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II Information on the structure of the thesis 

This thesis is divided into three main chapters (1) Introduction, (2) Results and (3) 

Summarizing discussion. 

 

The first chapter introduces the reader into the basic knowledge about iron oxide 

nanoparticles and brain astrocytes and gives a short review on the current scientific 

research status. 

 

The second part presents the results obtained during the laboratory work of this thesis. 

This chapter is divided into six sub-chapters containing publications/manuscripts that 

describe uptake, reactivity and biocompatibility of iron oxide nanoparticles in brain 

astrocyte cultures. The sub-chapters 2.1 to 2.4 contain already published articles which 

are embedded as portable document format in this thesis. The sub-chapters 2.5 and 2.6 

contain two manuscripts that were submitted for publication. These manuscripts were 

included in the thesis in the style as they were submitted for publication. However, the 

running text of the manuscripts was adjusted to the layout of this thesis and the figures 

and tables were positioned together with their legends directly after the respective 

results parts. 

 

The third part of the thesis presents a summarizing discussion of the key-findings of the 

investigations performed. Furthermore, it presences an outlook for future studies on the 

topic. 
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III Summary 

Magnetic iron oxide nanoparticles (IONPs) are used as tools for a wide range of 

biomedical and (neuro)biological applications, for example as contrast agent in 

magnetic resonance imaging, as transporter for drug delivery across biological barriers 

or for cancer treatment by magnetic field-induced hyperthermia. However, the 

knowledge on the effects of such particles on brain cells have only recently been 

addressed. This thesis describes the synthesis and characterization of citrate- and 

dimercaptosuccinate (DMSA)-coated IONPs. In addition, the uptake, reactivity and 

biocompatibility of such particles were investigated for astrocyte-rich primary cultures 

as a model system for brain astrocytes. Citrate- and DMSA-coated IONPs were 

accumulated by viable cultured astrocytes in a time- and concentration-dependent 

process leading to more than 100fold elevated specific cellular iron contents. Electron 

microscopy revealed that IONPs were present in intracellular vesicles as well as 

attached extracellularly to the cell membrane. Lowering the incubation temperature to 

4°C reduced the iron accumulation to about 50% which represented almost exclusively 

membrane associated extracellular IONPs. Presence of an external magnetic field 

increased the amount of cellular iron by 2-4fold, while presence of serum strongly 

reduced IONP-accumulation by up to 90% compared with the respective controls. 

Application of endocytosis inhibitors revealed that clathrin-mediated endocytosis and 

macropinocytosis contributed to IONP-uptake in serum-containing conditions. 

However, additional mechanisms are responsible for IONP-uptake under serum-free 

conditions. Prolonged presence of IONPs in cultured astrocytes for up to 7 d after a 

transient loading period of 4 h neither compromised cell viability nor affected basic 

metabolic pathways. However, a transient formation of reactive oxygen species and a 

delayed upregulation of cellular ferritin indicate that iron ions were liberated from the 

accumulated particles. In summary, this thesis revealed that viable astrocytes efficiently 

take up and safely store IONPs and IONP-derived iron, supporting the view that such 

particles can be used as save tools for diagnostic or therapeutic approaches in the brain. 
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IV Zusammenfassung 

Magnetische Eisenoxid-Nanopartikel (IONPs) werden für ein breites Spektrum an 

biomedizinischen und (neuro)biologischen Anwendungen eingesetzt, wie zum Beispiel 

als Kontrastmittel in der Kernspinresonanztomographie, als Transporter für 

Pharmazeutika über biologische Barrieren oder zur Bekämpfung von Krebs mittels 

Magnetfeld-induzierter Hyperthermie. Kenntnisse über die Effekte solcher Partikel auf 

Gehirnzellen wurden allerdings erst kürzlich erworben. Diese Arbeit beschreibt die 

Synthese und Charakterisierung von Citrat- und Dimercaptosuccinat (DMSA)-

umhüllten IONPs. Außerdem wurden Aufnahme, Reaktivität und Biokompatibilität 

solcher Partikel in Astrozyten-reichen Primärkulturen als Modellsystem für die 

Astrozyten des Gehirns untersucht. Citrat- und DMSA-umhüllte IONPs wurden von 

vitalen Astrozyten in einem zeit- und konzentrationsabhängigen Prozess akkumuliert, 

welcher zu einem mehr als 100fach gesteigerten spezifischen zellulären Eisengehalt 

führte. Elektronenmikroskopie zeigte die Präsenz von IONPs in intrazellulären Vesikeln 

sowie IONPs, die extrazellulär an die Zellmembran gebunden waren. Absenken der 

Inkubationstemperatur auf 4°C verringerte die Eisenakkumulation auf etwa 50%, 

welche fast ausschließlich extrazellulär membrangebundene IONPs darstellen. Präsenz 

eines externen Magnetfeldes führte zu einer 2-4fachen Erhöhung des zellulären 

Eisengehaltes, während die Gegenwart von Serum die IONP-Akkumulation um bis zu 

90% im Vergleich zur jeweiligen Kontrolle verringerte. Der Einsatz von Endozytose-

Inhibitoren zeigte, dass Clathrin-vermittelte Endozytose und Makropinozytose an der 

IONP-Aufnahme unter Serum-haltigen Inkubationsbedingungen beteiligt sind. Darüber 

hinaus sind noch weitere Mechanismen an der IONP-Aufnahme unter Serum-freien 

Bedingungen beteiligt. Eine längere Präsenz von IONPs in Astrozyten für bis zu 7 Tage 

nach einer 4-stündigen Beladung führte weder zu einem Verlust an Zellvitalität noch zu 

Veränderungen in basalen Stoffwechselleistungen. Jedoch wiesen eine transiente 

Bildung reaktiver Sauerstoffspezies sowie eine verzögerte Hochregulation von 

zellulärem Ferritin die Freisetzung von Eisen-Ionen aus den akkumulierten Partikeln 

nach. Zusammenfassend zeigte diese Arbeit, dass vitale Astrozyten IONPs effizient 

aufnehmen und die Partikel und deren Eisen sicher speichern. Diese Befunde stützen die 

Ansicht, dass IONPs einen sicheren Einsatz für diagnostische und therapeutische 

Zwecke im Gehirn erlauben. 
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1. Introduction 

Nanotechnology gained a huge interest in the last decades and is expected to be one of 

the major industries of the 21
st
 century (Mangematin & Walsh 2012). By some 

estimates, it will become a $2.5 trillion market by 2015 (Invernizzi 2011). Nanoparticles 

(NPs) are defined as particles which have a size of 1 to 100 nm in two or three 

dimensions (Auffan et al. 2009). Due to their small size, physical and chemical 

properties of NPs are likely to differ from the respective bulk/macroscopic material 

(Auffan et al. 2009). 

 

NPs can consist of various materials. One important type of NP which became popular 

in the 1980s was the by Sir Harold W. Kroto and colleagues discovered C60-Fullerene, a 

carbon NP made of 60 C-Atoms (Kroto et al. 1985). Another interesting type of carbon-

based nanostructures are the so-called carbon nanotubes (Iijiama 1991), which have 

been considered for applications in neurobiology (Malarkey & Parpura 2010). 

Furthermore, also the industrially produced carbon black contains NPs (Berg et al. 

2010). 

 

Besides carbon, there is a wide range of metal or metal-oxide containing NPs. Such NPs 

usually consist of a core of the respective metal/metal oxide which is surrounded by a 

ligand shell. Due to their size, NPs show different properties compared to the respective 

bulk material or metal in solution. This gives them a wide range of possible applications 

for example as catalysts (Jia & Schuth 2011), antibacterial agents (Rai et al. 2009, 

Dastjerdi & Montazer 2010) or in cosmetic products (Kokura et al. 2010). 

 

 

1.1 Iron oxide nanoparticles 

Iron oxide nanoparticles (IONPs) contain a core of iron oxide which is surrounded by a 

shell of ligands (Lu et al. 2007, Laurent et al. 2008). Although there are more than ten 

described iron oxides, hydroxides and oxidohydroxides (Cornell & Schwertmann 1996), 

the core of the most IONPs contains either magnetite (Fe3O4) or maghemite (-Fe2O3). 

Due to the magnetism of these iron oxide modifications, magnetic IONPs have gained 
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high interest and a wide range of technical, biological and clinical applications (see 

1.1.4). However, also hematite (-Fe2O3) or even zero-valent iron NPs have been 

described (Zhang 2003, Rosicka & Sembera 2011, Xu et al. 2011). 

 

Various types of molecules have been used as ligands for IONPs. The type of ligand 

determines the surface chemistry and thus the behavior of the particles. Possible ligands 

(coatings) for IONPs can be divided into four groups: inorganic compounds, small 

organic molecules, polymers and proteins. Examples for these ligand-types and a 

description of the importance of the coating for the properties of IONPs are given in 

chapter 1.1.2. 

 

 

1.1.1 Synthesis 

There is a large number of methods described for the synthesis of IONPs (Gupta & 

Gupta 2005, Laurent et al. 2008, Mahmoudi et al. 2011). Besides numerous chemical or 

physical methods for the synthesis of IONPs, also bacterial synthesis involving 

biomineralization have been described. An overview on important methods used to 

synthesize IONPs is given in Table 1.1. 

 

Table 1.1: Selected methods for synthesis of IONPs. 

Type of method Description Selected reference 

Chemical Co-precipitation Massart 1982 

 Microemulsions Chin & Yaacob 2007 

 Thermal decomposition Kwon et al. 2007 

 Sol-gel reactions Ennas et al. 1998 

 Polyol methods Cai & Wan 2007 

 Sonochemical methods Abu Mukh-Qasem & Gedanken 2005 

 Electrochemical methods Pascal et al. 1999 

Physical Flow injection Salazar-Alvarez et al. 2006 

 Aerosol / Vapor Pecharroman et al. 1995 

 Pulsed laser ablation Wang et al. 2006 

Biological Biomineralization Lisy et al. 2007 
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Since the synthesis via co-precipitation of ferrous and ferric iron in an alkaline 

environment is one of the most common methods and has also been used in this thesis, 

it will be described here in more detail. This method was originally described by René 

Massart about three decades ago (Massart 1982). In the co-precipitation technique, 

IONPs are produced by adding a base (NaOH, NH4OH or N(CH3)4OH) to an aqueous 

solution containing Fe
2+

 and Fe
3+

 ions, usually in a 1:2 stoichiometric ratio. Magnetite 

(Fe3O4) NPs are then generated by the following reaction scheme (Schwertmann & 

Cornell 1991): 

 

 Fe
2+

  +  2 Fe
3+

  +  8 OH

      Fe3O4  +  4 H2O 

 

Since magnetite is not very stable and sensitive to oxidation (Laurent et al. 2008), the 

generated NPs will be oxidized to maghemite (-Fe2O3) or ferric hydroxide (Fe(OH)3) 

according to the following reaction schemes (Mahmoudi et al. 2011): 

 

 Fe3O4  +  2 H
+
      -Fe2O3  +  Fe

2+
  +  H2O 

 Fe3O4  +  O2  +  H2O      3 Fe(OH)3 

 

As seen from the equations, oxidation of magnetite can occur by either oxygen or by 

proton transfer depending on the pH of the suspension. At acidic pH values, Fe
2+

 ions 

desorb from the NPs surface as hexa-aqua complexes in solution leading to the 

formation of maghemite (Laurent et al. 2008). It should be noticed here, that IONPs 

prepared by the co-precipitation method often contain mixtures of both magnetite and 

maghemite (Maity & Agrawal 2007). The size, shape and composition of the IONPs 

formed depend on the experimental parameters applied, like the types of salts used, the 

Fe
2+

/Fe
3+

-ratio, the reaction temperature, the pH value and the ionic strength of the 

reaction medium (Lu et al. 2007). However, the synthesis of IONPs via the co-

precipitation method is highly reproducible as long as identical experimental conditions 

are used (Lu et al. 2007). 

 

Both iron oxides, Fe3O4 and -Fe2O3 are ferrimagnetic (Cornell & Schwertmann 1996). 

Thus, the synthesized NPs can easily be separated from the reaction mixture by 

decantation in the presence of an external magnetic field. When dispersed into a 
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solution, IONPs behave like a magnetic fluid in an external magnetic field, also called 

ferrofluid. Due to their small size, the IONPs are superparamagnetic (see. 1.1.3). 

 

 

1.1.2 Coating 

The stabilization of IONPs by surface coating is an important issue because these 

particles tend to aggregate/agglomerate when dispersed into high ionic strength solvents 

like biological media. This aggregation is a result of attractive forces between the 

particles, such as van der Waals forces and magnetic dipole interactions. On the other 

hand, IONPs can be stabilized in solution by electrostatic or steric repulsion forces 

(Laurent et al. 2008). The function of a proper surface coating for IONPs is to stabilize 

the particles in solutions (like biological media) by optimization of the two repulsive 

forces (Cornell & Schwertmann 1996, Laurent et al. 2008). 

 

Coatings for IONPs consist of various types of molecules and can be divided into four 

groups of coating material: inorganic molecules (atoms, ions), small organic molecules, 

polymers and proteins. Examples for coatings of IONPs are given in Table 1.2. 

 

Table 1.2: Selected coatings for stabilization of IONPs. 

Type of coating Example Selected references 

Inorganic Silica Bumb et al. 2008 

 Gold Lim et al. 2009 

Organic (monomer) Citric acid Bee et al. 1995 

Taupitz et al. 2004 

 Gluconic acid Fauconnier et al. 1999 

 Dimercaptosuccinic acid Fauconnier et al. 1997 

Organic (polymer) Dextran Bautista et al. 2005 

 Polyethlene glycol Zhang et al. 2002 

Barrera et al. 2009 

 Polyvinyl alcohol Petri-Fink et al. 2008 

 Polyvinyl pyrrolidone Lee et al. 2008 

Protein Fetal bovine serum Wiogo et al. 2011 
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Inorganic coatings 

Various types of inorganic coatings have been described for IONPs. The most important 

materials are gold and silica. These IONPs thus have a core of iron oxide which is 

surrounded by a shell of the inorganic material (Laurent et al. 2008). 

 

Gold-iron oxide core/shell NPs can be synthesized via reduction of Au
3+

 ions on an 

IONP surface. For example, Cui et al. synthesized Au-coated IONPs via mixing 

HAuCl4 · 4 H2O with an aqueous dispersion of IONPs and subsequent addition of 

NH2OH as a reducing agent. These NPs were used for immobilization of 

immunoglobulin G (IgG) and for detection of the hepatitis B antigen in blood (Cui et al. 

2005). Another report by Lim and colleagues described the synthesis of Au-coated 

IONPs by attachment of very small gold nanoparticles (1.5-3 nm in diameter) onto the 

surface of IONPs that had been modified with mercaptoundecanoic acid (Lim et al. 

2009). 

 

Another important inorganic coating material for IONPs is silica. Silica-coated IONPs 

are stabilized in two different ways: on the one hand sterically and on the other hand 

electrostatically, because of the negative charges of the coating (Sun et al. 2005, 

Laurent et al. 2008). Silica as coating-material is considered to generate IONPs which 

show a high biocompatibility (Mahmoudi et al. 2011). For example, it has been shown 

recently that silica-coated IONPs are less toxic than citrate-coated IONPs (Narayanan et 

al. 2011). Ferumoxsil (Leung 2004) is a commercially available silica-coated IONP that 

was already used for clinical investigations two decades ago (Hahn et al. 1990). The 

commercial product NanoTherm® contains 15 nm aminosilane-coated IONPs which are 

used for cancer treatment by magnetic field-mediated hyperthermia (Thiesen & Jordan 

2008, Rivera Gil et al. 2010). 

 

 

Organic monomeric coatings 

Different types of functional groups like carboxylates, phosphates or sulfates are known 

to bind to the surface of iron oxides or IONPs (Cornell & Schwertmann 1996, Sahoo et 

al. 2001, Lu et al. 2007). Best described in the literature are carboxylates as coating 

material. 
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Citric acid has frequently been used for coating of IONPs. It is assumed, that this acid 

adsorbs to the surface of the IONPs by coordinating with one or two of its carboxylate 

groups to the particles surface. The other one or two carboxylate group(s) are thus 

exposed to the solvent leading to a negative surface charge and also to electrostatic 

stabilization of the NPs (Lu et al. 2007). An important example for such NP which also 

had been used for clinical investigations is the so-called VSOP C184: a citrate-coated 

IONP with a core-diameter of 4 nm (Wagner et al. 2002, Taupitz et al. 2004). Bee and 

colleagues reported that the presence of citric acid during the synthesis of IONPs affects 

the diameter of the obtained particles (Bee et al. 1995). Newer reports show that citric 

acid not only affects the particle size but also the crystallinity of the iron oxides formed 

(Liu & Huang 1999, Lu et al. 2007). 

 

Besides citric acid, other small organic molecules containing carboxyl-groups have been 

described as coating material for IONPs. Gluconic acid, tartaric acid or 

dimercaptosuccinic acid (DMSA) have been shown to affect the colloidal stability of 

IONPs in aqueous solution at different pH values (Fauconnier et al. 1999). An 

interesting role plays hereby the compound DMSA. In addition to the two carboxylate 

groups, this compound contains two thiol (SH) groups. These SH groups can be 

oxidized to form disulfides, thereby leading to the formation of poly-DMSA-molecules 

that are assumed to form a cage-like structure around the core of the IONPs (Fauconnier 

et al. 1997, Valois et al. 2010). Free carboxylate groups exposed to the solvent give 

these DMSA-IONPs a negative charge at physiological pH and thus lead to electrostatic 

stabilization. A further advantage of DMSA-IONPs is that solvent-exposed SH groups 

can be used for coupling of thiol reagents (for example fluorescent compounds) onto the 

NPs surface. 

