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SUMMARY

 

The stable oxygen isotope and minor element composition of planktonic microfossils often 

forms the backbone of paleoceanographic and paleoclimatic studies. The stable oxygen isotope 

composition of planktonic foraminifera shells provides a well-established tool to reconstruct sea 

surface temperatures. Also foraminiferal Mg/Ca is widely applied to reconstruct the (calcification) 

temperature of seawater. 
 

Recently, calcareous cyst producing dinoflagellates, and especially the species 

Thoracosphaera heimii, have gained more interest in paleoenvironmental and paleoclimatic 

studies. It was suggested that T. heimii might have some advantages over other planktonic species 

consisting of calcium carbonate, such as forminifera and coccolithophores. T. heimii has an overall 

broad geographic distribution, occurring from the polar regions to the tropical areas, and is present 

in geological records since the Late Cretaceous. Furthermore, it does not bear photosynthetic 

symbionts, and due to its living depth at a rather stable position in the water column, ontogenetic 

effects are likely to be minor.  
 

Culture experiments with T. heimii documented a clear relationship between their oxygen 

isotope composition and temperature. Surface sediment samples and down-core studies revealed 

that T. heimii forms a useful tool for temperature reconstructions of the deeper parts of the photic 

zone. The first part of this thesis focuses on this correlation. A more recent culture experiment on 

the elemental composition of T. heimii shells revealed a strong dependency of shell Sr/Ca on 

temperature. However, no correlation could be observed between Mg/Ca and temperature. The 

present study is the first to analyze the minor element to calcium ratios of T. heimii shells from 

surface sediments. This will be the focus of the second part of this thesis. 
 

In order to further establish the stable oxygen isotope composition (�18O) of T. heimii shells 

as a temperature proxy, it is important to investigate the T. heimii �18O composition in a natural 

setting in different hydrographical areas. For the present study, a sample set was compiled with 

surface sediment samples from the western Indian Ocean offshore Tanzania and from the 

equatorial and South Atlantic; and seawater temperatures throughout the upper water column (0-

200m) were considered. For the Indian Ocean samples, no relationship could be observed between 

temperature and T. heimii �18O. The temperature signal of T. heimii shells in these samples is 

probably obscured by instrumental and/or environmental influences. For the Atlantic Ocean 

samples, the temperature – �18O correlation slightly improves when temperatures at mixed layer 

depth, the presumed living depth of T. heimii, are considered. This observation supports the 
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previously proposed idea that the �18O composition of T. heimii shells has potential as a useful tool 

to reconstruct temperatures of a specific depth in the water column, notably the mixed layer depth. 
 

Another interesting question to test is whether or not the observations from the culture 

experiment on the elemental composition of T. heimii shells can be transferred to natural 

sediments. For this, the Mg/Ca, Sr/Ca, Fe/Ca, Mn/Ca and Si/Ca ratios of T. heimii shells from 

surface sediments in the equatorial and South Atlantic were analyzed. The Mg/Ca and Sr/Ca ratios 

were compared to several environmental parameters of the upper water column, while the Fe/Ca, 

Mn/Ca and Si/Ca ratios were used as a measure for contamination from the sediment. The first 

observation was that the Mg/Ca and Sr/Ca values from natural sediments exceed the cultural 

values by far. Furthermore, highest Mg/Ca values appear in samples which are characterized by 

highest seawater temperatures. However, Mg/Ca ratios also show a correlation with Fe/Ca, Mn/Ca 

and Si/Ca, which is an indication for sediment contamination, presumably by adsorbed clay 

minerals. Sr/Ca is correlated with the carbonate chemistry of the seawater. In contrast to cultured 

T. heimii shells, the Sr/Ca ratios of T. heimii shells from natural sediments do not show any 

correlation with temperature. So far no satisfying explanation can be given for this discrepancy. 
 

Since this was the first time the elemental composition of T. heimii shells from surface 

sediments was analyzed, a question arose to what chemical cleaning protocol should be used. The 

advantages of commonly applied cleaning protocols for both foraminifera and coccolithophores 

were combined and applied to T. heimii shells from a core top sample. In addition, the sample was 

processed following the standard cleaning protocol for foraminifera; and following a sequential 

dissolution protocol, using a Flow-Through (FT) device. Measured Sr/Ca values are quite 

consistent between different processing and analyzing techniques. Significantly lower Mg/Ca 

values are obtained when the sample is sequentially dissolved, using the FT device. This is 

interpreted as evidence for contaminating clay particles, possible trapped inside the small and 

empty T. heimii shells. 
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ZUSAMMENFASSUNG

 

Die Zusammensetzung der stabilen Sauerstoffisotope sowie der Mengen- und 

Spurenelemente in planktonischen Mikrofossilien bildet häufig die Grundlage 

paläozeanographischer und paläoklimatischer Studien. Dabei stellt die Zusammensetzung der 

stabilen Sauerstoffisotope in Schalen von planktonischen Formaminiferen ein etabliertes 

Werkzeug dar, um Meeresoberflächentemperaturen zu rekonstruieren. Auch das Verhältnis von 

Mg/Ca aus Formaminiferenschalen wird häufig verwendet um die (Kalzifizierungs-) Temperatur 

von Meerwasser zu rekonstruieren. 

In letzter Zeit hat das Interesse an Dinoflagellaten, die kalkige Zysten produzieren, 

insbesondere an der Art Thoracosphaera heimii, zugenommen. Es wird vermutet, daß T. heimii 

einige Vorteile gegenüber anderen kalkigen planktonischen Taxa wie Foraminiferen und 

Coccolithophoriden haben könnte. T. heimii besitzt eine breite geographische Verteilung von den 

Polarregionen bis in tropische Gebiete und kommt in geologischen Sedimenten seit der späten 

Kreidezeit vor. Weiterhin besitzt die Art keine photosynthetischen Symbionten und auch 

ontogenetische Effekte sind aufgrund der relativ konstanten Lebenstiefe in der Wassersäule sehr 

unwahrscheinlich. 

In Kulturexperimenten mit T. heimii stellte sich ein eindeutiger Zusammenhang zwischen 

der Sauerstoffisotopenzusammensetzung in den Schalen und der Temperatur heraus.  

Oberflächensedimentproben und Sedimentkernuntersuchungen zeigten, daß T. heimii ein 

nützliches Werkzeug für Temperaturrekonstruktionen der tieferen Bereiche der photischen Zone 

ist. Der erste Teil dieser Dissertation konzentriert sich auf diesen Zusammenhang. Ein aktuelles 

Kulturexperiment zur Elementzusammensetzung in Schalen von T. heimii hat eine starke 

Abhängigkeit von Sr/Ca von der Wassertemperatur gezeigt. Dahingegen konnte keine Korrelation 

zwischen Mg/Ca und der Wassertemperatur beobachtet werden. Die vorliegende Studie ist die 

erste, in der die Zusammensetzung der verschiedener Elemente im Verhältnis zu Calcium in 

Schalen von T. heimii aus Oberflächensedimentproben analysiert wird. Dies ist Thema des  

zweiten Teils der Dissertation. 

Um die stabile Sauerstoffisotopenzusammensetzung (�18O) von Schalen von T. heimii als 

Temperaturproxy weiter zu etablieren ist es wichtig, die Zusammensetzung von �18O von T. heimii 

in ihrer natürlichen Umgebung in verschiedenen hydrographischen Gebieten zu untersuchen. Für 

die vorliegende Arbeit wurden Oberflächensedimentproben aus dem westlichen Indischen Ozean 

vor der Küste Tansanias sowie aus dem äquatorialen und südlichen Atlantik ausgewählt; 

Meerwassertemperaturen der oberen Wassersäule (0-200m) wurden verwendet. Innerhalb der 

Proben aus dem Indischen Ozean konnte kein Zusammenhang zwischen der Wassertemperatur und 
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�18O von T. heimii festgestellt werden. Das Temperatursignal in den Schalen von T. heimii aus 

diesen Proben ist möglicherweise verdeckt durch die Messungen selbst und/oder durch 

Umwelteinflüsse. Innerhalb der Proben aus dem Atlantik verbessert sich die Korrelation zwischen 

Temperatur und �18O von T. heimii etwas wenn die Temperaturen aus der Tiefe der durchmischten 

Oberflächenschicht, der vermuteten Lebenstiefe von T. heimii, berücksichtigt werden. Dies 

unterstützt die eingangs erwähnte Hypothese, daß �18O aus Schalen von T. heimii das Potential zu 

einem nützlichen Werkzeug hat, die Temperatur einer bestimmten Tiefe in der Wassersäule, hier 

die Tiefe der durchmischten Oberflächenschicht, zu rekonstruieren. 

Eine weitere interessante Frage ist, ob die Ergebnisse aus dem Kulturexperiment zur 

Elementzusammensetzung von T. heimii Schalen auf natürlich vorkommende Sedimente 

übertragbar sind. Zur Beantwortung wurden die Verhältnisse Mg/Ca, Sr/Ca, Fe/Ca, Mn/Ca und 

Si/Ca in T. heimii-Schalen aus Oberflächensedimentproben im äquatorialen und südlichen Atlantik 

analysiert. Mg/Ca und Sr/Ca wurde mit verschiedenen Umweltparametern aus der oberen 

Wassersäule verglichen während Fe/Ca, Mn/Ca und Si/Ca als ein Maß für die Kontamination aus 

den Sedimenten verwendet wurde. Als erstes fällt auf, daß die Werte für Mg/Ca und Sr/Ca aus den 

Sedimenten bei Weitem über den in Kultur gemessenen Werten liegen. Weiterhin kommen die 

höchsten Mg/Ca Werte in Probenlokationen vor, die durch höchste Meerwassertemperaturen 

charakterisiert sind. Allerdings zeigen Mg/Ca Werte auch eine Korrelation mit Fe/Ca, Mn/Ca und 

Si/Ca, was ein Hinweis auf Kontamination durch das Sediment, vermutlich durch Tonminerale 

sein könnte. Sr/Ca korreliert mit der Karbonatchemie des Meerwassers. Im Gegensatz zu den T.

heimii Schalen aus der Kultur zeigen die Sr/Ca Werte von T. heimii Schalen aus den Sedimenten 

keine Korrelation mit der Meerwassertemperatur. Bislang konnte hierfür keine zufriedenstellende 

Erklärung gefunden werden. 

Da in dieser Studie erstmals die Elementzusammensetzung in T. heimii Schalen untersucht 

wurde, stellte sich die Frage, welches chemische Reinigungsprotokoll angewendet werden sollte. 

Die Vorteile von standardmäßig verwendeten Reinigungsprotokollen für sowohl Foraminiferen als 

auch Coccolithophoriden wurden kombiniert und auf T. heimii Schalen aus den 

Oberflächensedimentproben angewendet. Außerdem wurden die einzelnen Proben gemäß dem 

Standard-Reinigungsprotokoll für Foraminiferen aufgearbeitet, gefolgt von einem schrittweisen 

Lösungsprotokoll, wobei ein sog. Flow-Through (FT) Gerät verwendet wurde. 

Im Vergleich zwischen verschiedenen Aufbereitungs- und Analysemethoden sind die 

gemessenen Sr/Ca Werte relativ konsistent. Signifikant niedrigere Mg/Ca Werte wurden erzielt 

wenn die Probe unter Verwendung von FT schrittweise gelöst wurde. Dies wird als Hinweis auf 

potentielle Kontamination durch Tonpartikel interpretiert, die sich möglicherweise in den kleinen 

leeren T. heimii Schalen verfangen. 



5 
 

 

 

 

CHAPTER 1 

OBJECTIVES AND OVERVIEW 
 
 

 

The main objective of this thesis is twofold:  

 

 

Stable oxygen isotope composition (�18O) of Thoracosphaera heimii: 
 

Can we gain more information about the �18O of T. heimii shells in surface sediments? 
 

Is there a difference between different hydrographical areas? 
 

Do we find a correlation with temperature from a specific depth in the upper water column? 
 

Can we improve the use of �18O of T. heimii shells as a temperature proxy? 

 
� For this purpose the �18O composition of T. heimii shells from surface sediments in the 

western Indian Ocean, and equatorial and South Atlantic was analyzed (Manuscript 1). 
 

 

 

Minor element to calcium ratios (ME/Ca) of Thoracosphaera heimii: 
 

How can we measure the ME/Ca ratios of T. heimii shells in surface sediments? 
 

Do the ME/Ca ratios of T. heimii shells from natural sediments differ from culture values? 
 

Can we find any correlation with environmental parameters of the upper water column? 
 

Are the ME/Ca ratios contaminated by the sediment? 

 
� For this purpose a new cleaning protocol for the elemental analysis of T. heimii shells 

from sediments was developed (Manuscript 3); and the ME/Ca ratios of T. heimii shells from 

surface sediments in the equatorial and South Atlantic were analyzed (Manuscript 2). 
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To provide the reader with some relevant background information, this thesis is presented 

with four introductory chapters. Chapter 2 gives the reader more insights into the wonderful 

world of dinoflagellates and Thoracosphaera heimii. In Chapter 3, the reader can find more 

information about stable oxygen isotope chemistry, while Chapter 5 reviews the minor element to 

calcium proxies. Unfortunately, the stable oxygen isotope and minor element composition of T.

heimii shells has not been studied as extensively as foraminifera tests and coccolithophorid calcite. 

For the sake of comparison, Chapters 3 and 5 also contain information about the processes 

affecting foraminiferal and coccolithophorid �18O and ME/Ca composition. Since understanding 

calcification processes is vital to interpret �18O and ME/Ca signals, Chapter 4 gives an overview 

of biomineralization in foraminifera, coccolithophores and T. heimii. Chapter 4 was also added to 

this thesis out of personal interest in the matter. In Chapter 5 the reader will find additional 

information about the methods used in this research. 

 
 

The outcome of this project is presented in three manuscripts, which correspond to Chapters 

6, 7 and 8 of this thesis. 

 

 

Manuscript 1 – Correlation between temperature and the �18O composition of 

Thoracosphaera heimii shells in core top sediments from the Indian and Atlantic Ocean. 
 
 

This study investigates the correlation between temperature and the stable oxygen isotope 

composition of T. heimii shells in 57 surface sediment samples from the western Indian Ocean 

offshore Tanzania, and the equatorial and South Atlantic. When reconstructing the upper water 

column temperatures, unrealistic temperatures are produced when the previously published 

temperature – �18O equation for cultured T. heimii is used. When the �18O values of T. heimii 

shells are plotted against mean annual water temperatures, no correlation is observed in the Indian 

Ocean samples. We argue that the �18O signal in this area is obscured by river input or 

contamination by the sediment. For the Atlantic Ocean samples, temperatures at mixed layer depth 

yield the best correlation. Although further research is necessary to quantify the instrumental, 

environmental and biological influences, the �18O composition of T. heimii shells has potential to 

reconstruct temperatures of a specific depth in the water column, the mixed layer depth. 
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Manuscript 2 – Sr/Ca and Mg/Ca ratios of Thoracosphaera heimii shells in core-top samples 

from the South and equatorial Atlantic Ocean – A pilot study. 
 

 

This is the first study to analyze the minor element to calcium ratios of T. heimii shells from 

surface sediments. Mg/Ca and Sr/Ca ratios were compared to several environmental parameters of 

the upper water column, especially temperature; while the Fe/Ca, Mn/Ca and Si/Ca ratios were 

used as a measure for sediment contamination. The Mg/Ca and Sr/Ca values from natural 

sediments show a large range and exceed the values of cultured T. heimii shell by far. PCA reveals 

three hydrographical areas with characteristic Mg/Ca and Sr/Ca ratios. Furthermore, RDA reveals 

a correlation between Mg/Ca and temperature. However, Mg/Ca ratios are also correlated with 

Fe/Ca, Mn/Ca and Si/Ca, which is an indication that the Mg/Ca values are contaminated by 

adsorbed clay particles. RDA also reveals a correlation between T. heimii Sr/Ca and the carbonate 

chemistry of the seawater. In contrast to cultured T. heimii shells, the Sr/Ca ratios of T. heimii 

shells from natural sediments do not show any correlation with temperature. So far we do not have 

a satisfying explanation for this discrepancy. When the extreme Mg/Ca and Sr/Ca values are 

omitted from the dataset, the remaining core top samples still show a large scatter of Mg/Ca and 

Sr/Ca.  
 

Manuscript 3 – Comparison between different cleaning protocols to analyze the Mg/Ca and 

Sr/Ca ratios of Thoracosphaera heimii shells from sediments 
 
 

This is the first time the elemental composition of T. heimii shells from surface sediments 

was analyzed. Therefore a question arose as to which chemical cleaning protocol should be used, 

prior to elemental analysis. Due to the size difference between the small T. heimii shells and the 

bigger foraminifera tests, the widely applied standard cleaning protocol for foraminifera is quite 

labour intensive, since a centrifuge session is necessary after every cleaning step, in order to 

prevent the loss of T. heimii shells (method 1). Therefore we developed a new cleaning protocol, 

specifically for T. heimii shells from surface sediments (method 2), based on the cleaning 

protocols for foraminifera and coccolithophores. In addition, T. heimii shells were processed 

following a sequential dissolution protocol, using a Flow-Through (FT) device (method 3). 

Measured Sr/Ca values are quite consistent between the three different processing and analyzing 

techniques. Significantly lower Mg/Ca values are obtained when the sample is sequentially 

dissolved, using the FT device. We interpret this as evidence for contaminating clay particles, 

possible trapped inside the small and empty T. heimii shells. 
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CHAPTER 2 

INTRODUCTION: DINOFLAGELLATES 
 
 
 

 

2.1. General introduction 
 

Dinoflagellates (division Dinoflagellata) are a diverse group of unicellular, eukaryotic 

organisms (e.g. Evitt, 1985; Fensome et al., 1993). They can be found in a wide range of aquatic 

environments, from lakes to the open ocean; and in a wide range of climatic zones, from the 

tropics to the polar regions (e.g. Taylor & Pollingher, 1987; Marret & Zonneveld, 2003; 

Mathiessen et al., 2005).  
 

Dinoflagellates typically occur as biflagellate motile cells. The longitudinal flagellum, 

located in the sulcus (Fig. 2.1), mainly acts as a rudder. Most of the propulsive force is provided 

by the second flagellum, the transverse flagellum, which is coiled and encircles the body along the 

cingulum (Fig. 2.1). With the aid of these two flagella, 

dinoflagellates can migrate vertically through the water 

column in a spiralling motion (e.g. Fensome et al., 1993). 

This distinctive whirling motion caused by the interaction 

of two flagella is what gives them their name: dinos 

(Greek) means „whirling“, and flagellum (Latin) means 

„whip, scourge“.   
 

Fig. 2.1 - Schematic drawing of the biflagellate motile dinoflagellate 
cell (modified from http://classes.midlandstech.edu/carterp/Cour 
ses/bio225/chap12/ss3.htm, Copyright © 2004 Pearson Education. 
Inc., publishing as Benjamin Cummings) 

 

A huge variety of feeding strategies can be observed: autotrophy, heterotrophy, mixotrophy 

(the organism is either autotroph or heterotroph at different times in their life cycle), parasitism 

and symbiosis (e.g. Dale, 1983; Gaines & Elbrächter, 1987; Schnepf & Elbrächter, 1992; Jacobson 

& Anderson, 1986). Most of the 2000 known marine species are autotrophic, i.e. they depend on 

the availability of light to photosynthesize nutrients (Schnepf & Elbrächter, 1992). This makes 

dinoflagellates, aside from diatoms, the second most important players in marine primary 

production (Parsons et al., 1984; Taylor & Pollingher, 1987). 

Transverse 
flagellum 

in cingulum 

Longitudinal 
flagellum 
in sulcus 
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The life cycle of dinoflagellates is complex and involves both sexual and asexual 

reproduction with motile vegetative cells (thecae) and non-motile cysts (resting cysts, vegetative 

cysts and temporary cysts), as is summarized in Fig. 2.2. For more details on the life cycle of 

dinoflagellates, see e.g. Dale, (1986) or Fensome et al. (1993). More than 200 species of marine 

dinoflagellates are known to produce cysts (organic-walled, calcareous or siliceous) as part of their 

life cycle (Head, 1996). The majority of the cyst-producing dinoflagellates form resting cysts as 

part of their sexual reproduction cycle. This type of cyst represents a dormant stage during which 

normal metabolic processes are significantly reduced. They are generally very resistant to 

unfavorable conditions and preserve very well in the sediments (e.g. Wall & Dale, 1967; Fensome 

et al., 1993). Being one of the exceptions, the calcareous dinoflagellate Thoracosphaera heimii 

produces vegetative cysts (shells) during their asexual reproduction. In contrast to resting cysts, 

vegetative cysts are metabolically and/or reproductively active (Fensome et al., 1993). Since T. 

heimii is the focus of this thesis, its life cycle will be described more into detail in Chapter 2.3. 

 

 
Fig. 2.2 – Schematic life cycle of 

dinoflagellates showing sexual 

reproduction (resting cysts) and 

asexual or vegetative reproduction 

(vegetative cysts) 

 

 

 

 

 

 

 

 

Dinoflagellate cysts have many applications. For instance in the petroleum and gas 

exploration companies and the fishery industries, dinoflagellate cysts are increasingly being used 

(Zonneveld et al., 2005). And even more important, during the last decades, it has become evident 

that dinoflagellate cysts form extremely suitable tools for detailed paleoenvironmental and 

paleoclimatic reconstructions (e.g. de Vernal et al., 2005; Pospelova et al., 2006; Bouimetarhan et

al., 2009; Holzwarth et al., 2010).  
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2.2. Calcareous dinoflagellates 

 

Today there are about 30 modern dinoflagellate species that are known to incorporate calcite 

crystals into their cyst wall (e.g. Streng et al., 2004; Elbrächter et al., 2008; Zonneveld et al., 

2005). Three genera of thecae (motile cells) are described: Scrippsiella, Pentapharsodinium and 

Ensiculifera, based on the number and form of their cingular plates (Fensome et al., 1993). 

However, these genera also include species that are not known to produce cysts or produce 

organic-walled cysts instead of calcareous cysts (D’Onofrio et al., 1999).  
 

Three cyst types are recognized based on the orientation of the crystallographic c-axis, i.e. 

the vertical axis, of the individual calcite crystals in the cyst wall: tangential, radial or oblique (Fig. 

2.3) (e.g. Janofske, 1996). These orientations give characteristic patterns of the interference 

colours under polarized light in combination with a gypsum plate (Fig. 2.3).  Based on the type of 

the archeopyle, four cyst types can be defined: apical, intercalary, meso-epicystal and epitractal 

(Fig. 2.4) (e.g. Streng et al., 2004).  
 

 

 

 
 

 

 
 
Fig. 2.3 

The orientation of the 
crystallographic c-axis is a 
morphologically important 
feature for taxonomy in 
calcareous dinoflagellate 
cysts (e.g. Janofske, 1996). 
C-axis orientation images 
are drawn after an 
unpublished lab manual, 
compiled by Dorothea 
Janofske and Oliver Esper, 
Department of Historical 
Geology and Paleontology 
(University of Bremen), 
Interference colour images 
are taken from the same 
lab manual. SEM images 
are taken from Zonneveld 
et al. (2005) 
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Fig. 2.4 – The archeopyle type is a taxonomically important morphological feature in calcareous dinoflagellate 

cysts (after Streng et al., 2004) (from Zonneveld et al., 2005) 
 

 

Sediment trap and surface sediment studies have shown that calcareous dinoflagellate cysts 

are abundant in tropical, subtropical and temperate oceanic environments, where they often 

dominate the total dinoflagellate cyst flux to the seafloor (Dale, 1992; Dale & Dale, 1992; Höll, 

1998; Höll et al., 1998). For instance in sediments from the equatorial Atlantic, the amount of 

calcareous dinoflagellate cysts per gram was nearly 50 times higher than the amount of organic-

walled dinoflagellate cysts per gram (Höll et al., 1998). Highest diversity of calcareous 

dinoflagellate species however, can be found in the coastal zones (e.g. Nehring, 1994; Montresor 

et al., 1998; Vink, 2004). For a detailed overview on the ecology of several calcareous 

dinoflagellate species, see e.g. Zonneveld et al. (2005). 
 

To date, all calcareous cyst producing dinoflagellates are thought to be photosynthetic, i.e. 

either photoautotrophic or mixotrophic (Tangen et al., 1982; Binder & Anderson, 1987; Montresor 

et al., 1994). Being primary producers, they are directly influenced by the environmental 

parameters of the surrounding water masses in the photic zone. Combined with a long geological 

record since the Late Triassic (Janofske, 1992) and their reactions to long- and short-term, global 

and local changes, they are very suitable for detailed (paleo-)environmental and (paleo-) 

oceanographic reconstructions (e.g. Vink et al., 2001; Esper et al., 2004; Meier et al., 2004; 

Zonneveld et al., 2005; Bison et al., 2007, 2009).  
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2.3. Thoracosphaera heimii (Lohmann) Kamptner 

  

Life cycle 
 

In contrast to other dinoflagellate species producing calcareous cysts, T. heimii reproduces 

asexually and spends most of its life cycle as a vegetative cyst or shell (1-2 in Fig. 2.5), which is 

presumably haploid (n). After a cell hatches from this calcareous shell (3 in Fig. 2.5), it divides (4 

in Fig. 2.5) and forms aplanospores, either directly (6 in Fig.2.5) or via the production of 

planospores (5 in Fig. 2.5). The aplanospores start to calcify (7 in Fig. 2.5), and weakly calcified 

cells are capable of mitotic division (b in Fig. 2.5). Sexuality might occur in a separate sexual 

cycle starting from the planospore stage (c in Fig. 2.5), but was not observed during the 

experiments (Meier et al., 2007). For a more detailed overview of the life cycle of T. heimii, see 

e.g. Tangen et al. (1982) and Inouye & Pienaar (1983). With a reproduction time every 1-2 days, 

T. heimii has a much higher turn-over rate than other (resting) cyst forming species (e.g. Tangen et

al., 1982; Dale, 1992). 
 

 

Fig. 2.5 – Life cycle of Leonella granifera. Thoracosphaera heimii is similar (Meier et al., 2007) 
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Temperature 
 

Höll et al. (1998) reported an overwhelming dominance of Thoracosphaera heimii in 

sediments of the equatorial Atlantic. The content of T. heimii shells per gram reached on average 

900 times higher values in comparison to the organic-walled dinoflagellate cysts and 18 times 

higher values in comparison to the other calcareous dinoflagellate cysts. Recent studies have 

shown that T. heimii has a broad geographic distribution and can be observed from sub-polar to 

tropical environments with highest abundances in subtropical areas (Fig. 2.6; Zonneveld et al., 

1999; 2000; Wendler et al., 2002a; Meier & Willems, 2003; Vink, 2004). This is also reflected in 

culture experiments, which indicate that T. heimii has a broad temperature tolerance, with highest 

growth rates between 14 and 27°C, and maximum growth rates at 27°C (Karwath et al., 2000b). 

