the triazines, complete 

concentration response curves were also recorded at day four. (see annex Figures 35A to 42A) 

Ametryn was the most toxic herbicide with an EC50 of 0,085 µmol/l at day seven, whereas 

Prometon was the least toxic with an EC50 of 2,797 µmol/l (Table 4). Both are PSII inhibitors 

and belong to the same chemical substance class, the triazines.  

All other herbicides had toxicity within this range. Alachlor was similarly toxic to Ametryn 

with an EC50 of 0,097µmol/l but an effect of 100 percent growth inhibition could not be 

achieved if experiments were conducted in accordance with DIN 2001. This is similar in the 

case of Aclonifen, which was the third most toxic substance with 0,135 µmol/l, but the 

maximum effect was at approximately 60%. Diuron, also belonging to the PSII inhibitors but 

a phenylurea, was the second toxic PSII inhibitor with an EC50 of 0,152�mol/l. (Table5)  

There was a slight increase in toxicity over time in the case of Ametryn and a slight decrease 

in toxicity in the case of Prometon. The calculated EC50(day3)/EC50(dayx) ratio estimated the 

change of toxicity from day three to day x. The maximum factor was 1,41 for Ametryn 
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between day three and six, but generally the factor was close to one and thus the changes in 

toxicity over time were small (Table 4). The calculated EC75/EC25 ratio of the triazines gives 

an indication of the average steepness of the curve in the middle effect region. Like the EC 

values the steepness of the concentration response curves of the triazines remained fairly 

unchanged over time and the ratio was roughly three (Table 4). 

There was a clear enhancement of toxicity for Alachlor, Aclonifen and Paraquat as indicated 

by the EC50(day 3) / EC50(day x) ratio which increased over time. For Aclonifen and Paraquat an 

approximate twofold increase of toxicity was observed, whereas the toxicity of Alachlor rose 

by a factor of about three (Table5). The changes in toxicity were especially detected in the 

first half of the experiment. Comparing the EC50 values of day six and day seven, the EC50

values were nearly unchanged. The toxicity of Diuron did not show any tendency (Table5).  

With the exception of Alachlor and Diuron, the steepness of the concentration response varied 

only little over time. Generally, there was a slight decrease of the EC25/EC75 ratios meaning 

an increase of steepness. The EC25/EC75 ratios of Alachlor declined from 141 to 6,8 (Table5). 

This is due to the temporal enhanced toxicity at higher concentrations. The change of 

steepness was not as drastic for Diuron changing from an EC25/EC75 ratio of 7,98 at day three 

to 3,20. For a detailed comparison of the change of the concentration response curves over 

time the concentration response curves of all tested substance are included in the annex 

(annex Figures A48-A53). 
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Metals∗∗∗∗

For all tested heavy metals complete concentration response curves were recorded after the 

standard exposure duration of seven days as well as after an exposure of three, four, five and 

six days. The growth was established on the basis of the frond number (see annex Figures 

43A to 47A). Shown in Table 6are the EC values obtained according to the standard test 

procedure after seven days. 

The nonessential heavy metal cadmium was the most toxic with an EC50 of 1,895 µmol/l. The 

essential metals copper, zinc and nickel showed considerably lower toxicities with EC50

values ranging between 9,682 and 56,283 µmol/l. (Table 6) 

The toxicity of nickel and copper increased only slightly. The ratio between EC50(day 3) and 

EC50(day x) was higher than one, but was always lower than 1,5 (Table 6). The toxicity of 

cadmium also increased slightly, the EC50 reduced from 3,5 µmol/l after three days exposure 

to 1.9 µmol/l after seven days. In contrast to all other tested metals, the toxicity of Zinc 

increased drastically by a factor of more than 20 (Table 6). After nine days of exposure, the 

observed toxicity was even nearly 40 times higher than after three days. The high dynamic of 

Zinc toxicity could be directly observed by the unaided eye. After three days exposure, the 

Lemnas showed a reduced growth rate but were still green, while after seven days severe 

chlorosis was noted (Figure 5). 

Zinc was the least toxic of the metals tested on day three, but there was a clear shift of the 

concentration response curve to lower concentrations over time (annex Figure 27A). This led 

to the effect that Zinc became similarly toxic to nickel with an EC50 value of 43 µmol/l and 

nickel with an EC50 value of 56 µmol/l (Table 6). Given in parenthesis are EC50 values for 

copper which were obtained approximately two years after the first experiments. Here the 

plants were about ten times more sensitive to copper than two years before though the culture 

and test procedure was not changed. For a detailed comparison of the change of the 

concentration response curves over time the concentration response curves of all tested 

substance are included in the annex (annex Figure 54A-57A). 

                                                     
∗ Parts of this chapter and all tables and figures have already been published elsewhere; see: Drost W, Matzke 
M, Backhaus T (2007): Heavy metal toxicity to Lemna minor: studies on the time-dependence of growth 
inhibition and the recovery after exposure. Chemosphere 67(1): 36-43
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Internal concentration over time 

Table 7: internal concentrations of the tested metals in untreated controls and average bioconcentration 
factors at EC50 

The internal concentrations of zinc, copper, nickel and cadmium were measured using Atomic 

Absorption Spectroscopy (AAS) and the bioconcentration factor (BCF) for each metal was 

calculated as the ratio of internal to external EC50 concentration (Table 7). Zinc and copper 

being essential metals for plants were also found in the untreated controls. Traces of cadmium 

were also found in the control (Table 7), although the growth medium was prepared using 

salts of the highest purity available. Nevertheless, compared to the concentrations detected in 

the exposed plants, the metal levels in the control plants were negligible.  

The internal concentrations of copper, nickel and cadmium that caused a growth reduction of 

50% were similar, despite their largely differing external EC50 values (Table 6). Cadmium had 

the highest BCF of more than 1300. For zinc a bioconcentration factor of 102 was 

determined. This metal showed the lowest toxicity to the growth of Lemna minor, no matter 

whether based on external or internal concentrations. 

Internal metal concentrations varied slightly over the exposure duration of 3-7 days, but no 

strong, consistent pattern was found (Figure 6). For zinc and cadmium slight but significant 

decreases of the internal concentrations were detected. 

 Conc. in untreated 
controls (nmol/mg dry 
weight) 

EC50 (µmol/l) 
(external) 

EC50 (nmol/mg 
dry weight 
(internal) 

BCF 

Cd 0,0137 016.0± 3,7 4,8 1371 

Cu 0,0654 1.0± 14,8 6,3 521 

Ni <0,4 78,0 5,3 65 

Zn 3,5 1± 1037,3 105,2 102 
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day of exposure
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*
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Figure 6: Internal metal concentrations in Lemna after 3, 5 and 7 days of exposure. 
Measurements were conducted with AAS (see material and methods); measurements are based on 4 
independent replicates. Error bars give the standard deviation, asterisks indicate significant differences  
(t-test, �=0.05) between the concentration at t=3 and the indicated exposure period 
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3.2.3 Predicting toxicity over time

 Haber, Bliss and Ostwald/Dernoscheck 

Herbicides 

concentration [µmol/l]
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Figure 7: Toxicity of Ametryn over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck. 
The black circles represent the EC25 values, white circles the EC50 values and the black triangles the EC75
values derived from the concentration-response curves of single substance tests over time from three up to 
seven days of exposure. The EC values were fitted with either the Haber equation (c�t=k) shown here as a 
dashed line, the Bliss equation (c�t� =k) shown as a dotted line or the Ostwald/Dernoscheck equation (c�
�t=k) shown as a solid line. Generally the curve-progressions of the Bliss and the Ostwald/Dernoscheck fits 
are identical and thus the curves overlap. 

The relation of toxicity and time could be described by the Haber, Bliss and 

Ostwald/Dernoscheck equation provided that the toxicity increased over time. Within the 

investigated time scale, the data could be sufficiently fitted especially with the equations of 

Bliss and/or Ostwald/Dernoscheck shown for Ametryn for an example (Figure 7). Alachlor 

was the only exception, as the Haber equation provided a better fit for the EC25 and EC50 data 

(annex Figure 59A). The curve progression of the Ostwald/Dernoscheck and Bliss fit were 

generally identical. The data of Aclonifen and Paraquat could be well characterized by the 

simple Haber equation as well as the Bliss and Ostwald/Dernoscheck equations (annex Figure 

58A and Figure 61A). If the toxicity was small or toxicity was nearly constant over time, as it 

was the case for Ametryn and to some extent Alachlor, the Haber curve correlated badly with 

the data (Figure 7 and Figure 59A). In the extreme, the Haber curve crossed the data points 

grossly describing the toxicity-time relation. Depending on the accuracy of the fits, toxicity 
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was underestimated for short exposure durations and overestimated at long exposure durations 

regardless whether the Haber fit or the Bliss and Ostwald/Dernoscheck fit was taken.  

Though the experiments were conducted under so called ideal conditions of continuous 

exposure problems fitting the data emerged. This was the case if toxicity decreased over time, 

as it was the case for Prometon or did not show any clear time trend as it was the case for 

Diuron (annex Figure 60A and Figure 62A). 

The power term � shown in Table 8 as used in the Bliss equation describes the weight of the 

factor time i.e. � describes to which extent time determines toxicity. The � values for Ametryn 

were all smaller than one. This indicates that the toxicity of Ametryn was more concentration-

dependent than time-dependent. The � values ranged around 0,4. This was also the case for 

Paraquat. However, the � values increased with increasing effect level from 0,6 to 1,03. The 

toxicity of Alachlor was clearly time-dependent. The � values were well above one and 

increased with increasing effect level from 3,74 to 5,64. For Aclonifen the � values were 

slightly above one with values of 1,28 for EC25 and 1,17 for EC50. 

� (EC25) � (EC50) � (EC75) 

Ametryn 0,48 0,35 0,38 

Aclonifen 1,28 1,17  

Alachlor 3,74 1,66 5,64 

Paraquat 0,60 0,74 1,03 

Table 8 The power terms � of the herbicides investigated: 
The power term � derives from the Bliss equation k= c*t� which was used to describe the relationship 
between toxicity and time (see attachment Figure 58A-62A and Figure 7). The power term � describes to 
which extent time determines toxicity. 
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Metals 
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Figure 8: Toxicity of cadmium over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck. 
The black circles represent the EC25 values, white circles the EC50 values and the black triangles the EC75
values derived from the concentration-response curves of single substance tests over time from three up to 
seven days of exposure. The EC values were fitted with either the Haber equation (c�t=k) shown here as a 
dashed line, the Bliss equation (c�t� =k) shown as a dotted line or the Ostwald/Dernoscheck equation (c�
�t=k) shown as a solid line. Generally the curve-progressions of the Bliss and the Ostwald/Dernoscheck fits 
are identical and thus the curves overlap. 

Similarly to the herbicides, the relation of toxicity and time could be described by the Haber, 

Bliss and Ostwald/Dernoscheck equation provided that the toxicity increased over time. 

Within the investigated time scale, the data could be sufficiently fitted especially with the 

equations of Bliss and/or Ostwald/Dernoscheck as shown for cadmium as an example (Figure 

8). The data of cadmium and the EC25 data of nickel could be well characterized by the simple 

Haber equation as well as the Bliss and Ostwald/Dernoscheck equations (Figure 8 and Figure 

64A). If the increase of toxicity was small or toxicity was nearly constant over time, as it was 

the case copper and to some extent for nickel, or if as in the case of zinc toxicity strongly 

increased, the Haber curve correlated badly with the data (annex Figure 63A; Figure 64A and 

Figure 65A). In the extreme, the Haber curve crossed the data points grossly describing the 

toxicity-time relation. With the exception of zinc, toxicity was underestimated for short 

exposure durations and overestimated at long exposure durations. In the case of zinc, toxicity 

was overestimated for short exposure durations but and underestimated for long exposure 

durations.  
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The power term � shown in Table 9 as used in the Bliss equation describes the weight of the 

factor time i.e. � describes to which extent time determines toxicity. According to the 

increasing toxicity over time, zinc had the highest � values, which were approximately four 

for the EC25 and EC50 values. The � (EC75) value was 1,27. For nickel and cadmium the �

values decreased with increasing effect level from 0,84 to 0,25 for nickel and from 1,16 to 

0,76 for cadmium. In the case of copper the � values were similar for all three regarded effect 

levels and the values were 0,84, 0,31 and 0,34. 

� (EC25) � (EC50) � (EC75) 

Zn 3,96 4,51 1,27 

Cu 0,38 0,31 0,34 

Ni 0,84 0,45 0,25 

Cd 1,16 1 0,76 
Table 9: The power terms � of the metals investigated: 
The power term � derives from the Bliss equation k= c*t� which was used to describe the relationship 
between toxicity and time (see attachment Figure 63A-65A and Figure 8). The power term � describes to 
which extent time determines toxicity. 
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3.3 Variable exposure to single substances 

3.3.1 Observed recovery potential after a single pulse exposure 

Herbicides 
For the recovery experiments, the plants were exposed to concentrations causing an 

approximate effect of 50 percent after three days. The effect of Aclonifen, Alachlor and 

Paraquat after a three-day pulse was not reversible whereas Diuron exposed showed fast 

recovery (Figure 9).There was a slight recovery of the plants exposed to Aclonifen whereas in 

the case of Paraquat and Alachlor the growth rate even decreased. If however the plants were 

exposed to a pulse with a lower concentration of Alachlor a recovery was recordable (Figure 

10). In the case of Diuron, the recovery pattern after a pulse with different concentrations was 

similar though the recovery at low concentrations seems to be slower but the standard 

deviation is high. Plants exposed to Ametryn showed a very good recovery. Even if the plants 

were exposed to extraordinary high concentrations of Ametryn (more than 15 times the EC50

value) recovery could be recorded. Similar results have been observed for the recovery after 

Prometon exposure. 

day after exposure
0 3 5 7

gr
ow

th
in

hi
bi

tio
n[

%
]

-20,0

0,0

20,0

40,0

60,0

80,0

100,0

120,0
Aclonifen 0,59µmol/l 
Alachlor 0,79µmol/l 

Diuron 0,27µmol/l 
Paraquat 0,48µmol/l 

Figure 9: Recovery of Lemna minor after three-day exposure to the indicated herbicides. 
The plants were exposed for 3 days to a concentration that inhibited the reproduction by approximately 
50%. Afterwards they were transferred to fresh, uncontaminated medium and the growth was recorded 
for another seven days 

gr
ow

th
 in

hi
bi

tio
n 

[%
] 



Results 

46 

Figure 10: Recovery of Lemna minor after an exposure to Alachlor, Ametryn or Diuron 
Over 3 days at the indicated concentrations. Experiments were conducted with four (Alachlor and 
Diuron) and three (Ametryn) replicates. Concentrations are given in µmol/l. 
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Metals∗∗∗∗
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Figure 11: Recovery of Lemna minor after three-day exposure to the indicated heavy metals. 
The plants were exposed for 3 days to a concentration that inhibited the reproduction by approximately 
50%. Afterwards they were transferred to fresh, uncontaminated medium and the growth was recorded 
for another seven days. 

Metal-specific recovery patterns, after the plants had been exposed to EC50-concentrations for 

3 days, were observed (Figure 11). Even ten days after transferring Lemna minor into 

uncontaminated medium the zinc pre-exposed plants still showed a severely reduced growth 

rate. Copper and cadmium pre-exposed Lemna showed growth rates close to control level 

after 3 days recovery, while nickel pre-exposed Lemnas actually reached control levels. If 

pulses with higher concentrations causing an approximate effect of 75% growth inhibition 

were applied, no recovery was observed from copper and zinc whereas the plants showed full 

recovery after pulses with low concentrations. In the case of copper, the plants showed even 

better growth than the controls (Figure 12). 

                                                     
∗ Parts of this chapter and all figures except figure 12 have already been published elsewhere; see: Drost W, 
Matzke M, Backhaus T (2007): Heavy metal toxicity to Lemna minor: studies on the time-dependence of growth 
inhibition and the recovery after exposure. Chemosphere 67(1): 36-43 
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Figure 12: Recovery of Lemna minor after an exposure to Cu or Zn over 3 days at the indicated 
concentrations. Experiments were conducted with three replicates. Concentrations are given in µmol/l 
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Internal concentration after pulsed exposure 
As expected, the internal concentrations of all metals decreased during the recovery phase 

(Figure 13). Nevertheless, metal concentrations were still significantly above control levels 

even 7 days after ending the exposure. In comparison to the other metals, nickel-

concentrations decreased rapidly. Three days after the exposure phase, concentrations were 

already down to only 20% of the internal concentration that were found during the exposure 

phase. In contrast, the zinc concentration was still at 92%. 