 

Other monomeric coatings for IONPs contain sulfate or phosphate groups (Portet et al. 

2001). For example Yee et al. functionalized IONPs with alkanesulfonic or 

alkanephosphonic acids (Yee et al. 1999). Characterization of these particles via 

infrared (IR) spectroscopy suggested a binding of these ligands to the IONP-core via the 

sulfate- or phosphate-groups, respectively. For the phosphate ligands, a monodentate 

and a bidentate binding to the iron oxide surface is discussed, while sulfate ligands bind 

only via one oxygen atom to the surface of IONPs (Yee et al. 1999). 
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Organic polymeric coatings 

A wide range of polymers has been used for coating and stabilization of IONPs. 

Frequently used polymer coatings are based on polyethylene glycol (PEG), polyvinyl 

alcohol (PVA), polyvinyl pyrrolidone (PVP) or dextran. The coating of IONPs with 

polymers can either occur during the particle synthesis (in situ coating) or after 

synthesis in an individual second coating step (post-synthesis coating) (Laurent et al. 

2008). 

 

In 1993, Palmacci and Josephson described a method for in situ coating of IONPs with 

dextran during a co-precipitation process (Palmacci & Josephson 1993). The size of the 

obtained NPs varied between 10 and 50 nm, depending on the conditions applied for 

synthesis (Palmacci & Josephson 1993). A more recent publication by Jarrett and 

colleagues described the synthesis of 30 nm dextran sulfate-coated IONPs and their 

applications in magnetic resonance imaging (MRI) (Jarrett et al. 2007). Nowadays, 

several methods for synthesis of dextran-coated IONPs exist and such nanoparticles 

have a wide range of biomedical applications (Tassa et al. 2011). The commercial 

available products “Endorem” and “Resovist” contain dextran- or carboxydextran-

coated IONPs, respectively (Soenen & De Cuyper 2010). 

 

Because of its hydrophilicity, polyethylene glycol (PEG) is frequently used as coating 

material for the generation of water-soluble IONPs. Due to the terminal hydroxyl 

groups, PEG-coating can also be used to conjugate additional (biological) molecules to 

the NP surface (Mahmoudi et al. 2011). Tong and colleagues synthesized PEG-coated 

IONPs by preparing an iron oxide core via thermal decomposition and by subsequent 

ligand exchange with a PEG-derivative (Tong et al. 2010). A similar approach was 

described earlier by Barrera et al. using PEG-silane as coating material (Barrera et al. 

2009). PEGylation of IONPs has also been discussed to facilitate their blood-brain 

barrier permeability (Winer et al. 2011). 

 

Further polymers, which are often used as coating materials for IONPs are polyvinyl 

alcohol (PVA) or polyvinyl pyrrolidone (PVP). A study of Petri-Fink and colleagues 

investigated the colloidal stability of PVA-coated IONPs in cell culture media. Long-

time colloidal stability was observed for PVA-coated IONPs in serum-containing 
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culture media. In contrast, in serum-free media the IONPs were only stable for about 30 

min (Petri-Fink et al. 2008). PVA-coated IONPs are taken up by HeLa cells and appear 

to cause no toxicity (Petri-Fink et al. 2008). Liu et al. synthesized PVP-coated IONPs 

by the polyol process that had an average diameter of less than 5 nm and were 

superparamagnetic (Liu et al. 2007). In addition, phosphate-containing polymers like 

polyvinyl alcohol phosphate (PVAP) have been described as coating materials for 

IONPs (Mohapatra et al. 2006). 

 

 

Protein coatings 

Formation of protein-coated IONPs is often observed after dispersion of IONPs in a 

protein-containing (i.e. serum-containing) cell culture medium. This formation of a 

protein-corona around the NP core (Nel et al. 2009) is important, since it affects the 

interactions between the particles and cell-membranes. Literature data clearly show that 

the uptake of IONPs into cells strongly depends on the presence of serum in the medium 

(Chen et al. 2008). Besides this ‘spontaneous’ protein-coating, also the controlled 

stabilization of IONPs with proteins has been described. Wiogo and co-workers 

stabilized carboxyl-functionalized IONPs in cell-culture media by adding fetal calf 

serum (FCS) to the medium (Wiogo et al. 2011). In another report, Lim et al. stabilized 

Au-coated IONPs by additional coating with bovine serum albumin (BSA) (Lim et al. 

2009). 

 

 

1.1.3 Characterization 

Physical and chemical characterization of IONPs is a crucial issue, since small 

alterations in the particle properties might have large influences on their possible 

technical, biological or biomedical applications (Laurent et al. 2008). IONPs can be 

characterized by a wide range of physical and (physico)chemical methods. Frequently 

used methods to characterize properties of IONPs are given in Table 1.3. 
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Table 1.3: Methods to characterize IONPs. 

Method Parameter/properties investigated 

Electron microscopy Core size and morphology 

Energy dispersive X-ray spectroscopy Elemental composition 

Mößbauer spectroscopy Discrimination between Fe(II) and Fe(III) 

X-ray diffraction Crystal structure 

IR spectroscopy Detection of functional groups 

(surface coating) 

Dynamic light scattering Hydrodynamic particle size in dispersion 

Zeta-potential measurement Surface charge 

Magnetic susceptibility measurement Magnetism 

Magnetic resonance T1 / T2 – Relaxation times 

 

 

Size and shape of IONPs 

By definition, NPs have a size of less than 100 nm in two or three dimensions (Auffan 

et al. 2009). NPs with only two dimensions smaller that 100 nm and a third dimension 

that is much longer are called nanorods or nanowires (Cao & Wang 2004). The most 

suitable method to get information about the size and shape of NPs is electron 

microscopy. Mostly, transmission electron microscopy (TEM) is used for size 

determination. However, also X-ray diffraction, which is normally used to obtain 

information about the crystal structure, is suitable to investigate the particle size by 

using the Scherrer equation (Holzwarth & Gibson 2011). The frequently used photon 

correlation spectroscopy or dynamic light scattering (DLS) determines hydrodynamic 

diameters of NPs in dispersion and thus gives information about their colloidal stability 

(Aberle et al. 2002). 

 

IONPs that were synthesized by the classical co-precipitation route have a typical size 

of around 10 nm in diameter (Kang et al. 1996). However, the particle size can be 

modulated. For example, Bee et al. showed that the size of IONPs obtained in the co-

precipitation process can be lowered to ~2 nm when citric acid is added to the reaction 

mixture (Bee et al. 1995). Nowadays, numerous methods have been described for size 

controlled synthesis of IONPs (Lu et al. 2007). Besides the size, also the shape of the 

IONPs can be controlled during the synthesis. Classical synthesis routes lead to particles 
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that are roughly spherical in shape and have a polydisperse size distribution. However, 

methods have also been described to obtain monodisperse spherical IONPs (Hyeon et 

al. 2001, Park et al. 2007), iron oxide nanocubes (Yang et al. 2008, Kim et al. 2009, 

Wang & Yang 2009), nanorods (Li et al. 2009, Wang & Yang 2009) or even octahedral 

shaped IONPs (Li et al. 2010). 

 

 

Crystal structure of IONPs 

More than ten different iron oxides, hydroxides or oxidohydroxides have been described 

(Cornell & Schwertmann 1996). The most common iron oxides are the ferrous oxide 

Wüstite (FeO), the ferrous/ferric iron oxide magnetite (Fe3O4), the ferric oxides 

hematite (-Fe2O3) and maghemite (-Fe2O3). Magnetite and maghemite are both 

ferrimagnetic iron oxides (Cornell & Schwertmann 1996). This is the base for the 

magnetic properties of nanoparticular forms of these iron oxides. 

 

The crystal structure of IONPs can be determined via X-ray diffraction (XRD) (Brown 

1980). Since the distances between the atoms in a crystal structure are comparable to the 

wavelengths of X-rays, crystals diffract X-rays (Cornell & Schwertmann 1996). The 

diffraction pattern allows to determine the crystal structure and thus, the type of iron 

oxide. Typically IONPs consist of one of the magnetic iron oxides, either magnetite 

(Fe3O4) or maghemite (-Fe2O3), which both crystallize in the cubic structure (Cornell 

& Schwertmann 1996). Thus, it is difficult to distinguish between these two types of 

iron oxides via XRD. Since magnetite contains both – ferrous and ferric iron – whereas 

maghemite is fully oxidized to ferric iron, these oxides can de distinguished by 

Mößbauer spectroscopy (Woo et al. 2004). In addition to magnetite and maghemite 

IONPs, also hematite (-Fe2O3) IONPs have been described (Xu et al. 2011). -Fe2O3 

has a hexagonal (rhombohedral) crystal structure and is thus easily distinguishable from 

the other iron oxides by XRD (Cornell & Schwertmann 1996). The ferrous oxide 

Wüstite (FeO) is very sensitive to oxidation processes and thus is rarely found in 

IONPs. Wüstite IONPs often consist of FeO/Fe3O4 core-shell structures as determined 

by high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) 

(Sharma et al. 2011). 
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Magnetism of IONPs 

Magnetite (Fe3O4) and maghemite (-Fe2O3) are both ferrimagnetic iron oxides (Cornell 

& Schwertmann 1996). In a ferrimagnetic compound, the single particles (atoms, ions, 

molecules) carry a magnetic moment and these magnetic moments align to an ordering 

of two oppositely directed magnetic sublattices (Koksharov 2009). Since the sublattices 

are not identical and one has a higher magnetic moment than the other, the total 

magnetic moment does not vanish (Koksharov 2009). Thus, magnetic domains (so-

called Weiss domains) are formed which have a typical size ranging from a few 

nanometers up to one micrometer (Lu et al. 2007). When such a ferrimagnetic 

compound is exposed to an external magnetic field, the magnetic domains align and the 

compound gets magnetized. Ferro- and ferrimagnetic materials retain some of this 

magnetization which can be macroscopically measured. 

 

When the particle size of a compound is in the nanometer range, each particle will 

contain only one Weiss domain. They are randomly ordered, but will align when an 

external magnetic field is applied. When the field is removed, they will spontaneously 

randomize again due to the so called Brownian and Néel relaxation (Gittlema et al. 

1974). Thus, no retaining magnetization will be observed. The compound behaves like a 

paramagnet, which consists of magnetic moments and increases a magnetic field in its 

interior but looses it when the field is removed. This phenomenon is called 

superparamagetism. Superparamagnetic IONPs dispersed in an appropriate solvent 

behave like a magnetic fluid (Lu et al. 2007). 

 

 

1.1.4 Applications 

There are many applications of IONPs which take advantage of their different 

properties, such as their small size, surface chemistry or their magnetism. Applications 

of IONPs range from technical and engineering fields (i.e. their function as pigments, in 

catalysis or for magnetic storage media) to medical and (neuro)biological fields. In this 

thesis, only a short review about their most prominent applications in medicine and 

biology (especially related to the brain) will be given. A summary of these applications 

is shown in Table 1.4. 
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Table 1.4: Biomedical and (neuro)biological applications of IONPs. 

Application Selected references 

MRI contrast enhancement Weinstein et al. 2010 

Winer et al. 2011 

Targeted drug delivery Chertok et al. 2008 

Magnetic field-induced hyperthermia Thiesen & Jordan 2008 

Maier-Hauff et al. 2011 

Cell labeling / cell tracking Cromer Berman et al. 2011 

Magnetic transfection (magnetofection) Kamau et al. 2006 

Pickard & Chari 2010a 

 

 

The most common application of IONPs is their use as contrast agent in magnetic 

resonance imaging (MRI) (Weinstein et al. 2010, Winer et al. 2011). Iron oxide based 

contrast agents constitute the counterpart to the classical gadolinium (Gd)-based agents. 

While the latter ones affect the longitudinal (T1) relaxation processes, the IONP-based 

contrast agents reduce transverse (T2) relaxation times. This leads to contrast 

enhancement in T2/T2*-weighted MRI acquisitions by IONP-based contrast agents 

compared to Gd-based contrast agents which are used in T1-weighted MRI acquisitions 

(Weinstein et al. 2010). IONP-based contrast agents have a longer half-life which is an 

advantage for repeated imaging without subsequent administration of contrast agent 

(Winer et al. 2011). Furthermore they seem to be less toxic than Gd-based contrast 

agents, since the latter ones are known to cause nephrogenic systemic fibrosis in 

patients with renal insufficiency (Marckmann et al. 2006). Another advantage of IONP-

based contrast agents in brain tumor imaging is that IONPs which have penetrated the 

defective blood-brain barrier are endocytosed by reactive astrocytes or macrophages and 

remain there for several days (Murillo et al. 2005). Thus, repeated imaging of the brain 

without subsequent administration of contrast agent is possible. 

 

Due to their MRI contrast enhancing effect, IONPs have been used for effective cell 

labeling and cell tracking with the advantage of a high image resolution that did not 

require exposure to ionizing radiation for imaging (Cromer Berman et al. 2011). Cells 

can be labeled by various techniques, such as simple incubation of the cells with the 

particles or by application of transfection agents (Cromer Berman et al. 2011). The 

transfection efficiency of cells with IONPs can be facilitated with the aid of magnetic 
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fields (Kamau et al. 2006, Pickard & Chari 2010a). This magnetofection has also been 

successfully applied to cultured astrocytes (Pickard & Chari 2010a). 

 

Another large field of applications of NPs is the targeted delivery of drugs across the 

blood-brain barrier (Yang 2010). This barrier is formed by the endothelial cells of the 

brain capillaries which are connected via tight junctions (Abbott et al. 2010). Since 

more that 98% of small molecular weight drugs and almost 100% of large molecular 

weight drugs are not able to penetrate the blood-brain barrier (Pardridge 2002, Yang 

2010), targeted drug delivery is a big challenge for the future. Already more than ten 

years ago, it was shown that the anticancer drug doxorubicin could be successfully 

delivered to the brain by using polysorbate-80-coated poly(butyl-cyanoacrylate) NPs 

(Kreuter 2001). Also IONPs have been used as drug delivery vehicle for targeting of 

brain tumors with the aid of magnetic fields (Chertok et al. 2008). The magnetic drug 

targeting with IONPs is considered as promising technology for therapy challenges in 

the 21
st
 century (Kempe et al. 2011). 

 

Besides the delivery of drugs with the aid of IONPs, the particles themselves are a 

promising tool in anti-tumor treatment. In magnetic fluid hyperthermia (MFH), IONPs 

are injected into a tumor and the patient is then exposed to a high frequency (100 kHz) 

altering magnetic field. This treatment induces fast movements of the NPs and thus 

heating of NPs and the surrounding tumor tissue. The potential of small magnetite or 

ferrite particles as tool for MFH has already been described in 1993 (Jordan et al. 1993). 

In 2003, the first clinical study for treatment of brain glioblastoma multiforme by MFH 

with aminosilane-coated IONPs was started (Maier-Hauff et al. 2007, Thiesen & Jordan 

2008). Post-mortem studies of the brains of glioblastoma patients revealed the presence 

of remaining IONPs in the regions of instillation. The particles were mainly 

phagocytosed by macrophages and only a minority was taken up by glioma cells (van 

Landeghem et al. 2009).  Nowadays, there are several reports on clinical studies about 

treatments of glioblastoma or prostate carcinoma with MFH or with combinations of 

MFH and classical radiation therapy (Johannsen et al. 2005, Maier-Hauff et al. 2007, 

Thiesen & Jordan 2008, Maier-Hauff et al. 2011). 
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1.2 Astrocytes 

The mammalian brain is a highly complex organ containing different cell types 

(Figure 1.1) which can be mainly divided into two groups: the neurons and the glia 

cells. Although, glia cells make up most of the cells of the brain, they were considered 

for long times only to have a passive supporting role (Allen & Barres 2009). However, 

nowadays it has become clear, that glia cells have a huge variety of important functions 

in the brain. 

 

Astrocytes, which are strategically located between blood vessels and other brain cells, 

have various functions in metabolic support, signal transduction, protection of neurons 

and detoxification of xenobiotics (Parpura et al. 2012). Oligodendrocytes form the 

myelin sheaths around the neuronal axons which are important to protect the axons and 

to facilitate signal transduction (Bradl & Lassmann 2010, Miron et al. 2011). Microglia 

represent the immune cells in the brain which show phagocytotic activity (Graeber & 

Streit 2010, Tremblay et al. 2011) and ependymal cells cover the ventricles that are 

filled with cerebrospinal fluid in the brain (Del Bigio 2010). 