 

 

 

Fig. 2.6 – Surface sediment distribution map of Thoracosphaera heimii, as percentage of total dinoflagellate 
cysts per gram dry sediment (Vink, 2004) 
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Nutrient availability and stratification 
 

Initial studies on the ecology of calcareous dinoflagellate cysts suggested that enhanced T.

heimii shell production could be associated with oligotrophic regions, probably related to relatively 

stratified conditions of the upper water column (Höll et al., 1998, 1999; Vink et al., 2000; Esper et

al., 2000). This oligotrophy theory can not always be confirmed. For instance a sediment trap 

study off the Somalia upwelling area revealed a positive correlation between cyst production and 

nutrient supply (Wendler et al., 2002b). However, later work showed that stratification of the 

upper water column and the presence of a well-developed thermocline are probably more 

important than the trophic state of the upper water column (e.g. Vink et al., 2002; Vink, 2004; 

Richter et al., 2007). Since, within their research areas, the trophic state of the upper water column 

also strongly covaries with the development of turbulence, Kohn & Zonneveld (2010) suggested 

that turbulence may be one of the most important environmental factors negatively influencing 

cyst production in T. heimii. This is in agreement with previous work stating that turbulence in the 

upper water column is unfavorable for the development of phytoplankton (including the calcareous 

dinoflagellate T. heimii), preventing it from building up a standing stock in the photic zone (e.g. 

Wendler et al., 2002a, b; Vink, 2004).  

 

Living depth 
 

In the first field study on the vertical distribution of T. heimii in the water column, maximum 

abundances of freshly formed T. heimii shells (i.e. shells with cell content or full shells) were 

observed between 50 and 100m water depth, a depth coinciding with the depth of the thermocline 

or pycnocline (Karwath et al., 2000a). Although the pycnocline is associated with density 

differences, it is unlikely that only passive sinking and accumulation are responsible for the high 

concentrations of full T. heimii shells at this depth (Karwath et al., 2000a; Kohn & Zonneveld, 

2010). T. heimii cycles quickly between its motile and shell phase and therefore is only able to 

move vertically over a short distance (Inouye & Pienaar, 1983). Therefore Karwath et al. (2000a) 

concluded that T. heimii most likely inhabits this lower part of the photic zone, where nutrients are 

easily accessible from the deep chlorophyll maximum above and where competition with other 

phytoplankton is less due to reduced light intensities. Based on the data of Karwath et al. (2000a), 

Vink (2004) and Zonneveld (2004) suggested that T. heimii shell production may be related to the 

position of the deep chlorophyll maximum. In a more recent study, Kohn & Zonneveld (2010) 

observed peaks in the concentration of full T. heimii shells at or just above the deep chlorophyll 

maximum, indicating that calcification of T. heimii shells can take place in these water layers. 



16 
 

 

 

Seasonality 
 

In culture experiments, T. heimii shells are produced throughout the year with the production 

of about one cyst a day (e.g. Inouye & Pienaar, 1983; Karwath, 2000). This suggests that the 

production of T. heimii shells in natural environments is not restricted to a certain season or to a 

limited time interval during the year (Zonneveld, 2004). This assumption is supported by, for 

instance, a sediment trap study off Cape Blanc where T. heimii dominates the calcareous 

dinoflagellate cyst assemblage during an 18-months sampling period (Richter, 2009). However, 

there are indications that seasonal production of T. heimii shells is region dependent: a sediment 

trap study from the Arabian Sea documents highest accumulation rates of T. heimii shells at the 

end of the SW monsoon (Wendler et al., 2002a, b).  
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CHAPTER 3 

INTRODUCTION: STABLE OXYGEN ISOTOPES 
 

 
 
 

3.1. General introduction 
 

Oxygen (O) is the third most abundant element after hydrogen (H) and helium (He). It is the 

second most common component of the Earth’s atmosphere, taking up 21% of its volume and 

23.1% of its mass. It is the major component of the world’s oceans (88.8% by mass) and 

constitutes 49.2% of the Earth’s crust by mass.  
 

The element oxygen occurs as three stable isotopes: 16O, 17O and 18O. The nuclei of these 

heavy and light varieties each have eight protons, but contain a different amount of neutrons 

(eight, nine or ten). The lightest isotope, 16O, is the most common isotope (natural abundance = 

99.759%), followed by the heaviest isotope, 18O, which occurs in much lesser amounts (natural 

abundance = 0.204%). 
 

The stable oxygen isotope composition of a sample is expressed as the ratio of the heavy 

oxygen isotope relative to the light isotope: 18O/16O. When comparing samples however, the 

differences in this ratio are very small. Therefore, the oxygen isotope ratio 18O/16O is always 

measured relative to an internationally accepted standard. For carbonate samples, the V-PDB 

standard is used (Cretaceous belemnite formation at Peedee in South Carolina, USA), while for 

water samples, the V-SMOW standard is used (Vienna Standard Mean Ocean Water).  
 

The oxygen isotope composition is then expressed as the 18O/16O ratio of the sample relative 

to the 18O/16O ratio of the standard, an expression which is also known as the �-notation. � is 

multiplied by 1000 to reduce the number of decimals.  

 

 
 

A positive � value indicates enrichment in 18O, relative to the standard, and conversely, a 

negative � value indicates depletion in 18O (or enrichment in 16O). 
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3.2. Principles of isotopic fractionation 
 

Isotopic fractionation is the partitioning of isotopes between two substances or two phases of 

the same substance with different isotopic compositions. Isotopic fractionation mainly results from 

(1) isotope exchange reactions or “equilibrium isotopic fractionation” and (2) kinetic effects or 

“non-equilibrium isotopic fractionation”. Isotope exchange reactions involve the redistribution of 

isotopes of an element between two phases that are in equilibrium. Processes of equilibrium 

fractionation are essentially temperature dependent, which is the most important property for 

geochemical purposes. Kinetic effects cause deviations from equilibrium and are associated with 

unidirectional and incomplete processes such as condensation or evaporation, crystallization or 

melting, adsorption or desorption, biologically mediated reactions, and diffusion. In general, the 

light oxygen isotope (16O) is more mobile and more affected by fractionation processes than the 

heavy oxygen isotope (18O). The isotopic fractionation between two substances A and B is 

quantified by the fractionation factor � = RA/RB, with RA the 18O/16O ratio in substance A, and RB 

the 18O/16O ratio in substance B (e.g. Bickert, 2000). 

 

3.3. Processes controlling �18O of seawater 
 

The oxygen isotopic composition of seawater (�18Ow) is closely linked with fractionation 

processes within the hydrological cycle. Schematically, this cycle consists of evaporation at the sea 

surface, atmospheric vapour transport, precipitation and subsequent return of freshwater to the 

ocean (via precipitation, river runoff or iceberg melting). Since 16O is lighter, and thus more 

mobile than 18O, the first water vapour formed during evaporation at low latitudes is enriched in 
16O and the residual seawater is enriched in 18O. As the air cools by rising into the atmosphere or 

moving towards the poles, the water vapour begins to condense and fall as precipitation. During 

condensation, 18O preferentially enters the liquid (rain), while 16O is being concentrated in the 

remaining vapour (cloud); a process known as Rayleigh distillation (Rayleigh, 1902). Thus water 

vapour gradually loses 18O as it travels from the equator to the poles (Fig. 3.1). Also long-term 

storage of freshwater in aquifers and especially in ice sheets is important for the �18O of seawater. 

Finally, the spatial distribution of oxygen isotopes in the world ocean depends on processes of 

advection and mixing of water masses from different source regions with different isotopic 

signatures and the global isotope content of the ocean. A more detailed discussion of the various 

influences can be found in e.g. Craig & Gordon (1965), Broecker (1974) and Rohling & Cooke 

(1999). 
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Since the salinity of seawater is similarly affected by these processes, a correlation exists 

between salinity and the stable oxygen isotope composition of seawater. For instance Craig & 

Gordon (1965) and later Fairbanks et al. (1992) defined a set of regression equations between 

salinity and �18Ow for several modern water masses. The slopes vary between 0.1 for humid 

tropical and 1.0 for arid polar surface water masses with a global mean of 0.49. Higher slopes 

represent areas where evaporation exceeds precipitation, and vice versa (Bickert, 2000). 

 

Fig. 3.1 – Oxygen isotopes in the hydrological cycle 
(http://web.sahra.arizona.edu/programs/isotopes/oxygen.html, based on Hoefs, 1997 and Coplen et al., 2000) 

 
 

3.4. �18O in marine carbonates 
 

Since the oxygen isotope fractionation processes in marine carbonates are a function of 

temperature, their oxygen isotope composition (�18O) can be used as a (paleo-)thermometer. Since 

the pioneering work of Urey (1947), McCrea (1950) and Epstein et al. (1953), many temperature – 

�18O equations have been published, and now the �18O composition of marine carbonates often 

forms the backbone of paleoceanographic and paleoclimatic studies. However, oxygen isotopes in 

carbonates are not only influenced by changes in temperature, they also depend on the oxygen 

isotope composition of seawater (�18Ow), which can substantially affect temperature estimates. 

Therefore, as pointed out by Emiliani (1955) and many others since, it is imperative that the stable 

oxygen isotope proxy is corrected for �18Ow. The calculation of temperature from oxygen isotopes 

is then based on the following quadratic equation:  
 

T (°C) = a + b*(�18Ocalcite – �18Oseawater) + c*(�18Ocalcite – �18Oseawater)². 
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Ideally, the �18O value of a calcareous organism reflects isotopic equilibrium with the 

surrounding seawater at the ambient temperature. However, offset from equilibrium has been 

observed for many organisms, and is due to biological, kinetic and/or metabolic effects (e.g. Wefer 

& Berger, 1991; Waelbroeck et al., 2005). Unless these biological fractionation effects, previously 

called „vital effects“, are accurately known, they decrease the quality of paleoenvironmental 

reconstructions. However, most paleoceanographic studies have circumvented the problem of 

biological fractionation by isolating carbonate from a single species and assuming that the vital 

effect in a given species is constant and does not vary through time (Ziveri et al., 2003). 

 

 

3.5. Foraminifera 
 

The first empirically derived temperature – �18O relationship based on cultured planktonic 

foraminifera was generated by Erez & Luz (1983) for the symbiotic species Globigerinoides 

sacculifer. After that, many calibrations have followed. For instance, Bouvier-Soumagnac & 

Duplessy (1985) found a good agreement between the temperature – �18O relationships of cultured 

Orbulina universa and specimens collected from seawater. Bemis et al. (1998) developed a suite 

of temperature – �18O relationships for cultured O. universa and Globigerina bulloides. Although 

the temperature – �18O relationship is well characterized in planktonic foraminifera, the calibration 

equations are species-specific and can only be used for that particular species.  
 

Various studies also reported species-specific deviations of the �18O values in foraminiferal 

tests from those expected for inorganic calcite precipitated in thermodynamic equilibrium with 

ambient seawater (e.g. Shackleton et al., 1973; Fairbanks & Wiebe, 1980; Duplessy et al., 1981; 

Bouvier-Soumagnac & Duplessy, 1985; Bemis et al., 1998, Rohling & Cooke, 1999; Zeebe et al., 

2008). One fairly well-known biological fractionation effect in foraminiferal calcite is the 

ontogenetic effect. The majority of modern planktonic foraminifera species migrate vertically 

through the water column as part of their ontogenetic development; adding new chambers and 

calcite layers at different water depths (Schiebel & Hemleben, 2005). For instance, the planktonic 

foraminifera Globigerina bulloides calcifies at one depth as a juvenile and then migrates to 

shallower waters as an adult, where the last chamber is calcified (Spero & Lea, 1996; Bemis et al., 

1998). Thus the smallest chambers incorporate a different �18O signal compared to the final 

chamber. The dwelling depths are also species-specific. For instance symbiont-bearing species are 

restricted to the photic zone, whereas symbiont-barren species can migrate below the photic zone 

(Schiebel & Hemleben, 2005). Also the seawater carbonate chemistry can significantly affect �18O  
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in planktonic foraminifera. This phenomenon has been referred to as the carbonate ion effect 

(CIE). The CIE is characterized by a decrease in shell �18O with increasing [CO3
2-] concentration 

or pH of the culture medium/seawater, and is likely to be caused by a combination of kinetic 

effects and [CO3
2-] related variations in the calcification rate. The phenomenon and its possible 

mechanisms have been extensively discussed in literature and have been described for many 

foraminifera species (Spero, 1992; Spero & Lea, 1993; Spero et al., 1997; Bijma et al., 1999). 

 

 

3.6. Coccolithophores 
 

The relationship between temperature and �18O has also been studied in coccolithophores 

(e.g. Ziveri et al., 2003). However, since coccoliths are too small (2-12 μm) to be picked 

individually under a microscope, as is routinely done for foraminifera, isolating single coccolith 

species is difficult (Stoll et al., 2001; Stoll & Ziveri, 2002). Furthermore, cultured coccolithophore 

species show a wide range of vital effects with a range of nearly 5‰ in �18O composition (Dudley 

& Goodney, 1979; Dudley et al., 1980, 1986). According to Ziveri et al. (2003), the species-

specific vital effects of coccoliths are correlated with cell size and growth rate. Like foraminifera, 

the carbonate ion effect has been demonstrated, in addition to the temperature effect, for 

Calcidiscus leptoporus, one of the most important calcite producers among coccolithophores 

(Ziveri et al., 2011). 

 

 

3.7. Thoracosphaera heimii 
 

The stable oxygen isotope composition (�18O) of T. heimii calcite has gained more interest 

over the past decade. The first studies on the topic indicated that stable oxygen isotopes of T. 

heimii calcite can be used to reconstruct past sea surface temperatures (Friedrich & Meier, 2003, 

2006). Zonneveld (2004) measured the �18O composition of 21 surface sediment samples from the 

equatorial and South Atlantic Ocean. When the paleotemperature equation for inorganic calcite by 

Kim & O’Neil (1997) was applied on the �18O composition of the T. heimii shells, calculated 

isotopic temperatures generally reflected mean annual temperatures of the upper water column, 

notably thermocline depths, which represent the preferred depth habitat of T. heimii, as discussed 

in Chapter 2.3. Therefore, the author suggested that T. heimii might precipitate its calcareous shells 

in equilibrium with seawater. 
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In culture experiments it was shown there is a clear correlation between the �18O 

composition of T. heimii calcite and temperature (Zonneveld et al., 2007): T (°C) = 

�6.827*(�18Oc–�18Ow) – 3.906 (R = 0.921), with c = calcite and w = water (Fig. 3.2). Furthermore, 

the authors observed an offset between the 

temperature – �18O relationship for T. heimii 

calcite and the one for inorganic calcite 

precipitation. The culture study also suggested 

an inverse pH effect, with heavier oxygen 

isotope values at higher pH values. This 

positive relationship was explained by the 

authors as the presence of external carbonate 

anhydrase. The efficiency of this enzyme 

increases rapidly between pH 7.5 to 9, which 

could result in an increase in CO2 uptake 

relative to HCO3
- with increasing pH 

(Zonneveld et al., 2007, with all references 

therein).        

Fig. 3.2 – Correlation between temperature and �18Oc–�18Ow for two strains of 

Thoracosphaera heimii and for inorganic calcite (From Zonneveld et al., 2007). 
 

However, a more recent 

culture experiment revealed a 

slope of -0.0243 (μmol/kg)-1 for 

the �18O/[CO3
2-] relationship in T.

heimii shells (Ziveri et al., 2011) 

(Fig. 3.3). In comparison to 

foraminifera and coccolithophores, 

T. heimii has an anomalously steep 

slope, which suggests a strong 

biological control on isotope 

fractionation. 

 
Fig. 3.3 – Effect of [CO3

2-] on �18O (�18Ocalcite–�18Owater) values of C. leptoporus (coccolithophore), T. heimii 

(calcareous dinoflagellate), O. universa (HL = foraminifera grown under photosynthetic maximum light levels, 

D = maintained in the dark) (Spero et al., 1997), and G. bulloides (Spero et al., 1997) (lines are linear regression 

fitted to the data). 1� confidence bounds are shown for each regression (shaded areas) (From Ziveri et al., 2011) 
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CHAPTER 4  

INTRODUCTION: BIOMINERALIZATION & MG, SR INCORPORATION 
 

 

 

4.1. General remarks 
 

Biomineralization refers to the processes by which living organisms form minerals. During 

these processes, the organism exerts a certain control over mineral formation, thus precipitation is 

not strictly thermodynamically controlled. This distinguishes biomineralization from inorganic or 

abiotic mineralization, and often results in very unusual external morphologies of the biominerals. 

Biominerals often have very specific properties such as shape, size and crystallinity. Another 

characteristic of biominerals is that many are actually composites or agglomerates of biological (or 

organic) and mineral (or inorganic) compounds. In many organisms, the crystals exist as small 

bodies distributed within a complex framework of macromollecular frameworks (e.g. Weiner & 

Dove, 2003). 
 

The most abundant biominerals are the calcium carbonate minerals. Of the eight known 

polymorphs of CaCO3, seven are crystalline and one is amorphous. Calcite, aragonite and vaterite 

are pure calcium carbonate (CaCO3); monohydrocalcite and the stable forms of amorphous 

calcium carbonate contain one water molecule per calcium carbonate (CaCO3.H2O). One of the 

major challenges in the field of biomineralization is to understand the mechanism(s) how 

biological systems determine which polymorph will precipitate (e.g. Weiner & Dove, 2003).  
 

Having the same electrical charge as calcium (Ca2+), magnesium (Mg2+) and strontium (Sr2+) 

may substitute for Ca2+ in the calcium carbonate crystal structure. However, the relatively large 

diameter of the Sr2+ ion prevents it from fitting into the calcite crystal lattice as easily as it lodges 

in the aragonite crystal lattice. Thus aragonite contains more Sr2+ than calcite (e.g. Stanley, 2006). 

Furthermore, the incorporation of Mg2+ in the calcite crystal inhibits crystal growth (Davis et al., 

2002). Biomineralization and incorporation of trace elements is species specific. Very little is 

known about these processes in the calcareous dinoflagellate T. heimii. Therefore, in order to have 

a better understanding and for comparison purposes, an overview of the biomineralization in 

foraminifera and coccolithophores is provided. 
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4.2. Foraminifera 
 

Based on their shell (test), foraminifera can be divided into four groups. The first and second 

group have organic tests and agglutinated tests (composed of particles collected by the organism 

and inserted in the test). These two groups are not considered as performing biomineralization and 

hence will not be discussed here. The other two groups precipitate CaCO3 tests and are known as 

the imperforate (or porcelaneous) foraminifera and the perforate (or calcitic radial) foraminifera. 

Here, only the biomineralization of the perforate foraminifera will be reviewed, since they 

dominate the oceans today. (Erez, 2003). 
 

The perforate foraminifera tests can be very simple with one or only a few chambers, or they 

can be complex with many chambers arranged in various three-dimensional configurations. The 

name “perforate foraminifera” is derived from the fact that the tests of this group are covered with 

numerous microscopic pores (from a few microns up to 10 μm). These pores are sealed by an 

organic plug that prevents the internal cytoplasm from flowing out of the test (Hemleben et al., 

1989). Larger openings in the tests are called apertures. The apertures of earlier chambers (also 

called foramens) are connected, thus forming a continuous space where the internal cytoplasm is 

connected with the external pseudopodia. These pseudopodia are fine strands of cytoplasm that 

form a complex network and are important for several life functions of these organisms such as 

food gathering, movement, respiration, extraction of waste and shell building. (Erez, 2003). 
 

One major feature found in many perforate foraminifera is their lamination: every time the 

organism builds a new chamber, it covers its entire pre-existing shell with a new layer of calcite. 

Therefore each newly added chamber is composed of two 

layers of calcite: primary calcite (~10%), which outlines the 

new chamber, and secondary calcite (~90%), that covers both 

the new chamber and the entire existing test (Fig. 4.1). 

Although the bulk of the foraminiferal calcite is composed of 

this secondary calcite, little is known about its calcification 

mechanism: e.g. pores and possible spines are not covered by 

the secondary calcite (Erez, 2003). As a general overview of 

the primary and secondary calcification in calcitic radial 

foraminifera the mechanisms proposed by Erez (2003) will 

be described.   
Fig. 4.1 – Lamination scheme in perforate foraminifera (Erez, 2003)  
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Primary calcification 

 

In order to create a new chamber, the presence of pseudopodia is absolutely essential (A in 

Fig. 4.2). First, the pseudopodia start to envelop a bulb of seawater, forming an intracellular 

seawater vacuole, a process called endocytosis (B in Fig. 4.2). Seawater vacuolization is the basis 

from which calcification starts. Next, the pseudopodia will cover the entire organism, a process 

called self-vacuolization (C in Fig. 4.2), resulting in a clear separation of intralocullar and 

extralocullar cytoplasm. The organism now isolated itself from its surrounding environment and 

primary calcification will occur in the thus delineated space. Meanwhile, small vacuoles are being 

transported from the initial seawater vacuole to the sites of primary calcification (D in Fig. 4.2). 

The next step is the formation of an organic matrix in the shape of the newly formed chamber, 

which indicates a strong biological control over the shape of the shell. This thin organic layer is 

often called the primary organic membrane (POM) and can sometimes be recovered from fossil 

samples (foram linings). Not much is known about the role of this POM in the calcification 

process of foraminifera, but it is often suggested that this organic matrix will serve as a template 

for nucleation. The last step in the primary calcification is the precipitation of small CaCO3 

crystals (microspherulites) on both sides of the POM (E in Fig. 4.2). During this entire process 

there is an intensive involvement of the pseudopodia, with strong cytoplasmic and vacuole 

streaming. (Erez, 2003). 
 

 

 

Secondary calcification 
 

More and smaller vacuoles start to appear in the extralocullar cytoplasm, still originating 

from the large initial seawater vacuole. These vacuoles are transported by a pseudopodial network 

to the sites of secondary calcification, which are still in the delimited space. The vacuoles surround 

the growing primary calcite crystals and are then exocytosed into the delimited space where calcite 

is precipitated over the entire existing shell (F in Fig. 4.2). This secondary calcite is made of 

multilayered calcite platelets that have a radial appearance with their c-axes (vertical axes of the 

crystals) perpendicular to the test wall, a structure known as “calcitic radial” (Hansen & Reiss, 

1972; Bellemo, 1974). These units form the secondary lamination and are responsible for the bulk 

of the skeleton deposition. (Erez, 2003). 
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Fig. 4.2 – Schematic presentation of primary (A-E) and secondary (F) calcification in perforate foraminifera 
(Erez, 2003) – The black cup represents the CaCO3 shell which is exposed to the seawater – s: symbiotic algae, 

p: pseudopodia, v: vacuole, c: cytoplasm, d: delimited space, ic: intralocullar cytoplasm, ec: extralocullar 
cytoplasm, sw: seawater 

 

 

Trace element incorporation 
 

Although surface seawaters are supersaturated with respect to calcite, spontaneous crystal 

nucleation and growth are prevented by the high concentrations of magnesium in modern-day 

seawater (Davis et al., 2002; de Nooijer et al., 2009). Despite this fact, planktonic foraminifera 

generally produce calcite with a low Mg content (1-10 mmol/mol; Elderfield et al., 1996). This 

low-Mg calcite can only be precipitated if the foraminifera effectively discriminate between Mg2+ 

and Ca2+ after seawater vacuolization, most likely by actively removing Mg2+ from the seawater 

vacuoles prior to calcite precipitation (Zeebe & Sanyal, 2002). The seawater vacuoles are thus 

being altered by the organism during the biomineralization process (Erez, 2003). This 

discrimination between Mg2+ and Ca2+ supposedly leads to the production of an intracellular Ca-

pool with a very low Mg/Ca ratio from which the calcite will be precipitated (Zeebe & Sanyal, 

2002). Carbonate is stored in a separate intracellular pool (e.g. Erez, 2003). 
 

F
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De Nooijer et al. (2009) demonstrated that planktonic foraminifera are able to elevate the pH 

at the site of calcification by at least one unit above seawater pH (8.2) and, thereby, can overcome 

precipitation-inhibition at high Mg concentrations. However, since planktonic foraminifera 

precipitate their calcite from an internal fluid with a very low Mg/Ca ratio (Zeebe & Sanyal, 

2002), this is not the most important effect of the pH elevation. An elevated pH also promotes 

conversion from bicarbonate into carbonate (Zeebe & Wolf-Gladrow, 2001). At modern surface 

seawater pH (8.2), ~90% of the dissolved inorganic carbon (DIC) is present in the form of HCO3
-. 

When the pH is elevated with one unit (9.2), ~90% of DIC is present as CO3
2-, resulting in a 9-fold 

increase of the calcite saturation state (�) of the seawater, approximately doubling the 

precipitation rate (Lopez et al., 2009). 

 

 

Inter-species and intra-test variability 
 

Inter-species variability in foraminiferal Mg/Ca is generally correlated with the calcification 

depth of the foraminifera species: shallow dwellers (e.g. G. ruber and G. sacculifer) have high 

Mg/Ca ratios, whereas deep dwellers (e.g. G. tumida and G. dutertrei), have relatively low Mg/Ca 

ratios (Rosenthal & Boyle, 1993). Many foraminifera species also continue to calcify while 

migrating vertically through the water column, thus incorporating the Mg signal from different 

depths in their tests. The Mg/Ca composition of the foraminifera test thus represents a weighted 

average of calcite layers formed at different depths/temperature (Rosenthal & Linsley, 2007). 