In principle, two processes might be responsible for the decrease in metal concentrations: (a) 

active or passive excretion of the metal from the plant and (b) the “dilution” of the internal 

metal concentration due to an increase in total biomass (growth). In order to distinguish 

between these two processes, internal metal concentrations were re-calculated on a per-

sample basis (Figure 14). A significant decrease was only detectable for copper (factor 2) and 

nickel (factor 3), while the total amount of zinc and cadmium in the plants remained constant. 

The decrease in cadmium and zinc concentrations on a dry weight basis seems to be 

completely due to the increase in biomass. The total amount of these two metals in the 

biomass of each sample did not change over a recovery period of 7 days. 
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Figure 13: Development of the internal metal concentrations during the recovery of Lemna from metal 
pre-exposure referred to dry weight. 
Given are the internal metal concentrations in nmol/mg dry weight. Asterisks give statistical significant 
differences (t-test, �=0.05) between the concentration at t=3 and the indicated recovery period. For the 
cadmium experiment, no significances were determined as one of the samples from t=3 were lost during 
the sample preparation. 
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Figure 14: Development of the internal metal concentrations during the recovery of Lemna minor from 
metal pre-exposure referred to the total biomass per sample. 
Given are the internal metal concentrations in the total biomass per sample. Asterisks give statistical 
significant differences (t-test, �=0.95) between the concentration at t=3 and the indicated recovery period. 
For the cadmium experiment, no significances were determined as one of the samples from t=3 was lost 
during the sample preparation 
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3.3.2 Observed toxicity of fluctuating exposure to Alachlor, copper or Diuron 
All plants exposed to a three day pulse of Alachlor, Diuron or copper showed recovery, if no 

subsequent second pulse of exposure followed (Figure 15). The plants showed a growth 

inhibition of 20 to 25%. Especially in the case of a Diuron exposure, the plants showed a fast 

recovery, whereas the recovery after a copper pulse was delayed. Alachlor exposed plants 

recovered fast up to day three but the growth inhibition then remained unchanged. At day six 

only plants that had been exposed to Diuron had fully recovered. Plants that had been exposed 

to Alachlor or copper still showed a growth inhibition of about 10% six days after the 

exposure. 

The plants were repeatedly exposed to the same substances Alachlor, copper and Diuron. 

Shown in Figure 16, Figure 17 and Figure 18 are the observed growth inhibitions referred to 

untreated controls (white circles) and pre-treated control (white triangles). If the growth 

inhibition was calculated on the basis of untreated controls, data points are indicated as black 

circles. If calculated on the basis of pre-treated controls, data points are indicated as grey 

triangles. In order to gain insight into whether plants became more or less sensitive if pre-

treated, the data points are plotted with the single substance concentration response curve 

achieved from standard exposure conditions. The solid line gives the fit to the data, inner 

dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 

confidence belt of the population. 

Due to an increasing toxicity of Alachlor over time, the impact of the pre-treatment became 

especially apparent at day six. A pre-treatment with Alachlor produced highly sensitive plants 

in particular. The pre-exposure to Alachlor had special impact on the sensitivity in the low 

dose area (Figure 16). If growth inhibition was calculated on the basis of the Alachlor pre-

treated control plants, the growth inhibition was slightly lower but nevertheless higher than 

compared to the sensitivity of plants which had not been pre-treated.  

As the recovery from a copper pulse occurred slowly, growth inhibition referred to copper 

pre-treated control plants led to a concentration response relationship to copper which was 

less sensitive than the dose relationship of untreated plants at day three in the low dose area 

(Figure 17). All pre-treated plants which were exposed to concentrations causing an 

approximate growth inhibition up to 20% were less sensitive than those plants which had not 

been pre-exposed. This is indicated by the data points (grey triangle) which lie under the 

concentration response curve. If growth inhibition was calculated on the basis of controls 

which had not been pre-exposed to copper, data points were within the confidence belt and 
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the prediction belt but were shifted above the concentration response curve. Regarding day 

six, there was no difference whether growth inhibition was calculated on the basis of pre-

treated or untreated control plants. Pre-treated plants showed an increased sensitivity towards 

copper, but the data points were nevertheless within the prediction and confidence belt. 

Plants pre-exposed to Diuron showed an increased sensitivity to Diuron at day three, but this 

effect diminished over time as the pre-treatment showed no effect at day six (Figure 18). Due 

to the good recovery of a Diuron pulse, pre-treated controls were in respect to their growth 

rate similar to the untreated controls and thus growth inhibition of Diuron treated plants were 

similar if referred to pre-treated or untreated control plants. 
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Figure 15: Recorded recovery after a three day pulse to Alachlor (0,063 �mol/l), Diuron (0,109 �mol/l) or 
copper (0,673 �mol/l) in concentrations causing a growth inhibition of approximately 30%. Experiments 
were conducted with four replicates. 
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Figure 16: Observed concentration response relationship of Alachlor after a pre-treatment with Alachlor: 
The plants were pre-treated with Alachlor for three days. The concentration of 0,063 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of Alachlor and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of Alachlor (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles). 
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Figure 17: Observed concentration response relationship of copper after a pre-treatment with copper. 
The plants were pre-treated with copper for three days. The concentration of 0,673 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of Alachlor and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of copper (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles). 
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Figure 18: Observed concentration response relationship of Diuron after a pre-treatment with Diuron. 
The plants were pre-treated with Diuron for three days. The concentration of 0,109 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of Alachlor and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of Diuron (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles). 
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3.4 Mixture Toxicity under simple and complex exposure conditions  

3.4.1 Observed and predicted toxicity of mixtures of Alachlor, copper and 
Diuron of constant composition 

� (EC25) � (EC50) � (EC75) Observed 

EC50

Predicted EC50

Concentration 

Addition 

Independent 

Action 

Alachlor and Cu

3 days 0,6358 1,9746 2,1281 0,2666 1,013 0,623 

6 days 0,0956 0,966 1,021 

Alachlor and Diuron

3 days 0,5191 1,7926 2,0762 0,0437 0,191 0,376 

6 days 0,0204 0,104 0,104 

Cu and Diuron

3 days 0,9343 0,8144 0,8564 0,6854 1,013 0,623 

6 days 0,3398 0,966 1,021 

Alachlor. Cu and Diuron

3 days    0,8058 0,717 0,442 

6 days 0,8660 0,718 0,479 

Table 10: Observed and predicted EC50 values of the two and three-component mixture of Alachlor, Cu 
and Diuron. 
The mixture ratio is referred to the EC50 values of the individual components. Values are given in µmol/l. 
The power term � derives from the Bliss equation k= c*t � which was used to describe the relationship 
between toxicity and time. The power term � describes to which extent time determines toxicity. 

The simultaneous mixture experiments were conducted exposing Lemna minor to two or all 

three substances in the ratio of their EC50 values. Referring to the single substances, the power 

terms of Alachlor were all well above one for all three effect levels regarded, whereas the 

power terms of copper were well below one. This indicates that the toxicity is time-

determined in the case of Alachlor and more concentration-determined in the case of copper. 

The toxicity of Diuron decreased over time and hence could not be fitted. The results of the 
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power terms for the description of the mixture toxicity over time indicate that the time 

dependency of the overall toxicity is determined by its mixture components and their single 

substance toxicity-time relationship (Table 10). For mixtures consisting of two substances and 

Alachlor as one substance the power terms were above one indicating that the mixture toxicity 

was more time-determined than concentration-determined. In agreement with the observations 

made for the single substance toxicity, mixture toxicity was more concentration-determined 

than time-determined in the case of the copper-Diuron-mixture. For the mixture with all three 

substances the observed data could not be fitted with the Haber equations and its deviation as 

the toxicity decreased over time.  

The simultaneous mixture experiments were conducted exposing Lemna minor to two or all 

three substances in the ratio of their EC50 values. The predictions of the mixture toxicity 

whether based on CA or IA were similar but the IA predictions were always shifted to lower 

concentrations than the CA predictions.  

For the Alachlor and copper mixture the toxicity was underestimated in the low dose area 

(Figure 19). Effects of 20 to 40% growth inhibition were observed at day three whereas no 

effect was predicted for this concentration. The prediction by means of the IA concept 

produced a better fit to the obtained data. This was also the case at day six. The observed 

toxicity as well as the predicted toxicity increased over time. The observed EC50 value 

changed from 0,731 to 0,186 µmol/l which is a factor of four. The predicted EC50 values 

changed with a factor of 2,7 and 2,6 (Table 10). CA generally underestimated the toxicity 

over the whole range of concentration whereas IA gave a good prognosis for the high dose 

area. 

The same was observed if Alachlor was combined with Diuron (Figure 20). The toxicity of 

the low dose area was underestimated for day three whereas the toxicity was generally 

underestimated for day six. The prediction by means of IA was generally better. The predicted 

EC50 remained unchanged over time for the Alachlor and Diuron mixture whereas the 

observed EC50 value at day three decreased to about one third at day six (Table 10). Thus the 

underestimation of the mixture toxicity increased over time. 

The predictions fitted well for the copper Diuron mixture and the Alachlor, copper and Diuron 

mixture (Figure 21 and Figure 22). A slight increase of toxicity of the copper and Diuron 

mixture was observed which was also predicted by CA and IA. The observed EC50 value 

changed from 0,714 to 0,406 µmol/l which is a factor of 1,7 (Table 10). IA slightly over 



Results 

58 

assessed the EC50 value at day three and under estimated theEC50 value at day six, whereas 

CA underestimated the toxicity for both time points. The observed mixture toxicity with all 

three components as well as the estimated EC50 values did not change over time. 
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Figure 19: Observed and predicted toxicity of a binary mixture with Alachlor and Diuron. 
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Cu+Alachlor day 3
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Figure 20: Observed and predicted toxicity of a binary mixture with Alachlor and copper. 
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Cu+Diuron day3
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Figure 21: Observed and predicted toxicity of a binary mixture with copper and Diuron. 
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Alachlor+Diuron+Cu d3
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Figure 22: Observed and predicted toxicity of the mixture with Alachlor, copper and Diuron 
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3.4.2 Observed combination effects of Alachlor, Copper and Diuron in 
fluctuating compositions 

Shown in the following Figure 23 to Figure 28 are the observed growth inhibitions referred to 

untreated controls (white circles) and pre-treated control (white triangles). If growth inhibition 

was calculated on the basis of untreated controls, data points are indicated as black circles. If 

calculated on the basis of pre-treated controls data points are indicated as grey triangles. In 

order to gain insight into whether plants became more or less sensitive if pre-treated, the data 

points are plotted with the single substance concentration response curve achieved from 

standard exposure conditions. The solid line gives the fit to the data, inner dashed lines the 

approximate 95% confidence belt of the mean, outer dotted lines the 95% confidence belt of 

the population. 

Influence of Diuron or copper pre-position on the concentration response 
relationship of Alachlor 
Referred to untreated controls there was an increase in the sensitivity of the plants to Alachlor 

if pre-exposed to Diuron or copper for three days in concentrations causing approximately 

30% growth inhibition (Figure 23 and Figure 24). Due to the pre-exposure to EC30 the 

recorded growth inhibition was 30% at minimum for Alachlor concentrations having no or 

little impact on the growth of Lemna minor without pre-treatment. The data points of the pre-

exposure experiments at day three were within the prediction belt obtained from experiments 

with untreated plants but not in the confidence belt of the Alachlor fit describing the 

concentration response relationship for Alachlor (Figure 23 and Figure 24). The pre-exposure 

to copper or Diuron had special impact on the sensitivity in the low dose area. Though Lemna 

minor recovered quickly from a three day pulse of Diuron (Figure 10 and Figure 15) a pre-

treatment nevertheless raised the sensitivity of the plants. The Diuron pre-exposure even 

caused an increase in sensitivity over time. The Alachlor concentration causing a growth 

inhibition of 10% to untreated plants caused a growth inhibition of approximately 30% at day 

three and a growth inhibition of 50% at day six. In the case of copper there was also an 

increase of sensitivity over time. The Alachlor concentration causing a growth inhibition of 

20% to untreated plants caused a growth inhibition of approximately 40% at day three and a 

growth inhibition between 60% and 70% at day six.  

If growth inhibition was referred to the growth of plants which also had been exposed to a 

three day pulse of Diuron or copper, than the recorded growth inhibition was slightly reduced. 

Yet, due to a fast recovery of the plants after a Diuron pulse (Figure 10 and Figure 15) the 
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difference between untreated and pre-treated control plants and thus the difference between 

the calculated growth inhibitions based on pre-treated or untreated control plants was small. 

However, in the case of a copper pre-exposure and as the recovery after a copper pulse the did 

not occur as fast, the growth inhibition referred to pre-treated control plants resulted in a dose 

relationship of Alachlor nearly equal to the concentration response relationship of plants with 

no pre-treatment at day three (Figure 23). Due to an ongoing recovery of the pre-treated 

control plants the differences of the variable calculated growth-inhibition diminished at day 

six. 
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Cu+Alachlor day 3
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Figure 23: Observed concentration response relationship of Alachlor after a pre-treatment with copper:
The plants were pre-treated with copper for three days. The concentration of 0,673 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of Alachlor and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of Alachlor (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles).  
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Diuron+Alachlor day 3
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Figure 24: Observed concentration response relationship of Alachlor after a pre-treatment with Diuron.
The plants were pre-treated with Diuron for three days. The concentration of 0,109 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of Alachlor and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of Alachlor (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles). 
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Influence of Alachlor or Diuron pre-exposure on the concentration response 
relationship of Copper 
A pre-exposure with Alachlor or Diuron did not result in such an increase of sensitivity 

towards copper as  was noted for the combination of a copper or Diuron pre-treatment and a 

subsequent exposure to Alachlor (Figure 25 and Figure 26). There was no recorded minimum 

growth inhibition of 30%, though plants pre-treated with Diuron did show a slightly increased 

sensitivity to copper in the low dose area. This was however not so pronounced and the 

increased sensitivity could only be seen at day three. No changes of sensitivity were 

recordable for plants exposed to higher copper concentrations at day three and the sensitivity 

and thus the concentration response relationship at day six remained unchanged. Hence a pre-

exposure to Diuron had only small impact if any on the sensitivity to copper. Alachlor pre-

treated plants even showed a slight decrease of sensitivity towards copper. This effect was 

especially pronounced in the high effect region. Compared to the single substance 

concentration response curve of copper without pre-treatment, the data points gained were all 

below the concentration response curve but within the prediction belt. The copper 

concentration causing a growth inhibition of 50% to untreated plants caused a growth 

inhibition of approximately 10% to 30% at day three and a growth inhibition of 

approximately 30% at day six.  

Due to fast recovery after a pulsed exposure to Diuron, the difference between untreated and 

pre-treated controls was small and thus the growth inhibition referred to pre-treated control 

plants showed only little difference to the growth inhibition referred to untreated control 

plants. Due to the slower recovery from a single Alachlor pulse compared to the rapid 

recovery from a single Diuron pulse, growth inhibition referred to pre-treated control plants 

were less pronounced than growth inhibition referred to untreated control plants. This became 

especially apparent at day six. 
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Alachlor+Cu day3
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Figure 25: Observed concentration response relationship of copper after a pre-treatment with Alachlor.
The plants were pre-treated with Alachlor for three days. The concentration of 0,063 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of copper and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of copper (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles).  
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Figure 26: Observed concentration response relationship of copper after a pre-treatment with Diuron. 
The plants were pre-treated with Diuron for three days. The concentration of 0,109 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of copper and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of copper (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles). 
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Influence of Alachlor or cu pre-exposure on the concentration response 
relationship of Diuron 
The data gained indicate that the sensitivity to Diuron of the plants generally increased if pre-

exposed to Alachlor or copper. (Figure 27 and Figure 28). In both cases the increase of 

sensitivity became especially pronounced in the low dose area. In the case of copper the 

sensitivity increased over time. The data gained were outside the prediction belt at day six. 

The concentration causing a growth inhibition of 20% to untreated plants caused a growth 

inhibition of approximately 70% at day six. At day three the same concentration caused a 

growth inhibition approximately 30% to 40%. In the case of Alachlor the sensitivity of the 

plants decreased slightly over time. The Diuron concentration causing a growth inhibition of 

20% to untreated plants caused a growth inhibition of approximately 40% to 60% at day three 

and a growth inhibition of 40% to 50% at day six.  

