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Abstract

We characterise fractal sets arising from conformal iterated function systems (cIFS) and conformal

graph directed Markov systems (cGDMS) for which the Minkowski content and the fractal curvature

measures, as introduced in [Win08], exist. With this, we generalise studies that have been carried

out for invariant sets of iterated function systems consisting of similarities.

For self-conformal subsets of the d-dimensional Euclidean space we show, under certain geometric

conditions, that the local average Minkowski content always exists and provide an explicit formula.

If the system is non-lattice, we prove that also the local Minkowski content exists and coincides with

its average version. From this general result we deduce new results for the subclass of self-similar

sets, which significantly generalise the statements from [DKz+10, LPW11]. For self-similar sets we

additionally show that the fractal curvature measures exist in the non-lattice situation and that an

average version exists for both lattice and non-lattice systems. With this, we provide a substantially

different proof to those presented in [Win08, WZ10, Zäh11] and gain alternative useful formulae for

the fractal curvature measures. Another important subclass of self-conformal sets is the class of

conformal C1+α-diffeomorphic images of self-similar sets, where α ∈ (0, 1]. We show that the local

Minkowski content of such an image exists, whenever the local Minkowski content of the considered

self-similar set exists. This new result also yields nice relationships between the local Minkowski

contents of the self-similar set and its image.

In contrast to the fact that the Minkowski content of a non-degenerate self-similar subset of R exists

if and only if the system is non-lattice [LP93, Fal95, LvF06], we prove that there exist invariant

sets of lattice cIFS for which the Minkowski content does exist. This surprising result is illustrated

with examples and disproves Conjecture 4 of [Lap93] for self-conformal sets. We additionally show

that even amongst the subclass of C1+α-diffeomorphic images of self-similar sets, there exist lattice

sets for which the Minkowski content exists. However, we prove that the fractal curvature measures

of such non-degenerate sets in R exist if and only if the underlying system is non-lattice. The

importance of this subclass is emphasised by the result that a lattice cIFS in R, which consists

of analytic maps, is automatically conjugate to a lattice system consisting of similarities. From

this, we infer that the fractal curvature measures of a non-degenerate invariant set of a cIFS in R

consisting of analytic maps exist if and only if the system is non-lattice.

The above-mentioned results for systems, whose invariant set is a subset of R, are shown to be valid

for the more general class of limit sets of cGDMS. Specifically, we show that the Minkowski content

of a non-degenerate limit set of a cGDMS consisting of similarities exists if and only if the system

is non-lattice, providing an important generalisation of the respective result for self-similar subsets

of R. Further, we obtain that limit sets of non-lattice cGDMS are Minkowski measurable and by

this verify Conjecture 4 of [Lap93] for limit sets of Fuchsian groups of Schottky type, since they are

always non-lattice (see for instance [Lal89]).
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1 Introduction

A central theme in fractal geometry is to characterise the geometric structure of fractal

objects. In this context, various different notions of dimension play a crucial role. However,

sets of the same ‘fractal’ dimension, such as Minkowski or Hausdorff dimension, can differ

significantly in their structure. Here, the Minkowski content and fractal curvature measures

come into play to provide information on the texture of a set, beyond its dimension. Besides

this geometric motivation, the intention behind introducing fractal curvature measures

in [Win08] was to develop an alternative notion of curvature, since the classical notions

do not seem to be appropriate for fractal sets. With this, the quest in geometric measure

theory of extending the concept of curvature measures as far as possible is addressed.

In this thesis, we consider both of the above aspects by investigating the Minkowski content

and fractal curvature measures of invariant sets arising from conformal iterated function

systems, which we call self-conformal sets, and limit sets of conformal graph directed

Markov systems. Through these investigations, we generalise studies which have been

carried out for self-similar sets. This is of interest since fractal sets arising in geometry, for

instance limit sets of Fuchsian groups, or in number theory, for instance sets defined by

Diophantine inequalities, are not typically self-similar but are rather self-conformal. We see

that the existence of the Minkowski content and the fractal curvature measures is dependant

upon the underlying conformal system being lattice or non-lattice in the sense of [Lal89].

We discover that in this dependence lies a major difference between general self-conformal

sets and the subclass of self-similar sets: Whereas the Minkowski content of a self-similar

subset of R with zero Lebesgue measure, which satisfies the open set condition (OSC),

exists if and only if the underlying system is non-lattice [LP93, Fal95, LvF06], we prove

that the Minkowski content of a general self-conformal set exists in the non-lattice case

and show that in the lattice situation both existence and non-existence of the Minkowski

content is possible. In this introduction we present an outline of the original results, but

beforehand, we give a more detailed description of the relevance of the Minkowski content

and of studies which have already been carried out concerning its existence and evaluation.

After [Man95], it is well known that a Cantor dust on [0, 1] may achieve any given Hausdorff

dimension within (0, 1) in many different ways and that the results need not look alike. As

an example, consider the following two Cantor sets: To begin the construction of both,

subdivide the unit interval [0, 1] into seven intervals of same lengths. For the first Cantor

set C1 keep the first, third, fifth and seventh interval from the left and repeat the same

1



2 CHAPTER 1. INTRODUCTION

procedure with the remaining intervals. For the second Cantor set C2 keep at each step the

two leftmost and the two rightmost intervals. Then the Minkowski as well as the Hausdorff

dimension of C1 and C2 are equal, although the two sets differ significantly in their gap

structure. The Minkowski content is capable of detecting this structural difference, as is

discussed in [Man82, Man95], and was proposed therein as a measure of lacunarity for

fractal sets. The word lacunarity originates from the latin word lacuna which means gap.

According to [Man82], “a fractal is to be called lacunar if its gaps tend to be large, in the

sense that they include large intervals (discs, or balls).” Thus, C2 is more lacunar than

C1. This is also reflected by the fact that the average Minkowski content of C1 is greater

than that of C2 (see Example 2.47). In this way, the Minkowski content can be viewed as

a beneficial complement to the notion of dimension. Besides the geometric interpretation,

results on the existence of the Minkowski content play an important role with respect

to the Weyl-Berry conjecture concerning the asymptotic distribution of the eigenvalues

of the Laplacian on sets with fractal boundaries. More precisely, the asymptotic second

term is expressed in terms of the Minkowski dimension and the Minkowski content of the

boundary of the set, whenever these quantities exist (see [Fal95, Section 4],[Lap91, LV96]

and references therein). Another motivation for studying the Minkowski content of fractal

sets arises from non-commutative geometry: In Connes’ seminal book [Con94] the notion

of a non-commutative fractal geometry is developed. There, it is shown that the natural

analogue of the volume of a compact smooth Riemannian spinc manifold for a fractal

set in R is that of the Minkowski content. This idea is also reflected in the articles

[GI03, Sam10, FS11].

There are various references available concerning the existence of the Minkowski content for

self-similar sets and subsets of R. A complete characterisation of Minkowski measurability

of fractal strings has been obtained in [LP93, Fal95, LvF06]. In higher dimensional ambient

spaces, using renewal theory, Gatzouras [Gat00] obtains Minkowski measurability of non-

lattice self-similar sets satisfying the OSC. Further, Gatzouras shows that the average

Minkowski content, which is defined via a logarithmic Cesàro average, exists for any

self-similar set satisfying the OSC. By means of geometric zeta functions and their analytic

properties alternative proofs and formulae to [Gat00] are provided in [DKz+10, LPW11]

under certain conditions on the geometric structure of the underlying set. Moreover, under

these assumptions, it is shown that the Minkowski content does not exist in the lattice

situation.

In the following, we present generalisations of the above-mentioned results for the much

more general class of non-empty compact sets which arise through conformal systems. At

first, we focus on self-conformal sets, which are the invariant sets of conformal iterated

function systems satisfying the OSC. Such iterated function systems are abbreviated by
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cIFS and are introduced in [MU96, MU03]. A central role in our investigations is played

by the bounded connected components of the complement of the self-conformal set, which

we call gaps. For their rigorous definition, we fix a cIFS Φ = {φ1, . . . , φN}, N ≥ 2, with

associated self-conformal set F ⊂ Rd, which satisfies the OSC with a connected open set

O ⊂ Rd satisfying F ⊂ O and ∂O ⊂ F . Here O and ∂O respectively denote the closure

and the boundary of O. Since we are particularly interested in sets of a fractal nature, we

focus on systems satisfying λd(O \ ΦO) > 0, where λd denotes the d-dimensional Lebesgue

measure. In this case, the set O \ ΦO is assumed to possess a finite number of connected

components, which we denote by G1, . . . , GQ, for some Q ∈ N, and call them the primary

gaps of F . The primary gaps have a special geometric meaning, namely, letting Gi
ω denote

the image of Gi under the map φω := φω1 ◦· · ·◦φωm for ω = ω1 · · ·ωm ∈ {1, . . . , N}m =: Σm,

m ∈ N, and setting Σ∗ := {∅} ∪ ⋃∞
m=1Σ

m and Gi
∅ := Gi for i ∈ {1, . . . , Q}, the union

F ∪⋃ω∈Σ∗
⋃Q

i=1G
i
ω provides a disjoint decomposition of O. Our arguments suggest that it

is natural to impose mild regularity conditions on the boundaries of O and G1, . . . , GQ,

namely that the upper Minkowski dimension of ∂O is strictly less than the Minkowski

dimension δ of F and that a slightly weaker condition is satisfied for ∂G1, . . . , ∂GQ. Note

that the Minkowski dimension is proven to exist in [Bed88] for the sets we consider. With

this background, we present a selection of our main results. Before stating the first one, we

define Fε := {x ∈ Rd | infy∈F |x− y| ≤ ε} for ε > 0, where |x− y| denotes the Euclidean

distance between x, y ∈ Rd.

Theorem (Theorem 2.29, Remark 2.30). The average Minkowski content of F , which is

defined to be M̃(F ) := limε→0|ln ε|−1
∫ 1
ε T δ−d−1λd(FT )dT , always exists and is equal to the

well-defined positive and finite limit

δ

H

(
lim

m→∞
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT

)
,

where the constant H is a measure theoretical entropy. Furthermore, in the non-lattice

case, the Minkowski content M(F ) := limε→0 ε
δ−dλd(Fε) of F also exists and coincides

with M̃(F ).

In the special case of F being a self-similar set the above formula simplifies to

δ

H

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi)dT.

The preceding result emphasises the strong dependence of the Minkowski content on the

structure of the gaps. However, often not only the global structure of a set is of interest,

but also its local structure, since it contains more information on the texture of the set.
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Therefore, we also consider a localised version of the Minkowski content. We discover that

this localised version of the Minkowski content is a constant multiple of the δ-conformal

measure ν associated with the cIFS Φ.

Theorem (Theorem 2.29). The local average Minkowski content of F , which is defined

to be the weak limit M̃(F, ·) := w-limε→0|ln ε|−1
∫ 1
ε T δ−d−1λd(FT ∩ ·)dT , exists and is

equal to M̃(F ) · ν(·). Further, in the non-lattice situation, the local Minkowski content

M(F, ·) := w-limε→0 ε
δ−dλd(Fε ∩ ·) also exists and is equal to M̃(F ) · ν(·).

The formula for the (average) Minkowski content in the first theorem is in the spirit of

[DKz+10, LPW11], where self-similar sets are considered. Our assumptions are significantly

weaker. In particular, we do not require the condition of monophase main gaps and allow

the boundaries of G1, . . . , GQ to be fractal. In this way, our results permit the study of a

bigger variety of fractal sets, even in the self-similar setting. Our method of proof is based

on analytic properties of the Perron-Frobenius operator, which are motivated by [Lal89].

An important subclass of self-conformal sets is formed by the class of conformal C1+α-

diffeomorphic images of self-similar sets, where α ∈ (0, 1]. In Theorem 2.41 we provide a

neat relationship between the local Minkowski contents of a self-similar set K ⊂ Rd and its

image g(K). The statement is that M̃(g(K), ·) is absolutely continuous with respect to

the push-forward measure g�M̃(K, ·) and their Radon-Nikodym derivative is given by

dM̃(g(K), ·)
d
(
g�M̃(K, ·)

) = |g′ ◦ g−1|dimM (K),

where dimM (K) denotes the Minkowski dimension of K. This yields the following nice

relation between the respective Minkowski contents.

M(g(K)) = M(K) ·
∫
K
|g′|dimM (K)dμ,

where μ denotes the dimM (K)-conformal measure associated with K (see Theorem 2.42).

The class of diffeomorphic images of self-similar sets turns out to be important. We already

alluded to the crucial difference between self-similar and general self-conformal subsets of

R, which is that self-similar subsets of R with zero Lebesgue measure satisfying the OSC

are Minkowski measurable if and only if the underlying system is non-lattice, whereas we

show that there exist self-conformal sets of zero Lebesgue measure arising from lattice

cIFS which are Minkowski measurable. We provide a general condition under which the

Minkowski content of a lattice self-conformal subset of R is proven to exist. This condition

simplifies in the case that the self-conformal set can be obtained as a C1+α-diffeomorphic

image of a self-similar set, yielding that even amongst this class there exist Minkowski
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measurable sets arising from lattice systems. As a consequence, we gain the following for

the Middle Third Cantor set, which is a self-similar set that is well known to be lattice.

Theorem (Example 2.45). Let C ⊂ R denote the Middle Third Cantor set. Then, there

exists a C1+α-diffeomorphism g such that g(C) is Minkowski measurable, whereas C is not

Minkowski measurable.

Note that this result together with Corollary 2.3 of [LP93] shows that there exist fractal

strings having invariant sets of lattice cIFS with zero Lebesgue measure for boundary, for

which the asymptotic second term of the eigenvalue counting function of the Laplacian

is monotonic. In Conjecture 4 of [Lap93] it was conjectured that for ‘approximately’

self-similar sets monotonic behaviour of the asymptotic second term occurs if and only if

the system is non-lattice. Conformal maps locally behave like similarities and thus the

above theorem disproves the conjecture for self-conformal sets. Lattice cIFS which arise via

conjugation of cIFS consisting of similarities play an important role in the general theory

of lattice cIFS, which is stated in our next theorem.

Theorem (Theorem 2.46). Suppose that d = 1 and assume that Φ consists of analytic

maps and is lattice. Then there exists a self-similar set K ⊂ R and a map g which is

analytic on an open neighbourhood of K, such that F = g(K).

An important generalisation of cIFS is given by conformal graph directed Markov systems

(cGDMS). Such systems are presented in [MU03]. They allow us to study for example

cIFS, cIFS with a transition rule, cIFS, where the open set O is not necessarily connected,

Markov interval maps and Fuchsian groups of Schottky type, to name a few. Thus, all the

results that we present for limit sets of cGDMS are automatically valid for self-conformal

sets. In the special case that the cGDMS consists of similarities, we write sGDMS.

Theorem (Theorem 5.16). Limit sets of sGDMS in R which have zero Lebesgue measure

are Minkowski measurable if and only if the sGDMS is non-lattice.

The preceding theorem provides a considerable generalisation of the respective dichotomy

for self-similar sets given in [LP93, Fal95, LvF06]. We have already seen, that this di-

chotomy fails to hold for general self-conformal subsets of R. We additionally show that

there exist limit sets of lattice cGDMS, which are Minkowski measurable and are not

self-conformal sets. We show that limit sets of non-lattice cGDMS on the other hand

are always Minkowski measurable. This together with Corollary 2.3 of [LP93] verifies

Conjecture 4 of [Lap93] for limit sets of Fuchsian groups of Schottky type, since such

systems are non-lattice as is stated in [Lal89]. Further results concerning the Minkowski

measurability of limit sets of general cGDMS (consisting of conformal maps) are presented
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in the more general framework of fractal curvature measures.

Notions of curvature are an important tool to describe the geometric structure of sets and

have been introduced and intensively studied for broad classes of sets. Originally, the idea

to characterise sets in terms of their curvature stems from the study of smooth manifolds

as well as from the theory of convex bodies with sufficiently smooth boundaries. In his

fundamental paper Curvature Measures [Fed59], Federer localises, extends and unifies the

previously existing notions of curvature to sets of positive reach. This is where he introduces

curvature measures, which can be viewed as a measure theoretical substitute for the notion

of curvature for sets without a differentiable structure. Federer’s curvature measures have

been studied and generalised in various ways. An extension to finite unions of convex bodies

is given in [Gro78] and [Sch80] and to finite unions of sets with positive reach in [Zäh84].

In [Win08], Winter extends the curvature measures to fractal sets in Rd, which typically

cannot be expressed as finite unions of sets with positive reach. These measures are referred

to as fractal curvature measures and are defined to be weak limits of rescaled versions of the

curvature measures introduced by Federer, Groemer and Schneider. Winter also examines

conditions for their existence in the self-similar case. These considerations are generalised

in [WZ10, Zäh11]. There, for a compact set F ⊂ Rd it is assumed that the closure of the

complement Rd \ Fε of Fε is a set of positive reach for Lebesgue-almost all ε > 0. Note that

this condition is automatically satisfied if the ambient space is of dimension ≤ 3, see [Fu85],

and that the condition is not needed if k ∈ {d − 1, d} for arbitrary d ∈ N. Under this

assumption, Federer’s curvature measures of Rd \ Fε are determined for Lebesgue-almost

every ε > 0 and are denoted by C0(Rd \ Fε, ·), . . . , Cd(Rd \ Fε, ·). This gives rise to the

definition

Ck(Fε, ·) := (−1)d−1−kCk(Rd \ Fε, ·)

for k ∈ {0, . . . , d− 1} and Cd(Fε, ·) := λd(Fε ∩ ·). Note that these definitions are consistent

in that the terms on the left and right hand sides coincide if Fε and Rd \ Fε are both of

positive reach. For an intuitive understanding, we remark that Cd−1(Fε, ·) coincides with
half the surface measure on the boundary ∂Fε of Fε, that is, with λd−1(∂Fε, ·)/2. From the

above introduced quantities, the fractal curvature measures arise as the essential weak limits

εsk(F )Ck(Fε, ·) as ε tends to zero, where sk(F ) is an appropriate scaling exponent. Rescaling

is necessary, because the term Cd(Fε,R
d) typically tends to zero as ε tends to zero for a

fractal set F , whereas Cd−1(Fε,R
d) tends to infinity. Note that the limit εsd(F )Cd(Fε, ·)

coincides with the local Minkowski content in case of convergence, if sd(F ) = δ − d. The

central question arising in this context is to identify those sets for which these weak limits

exist. In [Win08, WZ10, Zäh11] it has been shown that the fractal curvature measures exist

for self-similar sets with positive Lebesgue measure as well as for self-similar sets which are
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non-lattice and satisfy the open set condition. We provide a substantially different proof of

these existence results under our geometric conditions, where the mild regularity conditions

on the boundaries of O and G1, . . . , GQ are substituted by mild regularity conditions

involving the curvature measures. Our result is as follows.

Theorem (Theorem 2.37). Suppose that Φ consists of similarities. Then the weak limit

w-limε→0|ln ε|−1
∫ 1
ε T δ−k−1Ck(FT , ·)dT exists for k ∈ {0, . . . , d} and is equal to the finite

signed Borel measure

δ

H

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi)dT · ν(·), (1.1)

where H is a measure theoretical entropy. In the non-lattice situation the essential weak limit

ess-w-limε→0 ε
δ−kCk(Fε, ·) also exists and coincides with the measure from Equation (1.1).

Equation (1.1) provides a significantly different and useful formula to those presented in

[Win08, WZ10, Zäh11]. We strengthen the above result when d = 1. Note that if the

ambient space is of dimension one, then C0(Fε, ·) = λ0(∂Fε∩·)/2 and C1(Fε, ·) = λ1(Fε∩·).
Theorem (Theorem 2.31). Assume that d = 1 so that F ⊂ R. Then for k ∈ {0, 1} the

weak limit C̃f
k (F, ·) := w-limε→0|ln ε|−1

∫ 1
ε T δ−1−kCk(FT , ·)dT exists and satisfies

C̃f
0 (F, ·) =

2−δc

H
· ν(·) and C̃f

1 (F, ·) =
21−δc

(1− δ)H
· ν(·),

where the constant c is given by the well-defined positive and finite limit

c := lim
m→∞

∑
ω∈Σm

Q∑
i=1

|Gi
ω|δ.

Here |Gi
ω| denotes the length of the interval Gi

ω and H is a measure theoretical entropy. In

the non-lattice case, additionally the following limits exist Cf
k (F, ·) := limε→0 ε

δ−kCk(Fε, ·)
and satisfy Cf

k (F, ·) = C̃f
k (F, ·). Furthermore, if Φ consists of analytic maps and is lattice,

then Cf
k (F, ·) does not exist.

We provide an analogous statement to the above theorem for limit sets of cGDMS, for which

the formula is more involved (see Theorem 5.13). For the subclass of C1+α-diffeomorphic

images of limit sets of sGDMS we obtain nice relationships between the fractal curvature

measures of the image and the original set. Letting K denote the limit set of a lattice

sGDMS and letting g be a C1+α-diffeomorphism, we show that C̃f
k (g(K), ·) is absolutely

continuous with respect to the push-forward measure g�C̃
f
k (K, ·) and their Radon-Nikodym

derivative is given by

dC̃f
k (g(K), ·)

d
(
g�C̃

f
k (K, ·)

) = |g′ ◦ g−1|dimM (K).
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In the non-lattice situation, we prove that Cf
k (g(K), ·) exists and coincides with C̃f

k (g(K), ·).
In the lattice case, Cf

k (g(K), ·) does not exist. This is a particularly interesting observation,

since the Minkowski content of a C1+α-diffeomorphic image of a limit set of a lattice sGDMS

can exist and since Cf
1 (g(K),R), by definition, coincides with the Minkowski content of

g(K).

The thesis is organised in the following way.

In Chapter 2 we rigorously define the central notions such as the Minkowski content, the

fractal curvature measures, conformal iterated function systems and self-conformal sets.

We also provide a detailed description of the geometric conditions that we impose on

the self-conformal sets. Furthermore, we provide the complete exposition of the original

results concerning self-conformal sets. That is, we precisely state the results presented

above and provide some further related statements. Our results are illustrated by some

examples at the end of Chapter 2. In Chapter 3 we provide background material on the

Perron-Frobenius theory and on volume functions of parallel sets. This background is

central for proving our results in Chapter 4. In the first section of Chapter 4 we prove

strong auxiliary key results, which enable us to unify the proofs of all the theorems from

Chapter 2. The following sections of Chapter 4 contain the proofs. In Chapter 5, we define

limit sets of conformal graph directed Markov systems, whose importance we illustrate by

a collection of examples. Further, we provide an exposition of our results concerning such

limit sets. Finally, a short appendix is attached, which gives supplementary material on

measure theory.

To assist the reader, we provide an index, which contains all the relevant notions and

nomenclature.
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2 Central Notions and Main Results

The aim of this chapter is to present original results concerning the Minkowski content

and the fractal curvature measures of invariant sets of conformal iterated function systems.

We start by setting up the necessary definitions in Sections 2.1 to 2.3. More precisely, in

Section 2.1 we introduce the (local) Minkowski content and the fractal curvature measures.

In Section 2.2 we define conformal iterated function systems and associated important

terminology. Section 2.3 is devoted to geometric conditions that we impose on the self-

conformal sets and their geometric meaning. In Section 2.4, we exhibit our main results

concerning the (local) Minkowski content and the fractal curvature measures for conformal

iterated function systems and by this link Sections 2.1 to 2.3 together. Finally, in Section 2.5

our results are illustrated by a collection of examples.

2.1 (Local) Minkowski Content and Fractal Curvature Mea-

sures

In this section we provide the definitions and constructions of the (local) Minkowski content

and the fractal curvature measures. We start by fixing the following notation.