Differences in Mg/Ca can also exist between different size fractions of the same species (Anand et

al. 2003). Furthermore, it has been observed that different parts of the foraminiferal calcite shell 

have different concentrations in trace elements: some parts are enriched, while other parts are 

depleted (Szafrenek & Erez, 1993; Nürnberg et al., 1996; Eggins et al., 2003; Sadekov et al., 

2005). Erez (2003) summarized the above mentioned studies and described the tests of planktonic 

foraminifera as thick secondary calcite, which is low in Mg, S and perhaps other trace elements, 

sandwiched between primary calcite and gametogenic calcite (when present), which are both 

richer in trace elements. Sr does not seem to be distributed heterogeneously in the foraminifera 

test. Since high Mg calcite is more soluble than low-Mg calcite (Morse & MacKenzie, 1990), the 

primary and gametogenic calcite are more soluble than the secondary calcite. This dissolution of 

the Mg-rich phases could be a major concern in the use of foraminiferal Mg as a proxy for 

dissolution (Brown & Elderfield, 1996). 
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4.3. Coccolithophores 

 

Biomineralization 
 

Coccolithophores are covered by calcium carbonate plates, called coccoliths. One of the 

most distinctive aspects of the biomineralization of coccolithophores is that they produce two very 

different coccolith types in their life cycle. Heterococcoliths, produced during the diploid (2N) 

phase, show radial symmetry and consist of a limited number (< 100) of calcite crystals which can 

have very complex shapes. Holococcoliths, produced during the haploid (N) phase, lack the radial 

symmetry of the heterococcoliths and are composed of many (100s to 1000s) small (0,1 μm) 

calcite crystallites. Exceptions exist, e.g. some genera, such as Pleurochrysis and Emiliania, only 

produce heterococcoliths and are non-calcifying in the haploid phase (Young & Henriksen, 2003). 
  

Here, only the biomineralization of heterococcoliths will be discussed, since this is the most 

common type of coccolith. In contrast to foraminifera, where calcification occurs extracellularly, 

coccolithophores are characterized by intracellular calcification. Within the coccolithophore, 

coccolith growth occurs in coccolith vesicles (CV in Fig. 4.3) derived from the Golgi body. The 

calcification site is isolated from the seawater by a complex membrane system: the plasma 

membrane (PM in Fig. 4.3) and the coccolith vesicle membrane (around CV in Fig. 4.3) (Young & 

Henriksen, 2003). 

Fig. 4.3  
 
Diagrammatic representation of the 
endomembrane system in a 
coccolithophore cell (Brownlee & 
Taylor, 2004; drawn with reference 
to Manton & Leedale (1969) and 
Klaveness (1972)) – Nuc: nucleus, 
Mit: mitochondria, Chl: chloroplast, 
PM: plasma membrane, GB: Golgi 
Body, CV: coccolith vesicle, RB: 
reticular body, PER: peripheral 
endoplasmic reticulum, NER: 
nuclear endoplasmic reticulum, 
CER: chloroplast endoplasmic 
reticulum 
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As an example of coccolithophorid biomineralization, the coccolith development of 

Pleurochrysis carterae, one of the most well-studied coccolithophores, will be discussed; as was 

worked out in detail by van der Wal et al. (1983) (Fig. 4.4). Note that other coccolithophore 

species have other biomineralization mechanism. 
 

 

Fig. 4.4 – Coccolithogenesis in Pleurochrysis carterae. Van der Wal et al. (1983) in Young & Henriksen (2003). 
 

The biomineralization process starts with the formation of an organic base-plate scale within 

the coccolith vesicle. This organic scale has a microfibrous structure and is composed of coccolith-

associated polysaccharides (CAP’s). The coccolith vesicles can develop rather complex forms, 

with extensions containing dense particles, called coccolithosomes. These extensions are probably 

derived from coccolithosome-bearing vesicles that attach themselves to the coccolith vesicles. 

Coccolithosomes have been shown to be complexes of acidic polysaccharides with calcium ions. 

Around the periphery of the organic base-plate scale, nucleation of calcite crystals occurs, 

followed by crystal growth upward and outward to form the complete coccolith. At an early 

growth stage, the vesicle is still in close contact with the coccolith. During coccolith growth, the 

vesicle gradually expands, and, after the coccolith is completed, a dense organic coating, derived 

from the CAP’s, is visible around the coccolith crystals. As a final step, the coccolith vesicle 

membrane fuses with the cell membrane (exocytosis). When the coccolith is placed extracellularly, 

a polysaccharide mat stays on top of the coccolith, thus preventing further extracellular (inorganic) 

precipitation and dissolution (Young & Henriksen, 2003).  
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Minor element incorporation 

 

Many mechanisms have been proposed for the transport pathways of calcium and minor 

elements from seawater to the site of calcification inside the coccolith vesicle. Here, the simplest 

mechanism for Emiliania huxleyi will be described (Gussone et al., 2006; Fig. 4.5). In seawater, 

calcium is present as dissolved Ca2+ (Caaq). At the coccolithophore cell surface, the water layer 

surrounding the calcium ion is stripped off (dehydration), and Ca2+ is transported into the cell 

through Ca-selective channels (Brownlee & Taylor, 2004). Channels are small pores through 

which transport occurs as diffusion. Also other ions, such as Sr2+ and Ba2+ can migrate through 

these channels. After rehydration and redehydration, practically all of the Ca2+ ions are then 

removed from the cytoplasm by Ca pumps and transferred into cell organelles (e.g. endoplasmic 

reticulum or Golgi body), into coccolith vesicles or are guided out of the cell. The portion of Ca2+ 

that is transported is indicated by the black slices in the pie charts in Fig. 4.5. Ca pumps are 

enzym-like proteins and use adenosine triphosphate (ATP) as energy source (Gussone et al., 

2006). Every organel thus has its own special isotopic and elemental composition. 

 

 

 
 

Fig. 4.5 – Proposed calcium transport pathways in Emiliania huxleyi from seawater to the calcification site 
(Gussone et al., 2006). The portion of Ca that is transported is indicated by the black slices in the pie charts. 
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Inter-species variability 

 

Although it was conventionally believed that all modern coccolithophore species secrete 

low-Mg calcite (<4 mol% Mg substituting for Ca) in modern seawater (Siesser, 1971, 1977; 

Miliman, 1974), Stanley et al. (2005a,b) and Stanley (2006) discovered that two out of three 

cultured coccolithophore species (Pleurochrysis carterae and Ochrosphaera neopolitana) secreted 

coccoliths of high-Mg calcite (>4 mol% Mg substituting for Ca) in an experimental setup with 

seawater of modern composition (Mg/Ca = 5.2 mmol/mol). As the ambient Mg/Ca ratio was 

lowered, these two species incorporated progressively less Mg into their coccoliths, and when the 

ambient Mg/Ca reached 1 mmol/mol (“Cretaceous” seawater), these two species secreted low-Mg 

calcite. Only one out of three cultured species did not show any correlation between skeletal 

Mg/Ca and seawater Mg/Ca: Coccolithus neohelis secreted low-Mg calcite in each of the 

experimental water treatments, including seawater of modern composition (Fig. 4.6; Stanley et al., 

2005a,b; Stanley, 2006). This would suggest that P. carterae and O. neopolitana have less control 

over the Mg incorporation in the calcite crystal lattice than C. neohelis, i.e. their biomineralogical 

control could be partly overridden by ambient seawater chemistry (Ries, 2010). This also implies 

that the mineralogy (low-Mg vs high-Mg calcite) of some, but not all coccolithophore species 

varied significantly with seawater Mg/Ca throughout geological time (Ries, 2010). 

 

 

Fig. 4.6 – Magnesium in calcite (mol%) secreted by three coccolithophore species as function of molar Mg/Ca 
ratio of artifical seawater in which they were grown. Error bars are standard deviations of five measurements. 

Fitted curves are power functions. Dashed lines depict pattern for inorganic precipitation (Füchtbauer & 
Hardie, 1976, 1980) (From Stanley et al., 2005b) 
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4.4. Thoracosphaera heimii 

 

Thoracosphaera heimii shells have a very characteristic crystal pattern: polygonal crystals 

are organized around regularly distributed pseudopores (e.g. Gussone et al., 2010). The tangential 

orientation of the c-axis (vertical axis) of the individual crystals, gives T. heimii a characteristic 

view under polarized light (Fig. 2.3 in Chapter 2.2; e.g. Janofske, 1996). 
 

Biomineralization process 
 

Currently, limited information is available about the biomineralization mechanisms of the 

calcareous dinoflagellate T. heimii. Using transmission electron microscopy (TEM), Inouye & 

Pienaar (1983) were able to document T. heimii cells in different phases of the calcifying process.  
 

In the initial phase of the calcifying process, vacuoles function as intracellular calcification 

sites and are separated from the surrounding seawater by several membranes: a cytoplasmic 

membrane (Cm in Fig. 4.7), a so-called “pellicle layer” (Pl in Fig. 4.7), an inner cell membrane 

(Icm in Fig. 4.7) and an outer cell membrane (Ocm in Fig.4.7). The vacuoles contain two types of 

crystals. At the inner side of the vacuoles, the side directed towards the cell centre, cylindrical 

crystals of unknown composition are present (�� in� Fig. 4.7A). Most likely, these cylindrical 

crystals are formed in dictyosomes of the Golgi system. Apart from the cylindrical crystals, the 

vacuoles also contain small calcium carbonate crystals (� in Fig. 4.7B), the first generation of 

calcite (Inouye & Pienaar, 1983; Gussone et al., 2010). 

 

 
 

Fig. 4.7 – Two stage biomineralization model of T. heimii – A: young cell in the beginning of the calcification 

process – B: mature cell – Ocm: outer cell membrane – Icm: inner cell membrane – Pl: pellicle layer – Cm: 

cytoplasma membrane – Ve: vesicle with rounded crystals of unknown composition and calcareous crystals – 

Cr: calcareous crystals (from Gussone et al., 2010; after Inouye & Pienaar, 1983) 
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In the next phase of the calcifying process, the vacuoles start migrating towards the 

cytoplasmic membrane. The primary calcite crystals are transferred into the area between the inner 

and outer cell membrane, possibly through exocytosis, where a layer of secondary calcite is being 

precipitated (Fig. 4.7). Initially, crystals occur at places scattered over the cell surface, but rapidly 

they form the characteristic crystal pattern of T. heimii shells. Crystal formation is completed 

within several hours to maximum three days (Inouye & Pienaar, 1983; Gussone et al., 2010). 
 

   

Minor element incorporation 
 

To connect the TEM observations of Inouye & Pienaar (1983) with the characteristic 

elemental (Gussone et al., 2010) and isotopic (Zonneveld et al., 2007) patterns of cultured T. 

heimii shells, Gussone et al. (2010) assumed different element and isotope fractionation patterns in 

two different generations of calcite. Based on a similar temperature dependence of the Sr/Ca ratios 

of T. heimii shells and the coccoliths of E. huxleyi, Gussone et al. (2010) suggested that the Sr/Ca 

ratio in T. heimii is mainly controlled by a cellular Ca and Sr transport process, as was previously 

proposed for E. huxleyi (Stoll & Ziveri, 2005; Langer et al., 2006). Since the first calcification 

phase of T. heimii shells is secreted under strong cellular 

control, this implies that the first generation of T. heimii 

calcite, the inner calcite, is Sr-enriched (Fig. 4.8). During 

the second phase, a Mg-enriched calcite layer is formed, 

possibly influenced by a seawater dominated fluid (Fig. 

4.8; Gussone et al., 2010). In general, it could be stated 

that the first phase is similar to the biomineralization of 

coccolithophores, while the second phase is similar to the 

biomineralization of foraminifera.    

 
Fig. 4.8 – Minor element incorporation model for T. heimii (drawn based on Gussone et al., 2010) 
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CHAPTER 5 

INTRODUCTION: MG/CA AND SR/CA PROXIES 
 

 

 

5.1. Mg/Ca and Sr/Ca ratios of modern seawater 
 

The Mg/Ca ratio of modern seawater (5.2 mmol/mol) is constant with water depth and 

shows no ocean to ocean fractionation (Broecker & Peng, 1982). Both Mg (~10 Ma) and Ca (~1 

Ma) have relatively long residence times in seawater (Broecker & Peng, 1982). Therefore, on short 

time scales, i.e. less than one million years, Mg and Ca concentrations of seawater remain stable 

and paleotemperature equations are not affected by changes in the Mg/Ca ratio of seawater.  
 

The Sr/Ca ratio of modern seawater is 8 mmol/mol (Coggon et al., 2010) and only varies 

by 2-3% (e.g. de Villiers, 1999). The residence time of strontium in seawater is several million 

years. The strontium concentration rises somewhat with depth due to the action of acantharians. 

These organisms precipitate strontium sulphate skeletons, slightly depleting the surface waters of 

strontium. As these free floating organisms die and settle to the bottom, the deeper waters become 

enriched in strontium as the skeletons dissolve (de Villiers, 1999).  

 

5.2. Foraminifera 
 

5.2.1. Foraminiferal Mg/Ca 
 

The incorporation of magnesium (Mg) into foraminiferal calcite is temperature dependent: as 

the substitution of Mg into calcite is an endothermic reaction, the Mg/Ca ratio of foraminiferal 

calcite is expected to increase with increasing temperature (Rosenthal et al., 1997). At present, the 

Mg/Ca-temperature calibrations are expressed as an exponential dependence: Mg/Ca (mmol/mol) 

= B.eAT, where A and B are the exponential and pre-exponential constants, respectively, and T is 

temperature in °C (Rosenthal & Linsley, 2007).   
 

During the last few decades, several Mg/Ca-temperature calibrations have been published for 

different planktonic foraminifera species, based on culture experiments (Nürnberg et al., 1996 

[Globigerinoides sacculifer]; Lea et al., 1999 [Orbulina universa, Globigerina bulloides]; 

Mashiotta et al., 1999 [G. bulloides]; Russell et al., 2004 [O. universa]; Langen et al., 2005 

[Neogloboquadrina pachyderma]), sediment trap time-series (Anand et al., 2003 [multiple 
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species]) and core-top studies (Elderfield & Ganssen, 2000; Rosenthal & Lohmann, 2002 [multiple 

species]) (See Fig. 5.1 for the calibration of G. bulloides and G. sacculifer). 

 

 

 

 

Fig. 5.1 - Relationship between 
Mg/Ca and calcification 
temperature determined for two 
species of planktonic foraminifera 
(Globigerina bulloides and 
Globigerinoides sacculifer) 
recovered from core-tops, culture 
experiments and sediment traps. 
From James & Austin (2008); 
with data from Elderfield & 
Ganssen (2000), Anand et al. 
(2003), Lea et al. (1999) and 
Nürnberg et al. (1996) 

 
 

 

Although planktonic foraminiferal Mg/Ca paleothermometry has become a widely applied 

tool to reconstruct past sea surface temperatures, it also has been proven that the incorporation of 

Mg in foraminiferal calcite is controlled by non-temperature effects, biological processes and post-

depositional diagenetic alteration.  
 

In foraminiferal culture studies it has been demonstrated that the influence of salinity on 

planktonic foraminiferal Mg/Ca is rather weak under normal marine conditions, simulated in 

culture experiments (Nürnberg et al., 1996; Lea et al., 1999; Kisakurek et al., 2008). According to 

Dueñas-Bohórquez et al. (2009), salinity is, after temperature, the second most important control 

on foraminiferal Mg incorporation, although this effect is still regarded as minor by the authors. 

Only in a high-salinity setting, e.g. the evaporative Mediterranean Sea Basin, will a salinity effect 

(possibly in reaction with diagenesis) result in unusually high foraminiferal Mg/Ca values 

compared to those expected from previous temperature calibrations based on culture experiments 

(Ferguson et al., 2008). 
 

However, it remains unclear whether salinity itself influences foraminiferal incorporation of 

Mg or whether it is due to changes in the carbonate chemistry of the seawater/culture medium, 

associated with changes in salinity: increasing salinity causes total alkalinity (TALK), dissolved 

inorganic carbon (DIC) and carbonate ion concentration [CO3
2-] of the seawater to increase as well 

(Dueñas-Bohórquez et al., 2009). It has been noted that the [CO3
2-] of seawater can have an effect 

on planktonic foraminiferal Mg/Ca ratios (Russel et al., 2004; Mortyn et al., 2005; Kisakurek et
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al., 2008). Also pH can have an effect on foraminiferal Mg/Ca as was demonstrated in the culture 

experiments of Lea et al. (1999) and Russell et al. (2004). 
 

Core top studies along bathymetric transects indicate a systematic decrease in Mg/Ca ratios 

of planktonic foraminifera with increasing depth, independent of the overlying sea surface 

temperatures. It was therefore suggested that foraminiferal Mg/Ca is altered by post-depositional 

dissolution on the seafloor driven by the depth-dependent decrease in carbonate saturation levels 

(Rosenthal et al., 2000; Dekens et al., 2002). 
 

Inorganic Mg-rich ferromanganese coatings, deposited during diagenesis, have been 

observed in many foraminiferal studies (e.g. Boyle, 1983; Barker et al., 2003). Ferguson et al., 

(2008) observed a thin coating (a few μm thick) of high-Mg inorganic calcite on the inside wall of 

foraminifera. Also Boussetta et al. (2011) observed aggregates of rhombohedral crystals that could 

be interpreted as secondary calcite overgrowths on the foraminifera tests. X-ray diffraction showed 

that these overgrowths consist of Mg-calcite, thus demonstrating that diagenesis can account for 

anomalously high foraminiferal Mg/Ca values. Also adsorbed clay particles might contaminate the 

foraminiferal Mg/Ca ratios (e.g. Boyle, 1983; Barker et al., 2003; Boussetta et al., 2011), since 

clay contains on average between 1 and 10 weight% Mg (Deer et al., 1992).   
 
 
 
5.2.2. Foraminiferal Sr/Ca 

 

Although less pronounced than foraminiferal Mg, the incorporation of Sr into foraminiferal 

calcite may also show a temperature dependence (Lea et al., 1999; Reichart et al., 2003; Mortyn et

al., 2005). A small salinity effect on Sr/Ca has been reported for O. universa (Lea et al., 1999). 

According to Dueñas-Bohórquez et al. (2009) however, salinity has no significant influence on the 

Sr/Ca of G. sacculifer. As already mentioned above, a change in salinity results in changing 

carbonate parameters such as [CO3
2-] (Dueñas-Bohórquez et al., 2009). Similar to Mg/Ca, [CO3

2-] 

was found to have a positive effect on planktonic foraminiferal Sr/Ca ratios (e.g. Lea et al., 1999; 

Russell et al., 2004; Mortyn et al., 2005; Kisakurek et al., 2008). When [CO3
2-] of the seawater 

changes, the carbonate saturation state (�) of the seawater also changes, since � = [Ca2+]*[CO3
2-] 

/Ksp (where Ksp represents the solubility product at the in situ conditions of temperature, salinity 

and pressure (Zeebe & Wolf-Gladrow, 2005)). � might control the rate of calcite precipitation, 

which in turn is known to influence trace metal incorporation (Lorens, 1981; Nehrke et al., 2007). 

Based on culture experiments, Dueñas-Bohórquez et al. (2009) therefore suggested that � is, after 

temperature, the main control on foraminiferal Sr incorporation, in contrast to foraminiferal Mg 

incorporation, where salinity supposedly is the second most dominant control.  
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5.3. Coccolithophores 
 

5.3.1. Coccolithophorid Sr/Ca 
 

In contrast to foraminifera, the most promising coccolithophorid elemental proxy is Sr/Ca. 

Stoll & Schrag (2000) were the first to observe that Sr/Ca ratios of core top samples from the 

equatorial Pacific vary by 15% across the equatorial upwelling zone: Sr/Ca ratios are highest at the 

equator and decrease towards the poles. They also observed that these variations in 

coccolithophore Sr/Ca are similar to variations in primary productivity, variations in the CaCO3 

rain rate in deep sediment traps and variations in alkenone-based growth rates of coccolithophores 

in overlying surface waters. Also in culture experiments, Sr/Ca ratios of several coccolithophore 

species were linked to changes in growth and calcification rates (e.g. Rickaby et al., 2002; Stoll et

al., 2002a, b). And although culture experiments also revealed a possible temperature-dependent 

Sr/Ca partitioning in coccolith calcite (Stoll et al., 2002a, b), the orignial suggestion of Stoll & 

Schrag (2000), to use coccolith Sr/Ca as a tool for investigating past changes in coccolithophorid 

productivity, still stands. As such, in several studies, the Sr/Ca ratio of coccolithophore calcite was 

used as a proxy for past coccolithophore productivity (e.g. Stoll & Schrag, 2001; Billups et al., 

2004; Langer et al., 2006). 

 

 

5.3.2. Coccolithophorid Mg/Ca 
 

Stoll et al. (2001) measured Mg/Ca ratios of coccoliths from several cultured 

coccolithophore species. They suggested that temperature may be an important control on Mg 

incorporation in coccolithophorid calcite. However, the authors also stated that the potential 

advantages of a coccolith Mg/Ca paleotemperature proxy may be complicated by cleaning issues, 

since, compared to foraminifera, coccoliths are much smaller and have a much lower Mg content. 

More recently, Ra et al. (2010) found a species-specific temperature dependence of the Mg/Ca 

ratios in two cultured coccolithophore species (Emiliania huxleyi and Gephyrocapsa oceanica). 

According to the authors however, a difference in absolute Mg/Ca ratios of the two species could 

complicate the use of coccolithophorid Mg/Ca as a paleothermometer. 
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5.4. Thoracosphaera heimii 
 

So far, only one study has been carried out on the elemental composition of Thoracosphaera

heimii shells: the culture experiment by Gussone et al. (2010). 
 

In the culture experiments of Gussone et al. (2010) the Sr/Ca ratios of T. heimii shells 

range between 2.16 and 2.40 mmol/mol. These values are higher than those of planktonic 

foraminifera (1.2-1.4 mmol/mol; Elderfield et al., 1996) but are similar to those of 

coccolithophores (1.9-3.2 mmol/mol; Stoll et al., 2002a,b). Furthermore, the Sr/Ca ratios of 

cultured T. heimii shells show a significant correlation with temperature: Sr/Ca (mmol/mol) = 

1.95±0.05 + (0.016±0.02)*T (°C) with R² = 0.88 (Fig. 5.2; Gussone et al., 2010).  
 

Mg/Ca ratios of cultured T. heimii shells reveal a relatively large variability: between 2.6 

and 7.3 mmol/mol. These values are exceeding those of Emiliana huxleyi by one order of 

magnitude and are within the range of planktonic foraminifera (1-10 mmol/mol; Elderfield et al., 

1996). Except for the strong Mg enrichment at the highest temperature (30°C), Gussone et al. 

(2010) found no temperature dependence of the Mg/Ca ratio of cultured T. heimii shells (Fig. 5.2). 

This relatively high Mg concentration at 30°C corresponds to reduced Sr/Ca values and relatively 

low cyst yields. This is interpreted by Gussone et al. (2010) as possibly anomalous growing 

behaviour of T. heimii at high temperatures. 

 

 
 

Fig. 5.2 – Left: temperature dependent KDSr and Sr/Ca ratios of cultured T. heimii shells (Gussone et al., 2010) 
– Right: KDMg and Mg/Ca ratios of cultured T. heimii shells as a function of temperature (Gussone et al., 2010) 
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CHAPTER 6  

MATERIAL AND METHODS 
 �

The different methods used in this thesis are described more into detail in Chapters 7, 8 and 

9. However, the density-and-size-based method to isolate Thoracosphaera heimii shells from 

sediments, described by Zonneveld (2004), was only cited from literature and will therefore be 

described in the following section. 
 

Since a single Thoracosphaera heimii shell weighs on average 1 ng, one mass spectrometry 

measurement requires 3x104 individual T. heimii shells (Zonneveld, 2004). In contrast to tests of 

foraminifera, picking of T. heimii shells is practically impossible and would be largely time 

consuming. In order to overcome this problem, Zonneveld (2004) developed a qualitative method 

to isolate T. heimii shells from the sediment, based on particle size and density. 
 

About 1-2 g of dry sediment is dissolved in tap water and homogenized ultrasonically. Since 

T. heimii shells are generally in the size range of 10-20 μm, the dissolved sample is sieved twice 

through a 20 μm precision sieve to remove particles bigger than T. heimii; and through a 10 μm 

precision sieve to remove particles smaller than T. heimii. The fraction between 10 and 20 μm is 

poured into a large beaker glass and diluted to 1600 ml. Eight 500 ml beaker glasses are each filled 

with 300 ml tap water and 200 ml of the diluted sample from the large beaker glass. The beaker 

glasses are left to settle for 10 min. Then, the upper 400 ml of the mixture is carefully discarded 

using a water jet pump. This step removes particles with a lower sinking rate than the T. heimii 

shells, i.e. particles with a lesser density and non-sperical particles. The residual 100 ml from 

every 500 ml beaker is collected into the larger beaker glass, diluted to 1600 ml again, and the 

settling procedure is repeated, at least three times. After every settling step, the sample is checked 

under a polarized light microscope with a gypsum plate to detect other calcareous particles. 

Settling is repeated until the sample contains less than 15% calcareous particles other than T.

heimii. To remove heavier particles than T. heimii shells, a decanting step can be applied. 

However, this was not necessary in the present study. When the sample is pure enough, the sample 

is filtered through a polycarbonate filter and the filter is oven-dried for 24h at 60°C. 

 
Zonneveld, K., 2004. Potential use of stable isotope composition of Thoracosphaera heimii (Dinophyceae) for upper 

 water column (thermocline) temperature reconstruction. Marine Micropaleontology 50 (3-4), 307-317. 
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Abstract 

 

Within the present study, we examined the correlation between temperature and the stable oxygen 

isotope composition (�18O) of Thoracosphaera heimii shells in 57 surface sediment samples from the 

western Indian Ocean offshore Tanzania, and the equatorial and South Atlantic Ocean. Isotopic 

temperatures were reconstructed using paleotemperature equations for cultured T. heimii and for inorganic 

calcite, and were compared to natural seawater temperatures. Furthermore, the �18O values of the T. heimii 

shells from surface sediments were plotted against sea surface temperatures, temperatures at mixed layer 

depth and temperature values averaged over 200m water depth. No temperature – �18O correlation could be 

observed for the Indian Ocean samples, possibly due to environmental influences, such as river input. We 

also observed that for the Atlantic Ocean samples the temperature – �18O correlation slightly improves 

when temperatures at mixed layer depth, the presumed living depth of T. heimii, are considered. This 

supports the suggestion from previous studies that the �18O composition of T. heimii shells has potential to 

reconstruct paleotemperatures of a specific depth in the water column, notably the mixed layer depth. 

 

Keywords: calcareous dinoflagellate, Thoracosphaera heimii, stable oxygen isotopes, temperature, 

Indian Ocean, Atlantic Ocean 
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7.1. Introduction 

 

Today there is a worldwide debate on future climate change. Climate models form a central 

part in this debate as they have become a practical tool to assess future climate conditions. It has 

become clear that in order to establish reliable predictions, the water column has to be divided into 

several artificial layers. Within these model studies, the most important layer is the surface layer 

which extends from the sea surface until roughly 100m water depth. This layer could be divided 

more into detail in the upper mixed layer and the lower thermocline. However, climate modellers 

only very recently started to show interest in the mixed layer depth as a separate layer in the 

artificial surface layer (e.g. Yeh et al., 2009). A mixed layer depth climatology is necessary in 

understanding the climatic system and is of primary importance for ocean modellers in validating 

and improving mixed layer parameterizations and Ocean General Circulation Models (de Boyer 

Montegut et al., 2004; with all references therein). It is therefore essential to build up an extensive 

data set, based on water samples and surface sediment samples, with detailed information about 

the environmental conditions, and especially temperature conditions, of this mixed layer.  
 