If growth inhibition was referred to the growth of plants which had also been exposed to a 

three day pulse of copper then the recorded growth inhibition was slightly reduced compared 

to the growth inhibition referred to untreated control plants due to a slow recovery from a 

pulse of copper. Nevertheless, the sensitivity to Diuron was still increased in the case of pre-

exposure to copper. In case of pre-exposure to Alachlor, the growth inhibition referred to pre-

treated control plants was similar to the growth inhibition referred to untreated control plants. 
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Figure 27: Observed concentration response relationship of Diuron after a pre-treatment with Alachlor.
The plants were pre-treated with Alachlor for three days. The concentration of 0,063 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of Diuron and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of Diuron (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles). 
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Cu+Diuron day6
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Figure 28: Observed concentration response relationship of Diuron after a pre-treatment with copper. 
The plants were pre-treated with copper for three days. The concentration of 0,673 �mol/l caused 
approximately 30% growth inhibition. Subsequently the plants were transferred to various concentrations 
of Diuron and were exposed up to six days. For comparison the data gained are plotted with the single 
substance dose-response curve of Diuron (solid line) achieved with plants not pre-treated. Additionally, 
the 95% confidence belt (dashed line) of the single substance response curve and the 95% prediction belt 
(dotted line) of the single substance response data are shown. Black circles represent the data of growth 
inhibition referred to untreated control plants (white circles). Grey triangles represent the data of the 
growth inhibition referred to pre-treated control plants (white triangles). 
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3.5 Predicted toxicity of mixtures of Alachlor, Copper and Diuron of 
fluctuating composition 

Though the plants were not exposed to mixtures but to single substances sequentially the 

concepts CA and IA were applied as a mixture may occur in the organism. Due to the 

experimental design with a pre-exposure to a concentration causing approximately 30% 

growth inhibition a minimum effect of 30% was predicted. In case of an increasing or 

decreasing toxicity over time the predictions varied so the predicted minimum became smaller 

(copper) or larger (Alachlor and Diuron) (Figure 29 to Figure 34). Contrary to the 

simultaneous exposure to various substances the experiment was not designed on the basis of 

a prediction but the predictions were made on the basis of the experiments, which means in 

the case of CA the effects were calculated to the given concentrations iteratively. Due to this 

way of calculating the effect for the highest concentration could not be predicted for CA. 

Generally IA predicted higher effects than CA. There were more cases of underestimation of 

toxicity than overestimation. 

For all sequential experiments including Alachlor as the second substance the predicted 

effects increased from day three to day six. Effects between 50% and 90% were observed but 

an effect of 30% at day three and an effect of 44% at day six were predicted (Figure 29 and 

Figure 30). CA gave a good prediction of the toxicity if copper was the substance of pre-

exposure, whereas IA overestimated the toxicity. If the plants were pre-exposed to Diuron IA 

gave a better estimation of the toxicity than CA on day three but the opposite was the case on 

day six.  

The predictions for sequential experiments including copper as the second substance all 

overestimated the toxicity especially for the lower concentrations (Figure 31 and Figure 32). 

As an Alachlor as well as a Diuron pre-exposure did not lead to an increased sensitivity to 

copper or even decreased the sensitivity as was the case for Alachlor, the toxicity was 

overestimated.  

CA and IA provided a good prediction of the toxicity of the Alachlor and subsequent Diuron 

exposure on Lemna minor at day six (Figure 33). The toxicity at day three was 

underestimated. Effects of approximately 60% growth inhibition were observed where CA 

and IA assessed a growth inhibition of 40%. The toxicity of the copper and Diuron 

combination was also underestimated especially at day six (Figure 34). Effects between 70% 

and 80% growth inhibition were observed but 25% growth inhibition had been predicted for 

day six.  
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Figure 29: Prediction of the toxicity of two sequential exposure pulses of Cu and Alachlor. 
The plants were pre-treated with Cu for three days in a concentration causing approximately 30% growth 
inhibition (0,673 �mol/l). Subsequently the plants were transferred to a medium with various 
concentrations of Alachlor and were exposed up to six days. The concentration is the overall concentration 
of Cu and Alachlor the plants had been exposed to sequentially. 
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Figure 30: Prediction of the toxicity of two sequential exposure pulses of Diuron and Alachlor. 
The plants were pre-treated with Diuron for three days in a concentration causing approximately 30% 
growth inhibition (0,109 �mol/l). Subsequently the plants were transferred to a medium with various 
concentrations of Alachlor and were exposed up to six days. The concentration is the overall concentration 
of Diuron and Alachlor the plants had been exposed to sequentially.

alachlor konzentration 10.6 vs Diuron+Alachlord3 

Diuron+Alachlor day 3

overall concentration [µmol/l]
10-2 10-1 100 101

gr
ow

th
in

hi
bi

tio
n 

[%
]

-20,0

0,0

20,0

40,0

60,0

80,0

100,0

CA
IA

alachlor konzentration 10.6 vs Diuron+Alachlord6 

Diuron+Alachlor day 6

overall concentration [µmol/l]
10-2 10-1 100 101

gr
ow

th
in

hi
bi

tio
n 

[%
]

-20,0

0,0

20,0

40,0

60,0

80,0

100,0

120,0

CA
IA

gr
ow

th
 in

hi
bi

tio
n 

[%
]

gr
ow

th
 in

hi
bi

tio
n 

[%
]



Predicted toxicity of mixtures of Alachlor, Copper and Diuron of fluctuating composition 

75 

Figure 31: Prediction of the toxicity of two sequential exposure pulses of Alachlor and Cu. 
The plants were pre-treated with Alachlor for three days in a concentration causing approximately 30% 
growth inhibition (0,063 �mol/l). Subsequently the plants were transferred to a medium with various 
concentrations of Cu and were exposed up to six days. The concentration is the overall concentration of 
Alachlor and Cu the plants had been exposed to sequentially. 
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Figure 32: Prediction of the toxicity of two sequential exposure pulses of Diuron and copper. 
The plants were pre-treated with Diuron for three days in a concentration causing approximately 30% 
growth inhibition (0,109 �mol/l). Subsequently the plants were transferred to a medium with various 
concentrations of Cu and were exposed up to six days. The concentration is the overall concentration of 
Diuron and copper the plants had been exposed to sequentially.
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Figure 33: Prediction of the toxicity of two sequential exposure pulses of Alachlor and Diuron. 
The plants were pre-treated with Alachlor for three days in a concentration causing approximately 30% 
growth inhibition (0,063 �mol/l). Subsequently the plants were transferred to a medium with various 
concentrations of Diuron and were exposed up to six days. The concentration is the overall concentration 
of Alachlor and Diuron the plants had been exposed to sequentially. 
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Figure 34: Prediction of the toxicity of two sequential exposure pulses of copper and Diuron. 
The plants were pre-treated with copper for three days in a concentration causing approximately 30% 
growth inhibition (0,673 �mol/l). Subsequently the plants were transferred to a medium with various 
concentrations of Diuron and were exposed up to six days. The concentration is the overall concentration 
of Cu and Diuron the plants had been exposed to sequentially. 
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4 Discussion 

4.1 Test conditions 
Lemna minor is a plant that grows on the surface of waterbodies and it mainly grows two 

dimensionally. Thus, growth may not only be established by frond counting as proposed by 

the OECD and ISO test guideline(Organisation for Economic Co-operation and Development 

(OECD), 2006; International Organization for Standardization (ISO), 2006) but also by 

measuring the total area of the plant. Eberius et al. discussed the advantages of establishing 

the growth rate via the plant area. Standard deviations are minimized, confidence intervals are 

reduced and the test sensitivity is enhanced due to the individual measurement of the plant 

area at the beginning of the experiment. In comparison, the number of fronds may be identical 

but the area may vary and growth depends more on the plant area (photosynthetic active area) 

than on the frond number (Eberius et al., 2002). Additionally, in comparison with the frond 

counting method fewer plants are required and the experiments can be conducted in six well 

plates. The sensitivity of this test design is similar to the test design based on frond counting. 

The comparisons with EC-values based on frond counting found in the literature are similar to 

the EC-values based on frond area in this work of the studied herbicides. Hence, establishing 

the growth rate via total area should be favoured, as the required amount of plants as well as 

the amount of test volume and space for testing is reduced and the number of possible 

concurrent experiments is increased. Additionally, in the case of Alachlor, frond counting was 

not appropriate to establish the Alachlor-caused growth inhibition. Alachlor had an impact on 

the frond size. The plant developed dwarfish fronds. This observation is in agreement with 

other studies. An abnormal cell size of Scendesmus vacuolatus exposed to chloracetanilides 

(Vallotton et al., 2008) was observed. In this case the cell division failed and giant cells were 

the result. Similar observations were also made with Chlamydomonas (Fedtke, 1982). In the 

case of Lemna minor however the impact was the opposite. From these indications it can be 

presumed that the inhibition of the lipid biosynthesis has an impact on cell division. The exact 

cause for the development of dwarfish fronds however remains to be investigated. Also the 

fronds of heavy metal treated Lemnas were smaller as the control plants as shown in Figure 5 

in the result chapter. Thus, the determination of the growth inhibition via frond area would 

have been more sensitive. However, more technical requirements such as a digital camera and 

an image editing program such as Photoshop as used in this work are needed to establish a 

growth rate via the total area of the plant. These requirements were not fulfilled at the 

beginning of this work and thus studies with the triazines and heavy metals were conducted 
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with the frond counting procedure. Furthermore, in the case of the metals, a higher quantity of 

plants was necessary to detect the metal uptake in the plants. 

4.2 Single substance toxicity - how does time determine toxicity and which 
factors are important for the toxicity-time-relationship? 

4.2.1 General discussion  
This work focused on the MeoA and MoA and additionally in the case of metals on the 

uptake over time. These investigations only partly give an insight into the time dependency of 

toxicity. According to Rozman (Rozman 2000) the time dependency of toxicity is governed 

by toxicokinetics which includes uptake and elimination and toxicodynamics including injury 

and recovery. Focussing on the slower time-determining processes, these parameters can be 

further subdivided into distribution, biotransformation and excretion in the case of 

elimination and adaption, repair and reversibility in the case of recovery.  

Though it was not possible to quantify to which extent recovery was due to either adaption, 

repair or reversibility based on the experimental results, it could be shown that recovery 

depends on how a substance binds to the site of action i.e. MeoA and what physiological 

impact a substance has i.e. MoA. For instance, in the case of the PS2 inhibitors, the 

unchanged toxicity over time indicated that there was no accumulative damage and that in 

accordance with the binding to the PS2 site (weak H-bonds) the MeoA is quickly reversible. 

Concluding from the visual recorded effects the secondary effect - oxidative stress - did either 

not come into play in the case of the PS2 inhibitors or was not so severe as to be seen by the 

naked eye. One may expect that a toxicant causing oxidative stress which is irreversible 

would lead to an accumulative damage and hence to an increasing toxicity. However Lemna 

minor showed a well-developed adaption to oxidative stress. Thus, in the case the PS2 

inhibitors Ametryn, Prometon and Diuron, the PS1 inhibitor Paraquat and the metals 

investigated, the adaption superimposed the injury caused to such an extent that the damage 

did not accumulate and toxicity remained quite unchanged over time.  

Apart from the introduced MeoAs and MoAs found in the literature also other effects are 

possible which may also influence the toxicity over time. However, assuming that these 

additional effects are more unspecific as for instance narcosis it may be concluded on the 

basis of the classification of Verhaar et al(1992) who state that the more unspecific the MoA 

the higher the effect concentrations, that these more unspecific MoA do not play such a great 

role in the concentrations tested here. 
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The time dependency of toxicity is also governed by the concentration i.e. the dose the 

organism is exposed to. Toxicokinetics and toxicodynamics are influenced by concentration. 

The change of the steepness of the concentration response curves over time gave an indication 

on how toxicity changed over time differently for different effect levels. This is also in 

agreement with the statement by Hayes (1975): At low effect levels, a sufficiently high rate of 

detoxification can negate the effects from extended exposure. This could be shown for the 

herbicides investigated but could not be confirmed by the metals nickel and zinc. If 

considering that plants have a well-developed homeostasis such as immobilisation by means 

of phytochelatines or organic acids, then this is surprising. One would expect due to the fact 

that lower excess metal concentrations can be better controlled than higher excess metal 

concentrations that the steepness of the concentration response curves would increase. 

Reasons for the decrease of the steepness of the concentration response may be that apart 

from the immobilisation of excess metal concentrations which may indeed operate better at 

lower concentrations, other aspects govern the toxicity. As discussed for nickel in detail one 

reason may be the saturation of the metals transporters at higher concentrations. 

Toxicokinetics was only studied for the metals. The internal metal concentration could be 

easily measured via AAS. The uptake of the investigated herbicides could not be measured as 

simple as that. Options may have been C14 labelled herbicides. It can however be assumed 

that toxicokinetic only plays a minor role for lipophilic herbicides as the uptake is fast. 

Lipophilic, neutral herbicides which passively diffuse into plants rapidly reach equilibrium 

concentrations (Sterling, 1994). With the exception of Paraquat this is the case for all 

investigated herbicides. As uptake studies show a Michaelis-Menten-Kinetic a protein 

mediated active transport has been suggested for Paraquat (Hart et al. 1992). The same carrier 

as for putrescine has been proposed. Their study indicates that also the transport of Paraquat 

into the plant is fast. 

As shown for the metals it is crucial how well a toxicant is taken in. The internal 

concentrations of copper, nickel and cadmium that caused a growth reduction of 50% were 

quite similar, despite their largely differing external EC50 values. Hence, the apparent 

different toxicities of these metals can be largely attributed to their different bioconcentration 

factors. Nevertheless, the comparable internal EC50 concentrations do not imply the same 

toxic potency of the different metals, as they show different distributions between the cell 

wall, the vacuole and the cytosol (Ernst, 1998). Not all the metal in the plant is necessarily 

bioactive, but the latter fraction can be expected to have the highest toxicological impact on 
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the plants. In order to gain more insight into where the metals taken up are distributed within 

the plant and in the plant cell, dyes which bind to free and hence bioactive metal-ions would 

be helpful. This is however beyond the scope of this work. 

The increasing toxicity of zinc and nickel could not be assigned to an increasing internal 

concentration but must be attributed to a dynamic distribution within the plant. The 

distribution of metals is not static but a dynamic process, which means that the free available 

and bioactive metals and hence the toxicity of the incorporated metals can change over time. 

This has been shown by several studies. Phytochelatines are probably only a transient 

solution, as cadmium and copper phytochelatine complexes diminish after 7 to 14 days 

(Leopold et al., 1999; Kwan and Smith, 1990b) in plants. The formation of proline, which is 

presumably responsible for metal tolerance (Mehta and Gauer, 1999; Bassi and Sharma, 

1993a; Bassi and Sharma, 1993b) is probably a short-term biochemical answer. About 24 

hours after exposure to heavy metal begins, stress proline has diminished. These studies and 

the findings in this work clearly show that the metal toxicity over time is governed by a 

changing distribution within the plant over time. Hence the toxicity observed is not directly 

proportional to the internal metal concentration but is ruled by the distribution within the 

plant. Presumably the metal uptake is also not directly proportional to the external 

concentration, as the uptake of metals can be limited by the ion channels. Indications for a 

reduced uptake of heavy metals and a saturation of the transporters at higher concentration 

were observed for nickel and zinc. The change of toxicity over time was lower for higher 

effect concentrations than for smaller effect concentrations. The reason for this is presumably 

a saturation of the transporters at higher external concentrations. A confirmation of these 

presumptions and an additional insight into the time dependency of toxicity at different effect 

levels could be gained if the internal metal concentration within the plants were measured for 

the whole concentration range as the BCF is not necessarily the same for all concentrations. 

However this was beyond the scope of this work. 

4.2.2 Herbicides 

Triazines 
A study with Lemna perpusilla and Lemna major gave EC50 values for Ametryn of 0,23 and 

0,046�mol/l (Liu and Cedeno-Maldonado, 1974). These data lie within the same order of 

magnitude as the EC50 value of this work which is 0,085 µmol/l at day seven. So far, there are 

no studies with Prometon on Lemna so a comparison with the data on the toxicity of 

Prometon is not feasible. The visual recorded effects indicate no oxidative stress as reported 

by Hock and Fedtke (1995b). Reasons for this may be the absolute light intensity 
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(photooxidative stress is primarily observed in rather high light intensities) and the light 

adaptation of the plants. They were kept in constant light before the experiment, which 

typically results in a well-developed defence system against light-induced oxidative stress. 

Also, the time-independency of toxicity indicates that oxidative stress of triazine toxicity does 

not seem to play an important role under the conditions of this assay. No accumulative 

damage occurs. The binding of the s-triazines to PSII via non-covalent hydrogen bonds is 

reversible and thus the concentration that is actually bound to the receptor is dependent on the 

actual concentration of the chemical in the thylakoide membrane and consequently in the 

growth medium. As already discussed by Hayes et al. (1975) the dose time relation may vary 

for different effect levels. Due to the unchanging steepness of the concentration response 

curves of the triazines there is no change of the dose/time relationship over the whole range of 

the effect levels. Though the observed disintegration of the fronds at high effect level 

concentration indicates that the damage became more severe and that probably other effects 

came into operation apart from the interruption of the electron transport at the PSII site, this 

did not have an impact on the concentration response relationship and on the change of 

steepness over time. Additionally, even at high effect concentrations oxidative stress which 

would lead to a cumulative damage and thus to an increasing toxicity did not occur and was 

not observable as the fronds did not show necrosis and chlorosis.  