Let R denote the set of real numbers, set R+ := {x ∈ R | x > 0} and R+
0 := {x ∈ R | x ≥ 0}.

We denote by N the set of natural numbers not containing zero and set N0 := N∪ {0}. For
a compact subset Y of the d-dimensional Euclidean space (Rd, | · |), where d ∈ N, and for

ε > 0 we define

Yε := {x ∈ Rd | inf
y∈Y

|x− y| ≤ ε}

to be the ε-parallel neighbourhood of Y and

Y<ε := {x ∈ Rd | inf
y∈Y

|x− y| < ε}

to be the open ε-parallel neighbourhood of Y . Further, we let λd denote the d-dimensional

Lebesgue measure on Rd.

A key concept in fractal geometry is provided by several different notions of dimension, such

as the Hausdorff, packing and Minkowski dimensions, to name but a few. They characterise

the scaling behaviour of the considered set and in a certain sense classify fractals as objects

‘between’ the Euclidean spaces (see [Man95]). The notion of dimension plays a vital role

also in this thesis. Of particular interest for our purposes is the Minkowski dimension. The

9
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Minkowski dimension coincides with the box-counting dimension (see Claim 3.1 in [Fal03])

and is defined as follows.

Definition 2.1 (Minkowski dimension). For a non-empty compact set Y ⊂ Rd the upper

and lower Minkowski dimensions are respectively defined to be

dimM (Y ) := d− lim inf
ε↘0

lnλd(Yε)

ln ε
and dimM (Y ) := d− lim sup

ε↘0

lnλd(Yε)

ln ε
.

In case that the upper and lower Minkowski dimensions coincide, we call the common value

the Minkowski dimension of Y and denote it by dimM (Y ).

Definition 2.2 ((Average) Minkowski content, Minkowski measurable). Let Y ⊂ Rd

denote a set for which the Minkowski dimension dimM (Y ) exists. The upper Minkowski

content M(Y ) and the lower Minkowski content M(Y ) of Y are defined by

M(Y ) := lim sup
ε↘0

εdimM (Y )−dλd(Yε) and M(Y ) := lim inf
ε↘0

εdimM (Y )−dλd(Yε).

If the upper and lower Minkowski contents coincide, we denote the common value by M(Y )

and refer to it as the Minkowski content of Y . When the Minkowski content exists, is

positive and finite, then we say that Y is Minkowski measurable. The average Minkowski

content of Y is defined to be

M̃(Y ) := lim
ε↘0

|ln ε|−1

∫ 1

ε
T dimM (Y )−d−1λd(YT )dT,

provided that the limit exists.

Remark 2.3. The average Minkowski content is a logarithmic Cesàro average. If the

Minkowski content of Y exists, then the average Minkowski content of Y also exists and

M(Y ) = M̃(Y ).

Observe that, by definition, whenever it exists, the Minkowski content gives the asymptotic

scaling factor between εdimM (Y )−d and λd(Yε). Thus, it detects the rate at which the

d-dimensional volume of Yε shrinks as ε tends to zero and can be viewed as a beneficial

complement to the notion of dimension. More precisely, two sets with the same Minkowski

dimension which exhibit different shrinking rates can be distinguished by the value of their

Minkowski contents. Examples of fractals with the same Minkowski dimension but different

Minkowski contents are the two Cantor sets C1 and C2 from the introduction, which we

return to at the beginning of Section 2.5. For further insight into this matter, we refer the

reader to [Man82, Man95].

Moreover, the Minkowski content can be viewed as an analogue of the notion of length, area

or volume (depending on the dimension) for fractional dimensional sets. This is motivated



2.1. MINKOWSKI CONTENT AND FRACTAL CURVATURE MEASURES 11

in [Fal97, p.45] in the following way: “In R3, if Y is a single point then Yε is a ball with

λ3(Yε) =
4
3πε

3, if Y is a segment of length l then Yε is ‘sausage-like’ with λ3(Yε) ∼ πlε2,

and if Y is a flat set of area a then Yε is essentially a thickening of Y with λ3(Yε) ∼ 2aε. In

each case, λ3(Yε) ∼ cε3−δ, where the integer δ is the dimension of Y , so that the exponent

of ε is indicative of the dimension. The coefficient c of ε3−δ, known as the Minkowski

content of Y , is a measure of the length, area or volume of the set as appropriate.” Here,

the meaning of f(ε) ∼ g(ε) for two functions f, g : R+ → R+ is that limε→0 f(ε)/g(ε) = 1.

Often, not only the global structure of a set is of interest, but also its local structure,

since it contains more information on the ‘texture’ of the set itself. This information is

reflected by the local (average) Minkowski content, which gives a refinement of the (average)

Minkowski content. For its definition we use terminology from measure theory for which

we refer the reader to the appendix.

Definition 2.4 (Local (average) Minkowski content). Let Y ⊂ Rd denote a non-empty

compact set whose Minkowski dimension dimM (Y ) exists. The local Minkowski content

M(Y, ·) of Y is defined to be the finite Borel measure

M(Y, ·) := w-lim
ε↘0

εdimM (Y )−dλd(Yε ∩ ·),

whenever this weak limit exists. The local average Minkowski content of Y is defined to be

the finite Borel measure M̃(Y, ·) which arises as the weak limit

M̃(Y, ·) := w-lim
ε↘0

|ln ε|−1

∫ 1

ε
T dimM (Y )−d−1λd(YT ∩ ·)dT,

whenever this weak limit exists. Moreover, for a Borel set B ∈ B(Rd) we define

M(Y,B) := lim sup
ε↘0

εdimM (Y )−dλd(Yε ∩B) and

M(Y,B) := lim inf
ε↘0

εdimM (Y )−dλd(Yε ∩B),

where B(Rd) denotes the Borel σ-algebra on Rd.

The local Minkowski content appears as one of the fractal curvature measures, which are

defined by Winter in [Win08]. These measures provide a set of geometric characteristics for

fractal sets and were introduced for extending the notion of curvature to the fractal setting.

The definition of Winter’s fractal curvature measures is based on the curvature measures

which were introduced by Federer in [Fed59]. Federer’s curvature measures localise, extend

and unify the previously existing notions of curvature in differential and convex geometry.

Before presenting Federer’s curvature measures, we fix the following notation.
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Figure 2.1: The set X is not of positive reach, since every point on the drawn line segments

has two closest neighbours in X. The set Y is of positive finite reach. Its reach is equal to

the radius r of the complementary circle.

The reach of a compact set Y ⊂ Rd is defined to be

reach(Y ) := sup{ε > 0 | ∀ x ∈ Yε ∃! y ∈ Y : |x− y| = ε},

where, following convention, sup(∅) := −∞. A compact set Y ⊂ Rd is said to be of positive

reach if reach(Y ) > 0. For a set Y of positive reach the metric projection prY onto Y is

defined to be the map

prY : Y<reach(Y ) → Y

which maps a point in Y<reach(Y ) to its unique closest neighbour in Y . Examples for sets of

positive reach are non-empty, compact and convex sets. Note that these sets are even of

infinite reach. An example for a set which is not of positive reach and an example for a set

which is of positive finite reach are given in Figure 2.1. For sets of positive reach, the local

Steiner formula shows that the volume of the ε-parallel neighbourhood can be expressed as

a polynomial in ε. Federer’s curvature measures arise as the coefficients of this polynomial

expansion.

Theorem 2.5 (Local Steiner formula, [Fed59]). Let Y ⊂ Rd be a compact set of positive

reach. Then there exist uniquely defined signed Borel measures C0(Y, ·), . . . , Cd(Y, ·) such
that for every B ∈ B(Rd) and every ε ∈ [0, reach(Y )) we have

λd(Yε ∩ pr−1
Y (B)) =

d∑
k=0

εd−kκd−kCk(Y,B),

where κk denotes the k-dimensional volume of the k-dimensional unit ball.

Definition 2.6 (Curvature measure, total curvature). For a compact set Y ⊂ Rd of

positive reach and k ∈ {0, . . . , d} the k-th curvature measure of Y is defined to be the

measure Ck(Y, ·) from Theorem 2.5. The k-th total curvature of Y is defined to be the

value Ck(Y ) := Ck(Y,R
d).
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The total curvatures are also known as intrinsic volumes, Minkowski functionals or Quer-

massintegrale. These are well-studied objects in classical convex geometry. Federer’s

curvature measures refine these notions for non-empty, compact, convex sets and can be

viewed as a measure theoretical substitute of the notion of curvature for sets without

a differentiable structure. Indeed, if the boundary of the convex set Y ⊂ Rd is twice

continuously differentiable, then the curvature measures C0(Y, ·), . . . , Cd−1(Y, ·) can be

gained by integrating the elementary symmetric functions of principle curvature. That is

Ck(Y,B) = c(d, k) ·
∫
∂Y ∩B

σd−1−kdHd−1

for k ∈ {0, . . . , d − 1}, where c(d, k) is a constant which only depends on d and k, Hd−1

denotes the (d−1)-dimensional Hausdorff measure and σk is the k-th elementary symmetric

function of principal curvature given by

σ0 := 1 and σk :=
∑

1≤i1<...<ik≤d−1

κi1 · . . . · κik for k ∈ {1, . . . , d− 1}.

Here, κ1, . . . , κd−1 denote the principal curvatures of Y . This connection is proven in

[Sch93, p. 206] and justifies why Federer’s measures are called curvature measures.

Some useful properties and geometric characterisations of the curvature measures are stated

in the following proposition and can, for instance, be found in Chapters 5 and 6 of [Fed59].

Further properties, especially for convex sets, are given in [Sch78, SW92].

Proposition 2.7. Let Y ⊂ Rd denote a compact set of positive reach, whose boundary is

denoted by ∂Y and let B ∈ B(Rd) denote a bounded Borel set. Then the following hold.

(i) Cd(Y,B) = λd(Y ∩B).

(ii) Cd−1(Y,B) = λd−1(∂Y,B)/2.

(iii) C0(Y ) is equal to the Euler-Poincaré characteristic of Y .

(iv) Ck(Y,B) = Ck(Y,B∩∂Y ) for k ∈ {0, . . . , d−1}, which means that the k-th curvature

measure of Y is concentrated on the boundary of Y for k < d.

(v) Let X,Y ⊆ Rd be such that X, Y and X ∩ Y are of positive reach. If B is contained

in the interior of X, then

Ck(X ∩ Y,B) = Ck(Y,B) for k ∈ {0, . . . , d}.

(vi) For β > 0 and k ∈ {0, . . . , d} we have

Ck(βY, βB) = βk · Ck(Y,B).
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Federer’s curvature measures were studied and generalised in various ways. An extension

to finite unions of non-empty compact convex sets is given in [Gro78, Sch80] and to finite

unions of sets with positive reach in [Zäh84]. Unfortunately, fractal sets are commonly

not representable as finite unions of sets of positive reach and thus Federer’s curvature

measures are a priori not defined for fractal sets. This is the reason why fractal curvature

measures are introduced via a limiting procedure in [Win08]. There, fractal sets with

polyconvex parallel sets are considered. We now present the more general approach for

defining fractal curvature measures from [WZ10, Zäh11].

Let X denote the closure of a set X ⊂ Rd and in the following, let Y ⊂ Rd denote a

compact set. A distance ε > 0 is called regular for Y , if ∂Yε is a Lipschitz manifold and

the closure of the complement Rd \ Yε of Yε is of positive reach. Thus, for regular ε > 0 the

curvature measures of Rd \ Yε are determined. This allows one to define the k-th curvature

measure Ck(Yε, ·) of Yε through

Ck(Yε, ·) := (−1)d−1−kCk(Rd \ Yε, ·) (2.1)

for regular ε > 0 and k ∈ {0, . . . , d− 1}. This definition is consistent, in that equality in

the above equation is ensured, if both Yε and Rd \ Yε are of positive reach.

Remark 2.8. For regular ε > 0, Proposition 2.7(ii) implies that

Cd−1(Rd \ Yε, ·) = λd−1(∂(Rd \ Yε) ∩ ·)/2 = λd−1(∂Yε ∩ ·)/2.

For the sets Y , that we consider in the following, λd−1(∂Yε ∩ ·)/2 is a finite measure for

all ε > 0. Therefore, this notion is used in any case. The family of curvature measures is

completed by the volume measure

Cd(Yε, ·) := λd(Yε ∩ ·)

for any ε > 0. Note that this definition is consistent with Proposition 2.7(i).

Under the assumption that Lebesgue-almost all ε > 0 are regular distances for a compact

set Y , the fractal curvature measures of Y can be introduced via a limiting procedure of

the curvature measures of Yε as ε tends to zero. Note, that the assumption of the regular

distances having full measure is natural, since for any compact set Y ⊂ Rd in dimension

d ≤ 3, Lebesgue-almost all ε > 0 are regular distances for Y (see [Fu85]). However, this is

no longer true in dimension d ≥ 4 (see [Fer76]). It is nevertheless remarkable to note that in

any dimension all sufficiently large distances, more precisely all ε >
√
d/(2d+ 2)diam(Y ),

are regular distances for Y (see [Fu85]). Here, diam(Y ) := supx,y∈Y |x − y| denotes the

diameter of Y .

We call the Borel measure, which assigns measure zero to every Borel set trivial . Every

other signed Borel measure is called non-trivial . For a function f : U → R defined on
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U ⊆ X ∈ {R,R+
0 } with λ1(X \ U) = 0, we say that f(t) essentially converges as t

tends to x ∈ X, if there exists a y ∈ R such that limn→∞ f(un) = y for every sequence

(un)n∈N satisfying un ∈ U and limn→∞ un = x. In this case, we write ess-limt→x f(t) = y.

The essential limit superior (ess-limsup), the essential limit inferior (ess-liminf) and the

essential weak limit (ess-w-lim) are defined accordingly.

Definition 2.9 ((Average) fractal curvature measures, total (average) fractal curvature).

Let Y ⊂ Rd denote a non-empty compact set for which the Minkowski dimension dimM (Y )

exists and for which λ1(R
+ \ Ũk) = 0, where Ũk := {ε > 0 | ε is a regular distance for Y }

if d ≥ 4 and k ∈ {0, . . . , d − 2}, and Ũk := R+ otherwise. Fix k ∈ {0, . . . , d}. Provided

that the essential weak limit

Cf
k (Y, ·) := ess-w-lim

ε↘0
εdimM (Y )−kCk(Yε, ·)

of the finite signed Borel measures εdimM (Y )−kCk(Yε, ·) exists and is non-trivial, where the

essential limit is taken over ε ∈ Ũk, we call it the k-th fractal curvature measure of Y .

Moreover, for a Borel set B ∈ B(Rd) we set

C
f
k(Y,B) := ess-limsup

ε↘0
εdimM (Y )−kCk(Yε, B) and

Cf
k(Y,B) := ess-liminf

ε↘0
εdimM (Y )−kCk(Yε, B),

where the essential limits are taken over ε ∈ Ũk. Provided it exists and the limiting signed

measure is non-trivial, the weak limit

C̃f
k (Y, ·) := w-lim

ε↘0
|ln ε|−1

∫ 1

ε
T dimM (Y )−k−1Ck(YT , ·)dT

is called the k-th average fractal curvature measure of Y . Finally,

Cf
k (Y ) := Cf

k (Y,R
d) and C̃f

k (Y ) := C̃f
k (Y,R

d)

are respectively called the k-th total fractal curvature and the k-th total average fractal

curvature if they are non-zero.

Note that Cf
d (Y, ·) and C̃f

d (Y, ·) respectively coincide with M(Y, ·) and M̃(Y, ·), whenever
they exist and that C̃f

k (Y, ·) is defined to be the weak limit of the logarithmic Cesàro-averages

of εdimM (Y )−kCk(Yε, ·).
Remark 2.10. In [Win08], the fractal curvature measures of Y were actually introduced

as the weak limits w-limε→0 ε
sk(Y )Ck(Yε, ·), where sk(Y ) is a scaling exponent which is

defined to be

sk(Y ) := inf{t > 0 | εtCvar
k (Yε) → 0 as ε tends to zero}.
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Here, Cvar
k (Yε, ·) denotes the total variation measure of Ck(Yε, ·) (see the appendix) and

Cvar
k (Yε) := Cvar

k (Yε,R
d). In Proposition 2.2.10 of [Win08] it has been shown that sk(Y ) = 0

and that Ck(Y ) = limε→0Ck(Yε), whenever Y is a finite union of non-empty compact

convex sets and satisfies Ck(Y ) �= 0. Thus, the definition is consistent with Federer’s

definition for such sets. In [Win08] it is moreover shown for certain self-similar sets Y that

if C̃f
k (Y ) �= 0, then sk(Y ) = dimM (Y ) − k. However, when C̃f

k (Y ) = 0 both is possible,

sk = dimM (Y ) − k or sk < dimM (Y ) − k. Even for self-similar sets, it is not clear as to

what the right scaling exponents should be if C̃f
k (Y ) = 0. Thus, since we consider the

more general self-conformal sets, we restricted ourselves to the situation that C̃f
k (Y ) �= 0 in

Definition 2.9.

Before we give the precise definition of self-conformal sets in the next section, we conclude

this section with statements on the relevance of the fractal curvature measures. The fractal

curvature measures not only extend the notion of curvature to the fractal setting but also

form a family of geometric characteristics for fractal sets. The d-th total fractal curvature

can be interpreted as a ‘fractal volume’, the (d− 1)-st total fractal curvature can be viewed

as a ‘fractal surface area’ and the 0-th total fractal curvature can be interpreted as a

‘fractal Euler number’. These interpretations are given in [Win08]. They are based on the

properties in Proposition 2.7 and the geometric considerations from [Fal03, p.45] which we

presented earlier in this section in the context of the Minkowski content. Studies on the

geometric meaning of the total fractal curvatures have also been carried out in [Kom08],

where an intuitive approach for understanding the geometric relevance is presented, which

is illustrated by a series of examples.

2.2 Conformal Iterated Function Systems

The central objects of our study are self-conformal sets. They arise as the invariant

sets of iterated function systems which consist of certain conformal maps. Such systems

were intensively studied by Mauldin, Urbanski and their co-authors (see for example

[MU96, MU03]). On our way to define these iterated function systems, we start by giving

fundamental definitions through which we also fix our notation.

Definition 2.11 (Similarity, conformal map). A function f : U → Rd, which is defined

on an open connected set U ⊆ Rd is called a similarity , if there exists an r > 0 such

that |f(x) − f(y)| = r|x − y| for all x, y ∈ U . We refer to r as the similarity ratio of f .

A C1-diffeomorphism f : U → V between two open connected sets U, V ⊂ Rd is called

conformal if its total derivative at every point of U is a similarity. In this case, we let

|f ′(x)| ∈ R denote the similarity ratio of the total derivative of f at x ∈ U and call it the

length scaling ratio of f at x.
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Definition 2.12 (α-Hölder continuous, C1+α(U)). A map f : X → X ′ between two metric

spaces (X, �X ) and (X ′, �
X′ ) is called α-Hölder continuous for α ∈ (0, 1], if there exists a

c ∈ R such that �
X′ (f(x), f(y)) ≤ c · �X (x, y)

α for all x, y ∈ X. In this case, we call α the

Hölder exponent and c the Hölder constant of f . A C1-diffeomorphism f : U → V between

two open connected subsets U, V of the Euclidean space (Rd, |·|) belongs to C1+α(U) for

α ∈ (0, 1] if its total derivative Df is α-Hölder continuous; that is if there exists a c ∈ R

such that ‖Df(x)−Df(y)‖op ≤ c · |x−y|α for all x, y ∈ U . Here, ‖·‖op denotes the operator

norm, which for a linear operator A : Rd → Rd is defined by ‖A‖op := supx∈Rd, |x|=1|Ax|.

Some well-known facts about conformal maps are compiled in the next proposition.

Proposition 2.13. (i) For d = 1, f being conformal means that f is a strictly monotonic

C1-diffeomorphism.

(ii) For d = 2, conformal means holomorphic or anti-holomorphic with non-zero deriva-

tive.

(iii) For d ≥ 3 every conformal map fdefined on an open set U extends to the entire space

Rd and takes the form

f = βA ◦ i+ b,

where β > 0, A is a linear isometry in Rd, i is either an inversion with respect to a

sphere or the identity map and b ∈ Rd. This is known as Liouville’s theorem (see for

instance Chapter A.3 in [BP92]).

Remark 2.14. From Proposition 2.13 one can conclude that if f ∈ C1+α(U) is conformal,

then the length scaling ratio |f ′| : U → R satisfies ||f ′(x)| − |f ′(y)|| ≤ c|x − y|α for all

x, y ∈ U and some c ∈ R and thus is α-Hölder continuous.

Having considered conformal maps, we now turn to iterated function systems and show

how their invariant sets can be encoded.

Definition 2.15 (Contraction, IFS). Let (X, �) denote a non-empty compact metric space.

A function φ : X → X is called a contraction if there exists a real number r ∈ (0, 1) such

that �(φ(x), φ(y)) ≤ r · �(x, y) for all x, y ∈ X. An iterated function system (IFS ) acting

on X is a collection of injective contractions Φ := {φi : X → X | i ∈ Σ}, where Σ is a

non-empty finite index-set containing at least two elements.

Theorem 2.16 (Hutchinson). For an IFS Φ := {φi : X → X | i ∈ Σ} acting on a metric

space X, there exists a unique, non-empty and compact subset F ⊆ X, which is invariant

under Φ, that is

F =
⋃
i∈Σ

φiF =: ΦF.
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The above theorem is a famous result in fractal geometry and can for instance be found

in Theorem 9.1 of [Fal03]. The unique non-empty compact invariant set of an IFS can be

encoded by the code space, which is introduced below.

The Code Space. For an IFS Φ := {φi : X → X | i ∈ Σ}, we call Σ =: {1, . . . , N}
the alphabet , where N ≥ 2. We let Σn denote the set of words of length n ∈ N over Σ

and let Σ∗ :=
⋃

n∈N0
Σn denote the set of all finite words over Σ including the empty

word ∅, where Σ0 := {∅}. For two finite words u = u1 · · ·un, ω = ω1 · · ·ωm ∈ Σ∗, we
let uω := u1 · · ·unω1 · · ·ωm ∈ Σ∗ denote their concatenation. Likewise, we set uω :=

u1 · · ·unω1ω2 · · · ∈ Σ∞ for u = u1 · · ·un ∈ Σ∗ and ω = ω1ω2 · · · ∈ Σ∞. For ω = ω1 · · ·ωn ∈
Σ∗ we set φω := φω1 ◦ · · · ◦ φωn and define φ∅ := idX to be the identity map on X. For a

finite word ω ∈ Σ∗, we let n(ω) denote its length, where n(∅) := 0. Further, we call the

set Σ∞ of infinite words over Σ the code space. The code space Σ∞ gives a coding of the

unique non-empty compact invariant set of an IFS Φ which can be seen as follows. For

ω = ω1ω2 · · · ∈ Σ∞ and n ∈ N we denote the initial word of length n by ω|n := ω1ω2 · · ·ωn.

For each ω ∈ Σ∞ the intersection
⋂

n∈N φω|n(X) contains exactly one point xω ∈ X and

gives rise to a continuous surjection π : Σ∞ → F, ω �→ xω which we call the code map.

This notation allows us to introduce conformal iterated function systems and to describe

their properties.

Definition 2.17 (cIFS). Let X be a compact connected subset of the d-dimensional

Euclidean Space (Rd, | · |). An IFS Φ := {φi : X → X | i ∈ Σ} is said to be a conformal

iterated function system (cIFS) acting on X, provided

(i) intRd(X) �= ∅ and intRd(X) = X, where intRd(X) denotes the topological interior of

X,

(ii) Φ satisfies the open set condition (OSC) with open set O := intRd(X), that is

φi(O) ⊆ O for every i ∈ Σ and φi(O) ∩ φj(O) = ∅ for distinct i, j ∈ Σ and

(iii) there exists an open connected subset V ⊃ X of Rd and an α ∈ (0, 1] such that for

every i ∈ Σ the map φi is conformal on V and belongs to C1+α(V ).