Today, the reconstruction of past climates is predominantly based on the use of stable 

oxygen isotopes and minor element to calcium ratios of organisms which form calcareous remains. 

In particular the stable oxygen isotope (�18O) composition of fossil planktonic foraminiferal 

carbonate has been used for this purpose and has proven to be a very useful tool in 

paleotemperature reconstructions (e.g. Fischer & Wefer, 1999). Unfortunately, it is not always 

possible to reconstruct conditions of one specific water depth using foraminifera since several 

species migrate through the water column (i.e. through different water masses) so that calcification 

occurs at different water depths. Additionally, some species contain photosynthetic symbionts and 

other species have seasonal shell production, which also influences the �18O composition of the 

foraminiferal shell calcite and hampers detailed paleotemperature reconstructions (e.g. Spero, 1992; 

Spero & Lea, 1993, 1996; Bemis et al., 1998; Bijma et al., 1999). 
 

To overcome issues involving the heterotrophic lifestyle of foraminifera, phytoplankton has 

received increasing interest and has become a succesful tool in paleoclimatic research. For 

instance, coccolithophores can overcome some of the problems observed for foraminifers: they are 

primary producers, so they don’t contain photosynthetic symbionts. Furthermore, distinct 

coccolithophore species assemblages prefer to live in certain water depth ranges within the photic 

zone (e.g. Winter et al., 2002; Boeckel & Baumann, 2008) so that the oxygen isotopic composition 

of these species will not be altered by vertical migration through the water column. However, for 

coccolithophores, problems in obtaining monospecific coccolith samples exist. 
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Another phytoplankton group that recently gained more interest in paleoclimatic studies are 

the calcareous dinoflagellates and especially the species Thoracosphaera heimii. T. heimii 

dominates the calcareous dinoflagellate assemblage in (sub)tropical waters and can relatively 

easily be isolated from sediments (Zonneveld, 2004). Due to its wide geographic and stratigraphic 

distribution in sediments, a rather high resistance against calcite dissolution in comparison to other 

calcareous organisms and a year-round shell production, the CaCO3 vegetative cysts (shells) of T.

heimii are useful as a proxy archive recording ocean surface conditions e.g. temperature and pH 

(Karwath, 2000; Karwath et al., 2000; Zonneveld, 2004; Kohn et al., 2011). The most appealing 

feature of T. heimii however, is its living depth, or calcification depth: the depth at which the 

organism incorporates the isotope signal of the water column into its shell. Kohn & Zonneveld 

(2010) showed that the presence of full T. heimii shells in the water column reflects the living 

depth of T. heimii, since the reproduction cycle of this species is very fast and its motile planktonic 

forms are able to move vertically over a short distance only (Inouye & Pienaar, 1983). It is now 

accepted that T. heimii thrives in the photic zone with maximal occurences in the upper part and 

immediately above the deep chlorophyll maximum (DCM) (e.g. Kohn & Zonneveld, 2010). The 

�18O composition of T. heimii can therefore be used to reconstruct species-specific temperatures at 

the depth of the DCM (Zonneveld, 2004). 
 

In comparison to the extensive knowledge available about the �18O composition of T. heimii 

in the equatorial and South Atlantic Ocean, no information is available about the western 

equatorial Indian Ocean. For the present study, T. heimii shells were isolated from surface 

sediment samples offshore Tanzania, and analyzed on their �18O composition. We extended the 

Indian Ocean data set with additional surface sediment samples and published �18O data of T.

heimii shells from surface sediment samples from the equatorial and South Atlantic Ocean 

(Zonneveld, 2004). Isotopic temperatures were reconstructed using the species-specific 

paleotemperature equation for T. heimii (Zonneveld et al., 2007) and the paleotemperature 

equation for inorganic calcite (Kim & O’Neil, 1997), and were compared to natural seawater 

temperatures at different depths in the water column. In addition, the �18O values of the T. heimii 

shells from surface sediments were plotted against sea surface temperatures, temperatures at mixed 

layer depth and temperature values averaged over 200m water depth. Our results will be discussed 

in terms of instrumental, environmental and biological influences. 
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7.2. Oceanographic setting 

 

The East African Indian Ocean is influenced by a strong monsoonal system with two distinct 

monsoon seasons (Fig. 7.1b). The NE monsoon occurs during boreal winter (from November 

through March) and is characterized by a high-pressure cell over the Tibetan plateaus in central 

Asia and a low-pressure cell over the Indian Ocean, resulting in northeastern tradewinds across the 

northern Indian Ocean (Woodberry et al., 1989). During boreal summer (from May through 

September), the SW monsoon is characterized by a high-pressure cell over the Indian Ocean and 

Madagascar and a low-pressure cell over the Tibetan plateaus, resulting in an intensification of the 

southeastern tradewinds of the southern hemisphere. These SE trades blow across the equator, are 

redirected toward the northeast by the African highlands, and form a strong atmospheric NE 

blowing jet, often called the Findlater jet (Newell, 1959; Findlater, 1971; Woodberry et al., 1989). 

During monsoon transitions, around April-May and October-November, wind directions change 

and short-lived but intense Eastward Equatorial Jets (EEJ) develop (Hastenrath & Greischar, 1991). 

Meteorologically, the SW monsoon is characterized by high cloud cover, rainfall, river discharge, 

terrestrial runoff and wind energy, and low solar insolation and temperatures. Oceanographically, 

the SW monsoon is characterized by cool surface water, a deep thermocline, high water mixing 

and wave energy, low salinity and high phosphorus. Reversed parameters are observed during the 

NE monsoon (e.g. McClanahan, 1988). 

 

This monsoonal system and the development of a low level jet also has an effect on the 

position of the Intertropical Convergence Zone (ITCZ), the area where trade winds from the 

northern and southern hemisphere meet. During the NE monsoon, the development of the 

northeastern tradewinds shifts the position of the ITCZ to the south. Whereas during the SW 

monsoon, the position of the ITCZ is shifted to the north due to the development of the 

southeastern tradewinds and the NE blowing Findlater jet.  

 

The surface circulation in the study area (Fig. 7.1b) is part of the giant clockwise Indian 

Ocean Gyre. At the northern tip of Madagascar, the westward flowing South Equatorial Current 

(SEC) splits into the northward flowing East African Coastal Current (EACC) and the southward 

flowing Mozambique Current (MC), which continues in the more southern Agulhas current (e.g. 

Swallow et al., 1991). At the location of the sample sites the surface circulation is dominated by 

the EACC. Throughout the year the position of the EACC is situated between latitudes 11°S and 

3°S and according to Bell (1972) the width of the current is over 160 km. The hydrography of the 

western Indian Ocean is also strongly influenced by the seasonal reversal of the monsoon trade 
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winds (e.g. Woodberry et al., 1989; Hastenrath & Greischar, 1991; Lugomela et al., 2001; Schott 

et al., 2009). During the NE monsoon, the northern part of the EACC meets the southward flowing 

Somali Current (SC) near 3°S (Schott, 1983; Schott et al., 1988) to form the offshore flowing 

Equatorial Countercurrent (ECC). This results in the formation of a downwelling area and 

associated low nutrient waters along Tanzania. During the SW monsoon, the EACC merges into 

the northward flowing SC and return flow is via the Southwest Monsoon Current coming from the 

northern hemisphere (e.g. Bell, 1972; Woodberry et al., 1989; Swallow et al., 1991; Schott et al., 

2009). 

 

Subsurface waters north of 10°S consist of the Indian Equatorial Water, also called the North 

Indian High-Salinity Intermediate Water (Wyrtki, 1973). This water mass is formed in the Arabian 

Sea with some components from the Red Sea and the Persian Gulf. Between 20°S and 40°S, 

subsurface waters consist of the Indian Central Water. Under this the Antarctic Intermediate Water 

is positioned. Both the deep and bottom waters are of Atlantic/Antarctic origin. 

 

Along the coast of Tanzania, the Islands of Mafia, Pemba and Zanzibar lay within the path of 

the EACC, reducing its current velocity, which in turn results in a stable upper water column and 

low turbulence conditions (Bryceson, 1977). They protect the Pemba Channel, a rather deep (>800 

m) graben-like basin between mainland Tanzania and Pemba Island. The upper waters of the 

Pemba Channel are fed by a large river discharge from the Pangani River, the sediments in the 

deeper part of this channel predominantly consist of mud or slightly sandy mud. Here pelagic 

sedimentation only plays a minor role. On the continental slope of Pemba Island and also further 

south off Mafia Island, the sediment consists of foraminiferal ooze, which indicates a more pelagic 

sedimentation (Pätzold et al., subm.). Apart from the Pangani River, also the Wami, Rufiji, 

Mbwemburu and Ruvuma rivers bring large amounts of terrestrial material into the ocean. 

Previous to Meteor cruise M75-2 heavy rains over southern Tanzania lead to large river input off 

the Ruvuma River (Pätzold et al., subm.). During Meteor cruise M75-2 a sharply defined plume of 

suspended sediment, which extended several kilometers offshore, was observed off the Ruvuma 

River mouth. 
 

The position of the Indian Ocean core top samples is given in Fig. 7.1c; and of the Atlantic 

Ocean core top samples in Fig. 7.1a. For a detailed description of the oceanographic conditions of 

the Equatorial and South Atlantic see e.g. Peterson & Stramma (1991) or Wefer et al. (1996). 
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Fig. 7.1 – a) Location of the Atlantic Ocean core tops – b) Oceanography of the western Indian Ocean offshore 
Tanzania – c) Location of the Indian Ocean core tops (see Table 7.2 for sample numbering; samples GeoB 

12617-1 and 12620-5 were excluded from the present study since they contained no T. heimii shells) 

 
7.3. Materials and methods  
 

7.3.1. Sample processing and oxygen isotope measurements 
 

To study the isotopic composition of Thoracosphaera heimii shells from sediments, 22 core 

top samples were collected from the western Indian Ocean offshore Tanzania (Fig. 7.1c). Samples 

were taken by multicorer during Meteor cruise M75-2 between February 7th and 24th 2008 (Pätzold 

et al., subm.). Samples GeoB 12617-1 and 12620-5 were excluded from the present study since 

they contained no Thoracosphaera heimii shells.  
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T. heimii was isolated from the upper centimeter of the sediment, starting from 3-4 g of dry 

sediment, and by using the qualitative density/size based method according to Zonneveld (2004). 

In summary, within the pre-sieved 10-15 μm fraction, other (calcareous) particles than T. heimii 

can be removed from the sediment by a series of settling and decanting steps. Purification of the 

samples was tested on a regular basis by polarized light microscope. In general, the calcareous 

fraction other than T. heimii consists of (fragments of) foraminifera, coccoliths, parts of other 

calcareous dinoflagellate species and parts of larger unidentified calcareous organisms. 

Percentages of other calcareous particles than T. heimii are available for the Indian Ocean core top 

samples (Table 7.1). 

 

Sample % T. heimii % other calcareous % foraminifera % coccolithophores % unidentified 
GeoB   dinoflagellates   and coccoliths fragments 

12601-1 89.69 1.88 2.97 1.25 4.22 
12602-3 85.61 2.03 4.95 1.41 6.00 
12603-1 84.48 0.99 4.93 1.56 8.05 
12604-5 80.65 0.28 3.64 0.91 14.52 
12605-2 79.54  15.60 0.33 4.54 
12607-1 89.37 0.26 6.69 0.26 3.41 
12608-2 94.01  4.13 0.21 1.65 
12609-1 88.26 0.44 3.97 0.35 6.97 
12611-3 82.79 0.57 15.99  0.65 
12612-2 83.21 0.33 16.13 0.16 0.16 
12613-2 88.81 1.07 8.26 0.27 1.60 
12614-2 93.07  4.47 0.15 2.31 
12616-3 94.94 0.42 4.22 0.14 0.28 

Table 7.1 – Percentages of T. heimii shells, other calcareous dinoflagellates, foraminifera 
coccolithophores/coccoliths and unidentified calcareous fragments for the Indian Ocean core top samples 

 

Stable oxygen isotopes of T. heimii shells were measured at MARUM, Bremen with a 

Finigan MAT 251 mass spectrometer with an automatic preparation line (Kiel II carbonate device). 

Standard reproducibility of internal standards is less than 0.07‰ for 18O. Unfortunately, internal 

variability within each sample cannot be provided, since no replicates were produced. Stable 

oxygen notations are given in � values relative to VPDB (Vienna Pee Dee Belemnite). Following 

Zonneveld (2004), VPDB was converted to VSMOW according to Hut (1987) (eq. 1):  

 

�18OVSMOW = �18OVPDB + 0.27        (eq. 1) 

 

To expand this dataset, 29 additional core top samples from the equatorial and South 

Atlantic, taken during previous Meteor cruises (Fig. 7.1a), were treated the same way as described 

above. In addition, we extended our data set with published �18O data of T. heimii shells from 

surface sediment samples from the equatorial and South Atlantic (Zonneveld, 2004) (Table 7.3).  
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7.3.2. Data collection 

  

To have the whole upper water column represented, environmental parameter data was 

collected for every 10m between 0 and 200m water depth. These values were separated into two 

values: a sea surface value (0m) and an average value over 200m water depth. Since the mixed 

layer depth (MLD) is the depth where highest abundances of T. heimii occur (Kohn & Zonneveld, 

2010), environmental parameter values were also collected for the MLD.  

 

The annually averaged MLD (m) was derived for every sample location from the Monterey 

& Levitus (1997) database. This data collection contains monthly MLD fields on a global 1°x1° 

grid. The MLD fields are computed from climatological monthly mean profiles of potential 

temperature and potential density based on a temperature change from the ocean surface of 0.5°C. 

Interpolation of the MLD data for the exact sample locations was done using Ocean Data View 

(Schlitzer, 2009). 

 

For every sample location, mean annual temperature values (°C) were derived from the 

World Ocean Atlas 2009 (Locarnini et al., 2010; http://www.nodc.noaa.gov/OC5/WOA09/ 

pr_woa09.html) and interpolated for the sea surface, the mixed layer depth and water depths every 

10m between sea surface and 200m with Ocean Data View (Schlitzer, 2009). The 21 water depth 

values between 0 and 200m were converted into one average temperature value over 200m water 

depth. 

 

Unfortunately, measured oxygen isotope values of the seawater (�18Ow) were unavailable for 

the Indian Ocean sample sites. Therefore �18Ow was calculated according to the following two 

steps. First �18Ow and salinity values were taken from the Global Seawater Oxygen-18 Database 

(Schmidt et al., 1999; http://data.giss.nasa.gov/o18data/). In a 10°x10° square block (2-12°S, 35-

45°E) around the Indian Ocean core top samples (blue dots 	 in Fig. 7.2), 33 data points of the 

Global Seawater Oxygen-18 Database were available (red dots 	 in Fig. 7.2). Linear regression of 

these 33 data points yielded the following equation: �18Ow = 0.1075*Salinity - 3.002 with R² = 

0.79 (Fig. 7.3b). The dashed lines in Fig. 7.3b show the 95% confidence level. To assess the error 

of prediction for the regression line, the standard error of the estimate (
est) was calculated. 
est = 

�(�(Y-Y’)²/N), with Y an actual �18Ow value, Y’ a predicted �18Ow value using the regression 

equation and N the number of pairs of values. For this �18Ow – salinity regression equation, 
est = 

+- 0.32262‰. 
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Fig. 7.2 – Visual map of sea surface salinity (World Ocean Atlas 2009) in the western Indian Ocean offshore 
Tanzania – blue dots �: core top samples used for the isotopic analysis of T. heimii shells – red dots �: 33 data 

points from the Global Seawater Oxygen-18 Database used for the establishment of the �18Ow -salinity 
regression equation (�18Ow = 0.1075*Salinity - 3.002 with R² = 0.789) for the Indian Ocean core top samples  

 

In a second step, mean annual salinity values (psu), interpolated for the sea surface, the 

mixed layer depth and water depths every 10m between sea surface and 200m with Ocean Data 

View (Schlitzer, 2009), were derived from the World Ocean Atlas 2009 (Antonov et al., 2010; 

http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html) and plotted into the �18Ow – salinity 

regression equation above to calculate �18Ow at sea surface and thermocline depths at every 

sampling site. A similar calculation was followed for the Atlantic Ocean samples of this study. The 

aim was to find datapoints of the Global Seawater Oxygen-18 Database in a 10°x10° square block 

around the core top samples. If this yielded too few datapoints, the grid was expanded. The 

established �18Ow – salinity regression equations used for the different Atlantic Ocean samples are 

given in Fig. 7.3a. The calculation of �18Ow for the additional Atlantic samples is described in 

Zonneveld (2004). 
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Fig. 7.3 – Correlation between the stable oxygen isotope composition of seawater (�18Ow, ‰) and salinity (psu) 
for surface sediment samples in a) the Atlantic Ocean and b) the Indian Ocean. n = the amount of data points 
taken from the Global Seawater Oxygen-18 Database (Schmidt et al., 1999; http://data.giss.nasa.gov/o18data/) 
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To investigate the possibility of the carbonate ion effect influencing the �18O of T. heimii, 

[CO3
2-] concentrations (μmol/kg) and pH values were obtained from the Goyet et al. (2000) 

database with global alkalinity and total dissolved carbon estimates on a 1°x1° grid. These values 

were only taken for the mixed layer depth since the mixed layer depth (MLD) is the depth where 

highest abundances of T. heimii occur (Kohn & Zonneveld, 2010). 

 

 

7.3.3. Calculation of isotopic temperatures 

 

Hypothetical isotopic temperatures were calculated, for the sea surface, the mixed layer 

depth and a depth averaged over the upper 200m, based on the T. heimii oxygen isotope data, the 

recently published temperature – �18O equation for T. heimii from culture experiments (Zonneveld 

et al., 2007) (eq. 2) and the paleotemperature equation for inorganic calcite by (Kim & O’Neil, 

1997) (eq. 3) 

 

T (°C) = -3.906 - 6.827*(�18Oc - �18Ow), R² = 0.85     (eq. 2) 

T (°C) = 16.1 – 4.64*(�18Oc - �18Ow) + 0.09*(�18Oc - �18Ow)²   (eq. 3) 

 

with �18Oc and �18Ow being the stable oxygen isotope compositions of T. heimii and seawater 

respectively.  

 

 

7.3.4. Correlation between temperature and �18Oc - �18Ow of T. heimii 

 

Additionally, we plotted the �18Oc - �18Ow values of the T. heimii shells from the surface 

sediment samples against sea surface temperature, temperature at mixed layer depth and the 

temperature averaged over 200m water depth. A linear curve of the form y = a + bx was fitted to 

the Indian Ocean data set, the Atlantic Ocean data set and the combined data set. As already noted, 

error bars, representing standard deviations, could not be provided. Therefore, the standard error of 

the estimate values (
est) was calculated for each regression equation. The difference between the 

�18O composition of T. heimii and the paleotemperature equation for inorganic calcite (Kim & 

O’Neil, 1997) was also calculated. 
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7.4. Results  
 

7.4.1. Stable oxygen isotope composition of Thoracosphaera heimii 

 

Stable oxygen isotope values (�18O) of T. heimii shells from the Indian Ocean samples are 

given in Table 7.2. Measured �18O values of the T. heimii shells (�18Oc) in the Indian Ocean 

samples vary between -2.60 and -1.83‰ (VPDB) or between -2.33 and -1.56‰ (VSMOW). When 

corrected for the oxygen isotope composition of seawater (�18Ow), the �18Oc – �18Ow values of T. 

heimii vary between -3.11 and -2.33‰ (VSMOW) for sea surface conditions, between -3.12 and  

-2.34‰ (VSMOW) for mixed layer depth conditions and between -3.11 and -2.34‰ (VSMOW) 

for conditions averaged over 200m water depth. 

 

Table 7.3 contains information about the �18O composition of T. heimii shells from the 

Atlantic Ocean samples, both from this study and from the additional samples derived from the 

dataset of Zonneveld (2004). Measured �18Oc values of the T. heimii shells in the Atlantic Ocean 

samples vary between -2.30 and 0.07‰ (VPDB) or between -2.03 and 0.34‰ (VSMOW). When 

corrected for the oxygen isotope composition of seawater, the �18Oc – �18Ow values of T. heimii 

vary between -2.69 and -0.17‰ (VSMOW) for sea surface conditions, between -2.78 and -0.15‰ 

(VSMOW) for mixed layer depth conditions and between -2.74 and -0.07‰ (VSMOW) for 

conditions averaged over 200m water depth. 
 

 

7.4.2. Calculation of isotopic temperatures 

 

Calculated isotopic temperatures based on the �18Oc - �18Ow composition of T. heimii from 

surface sediments and the species-specific paleotemperature equation for T. heimii of Zonneveld et

al. (2007) (dotted line in Fig. 7.4), are lower than the natural mean annual sea surface temperatures 

(solid line in Fig. 7.4): 10-25°C lower for sea surface conditions (Fig. 7.4a), 9-22°C lower for 

mixed layer depth conditions (Fig. 7.4b) and 4-19°C lower for conditions averaged over 200m 

water depth (Fig. 7.4c). Calculated isotopic temperatures based on the �18Oc – �18Ow composition 

of T. heimii from surface sediments and the paleotemperature equation for inorganic calcite by 

Kim & O’Neil (1997) (dashed line in Fig. 7.4a, b and c), are lower and higher than the natural 

mean anual sea surface temperatures (solid line in Fig. 7.4a, b and c): 7°C lower to 4°C higher for 

sea surface conditions (Fig. 7.4a), 4°C lower to 5°C higher for mixed layer depth conditions (Fig. 

7.4b) and 1°C lower to 11°C higher for conditions averaged over 200m water depth (Fig. 7.4c). 
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Fig. 7.4 – Reconstruction of isotopic temperatures for (a) sea surface conditions, (b) mixed layer depth 
conditions and (c) conditions averaged over 200m water depth, based on the T. heimii oxygen isotope data, the 

recently published temperature – �18O equation for T. heimii from culture experiments by Zonneveld et al. 
(2007) (dotted line in a, b and c) and the paleo-equation for inorganic calcite by Kim & O’Neil (1997) (dashed 
line in a, b and c). Solid lines in a, b and c depict mean annual temperatures at the corresponding depths. For 

sample numbering on the x-axis, see Table 7.2 and 7.3. 
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7.4.3. Correlation between temperature and �18Oc - �18Ow of T. heimii 

 

When the Indian Ocean data is considered separately (yellow diamonds (�) in Fig. 7.5), no 

correlation can be observed between temperature and the �18Oc – �18Ow composition of T. heimii 

shells: R² = 0.01 for sea surface conditions (Fig. 7.5a), R² = 0.10 for mixed layer depth conditions 

(Fig. 7.5b) and R² = 0.002 for conditions averaged over 200m (Fig. 7.5c). 

 

 

 

Fig. 7.5 – Correlation between temperature and �18Oc - �18Ow in T. heimii shells from sediments – Yellow 
diamonds (�) are the Indian Ocean samples, green squares (�) are the Atlantic Ocean samples from this study 
and red triangles (�) are the Atlantic Ocean samples from Zonneveld (2004) – The dotted line represents the 
paleotemperature equation for T. heimii from culture experiments (Zonneveld et al., 2007),  the dashed line 

represents the paleotemperature equation for inorganic calcite (Kim & O’Neil, 1997) 
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When the Atlantic Ocean data is considered separately, some correlation can be observed 

between temperature and the �18Oc – �18Ow composition of T. heimii shells (Fig. 7.5; green squares 

(
) are Atlantic Ocean samples from this study, red trianlges (�) are Atlantic Ocean sample from 

Zonneveld (2004)):  

 

Sea surface:  T(°C) = -3.2565*(�18Oc – �18Ow) + 18.832, R² = 0.56, 
est = 1.93 

Mixed layer depth: T(°C) = -3.2581*(�18Oc – �18Ow) + 17.836, R² = 0.64, 
est = 1.71 

Averaged over 200m: T(°C) = -1.6724*(�18Oc – �18Ow) + 17.036, R² = 0.38, 
est = 1.49 

 

with �18Oc and �18Ow being the stable oxygen isotope compositions of T. heimii and seawater 

respectively. When the combined data set (Indian Ocean and Atlantic Ocean) is considered, some 

correlation can be observed between temperature and �18Oc – �18Ow (Fig. 7.5): 

 

Sea surface:  T(°C) = -3.1489*(�18Oc – �18Ow) + 19.028, R² = 0.67, 
est = 1.58 

Mixed layer depth: T(°C) = -3.0912*(�18Oc – �18Ow) + 18.103,  R² = 0.71, 
est = 1,41 

Averaged over 200m: T(°C) = -1,4865*(�18Oc – �18Ow) + 17.279,  R² = 0.46, 
est = 1.21 

 

with �18Oc and �18Ow being the stable oxygen isotope compositions of T. heimii and seawater 

respectively. 

 

The difference between the �18O composition of the T. heimii shells and the values predicted 

by the paleotemperature equation for inorganic calcite (Kim & O’Neil, 1997) is given in Table 7.4. 

For the Indian Ocean samples, all �18Oc – �18Ow values of the T. heimii shells are lower than the 

values predicted for inorganic calcite. For the Atlantic Ocean samples, the majority of the �18Oc – 

�18Ow values of the T. heimii shells are lower than the values predicted for inorganic calcite. In 

general, differences with inorganic calcite are smallest for sea surface conditions and largest for 

conditions averaged over 200m. 