Diuron  
The EC50 value of this study (0.152 µmol/l) lies between the findings of (Okamura et al., 

2003) with a 7d-EC50 of 0.129 �mol/l and Liu with an7d-EC50 value of 0.17 �mol/l (Liu and 

Cedeno-Maldonado, 1974). The findings are similar, though in this work, growth inhibition 

was based on frond area and not on frond number as in the work of Okamura et al. and Liu 

and Cedeno-Maldonado. Effects such as chlorosis caused by oxidative stress were not 

observed, although this may be due to the MeoA and its subsequent effects.  

Concerning the EC50 value over time, similar observations were made for Diuron exposed 

plants as made for triazine exposed plants. The EC50 did change but without any trend. This 

change can rather be assigned to variability in the test results than to time-dependent change 

of toxicity. However, there was a slight increase of the steepness of the concentration 

response curve over time. The difference may be due to the other binding mechanism to the 

plastoquinone site or other additional effects. As in the case of the triazines, oxidative stress 

was not observable. Therefore oxidative stress as an additional effect is unlikely and hence the 

increase of the concentration response curve may either be due to other unknown additional 
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effects which gain more importance at higher concentrations or it can be due to the different 

binding mechanism of Diuron.  

Paraquat 
Like the plants exposed to heavy metals, Paraquat exposed Lemna minor showed chlorotic 

and necrotic fronds which is in agreement with the prior MeoA of Paraquat; oxidative stress 

caused by electron transport inhibition at the PSI site. The 7d-EC50 value (0.294µmol/l) as 

well as the 5d –EC50 value (0.321µmol/l) are similar to the finding of Fairchild (1997) who 

stated a 4d-EC50 value of 0.274�mol/l. There was a slight in increase in steepness and a shift 

of the concentration response curves to the low dose area. This indicates that the damage on 

the plants increases over time and that repair rate is slower than the rate of damage. 

Presumably, Lemnas exposed to high effect levels are more affected by accumulative damage 

as indicated by the increasing steepness of the concentration response curves over time. 

Aclonifen  
According to the literature, no studies have been done on the effect of Aclonifen on Lemna 

minor. Thus, a comparison of the EC-values is not possible. Aclonifen exposed plants showed 

a concentration-dependent loss of pigments. This is in agreement with the MoA, the inhibition 

of the formation of chlorophyll. However, growth as an integral endpoint is not immediately 

affected. Though there is a visual difference as shown in Figure 4, there is no difference 

concerning the growth rate. Thus, it can be concluded, that growth is not a very sensitive 

endpoint in the case of Aclonifen. Aclonifen has a delayed effect on the growth rate which 

becomes apparent on the third day of the experiment. Based on the standard test procedure 

this delayed effect leads to an underestimation of the effect due to the average growth rate 

over the whole test duration. Hence, 100% growth inhibition could not be achieved according 

to the standard test procedures (International Organization for Standardization (ISO), 2006; 

Organisation for Economic Co-operation and Development (OECD), 2006). Presumably other 

results with observed effects up to 100% may have been observable if using another endpoint 

such as chlorophyll content. If simply looking at the change of steepness of the concentration 

response curves over time one may overlook the change of toxicity over time as the steepness 

remained quite unchanged. However, the shift of the whole concentration response curve over 

time indicates that the delay of toxicity had the same importance at every effect level. The 

effect on chlorophyll reduction may be concentration-dependent as the visual observations 

have indicated. Additional effects like the formation of PPIX and the formation of harmful 

singulett oxygen as described by Hock and Fedtke may also occur. One may assume based on 
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the findings of Hayes (1975) low effect concentrations are more easily negated than high 

effect concentrations and that the lag phase would be different for different effect levels. 

However this was not the case. This indicates that oxidative damage, which is not quickly 

reversible and should lead to cumulative damage to some extent, was probably not the main 

cause of growth reduction.  

Alachlor  
In the case of Alachlor, establishing the growth rate by frond counting would underestimate 

the effect on growth due to the development of dwarfish fronds. Fairchild and co workers 

name EC50 values which are higher than the EC50 values found in this study. After a four day 

exposure the EC50 values found by Fairchild are 0,734�mol/l (1997) and 1,786 �mol/l (1998) 

whereas in this work the EC50 values are 0,314 µmol/l after a three day exposure and 

0,179µmol/l after a five day exposure. These data are based on the frond number and this may 

be the cause for the differences. An abnormal frond size was not reported by Fairchild.  

There was an increase in toxicity over time which was effect level dependent. This is in 

agreement with the findings of Chang et al. (1985). Hence, this inhibition is probably the 

cause for the time dependence. This is also supported by the postulated MeoA of the 

chloracetanilides, covalently binding to sulfhydroxyl-groups of enzymes (Fuerst, 1987). This 

binding is irreversible and thus the damage accumulates and the toxicity increases.  

Similarly to the observations made with Aclonifen, an effect of 100% could not be achieved if 

growth were averaged over the whole test duration. This is, as in the case of Aclonifen, 

caused by the delayed effect on growth.  

4.2.3 Metals∗∗∗∗

The observed necrotic and chlorotic fronds exposed to the metals investigated zinc, copper, 

nickel and cadmium is in agreement with the described effect of heavy metals, oxidative 

stress caused directly or indirectly. The cause of the smaller fronds, which was observed for 

all metals investigated is unclear but may be linked the inhibition of enzymes which 

influences the frond size. Naumann et al. (2007) investigated ten heavy metals on Lemna 

minor. Apart from the endpoint growth inhibition they also investigated the chlorophyll and 

the carotinoides. Especially nickel had an impact on the pigment content in their study which 

is in agreement with the observed pale fronds of nickel exposed plants in this work. They 
                                                     
∗ Parts of this chapter have already been published elsewhere; see: Drost W, Matzke M, Backhaus T (2007): 
Heavy metal toxicity to Lemna minor: studies on the time-dependence of growth inhibition and the recovery 
after exposure. Chemosphere 67(1): 36-43 
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could not show a correlation between ligand affinity and toxicity. Hence, the toxic mechanism 

is more subtle than the simple interaction with proteins and enzymes. A metal with a high 

ligand affinity referring to ligands such as proteins with oxygen sulphur and nitrogen-ligands 

may however also be better sequestered by metallothionines and thus may be better 

controlled. 

Cadmium 
The EC50 values recorded in this study proved to be comparable to previous studies with 

Lemna. An EC50 of 1,5 µmol/l was determined by Kwan and Smith (1991) for cadmium after 

ten days incubation, while an EC50 of 2µmol/l was found after 7 days exposure in the present 

study. Naumann et al. (2007) also used the Steinberg medium as in this work. This is an 

important aspect as the toxicity of metals is greatly influenced by other cations due to their 

influence on the uptake of the metals (Kwan and Smith, 1991). Naumann et al. found an EC50

of 3µmol/l based on frond counting after seven days of exposure.  

There was neither considerable change of steepness over time or a change of the EC50 value 

over time, which indicates that the damage caused by cadmium was not cumulative. As the 

visual results showed that cadmium apparently caused oxidative stress in Lemna minor. This 

MoA is highly unlikely to be quickly reversible. However Lemna minor has presumably a 

well-developed defence and repair system referring to oxidative stress. This presumption can 

be supported by the observations made with the PS2 inhibitors. The plants were kept in 

constant light before the experiment, which typically results in a well-developed defence 

system against light-induced oxidative stress. Even though as an unessential metal a cadmium 

homeostasis may seem more unlikely, Kwan and Smith (1990a) showed that a major 

proportion of accumulated cadmium in Lemna minor is bound to proteins which immobilises 

cadmium and Grill et al. (1985) showed that the phytochelatine syntheses are induced not 

only by essential metals such as copper and zinc but also by cadmium. 

With an average BCF of more than 1300 cadmium had the highest BCF of all the metals 

examined. This might indicate a co-uptake with Calcium, an essential macro-nutrient. This 

kind of interaction between calcium and cadmium has already been suggested by Kwan and 

Smith, (1991). The uptake of cadmium is influenced by pH and by the calcium concentration 

as studies have shown (Skowronski et al., 1991; Kwan and Smith, 1991). Hence, the BCF is 

different for other compositions of test medium. The internal cadmium concentration 

significantly decreased over time. This is in contrast to the findings of Kwan and Smith 

(1991) who found the uptake kinetics of cadmium into Lemna minor to be linear over time 
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and the internal cadmium concentration to constantly increase. Reasons for this deviation may 

be the use of a different external cadmium concentration, which was approximately half the 

concentration used in this work and a quarter of the strength of the Steinberg medium. As 

essential nutrients; copper, nickel and zinc were present in the controls. However cadmium 

was also found in the control plants which must be assigned to a contamination either from 

the bi-distilled water or from the salts used as nutrients.  

Copper 
Ince et al. (1999) and Lakatos et al. (1993) reported an EC50 for copper of 23,6 µmol/l at day 

seven whereas Teisseire et al. (1998) recorded an EC50 value of 2.52 µmol/l after the same 

exposure duration. With 9,682 µmol/l based on frond counting, the EC50 of the presented 

study falls within this span. Naumann et al. (2007) recorded an EC50 of 2,7µmol/l after a 

seven day exposure. However in a time span of approximately two years Lemna minor

became more sensitive to copper in this work. In an experiments conducted later on, a EC50 of 

1,789 µmol/l was determined, which is more in accordance with the small EC50 values of 

Teisseire and Naumann. The fact that this value is based on frond area and not on frond 

counting may explain differences in the derived EC values but cannot fully explain the 

increase of sensitivity of the plants. Though copper caused smaller fronds, the downsizing of 

the fronds was not that dramatic as to explain the tenfold increase of sensitivity. Lemna minor

were obtained from two different laboratories, experiments conducted on the basis of frond 

counting were Lemnas from a different source than tests conducted on the basis of frond area. 

However, prior to changing the Lemna, tests with Atrazine and copper had shown that the 

sensitivity was similar (data not shown). The fact that the plants used for the experiments 

which were based on frond area were grown in another growth medium in the other laboratory 

may be a reason. The plants may have adapted to the growth medium used in this work with 

the result of their becoming more sensitive.  

As in the case of cadmium, there was no change of toxicity over time over the whole effect 

range. This is probably also due to a well-developed defence and repair system. As copper is 

an essential metal Lemna minor are likely to have a well-developed regulation system to keep 

up the copper homeostasis.  

Nickel 
The EC50 value for nickel of this work is considerably higher compared to another study with 

Lemna minor, though the test conditions were identical. Naumann et al. (2007) found an EC50

of 6,2 µmol/l which is approximately 1/10 of the EC50 value of this work. There may be 



Discussion 

88 

various reasons for this deviation, such as different adaption of the plants to nickel but 

presumably not to metals in general as the comparison of the EC-values of the other metals 

studied shows.  

As opposed to the metals cadmium and copper, nickel toxicity increased over time especially 

in the concentration range causing effects up to 50% growth inhibition. This caused in 

contrast to the findings with the investigated herbicides, a decrease in the steepness of the 

concentration response curve over time. This is unusual as the opposite would be assumed if 

considering that plants have a well-developed defence system against metal intoxication 

(Tsuji et al., 2002; Kwan and Smith, 1990a; Grill et al., 1987). Hence one would expect that 

due to a better regulation of lower metal concentrations than higher concentrations, the 

steepness of the concentration response curve would increase as the toxicity increases 

especially at higher effect concentrations. Considering these observations it must be 

concluded that there are other aspects apart from defence, control and repair that govern the 

toxicity/time relationship. Though the uptake of the metals over time has been investigated it 

is not however clear whether the observed uptake kinetics at concentrations causing 

approximately 50% growth inhibition is the same for other effect concentrations. Metals are 

actively transported into the organism. The internal metal concentration is not necessarily 

directly proportional to the external concentration but can also be governed by the number of 

available metal transporters. Mallick et al. (1996) investigated the uptake kinetics of nickel, 

chrome and zinc and found that the uptake of these metals followed a Michaelis-Menten 

kinetic. Changes in the uptake rate were only observed up to a certain external concentration 

showing the saturation of the transport system. The saturation of the nickel-transporters may 

be a reason why toxicity did not increase to such an extent at higher concentrations.  

Zinc 
For zinc, Ince et al. (1999) reported an EC50 value of 147 µmol/l, which is slightly higher (by 

a factor of 3,2) than the EC50 of 46,1 µmol/l that is reported in this work. This might be due to 

the different growth medium used which greatly influences the toxicity of metals. As in the 

case of nickel also the EC50 value found by Naumann et al. (2007) for zinc were lower than in 

this work. Naumann et al. found an EC50 value of 10,4 µmol/l which is one fourth of the EC-

value found in this work. The detected EC values are four times the arithmetic mean 

environmental concentration of zinc (1,692 µmol/l) referred to the EC25.  

The same observations were made concerning the steepness of the concentrations response 

curves over time as were made for nickel. Unexpectedly the increase of toxicity over time was 
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especially pronounced in the lower effect region. Reasons may be same as were discussed for 

nickel - the active transport of metal cations may determine the steepness of the 

concentration-response curve and the transport system may be saturated at higher 

concentrations.  

The increase of toxicity could not be explained by an increase of the internal concentration of 

zinc. This may be due to cumulative damage. Zinc strongly induces the formation of 

phytochelatines but it is not a prominent ligand as shown in maize and radish (Souza and 

Rauser, 2003) and hence not well controllable by phytochelatines. Excess zinc concentrations 

may be regulated via the formation of zinc phytate as it was found in Lemna minor and 

Deschampsia caespitosa (Van Steveninck et al., 1990; Van Steveninck et al., 1987). Phytic 

acid, myo-inositol hexakisphosphate normally functions as storage of minerals in plant 

reproduction. This mechanism may function for shorter exposure durations or lower 

concentrations but may have failed under the experimental conditions in this work. 

Additionally phosphate is generally not very abundant in plants and is probably even less 

abundant in natural waters compared to growth medium with a high concentration of 

nutrients.  

4.2.4 Predicting toxicity over time- 

Is Haber’s rule observable and are Haber’s rule or its derivations an appropriate 
tool to describe toxicity-time relationships?  
According to Rozman (2000), the experiments of this study should show simple or more 

complex c•t=k relationships. Indeed if toxicity increased over time, the toxicity-time 

relationship could be well described by these equations. Hence with the exception of Diuron 

and Prometon which did not show increased toxicity on Lemna minor and thus indicate the 

limitations of this approach, Haber’s law and its deviations gave a good description of the iso-

effective curves.  

Experimental requirements to use Haber’s rule and its derivations 
Coming from the branch of human toxicology Rozman and Doull (2001b) extensively 

discussed under which circumstances i.e. what test design is necessary to observe Haber’s rule 

or deviations of it. If kinetic as well as the dynamic half life is short as it is the case for 

inhalation narcotics the c•t=k relation can only be observed, if exposure occurs continuously. 

In this case toxicity is rather dose-dependant than time-dependant. The exposure frequency is 

crucial if the kinetic or dynamic half life is intermediate relative to the duration of the 

experiment. Then recovery can occur and Haber’s law is not observable if the exposure 
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frequency is longer than the elimination or recovery time. If due to an irreversible binding to 

the site of action no recovery can occur, than toxicity is especially time-dependant. In order to 

assess the hazard of a substance on humans, tests are conducted with rats or other mammals. 

Due to the test design in these cases, the exposure to a toxicant occurs in pulses if the 

substance tested has to be administered for instance by an injection. Hence in the hazard 

assessment of substances on humans, the exposure conditions are more complex than they are 

in standard aquatic ecotoxicology tests where exposure occurs continuously and kinetic steady 

state is experiment driven.  

Comparison with an alternative empiric approach 
Facing the fact that there are more acute toxicity data than chronic toxicity data the acute to 

chronic ratio (ACR) has been discussed as one method to extrapolate from short-term toxicity 

to long-term toxicity (Ahlers et al., 2006;Länge et al., 2004). Acute EC50 values are simply 

divided with chronic NOEC or the lowest observed effect concentration (LOEC) values to 

achieve an ACR. Länge et al. (2004) analysed acute to chronic ratios (ACR) for various types 

of substances using the ECETOC Aquatic Toxicity (EAT) database. They calculated the ACR 

and ranked the values according to increasing values and calculated the 90%-ile of the 

resulting distributions und suggest to use this 90%-ile ACR value as an default extrapolation 

factor. However especially metals, organometals and pesticides show highly variable ACRs 

and were thus excluded. Junghans et al. (2008) have discussed the ACR as an extrapolation 

method further into detail. 