Definition 2.18 (Self-conformal set, self-similar set). We call the unique non-empty

compact invariant set of a cIFS Φ, which exists by Theorem 2.16, the self-conformal set

associated with Φ. If the maps φ1, . . . , φN of the cIFS Φ are similarities, then the unique

non-empty compact invariant set is called the self-similar set associated with Φ.

A crucial property of a cIFS with regard to our results is the property of being lattice or

non-lattice. For defining these terms we now introduce the shift space and the geometric

potential function.
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The Shift Space. The shift space (Σ∞, σ) is given by the code space Σ∞ together with

the shift-map σ which is defined to be the map σ : Σ∗∪Σ∞ → Σ∗∪Σ∞ given by σ(ω) := ∅

for ω ∈ {∅} ∪ Σ1, σ(ω1 · · ·ωn) := ω2 · · ·ωn ∈ Σn−1 for ω1 · · ·ωn ∈ Σn, where n ≥ 2 and

σ(ω1ω2 · · · ) := ω2ω3 · · · ∈ Σ∞ for ω1ω2 · · · ∈ Σ∞.

We equip Σ∞ with the product topology of the discrete topologies on Σ and denote by

C(Σ∞) the set of complex-valued continuous functions on Σ∞.

Definition 2.19 (Cohomologous, (non-) lattice function). Two functions f1, f2 ∈ C(Σ∞)

are called cohomologous, if there exists a ψ ∈ C(Σ∞) such that f1 − f2 = ψ − ψ ◦ σ. A

function f ∈ C(Σ∞) is said to be lattice, if f is cohomologous to a function whose range is

contained in a discrete subgroup of R. Otherwise, we say that f is non-lattice.

The notion of being lattice or non-lattice can be carried over to a cIFS Φ and its self-

conformal set F by considering the geometric potential function associated with Φ:

Definition 2.20 (Geometric potential function, (non-) lattice cIFS). Fix a cIFS Φ :=

{φ1, . . . , φN}. Denote by F the self-conformal set associated with Φ and let (Σ∞, σ) be the

associated shift space. Define the geometric potential function to be the map ξ : Σ∞ → R

given by ξ(ω) := − ln|φ′
ω1
(πσω)| for ω = ω1ω2 · · · ∈ Σ∞. If ξ is non-lattice, then we call Φ

(and also F ) non-lattice. On the other hand, if ξ is lattice, then we call Φ (and also F )

lattice.

One of the key properties of a cIFS is the bounded distortion property. Our results require

the following refinement of this property, which we could not find in this precise form in

the literature. Therefore, we give a short proof.

Lemma 2.21 (Bounded distortion lemma). A cIFS Φ := {φ1, . . . , φN} acting on X

satisfies the following bounded distortion property (BDP). There exists a sequence (�n)n∈N
with �n > 0 for all n ∈ N and limn→∞ �n = 1 such that for all ω, u ∈ Σ∗ and x, y ∈ φωX

we have

�−1
n(ω) ≤

|φ′
u(x)|

|φ′
u(y)|

≤ �n(ω).

Proof. Fix ω ∈ Σn and let x, y ∈ φωX and u = u1 · · ·un(u) ∈ Σ∗ be arbitrarily chosen.

Noting that the length scaling ratio of a conformal map on a compact set is bounded away

from zero, we can write

|φ′
u(x)|

|φ′
u(y)|

≤ exp

( n(u)∑
k=1

∣∣ ln|φ′
uk
(φσku(x))| − ln|φ′

uk
(φσku(y))|

∣∣︸ ︷︷ ︸
=:Ak

)
.
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Since |φ′
i| moreover is α-Hölder continuous, it follows that ln|φ′

i| is α-Hölder continuous
for each i ∈ {1, . . . , N}. Let ci be the corresponding Hölder constant and set c :=

maxi∈{1,...,N} ci. Further, let r < 1 be a common upper bound for the contraction ratios of

the maps φ1, . . . , φN . Then we have

Ak ≤ c|φσku(x)− φσku(y)|α ≤ c ·
(
rn(u)−k|x− y|

)α
and thus

n(u)∑
k=1

Ak ≤ c

1− rα
|x− y|α ≤ c

1− rα
max
ω∈Σn

sup
x,y∈φωX

|x− y|α =: �̃n.

Since �̃n converges to 0 as n → ∞, �n := exp(�̃n) converges to 1 as n → ∞. The estimate

for the lower bound can be obtained by just interchanging the roles of x and y.

Another central object in our studies is the δ-conformal measure, where δ denotes the

Minkowski dimension of the underlying set. For its introduction, let Φ denote a cIFS acting

on X and let F be the associated self-conformal set. It is well known that the Minkowski

dimension δ := dimM (F ) of F exists and is positive and finite (see Theorem 3.2). The

unique probability measure ν supported on F which satisfies

ν(φiX ∩ φjX) = 0 and ν(φiB) =

∫
B
|φ′

i|δdν (2.2)

for all distinct i, j ∈ Σ and for all Borel sets B ⊆ X, is called the δ-conformal measure

associated with Φ. The statement on the uniqueness and existence is shown in [MU96]

and goes back to the work of [Pat76, Sul79, DU91]. We remark that in [MU96] the cone

condition is required to hold, since infinite cIFS, that is cIFS with a countable alphabet,

are considered. For cIFS with a finite alphabet this condition is not necessary.

2.3 Geometric Conditions

In this section we introduce some geometric conditions which we impose on the self-

conformal sets and comment on their meaning.

Throughout this section, we let Φ := {φ1, . . . , φN} denote a cIFS acting on a compact

and connected set X ⊂ Rd with open set O := intRd(X) and associated self-conformal set

F . Further, we let δ := dimM (F ) denote the Minkowski dimension of F and recall that

O = X.

The first set of conditions gives specifications on the geometric structure of the exterior

boundary of the self-conformal set F ⊆ X, which is the part of the fractal which is accessible

from the complement of X in Rd (see also Definition 2.24).
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(COND 1) F ⊆ O and ∂O ⊆ F .

(COND 2) δO := dimM (∂O) < δ.

The first consequence of (COND 1) is the following. Writing ΦY :=
⋃N

i=1 φiY for a subset

Y ⊆ X, (COND 1) implies that ∂O \ ΦX ⊆ ∂O \ F = ∅. This implies that either

λd(O \ ΦX) > 0 or λd(X \ ΦX) = 0. These two cases respectively correspond to ‘fractal’

and full-dimensional self-conformal sets, as is stated in the following proposition, which

results from combining Proposition 4.4 and Theorem 4.5 in [MU96] with Theorem 3.2.

Proposition 2.22. If λd(O \ ΦX) > 0, then λd(F ) = 0 and δ < d. Conversely, if

λd(X \ ΦX) = 0, then λd(F ) = λd(X) > 0 and δ = d.

If λd(O \ ΦX) > 0, then we call F non-degenerate. In Section 2.4 we are going to see that

it is important to distinguish between these two cases for statements on the Minkowski

measurability.

We now focus on the non-degenerate case, that is λd(O \ ΦX) > 0, and by this impose a

fractal structure on the invariant set F . Just like we assume a regularity condition to hold

for the boundary of X (see (COND 2)), we assume regularity properties to be satisfied for

the boundary of X \ ΦX, too:

(COND 3) X \ΦX possesses a finite number of connected components G1, . . . , GQ with

Q ∈ N.

(COND 4) There exists a δI < δ for which e−t(δI−d)λd(Fe−t ∩Gi) is uniformly bounded

from above for t ∈ R and i ∈ {1, . . . , Q}.

We call G1, . . . , GQ the primary gaps of F . Their images under the maps φω for ω ∈ Σ∗

are called the main gaps of F and are denoted by Gi
ω := φωG

i for i ∈ {1, . . . , Q}.
When being interested in the k-th fractal curvature measure Cf

k (F, ·) for k ∈ {0, . . . , d},
we need conditions, which are similar to (COND 2) and (COND 4), to be satisfied for

the total variation measure of the k-th fractal curvature measure. For presenting these

conditions, we define

U := {t ∈ R | e−t is a regular distance for F}

and set Uk := U if d ≥ 4 and k ∈ {0, . . . , d− 2}, and Uk := R otherwise. Moreover, we let

Cvar
k (Fe−t , ·) denote the total variation measure of Ck(Fe−t , ·) (see the appendix).

(COND 2’) There exists a δO < δ such that e−t(δO−k)Cvar
k (Fe−t , Xe−t \X) is uniformly

bounded from above for t ∈ Uk.
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(COND 4’) There exists a δI < δ such that e−t(δI−k)Cvar
k (Fe−t , Gi) is uniformly bounded

from above for i ∈ {1, . . . , Q} and t ∈ Uk.

Examples for systems which satisfy the above conditions include well-studied self-similar

sets like the Sierpinski gasket or the Sierpinski carpet (see Section 2.5). An example of a

more complicated self-similar set which satisfies our conditions and for which ∂O as well

as ∂Gi are fractal is presented at the end of this section in Example 2.25. An example of a

strictly self-conformal set satisfying our conditions and having fractal boundaries is given

in Example 2.26. Before turning to these examples, we want to comment on the relevance

of the geometric conditions (COND 1) to (COND 4), (COND 2’) and (COND 4’).

A pivotal object in studying the Minkowski content and the fractal curvature measures of

F is the ε-parallel neighbourhood Fε of F for ε > 0. The conditions (COND 1), (COND 3)

and the OSC ensure that we can decompose Xε ⊇ Fε for ε > 0 in the following way.

Xε = (Xε \X) ∪
∞⋃
n=0

(
ΦnX \ Φn+1X

) ∪ ∞⋂
n=0

ΦnX = (Xε \X) ∪
∞⋃
n=0

Φn (X \ ΦX) ∪ F

= (Xε \X) ∪
Q⋃
i=1

⋃
ω∈Σ∗

Gi
ω ∪ F, (2.3)

where all the above unions are disjoint. Thus, the problem of characterising the structure

of the set Fε can be decomposed into studying the structure of Fε inside the main gaps

on the one hand and outside of the set X on the other hand. (COND 2), which states

that the upper Minkowski dimension of ∂O is strictly less than the Minkowski dimension

of F , ensures that εδ−dλd(Fε ∩ (Xε \ X)) converges to zero as ε → 0 and (COND 4) is

needed for investigating εδ−dλd(Fε ∩
⋃Q

i=1

⋃
ω∈Σ∗ Gi

ω). Likewise, (COND 2’) and (COND

4’) are used for studying the terms εδ−kCk(Fε, Xε \ X) and εδ−kCk(Fε,
⋃Q

i=1

⋃
ω∈Σ∗ Gi

ω)

for k ∈ {0, . . . , d}.
We remark that the above conditions are related to the conditions which are used in

[DKz+10, LPW11] for obtaining results on the Minkowski measurability of self-similar sets.

The assumptions in both these articles are especially given for self-similar sets and are

satisfied only for a narrow class of self-conformal sets. In particular, besides (COND 1),

(COND 3) and a slightly different version of (COND 2), it is assumed in [DKz+10, LPW11]

that each of the main gaps G1
ω, . . . , G

Q
ω for ω ∈ Σ∗ is monophase, which is defined as

follows.

Definition 2.23 (Monophase). A non-empty and bounded open set G ⊂ Rd with inradius

g, that is the radius of the largest d-dimensional ball which is inscribed in G, is called
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monophase if there exist real numbers η0(G), . . . , ηd−1(G) such that

λd

(
(Rd \G)ε ∩G

)
=

d−1∑
k=0

ηk(G) · εd−k for ε ∈ (0, g]. (2.4)

Thus, the main gaps of a self-conformal set F ⊂ Rd are monophase if the volume of the

ε-parallel neighbourhood of F within each main gap can be expressed as a polynomial of

degree d in ε for all sufficiently small ε > 0. Since the condition of monophase main gaps

is relevant also for our investigations, we now allude to its geometric meaning.

It is easy to verify that open rectangles and triangles are examples for monophase subsets of

R2. Thus, the Sierpinski gasket and the Sierpinski carpet are examples for self-similar sets

with monophase main gaps. An example for a bounded open set which is not monophase

is a half-circle. If we take the radius of the half-circle G to be one, then

λ2

(
(Rd \G)ε ∩G

)
=

π

2
(2ε− ε2) + (1− ε)2 · arcsin

(
ε

1− ε

)
+ ε

√
1− 2ε,

which cannot be expressed as a polynomial of degree two in ε.

We remark that the main gaps of a self-similar set are monophase if and only if its primary

gaps are monophase, because of the following scaling property of the Lebesgue measure.

Suppose that G ⊂ Rd satisfies Equation (2.4) with η0(G), . . . , ηd(G) ∈ R and g > 0. Take

φ to be a similarity on Rd with similarity ratio r > 0. Then

λd

(
(Rd \ φG)ε ∩ φG

)
= rd ·λd

(
(Rd \G)ε/r ∩G

)
=

d∑
k=0

(
ηk(G) · rk

)
·εd−k for ε ∈ (0, rg].

Since conformal maps deform the structure of the underlying set, we do not necessarily

have the dichotomy that the main gaps of a self-conformal set are monophase if and only if

its primary gaps are. Thus, requiring that all the main gaps of a self-conformal set are

monophase is a very restrictive assumption, whereas it is satisfied for many well-studied

self-similar sets. (COND 4) is a substitute for the monophase condition. It even allows the

boundary of the primary gaps to be fractal and thus permits the study of a bigger variety

of fractal sets, even in the self-similar setting. Examples of such sets are presented now.

Examples

For introducing the set in our first example, we fix some terminology from [PW08].

Definition 2.24 (Exterior boundary, envelope). Let Y ⊂ Rd denote a compact set. Then

Rd \ Y has a unique unbounded component, which we denote by U . (For d = 1, there are

actually two unbounded components in Rd \ Y , if +∞ and −∞ are not identified. In this
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case, we let U be their union.) Then ∂U is called the exterior boundary of Y ; it consists of

that portion of Y which is accessible when approaching Y from infinity. The envelope of Y

is the complement Rd \ U of U .

Example 2.25 (Self-similar set whose primary gaps have fractal boundary). We consider the

self-similar set whose construction is depicted in Figure 2.2. Take X̃ to be the equilateral

triangle in R2 with vertices (0, 0), (1, 0) and (1/2,
√
3/2). Define 21 similarities on X̃ all

of which have similarity ratio 1/7 and denote them by φ̃1, . . . , φ̃21. They are visualised

in Figure 2.2. Let F ⊂ X̃ denote the self-similar set associated with Φ̃ := {φ̃1, . . . , φ̃21}.
Take X to be the envelope of F (see Figure 2.3) and set O := intR2X. Then Φ := Φ̃|X is a

cIFS with O as open set which satisfies (COND 1) and (COND 3). The set F possesses

seven primary gaps G1, . . . , G7 which are depicted in Figure 2.3. Conditions (COND 2)

and (COND 4) are satisfied, since

dimM (F ) =
ln 21

ln 7
and dimM (∂X) =

ln 10

ln 7
= dimM (∂Gi)

for i ∈ {1, . . . , 7}. To see this, we remark that it is well known that for such a self-similar set

the Minkowski dimension exists and coincides with the similarity dimension. The similarity

dimension of a self-similar set which consists of N copies of size r of itself is given by the

value − lnN/ ln r. In our example, F consists of 21 copies of size 1/7 of itself and thus,

dimM (F ) = ln 21/ ln 7. For computing the Minkowski dimension of ∂X, we decompose

∂X into three parts, namely, we partition it at the points (0, 0), (1, 0) and (1/2,
√
3/2).

Each of these three parts consists of 10 copies of size 1/7 of itself. Since the Minkowski

dimension exists and the upper Minkowski dimension is stable with respect to finite unions

(see [Fal03, Ch. 3.2]), that is dimM (X ∪ Y ) = max{dimM (X), dimM (Y )}, we obtain that

dimM (∂X) = ln 10/ ln 7. Analogously, it can be seen that dimM (∂Gi) = ln 10/ ln 7 for each

of the primary gaps G1, . . . , G7 depicted in Figure 2.3.

In the next example we provide a construction of a self-conformal set which is not self-similar

and satisfies our conditions.

Example 2.26 (Self-conformal set whose primary gaps have fractal boundary). An example

for a strictly self-conformal set satisfying (COND 1) to (COND 4) can be obtained by

applying the function

g : R2 → R2, (x, y) �→ (
(x+ 1)2 − (y + 1)2, 2(x+ 1)(y + 1)

)
to the self-similar set F from Example 2.25. This gives rise to a self-conformal system

which is conjugate to a self-similar system. Such systems are examined in Section 2.4.3. A

picture of the resulting self-conformal set is given in Figure 2.4.
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Figure 2.2: The self-similar set from Example 2.25 and its construction. Its exterior

boundary as well as the boundaries of the primary gaps are fractal.

Figure 2.3: The envelope and the primary gaps G1, . . . , G7 of the self-similar set from

Example 2.25.



26 CHAPTER 2. CENTRAL NOTIONS AND MAIN RESULTS

Figure 2.4: The strictly self-conformal set from Example 2.26. Its exterior boundary as

well as the boundaries of the primary gaps are fractal.

2.4 Main Results for Conformal Iterated Function Systems

Now, we are ready to exhibit our main results concerning self-conformal sets. For ease of

presentation, their proofs are provided in Chapter 4.

The results are subdivided into three categories. Firstly, in Section 2.4.1, we focus on the

original results for general self-conformal sets. Secondly, in Section 2.4.2, we state the new

results concerning fractal curvature measures of self-similar sets. Thirdly, concluding this

section, in Section 2.4.3, we present our results for C1+α-diffeomorphic images of self-similar

sets, which form an important subclass of self-conformal sets.

2.4.1 Self-Conformal Sets

In presenting our results for general self-conformal sets, we firstly focus on the results

concerning the (local) Minkowski measurability of self-conformal subsets of Rd. These

results extend the results which were obtained in [KK10] for self-conformal subsets of R to

higher dimensional Euclidean spaces. Moreover, they extend the results which are given in

[Gat00, Win08, DKz+10, LPW11] for self-similar sets to the conformal setting. Secondly,

we consider self-conformal subsets of R, for which we provide stronger results concerning

Minkowski measurability and also give results for the fractal curvature measures.
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We impose the conditions (COND 1) to (COND 4) from Section 2.3. There, we have seen

that for a cIFS Φ acting on X with associated open set O := intRdX either λd(O \ΦX) > 0

or λd(X \ ΦX) = 0. We now distinguish between these two cases and begin with the

simpler one, namely with λd(X \ ΦX) = 0. Here, Proposition 2.22 immediately yields the

following result which we state without a proof.

Proposition 2.27. Let F denote the self-conformal set associated with the cIFS Φ acting

on X. Suppose that λd(X \ ΦX) = 0 and that (COND 1) and (COND 2) are satisfied.

Then the (local) Minkowski content of F exists and satisfies

M(F, ·) = λd(F ∩ ·) and M(F ) = λd(F ).

From now on, we suppose that λd(O \ ΦX) > 0, imposing a fractal structure on the

invariant set F . Here, the systems are more delicate and the results are more interesting.

Throughout the remainder of this section we fix the following notation.

Notation 2.28. We let Φ denote a cIFS acting on a compact and connected set X ⊂ Rd

with associated self-conformal set F ⊂ Rd. The associated geometric potential function is

denoted by ξ : Σ∞ → R and the Minkowski dimension of F by δ := dimM (F ). Assuming

(COND 3), we let G1, . . . , GQ denote the primary gaps of F and G1
ω, . . . , G

Q
ω the associated

main gaps for ω ∈ Σ∗. Further, ν denotes the δ-conformal measure associated with Φ and

Hμ−δξ
denotes the measure theoretical entropy of the shift map σ with respect to the unique

shift-invariant Gibbs measure μ−δξ for the potential function −δξ (see Equation (3.4)).

A key result in this thesis is the following theorem.

Theorem 2.29 (Self-conformal sets – local Minkowski content). Fix the notation from

Notation 2.28. Suppose that λd(O \ΦX) > 0 and that (COND 1) to (COND 4) hold. Then

we have the following.

(i) The local average Minkowski content M̃(F, ·) exists and is equal to the well-defined

finite non-trivial measure

δ

Hμ−δξ

·
(

lim
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT

)
· ν(·).

(ii) If ξ is non-lattice, then M(F, ·) exists and is equal to M̃(F, ·).

The proof of Theorem 2.29 is provided in Section 4.2.1.
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Remark 2.30. Since M(F ) = M(F,Rd), M̃(F ) = M̃(F,Rd) and ν(Rd) = 1, the above

theorem immediately yields that the average Minkowski content exists and is equal to

M̃(F,Rd). Theorem 2.29 moreover gives that the Minkowski content M(F ) of F exists if

ξ is non-lattice, and that it is equal to the average Minkowski content in this case.

When the dimension of the underlying Euclidean space is one, we can strengthen the above

results. In this case we obtain results on both the fractal curvature measures Cf
0 (F, ·),

Cf
1 (F, ·) and statements about the existence or non-existence in the lattice situation. Note

that if d = 1, then (COND 2) to (COND 4), (COND 2’) and (COND 4’) are always satisfied

for a cIFS which satisfies (COND 1) (see Section 4.2.2, proof of Lemma 4.9).

Theorem 2.31 (Self-conformal subsets of R – fractal curvature measures). Fix the notation

from Notation 2.28. Assume that d = 1 so that X ⊂ R. Suppose that λ1(O \ ΦX) > 0 is

satisfied and that (COND 1) holds. For a connected subset G ⊂ R let |G| denote its length.

Then for k ∈ {0, 1} we have the following.

(i) The average fractal curvature measures of F exist and satisfy

C̃f
0 (F, ·) =

2−δc

Hμ−δξ

· ν(·) and C̃f
1 (F, ·) =

21−δc

(1− δ)Hμ−δξ

· ν(·),

where the constant c is given by the well-defined positive and finite limit

c := lim
m→∞

∑
ω∈Σm

Q∑
i=1

|Gi
ω|δ. (2.5)

(ii) If ξ is non-lattice, then Cf
k (F, ·) exists and equals C̃f

k (F, ·).

(iii) If ξ is lattice and the system Φ consists of analytic maps, then Cf
k (F, ·) does not exist.

The proof of Theorem 2.31 can be found in Section 4.2.2.

Remark 2.32. Theorem 2.31 yields that sk = δ − k is the right choice for the scaling

exponent, which we introduced in Remark 2.10.

An astonishing result on the Minkowski measurability for self-conformal subsets of R is

presented in the next theorem. It states that a non-degenerate lattice self-conformal set can

be Minkowski measurable. This contrasts the fact that a non-degenerate self-similar subset

of R is Minkowski measurable if and only if it is non-lattice, which has been obtained in

[LP93, Fal95, LvF06] (see also Theorem 2.39).

Theorem 2.33 (Self-conformal subsets of R – Minkowski content). Suppose that we are

in the situation of Theorem 2.31. Then the following hold.
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(i) The average Minkowski content M̃(F ) exists and is equal to the positive and finite

value
21−δc

(1− δ)Hμ−δξ

with c as in Equation (2.5).

(ii) If ξ is non-lattice, then the Minkowski content M(F ) of F exists and coincides with

M̃(F ).

(iii) If ξ is lattice, then we have that

0 < M(F ) ≤ M(F ) < ∞.