 

  

7.4.4. Carbonate ion effect 

 

No significant correlation could be found between the �18Oc – �18Ow composition of T. 

heimii shells in core-top sediments from the Indian and Atlantic Ocean and the carbonate ion 

concentration [CO3
2-] or the pH of the seawater (Fig. 7.6). 
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Sample �18O (T. heimii - inorganic calcite) (‰)  Sample �18O (T. heimii - inorganic calcite) (‰) 

GeoB sea surface MLD 200m average  GeoB sea surface MLD 200m average 
         

12601-1 � -0.45 -0.67 -1.73 3827-1 
 -0.35 -0.55 -0.91 
12602-3 � -0.10 -0.32 -1.38 3908-11 
 -0.19 -0.52 -1.71 
12603-1 � -0.30 -0.52 -1.58 3910-3 � 0.82 0.45 -0.08 
12604-5 � -0.13 -0.36 -1.41 3925-2 
 1.07 0.81 -0.18 
12605-2 � -0.03 -0.26 -1.31 3935-1 � 0.11 -0.32 -1.00 
12606-2 � -0.10 -0.32 -1.38 4306-1 
 -0.27 -0.58 -1.84 
12607-1 � -0.29 -0.52 -1.57 4311-1 � -0.08 -0.45 -1.55 
12608-2 � -0.44 -0.67 -1.72 4312-4 
 -0.01 -0.35 -1.51 
12609-1 � -0.08 -0.31 -1.36 4401-3 � 0.01 -0.26 -1.17 
12610-3 � -0.06 -0.30 -1.34 4411-1 
 -0.01 -0.26 -1.32 
12611-3 � -0.50 -0.72 -1.80 4412-3 
 -0.35 -0.60 -1.68 
12612-2 � -0.50 -0.72 -1.81 4413-1 
 0.07 -0.18 -1.28 
12613-2 � -0.81 -1.04 -2.10 4421-2 
 0.16 -0.16 -0.54 
12614-2 � -0.13 -0.37 -1.38 4424-2 
 0.73 0.45 0.11 
12615-5 � -0.31 -0.55 -1.57 4908-3 � 1.35 0.83 -0.91 
12616-3 � -0.47 -0.70 -1.74 5002-1 
 0.16 -0.08 -0.95 
12621-1 � -0.33 -0.55 -1.42 5004-2 
 0.01 -0.20 -1.03 
12623-1 � -0.34 -0.57 -1.55 5006-1 
 -0.37 -0.58 -1.38 
12624-3 � -0.37 -0.60 -1.58 5007-1 
 -0.03 -0.16 -0.79 
12625-1 � -0.26 -0.49 -1.47 5008-3 
 -0.04 -0.16 -0.73 
3603-1 � 0.33 0.23 -0.35 5115-2 
 0.62 0.56 0.15 
3801-5 
 -0.03 -0.24 -0.49 5117-2 
 -0.16 -0.22 -0.63 
3802-2 
 0.02 -0.16 -0.43 5121-2 
 0.31 0.24 -0.16 
3803-1 
 0.03 -0.15 -0.42 5130-1 
 0.06 -0.03 -0.42 
3804-2 
 -0.42 -0.59 -0.87 5132-2 
 -0.66 -0.76 -1.15 
3808-7 
 -0.09 -0.26 -0.55 5136-2 
 -0.84 -0.92 -1.29 
3809-1 
 -0.44 -0.65 -0.91 5140-3 
 -0.39 -0.51 -0.82 
3810-2 
 0.17 -0.03 -0.30 5204-11 � -0.27 -0.56 -1.78 
3812-2 � 0.20 -0.02 -0.30      

                  

Table 7.2 – Difference between the �18Oc – �18Ow composition of T. heimii shells from sediments and the values 
predicted using the paleotemperature equation for inorganic calcite by Kim & O’Neil (1997)  - � = Indian 

Ocean samples, � = Atlantic Ocean samples (this study) and � = Atlantic Ocean samples (Zonneveld, 2004) 

 

 
 

 
 

Fig. 7.6 – Correlation between the �18Oc – �18Ow composition of T. heimii shells from sediments with the 
carbonate ion concentration of the seawater ([CO3

2-]) and pH at mixed layer depth – yellow diamonds (�) are 
the Indian Ocean samples from this study, green squares (�) are the Atlantic Ocean sample from this study and 

red triangles (�) are the additional Atlantic Ocean samples from Zonneveld (2004) 
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7.5. Discussion  

 

7.5.1. Correlation between temperature and the �18O composition of T. heimii shells 

 

In an attempt to reconstruct isotopic temperatures based on the �18O composition of 

Thoracosphaera heimii shells from core top sediments; two published paleotemperature equations 

were used: the equation for T. heimii from culture experiments by Zonneveld et al. (2007) and the 

equation for inorganic calcite by Kim & O’Neil (1997). In general, the T. heimii paleotemperature 

equation yields reconstructed isotopic temperatures which are 5-25°C lower than the local mean 

annual temperatures (at sea surface, at mixed layer depth or average temperature values over 200m 

water depth). Comparable unrealistic isotopic temperatures were already noted by Kohn et al. 

(2011). As a result, the authors suggested that in the culture experiments of Zonneveld et al. 

(2007), an uncontrolled medium – air exchange might have occurred, that caused the physical 

conditions of the culture medium to remain not completely constant. Since we observed a similar 

discrepancy, we support the assumption of Kohn et al. (2011) to reject the culture experiment-

based equation for T. heimii of Zonneveld et al. (2007). The paleotemperature equation for 

inorganic calcite (Kim & O’Neil, 1997) yields reconstructed isotopic temperatures which are 

generally 7°C lower to 11°C higher than the local mean annual temperature (at sea surface, at 

mixed layer depth or average temperature values over 200m water depth). We also observe that for 

the Indian Ocean samples and the majority of the Atlantic samples, the �18Oc – �18Ow values are 

0.09-1.35‰ lower than values predicted by the equation for inorganic calcite.  
 

When looking at the correlation between natural temperatures and �18Oc – �18Ow values in T.

heimii shells from core top samples, a difference can be noticed between the sample set from the 

Indian Ocean and the sample set from the Atlantic Ocean. When the Indian Ocean core top 

samples are considered separately, �18Oc – �18Ow is not correlated with temperature. This is not 

surprising since the Indian Ocean samples display a very wide range of �18Oc – �18Ow values 

(~0.8‰) for a very narrow range of temperatures (less than 1°C). This is quite unrealistic, since 

e.g. inorganic calcite and the planktonic foraminifera Orbulina universa would show the same 

�18Oc – �18Ow range for a range of calcification temperatures as large as ~3.7°C (e.g. Bemis et al., 

1998). This might be suggestive of other factors than temperature controlling the �18O composition 

of T. heimii shells in core top samples from the western Indian Ocean. The observed offsets in our 

data set, between T. heimii and inorganic calcite, and between the Indian and Atlantic Ocean, will 

be discussed in terms of instrumental, environmental or biological influences. 
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7.5.2. Instrumental influences 

 

A potential factor influencing the isotopic signal of T. heimii shells is the purification of the 

samples. Zonneveld (2004) showed that “dirty” samples, i.e. samples that contain more than 15% 

calcareous particles other than T. heimii, gave both positive and negative deviations compared to 

their purified equivalents. For the Indian Ocean samples within the present study, the total 

calcareous fraction contains on average 87% T. heimii shells. The largest portion of the other 

calcareous particles consists of foraminifera, i.e. mostly single detached chambers and juvenile 

foraminifera (on average 7.38%). Also parts of larger unidentified calcareous organisms are quite 

abundant (on average 4.18%). Less common calcareous particles are (parts of) other calcareous 

dinoflagellates (on average 0.83%) and coccolithophore and coccolith species (on average 0.58%). 

Although in general, the requirement for having an accurate T. heimii isotope signal is fulfilled 

(less than 15% other calcareous particles, Zonneveld (2004)), for some individual Indian Ocean 

samples, T. heimii only comprises 80% of the calcareous fraction. Therefore it is possible that the 

�18O composition of the other present species obscure the T. heimii signal, perhaps partly causing 

the large �18Oc – �18Ow range associated with the very narrow temperature range in the Indian 

Ocean, or causing the offset with inorganic calcite. To entirely exclude the contaminating effect of 

other calcareous particles on the T. heimii isotope signal, multiple measurements, with different 

levels of purification are needed.  
 

Another factor that might be of consequence is the calculation of the oxygen isotope 

composition of sea water (�18Ow). Since measured �18Ow values were not available, we calculated 

�18Ow based on the linear relationship between �18Ow and salinity. We are aware that this method 

might have a high rate of insecurity since for the Indian Ocean study area for instance, only a few 

data points with measured �18Ow and salinity values are available in the Global Seawater Oxygen-

18 Database of Schmidt et al. (1999). However, we argue that the available �18Ow and salinity data 

display a uniform distribution with a rather high correlation coefficient (R² = 0.79). We therefore 

assume that the �18Ow – salinity relationship, as established with data points in the Indian Ocean, is 

representative for the whole research area offshore Tanzania. Although for some Atlantic Ocean 

samples data points in the Global Seawater Oxygen-18 Database were sparse as well, the 

correlation between �18Ow and salinity is high (R² = 0.74-0.95). For a few Atlantic Ocean samples 

however (GeoB 4306-1 and 4312-3) the data points show a large scatter (R² = 0.23). For these 

samples, a better relationship needs to be established, which is currently not possible due to the 

sparsity of data points in the Global Seawater Oxygen-18 Database (Schmidt et al., 1999) at these 

sample locations.  
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By calculating the �18Ow estimates, we interpolated mixed layer depth, temperature and 

salinity values with the Ocean Data View VG gridding method (Schlitzer, 2009). Different 

interpolation methods and programs will off course produce slightly different values and this could 

have an influence on the calculated isotopic temperatures. However, a discussion about the 

differences between interpolation methods was not in the scope of this paper.  
 

 

7.5.3. Environmental influences 

 

Apart from instrumentally induced effects, also environmental processes might influence the 

�18O signal of T. heimii shells in surface sediments. For the present study, we analyzed core top 

samples from two different oceanographic regions, the western Indian Ocean, and the equatorial 

and South Atlantic, which are characterized by surface currents and water masses with different 

isotopic composition. Legrande & Schmidt (2006, Fig. 7.7) created a global map for the annual 

mean surface �18O composition of seawater. From this map, it can be derived that the �18O values 

of seawater in the equatorial and South Atlantic are generally higher than in the western Indian 

Ocean. Therefore it can be assumed that T. heimii in Atlantic Ocean waters will precipitate 

calcareous shells with higher �18O values. However, measured �18O values of the T. heimii shells 

were corrected for the �18O composition of seawater, which should annul the effect of inter-

oceanic differences.  
 

 

Fig. 7.7 – Global 1°x1° gridded data set of the annual mean surface �18O composition of seawater (Legrande & 
Schmidt, 2006). All �18O measurements come from the upper 5 meters of the water column (Schmidt et al., 1999) 
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In contrast to the Atlantic Ocean samples, the Indian Ocean samples are located in a coastal 

system, thus influence of freshwater input by local rivers will be more important for the latter 

samples. Regions in the vicinity of a river mouth are affected by the average isotopic composition 

of precipitation over the river’s catchment area (e.g. Rohling & Bigg, 1998; Rohling & Cooke, 

1999). Although currently we do not have specific isotopic data for the Tanzania rivers affecting 

the sample area (Pangani, Wami, Rufiji and Ruvuma), generally, a low lattitude river system 

imports freshwater with higher �18O values than those of a high latitude river. For example, the 

average (pre-Aswan dam) Nile River �18O composition was near -2‰, whereas the Arctic 

McKenzie river discharges waters with a composition around -20‰ (e.g. Rohling & Bigg, 1998; 

Rohling & Cooke, 1999). Since the core top samples from the western Indian Ocean study area are 

located at low latitudes, we expect that the difference in isotopic composition between the river 

runoff water and the oceanic water will be minor. 
 

Also a possible seasonal effect on the Indian Ocean samples induced by the monsoon system 

needs to be considered. In culture experiments T. heimii shells are produced throughout the year 

with the production of about one cyst a day (e.g. Inouye & Pienaar, 1983; Karwath, 2000). This 

suggests that the production of T. heimii shells in natural environments is not restricted to a certain 

season or to a limited time interval during the year (Zonneveld, 2004). This assumption is 

supported by, for instance, a sediment trap study off Cape Blanc where T. heimii dominates the 

calcareous dinocyst assemblage during an 18-months sampling period (Richter, 2009). However, 

there are indications that seasonal production of T. heimii shells is region dependent: a sediment 

trap study from the Arabian Sea documents highest accumulation rates of T. heimii shells at the 

end of the SW monsoon (Wendler et al., 2002a, b). Since our study area, the Indian Ocean 

offshore Tanzania, is located more south compared to the Arabian Sea, we assume that this 

seasonal effect is likely to be less pronounced here. Also, the SW monsoon is characterized by 

high rain fall and river discharge, which is associated with high amounts of suspended material 

and high turbulence conditions. Turbulence in the upper water column is unfavorable for the 

development of phytoplankton (including the calcareous dinoflagellate T. heimii), preventing it 

from building up a standing stock in the photic zone (e.g. Wendler et al., 2002a, b; Vink, 2004). 

Therefore we infer that the increased turbulence in the vicinity of the Ruvuma river mouth at the 

end of the SW monsoon, as could be observed prior to and during Meteor cruise M75-2 (Pätzold et

al., subm.), leads to lowest concentrations of T. heimii shells in the water column (Kohn & 

Zonneveld, 2010) and absence of T. heimii shells in the surface sediments (samples GeoB 12617-1 

and GeoB 12620-5, this study) and thus that any seasonal effect on T. heimii in our study area 

would be annulled by this phenomenon. 
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As a last possible environmental influence we need to consider the living depth of T. heimii. 

We observed that the correlation between temperature and the �18O composition of T. heimii shells 

from surface sediment samples in the Atlantic Ocean slightly increases when we consider 

temperatures at mixed layer depth (MLD) instead of sea surface temperatures or temperatures 

averaged over 200m water depth. The lower limit of the surface mixed layer is characterized by an 

abrupt density change (pycnocline) or temperature change (thermocline). And these gradients are 

often co-located with a maximum in chlorophyll-a concentration. The upper part of the photic 

zone and the area immediately above the deep chlorophyll maximum (DCM) is supposedly the 

living depth of T. heimii (Kohn & Zonneveld, 2010). Therefore we used the MLD from the 

Monterey & Levitus (1997) database as a measure for the depth of the DCM. It should be noted 

however, that the MLD is not a constant or permanent phenomenon. Temporal variabilities of the 

MLD can range from diurnally to interannually, including seasonally and interseasonally. Also the 

spatial variability of the MLD is very large. The MLD can be less than 20 m in the summer 

hemisphere, while reaching more than 500 m in the winter hemisphere (de Boyer Montégut et al., 

2004 with all references therein). Unfortunately, so far no information is available on how these 

seasonal variabilities of the MLD or DCM effect the isotopic composition of T. heimii. But since 

we assume a year-round production of T. heimii shells (see discussion above), the use of annually 

averaged MLDs can be justified.  

 

 

7.5.4. Biological influences 

 

To explain the observed offset with inorganic calcite, we also need to consider several 

biological processes, including calcification, photosynthesis and respiration. For an overview of 

the effect of these metabolic and kinetic processes, previously referred to as “vital effects”, on the 

�18O composition of T. heimii shells, see Zonneveld et al. (2007). Here we will consider the 

possibility of the carbonate ion effect (CIE) moderating the �18O signal of T. heimii shells. 
 

The CIE is characterized by a decrease in shell �18O with increasing [CO3
2-] concentration or 

pH of the culture medium/seawater, and is likely to be caused by a combination of kinetic effects 

and [CO3
2-] related variations in the calcification rate. The phenomenon and its possible 

mechanisms have been extensively discussed in literature and have been described for many 

foraminifera and coccolithophore species (e.g. Spero et al., 1997; Bijma et al., 1999; Zeebe, 1999; 

Zeebe et al., 1999; Ziveri et al., 2006; Ziveri et al., 2011).  
 



 76

 
For the calcareous dinoflagellate T. heimii, thus far three culture experiments have been 

carried out to investigate the influence of the carbonate chemistry of the seawater/culture medium. 

In the study of Zonneveld et al. (2007) a positive correlation was found between �18Oc-�18Ow and 

pH, whereas in the study of Kohn (2009) this correlation was negative. However, as already 

mentioned at the beginning of this discussion, the results of the culture study of Zonneveld et al. 

(2007) are not entirely trustworthy since several parameters of the culture medium did not remain 

constant during the experiment. A more recent culture experiment gave a slope of -0.0243 

(μmol/kg)-1 for the correlation between �18O and [CO3
2-] (Ziveri et al., 2011). However, for the 

surface sediment samples in this study, we did not find any correlation between the �18Oc-�18Ow 

composition of T. heimii shells and the [CO3
2-] (or pH) value at mixed layer depth. The Indian 

Ocean samples show a rather large �18Oc-�18Ow range for a small [CO3
2-] range. Also in the 

Atlantic Ocean the samples show a large scatter of the data. It is possible that the correlation 

between �18O and [CO3
2-] found in culture experiments (Ziveri et al., 2011) is obscured in natural 

sediments by processes discussed above. To evaluate the carbonate ion effect on T. heimii shells 

from surface sediments, further research is necessary. 
 

 

Conclusion 

 

For the present study, we analyzed the stable oxygen isotope (�18O) composition of 

Thoracosphaera heimii shells from surface sediments in two oceanographic regions: the western 

Indian Ocean offshore Tanzania, and the equatorial and South Atlantic. The data set was 

complemented with published T. heimii �18O data from surface sediment samples in the Atlantic 

study of Zonneveld (2004). Isotopic temperatures were reconstructed based on the �18O 

composition of T. heimii and the culture-based paleotemperature equations for T. heimii 

(Zonneveld et al., 2007) and inorganic calcite (Kim & O’Neil, 1997). These calculated isotopic 

temperatures differ from the modern mean annual sea surface temperatures. Furthermore, we 

looked at the correlation between the �18O composition of T. heimii shells and temperatures of the 

upper water column. No temperature – �18O correlation is present for the Indian Ocean samples, 

which we explain by a combination of instrumental and environmental influences. For the Atlantic 

Ocean samples, the temperature – �18O correlation slightly improves when temperatures at mixed 

layer depth, the presumed living depth of T. heimii, are considered. This observation supports the 

proposal of previous studies that the �18O composition of T. heimii shells has potential as a useful 

tool to reconstruct paleotemperatures of a specific depth in the upper water column, notably the 

mixed layer depth.  
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Abstract 

 

In this pilot study, the Mg/Ca, Sr/Ca, Fe/Ca, Mn/Ca and Si/Ca ratios of Thoracosphaera heimii shells 

from 31 surface sediments in the equatorial and South Atlantic have been analyzed. The Mg/Ca and Sr/Ca 

ratios were compared to several environmental parameters of the upper water column, especially 

temperature; while the Fe/Ca, Mn/Ca and Si/Ca ratios were used as a measure for contamination from the 

sediments. A difference could be observed between the elemental composition of T. heimii shells from 

natural sediments (this study) and T. heimii shells from a previously published culture experiment: natural 

values are generally higher and show a larger range than culture values. PCA reveals a grouping of the 

samples: highest Mg/Ca ratios appear in the Amazon Fan area, while highest Sr/Ca ratios appear in the 

central area of the Subtropical Gyre. RDA reveals a correlation between Mg/Ca and temperature. However, 

Mg/Ca values also show a correlation with Mn/Ca, Fe/Ca and Si/Ca, which can be an indication for 

sediment (clay) contamination. RDA also reveals a correlation between Sr/Ca and the carbonate chemistry 

of the seawater (total alkalinity and carbonate ion concentration [CO3
2-]). In contrast to cultured T. heimii 

shells, the Sr/Ca ratios of T. heimii shells from natural sediments do not show any correlation with 

temperature. So far we do not have a satisfying explanation for this discrepancy. When the extreme Mg/Ca 

and Sr/Ca values are omitted from this dataset, the remaining core top samples still show a large scatter of 

Mg/Ca and Sr/Ca. 
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8.1. Introduction 

 

Today, the minor element to calcium ratios of biogenic carbonates form a major tool for 

reconstructing past marine environments. Especially the Mg/Ca and Sr/Ca ratios of planktonic 

foraminifera and coccolithophores are frequently applied in paleoceanography. 
 

Foraminiferal Mg/Ca is widely applied to reconstruct the (calcification) temperature of 

seawater (e.g. Nürnberg 1995, 2000; Nürnberg et al., 1996, 2000; Lea et al., 1999; Mashiotta et al., 

1999; Elderfield & Ganssen, 2000; Dekens et al., 2002). Other variables, however, can influence 

the temperature proxy signal. For instance seawater salinity (e.g. Nürnberg et al., 1996; Lea et al., 

1999; Kisakürek et al., 2008; Ferguson et al., 2008; Dueñas-Bohórquez et al., 2009), pH (e.g. Lea 

et al., 1999) and carbonate ion concentration ([CO3
2-]; e.g. Russell et al., 2004), additionally affect 

planktonic foraminiferal Mg/Ca. The incorporation of Sr into planktonic foraminiferal calcite may 

also show a temperature dependence (e.g. Lea et al., 1999; Reichart et al., 2003; Mortyn et al., 

2005). Secondary factors can also largely influence the Sr/Ca ratios of planktonic foraminifera 

tests, such as seawater salinity (Lea et al., 1999), carbonate ion concentration of the seawater 

([CO3
2-]; e.g. Lea et al., 1999; Russell et al., 2004; Mortyn et al., 2005; Kisakürek et al., 2008) and 

the carbonate saturation state of the seawater (�; Dueñas-Bohórquez et al., 2009). 
 

Since a decade, the Sr/Ca ratio of coccolith calcite has been applied as a proxy for 

reconstructing past coccolithophore growth rates and consequently reconstructing paleo-primary 

productivity. A main secondary factor affecting coccolith Sr/Ca ratios are changes in temperature 

(e.g. Stoll & Schrag, 2000; Stoll et al., 2002a.b; Langer et al., 2006). In analogy with foraminiferal 

Mg/Ca, Mg/Ca ratios of coccoliths are related to calcification temperature. However, since the Mg 

content in coccolith calcite is extremely low, there is an issue with the cleaning accuracy (mainly 

clay removal), thus hampering reliable Mg/Ca measurements (e.g. Stoll et al., 2001). 
 

In comparison to the extensive knowledge available about the elemental composition of 

foraminiferal and coccolithophorid calcite, very little is known about the minor element to calcium 

ratios of calcareous dinoflagellate cysts. The only published culture study on this topic revealed 

that the Sr/Ca ratios of one specific species, Thoracosphaera heimii, show a pronounced 

temperature sensitivity (0.016 mmol/mol °C-1), and have the potential to serve as a sea surface 

temperature proxy (Gussone et al., 2010). No clear temperature dependence was observed for 

Mg/Ca, except for a strong Mg enrichment at the highest culture temperature (30°C) (Gussone et 

al., 2010). 
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Here, we investigate whether or not the observations of the culture experiment by Gussone et

al. (2010) can be transferred to natural sediments. In this pilot study, we analyzed the elemental 

composition of T. heimii shells in 31 surface sediment samples from the equatorial and South 

Atlantic. For this purpose, a new cleaning protocol for the elemental analysis of T. heimii shells 

from sediments was developed, based on the cleaning method used for coccoliths, described by 

Bairbakesh et al. (1999) and Stoll & Ziveri (2002). Mg/Ca and Sr/Ca ratios were measured, and 

compared to several annual average values of several upper water column parameters. We are 

most interested in a possible correlation with temperature, but also salinity, total alkalinity, pH, the 

carbonate ion concentration of the seawater, nutrient concentrations and chlorophyll-a 

concentration are being considered. Furthermore, Mn/Ca, Fe/Ca and Si/Ca ratios were measured as 

a measure for sedimentary influences, i.e. most likely clay contamination.  

 

 

Fig. 8.1 - Surface circulation in the modern equatorial and South Atlantic and sample location 
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8.2. Surface circulation in the modern equatorial and South Atlantic 

 

Here, we will only give a brief summary of the surface circulation in the South and 

equatorial Atlantic Ocean (Fig. 8.1). For a more detailed overview, see e.g. Peterson & Stramma 

(1991) and Wefer et al. (1996). 

 

The dominant feature in the South Atlantic Ocean surface circulation is the anticyclonic 

Subtropical Gyre System, which is confined by the Benguela Coastal Current (BCC) in the east, 

the South Equatorial Current (SEC) in the north, the Brazil Current (BRC) in the west and the 

South Atlantic Current (SAC) in the south. The northward flowing BCC, which originates off the 

Cape of Good Hope, is fed primarily by the SAC but can also receive water from the Agulhas 

Current (AGC). Along the coast of Namibia, coastal upwelling is driven by the prevailing SE trade 

winds in the region, resulting in cold, low saline and nutrient-rich waters of the BCC. At around 

20°S, the BCC is bending towards the NW, changing names to the Benguela Oceanic Current 

(BOC) and merging into the SEC, which exhibits increasing temperature and salinity and 

decreasing nutrient content from east to west. When the SEC reaches the eastern promontory of 

South America, a small part of the water turns southwards to form the Brazil Current (BRC), 

whereas the bulk of the flow contributes to the northward flowing North Brazil Current (NBC) and 

the reversing South Equatorial Counter Current (SECC). Through the BRC, relatively warm, saline 

and nutrient-poor surface water is transported along the coast of South America, back to the south. 

At around 40°S, the BRC collides with the cold and relatively fresh northward flowing Falkland 

Current (FC) and is deflected eastwards to coalesce into the SAC. The SAC is relatively warm 

compared to the cold, nutrient-rich and relatively fresh Antarctic Circumpolar Current (ACC), 

which is located more to the south. Both eastward flowing currents (SAC and ACC) are separated 

by the Subtropical Front. 

 

Intermediate between the equatorial Atlantic and the Subtropical Gyre system, surface ocean 

circulation is characterized by a small cyclonic gyre circulation system which consists of the 

north-westward flowing BOC in the south, the eastward flowing SECC in the north and the 

southward flowing Angola Current (AC) in the east. Southeast of this gyre, the warm equatorial 

AC waters collide with the colder subtropical BCC waters, resulting in the Angola-Benguela Front 

(ABF). 
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In the equatorial Atlantic, surface waters are generally warm and the surface currents are 

mainly driven by the trade winds. During austral winter, i.e. the season of maximal SE trade wind 

activity, the SEC and the NBC are at their strongest. The intensification of the trade winds during 

this season also results in the formation of the eastward flowing North Equatorial Counter Current 

(NECC) and its continuation into the Guinea Current (GC). During austral summer, the SE trade 

winds are less intense, resulting in a weakening or even disappearing of the NECC. A northern 

branch of the SEC is sandwiched between the NECC and the SECC. Towards the Caribbean, the 

NBC joins the Guiana Current (GUC), both of which account for the net northward transport of 

surface water from the South Atlantic into the North Atlantic. North of the Equatorial Atlantic 

surface currents arrangement, nutrient-poor, relatively saline and cool waters, originating from the 

Canary Current, are transported into the tropics by the westward flowing North Equatorial Current 

(NEC). 

 

Fig. 8.2 shows the location of the surface sediment samples in correlation to sea surface 

chlorophyll-a concentration (mg/m³). Highest chlorophyll-a concentrations occur around the 

equator and along the shores of the continents. 
 