 

 

Figure 1.1: Different types of cells in the brain. The picture shows the neurons, 
which are responsible for signal transduction via the synapses, and the different types 
of glia cells. Astrocytes connect blood vessels and neurons, oligodendrocytes form the 
myelin sheaths around the neuronal axons and microglia cells are the phagocytes of 
the brain. The ependymal cells cover the ventricles in the brain. (Modified from Pfrieger 
& Steinmetz 2003). 
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1.2.1 Properties and functions 

Astrocytes belong to the glia cells and represent the most abundant cell type in the brain 

outnumbering the neurons by over fivefold (Sofroniew & Vinters 2010). Astrocytes got 

their name from their star-shaped morphology (gr. astron (): star), containing a 

cell body which extends several processes (Oberheim et al. 2012). Astrocytes can be 

divided into mainly two groups: the protoplasmatic astrocytes found throughout the 

grey matter and the fibrous astrocytes which are present in the white matter of the brain 

(Kimelberg 2010, Sofroniew & Vinters 2010). Via their endfeet processes, both types of 

astrocytes stand in contact with the blood vessels of the brain (Mathiisen et al. 2010, 

Sofroniew & Vinters 2010). Furthermore, astrocytes are in contact with synapses and 

nodes of Ranvier and are also connected by gap junctions with neighboring astrocytes 

(Peters et al. 1991, Sofroniew & Vinters 2010). Thus, astrocytes have a strategically 

very important position in the brain, being the first cells that encounter substances 

which have passed the blood-brain barrier and standing in contact with all other types of 

brain cells. 

 

A characteristic marker for astrocytes is the glial fibrillary acidic protein (GFAP), which 

was first isolated in multiple sclerosis plaques around 40 years ago (Eng et al. 1971, 

Eng et al. 2000). GFAP is the main intermediate filament protein of astrocytes 

(Middeldorp & Hol 2011). It is expressed in healthy astrocytes, but its expression is 

strongly enhanced in reactive astrocytes. Thus it is also considered as marker for 

reactive astrogliosis and CNS injuries (Sofroniew & Vinters 2010). Also astrocytes in 

cell culture express GFAP (Bock et al. 1977, Schmidt 2010). 

 

Brain energy metabolism is of great importance, since this organ consumes about 20% 

of the energy used by the human body, but accounts only for 2% of the body mass 

(Sokoloff 1960, Attwell & Laughlin 2001, McKenna et al. 2006). With their contacts to 

the blood vessels, neighboring astrocytes, neuronal axons and synapses, astrocytes have 

an ideal position to fulfill a variety of important metabolic functions in the brain (Barros 

& Deitmer 2010, Sofroniew & Vinters 2010). Via the GLUT1 transporter, astrocytes 

take up glucose from the blood, which can be metabolized into lactate via glycolysis 

and than exported and taken up by neurons, as described by the astrocyte-neuron lactate 

shuttle hypothesis (Pellerin & Magistretti 1994, Pellerin et al. 2007). Nevertheless, it 



Part 1  Introduction 

 

 
17 

 

has been shown that in the brain neurons take up about half of the glucose directly via 

the transporter GLUT3 (Nehlig et al. 2004). In cell culture experiments neurons 

preferentially use either glucose or lactate as their main source of energy, depending on 

their stimulated or resting physiological state (Bouzier-Sore et al. 2006, Bak et al. 

2009). 

 

Besides their important metabolic functions in the brain, astrocytes also take up and 

release neurotransmitters (Eulenburg & Gomeza 2010, Parpura & Zorec 2010, Parpura 

et al. 2012). The astrocyte processes, which have contact to the synapses, express high 

levels of transporters for the uptake of neurotransmitters like glutamate, -aminobutyric 

acid (GABA) and glycine (Sattler & Rothstein 2006, Seifert et al. 2006, Sofroniew & 

Vinters 2010). Furthermore, astrocytes release neurotransmitters (=gliotransmitters) like 

glutamate, purines, GABA and D-serine depending on synaptic activity and astrocytic 

intracellular Ca
2+

 concentration (Sofroniew & Vinters 2010), thereby modulating 

synaptic transmission. The importance of astrocytes in neurotransmission is underlined 

by their inclusion into the concept of the so-called tripartite synapse that is composed of 

a pre- and post-synaptic neuron and an astrocyte (Araque et al. 1999, Halassa et al. 

2007). 

 

Astrocytes have important functions in the detoxification of peroxides in the brain. 

Since the brain consumes about 20% of the oxygen used by the body, generation and 

disposal of peroxides is a crucial issue (Dringen et al. 2005). By mainly use of both, 

catalase and the glutathione (GSH) system, cultured astrocytes are able to clear 

hydrogen peroxide efficiently with half times in the minute range (Dringen et al. 1999, 

Dringen et al. 2005). In addition, astrocytes provide neighboring neurons with 

precursors for neuronal GSH synthesis (Dringen 2009, Hirrlinger & Dringen 2010, 

Schmidt & Dringen 2012) thus playing an important protective role for neurons against 

oxidative stress. 

 

In addition to all these functions in metabolism, signal transduction and protection of 

neurons, astrocytes have important functions in the regulation of metal homeostasis 

(Tiffany-Castiglioni & Qian 2001, Dringen et al. 2007, Tiffany-Castiglioni et al. 2011). 

Quite a large number of information is now available about uptake, metabolism and 
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release of metals such as iron and copper in cultured astrocytes (Hoepken et al. 2004, 

Bishop et al. 2010, Scheiber et al. 2010, Bishop et al. 2011, Dang et al. 2011, Scheiber 

et al. 2012). Since the metabolism of iron is highly important for this thesis, the 

following chapter will summarize the iron metabolism of astrocytes. 

 

 

1.2.2 Iron metabolism 

Metal ions have a wide range of important functions in numerous biological processes 

such as energy production, neurotransmission, muscle contraction and oxygen transport 

(Crichton et al. 2011). For the central nervous system, iron plays a key role in many 

metabolic processes, including oxidative phosphorylation, myelin synthesis, 

neurotransmitter production, nitric oxide metabolism and oxygen transport (Crichton 

2009, Crichton et al. 2011). On the other hand, iron can be toxic to cells since low 

molecular weight ferrous (Fe
2+

) iron can catalyze the Fenton reaction in which hydrogen 

peroxide (H2O2) in converted to a hydroxyl anion (OH

) and the highly reactive 

hydroxyl radical (OH∙) (Dringen et al. 2007). 

 

Fe
2+

  +  H2O2      Fe
3+

  +  OH∙  +  OH

 

 

Thus, the amount of free cellular ferrous iron has to be tightly regulated. 

 

 

Iron uptake into the brain 

In the blood circulation, up to two ferric (Fe
3+

) iron ions are bound to the iron transport 

protein transferrin. The diferric transferrin binds to the transferrin receptor (TfR) – 

which is expressed on the luminal side of the brain capillaries – and is then internalized 

into the endothelial cells by receptor mediated endocytosis (Crichton 2009, Crichton et 

al. 2011). Due to the lower endosomal pH value, the iron is liberated from transferrin 

and the apotransferrin gets recycled (Crichton et al. 2011). However, the exact 

mechanism of iron release from the endosomes of the capillary endothelial cells and of 

the entrance of iron into the brain is still under discussion since it is not clear if the 

divalent metal transporter 1 (DMT1) is expressed in brain capillary endothelial cells 
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(Burdo et al. 2001, Moos & Morgan 2004, Moos & Rosengren Nielsen 2006, Crichton 

et al. 2011). Nevertheless, the endothelial cells of the brain capillaries have to be able to 

release at least some iron to provide this essential metal to parenchymal brain cells. 

 

 

Iron metabolism of astrocytes 

Astrocytes, which cover with their endfeet the brain capillaries (Mathiisen et al. 2010), 

are the first cells which encounter substances released from endothelial cells into the 

brain parenchyma. It has been suggested, that astrocytes play an important role in the 

release of iron from the endothelial cells by providing citrate or adenosine triphosphate 

(ATP) to complex the released iron (Moos et al. 2007). Complexed iron will then 

circulate in the brain extracellular fluid before it is bound to transferrin and/or taken up 

by astrocytes or other types of brain cells. Uptake, metabolism, storage and export of 

iron have been quite well investigated for cultured astrocytes. A summary of the most 

important pathways involved in iron metabolism of astrocytes is given in Figure 1.2. 

 

Different pathways have been suggested for the uptake of iron into astrocytes. 

Transferrin bound iron can be taken up by receptor-mediated endocytosis via TfR as 

shown for cultured rat astrocytes (Qian et al. 2000, Hoepken et al. 2004, Dringen et al. 

2007). However, it has to be noticed that TfR appears not to be expressed in astrocytes 

in vivo (Moos et al. 1999, Jeong & David 2006), suggesting different routes for iron 

uptake into astrocytes in brain. Also, non-transferrin-bound ferric iron is taken up by 

cultured astrocytes (Keenan et al. 2010, Lane et al. 2010, Tulpule et al. 2010, Bishop et 

al. 2011). However, the mechanism of uptake of non-transferrin-bound ferric iron is still 

under debate. The divalent metal transporter 1 (DMT1) appears to be a suitable 

transporter for non-transferrin-bound ferrous iron. DMT1 is a proton co-transporter 

which is expressed in astrocytic endfeet in vivo as well as in cultured astrocytes (Burdo 

et al. 2001, Tulpule et al. 2010). Indeed, DMT1 contributes to the uptake of ferrous iron 

in cultured rat astrocytes (Lane et al. 2010, Tulpule et al. 2010). Since ferrous iron is 

rapidly oxidized to ferric iron at physiological pH, it is discussed that cultured 

astrocytes possess extracellular ferric reductase activity. Indeed, the mRNA of the ferric 

reductases duodenal cytochrome b (Dcytb) and stromal cell-derived receptor 2 (SDR2) 

were detected in cultured astrocytes (Tulpule et al. 2010). Another pathway of iron 
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uptake into astrocytes is the uptake of hemin, which contains ferric iron. The uptake is 

mediated by the heme carrier protein 1 (HCP1) which is expressed by cultured 

astrocytes (Dang et al. 2010). Hemin is then intracellular degraded in astrocytes by the 

heme oxygenase 1 (HO-1), leading to liberation of the iron (Dang et al. 2011). 

 

 

Figure 1.2: Iron metabolism of cultured astrocytes. Transferrin-bound iron can be 
taken up by transferrin receptor (TfR)-mediated endocytosis. Non-transferrin-bound 
iron can enter the cell by different pathways. Cultured astrocytes express the divalent 
metal transporter 1 (DMT1) that allows the uptake of ferrous iron into the cell. Ferric 
iron (for example as ferric ammonium citrate, FAC) can either be taken up directly or be 
reduced to ferrous iron by the extracellular ferric reductases duodenal cytochrome b 
(Dcytb) or stromal cell-derived receptor 2 (SDR2). Heme iron enters the cell via the 
heme carrier protein 1 (HCP1). Internalized iron enters the labile cellular iron pool of 
Fe2+. This can either be used for metabolism or can be stored as Fe3+ in ferritin in 
redox-inactive form. Ferroportin functions as iron exporter and is modulated by 
hepcidin. Exported ferrous iron will be immediately oxidized to ferric iron by the 
glycosylphosphatidylinositol (GPI)-anchored ceruloplasmin (Cp). (Modified from 
Dringen et al. 2007). 
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Intracellular low molecular iron represents the labile iron pool which is used for the 

synthesis of heme or iron sulfur clusters (Dringen et al. 2007). However, since an 

excess of intracellular ferrous iron is cell-toxic, the amount of low molecular weight 

ferrous iron has to be tightly regulated. A safe storage for iron is the iron storage protein 

ferritin. This protein consists of 24 heavy (H) or light (L) subunits which form a 

spherical structure that accommodates about 4000 Fe atoms (Arosio et al. 2009, Arosio 

& Levi 2010). Since the H subunits of the ferritin possess ferroxidase activity, the iron 

is stored as ferric iron in a structure similar to the mineral ferrihydrite (Harrison & 

Arosio 1996, Arosio et al. 2009). The ferritin expression is regulated by the iron-

responsive protein (IRP). Low molecular weight iron incorporated in the iron-sulfur 

cluster of the IRP prevents its binding to the iron-responsive element (IRE) in the 

ferritin mRNA and thus allows the translation (Arosio et al. 2009). The upregulation of 

ferritin therefore requires the presence of intracellular low molecular weight iron. 

 

Iron is exported from cultured astrocytes by the iron exporter ferroportin (Wu et al. 

2004, Dringen et al. 2007, Garrick & Garrick 2009) which is modulated by hepcidin 

(Zechel et al. 2006, Du et al. 2011). Ferroportin is coupled to the glycosyl-

phosphatidylinositol (GPI)-anchored ceruloplasmin (Cp) which is a ferroxidase that 

oxidizes released ferrous iron to ferric iron (Patel & David 1997, Jeong & David 2003). 

 

 

1.3 Iron oxide nanoparticles and brain cells 

Several routes were discussed for NPs to enter the brain and various types of NPs have 

been considered for the delivery of drugs to the brain (reviewed in Hu & Gao 2010, 

Yang 2010). For IONPs, recent studies by Wang and colleagues showed the presence of 

IONPs in rat brain after peripheral administration, demonstrating that IONPs are able to 

cross the blood-brain barrier and to enter the brain (Wang et al. 2010). Furthermore 

fluorescent IONPs were found in the brain of mice after inhalation, suggesting that 

IONPs can also enter the brain via the olfactory neuronal pathway (Kwon et al. 2008), 

as earlier demonstrated for inhaled ultrafine carbon particles (Oberdorster et al. 2004). 

Nevertheless, data on consequences of IONPs on brain cells are rather limited so far. 

Table 1.5 summarizes the currently available studies on the consequences of a treatment 

of cultured primary brain cells with IONPs. 
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The first study on the effects of IONPs on astrocyte cultures was reported by Au and co-

workers (Au et al. 2007). Treatment of the cells with 10 µg/mL magnetic nanoparticles 

(iron oxide core, coating not specified) for 6 h did not cause any loss of membrane 

integrity but altered the mitochondrial function of the cells (Au et al. 2007). 

Furthermore, presence of IONPs inhibited adhesion of cells to the culture plate (Au et 

al. 2007). In another report, Ding and colleagues investigated the cytotoxicity of dextan-

stabilized IONPs on various cell types, including astrocyte cultures (Ding et al. 2010). 

Their study revealed that IONPs are not toxic to astrocytes even in concentrations of up 

to 500 µg/mL. Also for human astrocytes a treatment for 1 h with IONPs was not toxic 

for up to 3 d (Hadjipanayis et al. 2010). In contrast, IONPs in a concentration of 128 

µg/µL caused apoptosis in periphery blood mononuclear cells (PBMC) (Ding et al. 

2010). 

 

Uptake of IONPs by cultured astrocytes was demonstrated by TEM and fluorescence 

microscopy (Ding et al. 2010, Pickard et al. 2011). Experiments with endocytosis 

inhibitors suggest that macropinocytosis is the main mechanism of uptake of carboxyl-

modified fluorescent IONPs (0.2-0.39 µm in diameter) into astrocytes, at least in serum-

containing cell culture medium (Pickard et al. 2011). In addition, IONPs were 

successfully used for transfection of cultured astrocytes (Pickard & Chari 2010a). The 

transfection efficiency was enhanced by the application of static and oscillating 

magnetic fields while the latter effect was frequency dependent (Pickard & Chari 

2010a).  

 

In contrast to astrocytes, there is only a limited number of studies considering the 

effects of IONPs on other types of brain cells. Pickard and Chari incubated cultured 

microglial cells with commercial available carboxyl-modified fluorescent IONPs and 

observed particle uptake and concentration-dependent toxicity (Pickard & Chari 2010b). 

Jenkins et al. used another type of commercial available IONPs for gene-transfer to 

oligodendrocyte precursor cells (Jenkins et al. 2011). This transfection worked 

successfully. Its efficiency was increased by static or oscillating magnetic fields, but the 

treatment did not affect the cells ability to proliferate and to differentiate (Jenkins et al. 

2011). A very recent report by Rivet and co-workers investigated the effects of IONPs 

on cortical neurons. They demonstrated that toxicity of the IONPs strongly depends on 
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their surface coating. While polydimethylamine-coated IONPs were toxic at all 

concentrations tested, aminosilane and dextran-coated IONPs had at best low effects on 

metabolic activity and membrane integrity at higher NP concentrations (Rivet et al. 

2012). 

 

Different cell-lines of neuronal origin have frequently been used as model systems to 

study the effects of IONPs on brain cells. Important results about the effects of citrate- 

and DMSA-coated IONPs were gained on the oligodendroglial cell-line OLN93 

(Hohnholt et al. 2010a, Hohnholt et al. 2011, Hohnholt & Dringen 2011). OLN93-cells 

accumulated IONPs and remained viable for up to 48 h of incubation time. The particles 

were able to provide iron for cell-proliferation under iron-restricting conditions 

(Hohnholt et al. 2010a). Furthermore, IONP-accumulation by OLN93-cells led to a 

delayed upregulation in cellular ferritin levels (Hohnholt et al. 2011) and – depending 

on the incubation conditions – also to the formation of reactive oxygen species (ROS) 

(Hohnholt & Dringen 2011). The rat pheochromocytoma cell-line PC12M is often used 

as a model system for studying neurons. Exposure of PC12-cells to DMSA-coated 

IONPs revealed particle uptake, concentration-dependent toxicity and a diminished 

capacity of the cells to extend neurites in response to nerve growth factor (NGF) 

(Pisanic et al. 2007). In contrast, Kim et al. showed recently, that PEG-encapsulated 

IONPs lead to an enhanced neurite outgrowth in PC12-cells that were exposed to both, 

IONPs and NGF (Kim et al. 2011). 