What is more, equality in the above equation can be attained. More precisely let

ζ, ψ ∈ C(Σ∞) denote the functions satisfying ξ − ζ = ψ − ψ ◦ σ, where the range

of ζ is contained in a discrete subgroup of R. Let a ∈ R denote the maximal real

number for which ζ(Σ∞) ⊆ aZ. Further, denote by ν−δζ the unique eigenmeasure

with eigenvalue one of the dual of the Perron-Frobenius operator for the potential

function −δζ (see Section 3.1.2). If, for every t ∈ [0, a), we have

∑
n∈Z

e−δanν−δζ ◦ψ−1([na, na+t)) =
eδt − 1

eδa − 1

∑
n∈Z

e−δanν−δζ ◦ψ−1([na, (n+1)a)), (2.6)

then it follows that M(F ) = M(F ).

Remark 2.34. The proof of Theorem 2.33(iii) shows that Equation (2.6) implies that also

Cf
0(F ) = C

f
0(F ).

Note that the sums occurring in Equation (2.6) are finite and that the proof of Theorem 2.33

is given in Section 4.2.3. An example, where Equation (2.6) is satisfied, is presented at the

end of this section as Example 2.45. This example is particularly interesting as it sheds

new light on a conjecture described in the following remark.

Remark 2.35 (On a conjecture by Lapidus from 1993). Conjecture 3 in [Lap93] states

that a non-degenerate self-similar set in Rd is Minkowski measurable if and only if it

is non-lattice. This conjecture was proven to be correct in space dimension d = 1 in

[LP93, Fal95, LvF06]. For higher dimensional spaces the part concerning the lattice

situation is still an open problem. In the same paper, [Lap93], a similar conjecture is given

for so-called ‘approximately’ self-similar sets. A precise definition of an ‘approximately’

self-similar set is not given. However, since conformal maps locally behave like similarities,

we view self-conformal sets as being ‘approximately’ self-similar and remark that for such

sets the preceding theorem in combination with Corollary 2.3 of [LP93] provides a negative
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answer to this conjecture (see also Example 2.45). Note that Theorem 2.33 combined with

Corollary 2.3 of [LP93] in particular shows that there exist fractal strings with lattice

self-conformal boundary for which the asymptotic second term of the eigenvalue counting

function N(λ) of the Laplacian (in the sense of [LP93]) is monotonic. We thank Lapidus

for pointing the connection out to us. We will return to this conjecture at the very end of

Chapter 5, where we study conformal graph directed Markov systems.

2.4.2 Self-Similar Sets

Self-similar sets form a special class of self-conformal sets. In the self-similar setting our

methods of proof immediately allow to retrieve results on all the fractal curvature measures

for higher dimensional Euclidean spaces. With this, we provide a substantially different

proof and obtain alternative, useful formulae to [Win08, WZ10, Zäh11] and moreover

extend the results given in [DKz+10, LPW11].

Remark 2.36. The δ-conformal measure associated with a cIFS Φ consisting of similarities

coincides with the normalised δ-dimensional Hausdorff-measure on the invariant set. Also,

letting r1, . . . , rN denote the similarity ratios of the similarities φ1, . . . , φN , we have that

Hμ−δξ
= −δ

∑N
i=1 ln(ri)r

δ
i .

Theorem 2.37 (Self-similar sets – fractal curvature measures). Fix the notation from

Notation 2.28. Suppose that Φ consists of similarities, so that F is self-similar. Assume

that λd(O \ ΦX) > 0 and that (COND 1) to (COND 3), (COND 2’) and (COND 4’) are

satisfied. If d ≥ 4 and k ≤ d− 2 additionally assume that Lebesgue-almost all ε > 0 are

regular distances for F . Then for k ∈ {0, . . . , d} the following hold.

(i) C̃f
k (F, ·) exists and is equal to the finite signed Borel measure

δ

Hμ−δξ

·
∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi)dT · ν(·).

(ii) If ξ is non-lattice, then Cf
k (F, ·) exists and is equal to C̃f

k (F, ·).

The proof of Theorem 2.37 is given in Section 4.3.1.

For self-similar sets studies on the existence of the fractal curvature measures have already

been carried out. We now want to put the result of the above theorem into context with

these results from the literature.

The existence of the limits C̃f
k and Cf

k has first been investigated for self-similar sets in

[Win08] under the assumption of polyconvex parallel sets. This means that the ε-parallel

neighbourhoods of the underlying set F can be represented by a finite union of non-empty
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convex sets for all sufficiently small ε > 0. For k = d this assumption is not necessary, as

was gained in [Gat00]. The assumption has been eliminated in [WZ10, Zäh11] for k = d− 1

and substituted by a regularity condition for k ∈ {0, . . . , d− 2}. The formulae for C̃f
k (F, ·),

and in the non-lattice situation also for Cf
k (F, ·), given in [Win08, WZ10, Zäh11] depend

on the overlap functions

Rk(ε) := Ck(Fε)−
N∑
i=1

1(0,ri](ε)Ck((φiF )ε), ε > 0,

where r1, . . . , rN denote the similarity ratios of φ1, . . . , φN . Their formula is

δ

Hμ−δξ

·
∫ R

0
T δ−k−1Rk(T )dT · ν(·), (2.7)

where R >
√
2 · diam(F ) is some real number and diam(F ) denotes the diameter of F .

The formula from Equation (2.7) and the one from Theorem 2.37 differ quite significantly.

While our formula is based on the structure of the primary gaps, the formula from

Equation (2.7) is based on the structure of the overlaps (φiF )ε ∩ (φjF )ε for distinct

i, j ∈ {1, . . . , N}, this can be seen by an inclusion-exclusion argument. The total fractal

curvatures have been evaluated in [Win08] for the Sierpinski gasket and the Sierpinski

carpet using the formula from Equation (2.7). In Section 2.5 we are going to see that using

the formula from Theorem 2.37 quickly yields the same results. Moreover, in Section 2.5

we present an example for a non-lattice self-similar set, for which the fractal curvature

measures can be easily computed by using Theorem 2.37.

Now, we focus on the special case k = d concerning the Minkowski content. The Minkowski

content of self-similar subsets of Rd has first been investigated by Gatzouras in [Gat00].

He obtained existence of the Minkowski content in the non-lattice case and that the

average Minkowski content always exists. Complementary to [Gat00], where renewal

theory was used, the following studies have been carried out. By means of geometric zeta

functions and their analytic properties, existence of the Minkowski content was shown for

non-lattice self-similar sets in [DKz+10, LPW11], where alternative formulae to the ones

of [Gat00] are given. Recall from Section 2.3 that [DKz+10, LPW11] impose geometric

conditions and in particular require the fractal to possess monophase main gaps (see

Definition 2.23). Remarkably, in these works non-existence of the Minkowski content in

the lattice situation could be shown for non-degenerate self-similar sets satisfying these

geometric conditions. Imposing the condition of monophase main gaps, we show that the

results from [DKz+10, LPW11] can be deduced from Theorem 2.37 and its proof. We

additionally obtain results for the local Minkowski content.

Theorem 2.38 (Self-similar sets with monophase main gaps – local Minkowski content).

Suppose that we are in the situation of Theorem 2.37 and that the Minkowski dimension
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δ of F satisfies d − 1 < δ < d. Let gi denote the inradius of Gi. Assume that for each

i ∈ {1, . . . , Q} there exist η0(G
i), . . . , ηd−1(G

i) ∈ R such that

λd(Fe−t ∩Gi) =

d−1∑
j=0

ηj(G
i)e−t(d−j) for t > − ln(gi) (2.8)

and set ηd(G
i) := −λd(G

i). Then in addition to the results from Theorem 2.37 the following

hold.

(i) The formula for the local average Minkowski content (and in the non-lattice case also

for the local Minkowski content) simplifies to

δ

Hμ−δξ

·
⎛⎝ Q∑

i=1

d∑
j=0

ηj(G
i)(gi)δ−j

δ − j

⎞⎠ · ν(·).

(ii) If ξ is lattice, then the local Minkowski content of F does not exist. What is more,

for every κ ∈ Σ∗ we have that

M(F, φκO) < M(F, φκO).

The proof of Theorem 2.38 is provided in Section 4.3.2.

We remark that Theorem 2.38 generalises the result from [DKz+10], since the authors

assume that O = intRd〈F 〉, where 〈F 〉 denotes the convex hull of F . This condition appears

to be restrictive in the conformal setting. Theorem 2.38 in particular states that under

its assumptions a non-degenerate self-similar set is Minkowski measurable if and only if

its associated geometric potential function is non-lattice. This dichotomy is valid for any

self-similar subset of R (see Remark 2.35). The validity of this dichotomy in R follows

also from Theorem 2.38 because of the following. For d = 1 the additional assumption

of Theorem 2.38, namely, that there exists η0(G
i) ∈ R such that Equation (2.8) holds, is

always satisfied. This is the case, since for every non-empty open bounded and connected

subset G ⊂ R we have that

λ1(Fe−t ∩G) =

⎧⎨⎩|G| : t ≤ − ln(|G|/2),
2e−t : t > − ln(|G|/2),

where |G| denotes the length of G. The same dichotomy holds for the 0-th total fractal

curvature.

Theorem 2.39 (Self-similar subsets of R – fractal curvature measures). Fix the notation

from Notation 2.28. Suppose that Φ consists of similarities and that X ⊂ R. Assume

that λ1(O \ ΦX) > 0 and that (COND 1) is satisfied. Then in addition to the results of

Theorem 2.31 the following hold.
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(i) The formulae for the average fractal curvature measures (and in the non-lattice case

also for the fractal curvature measures) simplify to

C̃f
0 (F, ·) =

2−δ

Hμ−δξ

·
Q∑
i=1

|Gi|δ · ν(·) and C̃f
1 (F, ·) =

21−δ

(1− δ)Hμ−δξ

·
Q∑
i=1

|Gi|δ · ν(·).

Note that both C̃f
0 (F, ·) and C̃f

1 (F, ·) are non-trivial.

(ii) If ξ is lattice, then the fractal curvature measures of F do not exist. Moreover, for

k ∈ {0, 1} and every B ∈ B(R) for which B ∩F is non-empty and is equal to a finite

union of sets of the form φωF , where ω ∈ Σ∗, and for which Fε ∩B = (F ∩B)ε for

all sufficiently small ε > 0 we have that

Cf
k(F,B) < C

f
k(F,B).

A proof is provided in Section 4.4.4.

2.4.3 C1+α-Images of Self-Similar Sets

Another interesting class of self-conformal sets is the class of conformal C1+α-images of

self-similar sets, where α ∈ (0, 1]. This class was investigated by Freiberg and the author

in [FK] with regard to (local) Minkowski measurability in Rd. It was investigated also

by Kesseböhmer and the author in [KK10] in view of the fractal curvature measures for

subsets of R. We start with the higher dimensional setting from [FK]. Here, we only state

the results and refer to [FK] for their proofs.

We say that an IFS Φ := {φ1, . . . , φN} with invariant set F satisfies the strong separation

condition (SSC), if φiF ∩ φjF = ∅ for all distinct i, j ∈ {1, . . . , N}. The precise setting

from [FK] is the following.

Setting 2.40. Let K denote the invariant set of an IFS R := {R1, . . . , RN} which consists

of similarities and satisfies the SSC. Let U denote an open domain containing the (1/2)-

parallel neighbourhood ofK and introduce a conformal C1+α(U)-diffeomorphism g : U → Rd,

where α ∈ (0, 1]. We set F := g(K) and note that F satisfies

F =

N⋃
i=1

gRig
−1(F ).

The maps φi := gRig
−1, i ∈ {1, . . . , N}, are not necessarily contractions. However, the

α-Hölder continuity of the length scaling ratio |g′| (see Remark 2.14) implies that an iterate

Φ̃ of the system Φ := {φ1, . . . , φN} consists solely of contractions. Indeed, Φ̃ is an IFS and

F is its unique non-empty compact invariant set. Note that the IFS Φ̃ satisfies the SSC,
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since g is a diffeomorphism. Moreover, since g is bi-Lipschitz the Minkowski dimensions of

K and F coincide. We denote the common value dimM (K) = dimM (F ) by δ. The function

g is called a conjugacy between the systems R and Φ.

Theorem 2.41 (C1+α-images – local Minkowski content, [FK]). With the notation of

Setting 2.40 the following hold.

(i) The local average Minkowski contents of K and F always exist. Moreover, M̃(F, ·)
is absolutely continuous with respect to the push-forward measure g�M̃(K, ·) (see the

appendix) and their Radon-Nikodym derivative is

dM̃(F, ·)
d
(
g�M̃(K, ·)

) = |g′ ◦ g−1|δ.

(ii) If the local Minkowski content of K exists, then the local Minkowski content of F

exists. Moreover, M(K, ·) = M̃(F, ·) and M(F, ·) = M̃(F, ·).

Theorem 2.42 (C1+α-images – Minkowski content, [FK]). Fix the notation from Set-

ting 2.40. Let ν denote the δ-conformal measure associated with K. Then the following

hold.

(i) The average Minkowski contents of K and F always exist and are positive and finite.

Moreover, they satisfy the relation

M̃(F ) = M̃(K) ·
∫
K
|g′|δdν.

(ii) F is Minkowski measurable if K is Minkowski measurable. In this case we have

M(K) = M̃(K) and M(F ) = M̃(F ).

The above theorems in tandem with the results from Section 2.4.2 and [Gat00] imply that

F is Minkowski measurable if it is non-lattice. It is worth to notify that the geometric

conditions (COND 1) to (COND 4) are not required in [FK] with regard to [Gat00]. Further,

it is important to remark that the converse of Theorem 2.42(ii) is not true, that is, F

can be Minkowski measurable if K is not. This is going to be alluded to in the following,

where we concentrate on C1+α-images of self-similar subsets of R. Here, the assumption

of SSC can be substituted by the weaker OSC assumption and a relation between the

fractal curvature measures of K and F is obtained. The forthcoming results are going to

be proven in Section 4.4.

Theorem 2.43 (C1+α-images in R – fractal curvature measures). Let R denote a cIFS

acting on X ⊂ R which consists of similarities and let K denote its invariant set. By
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δ := dimM (K) we denote the Minkowski dimension of K and by U ⊃ X a connected open

neighbourhood of X in R. Let g : U → R be a C1+α(U) map, for which |g′| is bounded away

from zero, where α ∈ (0, 1]. Assume that λ1(X \RX) > 0 and set F := g(K). Then the

following hold.

(i) The average fractal curvature measures of both K and F exist. Moreover, C̃f
k (F, ·)

is absolutely continuous with respect to the push-forward measure g�C̃
f
k (K, ·) for

k ∈ {0, 1} and their Radon-Nikodym derivative is given by

dC̃f
k (F, ·)

d
(
g�C̃

f
k (K, ·)

) = |g′ ◦ g−1|δ.

(ii) If R is non-lattice, then the fractal curvature measures of both K and F exist. Further,

Cf
k (F, ·) is absolutely continuous with respect to the push-forward measure g�C

f
k (K, ·)

for k ∈ {0, 1} with Radon-Nikodym derivative

dCf
k (F, ·)

d
(
g�C

f
k (K, ·)

) = |g′ ◦ g−1|δ.

(iii) If R is lattice, then neither the 0-th nor the 1-st fractal curvature measure of F exists.

The proof of Theorem 2.43 can be found in Section 4.4.1.

The above theorem in particular states that the fractal curvature measures of a C1+α-image

of a non-degenerate self-similar set K ⊂ R exist if and only if K is non-lattice. On the

contrary, the dichotomy lattice versus non-lattice does not carry over to the Minkowski

content. This is stated in the next corollary and shows that even amongst the class of

C1+α-diffeomorphic images of self-similar sets, there exist Minkowski measurable lattice sets.

We have already seen that this is possible for general self-conformal sets in Section 2.4.1.

Corollary 2.44 (C1+α-images in R – Minkowski content). Suppose that we are in the

situation of Theorem 2.43. Let ν denote the δ-conformal measure associated with K. Then

we have the following.

(i) The average Minkowski contents of both K and F exist, are positive and finite and

satisfy

M̃(F ) = M̃(K) ·
∫
K
|g′|δdν.

(ii) If R is non-lattice, then the Minkowski contents of both K and F exist, are positive

and finite and satisfy

M(F ) = M(K) ·
∫
K
|g′|δdν.
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(iii) If R is lattice, then the Minkowski content of K does not exist, whereas the Minkowski

content of F might or might not exist. More precisely, assume that K ⊆ [0, 1] and that

the geometric potential function ξ associated with R is lattice. Let a > 0 be maximal

such that the range of ξ is contained in aZ. Define g̃ : R → R, g̃(x) := ν((−∞, x]) to

be the distribution function of ν. For n ∈ N define the function gn : [−1,∞) → R by

gn(x) :=

∫ x

−1

(
g̃(r)(eδan − 1) + 1

)−1/δ
dr

and set Fn := gn(K). Then for every n ∈ N we have M(Fn) = M(Fn).

Corollary 2.44 is proven in Section 4.4.2.

From the condition in the above corollary, we now construct explicit examples of non-

degenerate lattice Minkowski measurable self-conformal sets and thus add to the discussion

given in Remark 2.35.

Example 2.45. Let K ⊆ [0, 1] be the Middle Third Cantor Set and let ν denote the ln 2/ ln 3-

conformal measure associated with K. Let g̃ : R → R denote the Devil’s Staircase Function

defined by g̃(r) := ν((−∞, r]). Define the function g : [−1,∞) → R by

g(x) :=

∫ x

−1
(g̃(y) + 1)− ln 3/ ln 2dy

and set F := g(K). Then we have M(F ) = M(F ), although M(K) < M(K). This is a

consequence of Theorem 2.39 and Corollary 2.44.

Lattice cIFS which arise via a C1+α conjugation of IFS consisting of similarities play an

important role in the general theory of lattice cIFS. Namely, if a lattice cIFS is analytic,

then it is automatically conjugate to a lattice system consisting of similarities.

Theorem 2.46 (Analytic lattice cIFS). Let Φ be a lattice cIFS acting on X ⊂ R and

consisting of analytic maps. Let F denote the associated self-conformal set. Then there

exist a self-similar set K ⊂ R and a map g which is analytic on an open neighbourhood of

K such that F = g(K).

The above result is of interest, since it allows us to carry the obtained results for C1+α-

images of lattice self-similar sets over to general self-conformal sets. It will be proven in

Section 4.4.3

2.5 Examples

We start this section by investigating the two Cantor sets C1 and C2 from the introduction.

Further, we are going to apply the results from the preceding section to some well-known
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fractal sets, namely the Sierpinski gasket and the Sierpinski carpet. Both these sets arise

from lattice systems. Therefore, at the end of this section, we additionally consider a set

arising from a non-lattice system, for which the computations become especially easy with

the formula from Theorem 2.37.

Example 2.47. Recall the construction of the two Cantor sets C1 and C2 from the intro-

duction. The set C1 is the invariant set of the iterated function system Φ := {φ1, . . . , φ4},
where φi(x) = x/7 + 2(i− 1)/7 for i ∈ {1, . . . , 4}. It can be easily verified that the IFS Φ

satisfies the prerequisites of Theorem 2.39 and that the Minkowski (Hausdorff or similarity)

dimension of C1 is equal to δ := dimM (C1) = ln 4/ ln 7. An application of Theorem 2.39

yields that

M̃(C1) =
3

2
· 2−δ

(1− δ) ln 4
.

The Cantor set C2 is the invariant set of the IFS Ψ := {ψ1, . . . , ψ4}, where ψ1(x) = x/7,

ψ2(x) = x/7 + 1/7, ψ3(x) = x/7 + 5/7 and ψ4(x) = x/7 + 6/7. Its Minkowski dimension is

also equal to ln 4/ ln 7 = δ. Here Theorem 2.39 yields

M̃(C2) =
3δ

2
· 2−δ

(1− δ) ln 4
.

Thus, M̃(C1) > M̃(C2), which reflects the capability of the average Minkowski content to

distinguish between sets of the same Minkowski (Hausdorff or similarity) dimension.

Example 2.48 (The Sierpinski gasket). The Sierpinski gasket F is visualised in Figure 2.5.

It is the invariant set of the IFS Φ = {φ1, φ2, φ3} which is constructed as follows. Let

X ⊂ R2 denote the equilateral triangle with edges (0, 0), (1, 0) and (1/2,
√
3/2). Then

φ1, φ2, φ3 : X → X are defined by φ1(x) := x/2, φ2(x) := x/2 + (1/2, 0) and φ3(x) :=

x/2 + (1/4,
√
3/4).

The geometric potential function ξ associated with Φ only takes the value ln 2 and thus

is lattice. Therefore, we evaluate the total average fractal curvatures. Indeed, it is not

Figure 2.5: The Sierpinski gasket with primary gap G whose inradius is g.
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difficult to see that the total fractal curvatures of the Sierpinski gasket do not exist. In case

k = 2 this follows from Theorem 2.38. It is well known that the Minkowski dimension of F

is equal to ln 3/ ln 2. The Sierpinski gasket possesses exactly one primary gap G, which is

the equilateral triangle with edges (1/2, 0), (1/4,
√
3/4) and (3/4,

√
3/4). The inradius g of

G is g =
√
3/12. Moreover, from the definition of the curvature measures in Equation (2.1)

and from Proposition 2.7 it follows that

C0(Fe−T , G) =

⎧⎨⎩0 : T ≤ − ln g,

−1 : T > − ln g,

C1(Fe−T , G) =

⎧⎨⎩0 : T ≤ − ln g,

3(1/4−√
3e−T ) : T > − ln g,

C2(Fe−T , G) =

⎧⎨⎩
√
3/16 : T ≤ − ln g,

3e−T (1/2−√
3e−T ) : T > − ln g.

Using that δ−1Hμ−δξ
=
∫
ln 2dμ−δξ = ln 2 (see Equation (3.4)) and evaluating the integrals

from the formula in Theorem 2.37 we directly obtain

C̃f
0 (F ) = − 1

ln 3
· gδ ≈ −0.0423,

C̃f
1 (F ) =

3

4 · ln(3/2) · g
δ−1 − 3

√
3

ln 3
· gδ ≈ 0.3761 and

C̃f
2 (F ) =

√
3

16 · ln(4/3) · g
δ−2 +

3

2 · ln(3/2) · g
δ−1 − 3

√
3

ln 3
· gδ ≈ 1.8126.

The same values have been gained in [Win08] by using the formula which we presented in

Equation (2.7).

Example 2.49 (The Sierpinski carpet). The Sierpinski carpet F is depicted in Figure 2.6.

It is generated by the following IFS Φ. Let X := [0, 1]2 denote the unit square in R2. For

Figure 2.6: The Sierpinski carpet and its primary gap G whose inradius is g.
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x ∈ R set �x� := min{z ∈ Z | x ≤ z}. Define φj : X → X for j ∈ {1, . . . , 9} by

φj(x) :=
x

3
+

(
(j − 1)(mod3)

�j/3� − 1

)

and set Φ := {φj | j ∈ {1, . . . , 9} \ {5}}. The geometric potential function ξ associated

with Φ only takes the value ln 3. Therefore, ξ is lattice. Like for the Sierpinski gasket it is

not hard to see that the total fractal curvatures do not exist. Therefore, we evaluate the

total average fractal curvatures. The Sierpinski carpet possesses exactly one primary gap,

which we denote by G. The primary gap G is the square with vertices (1/3, 1/3), (2/3, 1/3),

(2/3, 2/3) and (1/3, 2/3). Its inradius g is equal to g = 1/6. Moreover, the Minkowski

dimension of F is δ := dimM (F ) = ln 8/ ln 3. From the definition of the curvature measures

in Equation (2.1) and from Proposition 2.7 it follows that

C0(Fe−T , G) =

⎧⎨⎩0 : T ≤ − ln g,

−1 : T > − ln g,

C1(Fe−T , G) =

⎧⎨⎩0 : T ≤ − ln g,

2(1/3− 2e−T ) : T > − ln g,
and

C2(Fe−T , G) =

⎧⎨⎩1/9 : T ≤ − ln g,

4e−T (1/3− e−T ) : T > − ln g.