The role of the power term �
Miller et al. (2000) discuss the simple c•t=k relation as a special case in a family of power 

term curves. Thus they suggest using a general form: c�•t�=k. This form of equation gives the 

ability to distinguish whether the toxicity is more concentration- or time-dependant. If c and �

equal 1, dose and time are equally important in determining toxicity and Haber’s law applies. 

� and � may also be combined to � or x which than leads to the equation described by Bliss. 

As time is a multidimensional parameter, the power term � was used for the parameter time, 

though it does not make a difference whether the power term used for the concentration or 

time. The power term � gave a good insight into the toxicity-time relationship of the 

investigated substances and the weight of time. There is clearly a link between reversibility 

and the parameter time. Substances with a similar MoA and the same reversibility may have a 

similar power term. This should be further investigated. Ametryn reversibly blocks the PS2 

system. The power terms for all investigated effect levels were smaller than one, which 
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indicates that concentration and not time governed the toxicity of Ametryn on Lemna minor. 

The observations made and the calculated power term � confirm that oxidative stress also an 

indirect effect of PS2 inhibitors and more irreversible than the weak H-bonds of PS2 

inhibitors to the site of action, did either not come into play or Lemna minor possesses a good 

defence system. Also the recovery experiments conducted with the PS2 inhibitors, which are 

going to be discussed in detail later on, indicate that the effect of PS2 inhibition quickly 

reversible even for high effect concentrations. The power terms for Aclonifen and especially 

for Alachlor were larger than one, which indicates that time played a more important role to 

the toxicity of these substances than the concentration. Again, these findings are underpinned 

by the findings made with the recovery experiments. The inhibition of the biolipid syntheses 

(Alachlor) as well as the inhibition of chlorophyll syntheses (Aclonifen) affected the plants to 

such an extent, that Lemna minor did not fully recover within the duration of the recovery 

experiment. Hence, damage can accumulate over time, which means that the observed effect 

reflecting the toxicity of a tested substance is governed by time. Paraquat is also a 

photosynthesis inhibitor but at the PS1 site and it causes oxidative stress directly. 

Nevertheless the power terms found for Paraquat were smaller than one or one. Oxidative 

stress was apparent as the fronds showed necrotic and chlorotic fronds, however the findings 

indicate that Lemna minor have a good defence and repair mechanism under the 

circumstances of the test which leads to the result that the damage was less cumulative. This 

may also be the reason why the toxicity of the metals investigated based on the calculated 

power terms which were smaller than one in the case for cadmium, copper and nickel, was 

less time-determined than concentration-determined. Zinc was an exception as in agreement 

with the observations made. The toxicity of zinc was clearly time-determined. 

The different time dependencies for different effect levels  
In agreement with the findings of Hayes (1975) the dose/time relation of a substance varied 

for different effect levels. This shows that is not only important to consider toxicity and time 

but also to regard different effect levels over time. Altenburger and Greco recently suggested 

combining time- and concentration-dependent toxicities into a global concentration-time 

effect-model (Altenburger and Greco, 2009). They did however not consider different time-

dependencies for different effect levels but estimated a time-dependent estimate of the median 

potency (EC50). This work shows that in the case of the herbicides the power term was larger 

for the higher effect level of 75% growth inhibition than for the lower effect level of 25% 

growth inhibition, showing that time becomes a more governing factor of toxicity at higher 

effect levels. At low effect levels, a sufficiently high rate of detoxification can negate the 
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effects from extended exposure. Hayes et al. (1975) showed this in a study with hydrocyanic 

acid and thus showed the limitations of Haber’s rule which is based on the assumption that 

toxicity always increases over time. However in contrast, the metals studied showed the 

opposite results. According to the power terms, time was a more governing factor at the lower 

effect level. This is in accordance with the decreasing steepness of the concentration response 

curves of nickel and zinc, which was due to the increasing toxicity especially in the case of 

the lower effects. 

Is DEBtox an appropriate tool to deal with toxicity over time? 

Comparison with the approach of Haber 
Compared to the approach just discussed, DEBtox is a mechanistic model. Toxicodynamics is 

not considered in the calculation the model implies that the effect is completely reversible and 

thus toxicity is determined by the concentration and hence toxicokinetic. DEBtox only 

requires data which are derived from standardized tests. 

The Haber equation and its derivation are empirical models and thus cannot be discussed 

concerning the mechanisms which govern the toxicity over time. In contrast to the DEBtox 

model this approach does not make any assumptions concerning toxicokinetics or 

toxicodynamics. Though simple, this approach nevertheless gives a good description of 

toxicity over time and the power term � can be used to describe what governs the toxicity of a 

substance, whether the toxicity is more determined by the dose or time. As has been 

discussed, it can be used as an extrapolation-tool for environmental risk assessment in order 

to extrapolate from short exposure data to long exposure. However, in contrast to the time 

independent NEC value derived by DEBtox these values are time-dependent.  

Unlike the approach propagated by Rozman and Doull, the aim of the DEBtox model is not a 

description of the toxicity over time but to derive an NEC which is time-independent. As 

DEBtox is a mechanistic model it makes assumptions concerning the mechanism governing 

the toxicity. Whether these assumptions are too simplistic or wrong due to the properties of 

the substance and the organism will be discussed in the following. The two approaches 

compared have different aims and different advantages and disadvantages. The approach 

propagated by Rozman and Doull: Haber’s law and its deviations are simple and easily 

understandable and applicable to ecotoxicological data as discussed above. As an empirical 

model its aim is the description of toxicity over time and additionally it is a useful tool to 

extrapolate from acute toxicity data. It has however the disadvantage that the data or 
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extrapolations are always linked to a certain time. This is in contrast to the NEC derived by 

DEBtox which is time independent. The aim DEBtox is the derivation of a time-independent 

threshold value as an alternative to the currently used NOEC. The mechanistic model does 

however make assumptions which do not apply to all substances.  

Discussion of the mechanistic assumptions of DEBtox and comparison with other 
mechanistic models 
The assumption made by the authors of DEBtox is in accordance with the critical body 

residue (CBR) approach, which is developed for chemicals with a completely reversible effect 

(McCarty, 1986). From its origins the CBR model was designed on the basis of studies with 

organic compounds with no specific but narcotic effects. However, the effect of toxicants may 

not be reversible or only slowly reversible leading to accumulative damage. Verhaar, Legierse 

and co-workers developed the critical target occupation model (CTO) model, which quantifies 

the effect through the integral of the target occupation over time (Verhaar et al., 1999; 

Legierse et al., 1999). For their studies they used organophosphorous pesticides which 

covalently bind to the acetylcholine-esterase. This model assesses the overall toxicity, if the 

binding to a receptor is irreversible and there is no de novo receptor synthesis and the toxicant 

binds covalently to the active site. The CTO is associated with a critical time-integrated 

concentration, the so called critical area under the curve (CAUC). In contrast to the CBR and 

the DEBtox model, the CTO-model assumes that the critical threshold changes i.e. decreases 

over time.  

However these model regard two extremes, most chemicals lie between these two cases. Lee 

et al. (2002) developed a Damage Assessment Model (DAM) in order to predict the time 

course of toxicity of polycyclic aromatic hydrocarbons (PAHs). This model is based on the 

assumption that the damage is proportional to the body residue and that recovery is 

proportional to the cumulative damage. Compared to the CBR and CAUC approach the DAM 

can provide an estimation of recovery which lies in between no recovery at all, with a 

recovery rate of zero, and immediate recovery with a recovery rate of �. 

Considering the aspect that complete reversibility may be under-estimative, Jager and 

Kooijman extended the DEBtox model adding receptor kinetics (Jager and Kooijman, 2005). 

The same data which were also used to develop the CTO model (Legierse et al., 1999; 

Verhaar et al., 1999) and additional data of the investigation of acetylcholine-esterase 

inhibitors were used. Different from the CTO model the receptor model can deal with 

irreversible and reversible interactions like the DAM model. It is different from the DAM 
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model as damage is not considered as first order but it is calculated using hazard modelling. 

From their investigations and the results the authors conclude that the standard DEBtox model 

is nevertheless useful for hazard assessment as the NEC estimated from the extended model is 

basically identical to the NEC estimated with the standard DEBtox model. However, the 

DEBtox model has found some criticism if it comes to scenarios where the exposure is not 

continuous but fluctuates over time (Ashauer et al., 2006a). This will be discussed later on. 

Is the DEBtox-derived NEC a good alternative to the NOEC? 
The major aim of the DEBtox model is not so much to produce a description of the toxicity 

over time but to derive an NEC which is time independent. It has been greatly criticized 

among scientists and regulators (Chapman and Caldwell, 1996; De Bruijn et al., 1996) that 

the NOEC is used for the derivation of a Predicted No Effect Concentration (PNEC) in 

regulation. The latter is derived from available data such as the NOEC or EC50 and applied 

with a safety factor which can vary between 1-1000 depending on the amount and quality of 

data. The NOEC is always one of the test concentrations and thus strongly depends on the test 

design. It is the highest test concentration that gives no significant deviations from a control 

(Bartlett et al., 1974; Bringmann and Kühn, 1980). If the conduction of an experiment has 

been sloppy this results in a higher NOEC. Additionally, the term ‘No Observed Effect 

Concentration’ blurs the fact that indeed NOEC concentration can cause an effect. Depending 

on the test design, the NOEC value may even be larger than the EC50 value. This is certainly 

not desirable. Alternatives have been suggested (Chapman and Caldwell, 1996; Hoekstra and 

Van Ewijk, 1993). One of them is the use of the NEC (Kooijman and Bedaux, 1996a; 

Kooijman and Bedaux, 1996b; Kooijman Bedaux, 1996c; Kooijman, 1981). Additional data 

or modifications of the test guidelines are not requested for the use of the DEBtox-tool. Hence 

the NEC can be derived from data which are already available and according to Jager et al. 

(2006) can use the data even more efficiently. As a model parameter this value is not one of 

the test concentrations and it has a standard deviation. Additionally compared to any of the 

other alternatives it is time independent. The DEBtox-tool is indeed user-friendly as the 

creators state. No extensive knowledge is necessary to use the DEBtox tool for the calculation 

of NEC values; however the use of ‘black box’ generated data may be unappealing.  

Considering the aspects discussed above the NEC seems a good alternative to the NOEC. If 

considering mixtures even a mixture of substances in their NEC-concentrations may 

nevertheless less lead to observable effects. Studies showed that even mixtures in their EC1 

ratios or NOEC-ratios showed effects (Breitholz et al., 2008; Faust et al., 2003; Silva et al., 
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2002; Altenburger et al., 2000; Backhaus et al., 1997). According to Baas et al. (2007, 2010) 

substances may share the same NEC so even if single substances occur in concentration 

smaller than their NEC the mixture of the substances can exert an effect. Presumably any 

suggested concentration of a single substance greater than zero which is used in order to 

identify a concentration under which a hazard is unlikely to occur is hampered if mixture 

toxicity is taken into account. Hence, the question arises whether there is any concentration 

which can be labelled with the property of causing no effect independent of how this 

concentration has been derived as substances do not occur singly but in mixtures in the 

environment. Additionally as the NEC is based on standardised toxicity tests, the NEC is 

always restricted by the shortcomings of toxicity tests. Effects may remain undetected due to 

the test design. For example, if lethality is used as an endpoint sublethal effects are overseen. 

Using reproduction as an endpoint may neglect such effects that do not affect reproduction in 

the single species testsystem but can have an impact if referring to an ecosystem with 

predators. The drawbacks of the determination of thresholds under which no effect is 

supposed to occur has been extensively discussed by Grimme et al. (1990). The naming blurs 

the fact that substances occurring in the environment can nevertheless pose a risk to the 

environment even though their environmental concentration is lower than the identified 

threshold under which, according to the definition, no effects occur. Though the risk may be 

small it nevertheless is not zero. By using ECx values instead, this may give a clear statement 

that the derivation of a threshold does not mean that there is no risk for the environment if the 

environmental concentration is smaller. What effect concentrations should however be used? 

If small effect concentrations are used what is small? For the derivation of small EC values 

tests must be designed differently. A redesign of the test-protocols may be time and cost 

consuming and so far data are too scarce to simply neglect old NOEC data as de Bruijn and 

van Leeuwen state (1996).  
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4.3 Variable exposure to single substances- How does the toxicity change 
and what determines toxicity over time? 

4.3.1 Pulsed exposure -What determines the recovery potential? 

General discussion 
If and to which degree an organism recovers from the exposure to a pulse of a toxicant 

depends on various aspects. As long as the substance is present at the site of action it will 

cause a toxic effect. Thus the level of detoxification and /or elimination of the toxicant play a 

vital role. Another aspect which determines the recovery is the degree of toxic impact and 

thus the recovery from a damage, which depends on the concentration as well as the MoA and 

MeoA. As shown in the cases of the PSII inhibitors and Alachlor, the issue how the toxicant 

binds to the site of action is crucial. Week H-bonds are easily reversible covalent bonds are 

not. Recovery also depends on the repair rate which depends on what damage has been 

caused. This work also shows that the concentration Lemna minor had been exposed to can 

determine the recovery potential. As already mentioned in the discussion on toxicity over 

time, at low effect levels a sufficiently high rate of detoxification can negate the effects from 

extended exposure. Lipophily can in part be one but not stand alone factor governing the 

recovery potential. Hence, if referring to substance properties, the recovery potential depends 

on the quantity of the damage as well as the quality of the damage.  

The organism and the question how well can it deal with a pulsed toxic impact are 

additionally important. As a study on Daphnia magna with insect growth regulators has 

shown, the life stage of the organism and its susceptibility to the toxicant governs the impact 

of the substance and thus the recovery (Hosmer et al., 1998). Life stage dependent toxicities 

were also observed for fungicides on Daphnia magna (Hassold, 2010). As different life stages 

are not distinguishable for Lemna minor this issue could not be investigated in this work. On 

an ecosystem level the recovery may gain another importance. An ecosystem may recover 

concerning its functioning, however may have moved from one stable state to another as van 

Straalen (1992) discussed. 

Herbicides 
The effects of s-triazines as well as Diuron on the growth of L. minor were easily reversible. 

This is in accordance with the findings of Cedergreen et al., who investigated the recovery 

potential of the PSII inhibitor terbuthylazine on Lemna minor (Cedergreen et al., 2005). The 

duration of the pulse in their study was three hours. In order to observe equivalent effects at 

such a short exposure duration concentration were tenfold or hundredfold higher than the 
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long-term effect concentrations. In another work Lemna gibba also showed a comparable 

recovery after a five day exposure to Atrazine (Hughes JS et al., 1988). Also other plants 

showed fast recovery after a pulsed exposure to PSII inhibitors (Macinnis and Ralph, 2003; 

Kersting and Wijngaarden, 1999; Van Geest et al., 1999). These results can be traced back to 

the underlying biochemical mechanism of s-triazine action as already discussed. The 

inhibition of the photosynthetic electron transport is per se non-lethal to the organism. Only 

the growth rate is reduced – even down to zero if sufficiently high concentrations of an s-

triazine were present – because the photosynthetic energy production is inhibited. 

Furthermore, the binding of the s-triazines to PSII via non-covalent hydrogen bonds is 

reversible and thus the concentration that is actually bound to the receptor is dependent on the 

actual concentration of the chemical in the thylacoide membrane and consequently in the 

growth medium. As soon as the concentration in the growth medium decreases, so does the 

internal concentration. Consequently, the inhibition of the photosynthetic electron transport 

ceases and the organisms start growing again. Oxidative stress, also an indirect effect of the 

PSII inhibitors did not seem to play an important role under the conditions of the assay as has 

already been discussed in the chapter for single substance toxicity.  