 

Fig. 8.2 – Sample locations plotted on sea surface chlorophyll-a concentration (mg/m³). Chlorophyll-a data are 
an average of monthly data between July 2001 and July 2011, on a 4kmx4km grid. Data is derived from the 

MODIS-Aqua database (http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=ocean_month) 
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8.3. Material and methods 
 

Thirty-one surface sediment samples from the equatorial and South Atlantic Ocean were 

studied on the minor element to calcium ratios of Thoracosphaera heimii shells. Samples were 

collected by multicorer during several Meteor cruises (Table 8.1).  

 

8.3.1. Sediment preparation and geochemical analysis 

 

The new cleaning protocol for the preparation of calcareous Thoracosphaera heimii shells 

for elemental analysis is based on the cleaning method used for coccoliths described by 

Bairbakesh et al. (1999) and Stoll & Ziveri (2002). For a more detailed description of the method, 

we refer to Chapter 9 in this thesis. In summary, the protocol consists of six cleaning steps. (1) 

First, a mixture of bi-distilled water, H2O2 and NaClO was added to the sample allowing oxidation 

of the organic material and allowing disaggregation of the sediment particles. After 10 minutes, 

more NaClO was added to buffer the oxidation reaction and this was repeated three times. (2) Next, 

the sample was sieved through a 15 μm precision sieve in order to remove foraminifera and larger 

calcareous dinoflagellate species. (3) Then, a reductive solution (called “MNX”) of bi-distilled 

water, ammonia and hydroxylamine hydrochloride was added and the sample was placed on a 

rotating carousel for 24 hours, causing gentle mechanical disaggregation. This reductive treatment 

removes Mn-Fe-oxide coatings which could have formed in the sediment. (4) After centrifuging 

and removing the MNX solution, a solution (called “IONX”) of bi-distilled water and ammonia 

was added and again the sample was placed on a rotating carousel for 24 hours. The IONX 

solution allows an ion exchange reaction of the sample, during which adsorbed cations are 

removed from the shell wall, and brings the sample more effectively in suspension. (5) After the 

chemical treatment of the sediment, the sample was sieved through a 10 μm precision sieve and (6) 

the fraction between 10 and 15 μm was subjected to a series of settling and decanting steps in 

order to improve the size separation and the removal of coccolith.  

 

The minor element to calcium ratios of the T. heimii shells were measured via inductively 

coupled plasma mass spectrometry (ICP-MS), on a Finnigan ELEMENT sector field instrument in 

the Department of Analytical Chemistry at the University of Oviedo (Spain). Ratios were 

measured in pulse-counting mode on dilute solutions (10 ppm Ca). Precision of the analysis is 

better than 0.4% relative standard deviation. 
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8.3.2. Upper water column parameters 

 

To have the whole upper water column represented, environmental parameter data was 

collected for every 10m between 0 and 200m water depth. These values were separated into two 

values: a sea surface value (0m) and an average value over 200m water depth. Since the mixed 

layer depth (MLD) is the depth where highest abundances of T. heimii occur (Kohn & Zonneveld, 

2010), environmental parameter values were also collected for the MLD. For an overview of the 

upper water column parameters, see Table 8.1. 
 

The annually averaged mixed layer depth (DCM) was derived from the Monterey & Levitus 

(1997) database. This data collection contains monthly MLD fields on a global 1°x1° grid. The 

MLD fields are computed from climatological monthly mean profiles of potential temperature and 

potential density based on a temperature change from the ocean surface of 0.5°C. Interpolation of 

the MLD for the exact sample locations was done using Ocean Data View (Schlitzer, 2009). 
 

Mean annual temperature (°C), salinity (psu), phosphate (μmol/l), nitrate (μmol/l) and 

silicate (μmol/l) values were derived from the World Ocean Atlas 2009 (WOA09; 

http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html; Locarnini et al., 2010; Antonov et al., 

2010; Garcia et al., 2010). This database contains monthly, seasonal and annual hydrographical 

data on a global 1°x1° grid. Using Ocean Data View (Schlitzer, 2009), the WOA09 data were 

interpolated for the exact sample locations, at the desired depths. 
 

Furthermore, total alkalinity (TALK; μmol/kg), total dissolved inorganic carbon (TCO2; 

μmol/kg), pH and carbonate ion concentration ([CO3
2-]; μmol/kg) values were derived from the 

Goyet et al. (2000) database. This database contains annual mean estimated values of global total 

alkalinity and total dissolved inorganic carbon, on a 1°x1° grid for the global ocean between 

66.5°S and 66.5°N. pH and [CO3
2-] are derived variables in this dataset. Using Ocean Data View 

(Schlitzer, 2009), the data were interpolated for the exact sample locations, at the desired depths.  
 

Sea surface chlorophyll-a concentrations (mg/m³) were derived from the MODIS-Aqua 

database on the Giovanni website (http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id 

=ocean_month). The derived values are an average of monthly data between July 2001 and July 

2011, on a 4kmx4km grid. 
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8.3.3. Statistical methods 

 

Within the performed statistical analyses, the minor element to calcium ratios of the T. 

heimii shells (Mg/Ca, Sr/Ca, Mn/Ca, Fe/Ca and Si/Ca) are considered as five different species. 

Thus every sample has five species values.  
 

To determine the relationship between target oceanographic parameters and the minor 

element to calcium ratios of the T. heimii calcite, a Detrended Correspondence Analysis (DCA) 

was performed with CANOCO for Windows version 4.5 (ter Braak & Smilauer, 1998). The 

current dataset is characterized by a linear relationship between the minor element to calcium 

ratios and the arbitrary environmental gradients of the DCA, i.e. the minor element to calcium 

ratios appear to react linearly to changing environmental gradients (e.g. Jongman et al., 1987; 

Richter et al., 2007; Holzwarth et al., 2010). 
 

Based on the outcome of the initial DCA, a Principal Component Analysis (PCA) and a 

Redundancy Analysis (RDA) were carried out (also with CANOCO 4.5) to determine potential 

relationships between the minor element to calcium ratios of the T. heimii shells in the sediment 

and several environmental parameters in the water column. RDA was performed with 

environmental variable values at sea surface and at mixed layer depth, as well as with an average 

value over 200m water depth. The data were not transformed. 
 

For the RDA, the ranking of the environmental variables (i.e. the importance of their 

influence on the distribution of the minor element to calcium ratios) and the detection of co-

variance between the environmental parameters is based on the principle of forward selection. 

Marginal effects represent the amount of variance explained by that variable, uncorrected for 

possible co-variance; conditional effects represent the amount of variance explained by that 

particular variable only, after the elimination of co-variance (e.g. Richter et al., 2007; Holzwarth et 

al., 2010). The significance of each environmental variable was calculated by a Monte Carlo 

permutation test with 9999 permutations at and above the 5% significance level (P � 0.05). These 

tests lower the risk of potential overrepresentation of insignificant variables in the dataset (Richter 

et al., 2007). 
 

For details on the interpretation of RDA diagrams, we refer to e.g. Jongman et al. (1987), 

Richter et al. (2007) and Holzwarth et al. (2010). In general: minor element to calcium ratio lines 

pointing in the same direction indicate that these ratios are positively correlated with each other, i.e. 

that they are influenced by the same environmental parameters. Lines pointing in opposite 

directions indicate a negative correlation and perpendicular lines indicate lack of correlation. 
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8.4. Results 

 
8.4.1. Elemental composition of T. heimii calcite in sediments 

 

The minor element to calcium ratios of the T. heimii shells are summarized in Table 8.2. 

Measured Sr/Ca values range between 1.51 and 22.46 mmol/mol, measured Mg/Ca values range 

between 5.50 and 23.14 mmol/mol, measured Fe/Ca values range between 0.014 and 0.473 

mmol/mol, measured Mn/Ca ratios range between 0.021 and 0.921 mmol/mol and measured Si/Ca 

ratios range between 0.094 and 2.974 mmol/mol.  

 

 
Sample * Meteor Lat Lon Water Sr/Ca Mg/Ca Fe/Ca Mn/Ca Si/Ca 
GeoB  Cruise (°N) (°E) depth (m) (mmol/mol) (mmol/mol) (mmol/mol) (mmol/mol) (mmol/mol)

           
3801-5 � 1 M34-3 -29.51 -8.30 4545 1.85 9.56 0.185 0.236 0.716 
3802-2 � 2 M34-3 -30.16 -8.51 3970 1.99 6.84 0.083 0.191 0.456 
3803-1 � 3 M34-3 -30.35 -8.57 4173 1.78 7.44 0.237 0.167 0.497 
3804-2 � 4 M34-3 -30.74 -8.77 3882 1.91 5.80 0.146 0.117 0.287 
3807-2 �  5 M34-3 -30.75 -13.20 2534 6.36 6.56 0.151 0.149 0.320 
3808-7 � 6 M34-3 -30.81 -14.71 3213 4.01 6.73 0.108 0.194 0.355 
3809-1 � 7 M34-3 -31.05 -16.33 3470 2.75 6.90 0.149 0.190 0.435 
3810-2 � 8 M34-3 -31.13 -16.84 3810 1.96 7.59 0.228 0.195 0.470 
3812-2 � 9 M34-3 -31.62 -19.76 4204 1.87 7.60 0.228 0.251 0.786 
3827-1 �  10 M34-3 -25.03 -38.55 3842 1.53 19.29 0.162 0.921 2.184 

3908-11 � 11 M34-4 -0.01 -23.43 3693 1.61 5.50 0.057 0.049 0.388 
3925-2 � 12 M34-4 5.14 -47.53 3198 5.41 23.14 0.473 0.469 2.974 
4306-1 � 13 M38-1 8.39 -38.03 3766 1.62 17.25 0.120 0.237 1.083 
4312-4 � 14 M38-1 4.05 -33.59 3437 1.95 8.82 0.062 0.182 0.544 
4411-1 � 15 M38-2 5.43 -44.50 3300 7.23 13.77 0.158 0.176 0.940 
4412-3 �  16 M38-2 5.72 -44.36 3767 2.63 11.45 0.118 0.193 0.848 
4413-1 � 17 M38-2 6.09 -44.19 4295 1.64 20.42 0.242 0.442 1.811 
4421-2 � 18 M38-2 16.99 -46.01 3176 11.32 14.04 0.060 0.272 0.604 
4424-2 � 19 M38-2 18.20 -44.02 4779 1.51 8.95 0.014 0.214 0.611 
5002-1 �  20 M41-2 -8.14 -14.54 2851 2.90 10.35 0.114 0.046 1.113 
5004-2 � 21 M41-2 -9.17 -13.34 2790 3.47 6.93 0.096 0.051 0.580 
5006-1 � 22 M41-2 -9.76 -12.37 3244 4.68 10.97 0.279 0.099 2.909 
5007-1 � 23 M41-2 -12.39 -13.94 3668 5.34 7.27 0.119 0.082 0.181 
5008-3 � 24 M41-2 -12.93 -15.69 3407 12.08 5.51 0.038 0.021 0.094 
5115-2 � 25 M41-3 -24.14 -14.04 3291 22.46 7.90 0.124 0.155 0.227 
5117-2 � 26 M41-3 -24.15 -13.97 3039 13.28 8.78 0.098 0.171 0.281 
5121-2 � 27 M41-3 -24.18 -12.02 3486 7.12 6.20 0.059 0.132 0.142 
5130-1 � 28 M41-3 -19.40 -9.46 3166 1.86 6.92 0.192 0.121 0.268 
5132-2 � 29 M41-3 -19.13 -9.72 3941 3.31 6.31 0.129 0.059 0.133 
5136-2 � 30 M41-3 -19.37 -12.67 3227 16.28 8.76 0.183 0.130 0.219 
5140-3 � 31 M41-3 -19.05 -16.61 3660 9.44 7.13 0.073 0.107 0.141 

           

 

Table 8.1 – Measured minor element to calcium ratios for T. heimii shells from 31 surface sediments in the 
South and equatorial Atlantic – FIRST COLUMN: Blue dots (�) = samples with high to extreme Mg/Ca ratios; 
samples in the Amazon Fan Area – Green dots (�) = samples with high to extreme Sr/Ca ratios; samples in the 

centre of the Subtropical Gyre – Orange dots (�) = other samples – SECOND COLUMN: * refers to sample 
numbers in PCA (Fig. 8.3) 
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PCA (Fig. 8.3) reveals two groups of minor element to calcium ratios: Sr/Ca is ordinated 

perpendicular to Mg/Ca, Fe/Ca, Mn/Ca and Si/Ca, which are ordinated in the same direction. 

When the different minor element to calcium ratios are compared to each other, we observe a weak 

correlation between Mg/Ca and Fe/Ca (R² = 0.28), a slightly stronger correlation between Mg/Ca 

and Mn/Ca (R² = 0.56) and a rather high correlation between Mg/Ca and Si/Ca (R² = 0.63) (no 

figure). No correlation was observed between Sr/Ca and Fe/Ca, between Sr/Ca and Mn/Ca or 

between Sr/Ca and Si/Ca (no figure).  
 

Also based on PCA (Fig. 8.3), and in combination with distribution maps of the minor 

element to calcium ratios (Fig. 8.4), three sample groups (	, 	 and 	), with a different elemental 

composition can be observed. Samples GeoB 3925-2, 4306-1, 4411-1, 4412-3 and 4413-1 show 

high to extreme Mg/Ca ratios (11.45-23.14 mmol/mol; 	 12, 13, 15, 16 and 17 in Fig. 8.3). These 

samples generally occur offshore NE Brasil, i.e. in the Amazon Fan area (Fig. 8.4, 8.7). Sample 

GeoB 3827-1 (	 10 in Fig. 8.3) also shows high Mg/Ca ratios, but is not located in the Amazon 

Fan area (Fig. 8.4). Samples GeoB 5008-3, 5115-2, 5117-2, 5121-2, 5136-2 and 5140-3 show high 

to extreme Sr/Ca ratios (7.12-22.46 mmol/mol; 	 24, 25, 26, 27, 30 and 31 in Fig. 8.3). These 

samples generally occur in the central area of the South Atlantic, i.e. in the central area of the 

Subtropical Gyre (Fig. 8.4, 8.1). The remainder of the samples show low to intermediate Mg/Ca 

and Sr/Ca ratios (	 in Fig. 8.3) and are not located in a specific hydrographical area (Fig. 8.4).  
 

 
Fig. 8.3 – PCA on the minor 

element to calcium ratios for T.

heimii shells from 31 surface 

sediment samples in the 

equatorial and South Atlantic – 

Blue dots (�) = samples with high 

to extreme Mg/Ca ratios; samples 

in the Amazon Fan area – Green 

dots (�) = samples with high to 

extreme Sr/Ca ratios; samples in 

the central area of the Subtropical 

Gyre – Orange dots (�) = other 

samples  
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Fig. 8.4 – Geographical distribution maps of a) Mg/Ca, b) Sr/Ca, c) Fe/Ca, d) Mn/C and e) Si/Ca ratios in T.
heimii shells from surface sediment samples in the equatorial and South Atlantic – Blue dots (�) = samples with 

high to extreme Mg/Ca ratios; samples in the Amazon Fan area – Green dots (�) = samples with high to 
extreme Sr/Ca ratios; samples in the central area of the Subtropical Gyre – Orange dots (�) = other samples 
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a) RDA for environmental paramaters at sea surface (SURF)  

Marginal effects  Conditional effects 

Uncorrected for covariance  Corrected for covariance 

Name of variable in RDA Lambda l  Name of variable in RDA Lambda A P value F value

       
Silicate 0.27  Silicate 0.27 0.000 10.90
TALK 0.26  [CO3

2-] 0.14 0.006 6.59
TCO2 0.20  Nitrate 0.08 0.034 4.20
Nitrate 0.20  SSS 0.05 0.086 2.60 
Chlor-a 0.19  TCO2 0.05 0.054 3.21 
SSS 0.17  SST 0.03 0.152 1.97 
SST 0.15  Chlor-a 0.04 0.116 2.41 
[CO3

2-]  0.14  pH 0.01 0.512 0.63 
Phosphate 0.12  TALK 0.00 0.706 0.30 
pH 0.11  Phosphate 0.00 0.847 0.15 
             

b) RDA for environmental parameters at mixed layer depth (MLD) 

Marginal effects  Conditional effects 

Uncorrected for covariance  Corrected for covariance 

Name of variable in RDA Lambda l  Name of variable in RDA Lambda A P value F value

       
TALK  0.21  TALK 0.21 0.00 7.79
Silicate 0.20  Temperature 0.14 0.00 6.21
[CO3

2-] 0.16  MLD AA   0.08 0.04 3.44
Temperature 0.15  Silicate 0.05 0.10 2.51 
Phosphate 0.14  Phosphate 0.05 0.08 2.55 
pH 0.14  Nitrate 0.04 0.09 2.53 
Nitrate 0.13  pH  0.01 0.55 0.60 
MLD AA 0.13  TCO2  0.03 0.29 1.30 
Salinity 0.11  Salinity 0.02 0.35 1.11 
TCO2 0.07  [CO3

2-]  0.00 0.93 0.08 
       

c) RDA for environmental parameters averaged over 200m water depth (200m) 

Marginal effects  Conditional effects 

Uncorrected for covariance  Corrected for covariance 

Name of variable in RDA Lambda l  Name of variable in RDA Lambda A P value F value

       
TALK 0.20  TALK 0.20 0.001 7.07
Temperature 0.17  Temperature 0.19 0.000 9.18
[CO3

2-] 0.15  Phosphate 0.07 0.052 3.02 
Silicate 0.15  Salinity 0.05 0.054 3.12 
pH 0.11  Silicate 0.05 0.103 2.46 
Salinity 0.10  TCO2 0.00 0.676 0.37 
Nitrate 0.08  pH 0.04 0.159 1.85 
Phosphate 0.05  [CO3

2-]  0.01 0.352 1.01 
TCO2 0.04  Nitrate 0.01 0.814 0.21 
             

 

Table 8.2 –  Percentage of variance explained by environmental variables used in the Redundancy Analyses 
(RDA) for (a) sea surface conditions, (b) mixed layer depth conditions, (c) conditions average over 200m water 

depth – Chlor-a = chlorophyll-a concentration, SST = sea surface temperature, SSS = sea surface salinity, 
TALK = total alkalinity, TCO2 = total dissolved inorganic carbon; [CO3

2-] = carbonate ion concentration; MLD 
AA = annual average mixed layer depth (see Table 1 for units) – Marginal effects: bold variables in grey relate 

to more than 15% of the variance in the minor element to calcium ratios (Lambda l � 0.15) – Conditional 
effects: Bold variables in grey are significant at the 5% significance level (P 	 0.05). 
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8.4.2. Relation with upper water column parameters 
 

For sea surface conditions, the RDA reveals that the gradients silicate, total alkalinity 

(TALK), total dissolved inorganic carbon (TCO2), nitrate, chlorophyll-a (Chlor-a), salinity (SSS) 

and temperature (SST) relate to more than 15% of the variance in the minor element to calcium 

ratios (Lambda l � 0.15; Table 8.3a; marginal effects). After correcting for covariance, silicate, 

carbonate ion concentration ([CO3
2-]) and nitrate explain the minor element to calcium variance 

significantly (P � 0.05; Table 8.3a, conditional effects). Fig. 8.5a shows that for sea surface 

conditions, Mg/Ca is correlated with sea surface temperature (SST), nitrate, silicate and 

chlorophyll-a (Chlor-a) concentrations. Fig. 8.5a also shows that Sr/Ca is correlated with [CO3
2-] 

for sea surface conditions. 
 

For mixed layer depth conditions, the RDA reveals that the gradients total alkalinity (TALK), 

silicate, carbonate ion concentration ([CO3
2-]) and temperature relate to more than 15% of the 

variance in the minor element to calcium ratios (Lambda l � 0.15; Table 8.3b; marginal effects). 

After correcting for covariance, total alkalinity (TALK), temperature and annual average mixed 

layer depth (MLD AA) explain the minor element to calcium variance significantly (P � 0.05; 

Table 8.3b, conditional effects). Fig. 8.5b shows that for mixed layer depth conditions, Mg/Ca is 

more correlated with temperature and less correlated with nitrate and silicate than for sea surface 

conditions. Fig. 8.5b also shows that Sr/Ca is correlated with [CO3
2-] and salinity for mixed layer 

depths. 
 

For conditions averaged over 200m water depth, the RDA reveals that the gradients total 

alkalinity (TALK), temperature, carbonate ion concentration ([CO3
2-]) and silicate relate to more 

than 15% of the variance in the minor element to calcium ratios (Lambda l � 0.15; Table 8.3c; 

marginal effects). After correcting for covariance, total alkalinity (TALK) and temperature explain 

the minor element to calcium variance significantly (P � 0.05; Table 8.3c, conditional effects). Fig. 

8.5c shows that for conditions averaged over 200m water depth, Mg/Ca is only weakly correlated 

with temperature. Fig. 8.5c also shows that Sr/Ca is less correlated with [CO3
2-] and salinity for 

conditions averaged over 200m water depth than for mixed layer depth conditions. 
 

Since we are mostly interested in a possible relationship between Mg/Ca and/or Sr/Ca and 

temperature, and since the mixed layer depth (MLD) is the depth where highest abundances of T. 

heimii occur (Kohn & Zonneveld, 2010), a more detailed view of the correlation between 

temperature at MLD and the Mg/Ca and Sr/Ca ratios is given in Fig. 8.6. No correlation can be 

observed between Mg/Ca and temperature or between Sr/Ca and temperature. The data show a 

large scatter compared to the results of cultured T. heimii (Gussone et al., 2010) (Fig. 8.6). 
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Fig. 8.5 – RDA with environmental parameters for (a) sea surface conditons (RDAsurface), (b) conditions at 
mixed layer depth (RDAMLD) and (c) conditions averaged over 200m water depth (RDA200m) –  Solid black 

arrows depict the environmental parameters – Red dashed arrows depict the minor element to calcium ratios, 
which can be looked at as species in these plots 
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8.5. Discussion 
 

Both the measured Mg/Ca (5.50-23.14 mmol/mol) and Sr/Ca (1.51-22.46 mmol/mol) ratios 

of Thoracosphaera heimii shells from surface sediments show a large range. Furthermore, the 

natural values exceed the Mg/Ca (2.6-7.3 mmol/mol) and Sr/Ca (2.16-2.40 mmol/mol) values of 

cultured T. heimii (Gussone et al., 2010) by far (Fig. 8.6). Based on culture experiment data, 

Gussone et al. (2010) suggested a biomineralization mechanism in two phases for T. heimii: the 

major part of the calcite would be precipitated during the first, intracellular phase and is 

presumably Sr-enriched, while a Mg-enriched calcite layer is formed during the second phase, 

possibly influenced by a seawater dominated fluid. However, the Mg/Ca ratio of modern seawater 

is constant around 5.2 mmol/mol (Broecker & Peng, 1982). The Sr/Ca ratio of modern seawater is 

around 8 mmol/mol (Coggon et al., 2010) and only varies by 2-3% (e.g. de Villiers, 1999). Since 

both magnesium and strontium are conservative elements, the high variance in both Mg/Ca and 

Sr/Ca ratios of T. heimii shells from the investigated core top samples cannot be due to changes in 

the Mg/Ca and Sr/Ca values of seawater. An offset with culture values could indicate that 

additional, natural factors, in the water column and/or in the sediments, have an influence on the 

shell Mg/Ca and Sr/Ca. In the following chapters, the Mg/Ca and Sr/Ca ratios of the T. heimii 

shells will be compared to several upper water column parameters (especially temperature), and 

will be discussed in terms of possible contamination by sedimentary processes. Since this is the 

first study on the elemental composition of T. heimii shells from natural sediments, and only one 

published study on the elemental composition of cultured T. heimii shells is available (Gussone et

al., 2010), we will also compare our results with published effects on the Mg/Ca and Sr/Ca ratios 

of foraminifera and coccolithophores. 

 

 

8.5.1. Mg/Ca 
 
8.5.1.1. Upper water column parameters 

 
In RDAMLD, RDAsurface, and to a lesser extent in RDA200m, we observe that temperature is 

influencing the Mg/Ca ratio of T. heimii shells from surface sediments. However, when plotting 

the Mg/Ca values against temperatures at mixed layer depth (the depth where highest abudances of 

T. heimii occur, thus the presumed living depth of T. heimii; Kohn & Zonneveld (2010)), no 

relationship can be observed (Fig. 8.6a). However, we do observe that the highest T. heimii Mg/Ca  
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ratios occur in the core top samples from the Amazon Fan area (� in Fig. 8.6a), where seawater 

temperatures are highest in comparison to the other core top locations analyzed in this study (Table  

8.1, Fig. 8.6b). This is in agreement with Gussone et al. (2010), who found that Mg/Ca ratios of 

cultured T. heimii shells do not show a pronounced temperature dependence, except for a strong 

Mg enrichment at the highest temperature (30°C) (Fig. 8.6a). This was interpreted by the authors 

as possibly anomalous growing behaviour of T. heimii at high temperatures. Although we seem to 

observe a similar phenomenon in natural sediments, currently we have insufficient insights into the 

biomineralization mechanisms of T. heimii to explain this. Furthermore, when the high Mg/Ca 

values of the Amazon Fan samples are omitted from this study, the Mg/Ca ratios of the remaining 

samples (� and � in Fig. 8.6a) still show no correlation with temperature. We interpret this as an 

indication that other, more important factors are influencing the Mg/Ca values of T. heimii shells 

in surface sediment samples. 

 

  �

   �

Fig. 8.6 – Mg/Ca (a) and Sr/Ca (c) versus temperature (temperature at mixed layer depth for the surface 
sediment samples, temperature of the culture medium for the study of Gussone et al. (2010)) – Mg/Ca (b) and 

Sr/Ca (d) ratios of T. heimii shells from surface sediments plotted on sea surface temperature (SST, °C)
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According to the Redundancy Analyses (RDA), next to temperature, the Mg/Ca values of T.

heimii calcite are also correlated with nitrate, silicate and chlorophyll-a, especially at the sea 

surface. Since highest Mg/Ca ratios occur in samples in the Amazon Fan area, we suspect that this 

correlation is the reflection of the sample location: a river outflow area, which is by default 

characterized by high nutrient and high chlorophyll-a concentrations (Fig. 8.7).  