The measure theoretical entropy of the shift map with respect to the measure μ−δξ satisfies

δ−1Hμ−δξ
=
∫
ln 3dμ−δξ = ln 3 (see Equation (3.4)). Evaluating the integrals from the

formula in Theorem 2.37 we obtain

C̃f
0 (F ) = − 1

ln 8
· gδ ≈ −0.0162,

C̃f
1 (F ) =

2

3 · ln(8/3) · g
δ−1 − 4

ln 8
· gδ ≈ 0.0725 and

C̃f
2 (F ) =

1

9 · ln(9/8) · g
δ−2 +

4

3 · ln(8/3) · g
δ−1 − 4

ln 8
· gδ ≈ 1.3529.

Also these values have been obtained in [Win08] by means of the formula from Equa-

tion (2.7).

Example 2.50 (Non-lattice self-similar set). In this example, we consider the self-similar set

F whose construction via the IFS Φ is visualised in Figure 2.7. The IFS Φ which is depicted

in Figure 2.7 consists of ten similarities φ1, . . . , φ10 acting on the unit square X := [0, 1]2.

The similarity ratios of φ1 and φ2 are 1/2. The similarity ratios of φ3 and φ4 are 1/3

and the similarity ratios of φ5 to φ10 are 1/6. Thus, the geometric potential function ξ

associated with Φ takes the values ln 2, ln 3 and ln 6. As ln 2 and ln 3 are not contained in
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Figure 2.7: The self-similar set which is examined in Example 2.50, its construction and

its primary gaps G1, . . . , G4.

a discrete subgroup of R, ξ is non-lattice. Hence, the fractal curvature measures do exist

according to Theorem 2.37. The invariant set F possesses four primary gaps, which we

denote by G1, . . . , G4. Each of the primary gaps is a square with side length 1/6. Thus,

the inradius of Gi is gi = 1/12 for each i ∈ {1, . . . , 4}. From the definition of the curvature

measures in Equation (2.1) and from Proposition 2.7 it follows that for i ∈ {1, . . . , 4} we

have that

C0(Fe−T , Gi) =

⎧⎨⎩0 : T ≤ − ln gi,

−1 : T > − ln gi,

C1(Fe−T , Gi) =

⎧⎨⎩0 : T ≤ − ln gi,

2(1/6− 2e−T ) : T > − ln gi,
and

C2(Fe−T , Gi) =

⎧⎨⎩1/36 : T ≤ − ln gi,

4e−T (1/6− e−T ) : T > − ln gi.

By the Moran-Hutchinson formula (see for instance Theorem 9.3 in [Fal03]) the Minkowski

dimension of F is the unique solution δ of the equation

21−δ + 2 · 3−δ + 61−δ = 1.

It approximately is δ ≈ 1.8835. Equation (3.4) yields δ−1Hμ−δξ
= 21−δ ln 2 + 2 · 3−δ ln 3 +

61−δ ln 6 ≈ 1.0212. Evaluating the integrals from the formula in Theorem 2.37 we obtain

Cf
0 (F ) = − 4

Hμ−δξ

· (g1)δ ≈ −0.0193,

Cf
1 (F ) =

4δ

3(δ − 1)Hμ−δξ

· (g1)δ−1 − 16

Hμ−δξ

· (g1)δ ≈ 0.0874 and

Cf
2 (F ) =

δ

9(2− δ)Hμ−δξ

· (g1)δ−2 +
8δ

3(δ − 1)Hμ−δξ

· (g1)δ−1 − 16

Hμ−δξ

· (g1)δ ≈ 1.4992.



3 Preliminaries

In this chapter, we present useful tools and necessary background for proving the results

from Chapter 2. We moreover give further explanation on the constants which occur in

our theorems.

We start in Section 3.1 with providing crucial material from the Perron-Frobenius theory

and in Section 3.2 we present two results concerning volume functions of parallel sets.

3.1 Perron-Frobenius Theory

In order to provide the necessary background to define the constants in our main statements

and also to set up the tools needed in the proofs, we now recall some facts from the Perron-

Frobenius theory.

We begin in Section 3.1.1 by introducing important notions. In Section 3.1.2 we present

a central result from the Perron-Frobenius theory and in Section 3.1.3 we study analytic

properties of the complex Perron-Frobenius operator which are crucial for the proofs in

Chapter 4.

3.1.1 The Topological Pressure Function and Hölder Continuity

The aim of this subsection is to establish important terminology which is required in the

following two subsections. A good reference for the exposition provided below is [Bow08].

The Perron-Frobenius theory is a theory on the shift space (Σ∞, σ), which we introduced

in Section 2.2. Recall from Section 2.2 that we equip Σ∞ with the product topology of

the discrete topologies on Σ and let C(Σ∞) denote the set of continuous complex-valued

functions on Σ∞.

A central notion in this theory is that of the topological pressure function. For its

introduction take f ∈ C(Σ∞), n ∈ N0 and let Snf denote the n-th Birkhoff sum, which is

defined to be

Snf :=

n−1∑
k=0

f ◦ σk for n ∈ N and S0f := 0.

Definition 3.1 (Topological pressure function). The topological pressure function is defined

41
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by

P : C(Σ∞) → R, P (f) := lim
n→∞n−1 ln

∑
ω∈Σn

exp sup
u∈[ω]

Snf(u)

for f ∈ C(Σ∞), where [ω] := {u ∈ Σ∞ | ui = ωi for 1 ≤ i ≤ n(ω)} denotes the ω-cylinder

set for ω ∈ Σ∗, in particular [∅] = Σ∞.

A major attribute of the topological pressure function is that it is linked to the Minkowski

dimension of the invariant set of a cIFS.

Theorem 3.2. The Minkowski as well as the Hausdorff dimension of the self-conformal

set associated with the cIFS Φ is equal to the unique positive real number t > 0 for which

P (−tξ) = 0, where ξ denotes the geometric potential function associated with Φ.

The above theorem is provided in [Bed88]. There, in particular, the statement concerning

the Minkowski dimension was obtained. The statement concerning the Hausdorff dimension

goes back to [Bow79, Rue82].

Also linked to the topological pressure function is the notion of a Gibbs measure for a

potential function. Gibbs measures carry the nice property that the measure of a cylinder

set of length n is comparable to the n-th Birkhoff sum of the potential function. More

precisely, a finite Borel measure μ on the code space Σ∞ is said to be a Gibbs measure for

f ∈ C(Σ∞) if there exists a constant c > 0 such that

c−1 ≤ μ([x|n])
exp(Snf(x)− n · P (f))

≤ c (3.1)

for every x ∈ Σ∞ and n ∈ N.

Another central notion in the following is the class of Hölder continuous functions on Σ∞.

It forms an important subclass of the class of continuous functions C(Σ∞) and is defined

below.

Definition 3.3 (Hölder continuous on Σ∞). For f ∈ C(Σ∞), α ∈ (0, 1) and n ∈ N0 define

varn(f) := sup{|f(ω)− f(u)| | ω, u ∈ Σ∞ and ωi = ui for all i ∈ {1, . . . , n}},

|f |α := sup
n≥0

varn(f)

αn
and

Fα(Σ
∞) := {f ∈ C(Σ∞) | |f |α < ∞}.

Elements of Fα(Σ
∞) are called α-Hölder continuous functions on Σ∞.

In Section 3.1.3 we are going to make use of the fact that the space Fα(Σ
∞) endowed with

the norm ‖ · ‖α := |·|α + ‖ · ‖∞, where ‖ · ‖∞ denotes the supremum-norm, is a Banach

space.
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Remark 3.4. The geometric potential function ξ associated with a cIFS Φ := {φ1, . . . , φN}
satisfies ξ ∈ Fα̃(Σ

∞) for some α̃ ∈ (0, 1). To see this, we let r < 1 denote a common

upper bound for the contraction ratios of φ1, . . . , φN . Because of the α-Hölder continuity

of |φ′
1|, . . . , |φ′

N | and the fact that |φ′
1| . . . , |φ′

N | are bounded away from zero we obtain that

there exists a constant c ∈ R such that for every n ∈ N we have varn(ξ) ≤ crα(n−1) and

var0(ξ) < ∞. Thus, ξ ∈ Fα̃(Σ
∞), where α̃ := rα ∈ (0, 1).

3.1.2 Ruelle’s Perron-Frobenius Theorem

This subsection is devoted to important results in the Perron-Frobenius theory. They

originate mainly from [Rue68] and have been further developed for example in [Wal01,

Bow08]. Let us start with introducing the central object of these studies.

Definition 3.5 (Perron-Frobenius operator). For f ∈ C(Σ∞) define the Perron-Frobenius

operator Lf : C(Σ∞) → C(Σ∞) by

Lfψ(x) :=
∑

y : σy=x

ef(y)ψ(y) (3.2)

for x ∈ Σ∞ and let L∗
f be the dual of Lf acting on the set of Borel probability measures

on Σ∞.

By Theorem 2.16 and Corollary 2.17 of [Wal01] and Theorem 1.7 of [Bow08], for each

real-valued Hölder continuous f ∈ Fα(Σ
∞), some α ∈ (0, 1), there exists a unique Borel

probability measure νf on Σ∞ such that L∗
fνf = γfνf for some γf > 0. Moreover, γf is

uniquely determined by this equation and satisfies γf = exp(P (f)), where P denotes the

topological pressure function.

Further, there exists a unique strictly positive eigenfunction hf ∈ C(Σ∞) of Lf satisfying

Lfhf = γfhf . We take hf to be normalised so that
∫
hfdνf = 1. By μf we denote the

σ-invariant probability measure defined by
dμf

dνf
= hf . This is the unique σ-invariant Gibbs

measure for the potential function f . Additionally, under some normalisation assumptions

we have convergence of the iterates of the Perron-Frobenius operator to the projection onto

its eigenfunction hf . To be more precise we have

lim
m→∞ ‖γ−m

f Lm
f ψ − ∫ψdνf · hf‖∞ = 0 ∀ ψ ∈ C(Σ∞). (3.3)

The definition of the topological pressure function and the relation γf = exp(P (f)) imply

the following.

Proposition 3.6. Let f ∈ C(Σ∞) be positive and real-valued. Then z �→ P (zf) and

z �→ γzf are strictly monotonically increasing functions for real z.
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With the notation established above, we now introduce the measure theoretical entropy,

which occurs in our formulae in Section 2.4. Note, that the geometric potential function

ξ of a cIFS Φ belongs to ∈ Fα(Σ
∞) by Remark 3.4. It can be shown that the measure

theoretical entropy Hμ−δξ
of the shift-map σ with respect to μ−δξ is given by

Hμ−δξ
= δ

∫
Σ∞

ξdμ−δξ, (3.4)

where δ denotes the Minkowski dimension of the self-conformal set associated with Φ.

This observation follows for example from the variational principle (see Theorem 1.22 of

[Bow08]) and Theorem 3.2.

An interesting property of h−δξ is given in Section 6.1 of [MU03]:

Theorem 3.7 ([MU03]). Suppose that the contractions φ1, . . . , φN of a cIFS acting on

X ⊂ R are real-analytic on an open neighbourhood of X in R. Let ξ denote the geometric

potential function associated with Φ := {φ1, . . . , φN} and let δ denote the Minkowski

dimension of the invariant set of Φ. Then h−δξ has a real-analytic extension on an open

connected neighbourhood of X in R.

The above theorem follows from Corollary 6.1.4 of [MU03]. Note that there cIFS with a

countable alphabet are considered and it is additionally required that there exists an open

connected set U ⊂ R2 containing X such that all elements of the cIFS extend to analytic

functions on U and such that U is invariant under all elements of the cIFS. This condition

is always satisfied for systems with a finite alphabet.

3.1.3 Analytic Properties of the Perron-Frobenius Operator

This subsection is concerned with analytic properties of the operator-valued function

z �→ (I − Lzf )
−1, where f ∈ Fα(Σ

∞) is fixed and z ∈ C.

Let us start by giving the precise definition of what it means for an operator-valued

function to be holomorphic. We let B(Fα(Σ
∞)) denote the set of all bounded linear

operators on Fα(Σ
∞) to Fα(Σ

∞). Note that since (Fα(Σ
∞), ‖ · ‖α) is a Banach space,

also (B(Fα(Σ
∞)), ‖ · ‖op) is a Banach space (see for example [Kat95, p.150]). Here ‖ · ‖op

denotes the operator norm, which for A ∈ B(Fα(Σ
∞)) is defined through ‖A‖op :=

supg∈Fα(Σ∞), ‖g‖α=1 ‖Ag‖α.
Definition 3.8 (Operator-valued holomorphic function). An operator-valued function

f : D → B(Fα(Σ
∞)) defined on an open domain D ⊂ C is called holomorphic, if for all

z ∈ D there exists an l(z) ∈ B(Fα(Σ
∞)) such that

lim
h→0

‖h−1(f(z + h)− f(z))− l(z)‖op = 0.
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For more insights on these notions, we refer to [Kat95], especially Chapters III.3 and VII.1

in there. Following convention, we interchangeably use the terms holomorphic and analytic.

A central role in studying the analytic properties of z �→ (I − Lzf )
−1 is played by the

spectrum of the Perron-Frobenius operator. The Perron-Frobenius operator Lzf is a

bounded linear operator on the Banach space (Fα(Σ
∞), ‖ · ‖α). Its spectrum is the set of

all complex numbers λ such that Lzf − λI is not invertible. The spectral radius spr(Lzf )

of Lzf is the radius of the smallest closed disc with centre at the origin which contains the

spectrum of Lzf . The spectral radius formula states that

lim
n→∞ ‖Ln

zf‖1/nop = spr(Lzf ). (3.5)

The spectrum of the complex Perron-Frobenius operator has been studied by Parry and

Pollicott. The following statement, which characterises the spectrum of Lzf for non-real

z ∈ C, originates from [Pol84]. Here, we present it in the form of Theorem B of [Lal89].

For this, let �(z) and �(z) denote the real and imaginary parts of z ∈ C.

Theorem 3.9 ([Pol84]). Take f ∈ Fα(Σ
∞) for α ∈ (0, 1) and suppose that z ∈ C \ R.

(i) If for some a ∈ R the function (�(z)f − a)/(2π) is cohomologous to an integer-valued

function, then eiaγ�(z)f
is a simple eigenvalue of Lzf , and the rest of the spectrum is

contained in a disc centred at zero of radius strictly less than γ�(z)f
.

(ii) Otherwise, the entire spectrum of Lzf is contained in a disc centred at zero of radius

strictly less than γ�(z)f
.

Now, we present a couple of useful results from [Lal89] concerning holomorphic properties

of the operator-valued function z �→ (I − Lzf )
−1 for z ∈ C.

Proposition 3.10 (Propositions 7.1 and 7.2 in [Lal89]). Let f ∈ Fα(Σ
∞) denote a real-

valued α-Hölder continuous function for α ∈ (0, 1) and let −δ denote the unique real zero

of z �→ P (zf). Then the following hold.

(i) The function z �→ (I − Lzf )
−1 is holomorphic in the half-plane �(z) < −δ.

(ii) The function z �→ (I − Lzf )
−1 has a simple pole at z = −δ. In particular, for each

g ∈ Fα(Σ
∞),

(I − Lzf )
−1g = γzf (1− γzf )

−1
∫
gdνzf · hzf + (I − L′′

zf )
−1g (3.6)

for z in some punctured neighbourhood of z = −δ, where

L′′
zf := Lzf − L′

zf and L′
zf is defined through

L′
zfg := γzf

∫
gdνzf · hzf for g ∈ Fα(Σ

∞) and some α ∈ (0, 1).
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Moreover, z �→ (I − L′′
zf )

−1 is a holomorphic operator-valued function in a neighbourhood

of z = −δ.

We remark that the factor γzf of the first summand on the right hand side of Equation (3.6)

is missing in [Lal89]. This however does not affect the results, since the z-value of interest

is z = −δ, where γzf = 1.

We are going to be interested in the residue of z �→ (I − Lzf )
−1 at the simple pole z = −δ.

For this, we use that the topological pressure function z �→ P (zf) is real-analytic for z ∈ R

and real-valued f ∈ Fα(Σ
∞) and that it satisfies

d

dz
P (zf) =

∫
fdμzf , z ∈ R. (3.7)

The analyticity of the topological pressure function can be proven with methods of analytic

perturbation theory as presented in [Kat95]. This method of proof is due to Ruelle [Rue78].

Combined with Equation (3.7), Proposition 3.10(ii) yields the following corollary, since

γzf = exp(P (zf)) and since z �→ γzf , z �→ ∫
gdνzf and z �→ hzf are continuous at z = −δ.

Corollary 3.11. Assume that f is real-valued and take g ∈ Fα(Σ
∞). Then the residue of

(I − Lzf )
−1g(x) at z = −δ, where x ∈ Σ∞, is

−
∫
gdν−δf∫
fdμ−δf

h−δf (x).

We remark that the equation from Corollary 3.11 and the respective equation in [Lal89,

p.25] differ by sign.

We end this section by presenting two statements from [Lal89], which address the analyticity

of z �→ (I − Lzf )
−1 on the line �(z) = −δ. These two statements show that the analytic

properties highly depend on f being lattice or non-lattice.

Proposition 3.12 (Proposition 7.3 in [Lal89]). If f is non-lattice then the function

z �→ (I−Lzf )
−1 is holomorphic in a neighbourhood of every z on the line �(z) = −δ except

for z = −δ.

Proposition 3.13 (Proposition 7.4 in [Lal89]). If f is integer-valued but not cohomologuous

to any function valued in a proper subgroup of the integers, then z �→ (I − Lzf )
−1 is 2πi-

periodic, and holomorphic at every z on the line �(z) = −δ such that �(z)/(2π) is not an

integer.

3.2 Volume Functions of Parallel Sets

In this short section, we present two tools which provide relationships between the 0-th and

the 1-st total fractal curvatures of subsets of R. These statements are needed for proving
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the statements concerning the lattice situation.

The first tool is a special case of Corollary 3.2 of [RW10] and allows one to deduce the

existence of the Minkowski content from the existence of the 0-th total fractal curvature.

Theorem 3.14 (Rataj, Winter). Let Y ⊂ R be a non-empty and compact set for which

the Minkowski dimension δ := dimM (Y ) exists and which is such that λ1(Y ) = 0. Then

lim inf
ε↘0

εδλ0(∂Yε)

1− δ
≤ lim inf

ε↘0
εδ−1λ1(Yε) ≤ lim sup

ε↘0
εδ−1λ1(Yε) ≤ lim sup

ε↘0

εδλ0(∂Yε)

1− δ
.

The proof is based on an interesting relationship between the derivative d
dελ

1(Fε) which

exists Lebesgue-almost everywhere and the quantity λ0(∂Fε) which was established in

[Sta76] for arbitrary bounded subsets of Rd and builds on the work of [Kne51]. As this

relationship is of use also for us, we state it in the form of Corollary 2.5 in [RW10].

Proposition 3.15 (Stachó). Let Y ⊂ R be compact. Then the function ε �→ λ1(Yε) is

differentiable for all but a countable number of ε > 0 with differential

d

dε
λ1(Yε) = λ0(∂Yε).
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4 Proofs

In this chapter we present the proofs of our main theorems. These theorems are concerned

with different structures of the underlying set F and thus are subdivided into three

categories just like in Chapter 2.

The common theme of all the theorems is that they make a statement about the existence

of the (essential-) weak-limit

(ess-) w-lim
ε↘0

εδ−kCk(Fε, ·)

and the weak limit

w-lim
ε↘0

|ln ε|−1

∫ 1

ε
e−T (δ−k)Ck(Fe−T , ·)dT

for some or all k ∈ {0, . . . , d}.
We begin in Section 4.1 by giving an outline of the structure of the proofs of the theorems

and by presenting key results which will be used in the proofs. In Section 4.2 these key

results are used for proving the theorems concerning self-conformal sets. In Section 4.3 the

self-similar setting is addressed and the final Section 4.4 covers the situation of C1+α-images

of self-similar sets.

4.1 Key Tools and Outline of the Proofs

The common factor of the theorems from Chapter 2 is that the underlying set F is an

invariant set of a cIFS Φ acting on a non-empty, compact connected set X ⊂ Rd such that

λd(O \ ΦX) is strictly positive and such that the geometric conditions from Section 2.3

hold. (Note that (COND 2) to (COND 4), (COND 2’) and (COND 4’) are always satisfied

in space dimension one as we will see later in the proofs.) Recall from Definition 2.17

that a cIFS F acting on X satisfies the OSC with open set O := intRdX. Moreover, recall

that the geometric conditions from Section 2.3 imply that X \ ΦX possesses finitely many

connected components, which are denoted by G1, . . . , GQ and called the primary gaps of

F . Their images under the map φω are denoted by G1
ω, . . . , G

Q
ω for ω ∈ Σ∗.

The proofs of our theorems are rather technical. Thus, to gain a better overview of the

structure of the proofs and in order to show the relevance of the forthcoming lemmas, we

now present an outline of the proofs. For ease of presentation, we restrict ourselves to the

non-lattice situation here and remark that the fundamental idea behind the proofs on the

average parts is the same.

49
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(I) We introduce the set-class

EF := {φωO | ω ∈ Σ∗} ∪ KF , where (4.1)

KF :=
{
K ∈ B(Rd)

∣∣∣ ∃n ∈ N : K ⊆ Rd \⋃ω∈ΣnφωO
}

(4.2)

and show that EF is an intersection stable generator for B(Rd). This is done in

Lemma 4.4.

(II) Using Step (I) together with Prohorov’s Theorem (Theorem A.7) and the fact

that two signed Borel measures which coincide on an intersection stable generator

for B(Rd) coincide on B(Rd) (see Proposition A.4) we show the following. If

there exists a signed Borel measure μ such that e−t(δ−k)Ck(Fe−t , B) (essentially)

converges to μ(B) for every B ∈ EF as t → ∞ on the domain of definition, then

(ess-) w-limt→∞ e−t(δ−k)Ck(Fe−t , ·) = μ(·). This is shown in Lemma 4.6.

In order to show the existence of μ as in Step (II) we distinguish between the cases B ∈ KF

and B ∈ EF \ KF .

(III) For B ∈ KF we show that (ess-) limt→∞ e−t(δ−k)Ck(Fe−t , B) = 0.

For B = φκO ∈ EF \ KF , where κ ∈ Σ∗, we show that

Ck(Fe−t , B) =
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)Ck

(
Fe−t ,

Q⋃
i=1

Gi
uω ∩B

)
+ o(et(δ−k)) (4.3)

for t ∈ Uk, where Uk := {t ∈ R | e−t is a regular distance for F} if d ≥ 4 and

k ∈ {0, . . . , d− 2} and Uk := R else (see Lemma 4.5).

Here o denotes the Landau symbol , which is defined as follows. For a function f : U → R de-

fined on U ⊆ R with λ1(R\U) = 0 and g : R → R we write f = o(g) if ess- limt→∞ f(t)/g(t) =

0, where the essential limit is taken over U . Since F has finitely many primary gaps, we

assume without loss of generality that F possesses exactly one primary gap which we

denote by G. Its main gaps are denoted by Gω for ω ∈ Σ∗.

In view of Equation (4.3) we introduce functions

fk,ω(t) := Ck(Fe−t , Gω)

for ω ∈ Σ∗ whose domain of definition depends on the respective setting of the theorem

(see Lemmas 4.8, 4.9 and 4.13).
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(IV) We show that the expression on the right hand side of Equation (4.3) can be

approximated by

∑
ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)fk,ω(t− Snξ(uωx))︸ ︷︷ ︸

=:Nk,m,κ(t)

+o(et(δ−k)) (4.4)

and determine the (essential) asymptotic as t → ∞ for the functions Nk,m,κ (see Key

Lemma 4.2).