Cedergreen et al. (2005) concluded that focus should rather be put onto to herbicides with 

other MoA than PSII inhibition. They additionally studied the recovery potential of Lemna 

minor after an exposure to ALS inhibitors, microtubule assembly inhibitors and PSI 

inhibitors. Recovery from the cell deviation affecting substances as well as from the ALS 

inhibitors occurred slowly. The plants did however not show any growth reduction after a 

three hour pulse to the PSI inhibitor diquat. This result is in contrast with the findings of this 

work. Paraquat exposed plants showed only slow recovery. The plants in the work of 

Cedergreen et al. were however only exposed to a hundredfold higher concentration of the 

EC10 value obtained for a long-term exposure. This effect level is comparatively low to the 

effect level of 50% growth-inhibition and as already Hayes (1975) has mentioned the quantity 

of damage can also play a role as smaller quantities of damage may be more easily negated. In 

the study of Cedergreen at al. (2005), investigations were made as to whether recovery is 

governed by the lipophily of the herbicides or governed by their MoA/MeoA. The uptake rate 

as well as the level of detoxification and /or elimination of the toxicant plays a vital role in the 

recovery. Lipophily is an important aspect for the two factors uptake and elimination whereas 

detoxification depends on the organism. Cedergreen et al. (2005) concluded that recovery 

depends on the toxicant as well as its lipophily and that both factors are important. This is in 

agreement with the findings of this work. Alachlor, Ametryn, Diuron and Prometon have 



Discussion 

98 

similar logKOW-values of about three but showed different recovery patterns. Plants exposed 

to the PSII inhibitors showed a fast recovery whereas plants exposed to the lipid synthesis 

inhibitor Alachlor recovered slowly. Having exactly the same MeoA, Ametryn and Prometon 

may have been a good basis to investigate the importance of lipophily concerning recovery. 

However, as both substances also have very similar logKOW values this research question 

remains unanswered. 

The MeoA of Alachlor is not fully understood but it has been assumed that Alachlor may 

covalently bind to the thiol groups of proteins (Hock et al., 1995a). Hence in this case the 

recovery can rather be assigned to the MeoA than to the lipophily. The study with Alachlor 

shows the importance of how the substance is bound to the active site. In agreement with a 

study with Daphnia magna the recovery from organophosphorous insecticides was bad, due 

to a covalent bond to the active site, whereas recovery occurred fast if the bond were 

reversible as was the case for carbamate insecticides (Kallander et al., 1997). In this case if 

the substance were covalently bound, the aspect of lipophily may be of minor importance for 

elimination. 

Aclonifen has a logKOW of four and therefore is slightly more lipophilic. This may in part 

explain the slow recovery after an exposure pulse to Aclonifen. However the MeoA, the 

inhibition of the chlorophyll syntheses is not quickly reversible. An enzyme is blocked which 

makes it necessary to produce de novo enzymes. Additionally oxidative stress may occur. 

However, equally to the PSII inhibitors necrotic fronds were not observed.  

Paraquat is positively charged. Hence according to the lipophily hypothesis the plants should 

rapidly recover. The observations however support that the induction of oxidative stress, is a 

more important factor influencing the recovery rate in this case. 

The recovery potential was also studied for different concentrations in the case of the triazines 

Diuron and Alachlor. In agreement with the findings of the concentration-dependency of 

single substance toxicity over time, recovery was concentration-dependent if the MeoA was 

not quickly reversible. In the case of Alachlor, toxicity over time became more time-

dependent at higher effect concentrations indicating irreversible and cumulative damage. In 

accordance with these observations, plants exposed to a concentration causing 50% growth-

inhibition did not recover but did show slow recovery if the plants had been exposed to a 

concentration causing 30% growth inhibition. In the case of the PSII inhibiting herbicides, the 

concentration the plants had been exposed to did not have an influence on the recovery 
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potential even if the plants had been incubated with extraordinary high concentrations in the 

case of the triazines. This is also in accordance with the toxicity over time observations. There 

was no change of the concentration response curves over time.  

Metals∗∗∗∗

Even seven days after transferring Lemna minor into uncontaminated medium the zinc pre-

exposed plants still showed a severely reduced growth rate. Copper and cadmium pre-exposed 

Lemna showed growth rates close to control level after three days recovery, while nickel pre-

exposed Lemnas actually reached control levels. 

As expected, the internal concentrations of all metals decreased during the recovery phase. In 

principle, two processes might be responsible for the decrease in metal concentrations: (a) 

active or passive excretion of the metal from the plant and (b) the “dilution” of the internal 

metal concentration due to an increase in total biomass (growth). Though efflux transporters 

in plants have been found for zinc, copper, cadmium and nickel (Hall and Williams, 2003) a 

significant decrease was only detectable for copper (factor 2) and nickel (factor 3), while the 

total amount of zinc and cadmium in the plants remained constant. 

The rapid decrease of nickel concentrations is most likely responsible for the rapid recovery 

of the plants after nickel exposure. Added with the comparatively low bioconcentration factor, 

this might argue for an active efflux system in Lemna minor. This would be in concordance 

with the findings of Hall and Williams (2003).  

In any case, the rapid decrease of internal concentrations during the recovery demonstrates 

that nickel – and also copper, which shows a similar pattern - is not irreversibly bound to any 

cell structure such as the cell wall.  

On the other hand, the dynamics of the internal concentrations of cadmium and zinc did not 

point to any efflux from the exposed plants. In contrast the data showed that the decrease in 

cadmium and zinc concentrations was completely due to the increase in biomass. This could 

be due to the binding of cadmium to various polypeptides and the subsequent transport into 

the vacuole (Kwan and Smith, 1990b; Vögeli-Lange and Wagner, 1990; Weigel and Jäger, 

1980). Zinc and cadmium were also shown to be sequestrated in the vacuole by organic acids, 

such as malate and oxalate (Krotz et al., 1989; Mathys, 1977). 

                                                     
∗ Parts of this chapter have already been published elsewhere; see: Drost W, Matzke M, Backhaus T (2007): 
Heavy metal toxicity to Lemna minor: studies on the time-dependence of growth inhibition and the recovery 
after exposure. Chemosphere 67(1): 36-43 
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Taking the non-efflux of zinc together with the extremely flat concentration-response curve, 

this might offer an explanation for the non-recovery after the zinc-exposure. Due to biomass 

increase, the internal concentration decreased only a little. Zinc had an extremely flat 

concentration-response curve and therefore this slight decrease was not sufficient to lower the 

internal concentration to non-toxic levels. In contrast, cadmium had a slightly steeper 

concentration-response curve and consequently the dilution of internal concentrations due to 

growth seemed to lower the internal concentrations sufficiently to allow growth recovery of 

the plants.  

This hypothesis however assumes a one-compartment model, i.e. an even distribution of the 

metals within the plants and their mobility during growth. Another line of reasoning for 

explaining the non-recovery after a zinc exposure would be that zinc mainly binds to and is 

specifically toxic for meristematic tissues of the Lemnas. This could lead to locally lethal, i.e. 

non-reversible effects on this tissue and thus preventing the subsequent growth of new fronds 

– even after the external exposure ended. But as visual observations indicated chlorosis 

occurred evenly in all tissues of the plants, this hypothesis might be considered somewhat 

unlikely. All in all, further studies are needed to collect more details on the distribution of the 

metals in the different parts of the plants and possible different toxic effects on the different 

tissues. 

4.3.2 Fluctuating exposure-How does toxicity evolve? 

Discussion of the investigated cases with the substances Alachlor, copper and 
Diuron 
The emission of hazardous substance into the environment may occur in pulses. Depending 

on the exposure duration and the time of the recovery phase and the recovery potential, this 

may lead to a cumulative effect or an apparent lessening in toxic response due to adaption. In 

this work pulses were conducted sub-sequentially. The plants were exposed to a concentration 

causing 30% growth inhibition and were then immediately exposed to a whole concentration 

response curve. If no recovery occurs at all, there is no adaption and the toxicity of the 

substance is constant over time, this would lead to upshift of the concentration response curve 

with the lowest response starting at 30% growth-inhibition.  

As the results show this is not the case for any of the investigated substances. In the case of 

Alachlor the sensitivity increased. The plants became too sensitive to the concentrations tested 

in order to show a concentration-dependant response. This became especially apparent at day 

six where the data points were all at the top of the single substance concentration-response 
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without pre-treatment. This is in accordance with the assumed MeoA, the alkylisation of thiol 

groups of proteins (Fuerst, 1987). As the toxicity of Alachlor increases over time this explains 

why the response was even higher than 30% growth inhibition. Due to the pre-treatment the 

plants had already been exposed to Alachlor for three days. Hence effectively three days of 

exposure have to be added. However one would expect that those plants which were 

subsequently exposed to a lower concentration then the concentration of the pre-treatment 

would show recovery to some extent as has been shown in the recovery experiments. 

However the recovery potential decreased to such an extent that this could not be observed. 

In the case of copper, adaption occurred. This is indicated by the response observed for the 

lower concentrations. The plants showed a higher growth rate than the control plants if 

referred to the pre-treated control plants. The plants recovered better if exposed to small doses 

of copper. Cause for this adaption may be the increase of phytochelatines or proline, which 

leads to a more effective scavenging of the internal metal; or the induction of antioxidative 

responses may have reduced the vulnerability of the plants to oxidative stress. Additionally, 

Lemna minor are likely to have a well-developed regulation system to keep up the copper 

homeostasis as copper is an essential micronutrient. 

The study with fluctuating Diuron concentration was not fully in accordance with the findings 

of other studies not shown in this work with Lemna minor and PSII inhibiting triazines (Drost 

et al., 2003). The pre-exposure to Diuron did have some though small effect on the sensitivity 

of the plants towards Diuron at day three. In the case of the triazines Ametryn and Prometon 

there had been no impact on the sensitivity of the plants. All three herbicides are PSII 

inhibitors. The plants showed very good recovery from three day pulses to the three PS 

inhibitors. In accordance with the MeoA of Diuron and the observed recovery potential one 

would have expected similar results. The reason for the difference may be a different binding 

to the site of action as has been postulated by Tietjen (1991). 

Comparison of observations of other studies 
The study with Lemna minor and fluctuating concentrations of Alachlor, copper or Diuron 

shows that the damage is either cumulative, the plants can adapt or the plants show an 

increase of sensitivity only over a short time due to fast recovery. Conclusions of other 

authors concerning repeated pulses are contradictory. Hosmer et al. (1998) studied fenoxycarb 

on Daphnia magna and concluded that pulses with intermission are less toxic than continuous 

exposure, whereas Buhl et al. (1993) showed that Daphnia magna were more sensitive to 

repeated pulses of the bromoxynil formulation Buctril than to a continuous exposure to this 
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substance. However, the sensitivity of organisms to pulsed exposure is dependent on a 

combination of concentration, pulse duration and interval as Naddy et al. (2001; 2000) have 

shown. Toxicokinetic and toxicodynamic play a vital role. If no adaption occurs and the 

intermission between the pulses correspond to the toxicokinetics of a substance that means the 

second pulse occurs after the first substance has been eliminated from the organism, the 

impact of the second pulse will only depend on the toxicodynamics i.e. the recovery from the 

first pulse. In the case of concentration-dependent toxicants with a fast recovery rate, the first 

pulse will not have an impact on the sensitivity. In contrast in the case of substances with a 

MoA with slow recovery or no recovery at all, the first pulse will indeed have an impact on 

the sensitivity. If the intermission is shorter than the toxicokinetics of a substance, the impact 

on the sensitivity is determined by toxicokinetics as well as toxicodynamics. The second case 

can be assumed for this work as the pulses were subsequently followed by a second pulse.  

If looking at mesocosms, repeated pulses may lead to the selection of the more hardy 

individuals and may change the species composition (Van Straalen et al., 1992). On the other 

hand, Kersting and Wijngaarden (1999) observed a decrease of sensitivity of the tested 

mesocosm exposed to the PSII inhibitor Linuron, which was rather caused by adaption of the 

organisms as the species composition remained unchanged (Van Geest et al., 1999). However 

the authors conclude that with other exposure regimes, the composition of the mesocosm may 

have changed. Hence if considering ecosystems, the impact of pulsed or fluctuating exposure 

does additionally depend on the composition of the ecosystem apart from concentration, pulse 

duration and interval. This was however beyond the scope of this work. 

Discussion of possible appropriate approaches to assess the toxicity of substances 
that occur in pulses 
Haber’s law or the derivation as a power term has been used to assess the toxicity of a 

substance that occurs in pulses. The assessment is based on a time-weighted average 

concentration. However this is only applicable for pulsed exposure - the concentration 

remains constant and the exposure is intermittent. This was however not the case in this work. 

The concentration was not constant but changed over time. As Ashauer et al. (2006a) 

concluded in a review on various approaches which consider toxicity over time this approach 

does have some limitations as the relationship between effect and dose factor is not defined 

and linearity is assumed. Toxicokinetics and toxicodynamics both play an important role 

concerning pulsed or fluctuating exposure. Especially toxicodynamics becomes very 

important as the recovery potential determines whether a pre-exposure makes the organism 

more sensitive to the subsequent second exposure. As discussed for single substance toxicity 
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over time, there are several approaches which consider toxicity over time and make 

assumptions concerning toxicokinetics and toxicodynamics.  

According to the CBR approach which is the basis for DEBtox toxicity it only depends on 

concentration i.e. toxicokinetics and the impact is instantaneously completely reversible. If 

regarding death as the endpoint, this means according to the model that a dead individual will 

come back to life, which is of course not true. In contrast the CTO approach assumes that the 

effect is completely irreversible. Both approaches make assumptions concerning the recovery 

rate either being 0 or �. In the case of pulsed exposure the CBR approach would only take 

into account the elimination rate regardless of the time to recover from the caused damage. If 

the next pulse occurs after a duration which is longer than the elimination rate the pre-

exposure history would be neglected. In the case of the CTO approach any pre-exposure 

history would be taken into account regardless whether there was an intermission and 

regardless of the duration of the intermission. The DAM approach can provide an estimation 

of recovery which lies in between no recovery at all, and immediate recovery. The damage is 

proportional to the internal concentration and the repair rate is proportional to the damage. 

Death occurs if damage reaches a certain threshold. However in this model it is not possible to 

establish a negative hazard rate as it is the case for other endpoints. This may seem 

counterintuitive as repair and recovery is included in the model.  

Coming to the conclusion that none of the existing models are appropriate for pulsed or 

fluctuating exposure, Ashauer et al. (2006a) have suggested a modification of the DAM 

model which also allows a negative hazard rate. Ashauer et al. conducted experiments with 

Gammerus pulex which were exposed to pulses of pentachlorphenol, carabaryl and 

chlorpyrifos (Ashauer et al., 2006b; Ashauer et al., 2007c) and determined the uptake and 

elimination rates of these substances (Ashauer et al., 2006b). They developed a new model 

called Threshold Damage Model (TDM) which takes into account toxicokinetics as well as 

toxicodynamics. The other models discussed (CBR, CTO and DAM) are special forms of this 

model (Ashauer and Brown, 2008). However apart from recovery experiments in order to use 

this model it is necessary to know uptake and elimination-rates. These may be determined by 

using QSAR and the log KOW values. However so far a QSAR for Lemna minor has not been 

developed and measuring uptake and eliminations rates of the investigated herbicides was 

beyond the scope of this work 
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4.4 Mixtures under simple and complex exposure conditions- how does 
mixture toxicity change over time and is it predictable? 

4.4.1 Mixtures with a constant composition-  

General discussion 
The results of his work show that both concepts CA and IA give an overall good prediction of 

the mixture toxicity for all four mixtures investigated though the mixtures with the substances 

Alachlor and copper and Alachlor and Diuron were underestimated in some parts of the 

concentration response relationship. The mixture toxicity of the copper-Diuron mixture was 

slightly underestimated for the middle effect area but overall the predictions fitted well with 

the observed toxicity. The predicted mixture toxicity with all three substances was in 

accordance with the experimental findings. On the basis of these findings, it can be concluded 

that the concepts prove to be a good predictive tool for simultaneous mixtures.  

Due to their MoA the investigated substances are independently acting mixture components. 

Thus one may conclude that IA should make better predictions of the mixture toxicity than 

CA. Indeed IA made a better assessment of the mixture toxicity which is also confirmed by 

other works (Faust et al., 2003; Backhaus et al., 2000; Hermens and Leeuwangh, 1982). 

However other findings generally showed that CA overestimated mixture toxicity and hence 

this concept has been suggested as a general solution to assess mixture toxicity on the basis of 

the precautionary principle (Faust et al., 2003; Faust et al., 2000). In this work IA generally 

estimated smaller effect-concentrations than CA and hence on the basis of these findings IA 

should be used as a general solution for the assessment of mixture toxicity. However, the 

mixtures only consisted of two or three components and the predictions of the two concepts 

were very similar. Additionally, in the work of Junghans (2006) it was shown that the 

possible deviation between the predictions made by the concepts depends on the number of 

mixture components. For a binary mixture the possible deviation is very small. Hence on the 

basis of the results of this work it cannot be concluded that IA would be a better overall 

approach to predict mixture toxicity. 