 
Fig. 8.7 – SeaWIFS image of the Amazon River outflow plume (http://disc.sci.gsfc.nasa.gov/gesNews/agu_ 

oceans_giovanni_presentation) with the location of the surface sediment samples with highest Mg/Ca values 

 
 
8.5.1.2. Sedimentary processes 

 
In the modern day Atlantic Ocean, the carbonate compensation depth is situated roughly 

between 4000 and 4500m water depth (Berger, 1976). Except for samples GeoB 3801-5, 3803-1, 

3812-2, 4413-1 and 4424-2, all core top samples are well above this dissolution depth. 

Furthermore, a number of studies have shown that the Mg/Ca content of planktonic foraminiferal 

tests from deep-sea core tops below the lysocline, decreases with increasing water depth, and 

hence degree of dissolution, resulting in lower Mg/Ca values (e.g. Rosenthal & Boyle, 1993; 

Brown & Elderfield, 1996; Elderfield & Ganssen, 2000; Rosenthal et al., 2000). According to 

Regenberg et al. (2006), the onset of Mg2+ removal from foraminiferal calcite may even start at a 

depth with a threshold [CO3
2-] value of 20 mmol/kg, so the dissolution effect might already start 

above the lysocline. More research is necesarry for the current study, but at first glance it seems 

that the five core top samples which are located under the lysocline, do not show significantly 
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lower Mg/Ca values than the other core tops samples. We argue that dissolution had little to no 

effect on the Mg/Ca ratio of T. heimii calcite from the Atlantic Ocean core top samples. 
 

As already stated above, the highest Mg/Ca values of T. heimii calcite occur in surface 

sediment samples in the Amazon Fan area. The Amazon River and its tributaries drain the largest 

river basin of the world, the Amazon Basin (Mortatti & Probst, 2003), where silicate rocks 

constitute 96% of the total drainage area (e.g. Amiotte Suchet, 1995; Amiotte Suchet et al., 2003). 

Therefore, in the Amazon Basin, silicate rock weathering is very common and includes the 

following two reactions: CaAl2Si2O8 + 2CO2 + 3H2O � Al2Si2O5(OH)4 + 2HCO3
- + Ca2+ (Ca-

plagioclase into kaolinite) and Mg2SiO4 + 4CO2 + 4H2O � 2Mg2+ + 4HCO3
- + H4SiO4 (olivine 

weathering) (e.g. Mortatti & Probst, 2003). Silicate rock weathering produces a lot of clay 

minerals (e.g. kaolinite and montmorillonite), which find their way to the river plume deposition 

area. On average, clay minerals contain between 1 and 10 weight% Mg (Deer et al., 1992). 

Adsorbed clay particles might therefore contaminate the T. heimii Mg/Ca ratio, as has also been 

shown in many foraminiferal studies (e.g. Boyle, 1983; Barker et al., 2003; Boussetta et al., 2011). 

For foraminiferal calcite, Barker et al. (2003), showed that the covariance of Fe/Ca and Mg/Ca is 

an indication of clay contamination. The observed covariance between the Mg/Ca, Fe/Ca and 

Mn/Ca ratios of the T. heimii shells in the Amazon Fan core top samples (PCA, RDAsurface, 

RDAMLD and RDA200m) might therefore be an indication of contamination by adsorbed clay 

particles, possibly inside the T. heimii shells. 
 

Also inorganic Mg-rich ferromanganese coatings, deposited during diagenesis, might 

contaminate the foraminiferal Mg/Ca ratio (e.g. Boyle, 1983; Barker et al., 2003; Ferguson et al., 

2008; Boussetta et al., 2011). These contaminants can be traced by high iron and manganese 

concentrations: clean, uncontaminated foraminiferal tests should contain 0.1 mmol/mol Mn/Ca and 

Fe/Ca (Barker et al., 2003). Unfortunately, we do not have similar guidelines for T. heimii , since 

this is the first study on the elemental composition of T. heimii shells from surface sediments. 

However, for the T. heimii shells in the Amazon Fan core top samples, Mn/Ca values range 

between 0.176 and 0.469 mmol/mol and Fe/Ca values range between 0.118 and 0.473 mmol/mol, 

which are rather high values compared to the other samples in the complete data set. 
 

Since this was the first attempt to measure elemental ratios of T. heimii shells from 

sediments, it is possible that the proposed cleaning protocol does not completely remove Mg-rich 

ferromanganese coatings or adsorbed clay particles, especially when they are trapped inside the 

small T. heimii shells. However, the effectiveness of the method will be discussed in Dekeyzer et 

al. (in prep., Chapter 9 of this thesis). 
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8.5.2. Sr/Ca 
 

8.5.2.1. Upper water column parameters 
 

In RDAMLD, RDA200m and to a lesser extent in RDAsurface, we observe a positive correlation 

between salinity, seawater carbonate ion concentration ([CO3
2-]), total alkalinity (TALK) and the 

Sr/Ca values of the T. heimii shells from core top samples. This is in contrast with Gussone et al. 

(2010) who observed that the Sr/Ca ratios of cultured T. heimii shells do not seem to be biased by 

changes in salinity. A small salinity effect on Sr/Ca (4% increase in Sr/Ca per salinity unit) has 

been reported for the planktonic foraminifera Orbulina universa (Lea et al., 1999). According to 

Dueñas-Bohórquez et al. (2009) however, salinity has no significant influence on the Sr/Ca of 

Globigerinoides sacculifer. Nevertheless, they also noted that it remains unclear whether salinity 

itself influences foraminiferal incorporation of Sr, or whether it is due to changes in the carbonate 

chemistry associated with changes in salinity: an increase in salinity results in an increase in the 

carbonate parameters, such as total alkalinity (TALK), dissolved inorganic carbon (DIC) and 

seawater carbonate ion concentration ([CO3
2-]) (Dueñas-Bohórquez et al., 2009). It has been noted 

that [CO3
2-] has a positive effect on planktonic foraminiferal Sr/Ca ratios (e.g. Lea et al., 1999; 

Russell et al., 2004; Mortyn et al., 2005; Kisakürek et al., 2008). Furthermore, Dueñas-Bohórquez 

et al. (2009) suggested that the calcium carbonate saturation state of seawater (�) is the main 

control on foraminiferal Sr incorporation, in contrast to foraminiferal Mg incorporation, where 

salinity supposedly is the dominant control. When [CO3
2-] of the seawater changes, � also changes, 

since � = [Ca2+]*[CO3
2-]/Ksp (where Ksp represents the solubility product at the in situ conditions 

of temperature, salinity and pressure (Zeebe & Wolf-Gladrow, 2005)). � might control the rate of 

calcite precipitation, which in turn is known to influence trace metal incorporation (Lorens, 1981; 

Nehrke et al., 2007). It is possible that the Sr/Ca values of T. heimii shells from surface sediment 

are affected in a similar way. More research is needed to explain this adequately. 
 

In contrast to Mg/Ca, Sr/Ca is known to be more of a productivity proxy instead of a 

temperature proxy. Both for culture and sediment studies, it has been documented that the Sr/Ca 

ratio of coccolithophores changes with coccolithophorid growth rates (e.g. Stoll & Schrag, 2000; 

Stoll et al., 2002a, b; Rickaby et al., 2002; Stoll & Ziveri, 2005; Langer et al., 2006). In contrast to 

coccolithophores, no relationship can be observed between the Sr/Ca ratio and cyst production of 

cultured T. heimii (Gussone et al., 2010). For the present study we do not have quantitative cyst/g 

data. However, Fig. 8.1 and 8.2 show that samples with highest Sr/Ca values (GeoB 5008-3, 5115-

2, 5117-2, 5121-2, 5136-2 and 5140-3) are located in the middle of the Subtropical Gyre, an area 

which is characterized by lowest productivity. According to Gussone et al. (2010), the difference 



 103

in reaction to high productivity between T. heimii and coccolithophores lays in the calcification 

mechanism of T. heimii, which is not a continuous process, in contrast to coccolithophores. 
 

Both RDAsurface, RDAMLD and RDA200m are characterized by the absence of a correlation 

between temperature and the Sr/Ca values of the T. heimii shells from core top samples. This is in 

contrast with Gussone et al. (2010), who found a large temperature dependence of Sr/Ca in 

cultured T. heimii shells (0.016 mmol/mol per °C) (Fig. 8.6c). We presume that a possible 

temperature dependence of T. heimii Sr/Ca in a natural setting might by obscured due to diagenetic 

overprint. 

 

8.5.2.2. Sedimentary processes 

 

The samples with highest Sr/Ca ratios (GeoB 5008-3, 5115-2, 5117-2, 5121-2, 5136-2 and 

5140-3) are located on the Mid Atlantic Ridge (cruise report of Meteor cruise M41; Schultz et al., 

1999). Hydrothermal circulation through the sediments results in the extensive alteration of the 

primary sediment (e.g. Edmond et al., 1979; Dekov et al., 2008). The altered sediments have been 

depleted in Sr due to leaching. Therefore, strontium is enriched in the altered sediment pore fluids 

relative to the non-altered sediments (Dekov et al., 2008). Coogan (2009) describes the behavior of 

strontium in hydrothermal systems at spreading centers as follows: as 87Sr-rich seawater enters the 

crust, it is heated and reacts with the basaltic, relatively 87Sr-depleted rocks. This leads to a change 

in Sr isotopic composition of the rocks and the fluids. In general: vent fluids have Sr isotopic ratios 

greater than rock values. Perhaps the extreme Sr/Ca values can be explained by leaching of Sr 

from the basaltic rocks. However, when the locations of these extreme-Sr/Ca samples are 

compared to a distribution map of hydrothermal vent fields (Fig. 8.8, 8.9, Baker & German, 2004), 

it seems that these samples are not located in an active hydrothermal field that is currently known. 

It should be noted that some other samples are located on the Mid Atlantic Ridge as well, but they 

do not show extreme Sr/Ca values. So far, we have no explanation for this discrepancy. 
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Fig. 8.8 – Distribution of 144 known (black dots) and 133 inferred (gray dots) hydrothermal  fields. Solid black 
lines are the midocean ridge and transform faults, gray lines are subduction zones. Hotspots (open stars) 

include 1, Galápagos; 2, Easter; 3, Jan Mayen; 4, Iceland; 5, Azores; 6, Ascension; 7, Tristan de Cunha; 8, 
Bouvet; 9, Crozet; and 10, Amsterdam-St. Paul (From Baker & German, 2004) 

 

 

Fig. 8.9 – Sample locations in comparison with hydrothermal field locations (partly redrawn from Baker & 
German, 2004) – Big gray dots = inferred hydrothermal field locations – Blue dots (�) = samples with high to 

extreme Mg/Ca ratios; samples in the Amazon Fan area – Green dots (�) = samples with high to extreme Sr/Ca 
ratios; samples in the central area of the Subtropical Gyre – Orange dots (�) = other samples 
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8.6. Conclusions 

 

For the current study we analyzed the minor element to calcium ratios of Thoracopshaera

heimii shells from surface sediments in the equatorial and South Atlantic. Both Mg/Ca and Sr/Ca 

show a large range and exceed the values of T. heimii calcite from cultured specimens by far. 

Although RDA revealed that T. heimii Mg/Ca is influenced by temperature, the only correlation is 

that highest Mg/Ca values appear in the samples characterized by highest seawater temperature 

(samples in the Amazon Fan area). When these extreme values are omitted from the data set, no 

temperature – Mg/Ca relationship can be found. We suspect that the Mg/Ca values are most likely 

contaminated by adsorbed clay particles, and especially in the Amazon Fan area, where Mg/Ca 

values reach extreme values. RDA further revealed that T. heimii Sr/Ca is correlated with the 

carbonate chemistry of the seawater. In contrast to cultured T. heimii, the Sr/Ca ratios of T. heimii 

shells from natural sediments do not show any correlation with temperature. Although so far we do 

not have a satisfying explanation for the extreme Sr/Ca values, we suspect that sediment 

contamination, possibly by hydrothermal activity, might be an important factor. In general, we 

need also more information about the biomineralization mechanism of T. heimii to draw solid 

conclusions. 
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Abstract

 

For the present study, we processed core top sample GeoB 5008-3 according to the newly 

proposed cleaning protocol for the elemental analysis of T. heimii shells from sediments. In order 

to evaluate the obtained Mg/Ca and Sr/Ca values, the sample was also processed following the 

standard cleaning protocol for the elemental analysis of foraminifera, adapted for T. heimii shells; 

and following a sequential dissolution protocol, using a Flow-Through (FT) device. Although the 

Mg/Ca values of sample GeoB 5008-3, are well within the Mg/Ca range of cultured T. heimii 

shells, the Sr/Ca values of sample GeoB 5008-3 are five to seven times higher than the Sr/Ca 

values of cultured T. heimii shells. The Sr/Ca values obtained with the three different techniques 

seem to be significant at the 90% confidence level (p = 0.086). The Mg/Ca values however differ 

between the three cleaning techniques. Since lower Mg/Ca values are obtained when the sample is 

sequentially dissolved, using the FT device, this could be evidence for contaminating clay particles 

trapped inside the empty T. heimii shells. 
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9.1. Introduction
 

Although the Mg/Ca and Sr/Ca ratios of other biogenic carbonates, such as foraminifera and 

coccolithophores, are routinely applied in paleoceanography (e.g. Langer et al., 2006; Mortyn et

al., 2005; Stoll et al., 2001), so far only one study has been carried out on the elemental 

composition of T. heimii shells: the culture experiment by Gussone et al. (2010). Prior to minor 

element analysis of the cultured T. heimii shells, samples were cleaned following a method 

previously applied to cultured coccolithophores (Langer et al., 2006; Gussone et al., 2006). In 

summary: T. heimii shells were bleached for 24 hours in a 10% NaClO solution (~ 1% active 

bleach) to remove organic compounds. When the bleach was removed, samples were washed six 

times in distilled water. By adding a NH4OH solution to the distilled water, pH was elevated to 8-

9, preventing partial dissolution of the calcareous shells during the cleaning process. The samples 

were then dissolved in 0.5M HCl (Gussone et al., 2010). However, since this cleaning method is 

applied on cultured organisms, it only includes an oxidation step, and will therefore not be able to 

remove non-calcareous particles and/or coatings formed in the sediments. Thus, the chemical 

cleaning method used by Gussone et al. (2010) is not adequate for the chemical cleaning of T. 

heimii shells from sediments. 
 

In our search for an adequate cleaning protocol for T. heimii shells from sediments, we also 

looked at other organisms such as foraminifera and coccolithophores. The standard cleaning 

protocol for the elemental analysis of foraminifera (Barker et al., 2003) is well established. When 

applying this protocol on the T. heimii shells however, we noticed some difficulties. Being smaller 

than foraminifera tests, the T. heimii shells stay in suspension throughout the whole cleaning 

process. In order to ensure a minimum loss of T. heimii shells, a centrifuge session is needed, 

before any overlying fluid is removed. This makes the method time consuming and labour 

intensive.  
 

Next, we applied the cleaning protocol for coccolithophores (Bairbakesh et al., 1999; Stoll & 

Ziveri, 2002). Since T. heimii shells are more or less in the same size range as most 

coccolithophores, this method is more appropiate. However, different coccolith species are very 

difficult to separate; therefore the coccolithophore method requires an extensive settling step, 

which is not necessary for T. heimii shells. In the end we adapted the cleaning protocol for 

coccolithophores by adding some sieving steps and by simplifying the settling step. This adapted 

cleaning protocol is what we refer to as “the newly proposed cleaning protocol for the elemental 

analysis of T. heimii shells from sediment” in this manuscript. To evaluate this new cleaning 

protocol, we also analyzed sample GeoB 5008-3 with a Flow-Through sequential dissolution 

device connected to an ICP-OES.  
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9.2. Material and methods 

9.2.1. Sample collection 
 

For the present study, a sample was required with a high concentration of Thoracosphaera

heimii shells, in order to facilitate isolation of T. heimii shells from the sediment. Sample GeoB 

5008-3 was chosen based on the knowledge obtained from previous work (Vink, 2004): the sample 

contains 80520 T. heimii shells/ml.  

Sample GeoB 5008-3 (12°55.8’S, 15°41.1’W) was collected from the equatorial Atlantic by 

multicorer, at water depth 3407 m, during cruise M41-2. According to the cruise report (Schulz et

al., 1999), the sample location of sample GeoB 5008-3 is listed as Mid-Atlantic Ridge. 
 

This core-top sample was prepared for elemental analysis using three different methods (see 

Table 9.1 for sample codes). First, a new cleaning protocol was developed for the preparation of T.

heimii shells from sediments for elemental analysis. After chemical treatment, the sample was 

analysed using an ICP-MS (T. heimii test in Table 9.1). In addition, the sample was processed 

using the traditional stepwise cleaning procedure for the preparation of foraminiferal calcite for 

elemental analysis (Barker et al., 2003), with some modifications for T. heimii shells, and analyzed 

twice using an ICP-MS (Foram Test 1 and Foram Test 2 in Table 9.1). Furthermore the sample 

was analyzed three times with a flow-through sequential dissolution device (Haley & 

Klinkhammer, 2002; Groeneveld et al., 2010) connected to an ICP-OES (FT Test 1, FT Test 2 and 

FT Test 3 in Table 9.1). 

9.2.2. New cleaning protocol for the elemental analysis of T. heimii shells from sediments 
 

Here we present a new cleaning protocol for the preparation of shells from the calcareous 

dinoflagellate Thoracosphaera heimii from sediments for elemental analysis. The protocol is based 

on the cleaning method used for coccoliths described by Bairbakesh et al. (1999) and Stoll & 

Ziveri (2002). Additional sieving steps were included and the settling-and-decanting step was 

modified. In summary, the protocol consists of six steps. First, a mixture of bidistilled water, 

peroxide and bleach is added to the sample allowing oxidation of the organic material and 

preventing the formation of sediment aggregates. Next, the sample is sieved through a 15 μm 

precision sieve in order to get rid of the fraction bigger than 15 μm. Then, a reductive solution of 

bidistilled water, ammonia and hydroxylamine hydrochloride is added and the sample is placed on 

a rotating carousel during 24 hours. This reductive treatment removes Mn-Fe-oxide coatings which 
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could have formed in the sediment. After centrifuging and removing the reductive solution, a 

solution of bidistilled water and ammonia is added and again the sample is placed on a rotating 

carousel during 24 hours. This solution allows an ion exchange reaction of the sample and 

removes adsorbed cations on the shell wall. Afterwards, the sample is sieved through a 10 μm 

precision sieve in order to get rid of the fraction smaller than 10 μm. In the last step, the sample is 

subjected to a series of settling and decanting steps in order to get rid of other particles in the 10-

15 μm fraction and make the sediment monospecific in T. heimii shells. For a detailed overview of 

the protocol, see Appendix 1. 
 

The minor element to calcium ratios of the T. heimii shells were measured via inductively 

coupled plasma mass spectrometry (ICP-MS), on a Finnigan ELEMENT sector field instrument in 

the Department of Analytical Chemistry at the University of Oviedo. Ratios were measured in 

pulse-counting mode on dilute solutions (10 ppm Ca). Precision of the analysis is better than 0.4% 

relative standard deviation. 

 

 

9.2.3. Flow-Through sequential dissolution device connected to an ICP-OES 
 

Prior to processing sample GeoB 5008-3 with a Flow-Through (FT) device, T. heimii shells 

were separated from the sediment according to the method described by Zonneveld (2004). In 

summary: 2,65g of dried sediment was sieved through 10 and 15 μm precision sieves. Then the 

sediment fraction between 10-15 μm was subjected to a series of settling and decanting steps until 

this fraction contains less than 15% other calcareous particles than T. heimii shells.  
 

To analyze the monospecific T. heimii sample with the FT device, three aliquots of around 

100 μg were placed on a filter with a mesh size of 0.45 μm. First, the samples were rinsed with 

buffered Seralpur water, and then HNO3 was added in small steps to create a gradient of increasing 

acid strength. During this sequential dissolution protocol, acid is kept constant at each 

concentration for several minutes, allowing dissolution of a specific calcite phase. While the 

sample calcite is dissolved, non-calcareous contaminants, such as clay minerals, remain on the 

filter (Groeneveld et al., 2010).  
 

The FT device is coupled to an Inductively Coupled Plasma Optical Emmision Spectrometer 

(ICP-OES), allowing online analysis of the sample. Measurements occur every 12-13 seconds, 

thus resulting in multiple measurements per sample. In the absence of an appropiate 

Thoracosphaera heimii standard, a Globigerinoides ruber standard was used with known Mg/Ca 

and Sr/Ca ratios of 4.12 and 1.37mmol/mol respectively.  
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Calculation of the Mg/Ca and Sr/Ca values of a sample is based on the linear relationship 

between Mg and Ca, and Sr and Ca, both for the sample and for the standard. The Mg/Ca and 

Sr/Ca concentrations of samples GeoB 5008-3 FT Test 1, FT Test 2 and FT Test 3 thus were 

calculated according to the following principle: 

 

Mg/Castandard / Mg-Ca-slopestandard = Mg/Casample / Mg-Ca-slopesample 

Sr/Castandard / Sr-Ca-slopestandard = Sr/Casample / Sr-Ca-slopesample 

 

9.2.4. Standard cleaning protocol for the elemental analysis of foraminifera 

Prior to processing sample GeoB 5008-3 using the standard cleaning protocol for 

foraminifera (Barker et al., 2003), T. heimii shells were separated from the sediment according to 

the method described by Zonneveld (2004). In summary: 2.46 g of dried sediment was sieved 

through 10 and 15 μm precision sieves. Then the sediment fraction between 10-15 μm was 

subjected to a series of settling and decanting steps until this fraction contains less than 15% other 

calcareous particles than T. heimii shells.  
 

Then, 186 μg of the monospecific T. heimii sample was chemically treated using “the 

stepwise cleaning procedure for the preparation of foraminiferal calcite for elemental analysis” 

described by Barker et al. (2003). Since T. heimii shells (10-20 μm) are smaller than foraminifera 

tests (100-1000 μm), the cleaning protocol had to be adapted by adding a centrifuge session before 

any overlying solution was removed from the sample vials. For a detailed overview of the 

modified Barker et al. (2003) method, see Appendix 2. 
 

An internal 89Y standard was added prior to elemental analysis. Element concentrations of 

the dissolved sample were determined on the isotopes 43Ca, 25Mg, 88Sr on a Finnigan Element 2 

Inductively Coupled Plasma Mass Spectrometer (ICP-MS), at the Department of Geosciences, 

University of Bremen, Germany. In contrast to the coupled FT – ICP-OES system, dissolution 

occurs in a single step prior to analysis and offline measurements yield one element/Ca value per 

sample, essentially an average over the entire sample. Sample GeoB 5008-3 was measured twice. 

During the first measurement, the sample was too concentrated ([Ca] = 12473.312 ppb). The 

sample was diluted until [Ca] = 4421.774 ppb and the measurement was repeated. Analytical 

errors of the elemental concentrations (standard deviations based on 10 runs) were better than 

0.3%.   
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9.2.5. Statistical methods 
 

Analysis of variance (ANOVA) was used to determine if there is any difference between the 

mean Mg/Ca values and between the mean Sr/Ca values, obtained with three different methods. 

An on-line ANOVA calculator was used (Soper, 2011). Mean and standard deviation values used 

in ANOVA are given in Table 9.1. Since we only have one measurement for the T. heimii method 

(T. heimii Test in Table 9.1), this value was used as the mean value and standard deviation was set 

to be zero for this method.  

 

9.2.6. SEM imagery 

In order to detect dissolution effects of the chemical reagents used in the new cleaning 

protocol for T. heimii shells, around 50 mg of bulk sediment was placed in three Eppendorf vials: 

one with 10 ml distilled water buffered with ammonia, one with 10 ml IONX and one with 10 ml 

MNX. For distilled water buffered with ammonia and IONX, stubs for scanning electron 

microscopy (SEM) were prepared after 5 hours, 24 hours and two days. For MNX, SEM stubs 

were prepared after 16 hours.  One bulk sample stub was also prepared, without any chemical 

treatment. 

 

 
         

Sample Mg/Ca Sr/Ca Mg/Ca Mg/Ca Sr/Ca Sr/Ca
GeoB 5008-3 

Sediment Method 
(mmol/mol) (mmol/mol) mean SD mean SD 

                
        

T.heimii Test Isolated T. heimii shells New T. heimii Protocol 5.51 12.08 5.51 0 12.08 0 
        
                

Foram Test 1 Isolated T. heimii shells Traditional Foram  5.81 15.62 
Foram Test 2 Isolated T. heimii shells Traditional Foram  5.73 14.94 

5.77 0.057 15.280 0.481 

                  
                  

FT Test 1 Isolated T. heimii shells Flow Through 5.87 13.63 
FT Test 2 Isolated T. heimii shells Flow Through 2.46 11.37 
FT Test 3 Isolated T. heimii shells Flow Through 2.37 12.18 

3.57 1.995 12.393 1.145 

                  

Table 9.1 – Measured Mg/Ca and Sr/Ca values for three different methods: T.heimii Test = new cleaning 
protocol for the elemental analysis of T. heimii shells from sediments, Foram Test = standard cleaning protocol 
for the elemental analysis of foraminifera (Barker et al., 2003), FT Test = flow-through sequential dissolution 

device coupled to an ICP-OES – Mg/Ca mean, Mg/Ca SD, Sr/Ca mean, Sr/Ca SD are mean and standard 
deviation (SD) values used in ANOVA 



 117

9.3. Results 

 

9.3.1. New cleaning protocol for the elemental analysis of T. heimii shells from sediments 

 

When sample GeoB 5008-3 is chemically treated according to “the new cleaning protocol 

for the elemental analysis of T. heimii shells from sediments”, the measured values for Mg/Ca and 

Sr/Ca are 5.51 and 12.08 mmol/mol respectively (T. heimii Test in Table 9.1). 

 

9.3.2. Flow-Through sequential dissolution device connected to an ICP-OES 

 

Sample GeoB 5008-3 was analyzed three times with a Flow-Through sequential dissolution 

device connected to an ICP-OES (FT Test 1, FT Test 2, and FT Test 3 in Table 9.1). The three 

sequential dissolution pathways of sample GeoB 5008-3 are shown in Fig. 9.1. The x-axis 

represents time in seconds. The y-axis represents the concentration of the measured elements – 

scandium (Sc), calcium (Ca), strontium (Sr) and magnesium (Mg) – in counts per second. Sc is 

used as a measure for acid strength (HNO3 concentration).  

With increasing time, and increasing acid strength, we observe several peaks, which are 

simultaneous for Ca, Sr and Mg (Fig. 9.1). These peaks represent a dissolution phase of the sample 

calcite. When Ca (counts per s) reaches zero, no more calcite is present in the sample. For FT Test 

1, FT Test 2 and FT Test 3, these dissolution peaks occur at different time intervals. For sample FT 

Test 1, we do not observe a distinct dissolution peak: a first peak occurs between 900 and 1200s 

and a second, broader peak occurs between 1700 and 2600s. For sample FT Test 2, the dissolution 

peaks occurs between 1300 and 1600s. For sample FT Test 3, the peak occurs a little earlier than 

for sample FT Test 2, between 700 and 1000s. 