Note that in the self-similar case the terms in Equations (4.3) and (4.4) are equal.

(V) From the knowledge of the asymptotic of Nk,m,κ we deduce the existence of a signed

Borel measure μ such that

(ess-) lim
t→∞ e−t(δ−k)Ck(Fe−t , B) = μ(B)

for all B ∈ EF and determine the limiting signed Borel measure μ. This is done in

the respective proofs of the theorems.

Combining Steps (I) to (V) shows the desired statement.

Now we present the precise statements and proofs of the auxiliary results and start with the

most important one, namely with Key Lemma 4.2. This result is formulated in a general

way so that it can be applied in all the cases we consider. In this way it unifies the proofs

of all the results from Chapter 2.

4.1.1 Key Lemma 4.2 with Proof

We first fix some notation. We let �x� denote the integer part of x ∈ R, that is the largest

integer z ∈ Z satisfying z ≤ x. Moreover, {x} := x− �x� ∈ [0, 1) is the fractional part of x.

Definition 4.1 (essentially asymptotic). Let U ⊆ R denote a set which satisfies λ1(R\U) =

0. We say that a function f : U → R is essentially asymptotic to a function g : R → R on

U as t → ∞, if

ess-lim
t→∞ f(t)/g(t) = 1,

where the essential limit is taken over U . For such f, g and U we write f(t) ∼U g(t) as

t → ∞.

Key lemma 4.2. Let Φ denote a cIFS acting on a compact connected subset X of Rd with

associated self-conformal set F ⊂ Rd. Let δ := dimM (F ) > 0 be the Minkowski dimension
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of F and denote by ξ : Σ∞ → R the geometric potential function. Let ν−δξ and μ−δξ be

the measures defined in Ruelle’s Perron-Frobenius Theorem (see Section 3.1.2) and denote

by h−δξ =
dμ−δξ

dν−δξ
their Radon-Nikodym derivative. For k ∈ N, m ∈ N and ω ∈ Σm let

fk,ω : U → R be functions satisfying the following.

(A) The domain of definition U ⊆ R fulfils λ1(R \U) = 0 and for every t ∈ U there exists

an ε0 > 0 such that t− ε ∈ U for every ε ∈ [0, ε0).

(B) The function fk,ω is left-continuous on U , meaning that limt→x
t<x

fk,ω(t) = fk,ω(x) for

every x ∈ U .

(C) The integral ∫ ∞

−∞
e−t(δ−k)|fk,ω(t)|dt

exists.

(D) For x ∈ Σ∞, κ ∈ Σ∗ and m ∈ N the series

Nk,m,κ(t, x) :=
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)fk,ω(t− Snξ(uωx))

converges absolutely for t in the domain of definition V of Nk,m,κ(·, x). Note that

Item (A) implies that λ1(R \ V ) = 0.

(E) One of the following is valid for a fixed m ∈ N.

(a) There exists a t∗ > 0 such that fk,ω(t) = 0 for all t < t∗ and ω ∈ Σm or

(b) Nk,m,κ(·, x) is non-increasing.

(F) There exists a C ∈ R such that e−t(δ−k)Nabs
k,m(t, x) ≤ C for all x ∈ Σ∞ and t ∈ V ,

where

Nabs
k,m(t, x) :=

∑
ω∈Σm

∞∑
n=0

∑
u∈Σn

e−kSnξ(uωx)|fk,ω(t− Snξ(uωx))|.

(G) There exist t∗ ∈ R (which coincides with the t∗ from Item (E)a when in the situation

Item (E)a) and C′ ≥ 0 such that for all t < t∗ we have

Nabs
k,m(t, x) ≤ C′

for all m ∈ N and x ∈ Σ∞. If k ≤ δ, then we require C′ = 0.

Then the following hold.
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(i) For x ∈ Σ∞ we always have that

lim
t→∞ t−1

∫ t

0
e−T (δ−k)Nk,m,κ(T, x)dT

=
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

· h−δξ(ωx).

(ii) If ξ is non-lattice, then

Nk,m,κ(t, x) ∼V
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx)︸ ︷︷ ︸
=:Dk,m,κ(x)

·et(δ−k)

as t → ∞, for all x ∈ Σ∞, where V is as in Item (D).

(iii) Assume that ξ is lattice. Let ζ, ψ ∈ C(Σ∞) denote functions such that ξ−ζ = ψ−ψ◦σ
and such that the range of ζ is contained in a discrete subgroup of R. Let a > 0 be

maximal satisfying ζ(Σ∞) ⊆ aZ. Assume that (a) U = R (which implies V = R)

or that (b) ψ ≡ 0. In case (a), set Ṽ := R and in case (b) let Ṽ denote the domain

of definition of t �→∑∞
l=−∞ e−al(δ−k)fk,ω (al + a {t/a}). (Note that Item (A) implies

that λ1(R \ Ṽ ) = 0 in both cases.) Then

Nk,m,κ(t, x)

∼V ∩Ṽ a
∑

ω∈Σm

e
a
⌊
t+ψ(ωx)

a

⌋
(δ−k)

ekψ(ωx)
h−δζ(ωx)∫
ζdμ−δζ

·
∫
Σ∞

e−kψ(y)1[κ](y)

∞∑
l=−∞

e−al(δ−k)fk,ω

(
al + a

{
t+ ψ(ωx)

a

}
− ψ(y)

)
dν−δζ(y)

as t → ∞ along Ṽ uniformly for x ∈ Σ∞.

Note that Items (A) to (G) of Key Lemma 4.2 are satisfied for the functions given by

fk,ω(t) := Ck(Fe−t , Gω), where F is as in our theorems. This is shown in Lemmas 4.8, 4.9

and 4.13.

The proofs of the three parts of Key Lemma 4.2 are very different and so we split the

proof and start by considering Item (ii). Before carrying out this proof, we present a useful

smoothing argument for showing the asymptotic (see [Lal89] pp. 27 ff.). For a probability

density Π: R → R we consider its Fourier-Laplace transform given by

Π̂(iθ) :=

∫ ∞

−∞
eiθtΠ(t)dt
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and introduce the following class of probability densities.

P := {Π: R → R | Π is a probability density, Π(t) = Π(−t) for t ∈ R and

Π̂(iθ) is non-negative, C∞ and has compact support}.
Note that the function Π̂ : R → C given by

Π̂(iθ) :=

⎧⎨⎩exp
(

−θ2

1−θ2

)
: |θ| ≤ 1,

0 : else
(4.5)

defines an even probability density Π: R → R which lies in P. That Π is a probability

density is due to Bochner’s theorem (see for instance [Kle08, Satz 15.29]). Thus, P is

non-empty. For the following, fix Π as such. As Π is an even probability density we know

that for all ε > 0 there exists a τ > 0 such that∫ τ

−τ
Π(t)dt ≥ 1− ε.

For each ε > 0 fix such a τ = τ(ε). Thus, Πε which for ε > 0 is defined by

Πε(t) :=
τ(ε)

ε
·Π(t · τ(ε)/ε) (4.6)

satisfies ∫ ε

−ε
Πε(t)dt =

∫ τ(ε)

−τ(ε)
Π(t)dt ≥ 1− ε.

Moreover, it can be easily verified that Πε ∈ P for all ε > 0. The smoothing argument

goes as follows.

Lemma 4.3. In order to prove Key Lemma 4.2(ii) it suffices to prove that for all x ∈ Σ∞

we have that

lim
r→∞

∫ ∞

−∞
(Πε(r − T ) + Πε(−r − T )) e−T (δ−k)Nk,m,κ(T, x)dT = Dk,m,κ(x) (4.7)

uniformly for ε ∈ (0, 1].

Proof. In case Nk,m,κ(t, x) is a monotonic function in t, this statement follows directly

from the proof of Lemma 8.2 of [Lal89]. In order to cover also functions which are not

necessarily monotonic, we are going to adapt the methods of proof used in [Lal89]. Thus,

in the following we suppose that we are in case (E)a, namely that there exists a t∗ > 0

such that fk,ω(t) = 0 for all t < t∗ and ω ∈ Σm.

Firstly, for r ∈ R and ε > 0, Item (F) implies that∣∣∣∣∫ ∞

−∞
Πε(r − T )e−T (δ−k)Nk,m,κ(T, x)dT −

∫ r+ε

r−ε
Πε(r − T )e−T (δ−k)Nk,m,κ(T, x)dT

∣∣∣∣
≤ C · ε, (4.8)
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which tends to 0 as ε → 0 uniformly for x ∈ Σ∞. Secondly, using Item (G) and that C′ = 0

for k ≤ δ we have that

lim
r→∞ lim

ε↘0

∣∣∣∣∫ −r+2ε

−r
Πε(−r + ε− T )e−T (δ−k)Nk,m,κ(T, x)dT

∣∣∣∣ ≤ lim
r→∞ lim

ε↘0
C′e(r−2ε)(δ−k) = 0.

(4.9)

Thirdly, we observe that with V as in Item (D) we have that

inf
ε̃∈[0,2ε]
r−ε̃∈V

e−(r−ε̃)(δ−k)Nk,m,κ(r − ε̃, x) · (1− ε)

≤
∫ r

r−2ε
Πε(r − ε− T )e−T (δ−k)Nk,m,κ(T, x)dT

≤ sup
ε̃∈[0,2ε]
r−ε̃∈V

e−(r−ε̃)(δ−k)Nk,m,κ(r − ε̃, x). (4.10)

For a fixed r ∈ V , Item (E)a implies that the series which defines Nk,m,κ(r − ε̃, x) is a

finite sum, since ξ is positive. Moreover, the number of summands is bounded uniformly

for x ∈ Σ∞ and ε̃ ∈ [0, 2ε] for which r − ε̃ ∈ V . Since according to Item (B) the functions

fk,ω are left-continuous on U it follows that

lim
ε↘0

inf
ε̃∈[0,2ε]
r−ε̃∈V

e−(r−ε̃)(δ−k)Nk,m,κ(r − ε̃, x) = lim
ε↘0

sup
ε̃∈[0,2ε]
r−ε̃∈V

e−(r−ε̃)(δ−k)Nk,m,κ(r − ε̃, x)

= e−r(δ−k)Nk,m,κ(r, x). (4.11)

Using Equations (4.8) to (4.11) and that by hypothesis the convergence in Equation (4.7)

is uniform in ε, we conclude that

Dk,m,κ(x) = lim
ε↘0

lim
r→∞

∫ ∞

−∞
(Πε(r − T ) + Πε(−r − T )) e−T (δ−k)Nk,m,κ(T, x)dT

= lim
r→∞ lim

ε↘0

∫ ∞

−∞
(Πε(r − T ) + Πε(−r − T )) e−T (δ−k)Nk,m,κ(T, x)dT

= lim
r→∞ lim

ε↘0

(∫ r

r−2ε
Πε(r − ε− T )e−T (δ−k)Nk,m,κ(T, x)dT

+

∫ −r+2ε

−r
Πε(−r + ε− T )e−T (δ−k)Nk,m,κ(T, x)dT

)
= ess-lim

r→∞, r∈V
e−r(δ−k)Nk,m,κ(r, x).

Proof of Key Lemma 4.2(ii). In this proof we use some of the tools presented in the proof

of Theorem 1 of [Lal89], which we repeat here for the convenience of the reader. For z ∈ C,
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κ ∈ Σ∗ and x ∈ Σ∞ denote the Fourier-Laplace transform by

Lk,m,κ(z, x) :=

∫ ∞

−∞
ezT−T (δ−k)Nk,m,κ(T, x)dT. (4.12)

Items (F) and (G) imply that the function Lk,m,κ(·, x) is well-defined and analytic on

Zk :=

⎧⎨⎩{z ∈ C | �(z) < 0} : k ≤ δ,

{z ∈ C | δ − k < �(z) < 0} : k > δ.

Here, �(z) denotes the real part of z ∈ C. What is more, for small enough ε > 0, Items (F)

and (G) imply that Lk,m,κ(·, x) converges absolutely and uniformly on

Zk(ε) :=

⎧⎨⎩{z ∈ C | �(z) < −ε} : k ≤ δ,

{z ∈ C | δ − k + ε < �(z) < −ε} : k > δ.

Now, in every such region, using Item (D) as well as the monotone and dominated

convergence theorems, we obtain the following.

Lk,m,κ(z, x)

=
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)

∫ ∞

−∞
ezT−T (δ−k)fk,ω(T − Snξ(uωx))dT

=
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)

∫ ∞

−∞
ezT−T (δ−k)fk,ω(T )dT · e(z−δ+k)Snξ(uωx)

=
∑

ω∈Σm

∞∑
n=0

Ln
(z−δ)ξ1[κ](ωx) ·

∫ ∞

−∞
ezT−T (δ−k)fk,ω(T )dT.

By Theorem 3.9(ii), the spectral radius formula (see Equation (3.5)) and the fact that

γ−δξ = 1 (see Theorem 3.2), the series
∑∞

n=0 Ln
(z−δ)ξ1[κ](ωx) converges for �(z) < 0 and

we obtain

Lk,m,κ(z, x) =
∑

ω∈Σm

(I − L(z−δ)ξ)
−11[κ](ωx) ·

∫ ∞

−∞
ezT−T (δ−k)fk,ω(T )dT.

Moreover, by Proposition 3.12, the operator-valued function z �→ (I − Lzξ)
−1 is holo-

morphic at every z on the line �(z) = −δ except for z = −δ, which is a simple pole by

Proposition 3.10. According to Corollary 3.11 the residue of (I −Lzξ)
−11[κ](ωx) at z = −δ

is

−
∫
1[κ]dν−δξ∫
ξdμ−δξ

· h−δξ(ωx) =: Cκ(ωx). (4.13)

Hence, the residue of Lk,m,κ(z, x) at z = 0 is∑
ω∈Σm

Cκ(ωx)

∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT.
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Thus, Lk,m,κ(z, x) has the following representation.

Lk,m,κ(z, x) = qk,m,κ(z, x) +
∑

ω∈Σm

Cκ(ωx)

z
·
∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT, (4.14)

where qk,m,κ(·, x) : C → C is holomorphic in a region containing the closed half-plane

�(z) ≤ 0 if k ≤ δ and the strip {z ∈ C | δ − k + ε ≤ �(z) ≤ 0} if k > δ, where ε > 0 is

sufficiently small. Items (F) and (G) and Lebesgue’s dominated convergence theorem imply

for every ε ∈ (0, 1] that∫ ∞

−∞
(Πε(r − T ) + Πε(−r − T )) e−T (δ−k)Nk,m,κ(T, x)dT

= lim
s↘0

∫ ∞

−∞
(Πε(r − T ) + Πε(−r − T )) e−T (δ−k+s)Nk,m,κ(T, x)dT. (4.15)

Using the inverse Fourier-Laplace transform Πε(t) =
∫∞
−∞ e−iθtΠ̂ε(iθ)dθ/(2π) and that the

integral on the left hand side of Equation (4.15) exists, we can convert the integral from

the right hand side for sufficiently small s > 0 as follows.∫ ∞

−∞
(Πε(r − T ) + Πε(−r − T )) e−sT−T (δ−k)Nk,m,κ(T, x)dT

=

∫ ∞

−∞

∫ ∞

−∞
eiθT Π̂ε(iθ)

(
e−iθr + eiθr

) dθ

2π
e−sT−T (δ−k)Nk,m,κ(T, x)dT

=

∫ ∞

−∞

∫ ∞

−∞
e(iθ−s)T−T (δ−k)Nk,m,κ(T, x)Π̂ε(iθ)2 cos(θr)

dθ

2π
dT

=

∫ ∞

−∞
Lk,m,κ(iθ − s, x)Π̂ε(iθ)2 cos(θr)

dθ

2π

(4.14)
=

∫ ∞

−∞

(
qk,m,κ(iθ − s, x)−

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT · Cκ(ωx)(iθ + s)

θ2 + s2

)

· Π̂ε(iθ)2 cos(θr)
dθ

2π
. (4.16)

The measures given by s
π(θ2+s2)

dθ converge weakly to the Dirac point-mass at zero as s → 0.

Moreover, we can ignore the imaginary part on the right hand side of Equation (4.16) since

the left hand side is real. Using that Π̂ε(iθ) is real and that Π̂ε(0) = 1 for all ε ∈ (0, 1] we

therefore obtain

lim
s↘0

∫ ∞

−∞
(Πε(r − T ) + Πε(−r − T )) e−sT−T (δ−k)Nk,m,κ(T, x)dT (4.17)

= �
(∫ ∞

−∞
qk,m,κ(iθ, x)Π̂ε(iθ) cos(θr)

dθ

π

)
−
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT · Cκ(ωx).

Combining Lemma 4.3 with Equations (4.13), (4.15) and (4.17) it follows that all that

remains to show is that the first integral on the right hand side of Equation (4.17) converges



58 CHAPTER 4. PROOFS

to zero as r → ∞ uniformly for ε ∈ (0, 1]. Recall that Π̂ε(iθ) is C∞ and has compact

support; assume that it is contained in [−S, S]. Also, recall that qk,m,κ(·, x) is analytic

in a neighbourhood of [−iS, iS] and continuous in x. The Cauchy integral formula for

derivatives implies that d
dz qk,m,κ(z, x)|z=iθ is uniformly continuous in θ and hence bounded

on [−S, S]× Σ∞. Thus, d
dz qk,m,κ(z, x) is bounded on [−iS, iS]× Σ∞. Integrating by parts

now implies∫ S

−S
qk,m,κ(iθ, x)Π̂ε(iθ) cos(θr)

dθ

π

= qk,m,κ(iθ, x)Π̂ε(iθ)
sin(θr)

πr

∣∣∣S
θ=−S

−
∫ S

−S

d

dθ

(
qk,m,κ(iθ, x)Π̂ε(iθ)

) sin(θr)

πr
dθ. (4.18)

As the support of Π̂ε is contained in [−iS, iS] and Π̂ε is C∞, the first term on the right hand

side of Equation (4.18) equals zero for all r > 0. For the second term on the right hand side

of Equation (4.18) we remark that Π̂ε(iθ) = Π̂(iθε/τ(ε)). Therefore, the definition of Π̂ in

Equation (4.5) implies that Π̂ε(iθ), as well as,
d
dθ Π̂ε(iθ) is uniformly bounded for ε ∈ (0, 1].

This shows that the second term on the right hand side of Equation (4.18) converges to

zero uniformly for ε ∈ (0, 1] as r → ∞. Hence the first integral on the right hand side of

Equation (4.17) converges to zero as r → ∞ uniformly for ε ∈ (0, 1].

Proof of Key Lemma 4.2(iii). Items (F) and (G) imply that for a fixed β ∈ [0, a), m ∈ N,

ω ∈ Σm, κ ∈ Σ∗ and x ∈ Σ∞ for which al + β − ψ(ωx) ∈ V for all l ∈ Z, the function

N̂β
k,ω,κ(·, x) given by

N̂β
k,ω,κ(z, x) :=

∞∑
l=−∞

elzNk,ω,κ(al + β − ψ(ωx), x) (4.19)

is well-defined and analytic for z ∈ Z̃k, where

Z̃k :=

⎧⎨⎩{z ∈ C | �(z) < a(k − δ)} : k ≤ δ,

{z ∈ C | 0 < �(z) < a(k − δ)} : k > δ

and

Nk,ω(t, x) :=

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)fk,ω(t− Snξ(uωx))

for t ∈ V . Furthermore, Items (F) and (G) imply that we can make the following conversions

for z ∈ Z̃k, for which β is additionally assumed to satisfy al+ β−ψ(uωx) ∈ U for all l ∈ Z

and u ∈ Σ∗. Note that Snξ = Snζ + ψ − ψ ◦ σn and recall that Snζ ∈ aZ for all n ∈ N.
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N̂β
k,ω,κ(z, x)

=
∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)

∞∑
l=−∞

elzfk,ω(al + β − ψ(ωx)− Snξ(uωx))

=

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)

∞∑
l=−∞

e(l+a−1Snζ(uωx))zfk,ω(al + β − ψ(uωx))

=

∞∑
n=0

∑
u∈Σn

e(a
−1z−k)Snζ(uωx)e−k(ψ(uωx)−ψ(ωx))1[κ](uωx)

∞∑
l=−∞

elzfk,ω(al + β − ψ(uωx))

= ekψ(ωx)
∞∑
n=0

Ln
(a−1z−k)ζ

(
e−kψ1[κ]

∞∑
l=−∞

elzfk,ω(al + β − ψ)

)
(ωx)

For z ∈ Z̃k we have that �(a−1z − k) < −δ. Thus, by Theorem 3.2 and Proposition 3.6

we know that γ�(a−1z−k)ζ < 1. Theorem 3.9 (both parts) and the spectral radius formula

(Equation (3.5)) then imply for every z ∈ Z̃k that

N̂β
k,ω,κ(z, x) = ekψ(ωx)(I − L(a−1z−k)ζ)

−1

(
e−kψ1[κ]

∞∑
l=−∞

elzfk,ω(al + β − ψ)

)
(ωx).

Since a−1ζ is integer-valued but not cohomologous to any function valued in a proper

subgroup of the integers, we can apply Proposition 3.13. Thus, z �→ (I −Lzζ)
−1 is 2πa−1i-

periodic and holomorphic at every z on the line �(z) = −δ such that �(z)/(2πa−1) is not an

integer, where �(z) denotes the imaginary part of z ∈ C. Therefore, z �→ (I−L(a−1z−k)ζ)
−1

has got an isolated singularity at z = a(k− δ) and is holomorphic at each z = a(k− δ) + iθ

for 0 < |θ| ≤ πa−1. By Proposition 3.10 the singularity of N̂β
k,ω,κ(z, x) at z = a(k − δ) is

γ(a−1z−k)ζ

1− γ(a−1z−k)ζ

∫
Σ∞

e−kψ1[κ]

∞∑
l=−∞

elzfk,ω(al + β − ψ)dν(a−1z−k)ζ · h(a−1z−k)ζ(ωx)︸ ︷︷ ︸
=:Ez(ωx)

.

Since z �→ Ez(ωx) and z �→ γ(a−1z−k)ζ are continuous in z = a(k − δ), the singularity is a

simple pole with residue

Ea(k−δ)(ωx)

− d
dzγ(a−1z−k)ζ |z=a(k−δ)

= a
Ea(k−δ)(ωx)

− ∫Σ∞ ζdμ−δζ
,

which follows from Equation (3.7). It follows that N̂β
k,ω,κ(z, x) is meromorphic in

˜̃Zk(ε) for

some ε > 0, where˜̃Zk(ε) :=
(
Z̃k ∪ {z ∈ C | a(k − δ) ≤ �(z) < a(k − δ) + ε}

)
∩ {z ∈ C | 0 ≤ �(z) ≤ πa−1}
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and that the only singularity in this region is a simple pole at z = a(k − δ) with residue

−aekψ(ωx)
∫
Σ∞

e−kψ1[κ]

∞∑
l=−∞

e−al(δ−k)fk,ω(al + β − ψ)dν−δζ · h−δζ(ωx)∫
Σ∞ ζdμ−δζ

=: Cω,κ(x).