 

 

1.4 Aim of the thesis 

This thesis aims to synthesize and characterize IONPs that can be used as tools to 

investigate the uptake, reactivity and biocompatibility of IONPs on cultured astrocytes. 

A method for a reproducible synthesis of water-dispersable IONPs will be established 

based on previously published protocols (Bee et al. 1995, Geppert 2008). Of special 

interest are IONPs that are stable in commonly used biological buffer systems and 

media. This stabilization will be achieved by using proper biocompatible surface 

coatings for the IONPs, such as citrate and DMSA. The coated IONPs will be 

characterized by use of a large spectrum of physical and chemical methods. Important 

parameters that will be investigated are the size, shape and elemental composition of the 
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IONPs, the total iron content, the hydrodynamic size, surface charge and stability of 

IONPs in different buffer systems and media, and the effects of the presence of cultured 

astrocytes on the size and stability of the IONPs. 

 

Rat primary astrocyte cultures will be used as a model system to study the consequences 

of a treatment of brain cells with the synthesized IONPs. The uptake of the particles by 

viable cells will be investigated by modulating parameters such as the incubation time, 

temperature, IONP-concentration, the surface coating of the IONPs and the incubation 

medium (serum-free or serum-containing). In addition the effects of an external 

magnetic field on the particle uptake into astrocytes will be investigated. Iron uptake 

will be confirmed by measurement of the cellular iron content, by cellular staining for 

iron and by electron microscopy. Furthermore, co-incubations of cells with IONPs and 

endocytosis inhibitors will be performed to investigate an involvement of endocytotic 

mechanisms in IONP-uptake. Finally, after transient loading of the cells with IONPs, 

the long-time consequences of the presence of IONPs in astrocytes will be investigated 

by measuring several metabolic parameters like lactate export, cellular GSH/GSSG-

ratio, presence of ROS and upregulation of cellular ferritin. These investigations will 

provide experimental data on the reactivity and biocompatibility of IONPs in astrocytes 

and whether cultured astrocytes are able to liberate low molecular weight iron from 

accumulated IONPs. 
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diploma thesis of M. Geppert. 
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Abstract 

Iron oxide nanoparticles (IONPs) are considered for various diagnostic and therapeutic 

applications. Such particles are able to cross the blood-brain barrier and are taken up 

into brain cells. To test whether serum components affect properties of IONPs and/or 

their uptake into brain cells, we have incubated dimercaptosuccinate-coated magnetic 

IONPs without and with fetal calf serum (FCS) and have exposed cultured brain 

astrocytes with IONPs in the absence or presence of FCS. Incubation with FCS caused a 

concentration-dependent increase in the average hydrodynamic diameter of the particles 

and of their zeta-potential. In presence of 10% FCS the diameter of the IONPs was 

increased from 57 ± 2 nm to 107 ± 6 nm and the zeta-potential of the particles from -22 

± 5 mV to -9 ± 1 mV. FCS affected also strongly the uptake of IONPs by cultured 

astrocytes. The efficient time- and temperature-dependent cellular accumulation of 

IONPs was lowered with increasing concentration of FCS by up to 90%. In addition, in 

the absence of serum, endocytosis inhibitors did not alter the IONP accumulation by 

astrocytes, while chlorpromazine or wortmannin lowered significantly the accumulation 

of IONPs in the presence of FCS, suggesting that clathrin-mediated endocytosis and 

macropinocytosis are involved in astrocytic IONP uptake from serum-containing 

medium. These data demonstrate that presence of FCS strongly affects the properties of 

IONPs as well as their accumulation by cultured brain cells. 

 

Key words:  

albumin, brain, endocytosis, fetal calf serum, IONPs 

 

Abbreviations: ANOVA, analysis of variance; BSA, bovine serum albumin, DMEM, Dulbecco’s 

modified Eagle’s medium; DMSA, dimercaptosuccinic acid; DMSO, dimethyl sulfoxide; EIPA, 5-(N-

ethyl-N-isopropyl)amiloride; FCS, fetal calf serum; HEPES, 2-(4-(2-hydroxyethyl)-1-piperazinyl)-

ethansulfonic acid; IB, incubation buffer; IONPs, iron oxide nanoparticles; LDH, lactate dehydrogenase; 

NADH, nicotinaminde adenine dinucleotide (reduced); PBS, phosphate buffered saline; SD, standard 

deviation
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1. Introduction 

Magnetic iron oxide nanoparticles (IONPs) with various types of functionalizations are 

tools for a wide range of biomedical and therapeutical applications in the brain, such as 

targeted drug delivery (Laurent et al. 2008; Yang et al. 2011; Chertok et al. 2008), 

contrast enhancement in magnetic resonance imaging (Weinstein et al. 2010; Yang 

2010), for cell labeling (Bhirde et al. 2011; Mahmoudi et al. 2011) or treatment of 

tumors via magnetic field-mediated hyperthermia (Jordan et al. 2006; Thiesen and 

Jordan 2008). Recent studies have shown, that peripherally applied IONPs are able to 

cross the blood brain barrier (Wang et al. 2010). Since astrocytes cover with their 

endfeet almost completely the brain capillaries, they have a strategically very important 

location being the first cells that encounter substances which have crossed the blood-

brain barrier (Sofroniew and Vinters 2010). In the brain, astrocytes outnumber neurons 

almost fivefold (Sofroniew and Vinters 2010) and have many important functions, 

including the supply of metabolic nutrients (Barros and Deitmer 2010), the uptake and 

release of neurotransmitters (Eulenburg and Gomeza 2010; Parpura and Zorec 2010), 

the regulation the cytosolic redox potential (Hirrlinger and Dringen 2010) and the 

regulation of iron homeostasis (Dringen et al. 2007).  

 

The stability and the aggregation behaviour of IONPs depend on the coating as well as 

on the composition of the incubation media (Chen et al. 2008; Eberbeck et al. 2010; 

Petri-Fink et al. 2008). Especially the proteins present in the fetal calf serum (FCS), 

which is a common component of culture media, interact with the nanoparticle surface 

and form a protein corona around the particles, thereby affecting their properties (Nel et 

al. 2009; Wiogo et al. 2011). The stabilization by FCS prevents precipitation of IONPs 

and allows efficient uptake of FCS-treated IONPs into some cell lines (Chen et al. 

2008).  

 

Several reports have demonstrated that cultured brain astrocytes take up IONPs both in 

the absence (Geppert et al. 2009; Geppert et al. 2011; Hohnholt et al. 2010; Lamkowsky 

et al. 2011) and in the presence (Pickard et al. 2011) of serum. For the serum condition, 

endocytotic mechanisms have been demonstrated to be involved in IONP uptake 

(Pickard et al. 2011), while inhibitors of endocytotic pathways did not lower IONP 



Results  Part 2 

 

 
94 

 

accumulation in the absence of serum (Lamkowsky et al. 2011). This discrepancy 

suggests that presence of serum affects the mechanisms of IONP uptake into astrocytes.  

 

A direct comparison of IONP accumulation by brain cells in absence or presence of 

serum as well as a detailed study on the consequences of the presence of serum on 

properties of IONPs have to our knowledge not been reported so far. Therefore, we 

have addressed such questions by investigating properties of dimercaptosuccinate 

(DMSA)-coated IONPs as well as their accumulation by cultured astrocytes in the 

absence or the presence of FCS. Here we report that presence of FCS strongly increases 

the size and the zeta-potential of IONPs and severely lowers the accumulation of the 

particles by cultured astrocytes. In addition, we demonstrate that endocytosis inhibitors 

lower IONP accumulation only in the presence of serum, but not in serum-free 

conditions. These data demonstrate that properties of IONPs as well as the extent of 

IONP accumulation by astrocytes and its mechanism depend strongly on the absence or 

presence of serum components. These results should be considered for experimental and 

biomedical applications of IONPs. 
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2. Materials and Methods 

2.1 Materials 

Penicillin/streptomycin solution was obtained from Biochrom (Berlin, Germany). 

Dulbecco’s modified Eagle´s medium (DMEM) was from Gibco (Karlsruhe, Germany). 

Bovine serum albumin (BSA) and NADH were purchased from Applichem (Darmstadt, 

Germany). All other chemicals of the highest purity available were from Sigma 

(Steinheim, Germany), Fluka (Buchs, Switzerland), Merck (Darmstadt, Germany) or 

Riedel-de Haen (Seelze, Germany). 96-well microtiter plates were from Nunc 

(Wiesbaden, Germany) and 24-well cell culture plates from Sarstedt (Nümbrecht, 

Germany).  

 

Magnetic iron oxide nanoparticles (IONPs) were synthesized using an earlier described 

wet chemical method that involves co-precipitation of ferrous and ferric iron in an 

alkaline environment with subsequent oxidation via nitric acid and ferric nitrate (Bee et 

al. 1995; Geppert et al. 2009). To disperse the synthesized IONPs in the incubation 

buffers used, they were coated with dimercaptosuccinic acid (DMSA) as described 

earlier (Fauconnier et al. 1997; Geppert et al. 2011). The DMSA-coated IONPs used in 

this work consist of spherical particles with a monomodal size distribution and a mean 

hydrodynamic diameter of about 60 nm (Geppert et al. 2011). The IONP concentrations 

given represent the concentrations of total iron in the dispersions and not the 

concentration of particles. 

 

Fetal calf serum (FCS) was purchased from Biochrom (Berlin, Germany). This serum 

contained 1.33 mM phosphate as stated by the supplier. Heated FCS was obtained by 

incubation of FCS for 20 min at 90°C. Protein-free FCS was obtained by filtration of 

the FCS using Spin-X
R
6 5k MWCO concentrators (Corning, Lowell, Massachusetts) for 

20 min at 4000 g which lowered the protein content from 45.0 ± 8.6 mg/mL to 0.20 ± 

0.08 mg/mL in the filtrate.  
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2.2 Determination of particle size and zeta-potential of IONPs  

The hydrodynamic diameters of IONPs were determined by dynamic light scattering 

using the Li.S.A detector (Fraunhofer IFAM, Bremen, Germany) as described earlier 

(Geppert et al. 2011). Zeta-potential of the IONPs was determined with a Delsa™Nano 

C Analyzer (Beckmann Coulter, Krefeld, Germany).  

 

 

2.3 Cell cultures and experimental incubations 

Astrocyte-rich primary cultures were prepared from the brains of newborn Wistar rats 

as described earlier (Hamprecht and Löffler 1985). 300.000 viable cells were seeded in 

1 mL culture medium (90% DMEM, 10% FCS, 1 mM pyruvate, 20 units/mL penicillin 

G and 20 µg/mL streptomycin sulphate) in wells of 24-well cell culture plates (Sarstedt, 

Nümbrecht, Germany) and the medium was changed every seventh day. For 

experiments, cultures at an age between 15 and 22 days were used.  

 

Cells in 24-well dishes were washed twice with 1 mL pre-warmed (37°C) or ice-cold 

(4°C) incubation buffer (IB: 20 mM HEPES, 145 mM NaCl, 1.8 mM CaCl2, 5.4 mM 

KCl, 1 mM MgCl2, 5 mM glucose, adjusted to pH 7.4 at the desired temperature) and 

then incubated with 1 mL IB containing 0 or 1 mM IONPs and the indicated amounts of 

FCS and/or other compounds as indicated in the figures and tables. After incubation, the 

media were collected and the cells were washed twice with 1 mL ice-cold phosphate 

buffered saline (PBS: 10 mM potassium phosphate buffer pH 7.4, containing 150 mM 

NaCl). Dry cells were stored frozen until further investigation of their iron and protein 

contents. 

 

 

2.4 Determination of cell viability, protein content and iron content 

Cell viability was assessed by measuring the extracellular activity of lactate 

dehydrogenase (LDH) as previously described (Dringen et al. 1998) with the 

modification that 30 µL of incubation buffers and/or lysates were used in the assay. 

Protein contents were determined with the Lowry method (Lowry et al. 1951) using 

bovine serum albumin as a standard. Iron was quantified using the previously published 
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ferrozine-based iron assay (Riemer et al. 2004) which was slightly modified for the 

quantification of iron from IONPs (Geppert et al. 2009). 

 

 

2.5 Presentation of data 

If not stated otherwise, all experiments were performed at least three times, the cell 

experiments on three individually prepared cultures. The data given in the figures and 

the tables represent mean values ± standard deviation (SD). Statistical analysis for two 

sets of data was performed using the t-test. Analysis between groups of data was 

performed using ANOVA with the Bonferroni post hoc test. p>0.05 was considered as 

not significant. 
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3. Results  

3.1 Effects of FCS on properties of IONPs 

The synthesized DMSA-coated IONPs used in the present study had a monomodal size 

distribution with an average hydrodynamic diameter of 57 ± 2 nm. Incubation of IONPs 

with FCS for 4 h strongly increased the diameter of the particles as indicated by the 

shift in the size distribution curve (Fig. 1a) and by the increase in average diameter (Fig. 

1b) compared to IONPs incubated without FCS. While FCS in a low concentration of 

1% increased the mean hydrodynamic particle diameter to a maximal value of 207 ± 6 

nm, higher concentrations of FCS were less efficient to increase the diameter of the 

particles (Fig. 1b). IONPs that had been incubated in presence of 10% FCS had an 

average diameter of 107 ± 6 nm (Fig. 1b). 

 

Dispersed in serum-free incubation buffer, DMSA-coated IONPs have a zeta-potential 

of -26 ± 3 mV (Geppert et al. 2011). This value was not significantly altered by 

incubation of the particles for 4 h in IB as demonstrated by the detection of a zeta-

potential of -22 ± 5 mV (Fig. 1c). However, incubation of the particles in serum-

containing IB increased the zeta-potential significantly in a concentration-dependent 

manner. While incubation with 1% FCS increased the zeta-potential already 

significantly to -12 ± 1 mV, a treatment of the particles with 10% FCS increased the 

zeta-potential further to -9 ± 1 mV (Fig. 1c). 

 

 

3.2 Presence of serum lowers the accumulation of IONPs by astrocytes 

Cultured astrocytes are known to efficiently accumulate IONPs under serum-free 

incubation conditions (Geppert et al. 2011). To test for the consequences of the presence 

of FCS on the accumulation of IONPs by cultured astrocytes, the cells were incubated 

for up to 6 h with 1 mM iron as IONPs without (control) or with 1, 3 or 10% FCS (Fig. 

2). None of these conditions caused any significant increase in extracellular LDH 

activity (Fig. 2c), indicating that the viability of the cells was not compromised under 

the conditions used. In the absence of FCS, the specific cellular iron content increased 

within 6 h from an initial value of 12 ± 4 nmol/mg protein to 1717 ± 86 nmol/mg (Fig. 

2a). This increase in specific iron content was substantially lowered, if the cells were 
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incubated with IONPs in presence of FCS, as clearly demonstrated by specific iron 

contents of 756 ± 96 (1% FCS), 439 ± 33 (3% FCS) and 234 ± 26 (10% FCS) nmol/mg 

protein that were determined after 6 h of incubation. For all these conditions a rapid 

initial increase of cellular iron was observed for the first 15 min of incubation, after 

which the iron accumulation remained almost linear for up to 6 h.  From these linear 

increases between 15 min and 6 h, iron accumulation rates were calculated (Fig. 2b). In 

absence of FCS, the cells accumulate IONPs with a rate of 215 ± 30 nmol iron/(h × mg 

protein). This accumulation rate was significantly lowered in presence of FCS by 58%, 

80% and 89% to 90 ± 6 (1% FCS), 44 ± 3 (3% FCS) and 24 ± 4 (10% FCS) nmol 

iron/(h × mg protein), respectively (Fig. 2b). 

 

To investigate the concentration-dependent effects of FCS on IONP accumulation in 

more detail, the cells were incubated for 4 h with 1 mM IONPs in presence of different 

concentrations of FCS. To discriminate between cell-associated and internalized IONPs 

these incubations were performed at 37°C and at 4°C, since IONP internalization is 

prevented during incubation at 4°C (Geppert et al. 2011). None of the incubation 

conditions used caused a loss in cell viability as indicated by the absence of any 

significant increase in extracellular LDH activity (data not shown). If cells were 

incubated with IONPs at 37°C in the absence of FCS, their cellular iron content 

increased during 4 h to 1412 ± 128 nmol/mg protein (Fig. 3a). This value was 

significantly lowered in a concentration-dependent manner by presence of FCS during 

the incubation, resulting in as little as 171 ± 4 nmol iron/mg protein after incubation of 

the cells with IONPs at 37°C with 10% FCS (Fig. 3a). Compared to the 37°C 

conditions, incubation of astrocytes with IONPs at 4°C resulted in significantly 

(p<0.05) lower cellular iron contents for both the serum and serum-free conditions (Fig. 

3a). The data obtained for cellular iron contents of cells incubated at 4°C ranged 

between 679 ± 146 nmol/mg (incubation without FCS) and  65 ± 9 nmol/mg (presence 

of 10% FCS) (Fig. 3a). The amount of cell-associated iron detected at 4°C accounted 

for all serum concentrations applied to about 40-50% of the amount of cellular iron 

determined for cells that had been incubated with IONPs at 37°C. The differences 

between the cellular iron contents obtained after incubation at 37°C and at 4°C (Fe-

values) represent the amounts of internalized IONPs (Geppert et al. 2011). These values 
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demonstrate that FCS caused a concentration-dependent decrease in the amount of 

internalized IONPs (Fig. 3b). 