Discussion of the observed and predicted toxicity of the Alachlor, Copper and 
Diuron mixtures 
The comparison of the observed and predicted toxicity of the copper and Alachlor mixture 

clearly showed an underprediction of the mixture toxicity. Hence, the observations made are 

not in line with the prediction of the mixture toxicity which indicates synergistic effects 

according to Placket and Hewlett (1948). The interaction between Alachlor and copper may 
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be the influence on the uptake of one of the components or the change of the physiological 

action. Though the MeoA of Alachlor is not fully understood it has been postulated that 

Alachlor may react with the nucleophilic thiol-group (-SH) of proteins releasing chloride or 

an aryloxy residual. To overcome a metal intoxication or to control an excess metal 

concentration, metals are immobilized by means of chelatation to cystein-rich phytochelatines 

(Tsuji et al., 2002; Kwan and Smith, 1990a; Grill et al., 1987). These cystein rich 

polypeptides supply many thiol groups for binding metals but may also interact with Alachlor. 

Interestingly the interaction between Alachlor and copper was the opposite if Lemna minor

were exposed sequentially to these two substances. Antagonistic effects were observed if 

Alachlor was the first substance. Alachlor may trigger a physiological response which makes 

the plant less vulnerable to an excess copper concentration. On the other hand copper does not 

seem to trigger a physiological response which makes the plants less vulnerable to Alachlor. 

Apart from a physiological response within the plant, an influence on the uptake can be the 

cause. The different exposure patterns lead to the possibility that the substances can interact 

and can thus change the uptake if occurring simultaneously or not if occurring sequentially. 

This may be the explanation why either synergistic or antagonistic effects are observed for 

different exposure scenarios of the combination of Alachlor and copper. 

In the case of the combination of Alachlor and Diuron it is unlikely that the under-prediction 

of the mixture toxicity is a synergistic effect. The assessment of the mixture effect fitted well 

with the observed response for the lowest dose and the higher mixture concentrations but 

underestimated the toxicity for the middle concentration area. Hence there was not an overall 

consistent under-prediction for certain concentrations as was the case for the combination of 

Alachlor and copper. Additionally according to the MoAs of these substances, an interaction 

as is possible in the case of Alachlor and copper is unlikely. 

The mixture of copper and Diuron was well predicted. Though the observations had shown 

that there is an interaction between Alachlor and copper, this did not come into play if all 

three substances were combined. This may be due to the increased number of components. 

Interaction between substances can be ruled out if the number of substances in a mixture is 

increased (Warne and Hawker 1995). 

Mixture toxicity over time 
The assessment of the mixture toxicity is based on the single substance concentration 

response relationship. The assessment of the mixture toxicity was predicted for day three and 

day six for which concentration response curve were available. As the curves are fitted to the 
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data the toxicity-time relationship is inherent in the fit of the data, the concentration response 

curve. As the prediction of mixture is based on single substance toxicity the assessment of 

mixture toxicity faces the same shortcomings as single substance toxicity assessment: toxicity 

studies generally only referre to certain time points and neglect the time course of toxicity. 

Equally to the case of single substance exposure, the toxicity-time relationship can be 

described by the Haber equation and its derivations. As the results show the mixture specific 

exponent � differs from the single substance exponents but is determined by its mixture 

components and their single substance toxicity-time relationship. It is however on the basis of 

the results of this work not clear how the substance specific exponents combine in a mixture. 

To elucidate this issue further work is necessary. Alternatively, it may be a more 

straightforward approach to assess mixture toxicity over time by using the single substance 

specific exponents and combining the effect level specific exponents to an overall time-

concentration-response relationship. A similar approach has been suggested by Altenburger 

and Greco (2009). They suggested predicting mixture toxicity over time with a global single 

substance concentration-time-effect model. They use a time-dependent estimate of the EC50 to 

describe the toxicity-time-relationship. 

Baas and co-workers approach the problem of mixture toxicity over time using the concepts 

CA and IA and combining them with the mechanistic model DEBtox. Initially this approach 

was developed for binary metal mixtures (Baas et al.2007) and then extended for mixtures 

that can have any number of components (Baas et al. 2009a). The following assumptions are 

made: In accordance with the DEBtox model only toxicokinetic is considered to influence 

toxicity over time. Simple one compartment first order kinetic is assumed. Substances, that 

have the same MoA, share the same NEC in accordance with the CA-concept whereas 

substances with a different MoA each have their individual NEC. That means a mixture of 

substances with the same MoA would cause an effect if the concentration of each component 

equals the NEC whereas no effect would occur if the substances have different MoAs. 

Referring to the findings of this work toxicity over time cannot be solely assigned to 

toxicokinetic. Toxicodynamic is equally important. Additionally, it is questionable whether an 

organism can equally well cancel out the effect of a substance if exposed to a mixture as if 

exposed to the substance singly even though all substances may have different MoAs. That 

means: Is the NEC of a substance really unaffected in the presence of other substances with 

other MoAs especially if it based on integral endpoints such as death or reproduction? This 

question however so far remains unanswered. The effects of mixtures with substances, which 

are according to their MoA independently acting, in concentration which are assumed to have 
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no effect have yet not been studied. The comparison of experimental data of the mixtures and 

predicted mixture toxicity seems to prove the accuracy of the model (Baas et al. 2007; Baas et 

al 2009b; Baas et al. 2010). However, in the case of the binary metal mixtures (Baas et al. 

2007) it is unclear whether this is indeed due to the model or due to the extensive data amount 

used. In contrast the results of this work hint that metal-toxicity is neither due to simple first 

order kinetics nor to toxicokinetic alone. Only very few data were used predicting the mixture 

toxicity of PAHs (Baas et al. 2010). Toxicokinetic parameters were assessed using logKOW

values. As PAHs act as narcotics their toxicity is indeed mainly governed by their uptake i.e. 

toxicokinetic. Hence, the model and its mechanistic implications are sufficient in the case of 

narcotic PAHs. Baas et al. (2009b) also made predictions of daphnid survival after in situ one 

week exposure to complex mixtures of polluted surface waters. The survival of daphnids was 

extrapolated from toxicity data established for shorter time periods than one week. Indeed, the 

concepts CA and IA are not suitable to extrapolate to other points in time as the authors 

criticise. However, it is not shown to which extent the concepts would have failed to predict 

the survival of the daphnids.  

4.4.2  Mixtures with a fluctuating composition 

Discussion of the investigated cases 
Single pulse recovery experiments show a correlation between the MoA and MeoA and the 

recovery potential. However, on the basis of the recovery potential conclusions of a pre-

exposure on the sensitivity of the plant to a second substance could not always be drawn. 

Plants pre-exposed to Diuron or copper became more sensitive to Alachlor though Lemna 

minor showed a fast recovery after a single pulse of Diuron and copper. Lemna showed 

growth rates close to control level after 3 days recovery. On the other hand Alachlor pre-

exposed plants showed a decrease in sensitivity towards copper although the plants had 

shown a slow recovery. The decrease in sensitivity can be due to a physiological response of 

the plants as a consequence of the Alachlor exposure, which makes the plant less vulnerable 

to copper. It has been postulated that Alachlor may react with the nucleophilic thiol-group (-

SH) of proteins releasing chloride or an aryloxy residual (Fuerst, 1987; Chang et al.1985). 

This reaction may trigger a physiological response such as the formation of new proteins with 

cystein groups. However it is unclear why this phenomenon was not observed when copper 

was the first substance the plants were exposed to. To control an excess metal concentration, 

metals are immobilized by means of chelatation to cystein-rich phytochelatines (Grill et al., 

1987; Tsuji et al., 2002; Kwan and Smith, 1990a). These cystein-rich polypeptides supply 

many thiol groups for binding metals but may also interact with Alachlor. However the 
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physiological response after an Alachlor pulse seems more effective for scavenging excess 

copper than the physiological response if exposed to copper, the formation of cystein-rich 

proteins. As already discussed the interaction between Alachlor and copper was the opposite 

if Lemna minor were exposed simultaneously to these two substances. Synergistic instead of 

antagonistic effects were observed. Synergistic or antagonistic effects are due to toxicokinetic 

or toxicodynamic interaction. Toxicokinetic interactions involve the alteration of metabolism 

or influence on the uptake whereas toxicodynamic interactions involve a physiological 

alteration making the organism more or less sensitive. An influence on the uptake can be 

excluded if the exposure is sequential. This interaction can however occur if the combination 

of the substances is simultaneous. This may be the reason for the different effects observed 

for different exposure scenarios as in the case of Alachlor and copper. The antagonistic effects 

observed if an exposure to Alachlor is followed by an exposure to copper do however indicate 

that there is also a toxicodynamic i.e. physiological interaction within the plant. As the case of 

the combination of Alachlor and copper shows, synergistic as well as antagonistic effects can 

be observed for the same combination of substances depending on the exposure, which can 

either be simultaneous or sequential. If an interaction is due to an influence on uptake this 

effect can only occur for simultaneous mixtures.  

Apart from the sequence, which is important, the duration of the intermission between pulses 

is important. A sufficient decline of the damage which is determined by the recovery rate will 

not contribute to the effect of a subsequent pulse. The recovery rate is determined by 

toxicokinetics and toxicodynamics. Without an intermission however, as was the case in this 

work, the pre-exposure does have an impact due to no full recovery. As already discussed, 

conclusions on the sensitivity to subsequent exposure could not necessarily be drawn on the 

basis of the recovery experiments. Presumably the recovery potential from the first substance 

may be influenced by the second substance, decreasing the recovery rate and increasing the 

sensitivity. Considering this aspect, single substance recovery experiments may only in part 

be a good basis for assessing the mixture effect of sequential mixtures especially if the 

duration between the pulses is shorter than the recovery rate. 

Comparison with observation of other studies 
As shown, the sequence of substances is crucial for the overall effect. Different results were 

observed for the same combination of substances but with different sequences. This is in 

agreement with other works. Macinnis-Ng et al. (2004) found that the sequence copper 

followed by the PSII inhibitor Irgarol was more toxic to sea grass than the sequence Irgarol 
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followed by copper. Ashauer et al. also concluded from their results that the sequence of the 

exposure matters (Ashauer et al., 2007a). They investigated the effects of Carbaryl and 

Chlorpyrifos on Gammarus Pulex. These two substances are insecticides, which inhibit the 

acetylcholine-esterase either by covalently and irreversibly binding (Chlorpyrifos) or 

reversibly binding (Carbaryl) to the enzyme. In accordance with the results of this work the 

recovery potential is an important aspect. However, though single pulse recovery experiments 

showed a correlation between MoA and recovery potential conclusions of a pre-exposure on 

the sensitivity of the plant to a second substance could not always be drawn on the basis of the 

recovery potential in this work.  

Based on their findings Ashauer et al. (2007b) developed the Threshold Damage Model 

(TDM), which takes into account toxicokinetics as well as toxicodynamics. On the basis of 

the measured uptake and elimination rates of each substance singly, they made a prediction of 

the overall effect of a sequential combination of Carbaryl and Chlorpyrifos and vice versa by 

calculating the internal concentration and the caused damage. The experiments were 

conducted with a recovery period in-between the pulses, which is in contrast to this work 

where one pulse was subsequently followed by second pulse. The recovery period between 

the pulses was either shorter than the established recovery time from a single pulse 

(Chlorpyrifos) or longer than the recovery time from a single pulse. Ashauer et al. conclude 

that the TDM is applicable to other exposure regimes. However, considering that the results 

of this work indicate that the recovery potential from the first substance may be influenced by 

the second substance decreasing the recovery rate, overlapping pulses may lead to a different 

result than expected by the model. The two concepts CA and IA were not implemented into 

this model and how the TDM relates to the concepts still needs to be investigated (personal 

communication). The model showed good performance compared to the experimental data. 

So far the TDM is only applicable for tests which consider death as an endpoint. A 

modification of the TDM for sub-lethal effects is on the schedule (personal communication) 

but so far not available. Hence, the TDM is not applicable to the data of this work. 

Discussion of the applicability of the concepts CA and IA to predict combination 
effects of sequential mixtures 
The concepts are applicable within limits to predict combination effects. If considering that 

substances do not necessarily occur simultaneously in the environment and that there is 

recovery to some extent, the two concepts may be used as a worst-case assessment of 

combination effects of a fluctuating exposure scenario as the concepts do not take recovery 

into account. Conceptually CA may be applied if there is not a complete depuration and an 
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internal mixture occurs. The concept of IA can be regarded as a sequence of different 

toxicants one after another. Compared to CA, IA is independent of the depuration and 

considers combination effects, which may occur depending on the MoA even after 

depuration, which may indeed be the case for sequential exposures. Considering these issues, 

IA may be regarded as a better approach for predicting the effects of a combination. However, 

only binary combinations have been investigated in this work. Hence, the differences of the 

assessment of the combination effect were too small to come to a conclusion concerning their 

predictive power. Both approaches did not over-assess the combination effects of the binary 

combinations as assumed and therefore do not serve as a worst-case prediction tool of the 

effects of a combination of sequential mixtures. The concepts did however give good 

estimation of the combination effects as the results show.  

Discussion of possible alternative approaches  
Apart from this study other studies have also shown: sequence matters (Ashauer et al., 2007a; 

Macinnis and Ralph, 2004) and the duration of the intermission between pulses is also 

important. These aspects are determined by the individual toxicokinetics and toxicodynamics 

of each substance. However, toxicokinetics and toxicodynamics as discussed above are not 

considered in the concepts CA and IA. A first step combining toxicokinetics and 

toxicodynamics with the two concepts IA and CA has been conducted by Lee and Landrum 

(2006). They developed the Multi-Component Damage Assessment Model (MDAM). The 

aim of the work of Lee and Landrum is to find reasons for synergism and antagonism i.e. 

toxicodynamic and toxicokinetic interaction and therefore is somewhat different from the aim 

of this work. Nevertheless, this approach might be applicable to more complex combinations 

of different substances. However apart from the requirement of additional laboratory data to 

describe toxicokinetics and toxicodynamics this approach as well as the TDM has been 

developed for a test system with the endpoint death and therefore is not applicable to the data 

of this work. 
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4.5 Implication for current risk assessment procedures 
So far risk assessment has regarded toxicity over time only insufficiently. Based on the 

findings of this work Haber’s law or derivations from may serve as a good tool in 

environmental hazard assessment to describe and extrapolate toxicity over time. The power 

term � may be used as a descriptor for the toxicity-time relationship. As the results of this 

work show, the power term � gives a good insight into the toxicity-time relationship of the 

investigated substances and the weight of time. The Haber equation may serve as default 

description of the development of toxicity over time. Nevertheless, a modification of Haber’s 

law (cn x t =k) is only considered for time scaling in the human health hazard assessment as 

suggested in the guidance on the information requirements and chemical safety assessment for 

the implementation of REACH (European Chemicals Agency, 2008) but not in the equivalent 

document for environmental hazard assessment (European Chemicals Agency, 2008). 

Though the discussion about the use of the NOEC is long lasting even new guidelines such as 

the guidance documents on information requirements under REACH (Guidance on 

information requirements: Hazard Assessment), which would have given the opportunity for 

alternatives nevertheless consider the NOEC. The generation and application of NOECs 

should be reconsidered for various reasons. The sloppier a toxicity test has been conducted the 

larger a NOEC value will become. A NOEC is unlike a benchmark value not a fixed value 

and can be far beyond a concentration not causing an effect and their use as input data for 

mixture toxicity assessment is questionable (Kortenkamp et al. 2009). Additionally a NOEC 

is always linked to the test duration from the test it has been derived from. Conceptually the 

NEC is a good alternative: a time independent threshold and a model parameter with a 

standard deviation. However the NEC is built on mechanistic assumptions that are 

contradictory to the findings of this work. Toxicokinetic alone is not sufficient. 

Toxicodynamic also needs to be taken into account. Therefore, if a time-independent 

threshold is to be introduced its extrapolation should, unlike the NEC, be based on 

toxikokinetic and toxicodynamic. Additionally, regardless how a threshold concentration is 

derived, it is questionable whether the label ‘no effect’ can be used with any certainty due to 

shortcomings of standardized toxicity tests such as single species test but 

multispecies/ecosystem reality, overseen effects and the occurrence of mixtures. Instead ECX 

values should be used also in regard to the data input requirements for mixture assessment. It 

should be proved that a toxic effect does not exceed a certain limit which has been set 

beforehand thus reverting the burden of proof (Hoekstra and Van Ewijk, 1993). This 

maximum tolerable concentration could be based on extrapolation to prolonged exposure and 
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thus would be time-independent. Of course, the question arises where the limit should be set 

and what effect concentration is small enough to be tolerated.  

This work emphasise the necessity to include recovery studies in an ecological hazard 

assessment. Recovery experiments are only taken into account in the context of placing of 

plant protection products on the market so far. Recovery experiments provide additional 

information about the toxicity properties of a substance which might be essential for a more 

realistic environmental risk assessment and which can be gained from suitable adaptations of 

standard biotests. This might not add much information in the case of a fast, acute MeoA and 

for which the plants have a demonstrated high capacity for recovery, such as the PSII-

inhibiting herbicides (Drost et al., 2003; Gustavson et al., 2003). But for substances such as 

for instance zinc only a more flexible exposure regime, also in standard bioassays, will allow 

to discover and analyse the implications of a highly dynamic toxicity pattern for their 

potential environmental hazard.  