Fig. 9.2 shows the correlation between Mg and Ca, and Sr and Ca for the Globigerinoides

ruber standard that was used. The standard has a known Mg/Ca concentration of 4.12mmol/mol 

and a known Sr/Ca concentration of 1.37mmol/mol (Table 9.2). During measurements with the 

ICP-OES, the Mg-Ca-slope of the standard was 0.1972 and the Sr-Ca-slope was 0.17 (Fig. 9.2, 

Table 9.2). 
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Fig. 9.1 – Sequential dissolution pathways of samples GeoB 5008-3 – The x-axis represents time in seconds, the 
y-axis represents the concentration of the measured elements (Sc, Ca, Sr and Mg) in counts per second 
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Fig. 9.2 – Correlation between Mg and Ca, and Sr and Ca for the Globigerinoides ruber standard 

 

 

Sample Mg/Castandard Mg/Casample

GeoB 5008-3 
Mg-Ca-slopestandard R² 

(mmol/mol) 
Mg-Ca-slopesample R² 

(mmol/mol) 
       

FT Test 1 0.1972 0.9943 4.12 0.2812 0.9518 5.87 
FT Test 2 0.1972 0.9943 4.12 0.1179 0.9398 2.46 
FT Test 3 0.1972 0.9943 4.12 0.1135 0.9786 2.37 

       

Sample Sr/Castandard Sr/Casample

GeoB 5008-3 
Sr-Ca-slopestandard R² 

(mmol/mol) 
Sr-Ca-slopesample R² 

(mmol/mol) 
       

FT Test 1 0.17 0.9998 1.37 1.6916 0.9917 13.63 
FT Test 2 0.17 0.9998 1.37 1.4115 0.9792 11.37 
FT Test 3 0.17 0.9998 1.37 1.5121 0.9900 12.18 

              

Table 9.2 – Overview of Mg-Ca-slope, Mg/Ca, Sr-Ca-slope and Sr/Ca for the Globigerinoides ruber standard 
and for samples GeoB 5008-3 FT Test 1, FT Test 2 and FT Test 3 
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Fig. 9.3 shows the correlation between Mg and Ca, and Sr and Ca for samples GeoB 5008-3 

FT Test 1, FT Test 2 and FT Test 3. Table 9.2 gives an overview of the Mg-Ca-slope and Sr-Ca-

slope for the three test runs of sample GeoB 5008-3. The calculated Mg/Ca values for FT Test 1, 

FT Test 2 and FT Test 3 were 5.87, 2.46 and 2.37 mmol/mol respectively (Table 9.1, 9.2). The 

calculated Sr/Ca values for FT Test 1, FT Test 2 and FT Test 3 were 13.63, 11.37 and 12.18 

mmol/mol respectively (Table 9.1, 9.2). 

 

 

Fig. 9.3 – Correlation between Mg and Ca, and Sr and Ca for samples GeoB 5008-3 FT Test 1, FT Test 2 and 
FT Test 3 
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9.3.3. Standard cleaning protocol for the elemental analysis of foraminifera 
 

After chemical treatment according to the standard cleaning protocol for the elemental 

analysis of foraminifera (Barker et al., 2003), sample GeoB 5008-3 was analyzed with an ICP-MS. 

During the first measurement (Foram Test 1 in Table 9.1), the sample was too concentrated, and 

Mg/Ca and Sr/Ca values are 5.81 and 15.62 mmol/mol respectively. During the second 

measurement (Foram Test 2 in Table 9.1), Mg/Ca and Sr/Ca values are 5.73 and 14.94 mmol/mol 

respectively. 
 

9.3.4. Statistical methods 
 

Table 9.3 gives the outcome of both ANOVA’s, one for the Mg/Ca values and one for the 

Sr/Ca values. In order for the test to be significant at the 95% confidence level, the p-value needs 

to be less than or equal to 0.05 (p � 0.05); in order for the test to be significant at the 90% 

confidence level, the p-value needs to be less than or equal to 0.10 (p � 0.10). When considering 

the Mg/Ca values, the p-value is 0.398, which means that the test is not significant at the 95% or 

90% confidence level (p � 0.05 and p � 0.10). When considering the Sr/Ca values however, the p-

value of 0.086 means that the test is not significant at the 95% confidence level (p � 0.05), but the 

test is significant at the 90% confidence level (p � 0.10). 
 

Anova with Mg/Ca values 

Source of variation: SS df MS F p 
Between: 6.744 2 3.372 1.270 0.398 

Within: 7.963 3 2.654   
Total: 14.708 5    

            
Anova with Sr/Ca values 

Source of variation: SS df MS F p 
Between: 11.797 2 5.899 6.202 0.086 

Within: 2.853 3 0.951   
Total: 14.650 5    

            

Table 9.3 – ANOVA table – SS = sum of squares, df = degrees of freedom, MS = mean square, F = F-value, p = 
p-value

 
9.3.5. SEM imagery 

SEM images, taken for the purpose of testing for dissolution effects are summarized in Fig. 

9.4. We would like to point out that the sediment did not undergo any sieving or settling prior to 

SEM imagery; the chemical reagent was added to the bulk sample. Fig. 9.4 is therefore no measure 

for the purity of the sample. 
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9.4. Discussion 

 

In foraminiferal studies it has been noted that sample preparation for Sr/Ca analysis does not 

require the same degree of rigor as is necessary for Mg/Ca analysis; it seems that foraminiferal 

Mg/Ca values are much more sensitive to contamination than foraminiferal Sr/Ca values (Barker et 

al., 2003). In the following discussion we will compare Mg/Ca and Sr/Ca values of 

Thoracosphaera heimii shells from one core-top sample, processed and analyzed with three 

different cleaning techniques. We will make a preliminary attempt to evaluate the effectiveness of 

the newly proposed cleaning protocol for the elemental analysis of T. heimii shells from sediments. 

 

 

 

Fig. 9.4 – SEM imagery of possible dissolution effects on T. heimii shells from bulk sediment. Please note 

that this figure is not a measure for the purity of the sample. 
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9.4.1. Dissolution 

Barker et al. (2003) found a decrease in the foraminiferal Mg/Ca ratio of up to 10-15%, due 

to dissolution of the sample carbonate during reductive treatment. Also use of dilute acid leaching 

to remove adsorbed contaminants caused partial dissolution of the foraminiferal calcite and a 

corresponding decrease in Mg/Ca (Barker et al., 2003). Since dissolution can severely alter the 

primary element signal, our first concern was whether or not the different chemical reagents, used 

in the newly proposed T. heimii cleaning protocol, cause the calcium carbonate T. heimii shells to 

dissolve. The three chemical reagents tested were bidistilled water buffered with a few drops of 

ammonia (NH4OH), IONX (bidistilled water and NH4OH) and MNX (bidistilled water, NH4OH 

and hydroxylamine hydrochloride). 
 

A preliminary, qualitative assessment of dissolution effects, based on scanning electron 

microscope (SEM) imagery (Fig. 9.4), shows there is no dissolution of the T. heimii shells. Shells 

from chemically treated bulk sediment (A-G in Fig. 9.4) look similar to shells from untreated bulk 

sediment (H and I in Fig. 9.4): the characteristic crystal pattern of T. heimii, polygonal crystals 

organised around regularly distributed pseudopores, is very distinct in all SEM images. There also 

does not seem to be a difference between the duration of the treatment. In order to do a 

quantitative assessment, more experiments need to be done. 

 

9.4.2. Observed differences in Mg/Ca 

 

All measured Mg/Ca values of sample GeoB 5008-3 are within the Mg/Ca range for cultured   

T. heimii (2.6-7.3 mmol/mol; Gussone et al., 2010). However, within this study, we observe 

significant differences for Mg/Ca between the three used cleaning protocols. Especially the second 

and third run with the flow-through device (FT Test 2 and FT Test 3) produced significantly lower 

Mg/Ca values. 
 

For the measurement of foraminiferal Mg/Ca ratios, it has been shown that the removal of 

silicate contamination (clay minerals) is the most important step (Barker et al., 2003). On average, 

clay minerals contain between 1 and 10 weight% Mg (Deer et al., 1992). In an example, 

foraminiferal Mg/Ca decreased from 10.5 to 2.5mmol/mol during clay removal (Barker et al., 

2003). Since this was the first time we chemically treated T. heimii shells from sediments for 

elemental analysis, it is possible that clay particles, adsorbed to the T. heimii shell wall, were not 

adequately removed. However, in order to investigate this further, we need to do more experiments 

and we need more detailed SEM images.  
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Another possibility would be the accumulation of clay particles inside the empty T. heimii 

shells. The major difference between our newly proposed cleaning protocol for T. heimii shells and 

the standard cleaning protocol for the elemental analysis of foraminifera, is that foraminifera tests 

are being crushed prior to analysis, in order to crack open the test chambers. By doing so, the 

debris trapped inside is released and washed away during several rinsing steps (Barker et al., 

2003). Unfortunately, the small size of T. heimii shells (10-20 μm) prevents us from doing this. 

When the chemically treated, uncrushed T. heimii shells are dissolved in HNO3 prior to analysis, 

possible internal non-calcareous particles will not be dissolved, but will remain in the sample 

solution and will be measured as well. During the sequential dissolution process of the flow-

through method however, the T. heimii shells are being dissolved gradually from the outside in. 

Therefore, any non-calcareous particles that would be trapped inside the T. heimii shells stay on 

the sample filter and are not measured by the ICP-OES. This could explain why the second and 

third run with the flow-through device produced significantly lower Mg/Ca values than the other 

two methods. The higher value of the first FT run (FT Test 1) can probably be explained by the 

formation of a clot. When dissolution does not occur gradually, perhaps it is possible that some 

non-calcareous particles slip through the filter. Clot formation would also explain why the 

dissolution time is higher during the first flow-through run, since clots take longer to dissolve.  
 

Another factor to consider is the contribution of Mg from Mn-Fe-oxide coatings. 

Foraminiferal shells from sediment cores commonly possess a Mn-rich oxide coating formed if 

Mn2+ has been mobilized during anoxic breakdown of organic matter deeper in the sediment 

column (Boyle, 1983). Barker et al. (2003) calculated that the contribution of Mg from these 

coatings to the Mg/Ca ratio of a typical foraminiferal sample is about 1%. Also diagenesis might 

have an influence on foraminiferal Mg/Ca. For instance Ferguson et al. (2008) observed a thin 

coating (a few μm thick) of high-Mg inorganic calcite on the inside walls of picked foraminifera 

from the Eastern Mediterranean. This diagenetic coating has also been reported by Boussetta et al. 

(2011). At first glance, SEM images of cleaned T. heimii shells show no evidence of any possible 

coatings. However, we need more experiments in order to determine whether or not the reductive 

step in the newly proposed cleaning protocol for T. heimii shells from sediments thoroughly 

removes Mg-rich coatings formed in the sediments. More detailed SEM images and microprobe 

analyses are needed to determine if coatings are formed on the inner walls of the T. heimii shells. 
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9.4.3. Observed differences in Sr/Ca 
 

Compared to the Sr/Ca value of cultured T. heimii shells (2.24-2.49 mmol/mol; Gussone et

al., 2010), the Sr/Ca value of sample GeoB 5008-3 is five to seven times higher. Even if clay 

particles are trapped inside the T. heimii shells, as is possibly the case as discussed above, this 

would not contribute to the Sr/Ca value of the sample, since clay minerals contain insignificant 

amounts of Sr (Deer et al., 1992). Also Mn-Fe-oxide coatings usually do not contain high Sr 

amounts. So far we do not have an explanation for the high Sr/Ca value of the T. heimii shells in 

sample GeoB 5008-3, allthough it should be noted that the sample is located at the Mid Atlantic 

Ridge, thus hydrothermal alteration of the sediment could be a possible determining factor. To get 

a better understanding we need to do more experiments including samples with lower Sr/Ca 

values, i.e. within the range of cultured T. heimii shells. 
 

The Sr/Ca values of sample GeoB 5008-3 are more significant (p = 0.086) than the Mg/Ca 

values of sample GeoB 5008-3 (p = 0.398). This seems to coincide with the observation made in 

foraminiferal research that sample preparation for foraminiferal Sr/Ca analysis does not require the 

same degree or rigor as is necessary for foraminiferal Mg/Ca work (Barker et al., 2003). 

 

 

9.5. Conclusion 

 

In the present study, core-top sample GeoB 5008-3 was processed according to the newly 

proposed cleaning protocol for the elemental analysis of T. heimii shells from sediments. In 

addition, the sample was also processed following the standard cleaning protocol for the elemental 

analysis of foraminifera, adapted for T. heimii shells; and following a sequential dissolution 

protocol, using a Flow-Through (FT) device. Although well within the Mg/Ca range of cultured T. 

heimii shells, Mg/Ca values of sample GeoB 5008-3 differ between the three cleaning techniques. 

Lower Mg/Ca values are being produced when the sample is sequentially dissolved (FT). This 

could be evidence for contaminating clay particles trapped inside the empty T. heimii shells. Sr/Ca 

values are five to seven times higher than Sr/Ca values in cultured T. heimii shells and seem to be 

more robust than Mg/Ca values. 
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Appendix 1: New cleaning protocol for the preparation of calcareous Thoracosphaera heimii

shells for elemental analysis 

 

The cleaning protocol for the preparation of calcareous Thoracosphaera heimii shells for 

elemental analysis is based on the cleaning method used for coccolithophores described by 

Bairbakesh et al. (1999) and Stoll & Ziveri (2002). Some additional sieving steps were included 

and the settling and decanting step was severely modified. 

 

A1.1. Oxidation step 

1. Add 3 ml of bidistilled water to a 45 ml plastic centrifuge tube. 

2. Add 3 ml of 5% NaClO. 

3. Add 1-2 g of freeze-dried sediment. 

4. Add 1 ml of 30% H2O2. The reaction will be very strong in samples which are rich in organic 

material. Be careful that the gaseous build-up does not cause the sediment to bubble out of the 

tube. Oxidation of the organic material also helps disaggregation of the sample. 

5. Place the tube in an ultrasonic bath for 10 seconds. 

6. Add 2 ml of 5% NaClO. 

7. Place the tube in an ultrasonic bath for 10 seconds. 

8. Wait 10 minutes to allow the oxidation reaction to happen 

9. Repeat steps (6) to (8) four times. If the sediment contains a lot of organic material, repeat 

more than four times. 

A1.2. Sieving step 

1. Wet sieve the sample through a 15 μm precision sieve. Only use bidistilled water buffered with 

25% NH4OH. The calcareous shells of T. heimii tend to dissolve when pure bidistilled, without 

NH4OH buffer, water is used. 

2. Bring the fraction smaller than 15 μm back into the centrifuge tube. 

 

A1.3. Reduction step 

1. Prepare the reducing solution (“MNX”): add 50 g of hydroxylamine hydrochloride to a 1000 

ml glass flask. Add 600 ml of bidistilled water and 400 ml of 25% NH4OH. 

2. Add 30 ml of MNX to the sediment in the centrifuge tube. Shake and ultrasonicate the sample 

to make sure all of the sediment is in suspension. 
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3. Place the tube on a rotating carousel and let it rotate for no longer than 24 hours. Reductive 

treatment will remove Mn-Fe-oxide coatings on the shell wall which might have been formed 

in the sediment and contain high amounts of Mg. 

4. Centrifuge the sample. 

5. Remove and dispose of the overlying solution with a syringe. 

 

A1.4. Ion exchange step 

1. Prepare the oxidizing solution (“IONX”): add 65 ml of 25% NH4OH to a 2000 ml glass flask. 

Add 1000 ml bidistilled water. 

2. Add 30 ml of IONX to the sediment in the centrifuge tube. Shake and ultrasonicate the sample 

to make sure all of the sediment is in suspension. 

3. Place the tube on a rotating carousel and let it rotate for 24 hours. Ion exchange treatment will 

remove adsorbed cations, especially adsorbed Mg, which is very abundant in clay minerals. 

4. Centrifuge the sample. 

5. Remove and dispose of the overlying solution with a syringe. 

 

A1.5. Sieving step 

1. Wet sieve the sample through a 10 μm precision sieve. Only use bidistilled water buffered with 

25% NH4OH. The calcareous shells of T. heimii tend to dissolve when pure bidistilled, without 

NH4OH buffer, water is used. 

2. Bring the fraction bigger than 10 μm back into the tube. The tube now contains the cleaned 

sediment fraction between 10 and 15 μm. 

 

A1.6. Settling and decanting step 

1. Place the tubes with sediment in the first row of a sample rack. 

2. Fill the other rows of the sample rack with empty tubes. Make sure you label everything. 

3. Add 30 ml of IONX to the tubes with sediment in the first row of the sample rack. Shake and 

ultrasonicate the tubes to make sure all of the sediment is in suspension. 

4. Place the tubes back in the sample rack and let the sediment settle for 15 minutes. 

5. Remove the overlying suspension with a syringe until there is 10 ml of solution left in the 

tubes. Be sure to take a different syringe for every sample. 

6. Transfer the suspension from the syringe into one of the empty tubes. 

7. Repeat steps (3) to (6) until the overlying suspension is transparant and all particles are in the 

settled sediment. Usually repeating the settling six times should be sufficient. 

8. Transfer the settled sediment into an Eppendorf vial. The sample is now ready for treatment. 
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Appendix 2: Stepwise cleaning procedure for the preparation of foraminiferal calcite for 

elemental analysis by Barker et al. (2003), modified for Thoracosphaera heimii shells. 

 

Beforehand, samples have been sieved through 10 and 20 μm precision sieves and have been 

made monospecific in Thoracosphaera heimii shells using the method of Zonneveld (2004). 

The main problem that had to be overcome when applying the cleaning procedure of Barker et

al. (2003) on the Thoracosphaera heimii samples was the size difference between foraminifera 

tests (100-1000 μm) and T. heimii shells (10-20 μm). The bigger foraminifera tests sink to the 

bottom of the vial and are visible with the naked eye, whereas the majority of the smaller T. heimii 

shells stay in suspension. In order not to lose too much T. heimii shells, the foraminiferal protocol 

of Barker et al. (2003) was adapted to T. heimii shells by adding a centrifuge session before any 

overlying solution is removed from the vials. Centrifuging the samples after every step will make 

this method much more labor intensive. Several samples can be cleaned at once.  

 

A2.1. Initial cleaning step 

1. Add 1 ml of ultrapure water to the samples. It is substantial to use separate pipette tips for 

adding and removing reagents. 

2. Place the sample rack in an ultrasonic bath for one minute. 

3. Centrifuge the samples.  

4. Remove the overlying solution using a pipette.  

 

A2.2. Removal of clay minerals 

1. Add 500 μl of ultrapure water to the samples. 

2. Place the sample rack in an ultrasonic bath for one minute. Ultrasonicating the samples will 

improve removal of clay minerals which are attached very tightly to the shell walls. 

3. Centrifuge the samples. It has to be noted that this step contradicts the minimal settling 

technique to remove clay minerals proposed by Barker et al. (2003). However, a centrifuge 

step is absolutely needed in order not to lose too much T. heimii shells (see above). 

4. Remove the overlying solution using a pipette. 

5. Repeat steps (1) to (4) five times. 

6. Add 500 μl of methanol to the samples. The lower viscosity of this reagent in comparison to 

water should detach clay minerals still attached to the T. heimii shells. 

7. Place the sample rack in an ultrasonic bath for one minute. 

8. Centrifuge the samples. 

9. Remove the overlying solution using a pipette. 
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10.  Repeat steps (6) to (9) three times. 

11. Add 500 μl of ultrapure water to the samples. 

12. Place the sample rack in an ultrasonic bath for one minute. 

13. Centrifuge the samples. 

14. Remove overlying solution using a pipette. 

15. Repeat steps (11) to (13) four to five times. 

16. Note: unlike the foraminifera tests, the T. heimii shells are not crushed prior to cleaning. 

Therefore it is likely that some clay minerals inside the shells are still present after treatment. 

 

A2.3. Removal of organic matter = oxidation step 

1. Heat the ultrasonic bath to 80°C. 

2. Prepare a NaOH – H2O2 solution in 50 ml flask: buffer 100 μl 30% H2O2 solution with 667 μl 

30% NaOH. Add ultrapure water until flask is filled with 50 ml. 

3. Add 500 μl of the NaOH – H2O2 solution to the samples. 

4. Place the sample rack in the pre-heated ultrasonic bath. Ultrasonicate 1 minute, wait 2.5 

minutes, ultrasonicate 1 minute, wait 2.5 minutes, ultrasonicate 1 minute, wait 2.5 minutes, 

ultrasonicate 1 minute. Make sure any gaseous build-up is released so that the vials are not 

under any pressure. 

5. Centrifuge the samples. 

6. Remove the overlying solution using a pipette. 

7. Repeat steps (3) to (6) two times. 

8. Add 1 ml of ultrapure water to the samples. 

9. Place the sample rack in an ultrasonic bath for one minute. 

10. Centrifuge the samples. 

11. Remove the overlying solution by using a pipette. 

 

A2.4. Dissolution of the sample 

1. Add 1 ml of 0.075M HNO3 to the samples. 

2. Shake to remove CO2 and let the reaction take place completely. 
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CHAPTER 10 

CONCLUSIONS AND OUTLOOK 
 

 

 
In this thesis we investigated the stable oxygen isotope composition and minor element to 

calcium ratios of Thoracosphaera heimii shells from surface sediments. To answer the two main 

questions raised at the introduction of this thesis: 

 

 

 

Stable oxygen isotope composition (�18O) of Thoracosphaera heimii: 
 

	 Can we gain more information about the �18O of T. heimii shells in surface sediments? 

	 Is there a difference between different hydrographical areas? 
 

In contrast to the Atlantic Ocean, no temperature – �18O correlation could be observed for the 

Indian Ocean samples. In this area, T. heimii �18O values show a wide range with a narrow 

temperature range, suggesting non-temperature (sedimentary) effects are present. 

 

	 Do we find a correlation with temperature from a specific depth in the upper water column? 
 

For the core top samples in the Atlantic Ocean, the temperature – �18O correlation slightly 

improves when temperatures at mixed layer depth are considered. This depth is the presumed 

living depth of T. heimii. The depth at which �18O is incorporated into its calcareous shell. 

 

	 Can we improve the use of �18O of T. heimii shells as a temperature proxy? 
 

Since the results obtained in this thesis support the suggestions from previous studies, we postulate 

that the main advantage of the T. heimii �18O proxy is the possibility to reconstruct temperatures 

from a specific depth in the water column, notably the mixed layer depth. 
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Minor element to calcium ratios (ME/Ca) of Thoracosphaera heimii: 
 

	 How can we measure the ME/Ca ratios of T. heimii shells in surface sediments? 
 

This was the first study to look at the elemental composition of T. heimii shells from sediment. 

Therefore, we developed a new cleaning protocol for the elemental analysis of T. heimii shells 

from sediments, which is based on previously published cleaning protocols for coccolithophores. 

 

	 Do the ME/ Ca ratios of T. heimii shells from natural sediments differ from culture values? 
 

The Mg/Ca and Sr/Ca ratios in natural sediments show a large range (with extreme values of up to 

25 mmol/mol) and exceed the Mg/Ca and Sr/Ca ratios of cultured T. heimii by far. 

 

	 Can we find any correlation with environmental parameters of the upper water column? 
 

Highest T. heimii Mg/Ca ratios occur in the core top samples which are also characterized by 

highest temperatures. However, these values are also well outside the Mg/Ca range of cultured T.

heimii. Therefore caution is advised when interpreting these results. T. heimii Sr/Ca is possibly 

correlated with the carbonate chemistry of the seawater. In order to better understand these results, 

more information about the biomineralization of T. heimii is needed. 

 

	 Are the ME/Ca ratios contaminated by the sediment? 
 

Although temperature seems to influence T. heimii Mg/Ca, the high range in Mg/Ca values most 

likely can be explained by contaminant phases from the sediment, which were not adequately 

removed during the chemical cleaning. Flow-Through analysis, using sequential dissolution of the 

sample, revealed that the sediment contamination is most likely due to clay particles trapped inside 

the empty T. heimii shells. A more rigorous cleaning protocol is needed. 
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For future studies on the isotopic composition of T. heimii shells, it is important to quantify 

the different non-temperature effects influencing the cyst �18O composition. Since the method to 

isolate T. heimii shells from the sediment does not yield samples that are 100% monospecific in T.

heimii, one should try to assess the �18O signal coming from other calcareous particles than T. 

heimii. One way to do so could be to analyze the samples with different levels of purification, as 

Zonneveld (2004) already did. The other possibility would be to use flow cytometry to separate the 

T. heimii shells from other particles. However, high laboratory costs could be a disadvantage of 

this technique. 
 

Within this study, minor element to calcium ratios of T. heimii shells from surface sediments 

were measured for the first time. The newly developed cleaning protocol, based on the cleaning 

protocol for coccolithophores, still has a lot of flaws. Further testing of the method is necessary in 

order to make sure that contaminating phases from the sediment are removed adequately. 

Extensive SEM imagery would be very helpful here. I also encourage the use of the Flow-Through 

device, since it is very likely that the most contaminating particles (clay) are trapped inside the 

shells. The technique of sequential dissolution dissolves the calcareous shells from the outside in, 

leaving behind whatever particles are still inside. For this study the Flow-Through was used to 

measure a sample with extreme Sr/Ca values. In the future, samples with a large range in Sr/Ca 

and Mg/ca values need to be analyzed as well.  
 

In order to understand the T. heimii Mg/Ca and Sr/Ca signals better, more insights are 

needed into the biomineralization and element incorporation model of T. heimii. Culture 

experiments could further investigate the correlation between the minor element to calcium ratios 

of T. heimii and temperature and/or the carbonate chemistry of the seawater/culture medium. 

Cultured shells could then be analyzed with e.g. a microprobe to analyze their elemental 

composition into detail and to examine if the shell wall is indeed built up of two layers of calcite 

with a different elemental composition, as was suggested by Gussone et al. (2010). 
 

As a last suggestion, the elemental composition could be analyzed in T. heimii shells from 

water samples at different depths in the water column. Since no sediment influences are present 

there, it could be determined if the observed signals are indeed a temperature signal (Mg/Ca) or 

carbonate chemistry signal (Sr/Ca). The measured values of the shells should be compared to the 

values of the surrounding water mass. 
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