 

Investigation of the concentration-dependent effect of FCS on the hydrodynamic 

particle diameter in the supernatant of cells exposed to 1 mM IONPs at 37°C (Fig. 3c) 

revealed a maximally elevated average diameter for IONP that had been incubated with 

cells in presence of around 1% FCS (Fig. 3c). In contrast, compared to the control 

condition (absence of FCS) incubation in presence of 10% FCS did not increase the 

hydrodynamic diameter of the IONPs. For both the control conditions (absence of FCS) 

as well as for the serum conditions the IONPs in the medium of cells had a substantially 

increased diameter (Fig. 3c) compared to the values obtained for respective incubations 

in the absence of cells (Fig. 1b). The average hydrodynamic diameter of IONPs in IB 

without, with 1% serum and with 10% serum increased significantly during incubation 

with cells from 57 ± 2 to 173 ± 9 nm, from 207 ± 6 to 231 ± 3 nm and from 107 ± 6 to 

140 ± 10, respectively (Figs. 1B and 3C). 

 

 

3.3 Effects of endocytosis inhibitors on the cellular IONP accumulation 

IONP exposed astrocytes contain IONPs in intracellular vesicles (Geppert et al. 2011; 

Pickard et al. 2011), suggesting that endocytotic pathways are involved in IONP uptake. 

To investigate the mechanism of the IONP uptake in absence or presence of FCS, 

cultured astrocytes were incubated for 4 h with 1 mM IONPs in the absence or the 

presence of 10% FCS and/or compounds that have been described to affect endocytotic 

pathways (Dausend et al. 2008; Greulich et al. 2011; Huth et al. 2006; Luther et al. 

2011; Pickard et al. 2011; Rejman et al. 2004) (Tab. 1). None of the conditions applied 

caused a loss in cell viability, as indicated by the absence of any significant increase in 

the extracellular LDH activity (Tab. 1). In absence of endocytosis inhibitors, the cellular 

iron contents increased within 4 h incubation in the absence and presence of 10% FCS 

to about 1300 nmol/mg and 180 nmol/mg, respectively, as expected from the data 

presented in Figs. 2 and 3. These values were significantly lowered by incubation at 4°C 

for both the serum-free and the serum condition by 50 to 70% compared to the values 

obtained for the respective 37°C conditions (Tab. 1). While during incubation with 

IONPs in the absence of serum none of the applied endocytosis inhibitors altered 
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significantly the cellular iron content, the IONP accumulation in presence of serum was 

significantly lowered by chlorpromazine and wortmannin. IONP accumulation in the 

presence of serum was not affected by 3-methyladenine, but a 20% reduction in iron 

accumulation was observed in presence of EIPA, although this alteration did not reach 

the level of significance. Compared to controls, the application of a mixture of 

chlorpromazine, wortmannin and EIPA lowered IONP accumulation by about 50% in 

presence of 10% FCS, but did not affect IONP accumulation by astrocytes incubated 

under serum-free conditions (Tab. 1). 

 

 

3.4 Effects of serum proteins on the diameter of IONPs and on their 

accumulation by astrocytes 

To elucidate whether the proteins in FCS may be responsible for the observed effects of 

FCS on properties of IONPs and on their accumulation by cells, cultured astrocytes 

were incubated for 4 h with 1 mM IONP in IB containing untreated FCS or FCS that 

had either been heated to denature proteins or had been filtered to remove proteins. 

Alternatively, to test for protein-dependent effects the cells were exposed to IONPs in 

presence of the proteins BSA or ovalbumin. None of the conditions used caused any 

loss in cell-viability as indicated by the absence of any increase in extracellular LDH 

activity (Tab. 2). Presence of protein-free FCS during the incubation of astrocytes with 

1 mM IONPs caused aggregation and precipitation of the particles as demonstrated by 

the strong increase in their hydrodynamic diameter (Tab. 2). Under this condition, the 

lowering effect of FCS on the accumulation of IONPs by astrocytes was completely 

abolished (Tab. 2). In contrast, denaturing of proteins by heating increased the particle 

diameter only to a small extent and did not prevent the inhibitory potential of FCS on 

IONP accumulation (Tab. 2). Similarly, BSA and ovalbumin, if applied in 

concentrations corresponding to the total protein content present in the 10% FCS 

condition, did not significantly alter the diameter of the particles compared to controls 

(none), but significantly lowered IONP accumulation by astrocytes, to values similar to 

those found after treatment with 10% FCS (Tab. 2).  
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Figure 1: Effects of FCS on the hydrodynamic diameter (a,b) and on the zeta-
potential (c) of IONPs. 1 mM iron as IONPs was incubated for 4 h at 37°C with IB 
containing the indicated concentrations of FCS before the hydrodynamic particle 
diameter (a,b) and the zeta-potential (c) were determined. Stars in b and c indicate the 
significance of differences between the controls (absence of FCS) and the FCS-
containing conditions with *p<0.05, **p<0.01 and ***p<0.001. 
 

  



Part 2  Results 

 

 
103 

 

 

Figure 2: Time dependence of the iron accumulation from IONPs in cultured 
astrocytes. The cells were incubated for up to 6 h with 1 mM iron as IONPs in 
presence of the indicated concentrations of FCS. The cellular iron content (a) and the 
extracellular LDH activity after 6 h (c) were measured. The iron accumulation rates (b) 
were calculated from the almost linear increases of the cellular iron contents between 
15 min and 6 h. In b, the significance of differences of data compared to the control 
(absence of FCS) is indicated with ***p<0.001. 
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Figure 3: Serum- and temperature-dependence of the iron accumulation from 
IONPs by cultured astrocytes and of the hydrodynamic diameter of the particles. 
The cells were incubated for 4 h with 1 mM iron as IONP in IB containing the indicated 
concentrations of FCS at 37°C or at 4°C. The cellular iron content (a) was measured, b 
shows the difference of the cellular iron contents obtained after incubation of cells at 
37°C minus that at 4°C, and c gives the average hydrodynamic diameter of the IONPs 
in the supernatant. In a and b, the values obtained for all serum-treated samples were 
significantly (p<0.05) lower than those measured for the control (absence of serum). In 
a, the values obtained for all 4°C incubations were significantly lower (p<0.05) than 
those for the respective 37°C conditions. In c, the significance of differences of data 
compared to the control (absence of FCS) is indicated with *p<0.05, **p<0.01 and 
***p<0.001. 

 



Part 2  Results 

 

 
105 

 

 

  



Results  Part 2 

 

 
106 

 

 

 

  



Part 2  Results 

 

 
107 

 

4. Discussion 

4.1 Alteration of IONP properties by serum  

Presence of serum causes substantial alterations of the properties of IONPs as clearly 

demonstrated by the concentration-dependent increases in the average hydrodynamic 

diameter as well as of the zeta-potential of the particles. The negative zeta-potential of 

-22 mV of DMSA-coated IONPs in serum-free IB indicates a negatively charged 

surface, as expected from the carboxyl groups of the DMSA-coat (Fauconnier et al. 

1997). The increase in zeta potential to -9 ± 1 mV in presence of FCS demonstrates a 

loss of negative charges from the surface, which is likely to be a consequence of 

adsorption of proteins on the IONP surface which form a protein corona around the 

particles (Lynch and Dawson 2008; Nel et al. 2009; Wiogo et al. 2011). DMSA forms a 

cage-like structure around IONP (Fauconnier et al. 1997; Valois et al. 2010) that is 

crosslinked by disulfide bridges and has carboxylate and thiol groups at the surface. 

Thus, in addition to electrostatic interactions between positive surface charges of serum 

proteins with the carboxylate groups of the DMSA-coat, also disulfide bridge formation 

between thiol and disulfide groups of DMSA-coat and proteins may be involved in the 

binding of a protein layer around DMSA-coated IONPs that caused the positivation of 

their zeta-potential in presence of FCS. Although already as little as 1% FCS 

substantially increased the zeta-potential of the particles, a further positivation of the 

potential was observed by increasing the FCS concentration to up to 10%, indicating 

that coverage of the particles by serum proteins was not complete in presence of low 

serum concentrations. 

 

In contrast to the continuous increase of the zeta-potential with increasing 

concentrations of FCS, the dependence of the IONP diameter on the FCS concentration 

followed a bell shaped curve that showed a maximal particle diameter in the presence of 

around 1% FCS. This behaviour is likely to be a consequence of the simultaneous 

presence of compounds in the serum-containing medium that stabilize IONPs and/or 

induce their aggregation, i.e., ions that cause particle agglomeration and proteins that 

stabilize nanoparticles (Lynch and Dawson 2008; Wiogo et al. 2011). The proteins in 

FCS have been discussed to stabilize IONPs by preventing their interactions with low 

molecular weight ions that cause aggregation and precipitation of IONPs (Wiogo et al. 
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2011). This view of a stabilizing function of serum proteins is strongly supported by the 

observation that removal of the proteins from FCS by filtration caused immediate 

aggregation of IONPs. Since incubation media contain large concentrations of salt ions, 

a given threshold amount of protein is required to stabilize the IONPs against 

aggregation, explaining that at least 4% serum is required to stabilize carboxyl-

functionalized IONPs (Wiogo et al. 2011) and that presence of 10% FCS prevented at 

least in part the increase in diameter of IONPs that was observed for the 1% FCS 

condition. This explanation is also in accord with the observation that presence of 1% 

FCS does not lead to a maximal increase in zeta-potential. Thus, with 1% FCS protein 

coverage appears not to be maximal and presence of higher amounts of serum protein 

will improve the coverage, thereby shielding the particles away from ions and at least in 

part prevent interactions between particles and aggregation. 

 

During incubation of cells with DMSA-coated IONPs both in absence and presence of 

serum, the average diameter of the particles in the incubation buffer was significantly 

increased, confirming literature data (Geppert et al. 2011; Lamkowsky et al. 2011). 

Thus, compounds released from astrocytes are likely to induce some aggregation of the 

particles. Since the average hydrodynamic diameter of serum-treated IONPs was 

significantly higher after incubation with cells compared to control incubations without 

cells, the aggregation induced by cell-derived factors appears not to be abolished by 

high serum concentrations.  

 

 

4.2 Presence of serum affects the accumulation of IONPs by cultured 

astrocytes 

Viable cultured astrocytes have the capacity to accumulate large amounts of DMSA-

coated IONPs which increases the specific cellular iron content 100fold, confirming 

literature data (Geppert et al. 2011; Lamkowsky et al. 2011). This efficient IONP 

accumulation was severely affected by the presence of FCS. Serum lowered the increase 

in cellular iron content by almost 90%, if the cells were incubated with IONPs in 

presence of 10% FCS. This observation is consistent with recent literature data, 

demonstrating that presence of serum lowered also the uptake of negatively charged 

carboxyl-modified polystyrene nanoparticles into macrophages (Lunov et al. 2011).  
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Of the various components present in serum, the proteins are most likely to be 

responsible for the lowering of IONP accumulation in astrocytes, since removal of the 

proteins from FCS abolished the FCS-mediated reduction in IONP accumulation. Since 

albumin is the predominant protein in FCS and known to bind to the surface of IONPs 

mainly by electrostatic interactions (Yang et al. 2009), this protein is highly likely to 

bind to the particle surface, thereby lowering the uptake of IONPs by astrocytes. Indeed, 

application of pure BSA also lowered astrocytic IONP accumulation by 70%, 

confirming literature data reported for HeLa cells (Wilhelm et al. 2003). It is unlikely 

that the observed FCS-induced inhibition of IONP uptake is a specific property of 

albumin, since presence of the unrelated protein ovalbumin lowered IONP accumulation 

to a similar extent. However, the mixture of proteins present in FCS appears to be even 

more efficient to lower IONP accumulation by astrocytes than an identical 

concentration of pure BSA, suggesting that other serum proteins than BSA are 

modulating IONP surface properties and cellular uptake. This is consistent with a recent 

report describing that other serum-proteins bind more strongly to the surface of IONPs 

than BSA (Wiogo et al. 2011). 

 

Potential reasons for the drastic inhibition of astrocytic IONP-uptake by FCS could be 

the altered surface charge that enables the particles to efficiently bind to cell membranes 

as well as the increased size of the particles in presence of serum. The positive or 

negative surface charge of nanoparticles is considered to play a major role in their 

interaction with cell membranes and in their cellular uptake (Chen et al. 2011; Yue et al. 

2011). For the conditions used here, the FCS-mediated lowering of the negative surface 

charge is likely to reduce the binding of IONPs to the cells, thereby slowing also their 

uptake. Indeed, both the adsorbance of IONPs to the cells, determined as cellular iron 

content after incubation at 4°C, as well as the internalization of the particles, as 

calculated as difference of the iron values determined for cells that had been exposed to 

IONPs at 37°C and at 4°C (Geppert et al. 2011), were lowered by the same factor, 

supporting the view that binding and uptake of IONPs are simultaneously lowered in 

presence of FCS.  
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Since nanoparticle size can influence their uptake into cells (Huang et al. 2010), also the 

increased size of FCS-treated IONPs could contribute to the observed reduction in 

IONP uptake in presence of serum. However, the diameter of DMSA-coated IONPs 

increased also rapidly in serum-free incubation buffer due to factors released from the 

cells (Geppert et al. 2011; Lamkowsky et al. 2011). In addition, presence of 10% FCS 

lowered the IONP accumulation by astrocytes much stronger than presence of 1% FCS, 

although the particle diameter determined for 10% FCS was only half of that of 

particles incubated with 1% FCS. Thus, the increased size of FCS-treated IONPs 

appears not to substantially contribute to the lower IONP accumulation from serum-

containing medium compared to serum-free conditions.  

 

 

4.3 Effects of endocytosis-inhibitors on IONP accumulation by cultured 

astrocytes 

After incubation of astrocytes with IONPs the particles are present in intracellular 

vesicles (Geppert et al. 2011). This suggests that IONPs are taken up into astrocytes by 

endocytotic pathways. Indeed, for serum-containing incubation conditions some 

endocytosis inhibitors lowered significantly the uptake of IONPs, confirming previous 

results on the uptake of fluorescent IONPs in serum-containing medium (Pickard et al. 

2011). The partial inhibition of IONP accumulation in serum-containing medium by 

wortmannin and chlorpromazine, which are known inhibitors for macropinocytosis and 

clathrin-mediated endocytosis (Greulich et al. 2011; Huth et al. 2006), respectively, as 

well as the additive effects observed for a mixture of different endocytosis inhibitors 

indicate that more than one endocytotic pathway is involved in IONP uptake by 

astrocytes. This view is supported also by recent results on the uptake of silver 

nanoparticles into cultured astrocytes in serum-containing medium, which appears to 

involve macropinocytosis and the endosomal pathway (Luther et al. 2011). In contrast, 

for serum-free conditions none of the endocytosis inhibitors applied here or previously 

(Lamkowsky et al. 2011) lowered astrocytic IONP accumulation. Thus, in addition to 

the known endocytotic pathways which appear to be predominately involved in the 

uptake of serum-treated IONPs in astrocytes, another quantitatively very efficient 

mechanism of uptake for IONPs appears to be present in astrocytes that mediates most 

of the uptake of IONPs in absence of serum. 
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4.4 Conclusions 

Presence of serum strongly affects the properties and the accumulation of IONPs by 

cultured astrocytes. Although protein components of serum stabilize IONPs in 

dispersion, they also increase the diameter of the particles, strongly lower the rate of 

accumulation and alter the mechanisms involved in IONP uptake. These serum effects 

highlight the importance of clearly defined experimental conditions to understand and 

predict IONP accumulation by cells. In addition, these data are of high relevance for the 

interpretation and comparison of literature data on consequences of a treatment of 

cultured cells with IONPs. For the in vivo situation, our data suggest that IONPs applied 

to the blood are likely to be strongly affected by the presence of serum components. 

Since peripherally applied IONPs can cross the blood-brain barrier (Wang et al. 2010), 

brain cells are likely to encounter IONPs that carry serum proteins which may also in 

vivo lower their uptake into brain cells. Such a scenario should be considered for the 

development of further strategies to apply IONPs to the brain or to brain cells for 

experimental or medical reasons. 
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Abstract  

To investigate the cellular consequences of a prolonged cellular presence of large 

amounts of iron oxide nanoparticles (IONPs) as well as the fate of such particles in 

brain cells, cultured primary astrocytes were loaded for 4 h with dimercaptosuccinate-

coated IONPs. Subsequently, the IONP-treated cells were incubated for up to 7 d in 

IONP-free medium and the cell viability, metabolic parameters as well as the iron 

metabolism of the cells were investigated. Despite of an up to 100-fold elevated specific 

cellular iron content, IONP-loaded cells remained viable throughout the 7 d main 

incubation and did not show any substantial alteration in glucose and glutathione 

metabolism. During the incubation the high cellular iron content of IONP-loaded 

astrocytes remained almost constant. Electron microscopy revealed that after 7 d of 

incubation most of the cellular iron was still present in IONP-filled vesicles. However, 

the transient appearance of reactive oxygen species as well as a strong increase in 

cellular levels of the iron storage protein ferritin suggest that at least some low 

molecular weight iron was liberated from the accumulated IONPs. These results 

demonstrate that even the prolonged presence of large amounts of accumulated IONPs 

does not harm astrocytes and that these cells store IONP-derived iron in ferritin. 