Additionally,
−1∑

l=−∞
e−al(δ−k)Nk,ω,κ(al + β − ψ(ωx), x)

is finite by Item (G). Recalling the definition of N̂β
k,ω,κ from Equation (4.19) we thus

conclude that ∞∑
l=0

elzNk,ω,κ(al + β − ψ(ωx), x)− Cω,κ(x)

z − a(k − δ)

is holomorphic in
˜̃Zk(ε) for some ε > 0. We observe that z �→ (ez+a(δ−k)− 1)/(z+a(δ−k))

is holomorphic in C. Making the transform of variables z̃ := ez+a(δ−k) we thus obtain that

∞∑
l=0

z̃le−al(δ−k)Nk,ω,κ(al + β − ψ(ωx), x)− Cω,κ(x)

z̃ − 1

is holomorphic in {ez+a(δ−k) | z ∈ ˜̃Zk(ε)}. This implies that

Lk,ω,κ(z̃, x) :=

∞∑
l=0

z̃l
(
e−al(δ−k)Nk,ω,κ(al + β − ψ(ωx), x) + Cω,κ(x)

)
is holomorphic in {z̃ | |z̃| < eε}. Since Lk,ω,κ(·, x) is holomorphic in {z̃ | |z̃| < eε} and eε > 1,

the coefficient sequence of the power series of Lk,ω,κ(·, x) converges to zero exponentially

fast, more precisely,

e−an(δ−k)Nk,ω,κ(an+ β − ψ(ωx), x) + Cω,κ(x) = o((1 + (eε − 1)/2)−n)

as n → ∞ (n ∈ N). Thus, for x ∈ Σ∞ we have that

Nk,ω,κ(t, x)

= Nk,ω,κ

(
a

⌊
t+ ψ(ωx)

a

⌋
︸ ︷︷ ︸

=:n

+ a
{ t+ ψ(ωx)

a

}
︸ ︷︷ ︸

=:β

−ψ(ωx), x

)

∼V ae
a
⌊
t+ψ(ωx)

a

⌋
(δ−k)

ekψ(ωx)
h−δζ(ωx)∫
ζdμ−δζ

·
∫
Σ∞

e−kψ(y)1[κ](y)

∞∑
l=−∞

e−al(δ−k)fk,ω

(
al + a

{ t+ ψ(ωx)

a

}
− ψ(y)

)
dν−δζ(y)

as t → ∞, which finishes the proof.
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Proof of Key Lemma 4.2(i). First note that if f ∼V g as t → ∞, then the existence of

limt→∞ t−1
∫ t
0 g(T )dT implies the existence of limt→∞ t−1

∫ t
0 f(T )dT and moreover that

limt→∞ t−1
∫ t
0 f(T )dT = limt→∞ t−1

∫ t
0 g(T )dT .

If ξ is non-lattice, Key Lemma 4.2(i) thus is a straightforward consequence of Key

Lemma 4.2(ii). Therefore, we now consider the case that ξ is lattice. Clearly,

∫ t

0
e−T (δ−k)Nk,m,κ(T, x)dT

=

∫ a
a−1t�

0
e−T (δ−k)Nk,m,κ(T, x)dT +

∫ t

a
a−1t�
e−T (δ−k)Nk,m,κ(T, x)dT. (4.20)

Due to Item (F) the second summand on the right hand side of Equation (4.20) is absolutely

bounded by C · (t− a�a−1t�) ≤ C · a. For the first summand we use that by Item (iii) we

have that Nk,m,κ(t, x) ∼V ∩Ṽ aMk,m,κ(t, x) as t → ∞, where

Mk,m,κ(t, x) :=
∑

ω∈Σm

ekψ(ωx)
h−δζ(ωx)∫

ζμ−δζ
·Mω

k,κ(t, x)

and for ω ∈ Σ∗ and t ∈ Ṽ

Mω
k,κ(t, x) · e−a

⌊
t+ψ(ωx)

a

⌋
(δ−k)

:=

∫
Σ∞

e−kψ(y)1[κ](y)

∞∑
l=−∞

e−al(δ−k)fk,ω

(
al + a

{ t+ ψ(ωx)

a

}
− ψ(y)

)
dν−δζ(y).

It is easy to verify that t �→ e−t(δ−k)Mk,m,κ(t, x) is periodic with period a. Thus,

lim
t→∞ t−1

∫ t

0
e−T (δ−k)Nk,m,κ(T, x)dT

= lim
t→∞

a�a−1t�
t

· (a�a−1t�)−1

∫ a
a−1t�

0
e−T (δ−k)Nk,m,κ(T, x)dT

= lim
t→∞(a�a−1t�)−1�a−1t�

∫ a

0
e−T (δ−k)aMk,m,κ(T, x)dT

=

∫ a

0
e−T (δ−k)Mk,m,κ(T, x)dT.
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Consider∫ a

0
e−T (δ−k)Mω

k,κ(T, x)dT

=

∫ a

0
e−T (δ−k)e

a
⌊
T+ψ(ωx)

a

⌋
(δ−k)

·
∫
Σ∞

e−kψ(y)1[κ](y)

∞∑
l=−∞

e−al(δ−k)fk,ω

(
al + a

{T + ψ(ωx)

a

}
− ψ(y)

)
dν−δζ(y)dT

=

∫ a

0
e(−T+ψ(ωx))(δ−k)

∫
Σ∞

e−kψ(y)1[κ](y)
∞∑

l=−∞
e−al(δ−k)fk,ω(al + T − ψ(y))dν−δζ(y)dT

= eψ(ωx)(δ−k)

∫
Σ∞

e−kψ(y)1[κ](y)

∫ ∞

−∞
e−T (δ−k)fk,ω(T − ψ(y))dTdν−δζ(y)

= eψ(ωx)(δ−k)

∫
Σ∞

e−δψ(y)1[κ](y)

∫ ∞

−∞
e−T (δ−k)fk,ω(T )dTdν−δζ(y)

= eψ(ωx)(δ−k)

∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT ·

∫
Σ∞

1[κ](y)e
−δψ(y)dν−δζ(y).

This implies

lim
t→∞ t−1

∫ t

0
e−T (δ−k)Nk,m,κ(T, x)dT

=
∑

ω∈Σm

eδψ(ωx)
∫ ∞

−∞
e−T (δ−k)fk,ω(T )dT ·

∫
1[κ](y)e

−δψ(y)dν−δζ(y)∫
ζdμ−δζ

· h−δζ(ωx).

Noting that e−δψdν−δζ = dν−δξ,
∫
Σ∞ ζdμ−δζ =

∫
Σ∞ ξdμ−δξ and eδψh−δζ = h−δξ, the

statement of Key Lemma 4.2(i) follows.

4.1.2 Lemmas 4.4 to 4.6 with Proofs

As described in the beginning of this section, we make use of the fact that two signed

Borel measures which coincide on an intersection stable generator for B(Rd) coincide on

B(Rd) (see Proposition A.4) in order to show convergence of the signed Borel measures

e−t(δ−k)Ck(Fe−t , ·). For the application of Proposition A.4 we use the set-class EF , which we

introduced in Equation (4.1), and now show that EF forms an intersection stable generator

for the Borel σ-algebra B(Rd) of Rd (see Definition A.1). We remark that similar ideas

were used in [Win08] for the self-similar setting. The following lemma is a modification of

Lemma 6.1.1 of [Win08].

Lemma 4.4. EF is an intersection stable generator for B(Rd).

Proof. Since O is the open set satisfying the OSC for Φ, it is clear to see that EF is

intersection stable. Moreover, letting σ(EF ) denote the σ-algebra generated by EF we
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have that σ(EF ) ⊆ B(Rd). Thus, in order to show that σ(EF ) = B(Rd) we will now show

B(Rd) ⊆ σ(EF ). The idea of how to prove this is to show that every open set in Rd is a

countable union of sets in EF .
Let B ⊆ Rd denote an open set and take x ∈ B. Then there exists some r > 0 such that

Br(x) ⊂ B, where Br(x) denotes the open ball with radius r centred at x. Define

n(r) := min{n ∈ N | diam(φωO) ≤ r for all ω ∈ Σn}.

Set Σx(r) := {ω ∈ Σn(r) | x ∈ φωO}. By definition, diam(φωO) ≤ r for all ω ∈ Σx(r)

and thus φωO ⊂ Br(x) for these ω. Moreover, for each ω ∈ Σn(r) \ Σx(r), φωO has

positive distance to x. Therefore, we can find some positive constant 0 < c ≤ r such that

|x − φωO| > c for all ω ∈ Σn(r) \ Σx(r). Set Dx := Bc(x) \
⋃

ω∈Σx(r)
φωO. Then Dx is

a subset of Rd \ ⋃ω∈Σn(r) φωO and thus an element of KF (for the definition of KF see

Equation (4.2)). Set Ex := Dx ∪
⋃

ω∈Σx(r)
φωO. By construction, Ex is a finite union of

sets from EF and Ex ⊆ Br(x) ⊂ B. On the other hand, the family {Ex | x ∈ B} forms

an open cover of B, which by the Lindelöf Theorem possesses a countable open subcover.

More precisely, there exist x1, x2, . . . in B such that B =
⋃

i∈NExi . Since each set Exi is a

finite union of sets from EF , the proof is complete.

Now, we turn to Step (III) from the beginning of Section 4.1.

Lemma 4.5. Let Φ denote a cIFS acting on X and suppose that λd(X \ΦX) > 0. Denote

by F ⊂ Rd the self-conformal set associated with Φ and let δ > 0 be its Minkowski dimension.

Assume (COND 1) to (COND 3) and let G1
ω, . . . , G

Q
ω denote the main gaps of F for ω ∈ Σ∗.

If d ≥ 4 and k ∈ {0, . . . , d− 2} suppose that Lebesgue-almost all distances are regular for

F and write U := {t ∈ R | e−t is a regular distance for F}. Further, assume that there

exists a δI < δ such that Cvar
k (Fe−t , Gi

ω) · e−t(δI−k) is uniformly bounded from above by

a constant C̃ ∈ R for i ∈ {1, . . . , Q}, ω ∈ Σ∗ and t ∈ Uk, where Uk := U if d ≥ 4 and

k ∈ {0, . . . , d− 2} and Uk := R else. Then the following hold.

(i) If B ∈ KF , then Ck(Fe−t , B) = o(et(δ−k)) as t → ∞ on Uk.

(ii) If B = φκO ∈ EF \ KF for some κ ∈ Σ∗, then for all m ∈ N and x ∈ Σ∞ we have

Ck(Fe−t , B) =
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)Ck

(
Fe−t ,

⋃Q
i=1G

i
uω

)
+ o(et(δ−k))

as t → ∞ on Uk.

Both Items (i) and (ii) remain valid when substituting the total variation measure Cvar
k in

for Ck.
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Proof. From Items (i) and (iv) of Proposition 2.7 it follows that Ck(Fe−t , B) = Ck(Fe−t , B∩
D), whenever D ∈ B(Rd) contains Fe−t . Now, because Fe−t is contained in the disjoint

union (Oe−t \ O) ∪ ⋃
ω∈Σ∗,i∈{1,...,Q}G

i
ω ∪ F for any t ∈ R, the following holds for any

t ∈ Uk and B ∈ EF .

Ck(Fe−t , B) = Ck(Fe−t , Oe−t\O∩B)+Ck(Fe−t ,
⋃

ω∈Σ∗
i∈{1,...,Q}

Gi
ω∩B)+Ck(Fe−t , F∩B). (4.21)

The first summand on the right hand side of Equation (4.21) is o(et(δ−k)) since (COND 2’)

implies that there exists a C′ ∈ R such that

e−t(δ−k)Cvar
k (Fe−t , Oe−t \O ∩B) ≤ C′e−t(δ−δO) → 0

as t → ∞ on Uk. Also, the third summand on the right hand side of Equation (4.21) is

o(et(δ−k)). To see this, we distinguish between two cases. If k = d, then 0 ≤ Ck(Fe−t , F ∩
B) ≤ λd(F ) = 0 by Propositions 2.7 and 2.22. If k < d, then Cvar

k (Fe−t , ·) is concentrated on

the boundary ∂Fe−t of Fe−t (see Proposition 2.7(iv)), which implies that Cvar
k (Fe−t , F∩B) =

0, since ∂Fe−t ∩ F = ∅ for all t ∈ R. Therefore, it only remains to consider the second

summand on the right hand side of Equation (4.21). To this end assume without loss of

generality that F possesses exactly one primary gap which we denote by G.

ad (i): For B ∈ KF there exists an n ∈ N such that B ∩ φωO = ∅ for all ω ∈ Σn. Since

Gω ⊆ φωO for every ω ∈ Σ∗ we conclude that
⋃∞

m=n

⋃
ω∈Σm Gω ∩ B = ∅ and

hence that

Cvar
k (Fe−t ,

⋃
ω∈Σ∗

Gω ∩B) =
n−1∑
m=0

∑
ω∈Σm

Cvar
k (Fe−t , Gω ∩B). (4.22)

By the hypothesis we have

e−t(δ−k)Cvar
k (Fe−t , Gω ∩B) ≤ C̃e−t(δ−δI) → 0

as t → ∞ on Uk, which together with Equation (4.22) shows the assertion of

Item (i).

ad (ii): For B = φκO ∈ EF \ KF and for an arbitrary m ∈ N write

Ck(Fe−t ,
⋃

ω∈Σ∗
Gω ∩B)

=

m−1∑
n=0

∑
ω∈Σn

Ck(Fe−t , Gω ∩B) +
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

Ck(Fe−t , Guω ∩B).
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As in the proof of Item (i) it can be easily seen that the first summand on

the right hand side of the preceding equation is o(et(δ−k)). Further, we have

either Guω ⊆ φκO or Guω ∩ φκO = ∅, the former of which holds if and only if

uωx ∈ [κ] for some and thus any x ∈ Σ∞. This implies Ck(Fe−t , Guω ∩ φκO) =

1[κ](uωx) · Ck(Fe−t , Guω) which shows Item (ii).

That the same is true for the total variation measure can be easily verified in exactly the

same way.

With regard to Step (II) from the beginning of Section 4.1 we now show that Prohorov’s

theorem can be applied in order to obtain the desired convergence.

Lemma 4.6. Suppose that we are in the situation of Lemma 4.5. Moreover, assume that

e−t(δ−k)Cvar
k (Fe−t) is uniformly bounded for t ∈ (1,∞) ∩ Uk. Then we have the following.

(i) If there exists a signed Borel measure μ such that ess-limt→∞ e−t(δ−k)Ck(Fe−t , B) =

μ(B) for every B ∈ EF , where EF is as defined in Equation (4.1) and the essential

limit is taken over Uk, then

ess-w-lim
t→∞ e−t(δ−k)Ck(Fe−t , ·) = μ(·).

(ii) If there exists a signed Borel measure μ such that for every B ∈ EF ,
limt→∞ t−1

∫ t
0 e

−T (δ−k)Ck(Fe−T , B)dT = μ(B) , then

w-lim
t→∞ t−1

∫ t

0
e−T (δ−k)Ck(Fe−T , ·)dT = μ(·).

Proof. We start with proving Item (i). Define

P := {μt(·) := e−t(δ−k)Ck(Fe−t , ·) | t ∈ (1,∞) ∩ Uk}.
By the hypothesis and Proposition 2.7, the family P is uniformly tight and totally bounded.

Let (Tn)n∈N denote a sequence in (0, 1) which converges to zero and for which T−1
n ∈ Uk for

n ∈ N. Then by Prohorov’s Theorem (Theorem A.7) there exists a subsequence (Tnk
)k∈N

and a finite signed Borel measure μ̃ such that (μT−1
nk

)k∈N converges weakly to μ̃. However,

for B ∈ EF the essential limit ess-limt→∞ e−t(δ−k)Ck(Fe−t , B) exists by assumption and

coincides with μ(B). Lemma 4.4 states that EF is an intersection stable generator for

B(Rd). Thus, by Proposition A.4 we conclude that μ̃ coincides with the measure μ for

every such sequence (Tnk
)k∈N.

Item (ii) can be shown in the same way by taking

P :=

{
μt(·) := t−1

∫ t

0
e−T (δ−k)Ck(Fe−T , ·)dT

∣∣∣∣ t ∈ (1,∞)

}
.
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The tools that we established above, now allow us to prove our main results. We begin

with the results for general self-conformal sets in the the next section.

4.2 Self-Conformal Sets – Proofs of Theorems 2.29, 2.31

and 2.33

In this section we prove Theorems 2.29, 2.31 and 2.33, which are concerned with the existence

of the local Minkowski content and the fractal curvature measures of self-conformal sets.

For showing the existence of the limits in Theorems 2.29 and 2.31 we require the following

approximation argument.

Lemma 4.7. For an arbitrary x ∈ Σ∞ and Υ ∈ R the following hold.

(i) (a) Suppose that we are in the situation of Theorem 2.29. Then having Υ ≤
�2d−δ
m

∑
ω∈Σm

∫∞
−∞ e−T (δ−d)

∑Q
i=1 λd(Fe−T ∩Gi

ω)dT ·h−δξ(ωx) for all sufficiently

large m ∈ N implies

Υ ≤ lim inf
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT.

(b) Suppose that we are in the situation of Theorem 2.31. Then having Υ ≤
�δm
∑

ω∈Σm

∑Q
i=1|Gi

ω|δh−δξ(ωx) for all sufficiently large m ∈ N implies

Υ ≤ lim inf
m→∞

Q∑
i=1

∑
ω∈Σm

|Gi
ω|δ.

(ii) (a) Suppose that we are in the situation of Theorem 2.29. Then having Υ ≥
�−2d+δ
m

∑
ω∈Σm

∫∞
−∞ e−T (δ−d)

∑Q
i=1 λd(Fe−T ∩Gi

ω)dT ·h−δξ(ωx) for all sufficiently

large m ∈ N implies

Υ ≥ lim sup
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT.

(b) Suppose that we are in the situation of Theorem 2.31. Then having Υ ≥
�−δ
m

∑
ω∈Σm

∑Q
i=1|Gi

ω|δh−δξ(ωx) for all sufficiently large m ∈ N implies

Υ ≥ lim sup
m→∞

Q∑
i=1

∑
ω∈Σm

|Gi
ω|δ.
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Proof. We are first going to approximate the eigenfunction h−δξ of the Perron-Frobenius

operator L−δξ. For that we claim that Ln
−δξ1(x) =

∑
u∈Σn |φ′

u(πx)|δ for each x ∈ Σ∞ and

n ∈ N, where 1 is the constant one-function. This can be easily seen by induction. Since

Ln
−δξ1 converges uniformly to the eigenfunction h−δξ as n → ∞ (see Equation (3.3)) we

have that

∀ε > 0 ∃M ∈ N : ∀n ≥ M, ∀x ∈ Σ∞ :

∣∣∣∣ ∑
u∈Σn

|φ′
u(πx)|δ − h−δξ(x)

∣∣∣∣ < ε. (4.23)

Furthermore, according to the BDP (see Lemma 2.21) we know that

∀ε′ > 0 ∃M ′ ∈ N : ∀m ≥ M ′ : |�m − 1| < ε′. (4.24)

Without loss of generality we assume that F possesses exactly one primary gap G with

corresponding main gaps Gω for ω ∈ Σ∗.

ad (i)a: Note that for u ∈ Σ∗, m ∈ N, ω ∈ Σm, x ∈ Σ∞ and T ∈ R we have that

|φ′
u(πωx)|dλd(Fe−T ∩Gω) ≤ �dmλd(φu(Fe−T ) ∩Guω)

≤ �dmλd((φu(F )e−T �m|φ′
u(πωx)| ∩Guω).

Moreover, (φuF )e−T ∩Guω = Fe−T ∩Guω for all T ∈ R, since Guω ⊆ φuO. Thus,

Equations (4.23) and (4.24) imply the following for all n ≥ M and m ≥ M ′.

Υ ≤ �2d−δ
m

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Gω)dT · h−δξ(ωx)

≤ �3d−δ
m

∑
ω∈Σm

∑
u∈Σn

∫ ∞

−∞
e−T (δ−d)|φ′

u(πωx)|δ−dλd(Fe−T |φ′
u(πωx)|�m ∩Guω)dT

+ ε�2d−δ
m

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Gω)dT

= �4d−2δ
m

∑
ω∈Σm

∑
u∈Σn

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Guω)dT

+ ε�2d−δ
m

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Gω)dT

≤ (1 + ε′)4d−2δ
∑

ω∈Σm

∑
u∈Σn

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Guω)dT

+ ε(1 + ε′)2d−δ
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Gω)dT

=: Am,n.
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Hence, for all ε, ε′ > 0

Υ ≤ lim inf
m→∞ lim inf

n→∞ Am,n

≤ (1 + ε′)4d−2δ lim inf
m→∞ lim inf

n→∞
∑

ω∈Σm

∑
u∈Σn

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Guω)dT

+ ε(1 + ε′)2d−δ lim sup
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Gω)dT. (4.25)

The BDP implies that the limits of the sums in Equation (4.25) are finite, which

is shown in the following. Recall that we let ‖φ′
ω‖∞ := supx∈X |φ′

ω(x)| denote
the supremum-norm of φ′

ω. Note that λd(Fe−T ∩G) = λd(G) for T ≤ − ln diamG

and that by (COND 4) there exists a constant C̃ ∈ R and a δI < δ such that

e−t(δI−d)λd(Fe−t ∩G) ≤ C̃ for all t ∈ R.

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)λd(Fe−T ∩Gω)dT

≤
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−d)‖φ′

ω‖d∞λd(Fe−T �0/‖φ′
ω‖∞ ∩G)dT

=
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−d)‖φ′

ω‖δ∞�d−δ
0 λd(Fe−T ∩G)dT

=
∑

ω∈Σm

(∫ − ln diamG

−∞
e−T (δ−d)‖φ′

ω‖δ∞�d−δ
0 λd(G)dT

+

∫ ∞

− ln diamG
C̃e−T (δ−δI)‖φ′

ω‖δ∞�d−δ
0 dT

)
= �d−δ

0

(
λd(G)

d− δ
(diamG)δ−d +

C̃

δ − δI
(diamG)δ−δI

) ∑
ω∈Σm

‖φ′
ω‖δ∞.

In Lemma 4.2.12 in [MU03] it is shown that
∑

ω∈Σm ‖φ′
ω‖δ∞ =: am defines a

bounded sequence (am)m∈N. Therefore, letting ε and ε′ tend to zero, Equa-

tion (4.25) implies the assertion of Item (i)a.

ad (i)b: Here, we use the same methods which we applied for showing Item (i)a. For
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n ≥ M and m ≥ M ′ we have

Υ ≤ �δm
∑

ω∈Σm

|Gω|δh−δξ(ωx)

≤ �δm
∑

ω∈Σm

|Gω|δ
(∑

u∈Σn

|φ′
u(πωx)|δ + ε

)
≤ �2δm

∑
ω∈Σm

∑
u∈Σn

|Guω|δ + ε�δm
∑

ω∈Σm

‖φ′
ω‖δ∞ · |G|δ

≤ (1 + ε′)2δ
∑

ω∈Σm

∑
u∈Σn

|Guω|δ + ε(1 + ε′)δ
∑

ω∈Σm

‖φ′
ω‖δ∞ · |G|δ

=: Am,n.

For all ε, ε′ > 0 we have

Υ ≤ lim inf
m→∞ lim inf

n→∞ Am,n

≤ (1 + ε′)2δ lim inf
m→∞ lim inf

n→∞
∑

ω∈Σm

∑
u∈Σn

|Guω|δ

+ ε(1 + ε′)δ lim sup
m→∞

∑
ω∈Σm

‖φ′
ω‖δ∞ · |G|δ.

As in the proof of Item (i)a, we conclude that the assertion is implied by taking

the limits as ε and ε′ tend to zero.

The same arguments can be used to show Item (ii).

4.2.1 Proof of Theorem 2.29

In proving Theorem 2.29, we are going to follow the structure presented in the beginning

of Section 4.1. In particular, we need to verify the prerequisites of the Lemmas from

Section 4.1. That we can apply Key Lemma 4.2 is shown next.