Mixtures matter and science provides a tool to reliably assess mixtures toxicities. However, 

regulation mainly focuses on single substances and mixtures are only considered in some 

parts of the community legislation such as the EU Regulation on classification, labelling and 

packaging of substances and mixtures (Council of the European Communities 2008). Lately 

however mixture mixtures have gained political interest. In December 2009 the council of 

environment ministers of the EU have concluded that mixtures should be taken into account 

and that further action is needed in the field of chemicals policy. The Council has invited the 

Commission to scrutinize this issue concerning the necessity of modifications in legislation 

and guidelines in order to appropriately address the risk of mixtures. In this context a report 

“State of the Art Report on Mixture Toxicity” which examined 21 directives and regulations 

has been prepared (Kortenkamp et al. 2009).

How to modify legislation and guidelines in order to appropriately address the risk of 

mixtures is not a simple quest. In order to implement the risk assessment of mixtures several 

directives and regulations need to be considered. Intentional mixtures with a certain purpose 

such as preparations of chemicals and products containing chemicals can be taken into 

account by the product-oriented legislations. Complex exposure situations which consider 

mixtures with substances related to different legislations are however beyond the scope of a 

product-oriented legislation. This may make it necessary to establish an overall regulatory 

framework. Media related regulations such as the WFD are better suited to take complex 

exposure scenarios of mixtures in the environment into account (Kortenkamp et al, 2009).  
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In order to assess mixture toxicity it is necessary to know its composition. Chemicals with a 

wide dispersive use or a high potential to be released into the environment due to its uses is 

more likely to be found in a mixture than chemicals restricted to a few uses, and a low 

potential to be released into the environment. These properties may give some orientation 

which chemicals are likely to be found in a mixture. REACH will eventually provide more 

information on how chemicals are used. REACH obligates manufacturers and importers as 

well as downstream users to communicate the risks of chemicals and the intended uses along 

the supply chain. Samples from the environment can give additional information on what kind 

of mixtures are to be expected and whether there are ‘typical environmental mixtures’. It is 

however questionable whether all occurring mixtures can be identified. Therefore, as a 

pragmatic approach a mixture assessment factor has been discussed. The question is how 

large does this factor need to be to accurately take the occurrence of mixtures into account? 

Are the already existing assessment factors sufficient? These questions need to be 

investigated.  

The prediction of mixtures toxicity depends on single substance toxicity data. This, of course, 

requires their availability. In the past chemicals have been brought onto the market and were 

used barely having any information on their hazards and risks. To overcome this information 

gap REACH was introduced 2007. With the claim “no data no market” REACH aims at 

closing this information gap. REACH will gradually lead to more data on toxicity of 

substances. The database IUCLID (International Uniform ChemicaL Information Database) 

which captures, stores and maintains data on hazard properties of chemicals supplies the data 

necessary to conduct mixture toxicity assessment.  

Mixtures under complex exposure situations are yet another and maybe even greater but 

worthwhile challenge because they require additional information on pulse length, intensity, 

pulse frequency and the sequence of the different substances. The results of studies which 

take complex time patterns and exposure regimes into account may help to refine the risk 

assessment in the future for instance of crop protection and to indentify pulse sequences that 

may be less harmful to the environment than other use patterns. 
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4.6 Conclusion  
Not only the dose/concentration of substance determines its toxicity but time. This work 

shows that toxicity over time under simple and complex exposure patterns is determined by 

several parameters. Toxicity over time depends on how a substance binds to the site of action 

i.e. MeoA and what physiological impact a substance has i.e. MoA and whether the damage 

cumulates. As the uptake and elimination of herbicides is fast toxicokinetic may only play a 

minor role for the toxicity-time-relationship. In the case of metals the assumption of a single 

compartment first order toxicokinetic is not sufficient. The changing toxicity over time may 

rather be attributed to a dynamic distribution of free available and bioactive metals within the 

plant than a changing internal concentration. Additionally, the toxicity-time-relationship is 

concentration-dependent. At low effect levels, a sufficiently high rate of detoxification can 

negate the effects from extended exposure. As metals are actively transported into plants, the 

transporter and its concentration dependent capacity additionally play a role. Hence, it is 

important to consider toxicity and time but also to regard different effect levels over time. As 

an empiric approach Haber’s law or derivations from it give a good description of the 

toxicity-time relationship. In order to get a whole picture of the time-dependency of toxicity 

of a substance, the power term � for different effect level can offer a good basis.

In accordance with the findings single substance toxicity over time under continuous exposure 

conditions, the concentration and effect level as well as the quality of damage are important 

factors that estimate the recovery potential after single substance pulses. Substances with a 

slow reversible MoA and MeoA and a time-dependent toxicity show a slow concentration-

dependent recovery potential, whereas substances with a quickly reversible MoA and MeoA 

show a concentration-independent fast recovery potential. Additionally, recovery is due to a 

decrease of the internal concentration due to efflux or dilution via growth and increase of 

biomass as shown for the metals.  

It is important to consider toxicokinetics and toxicodynamics when regarding toxicity over 

time. Mechanistic models which only consider toxicokinetics and make assumptions 

concerning the toxicodynamics are insufficient. Models which take toxicokinetic as well as 

toxicodynamic into account are TDM and the MDAM. Both approaches however also require 

additional laboratory data on uptake which are normally not considered in standard tests. 

The exposure to single substance with fluctuating concentrations can lead to cumulating 

damage, adaption or plants show an increase of sensitivity only over a short time due to fast 

recovery. Pulse length, intensity, timing and pulse frequency are important parameters if 
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regarding fluctuating exposures. If the intermission between two pulses is in accordance with 

the toxicokinetics of the first substance the increase of sensitivity to the second pulse will 

depend on the toxicodynamics i.e. the recovery potential. Hence, the relation between the 

intermission and toxicokinetics and toxicodynamics are important to consider. Additionally, if 

combining different substances, the sequence of substances is crucial for the overall effect. 

Toxicokinetics and toxicodynamics and the sequence are not considered by the concepts CA 

and IA. Nevertheless, based on the findings of this work the concepts CA and IA are 

applicable within limits to predict combination effects under complex exposure situations.  

4.6.1 Perspective 
Haber’s law or derivations from it give a good description of the toxicity-time relationship. 

The power term � gives an insight into the weight of time. Substances with a similar MoA and 

MeoA and the same reversibility may have a similar power term. Due to differing repair and 

efflux systems of organisms and differing sensitivity the power term � may vary for 

organisms. These issues should be further investigated.  

Also an important issue is the timing of the pulses. If regarding time from the organism 

perspective life stages of organisms have a different susceptibility to the toxicant which 

governs the impact of the substance and thus the recovery (Hosmer et al., 1998). As different 

life stages are not distinguishable for Lemna minor this issue could not be investigated in this 

work but may be investigated with other test organisms such as daphnia. 

Complex exposure situations are determined by pulse length, intensity, timing and pulse 

frequency and sequence. This work has investigated two substances occurring in one pulse 

each but should also be investigated for multiple pulses. A promising study on Daphnia 

magna has been conducted (Hassold, 2010). It is also important not only to investigate 

subsequent pulses but pulses with varying intermissions in order to elucidate the relation 

between duration of intermission and toxicokinetics and toxicodynamics. The work of 

Nathalie Valloton (Vallotton, 2008) has investigated this issue on algae using pulse sequences 

with varying intermissions as they are also found in the aquatic environment due to the 

seasonal use of crop protection. The possible variations are numerous and possibly lead to 

numerous different results. In order to take complex exposure situations into account in risk 

assessment and to deduce possible general rules this issue should rather be investigated 

systematically than investigating individual cases.  
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The tests were conducted with a single species test system but how does an ecosystem react 

on complex exposure? If regarding ecosystems the impact of pulsed or fluctuating exposure 

additionally depends on the composition of the ecosystem as well as the pattern of exposure. 

An ecosystem may recover when considering its functioning, however it may have moved 

from one stable state to another as van Straalen et al. discussed (Van Straalen et al., 1992) and 

hence may lead to a different response than single organism tests have shown.  

It is important to consider toxicokinetic as well as toxicodynamic. Two models have been 

developed which either take the concepts CA and IA as well as toxicokinetics and 

toxicodynamics into account (MDAM) or assess combination effects on the basis of single 

substance studies on toxicokinetics and toxicodynamics (TDM). So far these models only deal 

with test systems which use the irrevocable death as the endpoint. Growth-inhibition however 

has a different recovery pattern which is not taken into account in these approaches. Hence 

future research should focus on the extension of these models to other endpoints than death.  
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Figure 35A: Dose response curve of Aclonifen at day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond area. The various-shaped 
symbols indicate the different independent tests. 
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Figure 36A: Dose response curve of Alachlor at day three and day six. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond area. The various-shaped 
symbols indicate the different independent tests. 

Alachlor day 6

concentration [µmol/L]
10-4 10-3 10-2 10-1 100 101

gr
ow

th
in

hi
bi

tio
n 

[%
]

-40,0

-20,0

0,0

20,0

40,0

60,0

80,0

100,0

120,0

control

 concentration [µmol/L]
10-4 10-3 10-2 10-1 100 101

gr
ow

th
in

hi
bi

tio
n 

[%
]

-40,0

-20,0

0,0

20,0

40,0

60,0

80,0

100,0

120,0 Alachlor
day 3

control

gr
ow

th
 in

hi
bi

tio
n 

[%
] 

gr
ow

th
 in

hi
bi

tio
n 

[%
] 



Annexe 

138 

concentration [µmol/L]
10-4 10-3 10-2 10-1 100 101

 g
ro

w
th

in
hi

bi
tio

n 
[%

]

-40,0

-20,0

0,0

20,0

40,0

60,0

80,0

100,0

120,0
Alachlor
day 7

controls

Figure 37A: Dose response curve of Alachlor at day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond area. The various-shaped 
symbols indicate the different independent tests. 
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Figure 38A: Dose response curve of Ametryn at day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond-number. The various-
shaped symbols indicate the different independent tests. 
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Figure 39A: Dose response curve of Diuron at day three and day six. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond area. The various-shaped 
symbols indicate the different independent tests. 
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Diuron day 7
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Figure 40A: Dose response curve of Diuron at day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond area. The various-shaped 
symbols indicate the different independent tests. 
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Figure 41A: Dose response curve of Paraquat day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond area. The various-shaped 
symbols indicate the different independent tests. 
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Figure 42A: Dose response curve of Prometon at day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond-number. The various-
shaped symbols indicate the different independent tests. 
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Metals 

Figure 43A: Dose response curve of cadmium at day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond-number. The various-
shaped symbols indicate the different independent tests. 
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Figure 44A: Dose response curve of copper at day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond-number. The various-
shaped symbols indicate the different independent tests. 
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Figure 45A: Dose response curve of copper at day three and day six. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond area. The various-shaped 
symbols indicate the different independent tests. 
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Figure 46A: Dose response curve of nickel at day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond-number. The various-
shaped symbols indicate the different independent tests. 
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Figure 47A: Dose response curve of zinc at day three and day seven. 
Filled symbols denote treated samples, open symbols the untreated controls. Solid line gives the fit to the 
data, inner dashed lines the approximate 95% confidence belt of the mean, outer dotted lines the 95% 
confidence belt of the population. Growth was recorded on the basis of the frond-number. The various-
shaped symbols indicate the different independent tests. 
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Concentration response curves over time 

Herbicides 

Figure 48A: Development of the concentration response relationship of Aclonifen and  
Figure 49A: Development of the concentration response relationship of Alachlor over time. 
To illustrate the change of the dose-response relationship over time, all dose-response curves of from day 
three to day seven are plotted in one graph for each substance respectively. 
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Figure 50A: Development of the concentration response relationship of Ametryn over time. 
Figure 51A: Development of the concentration response relationship of Diuron over time. 
To illustrate the change of the dose-response relationship over time, all dose-response curves of from day 
three to day seven are plotted in one graph for each substance respectively. 
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Figure 52A: Development of the concentration response relationship of Paraquat over time. 
Figure 53A: Development of the concentration response relationship of Prometon over time. 
To illustrate the change of the dose-response relationship over time, all dose-response curves of from day 
three to day seven are plotted in one graph for each substance respectively. 
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Figure 54A: Development of the concentration response relationship of cadmium over time. 
Figure 55A: Development of the concentration response relationship of copper over time. 
To illustrate the change of the dose-response relationship over time, all dose-response curves of from day 
three to day seven are plotted in one graph for each substance respectively. 
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Figure 56A: Development of the concentration response relationship of nickel over time. 
Figure 57A: Development of the concentration response relationship of zinc over time. 
To illustrate the change of the dose-response relationship over time, all dose-response curves of from day 
three to day seven are plotted in one graph for each substance respectively. 
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Development of the toxicity over time, fitted with the equations of Haber, 
Bliss and Ostwald/Dernoscheck 
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Figure 58A: Toxicity of Aclonifen over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck.. 
. The black circles represent the EC25 values, white circles the EC50 values and the black triangles the EC75
values derived from the concentration-response curves of single substance tests over time from three up to 
seven days of exposure. The EC values were fitted with either the Haber equation (c�t=k) shown here as a 
dashed line, the Bliss equation (c�t� =k) shown as a dotted line or the Ostwald/Dernoscheck equation (c�
�t=k) shown as a solid line. Generally the curve-progressions of the Bliss and the Ostwald/Dernoscheck fits 
are identical and thus the curves overlapp. 
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Alachlor
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Figure 59A: Toxicity of Diuron over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck.. 
 Figure 60A: Toxicity of Alachlor over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck.. 
 The black circles represent the EC25 values, white circles the EC50 values and the black triangles the EC75
values derived from the concentration-response curves of single substance tests over time from three up to 
seven days of exposure. The EC values were fitted with either the Haber equation (c�t=k) shown here as a 
dashed line, the Bliss equation (c�t� =k) shown as a dotted line or the Ostwald/Dernoscheck equation (c�
�t=k) shown as a solid line. Generally the curve-progressions of the Bliss and the Ostwald/Dernoscheck fits 
are identical and thus the curves overlapp. 
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Figure 61A: Toxicity of Paraquat over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck. 
Figure 62A: Toxicity of Prometon over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck. 
The black circles represent the EC25 values, white circles the EC50 values and the black triangles the EC75
values derived from the concentration-response curves of single substance tests over time from three up to 
seven days of exposure. The EC values were fitted with either the Haber equation (c�t=k) shown here as a 
dashed line, the Bliss equation (c�t� =k) shown as a dotted line or the Ostwald/Dernoscheck equation (c�
�t=k) shown as a solid line. Generally the curve-progressions of the Bliss and the Ostwald/Dernoscheck fits 
are identical and thus the curves overlapp. 
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Metals 
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Figure 63A: Toxicity of copper over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck. 
The black circles represent the EC25 values, white circles the EC50 values and the black triangles the EC75
values derived from the concentration-response curves of single substance tests over time from three up to 
seven days of exposure. The EC values were fitted with either the Haber equation (c�t=k) shown here as a 
dashed line, the Bliss equation (c�t� =k) shown as a dotted line or the Ostwald/Dernoscheck equation (c�
�t=k) shown as a solid line. Generally the curve-progressions of the Bliss and the Ostwald/Dernoscheck fits 
are identical and thus the curves overlapp. 



Annexe 

158 

Ni

concentration [µmol/l]
0 20 40 60 80 100 120 140

tim
e 

fo
r x

 %
 g

ro
w

th
 in

hi
bi

tio
n[

d]

0

2

4

6

8

10

12

14

Zn

concentration [µmol/l]
0 1000 2000 3000 4000 5000 6000

tim
e 

fo
r x

 %
 g

ro
w

th
 in

hi
bi

tio
n[

d]

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14 Zn

Figure 64A: Toxicity of nickel over time fitted with the equations of Haber, Bliss and 
Ostwald/Dernoscheck.. 
Figure 65A: Toxicity of zinc over time fitted with the equations of Haber, Bliss and Ostwald/Dernoscheck.. 
 The black circles represent the EC25 values, white circles the EC50 values and the black triangles the EC75
values derived from the concentration-response curves of single substance tests over time from three up to 
seven days of exposure. The EC values were fitted with either the Haber equation (c�t=k) shown here as a 
dashed line, the Bliss equation (c�t� =k) shown as a dotted line or the Ostwald/Dernoscheck equation (c�
�t=k) shown as a solid line. Generally the curve-progressions of the Bliss and the Ostwald/Dernoscheck fits 
are identical and thus the curves overlapp. 
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