 

Key words: 

brain; ferritin; glutathione; iron metabolism; oxidative stress  
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1. Introduction 

Due to their small size and their magnetic properties iron oxide nanoparticles (IONPs) 

are considered for a wide range of therapeutical and biological applications, for example 

as tool for magnetic hyperthermia, as contrast agent in magnetic resonance imaging 

(MRI), for cell labelling or for targeted drug delivery [1-6]. Also for neurobiological 

applications IONPs are considered as promising tool [7, 8]. Although IONPs have been 

shown to enter the brain by either crossing the blood-brain barrier [9] or by the olfactory 

neuronal pathway [10], little is currently known on the acute or chronic consequences of 

a presence of IONPs in brain cells. IONPs which have crossed the blood-brain barrier 

will encounter astrocytes as first parenchymal brain cells, since these cells cover with 

their endfeet almost completely the brain capillaries [11]. 

 

Astrocytes are of special interest regarding the uptake and metabolism of IONPs, since 

these cells are known to take up IONPs in vivo [12, 13] and in vitro [14-18] and since 

astrocytes are considered to play an important role in the iron homeostasis of the brain 

[19]. Astrocytes are the most abundant cell type in the brain [20] and have a variety of 

important functions in brain, including the supply of metabolic nutrients to neurons and 

the protection of the brain against metal toxicity and oxidative stress [21-23].  

 

The acute consequences of an exposure of cultured astrocytes for a few hours to IONPs 

have recently been described. Primary viable astrocytes efficiently accumulate IONPs in 

a time-, concentration- and temperature-dependent manner [14-18]. Fluorescence and 

electron microscopy revealed that IONP-exposed astrocytes contain accumulated 

IONPs in intracellular vesicles, but showed also that substantial amounts of IONPs are 

attached extracellularly to the cell membrane [14-16, 18]. These observations as well as 

the reported reduction of IONP accumulation by endocytosis inhibitors [18] suggest that 

endocytotic processes are involved in the uptake of IONPs by astrocytes.  

 

In brain, IONPs applied acutely for therapeutical and analytical purposes such as cancer 

treatment via hyperthermia [5, 24] or MRI [8] remain at the sites of instillation and are 

taken up by phagocytic cells and astrocytes where they are detectable at least for up to 7 

d [12, 13]. Although molecular interactions of IONPs with cells and within cells have 

raised concerns for potential long-term effects of IONPs [25, 26] and of IONP-derived 



Results  Part 2 

 

 
122 

 

iron [27, 28], the consequences of a prolonged presence of IONPs on metabolism and 

functions of brain cells have to our knowledge not been reported so far. To address such 

questions, we have loaded cultured astrocytes with IONPs and have subsequently 

monitored for a prolonged incubation of up to 7 d in IONP-free media the cell viability 

and several metabolic parameters including the iron metabolism.  

 

IONP-loaded astrocytes which contained up to 100fold elevated specific iron contents 

compared to untreated cells remained viable during 7 d of incubation and contained 

large amounts of IONPs in intracellular vesicles. However, the transient increase in the 

production of reactive oxygen species (ROS) and the strong upregulation of the iron 

storage protein ferritin suggest that some iron was released from the vesicular IONPs 

into the cytosol. The data presented here demonstrate that cultured astrocytes cope very 

well even for a prolonged time with large amounts of intracellular IONPs that had been 

accumulated during a short bolus application of IONPs. 
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2. Materials and Methods 

2.1 Materials 

Dulbecco’s modified Eagle’s medium (DMEM) was from Gibco (Karlsruhe, Germany). 

Fetal calf serum (FCS) and penicillin/streptomycin solution were obtained from 

Biochrom (Berlin, Germany). Bovine serum albumin and NADH were purchased from 

Applichem (Darmstadt, Germany). The goat anti-L-ferritin antibody and horseradish 

peroxidase-conjugated anti-goat-IgG were obtained from Dianova (Hamburg, 

Germany). All other chemicals of the highest purity available were obtained from 

Merck (Darmstadt, Germany), Sigma (Steinheim, Germany), Fluka (Buchs, 

Switzerland), or Riedel-de Haen (Seelze, Germany). 24-well cell culture plates were 

from Sarstedt (Nümbrecht, Germany), 96-well microtiter plates and 6 cm dishes from 

Nunc (Wiesbaden, Germany).  

 

 

2.2 Iron oxide nanoparticles 

Dimercaptosuccinic acid (DMSA)-coated magnetic iron oxide nanoparticles (IONPs) 

with a core-size of about 10 nm in diameter were synthesized in a wet chemical process 

and characterized as described earlier [14, 15]. Dispersed in incubation buffer (IB; 20 

mM HEPES, 145 mM NaCl, 1.8 mM CaCl2, 5.4 mM KCl, 1 mM MgCl2, 5 mM 

glucose, adjusted to pH 7.4), DMSA-coated IONPs have an average hydrodynamic 

diameter of 60 nm and a zeta-potential of -26 mV [15]. The given concentrations of 

IONPs represent the concentrations of iron in the IONP-dispersion and not the 

concentration of particles. 

 

 

2.3 Cell cultures and experimental incubation 

Astrocyte-rich primary cultures were prepared from the brains of newborn Wistar rats 

according to a published method [29]. For Western blot experiments, 3 000 000 viable 

cells were seeded in 5 mL culture medium (90% DMEM, 10% FCS, 1 mM pyruvate, 20 

U/mL penicillin G and 20 µg/mL streptomycin sulfate) in 6 cm dishes. For all other 

experiments, 300 000 viable cells were seeded in 1 mL culture medium in wells of 24-

well dishes. For electron microscopy, the cells were seeded on Aclar film (EMS, 
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Hatfield, PA, USA) in wells of 24-well dishes. Cells were cultured at 37°C in a 

humidified atmosphere with 10% CO2 in a cell incubator (Sanyo, Osaka, Japan) and the 

medium was renewed every 7
th

 day. Experimental incubations were performed on 

cultures at an age between 15 and 21 days. 

 

To load cells with IONPs, the cells were washed twice with 1 mL (24-well plates) or 5 

mL (6 cm dishes) sterile filtered pre-warmed (37°C) IB, and than loaded for 4 h at 37°C 

in a humidified atmosphere of a CO2-free incubator in 1 mL (24-well plates) or 5 mL (6 

cm dishes) IB containing IONPs in the indicated concentrations. After 4 h of IONP-

exposure, the incubation media were collected, the cells were washed twice with 1 mL 

(24-well plates) or 5 mL (6 cm dishes) culture medium and subsequently incubated in 

culture medium for further 20 h (1 d), 68 h (3 d) or 164 h (7 d). At the indicated time-

points, the incubation media were collected and the cells were washed twice with ice-

cold phosphate-buffered saline (PBS: 10 mM potassium phosphate buffer, containing 

150 mM NaCl, pH 7.4) for analysis of cellular compounds.  

 

 

2.4 Determination of cell viability and protein content 

Cell viability was assessed by determining the activity of lactate dehydrogenase (LDH) 

and the cellular accumulation of Neutral Red (NR). Cellular and extracellular LDH 

activities were determined as previously described [30] and extracellular LDH activities 

were expressed as percentage of total (cellular + extracellular) LDH activity. NR 

accumulation was measured as recently described [31] and is expressed as percent of 

the specific initial NR uptake. Cellular protein contents were determined according to 

the Lowry method [32] using bovine serum albumin as a standard. 

 

 

2.5 Determination of iron, glutathione and lactate contents 

Iron contents of cells and media samples were quantified using a ferrozine-based iron 

assay [33] which was slightly modified for the quantification of iron from IONPs [14]. 

Total cellular glutathione (GSx = amount of glutathione (GSH) plus twice the amount of 

glutathione disulfide (GSSG)) and GSSG contents were determined using the 

colorimetric Tietze method [34] which was adapted to microtiter plates [35]. For all 
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conditions investigated here, the cellular GSSG content remained in the range of the 

detection limit of the assay used. Extracellular lactate contents were measured as 

previously described [36, 37] with the modification that 5 µL of media samples were 

used for determination. 

 

 

2.6 Staining for reactive oxygen species 

Intracellular reactive oxygen species were detected by a modification of a recently 

published method [38]. Briefly, after the experimental incubation cells were washed 

twice with IB at 37°C and subsequently incubated in 0.5 mL IB containing 5 µg/mL 

dihydrorhodamine 123 for 30 min at 37°C. Subsequently, the cells were washed twice 

with IB and fixed with 4% (w/v) paraformaldehyde in 0.1 M potassium phosphate 

buffer (pH 7.2). After washing three times with PBS, the cells were analyzed for 

fluorescence using a Nikon (Düsseldorf, Germany) TS2000U microscope.  

 

 

2.7 Western blotting and transmission electron microscopy (TEM) 

The cellular content of the ferritin protein was determined by Western blotting as 

described recently [38]. Briefly, cells incubated on 6 cm dishes were scraped off and 

centrifuged for 1 min at 12 000g. The cell pellet was lysed in water and 40 µg lysate 

protein was separated on a 12.5% polyacrylamide gel and subsequently electroblotted to 

a nitrocellulose membrane. The membranes were incubated overnight at 4°C with goat 

anti-L-ferritin antibody (1:500) in TBST (10 mM Tris-HCl, 150 mM NaCl, 0.1% (w/v) 

Tween 20, pH 7.3) containing 5% (w/v) milk powder. After washing three times with 

TBST, the membrane was exposed to horseradish peroxidase-conjugated anti-goat-IgG 

(1:10 000) diluted in TBST/5% milk powder for 1 h at room temperature. The 

membranes were washed three times with TBST and protein bands were visualized by 

enhanced chemiluminescence (GE Healthcare, Buckinghamshire, UK). 

 

The intracellular presence of IONPs was investigated by transmission electron 

microscopy (TEM) as published previously [15]. After the indicated experimental 

incubation of cells grown on Aclar film, the cells were washed twice with 1 mL PBS, 

fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer pH 7.3 for 1 h at 
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room temperature, washed trice with cacodylate buffer and postfixed with 1% (w/v) 

osmium tetroxide in cacodylate buffer for 2 h at room temperature. Dehydration was 

accomplished by incubation of the cells in solutions of increasing ethanol 

concentrations (up to 100%) followed by an incubation in acetonitrile. Finally, the cells 

were embedded in the low viscosity resin (Agar Scientific, Stansted, United Kingdom) 

and sliced with a microtome (Ultracut UCT, Leica, Germany). After staining of the 

slices with uranyl acetate and lead citrate, they were analyzed using a FEI Morgagni 

electron microscope (Eindhoven, Netherlands) operated at 80 kV.  

 

 

2.8 Presentation of data 

The data given in the figures and the table represent means ± standard deviations (SD) 

of values from at least three independent experiments that were performed on 

independently prepared cultures. Figures showing cell staining and Western blots are 

from representative experiments. Statistical analysis between groups of data was carried 

out using ANOVA with the Dunnett’s post hoc test.  
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3. Results  

3.1 Loading of astrocytes with IONPs 

To load cultured astrocytes with IONPs the cultures were exposed for 4 h to IONPs in 

concentrations of up to 4 mM iron. During the loading phase, the viability of the cells 

was not compromised as indicated by the absence of any significant increase in the 

extracellular LDH activity and by the absence of any significant loss of protein (Table 

1). Also metabolic parameters such as he NR accumulation and the specific lactate 

production by the cells during exposure to IONPs for 4 h were not significantly altered, 

while the specific GSx values were lowered in a concentration-dependent manner in 

IONP-treated cells by up to 25% for cells exposed to 4 mM IONPs (Table 1). However, 

IONP-treatment did not increase the specific content of the GSH oxidation product 

GSSG in the cells (Table 1). 

 

Exposure of astrocytes for 4 h to IONPs caused a concentration-dependent significant 

increase in the total and in the specific cellular iron contents (Table 1). The specific iron 

contents increased from 18 ± 3 nmol/mg to 366 ± 90 nmol/mg, 1086 ± 101 nmol/mg 

and 1507 ± 137 nmol/mg after application of 0.25 mM, 1 mM and 4 mM iron as IONPs, 

respectively (Table 1). TEM images of cells that had been exposed for 4 h to 4 mM 

IONPs (Fig. 1) revealed that in the cells electron-dense IONPs were almost exclusively 

found in vesicles localized close to the cell membrane (Fig. 1A,B). Most of these 

vesicles were partly filled (Fig. 1B,C) and only a few were densely filled (Fig. 1C,D) 

with IONP aggregates. High magnification revealed that the size of the individual 

particles was quite regular and most of them had diameters between 8 and 14 nm (Fig. 

1D). In addition to intracellular IONPs, electron-dense particles were attached to the 

surface of the cells either as individual particles or as particle aggregates (Fig. 1A,B) 

and were found in the space between cells (Fig. 1A) or between the cell processes (Fig. 

1C). 

 

After loading astrocytes for 4 h with IONPs, the cells were washed and subsequently 

incubated for up to 7 d in IONP-free culture medium. The following result paragraphs 

compare data obtained for IONP-loaded cells with those obtained for control cells that 

had been incubated during the loading phase without IONPs.  
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3.2 Viability of cells 

The viability of astrocytes that had been loaded with IONPs in concentrations of up to 4 

mM was not substantially compromised during the main incubation (Fig. 2). Only after 

7 d of incubation, the extracellular LDH activity was slightly but significantly elevated 

in cells treated with 1 mM or 4 mM IONPs compared to control cells (Fig. 2A). This 

was accompanied by a small but not significant increase in the total protein contents per 

well of cultures that had been treated with 1 mM or 4 mM IONPs (Fig. 2B). 

Furthermore, the ability of IONP-treated cells to accumulate NR (Fig. 2C) and to 

produce and release lactate (Fig. 2D) was not altered compared to control cells.  

 

 

3.3 IONPs and iron in cells and media 

Loading of astrocytes with 0.25 mM, 1 mM and 4 mM iron as IONPs resulted in 

specific cellular iron levels that were elevated compared to that of control cells by 20-

fold, 60-fold and 100-fold, respectively (Table 1). These cellular iron contents remained 

almost constant during the 7 d main incubation period (Fig. 3A). Compared to the initial 

values, only cells loaded with 1 mM or 4 mM IONPs showed a small but not significant 

(p>0.05) drop in the cellular iron content after the first day of incubation that was 

accompanied by a small significant (p<0.05) increase in the extracellular iron content 

(Fig. 3B). In contrast, no further alterations in cellular and extracellular iron contents 

were observed for IONP-treated cultures during incubation for more than 1 d (Fig. 

3A,B).  

 

TEM analysis of astrocytes that had been loaded with 4 mM IONPs and were 

subsequently incubated for 7 d revealed that, in contrast to cells that had been fixed 

directly after the loading with IONPs (Fig. 1), electron-dense IONPs were not 

detectable anymore extracellularly attached to the cell membrane, but were exclusively 

localized in densely packed vesicular structures (Fig. 4). The vesicular aggregates of 

IONPs had an irregular shape and contained some cell debris that was deposited 

between the particles (Fig. 4B,C). The size of the individual IONPs was regular (Fig. 

4D) and did not differ from that found for intracellular IONPs directly after loading of 

the cells with IONPs (Fig. 1D). 
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3.4 Glutathione content and ROS production 

Treatment of the cells with IONPs led to small but significant concentration-dependent 

loss in cellular GSx (Table 1). After application of culture medium to IONP-loaded 

cells, the GSx contents increased within 1 d to up to 60 nmol/mg, which was even 

higher than the initial GSx content of the cells (Fig. 3C). During longer incubation the 

specific cellular GSx contents declined to less than 30 nmol/mg during 7 d (Fig. 3C), 

but the GSx contents of the IONP-treated cultures did not differ from that of control 

cells (loading period without IONPs) (Fig. 3C). For all conditions and time points 

investigated, the specific cellular GSSG content remained lower than 2 nmol GSx/mg 

(Fig. 3D). 

 

Since cellular liberation of iron from accumulated IONPs can lead to enhanced ROS 

formation [39, 40], the occurrence of ROS was investigated for IONP-treated astrocytes 

by using the rhodamine 123 staining (Fig. 5). Control cells (loading period without 

IONPs) showed only low staining intensity for ROS during incubation of up to 7 d (Fig. 

5A-D). In contrast, a transient increase of the rhodamine 123 fluorescence signal was 

found for cells loaded with IONPs (Fig. 5E) which became even more prominent 1 d 

after exposure to the IONPs (Fig. 5F). However, 3 d or 7 d after the IONP-loading, no 

obvious difference in rhodamine 123 staining intensity was observed anymore between 

control cells (Fig. 5C,D) and cells that had been loaded with IONPs (Fig. 5G,H). 

 

 

3.5 Ferritin content of IONP-treated astrocytes 

Incubation of cultured astrocytes with low molecular weight iron induces the synthesis 

of the iron storage protein ferritin [41]. Since ferritin synthesis requires the presence of 

an excess of low molecular weight iron in cells [42], an increase in cellular ferritin 

levels in IONP-treated cells is considered as evidence that iron is liberated from 

accumulated IONPs [38]. Therefore, ferritin levels were investigated by Western 

blotting of the proteins in cell homogenates of control cells and of cells that had been 

loaded with IONPs and were subsequently incubated for up to 7 d (Fig. 6). Hardly any 

signal for ferritin was observed for untreated astrocyte cultures (0 h) and for control 

cells that had not been exposed to IONPs (Fig. 6). In contrast, a strong ferritin signal 
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was observed for IONP-treated astrocytes already 1 d after exposure to IONPs and the 

signal was even further intensified after incubation for 3 d or 7 d (Fig. 6).  
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Figure 1: TEM images of cultured astrocytes after loading IONPs for 4 h. A: Cross 
section through the cell-monolayer shows IONPs on the cellular surface (arrows), 
between cells (curved arrow) and in cells (arrowheads). B: Image of a cell containing 
many vesicles with IONP aggregates. In some cases smaller vesicles seem to have 
fused (arrowheads). IONPs are also present on the surface of the cell membrane 
(arrows). C: Detail image of a cell containing large, almost empty and smaller densely 
packed (circle) vesicles. Note the IONPs between the cell processes of one or several 
cells (arrows). D shows the densely IONP-packed vesicles in high magnification. The 
scale bars represent 5 (A), 1 (B,C) and 0.1 (D) µm. 
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Figure 2: Effects of IONPs on cell viability and lactate production by astrocytes. 
The cells were loaded for 4 h with IONPs in the indicated (A) concentrations and then 
incubated in culture medium for up to 7 d. The extracellular LDH activity (A), the 
cellular protein content (B), the NR accumulation (C) and the lactate production (D) 
were determined. The initial values of protein content and NR accumulation are given 
in Table 1 and are indicated by the dashed lines in B and C. Stars show the 
significance of differences compared to values obtained for controls (0 mM IONPs) with 
**p<0.01. 
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Figure 3: Effects of IONPs on the contents of iron and glutathione in astrocytes. 
The cells were loaded for 4 h with IONPs in the concentrations indicated (D) and then 
incubated in culture medium for up to 7 d. The cellular iron content (A), the extracellular 
iron content (B), the cellular GSx content (C) and the cellular GSSG content (D) were 
determined. Iron values are given as nmol per well (A,B), GSx and GSSG contents as 
specific values normalized on the cellular protein content as nmol/mg. The initial value 
for the specific cellular GSx content is given in Table 1 and is indicated by the dashed 
line in C. Stars indicate the significance of differences compared to controls (0 mM 
IONPs) with *p<0.05 and **p<0.01. 
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Figure 4: TEM images of cultured astrocytes 7 d after loading with IONPs. A: 
Cross section through the cell shows that IONPs are not anymore detectable on the 
cell surface but are exclusively accumulated in intracellular vesicles. B: Astrocyte 
containing many vesicles densely filled with IONPs and some cell debris. C: Detailed 
images of a densely packed vesicle with irregular outline (circle). D: High resolution 
image of the IONPs inside the vesicles. The scale bars represent 5 (A, B), 1 (C) and 
0.1 (D) µm. 
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Figure 5: ROS-staining of cultured astrocytes after exposure to IONPs. The cells 
were loaded for 4 h without (control) or with 4 mM IONPs and then further incubated 
without IONPs in culture medium for up to 7 d. 

 

  

control 4 mM IONPs 

4 h 

1 d 

3 d 

7 d 

A 

B 

C 

D 

E 

F 

G 

H 



Results  Part 2 

 

 
136 

 

 

 

Figure 6: Western blot for the iron storage protein ferritin. The cells were loaded 
for 4 h without (control) or with 4 mM IONPs and then incubated without IONPs in 
culture medium for up to 7 d. Cell lysates containing 40 µg protein were loaded to each 
lane, separated by electrophoresis and analyzed for ferritin content by Western 
blotting. 
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4. Discussion 

To investigate long-time consequences of a short exposure of cultured astrocytes to 

IONPs, the cells were loaded for 4 h with DMSA-coated IONPs. This treatment 

increased the specific cellular iron content by up to 100-fold, but did not compromise 

cell viability. Also basal metabolic parameters such as the accumulation of NR and the 

production of lactate by the cells were not altered during exposure to IONPs, 

demonstrating a remarkable resistance of cultured astrocytes towards any acute toxicity 

of IONPs. TEM revealed that a substantial amount of cell-associated IONPs had been 

taken up into the cells within the 4 h loading period but that another part of the IONPs 

were attached extracellularly to the cells. These data are consistent with the recently 

reported membrane adsorption and efficient internalization of IONPs by viable cultured 

astrocytes [15, 17].  

 

Treatment of cultured astrocytes with 1 mM or 4 mM IONPs caused a small but 

significant reduction in cellular GSH contents, as previously reported also for MRC-5 

cells [43] and OLN-93 cells [40] and. This loss of up to 25% of the cellular GSH after 

IONP-treatment of astrocytes is likely to be mediated by conjugation of GSH to the 

DMSA-coat of the IONPs, since only DMSA-coated IONPs, but not citrate-coated 

IONPs, lower the GSH content of OLN-93 cells [40]. The ability of DMSA-coated 

IONPs to directly react with GSH is also supported by the disappearance of detectable 

GSH, but not of GSSG, in cell-free incubations with DMSA-IONPs (data not shown), 

strongly suggesting that the thiol group of GSH reacts with the disulfide bridges that 

stabilize the DMSA-coat [44, 45] of the IONPs used in our study. The small loss in 

cellular GSH levels after IONP-loading of astrocytes was fully compensated by 

synthesis of GSH during a subsequent incubation in the amino acid-containing culture 

medium, demonstrating that cellular presence of IONPs does not prevent GSH 

synthesis.  

 

Presence of up to a 100-fold elevated cellular iron content of IONP-treated astrocytes 

did not compromise cell viability during a subsequent prolonged incubation for up to 7 

d, as indicated by the low activity of extracellular LDH and by the absence of any loss 

in cellular protein. Also cellular processes such as NR accumulation or glycolytic 
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lactate production were not altered in IONP-containing cells, contrasting for example 

the situation reported for astrocytes that were treated with copper [31].  

 

Exposure of cultured astrocytes to IONPs induced ROS formation in astrocytes, as 

recently reported for other types of neural cells [40, 46]. The generation of ROS is 

likely to be a result of the iron-catalyzed Fenton reaction, which can either occur on the 

surface of IONPs [25, 47] or is catalyzed by iron liberated from accumulated IONPs 

[27]. The elevated ROS production in IONP-treated astrocytes was transient and most 

prominent 1 d after IONP-loading, but completely disappeared after incubation for 3 d 

or 7 d. A likely reason for this observation is the strong upregulation of ferritin 

synthesis in IONP-loaded astrocytes, which will sequester IONP-derived low molecular 

weight iron and store it in redox-inactive form, thereby preventing iron-mediated ROS 

formation [41]. Despite of the transient elevated ROS production, the viability of IONP-

containing astrocytes was not substantially compromised nor were cellular GSSG levels 

increased, suggesting that IONP-treated astrocytes do not suffer from severe oxidative 

stress. This contrasts the situation of astrocytes that encounter oxidative stress due to the 

presence of metal ions or hydrogen peroxide [41, 48-50].  

 

The high resistance of astrocytes against IONP-mediated toxicity, contrasts literature 

reports that show severe toxicity of MRC-5 lung fibroblasts [43] or PC12 cells [51] 

after exposure to IONPs. However, a high resistance against metal- and nanoparticle-

induced toxicity [15, 50, 52, 53] appears to be a special feature of astrocytes that is 

consistent with the proposed function of this cell type as regulator of metal metabolism 

in brain [19, 23]. Molecular mechanisms that could contribute to a high resistance of 

astrocytes against metal- and nanoparticle-induced toxicity include the upregulation of 

metal storage and binding proteins such as ferritin [41, 54] or metallothioneins [55, 56] 

and the endocytotic uptake of nanoparticles into vesicular compartments [15, 18, 53].  

 

After loading of cultured astrocytes with IONPs, the cellular iron content remained 

almost constant. Only during the first day of incubation a low increase in the amounts of 

extracellular iron was found for cells treated with high concentrations of IONPs, which 

may be the consequence of desorption of some of the membrane-adsorbed IONPs that 

were visible in the TEM pictures of IONP-treated cultures after 4 h. Membrane-
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adsorbed IONPs represent around 50% of the cell-associated iron determined directly 

after loading of astrocytes with IONPs [15], but the total cellular (internalised and 

membrane-attached) iron content was only lowered by around 10% during the first day 

of incubation and remained constant during further incubation. Cell-attached electron-

dense material was not detected anymore after 7 d of incubation, suggesting that the 

majority of the membrane-associated IONPs observed by TEM for acutely loaded 

astrocytes had been internalized. After 7 d of incubation the cellular IONPs were 

densely packed in large vesicles, but no obvious alteration in the size of the individual 

particles was found. Some of the IONP-containing vesicles observed in the cells may be 

lysosomes, since the low pH of these organelles has been discussed to contribute to the 

liberation of iron from accumulated IONPs [27].  

 

The presence of large IONP aggregates in astrocytes 7 d after exposure to the particles 

suggests that a large part of the accumulated IONPs remain deposited as electron-dense 

IONP-aggregates in cellular vesicles. However, the upregulation of ferritin in IONP-

treated astrocytes demonstrates that some iron was liberated from the accumulated 

IONPs into the cytosol, since this processes requires the presence of low molecular 

weight iron [38, 40, 42, 57]. The relative stability of IONP-aggregates in vesicles as 

well as the strong upregulation of ferritin are likely reasons for the high resistance of 

astrocytes against potential IONP-toxicity. Slow release of iron from accumulated 

IONPs as well as effective storage of IONP-derived iron in ferritin explains also the 

absence of any substantial iron release from IONP-containing astrocytes during 

prolonged incubation, although this cell type is known to have the capacity to release 

low molecular weight iron [58]. 

 

 

5. Conclusions 

The data presented demonstrate that the presence of large iron contents in astrocytes 

that had been exposed for a short time to IONPs does not compromise cell viability and 

metabolism during a subsequent prolonged incubation. Although IONPs were found 

densely packed in intracellular vesicles after 7 d of incubation, some iron was also 

liberated from the accumulated IONPs, at least in amounts that induced a strong 
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upregulation of ferritin in astrocytes. These data suggest that vesicular deposition of 

accumulated IONPs as well as efficient storage of IONP-derived low molecular weight 

iron in ferritin contribute to the resistance of astrocytes against potential toxicity of 

IONP-derived iron. Such processes are likely to enable also astrocytes in brain, which 

are known to take up IONPs after a bolus application for therapeutical or diagnostic 

reason [12, 13], to deal successfully with accumulated IONPs and with its iron content 

for a prolonged time. 
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3. Summarizing discussion 

Magnetic iron oxide nanoparticles (IONPs) are considered for a wide range of 

therapeutical and diagnostic applications in the brain (Yang 2010, Winer et al. 2011, 

Yigit et al. 2012). Such particles are able to cross the blood-brain barrier (Wang et al. 

2010) or can enter the brain via the olfactory neuronal pathway (Kwon et al. 2008). 

IONPs which have been injected into the brain are taken up by macrophages and 

astrocytes and remain at the site of injection for at least 7 d (Murillo et al. 2005, van 

Landeghem et al. 2009). However, data about the effects of IONPs on brain cells are 

limited so far. 

 

This thesis investigated the effects of IONPs on cultured brain astrocytes as a model 

system for astrocytes in the brain. Viable cultured astrocytes accumulated large amounts 

of citrate- or dimercaptosuccinate (DMSA)-coated IONPs and stored them in 

intracellular vesicles. The uptake rates of IONPs depended strongly on the experimental 

incubation conditions, such as time, temperature, IONP-concentration, composition of 

the incubation medium and the presence of external magnetic fields.  For none of the 

conditions investigated, the presence of extracellular or intracellular IONPs 

compromised cell viability or altered metabolic parameters. However, a transient 

formation of reactive oxygen species (ROS) and a strong upregulation of the iron 

storage protein ferritin suggest that low molecular weight iron is liberated in astrocytes 

from accumulated IONPs. 

 

 

3.1 Iron oxide nanoparticles 

3.1.1 Synthesis and coating 

IONPs were synthesized according to a previously published method (Bee et al. 1995) 

which was slightly modified (Geppert 2008). The resulting magnetic fluid contained 

polydisperse IONPs with a mean diameter of 8 nm as observed by transmission electron 

microscopy (TEM), which is consistent with literature data (Bee et al. 1995). The used 

synthesis method for IONPs showed a good reproducibility regarding size, shape and 
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the iron content of the resulting IONP-dispersions. In a total number of nine 

experiments, the average yield of the synthesis was 71 ± 12% regarding the total iron 

content of the dispersion. 

 

IONPs were coated either with citric acid or with DMSA to stabilize them in the 

incubation buffers used for cell-experiments. Both compounds have been described in 

the literature as suitable for stabilization of IONPs in biological media (Fauconnier et 

al. 1997, Racuciu et al. 2006). Since citrate-coated IONPs were only stable in 

incubation buffer in presence of a high excess of citrate (Publications 1 and 2) which at 

least in millimolar concentrations is likely to affect cellular functions (Westergaard et 

al. 1994), the majority of the studies of this thesis were undertaken using DMSA-coated 

IONPs. These IONPs were extensively characterized regarding their core-size, 

elemental composition, hydrodynamic size distribution and surface charge. 

 

 

3.1.2 Characterization 

DMSA-coated IONPs contain a core of iron oxide which is surrounded by a shell of 

DMSA molecules that are cross-linked via disulfide bridges and thus form a cage-like 

structure around the core (Fauconnier et al. 1997, Valois et al. 2010). The presence of 

the DMSA-coating of the here used IONPs was confirmed by the detection of sulfur via 

energy dispersive X-ray spectroscopy (EDX), since DMSA was the only sulfur-

containing compound present during the IONP-preparation (Publication 3). 

 

Dispersed in water, uncoated IONPs as well as citrate- or DMSA-coated IONPs had an 

average hydrodynamic diameter of about 60 nm as determined by dynamic light 

scattering (DLS). This large increase in particle size compared to the results obtained by 

TEM demonstrates that the IONPs form small agglomerates in dispersion probably due 

to magnetostatic interactions (Chantrell et al. 1982, Maity & Agrawal 2007). 

 

The uncoated IONPs dispersed in water had an acidic pH-value and a positive zeta-

potential as expected due to their positive surface charge that is caused by protonated 

hydroxyl groups at the surface of IONPs (Cheng et al. 2005). Thus, IONPs are 

stabilized in water by electrostatic repulsive forces between equally charges particles 



Summarizing discussion  Part 3 

 

 
150 

 

(Laurent et al. 2008). After dispersion in incubation buffer at a physiological pH-value, 

the surface hydroxyl groups are deprotonated and thus loose their positive charges. 

These uncharged particles are not electrostatically stabilized anymore and rapidly 

aggregate and precipitate at physiological pH. In contrast, DMSA-coated IONPs have a 

negative zeta-potential at physiological pH due to the negatively charged carboxylate 

groups of the coating material, thereby maintaining the stabilization via electrostatic 

repulsive forces and keeping the particles dispersed in physiological incubation buffers. 

 

Fetal calf serum (FCS) is often added as supplement for cell culture media and has been 

described to stabilize IONPs (Wiogo et al. 2011). However, presence of 10% FCS or 

other proteins such as bovine serum albumin (BSA) or ovalbumin in the incubation 

buffer lead to a 2-3 fold increase of the hydrodynamic diameter of dispersed DMSA-

coated IONPs and to a positivation of their zeta-potential. This can be explained by 

binding of such proteins to the IONP surface forming a protein-corona as previously 

described (Lynch & Dawson 2008, Nel et al. 2009, Wiogo et al. 2011). A similar 

increase of the hydrodynamic IONP-diameter was observed for IONPs after incubation 

with cultured astrocytes in incubation buffer (Publication 3) or in astrocyte 

preconditioned medium (Chatterjee 2011). This effect was concentration dependent 

(stronger increase in IONP-size at lower IONP-concentrations) but independent of the 

presence or absence of FCS in the incubation buffer (Publication 3; 

Publication/Manuscript 5). These observations suggest that substances released by the 

astrocytes into the medium are causing IONP-agglomeration. Indeed, serine protease 

40, a protein that is released from cultured astrocytes, has been identified to be bound 

on the IONP surface (Chatterjee 2011). 

 

 

3.2 Uptake and biocompatibility of iron oxide nanoparticles in 

cultured astrocytes 

Citrate- and DMSA-coated IONPs were used to study the uptake and biocompatibility 

of IONPs in cultured astrocytes. However, since DMSA seemed to be the better surface 

coating-material as it allowed to obtain stable IONPs in the absence of any free coating-

material, only initial studies were performed for citrate-coated IONPs and most of the 

studies were carried out with DMSA-coated IONPs. Uptake of IONPs was quantified by 
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measuring the total cellular iron content and visualized by Perl’s staining and electron 

microscopy. Acute effects of IONPs on cultured astrocytes were studied during an 

exposure of the cells to IONPs for up to 6 h. In addition, long term consequences of the 

cellular presence of IONPs were investigated for up to 7 d after loading of the cells for 

4 h with IONPs. 

 

 

3.2.1 Quantification of the iron accumulation 

Only very recently was demonstrated that cultured astrocytes are able to take up IONPs 

(Ding et al. 2010, Pickard & Chari 2010, Pickard et al. 2011, Yiu et al. 2011). 

However, the first detailed quantitative analysis of the iron accumulation by cultured 

astrocytes from IONPs is provided by the publications and manuscripts of the present 

thesis. Details are given in the individual chapters of this thesis. A summary on the 

consequences of alterations of experimental incubation parameters on the cellular iron 

accumulation is given in Table 3.1. 

 

 

Table 3.1: Modulation of the accumulation of IONPs in cultured astrocytes 

Changed experimental parameter 
Cellular iron content 

n 
(nmol/mg) (% of control) 

Control (4 h, 1 mM DMSA-IONPs, 37°C) 1375 ±   260 100 ± 19 28 

Elongation of incubation time to 6 h 2151 ±   198 156 ± 14   6 

Increase of IONP concentration to 4 mM 2209 ±   385 161 ± 28 10 

Lowering incubation temperature to 4°C   726 ±   214   53 ± 16 19 

Addition of 10% FCS   182 ±     24   13 ±   2   9 

Application of an external magnetic field 4411 ± 1062 321 ± 77   6 

Use of citrate-coated IONPs 1507 ±   142 110 ± 10   6 

The table shows how the indicated alterations of the experimental conditions affect the 
cellular iron content of IONP-exposed astrocytes. Basis for the calculation are the data 
given in the publications/manuscripts in the chapters 2.2 to 2.6 of this thesis. Iron 
contents were given as specific values normalized on the cellular protein content and 
as percentage of the control. A 4 h incubation of astrocytes with 1 mM DMSA-coated 
IONPs at 37°C is defined as control condition. 
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Cultured astrocytes effectively accumulated both, citrate- and DMSA-coated IONPs as 

shown by a strong increase in the cellular iron content exceeding the initial iron content 

by more than 100-fold. The cellular iron contents of IONP-treated astrocytes were even 

five to ten times higher than the cellular iron contents resulting from incubation with 

low molecular weight ferric ammonium citrate (FAC) (Hoepken et al. 2004, Riemer et 

al. 2004, Tulpule et al. 2010, Bishop et al. 2011). However, for none of the conditions 

applied, any acute loss in cell viability was observed, indicating that astrocytes are 

remarkably resistant to IONPs and are able to safely store these large amounts of 

accumulated iron. 

 

The accumulation of citrate-coated IONPs did not significantly differ to the 

accumulation of DMSA-coated IONPs by astrocytes under otherwise identical 

experimental conditions. This was expected since both types of IONPs have almost 

identical core sizes, hydrodynamic diameters and negative surface charges (Publications 

2, 3) (Bee et al. 1995, Fauconnier et al. 1997). TEM revealed that this increase in iron 

content of IONP-treated astrocytes is a result of uptake and membrane association of 

IONPs or IONP-aggregates (Publication 3). Lowering the incubation temperature to 4°C 

lowered the iron accumulation to around 50% of the amount obtained at 37°C. For the 

4°C condition, only extracellular membrane bound IONPs/IONP-aggregates were 

observed by TEM (Publication 3), as expected, since membrane transport processes are 

strongly reduced at 4°C (Kim et al. 2006, Wilhelm & Gazeau 2008). Thus, Fe-values 

that represent the difference between cellular iron contents obtained at 37°C and 4°C 

give the amount of iron internalized due to IONP-uptake. It should be kept in mind that 

the Fe represents only about 50% of the iron content observed at 37°C for all 

experiments performed to investigate IONP-accumulation. The second half of the 

specific iron content represents extracellularly adsorbed IONPs. 

 

In addition to a temperature dependency, IONP-accumulation was time and 

concentration dependent. Over time, no maximal IONP-accumulation was observed for 

the conditions investigated in this thesis. However, cellular iron contents were only 

determined for up to 6 h incubation of astrocytes with IONPs, since long incubations of 

the cells with IONPs in incubation buffer for 24 h compromise cell viability (data not 

shown). The concentration dependency of IONP-accumulation showed a saturation in 
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IONP-uptake for high concentrations. This saturation was observed for incubations at 

37°C and 4°C, indicating that IONP-uptake and membrane association are saturable 

processes. Analysis of the IONP internalization (Fe-values) after 4 h for DMSA-

IONP-concentrations of up to 4 mM revealed a Michaelis-Menten like kinetic with 

apparent KM- and Vmax-values of 2.1 ± 0.6 mM and 1871 ± 231 nmol iron/(mg × 4 h), 

respectively (Publication 3). This represents the first description of kinetic parameters 

of IONP-uptake into cells. 

 

IONP-uptake was strongly enhanced in the presence of an external magnetic field that 

was generated by positioning NdFeB-magnets underneath the cells. The observed 

cellular iron contents at 37°C and 4°C increased by about 3-fold compared to the 

respective conditions without magnets, demonstrating that both the IONP-

internalization and the membrane association of IONPs were increased due to the 

magnetic field. This leads to even more cellular iron than expected from the saturation 

found in the concentration dependency of IONP-accumulation by astrocytes. Potential 

reason for this observation could be the formation and accumulation of larger IONP-

aggregates in the magnetic field (Chantrell et al. 1982). Such an increase in IONP-

accumulation was previously described for various cell lines (Petri-Fink & Hofmann 

2007, Prijic et al. 2010) and also for magnetic-nanoparticle mediated gene-transfer in 

astrocytes (Pickard & Chari 2010). However, a detailed time-, concentration- and 

temperature-dependent analysis of magnetic-field induced IONP-uptake in astrocytes 

was first described in the context of this thesis (Publication 4). 

 

Presence of FCS in the incubation buffer led to a strong reduction in IONP-uptake in 

cultured astrocytes. Proteins of FCS are likely to bind to the surface of the IONPs 

(Wiogo et al. 2011) forming a so-called protein corona (Nel et al. 2009) around DMSA-

IONPs. This results in an increase in particle size and in a positivation of their zeta-

potential (Publication/Manuscript 5) which is likely to influence the interactions 

between the IONPs and the cell membranes and subsequently results in reduction in 

IONP-uptake. The strong effect of presence of serum or other proteins on IONP-uptake 

into brain cells was shown for the first time in this thesis. However, effects of serum on 

the uptake of different types of IONPs by various cell lines have been previously 

reported. Depending on the cell-type, the medium and the type of IONPs used, presence 
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of serum either decreased or increased IONP-uptake (Chen et al. 2008, Petri-Fink et al. 

2008). 

 

 

3.2.2 Mechanisms of particle uptake 

IONPs which have been taken up by astrocytes were found to be incorporated in 

intracellular vesicles as shown by TEM (Publications 2,3). This strongly suggests the 

involvement of endocytotic pathways in IONP-uptake. Astrocytes in culture are known 

to have an active endocytotic system and to express proteins involved in different 

endocytotic pathways (Megias et al. 2000). However, because of the large number of 

different endocytotic pathways (Kumari et al. 2010, Platta & Stenmark 2011, Sandvig et 

al. 2011) the identification of the pathways involved in IONP-uptake in cultured 

astrocytes is quite complicated. In this context, it has to be noted that the specificity of 

substances that have been described to modulate and inhibit these pathways (Rejman et 

al. 2004, Huth et al. 2006, Dausend et al. 2008, Greulich et al. 2011, Luther et al. 2011, 

Pickard et al. 2011) is a matter of debate (Ivanov 2008). 

 

For serum-containing conditions, macropinocytosis and clathrin-mediated endocytosis 

appear to contribute to IONP-uptake into cultured astrocytes (Publication/Manuscript 5; 

Figure 3.1). This confirms data reported by Pickard and colleagues who incubated 

astrocytes with larger (0.20-0.39 µm) carboxyl-modified fluorescent IONPs (Pickard et 

al. 2011). However, macropinocytosis and clathrin-mediated endocytosis seem not to be 

the only pathways involved in IONP-uptake in astrocytes since the Fe-values of the 

inhibitory conditions are still higher than the 4°C control which represents extracellular 

bound IONPs. In contrast, for serum-free conditions none of the inhibitors applied lead 

to a significant reduction in cellular iron content of IONP-treated astrocytes (Publication 

4; Publication/Manuscript 5) suggesting that especially IONPs coated by serum-proteins 

but not DMSA-IONPs are taken up by macropinocytosis and clathrin-mediated 

endocytosis into astrocytes. Since incubation of cultured astrocytes with DMSA-IONPs 

in serum-free buffer lead to an about 8 times higher cellular iron content, a highly 

effective pathway has to be responsible for IONP-uptake under serum-free conditions 

which remains to be identified. Figure 3.1 shows the mechanisms which may be 

responsible for IONP-uptake in cultured astrocytes. 
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Figure 3.1: Mechanisms of IONP-uptake into cultured astrocytes. Substantial 
amounts of IONPs will attach extracellularly to the cell membrane. Cultured astrocytes 
take up IONPs in serum containing medium by macropinocytosis and by clathrin-
mediated endocytosis. In addition, another unknown pathway is likely to be involved in 
particle uptake. For serum-free conditions, the uptake-mechanism could not be 
identified so far. 

 

 

3.2.3 Consequences of a prolonged presence of particles 

IONPs, which are applied for diagnostic or therapeutic reasons into the brain will be 

accumulated by macrophages and astrocytes and remain there for at least 7 d (Murillo et 

al. 2005, van Landeghem et al. 2009). However, data about the long term consequences 

of the presence of IONPs in brain cells have not been reported so far. This thesis 

presents an analysis of the metabolic effects of a prolonged presence of large amounts 

of IONPs following a bolus application to cultured astrocytes. This experimental 

paradigm is considered as a model-system for studying the consequences of cellular 

presence of IONPs and for the fate of IONPs in brain cells. 
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The experimental setup composed of a 4 h loading phase of astrocytes with up to 4 mM 

IONPs in incubation buffer and a subsequent up to 7 d main incubation in culture 

medium. These conditions did neither compromise the cell viability, nor affect 

glycolytic lactate production or the cellular glutathione/glutathione disulfide 

(GSH/GSSG)-ratio (Publication/Manuscript 6). Only a slight decrease of cellular GSx 

after the loading phase was observed, which is a likely result of conjugate formation 

between GSH and the DMSA-coating since citrate-coated IONPs did not cause such an 

effect (Hohnholt & Dringen 2011). A summary of the pathways involved in handling of 

intracellular IONPs by astrocytes is given in Figure 3.2. 

 

 

Figure 3.2: Cellular fate considered for IONPs in cultured astrocytes. After uptake, 
the nanoparticles may be directed to the lysosomes. Due to the acidic pH low 
molecular weight iron is liberated from the IONPs which is than exported into the 
cytosol via the divalent metal transporter 1 (DMT1). Here it enters the labile iron pool 
and can either induce the formation of hydroxyl radicals, be stored as ferric iron in 
ferritin or be incorporated in iron containing proteins. 

 

 

After the 4 h loading-phase of cultured astrocytes with IONPs, a large amount of 

cellular IONPs was decorating the cell membrane, while 7 d after the loading IONPs 

were exclusively detected in intracellular vesicles (Publication/Manuscript 6). This 
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suggests that membrane associated IONPs were incorporated during this time frame. A 

significant export of iron or IONPs was not detectable during 7 d, underlining the role 

of astrocytes to function as metal depots (Tiffany-Castiglioni & Qian 2001, Dringen et 

al. 2007, Tiffany-Castiglioni et al. 2011). IONPs and/or their containing iron seemed to 

be stored safely in the astrocytes even though it is known, that cultured astrocytes 

express the iron exporter ferroportin (Wu et al. 2004, Dringen et al. 2007, Garrick & 

Garrick 2009). 

 

Presence of IONPs led to a transient formation of ROS and to a delayed upregulation of 

the iron storage protein ferritin in cultured astrocytes. While ROS are likely to be 

generated by the Fenton reaction either on the surface of IONPs (Voinov et al. 2011) or 

due to the liberation of low molecular weight ferrous iron from the particles (Levy et al. 

2010), ferritin upregulation requires intracellular low molecular iron (Arosio et al. 

2009). Therefore, at least the upregulation of ferritin indicates liberation of low 

molecular weight iron from the IONPs in the cells. Such a liberation may occur in the 

lysosomes since their acidic pH is likely to foster IONP-degradation (Levy et al. 2010). 

Ferrous iron is than exported into the cytosol via the divalent metal transporter 1 

(DMT1) which is expressed in cultured astrocytes (Burdo et al. 2001, Tulpule et al. 

2010), where it is entering the labile iron pool. Here it can be stored in ferritin (as ferric 

iron), induce ROS-generation or it can even be used for cell metabolism, for example 

for proliferation as recently published for OLN93-cells (Hohnholt et al. 2010, Hohnholt 

et al. 2011). Nevertheless, it has to be mentioned that for the time frame investigated 

only a small amount of the total internalized particles appears to have been degraded to 

low molecular weight iron, since TEM-pictures showed vesicles densely packed with 

IONPs 7 days after loading. Furthermore, a complete dissolution of the IONPs uptaken 

by the cells would lead to an intracellular iron concentration of 526 ± 92 mM (4 h 

incubation with 4 mM IONPs at 37°C), which would rapidly induce osmotic cell death. 

 

 

3.3 Conclusions and future perspectives 

This thesis investigated the synthesis and characterization of citrate- and DMSA-coated 

IONPs as tools for studying uptake, reactivity and biocompatibility of IONPs in brain 

cells. The cells in astrocyte-rich primary cultures efficiently took up citrate- and 
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DMSA-coated IONPs without any acute loss in their viability. Even prolonged presence 

of IONPs in the cells did neither compromise cell viability nor substantially alter 

cellular metabolism. However, a transient formation of ROS and a strong upregulation 

of ferritin indicate liberation of low molecular weight iron from accumulated IONPs. In 

summary, the results of this thesis suggest that IONPs at least for the conditions 

investigated can be considered as save tool for biomedical and clinical applications and 

could even be a useful and safe iron source. 

 

IONPs were taken up and stored in intracellular vesicles. In further studies, a detailed 

analysis of the subcellular localization of the particles in cells should be done. Such 

questions could be addressed by fractioning of cells via differential and density gradient 

centrifugation (Aronson & Touster 1974, Ozols 1990, Tedelind et al. 2010) after 

incubation with IONPs and quantifying the iron content of the different fractions. 

However, it has been shown that such a cell-fractionation is complicated due to the high 

density of the IONPs (Petters 2010). More detailed information about the subcellular 

fate of the IONPs could be gained by immunogold labeling of the vesicles combined 

with electron microscopy (Mayhew 2011). Furthermore, the use of fluorescent IONPs 

will simplify studying the intracellular fate of such particles. DMSA-coated fluorescent 

IONPs were successfully synthesized (Kaltz 2011) and at least are taken up by cultured 

OLN93-cells (Bulcke 2012). 

 

The mechanism of IONP-uptake – especially under serum-free conditions – is another 

unsolved aspect of this thesis. Additional experiments with other types of endocytosis 

inhibitors under varying experimental conditions could help to reveal these yet 

unknown pathways. A potential reason for the unclear results of the inhibitor studies 

could be that the large size distributions of the IONP-dispersions address several 

endocytotic mechanisms. These may contribute together to the IONP-uptake, since it is 

known that endocytotic uptake mechanisms strongly depend on the particle size 

(Rejman et al. 2004). In addition, the use of fluorescently labeled IONPs could help to 

address the unsolved questions for the IONP-uptake mechanism(s). 

 

IONPs accumulated by cultured astrocytes liberate iron which is intracellularly stored in 

ferritin as shown by Western Blotting. However, ferritin molecules were not detected 
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via TEM. Such an electron microscopic detection of ferritin has been shown (Lopez-

Castro et al. 2011) and could be an additional prove for the release of low molecular 

weight iron from the IONPs in astrocytes. Furthermore, immunocytochemical detection 

of cellular ferritin could be undertaken in future. A better quantification of the ratio of 

intracellular IONPs, low molecular weight iron and ferritin will be an important task for 

further studies. One method to quantify intracellular low molecular weight iron could be 

the use of fluorescent dyes like Phen Green
TM

 or calcein (Kakhlon & Cabantchik 2002, 

Petrat et al. 2002). 

 

The purity of the used cultures is another important task that should be considered for 

future studies. The here used astrocyte-rich primary cultures contain mainly, but not 

exclusively, astrocytes. Small amounts of oligodendrocyte precursor cells, ependymal 

and microglia cells which are present in these cultures (Reinhart et al. 1990, Gutterer et 

al. 1999, Dang et al. 2010) are able to also contribute to the observed IONP-uptake. The 

use of secondary cultures could be a possibility to obtain purer astrocyte-cultures that 

hardly contain any other type of cells. In addition, studies on the uptake of IONPs in 

cultures enriched in oligodendrocytes, ependymal cells or microglia will give estimates 

on how efficient these cell-types take up IONPs. 

 

Since IONPs were already clinical used in the brain, in vivo studies will be a key issue 

to address the fate of such particles in the brain. A recent report by Wang and 

colleagues investigated the distribution and clearance of IONPs infused into the rat 

striatum (Wang et al. 2011) with the result that dextran-coated IONPs freely diffuse 

through the interstitial space of the brain and were cleared from the site of infusion in 

about 2 weeks. Detailed analysis of the metabolic effects of such particles on the 

different types of brain cells are not given so far and represent thus a big challenge for 

future investigations of consequences of the presence of IONPs in the brain. 
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