Lemma 4.8. Suppose that we are in the situation of Theorem 2.29. Then Items (A) to (G)

of Key Lemma 4.2 are satisfied for fd,ω : R → R given by

fd,ω(t) :=

Q∑
i=1

λd(Fe−t ∩Gi
ω),

where ω ∈ Σm for some fixed m ∈ N.

Proof. Without loss of generality we assume that F possesses exactly one primary gap

which we denote by G. The associated main gaps are denoted by Gω for ω ∈ Σ∗. Set

gω := diam(Gω)/2. For t < − ln gω we have fd,ω(t) = λd(Gω).
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ad (A): fd,ω is defined on the whole real line.

ad (B): fd,ω is continuous which results by combining Theorem 1 with Lemma 5 from

[Sta76].

ad (C): By (COND 4), λd(Fe−t ∩ G)e−t(δI−d) is uniformly bounded by a constant C̃.

Thus∫ ∞

−∞
e−t(δ−d)|fd,ω(t)|dt ≤

∫ − ln gω

−∞
e−t(δ−d)λd(Gω)dt+

∫ ∞

− ln gω

C̃e−t(δ−δI)dt

=
1

d− δ
gδ−d
ω λd(Gω) +

1

δ − δI
C̃gδ−δI

ω

< ∞.

ad (D): Note that by the definition of the geometric potential function ξ we have

e−dSnξ(uωx) = |φ′
u(πωx)|d for every n ∈ N, u ∈ Σn, ω ∈ Σ∗ and x ∈ Σ∞. Thus,

Nabs
d,m(t, x) :=

∑
ω∈Σm

∞∑
n=0

∑
u∈Σn

e−dSnξ(uωx)λd(Fe−t+Snξ(uωx) ∩Gω)

≤
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

�dmλd(Fe−t�m ∩Guω)

≤
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

�dmλd(Guω) ≤ �dmλd(O).

Here, we have used the fact that (φuF )ε ∩Guω = Fε ∩Guω for all ε > 0 and u, ω

as above.

ad (E): Item (E)b is satisfied, since t �→ λd(Fe−t+Snξ(uωx) ∩Gω) is non-increasing for every

n ∈ N, u ∈ Σn, ω ∈ Σ∗ and x ∈ Σ∞.

ad (F): First, define

Nω
d (t, x) :=

∞∑
n=0

∑
u∈Σn

e−dSnξ(ux)λd(Fe−t+Snξ(ux) ∩Gω)

for ω ∈ Σm, t ∈ R and x ∈ Σ∞ and note that Nω
d satisfies a renewal type

equation:∑
y : σy=x

Nω
d (t− ξ(y), y)e−dξ(y) = Nω

d (t, x)− λd(Fe−t ∩Gω). (4.26)

Thus, the function Mω
d given by Mω

d (t, x) := e−t(δ−d)Nω
d (t, x)/h−δξ(x) satisfies

Mω
d (t, x) =e−t(δ−d)λd(Fe−t ∩Gω)/h−δξ(x)

+
∑

y : σy=x

Mω
d (t− ξ(y), y)e−δξ(y) h−δξ(y)

h−δξ(x)
. (4.27)
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For showing the assertion of Item (F) we now show that the function Mω
d is uni-

formly bounded for t ∈ R and x ∈ Σ∞. This finishes the proof of Item (F), since

h−δξ is continuous and thus bounded on Σ∞. Define h−δξ := infx∈Σ∞ h−δξ(x).

Since h−δξ is strictly positive and Σ∞ is compact, h−δξ > 0. Further define

M
ω
d (t) := sup

t′<t, x∈Σ∞
Mω

d (t
′, x)

and note that M
ω
d (− ln gω) is finite:

M
ω
d (− ln gω) ≤ gδ−d

ω

h−δξ

· sup
t′<− ln gω , x∈Σ∞

Nω
d (t

′, x)

=
gδ−d
ω

h−δξ

· sup
x∈Σ∞

∞∑
n=0

∑
u∈Σn

e−dSnξ(ux)λd(Gω)

=
gδ−d
ω

h−δξ

· sup
x∈Σ∞

∞∑
n=0

Ln
−dξ1(x)λd(Gω) < ∞.

This bound follows from the spectral radius formula (see Equation (3.5)) and the

fact that the spectral radius of L−dξ satisfies γ−dξ < γ−δξ = 1 (see Theorems 3.2

and 3.9 and Proposition 3.6). Now consider the case t > − ln gω and choose ε > 0

such that ξ(x) > ε for all x ∈ Σ∞. Such an ε exists, since the maps φ1, . . . , φN

are defined on a compact set and are contractions and differentiable which implies

that their derivative is uniformly bounded away from 1. By (COND 4), there

exists a δI < δ and a C̃ ∈ R such that e−t(δ−d)λd(Fe−t ∩G) ≤ C̃e−t(δ−δI). Thus,

for ω ∈ Σ∗ we have that

e−t(δ−d)λd(Fe−t ∩Gω) = e−t(δ−d)λd((φωF )e−t ∩Gω)

≤ �d−δI
0 ‖φ′

ω‖δI∞C̃︸ ︷︷ ︸
=:C

·e−t(δ−δI). (4.28)

Since h−δξ is the eigenfunction with eigenvalue γ−δξ = 1 of L−δξ, we have

that 1 =
∑

y : σy=x e
−δξ(y)h−δξ(y)/h−δξ(x) for all x ∈ Σ∞. Since furthermore

M
ω
d (t− ε) ≥ M

ω
d (t− ξ(x)) for all x ∈ Σ∞ we conclude that

M
ω
d (t− ε) ≥

∑
y : σy=x

M
ω
d (t− ξ(y)) · e−δξ(y) h−δξ(y)

h−δξ(x)
(4.29)
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for all x ∈ Σ∞. Together with Equation (4.27) this implies that

sup
t′∈[t−ε,t)
x∈Σ∞

Mω
d (t

′, x)−M
ω
d (t− ε)

(4.29)

≤ sup
t′∈[t−ε,t)
x∈Σ∞

Mω
d (t

′, x)− sup
x∈Σ∞

∑
y : σy=x

M
ω
d (t− ξ(y)) · e−δξ(y) · h−δξ(y)

h−δξ(x)

≤ sup
t′∈[t−ε,t)
x∈Σ∞

Mω
d (t

′, x)− sup
t′∈[t−ε,t)
x∈Σ∞

∑
y : σy=x

Mω
d (t

′ − ξ(y), y) · e−δξ(y) · h−δξ(y)

h−δξ(x)

≤ sup
t′∈[t−ε,t)
x∈Σ∞

(
Mω

d (t
′, x)−

∑
y : σy=x

Mω
d (t

′ − ξ(y), y) · e−δξ(y) · h−δξ(y)

h−δξ(x)

)
(4.27)
= sup

t′∈[t−ε,t)
x∈Σ∞

e−t′(δ−d)λd(Fe−t′ ∩Gω)/h−δξ(x)

(4.28)

≤ C · e−(t−ε)(δ−δI)/h−δξ.

Therefore,

M
ω
d (t) = M

ω
d (t− ε) + max

{
0, sup

t′∈[t−ε,t)
x∈Σ∞

Mω
d (t

′, x)−M
ω
d (t− ε)

}

≤ M
ω
d (t− ε) + Ce−(t−ε)(δ−δI)/h−δξ.

Hence, for arbitrary n ∈ N and t ≥ − ln gω we have

M
ω
d (t+ nε) ≤ C

h−δξ

·
n−1∑
j=0

e−jε(δ−δI)e−t(δ−δI) +M
ω
d (t)

≤ Ce−t(δ−δI)

h−δξ(1− e−ε(δ−δI))
+M

ω
d (t).

This now implies

sup
n∈N

M
ω
d (− ln gω + nε) ≤ C · gδ−δI

ω

h−δξ · (1− e−ε(δ−δI))
+M

ω
d (− ln gω) < ∞,

proving the assertion. The inspiration for the construction of the functions Mω
d

comes from [Lal89].

ad (G): Since λd(Fe−t ∩Gω) = λd(Gω) for all t < − ln(gω) and by the gibbs property of
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the measure μ−dξ (see Equation (3.1)) it follows for all t < − ln diamG that

Nabs
d,m(t, x) ≤

∑
ω∈Σm

∞∑
n=0

∑
u∈Σn

e−dSnξ(uωx)λd(Gω)

≤
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

cμ−dξ([u])e
nP (−dξ)λd(Gω)

=
∑

ω∈Σm

∞∑
n=0

cenP (−dξ)λd(Gω)

≤ cλd(O)/(1− eP (−dξ)) =: C < ∞,

where c denotes the constant in the Gibbs property of μ−δξ. Here, we have used

that P (−dξ) < P (−δξ) = 0, which follows from Theorem 3.2 and Proposition 3.6.

We now turn to proving the two items of Theorem 2.29 and start with Item (ii) which is

concerned with the non-lattice case.

Proof of Theorem 2.29(ii). Recall that the main ideas of this proof are presented in Steps

(I) to (V) in the beginning of Section 4.1.

We start with showing that e−t(δ−d)λd(Fe−t ∩B) converges to the well-defined limit

lim
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT

ν(B)∫
ξdμ−δξ

(4.30)

as t → ∞ for every B ∈ EF , where EF is as defined in Equation (4.1) and by this specify

the measure μ from Step (II). Then an application of Lemma 4.6 finishes the proof.

For showing that e−t(δ−d)λd(Fe−t ∩B) converges to the limit in Equation (4.30) for B ∈ EF ,
we want to apply Lemma 4.5. (This is Step (III).) In Equation (4.28) we have shown that

the fact that there exists a δI < δ such that e−t(δI−d) · λd(Fe−t ∩Gi) is uniformly bounded

by some constant C̃ for t ∈ R and every i ∈ {1, . . . , Q} implies that e−t(δI−d) ·λd(Fe−t ∩Gi
ω)

is also uniformly bounded for t ∈ R, ω ∈ Σ∗ and i ∈ {1, . . . , Q}. Therefore, Lemma 4.5 is

applicable. We distinguish between the two cases B ∈ KF and B ∈ EF \ KF .

For B ∈ KF , Lemma 4.5 implies that limt→∞ e−t(δ−d)λd(Fe−t ∩B) = 0 = ν(B). The case

B ∈ EF \ KF requires some more work. For B ∈ EF \ KF there exists a κ ∈ Σ∗ such that

B = φκO. By Lemma 4.5(ii) we know that for all m ∈ N and x ∈ Σ∞ we have that

λd(Fe−t ∩ φκO) =
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)λd(Fe−t ∩⋃Q
i=1G

i
uω) + o(et(δ−d)) (4.31)
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as t → ∞. Now we come to Step (IV) and approximate the first term on the right hand

side of Equation (4.31).

Since Fe−t ∩Gi
uω = (φuF )e−t ∩Gi

uω, the BDP implies the following for an arbitrary x ∈ Σ∞,

i ∈ {1, . . . , Q}, ω ∈ Σm and u ∈ Σ∗.

λd(Fe−t ∩Gi
uω) ≤ |φ′

u(πωx)|d�dmλd(Fe−t�m/|φ′
u(πωx)| ∩Gi

ω) and

λd(Fe−t ∩Gi
uω) ≥ |φ′

u(πωx)|d�−d
m λd(Fe−t�−1

m /|φ′
u(πωx)| ∩Gi

ω).

Thus, using that |φ′
u(πωx)| = e−Snξ(uωx) for n ∈ N, u ∈ Σn, ω ∈ Σ∗ and x ∈ Σ∞ by

definition of the geometric potential function in Definition 2.20 we altogether obtain the

following for an arbitrary x ∈ Σ∞

λd(Fe−t ∩ φκO)

≤
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−dSnξ(uωx)�dm

Q∑
i=1

λd(Fe−(t−ln �m)+Snξ(uωx) ∩Gi
ω) + o(et(δ−d))

= �dmNd,m,κ(t− ln �m, x) + o(et(δ−d)) (4.32)

as t → ∞, where Nd,m,κ is as defined in Key Lemma 4.2 with fd,ω(t) :=
∑Q

i=1 λd(Fe−t ∩Gi
ω).

Analogously, a lower bound for λd(Fe−t ∩ φκO) is given by

λd(Fe−t ∩ φκO) ≥ �−d
m Nd,m(t+ ln �m, x) + o(et(δ−d)).

Lemma 4.8 allows us to apply Key Lemma 4.2(ii) and we obtain for all m ∈ N and x ∈ Σ∞

that

Nd,m,κ(t− ln �m, x)

∼R
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx) · et(δ−d)�d−δ
m

(4.33)

as t → ∞. Thus, combining Equations (4.32) and (4.33) we conclude that

lim sup
t→∞

e−t(δ−d)λd(Fe−t ∩ φκO)

≤ �2d−δ
m

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx)

and analogously that

lim inf
t→∞ e−t(δ−d)λd(Fe−t ∩ φκO)

≥ �−2d+δ
m

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx)
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hold for all m ∈ N and x ∈ Σ∞. An application of Lemma 4.7 now gives

lim sup
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

≤ lim inf
t→∞ e−t(δ−d)λd(Fe−t ∩ φκO)

≤ lim sup
t→∞

e−t(δ−d)λd(Fe−t ∩ φκO)

≤ lim inf
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

which shows that all the above limits exist. Moreover,∫
1[κ]dν−δξ = ν(φκO), (4.34)

which can be seen as follows. (COND 2) states that the upper Minkowski dimension of

∂O is strictly less than δ. Therefore, the δ-dimensional Hausdorff measure Hδ of ∂O is

zero. It follows that ν(∂O) = 0, since ν is equivalent to Hδ by Corollary 4.18 in [MU96].

This shows that for B ∈ EF \ KF the expression e−t(δ−d)λd(Fe−t ∩B) also converges to the

well-defined limit from Equation (4.30). This furthermore implies that e−t(δ−d)λd(Fe−t) is

uniformly bounded for t ∈ (1,∞). Therefore, we can apply Lemma 4.6 which finishes the

proof.

Proof of Theorem 2.29(i). The main ideas of this proof are presented in Steps (I) to (V)

in the beginning of Section 4.1. We start with showing that t−1
∫ t
0 e

−T (δ−d)λd(Fe−T ∩B)dT

converges to the well-defined limit

lim
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT · ν(B)∫

ξdμ−δξ
(4.35)

as t → ∞ for every B ∈ EF , where EF is defined in Equation (4.1) and by this specify the

measure μ from Step (II).

Firstly, take B ∈ KF (see Equation (4.2) for the definition of KF ). In Equation (4.28)

we have shown that the fact that there exists a δI < δ such that e−t(δI−d) · λd(Fe−t ∩Gi)

is uniformly bounded by some constant C̃ for t ∈ R and i ∈ {1, . . . , Q} implies that

e−t(δI−d)λd(Fe−t ∩ Gi
ω) is also uniformly bounded for t ∈ R, ω ∈ Σ∗ and i ∈ {1, . . . , Q}.

Thus, we can apply Lemma 4.5. By Lemma 4.5(i) we know that λd(Fe−t ∩B) = o(et(δ−d))

as t → ∞. Therefore, for all ε > 0 there exists a T̃ ∈ R such that for all t ≥ T̃ we have
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that e−t(δ−d)λd(Fe−t ∩B) ≤ ε. Thus, for t ≥ T̃ we have

t−1

∫ t

0
e−T (δ−d)λd(Fe−T ∩B)dT

= t−1

(∫ T̃

0
e−T (δ−d)λd(Fe−T ∩B)dT +

∫ t

T̃
e−T (δ−d)λd(Fe−T ∩B)dT

)

≤ t−1

(∫ T̃

0
e−T (δ−d)λd(Fe−T ∩B)dT + ε(t− T̃ )

)
→ ε

as t → ∞. Hence,

lim
t→∞ t−1

∫ t

0
e−T (δ−d)λd(Fe−T ∩B)dT = 0 = ν(B). (4.36)

Now, take B = φκO ∈ EF \ KF for some κ ∈ Σ∗. By Lemma 4.5(ii) we have for all m ∈ N

and all x ∈ Σ∞ that

λd(Fe−t ∩B) =
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)λd(Fe−t ∩⋃Q
i=1G

i
uω) + o(et(δ−d)) (4.37)

as t → ∞. The BDP implies that for m ∈ N, ω ∈ Σm, i ∈ {1, . . . , Q} and x ∈ Σ∞ we have

that

λd(Fe−t ∩Gi
uω) = λd((φuF )e−t ∩ φu(G

i
ω))

≤ �dm|φ′
u(πωx)|dλd(Fe−t�m/|φ′

u(πωx)| ∩Gi
ω). (4.38)

Setting fd,ω(t) :=
∑Q

i=1 λd(Fe−t ∩ Gi
ω) and recalling the definition of Nd,m,κ from Key

Lemma 4.2 we conclude from Equation (4.37) that

λd(Fe−t ∩B) ≤ �dmNd,m,κ(t− ln �m, x) + o(et(δ−d)). (4.39)

Applying the same argument as in the case of B ∈ KF to the second summand on the right
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hand side of Equation (4.39) now shows that for an arbitrary x ∈ Σ∞ we have

lim sup
t→∞

t−1

∫ t

0
e−T (δ−d)λd(Fe−T ∩B)dT

≤ lim sup
t→∞

t−1

∫ t

0
e−T (δ−d)�dmNd,m,κ(T − ln �m, x)dT

= lim sup
t→∞

t−1

∫ t−ln �m

− ln �m

e−T (δ−d)Nd,m,κ(T, x)dT · �2d−δ
m

= lim sup
t→∞

(
t−1

∫ 0

− ln �m

e−T (δ−d)Nd,m,κ(T, x)dT+

t− ln �m
t

· 1

t− ln �m

∫ t−ln �m

0
e−T (δ−d)Nd,m,κ(T, x)dT

)
· �2d−δ

m

=
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

· h−δξ(ωx)�
2d−δ
m ,

where the last equality is a consequence of Key Lemma 4.2(i), which we can apply because

of Lemma 4.8. Analogously one can show that

lim inf
t→∞ t−1

∫ t

0
e−T (δ−d)λd(Fe−T ∩B)dT

≥
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

· h−δξ(ωx)�
−2d+δ
m .

Hence, Lemma 4.7 implies

lim sup
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

≤ lim inf
t→∞ t−1

∫ t

0
e−T (δ−d)λd(Fe−T ∩B)dT

≤ lim sup
t→∞

t−1

∫ t

0
e−T (δ−d)λd(Fe−T ∩B)dT

≤ lim inf
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

which shows that all the above limits exist and are equal. Altogether, we therefore obtain

for an arbitrary B ∈ EF that

lim
t→∞ t−1

∫ t

0
e−T (δ−d)λd(Fe−T ∩B)dT

= lim
m→∞

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−d)

Q∑
i=1

λd(Fe−T ∩Gi
ω)dT · ν(B)∫

ξdμ−δξ
,
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since
∫
1[κ]dν−δξ = ν(φκO) was shown in Equation (4.34). The rest follows from Lemma 4.6,

as in the end of the proof of Theorem 2.29(ii) we have shown that e−t(δ−d)λd(Fe−t) is

uniformly bounded for t ∈ (1,∞).

4.2.2 Proof of Theorem 2.31

In the following we provide the proof of Theorem 2.31. It results by applying Key Lemma 4.2.

That the prerequisites of Key Lemma 4.2 are satisfied is shown in the next lemma.

Lemma 4.9. Assume that we are in the situation of Theorem 2.31. Then Items (A) to (G)

of Key Lemma 4.2 are satisfied for fk,ω : R → R given by

fk,ω(t) :=

Q∑
i=1

Ck(Fe−t , Gi
ω),

where k ∈ {0, 1} and ω ∈ Σm for some fixed m ∈ N.

Proof. We first show that the prerequisites of Theorem 2.31 imply (COND 2) to (COND

4) when d = 1. Since X \ ΦX has at most N − 1 connected components, the number

of primary gaps of F is finite, implying (COND 3). Thus, we can assume without loss

of generality that F possesses exactly one primary gap which we denote by G. We use

the interpretations C1(Fe−t , G) = λ1(Fe−t ∩G) and C0(Fe−t , G) = λ0(∂Fe−t ∩G)/2 from

Proposition 2.7. Then

λ1(Fe−t ∩G) =

⎧⎨⎩|G| : t ≤ − ln(|G|/2)
2e−t : t > − ln(|G|/2)

which implies that λ1(Fe−t ∩ G) · e−t(δI−1) is uniformly bounded in t for any δI ∈ [0, 1].

Similarly, λ1(Fe−t ∩Oe−t \O) = 2e−t shows that λ1(Fe−t ∩Oe−t \O) · e−t(δO−1) is uniformly

bounded in t ∈ R for δO = 0. Therefore, (COND 2) and (COND 4) also hold. Hence, for

k = 1 the assertion of this lemma follows from Theorem 2.29.

This leaves to consider the case k = 0.

ad (A): f0,ω is defined on the whole real line.

ad (B): Note that λ0(∂Fe−t ∩Gω)/2 = 1(− ln(|Gω |/2),∞)(t). Thus, f0,ω is left-continuous.

ad (C): The equality λ0(∂Fe−t ∩Gω)/2 = 1(− ln(|Gω |/2),∞)(t) implies that∫ ∞

−∞
e−δt|f0,ω(t)|dt = 1

δ

( |Gω|
2

)δ

< ∞.
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ad (D): Since f0,ω is defined on the whole real line for every ω ∈ Σm, we have V = R.

Nabs
0,m(t, x) =

∑
ω∈Σm

∞∑
n=0

∑
u∈Σn

|f0,ω(t− Snξ(uωx))|

=
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1(− ln(|Gω |/2),∞)(t− Snξ(uωx)).

As we assume that the derivatives φ′
i are bounded away from one for i ∈

{1, . . . , N} and as ξ(uωx) := − ln|φ′
u1
(πσuωx)|, the sequence (Snξ(uωx))n∈N is

strictly increasing and unbounded. Therefore, for a fixed t ∈ R the above series

actually is a finite sum and hence Nabs
0,m(t, x) is finite for every t ∈ R and x ∈ Σ∞.

ad (E): Item (E)a is satisfied with t∗ := − ln(|G|/2).

ad (F): The proof of this part can be carried out in analogy to the proof of the corre-

sponding part in Lemma 4.8: Setting Nω
0 (t, x) :=

∑∞
n=0

∑
u∈Σn f0,ω(t−Snξ(ux))

for x ∈ Σ∞ gives the respective function which satisfies a renewal type equation∑
y : σy=x

Nω
0 (t− ξ(y), y) = Nω

0 (t, x)− f0,ω(t)

for x ∈ Σ∞. Setting Mω
0 (t, x) := e−tδNω

0 (t, x)/h−δξ(x) as in the proof of

Lemma 4.8(F), we obtain M
ω
0 (− ln(|Gω|/2)) = 0. The rest follows through in

the same way.

ad (G): Since f0,ω = 0 for t ≤ − ln(|G|/2) for all m ∈ N and all ω ∈ Σm, we have

Nabs
0,m(t, x) = 0 for t ≤ t∗ := − ln(|G|/2). Note that the here defined t∗ coincides

with the t∗ from Item (E)a.

Now, we turn to proving the three parts of Theorem 2.31. Item (iii) of Theorem 2.31

follows from the results which we obtain for C1+α-diffeomorphic images of self-similar sets,

and which are proven in Section 4.4.

Proof of Theorem 2.31(iii). This statement follows from Theorem 2.43(iii) together with

Theorem 2.46. Both these theorems are proven in Section 4.4.

Before providing the proofs of Items (i) and (ii) of Theorem 2.31, we present global

statements which we use in the proofs of both parts.
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Remark 4.10. In the beginning of the proof of Lemma 4.9 we have seen that the prerequisites

of Theorem 2.31 imply (COND 2) to (COND 4). Therefore, the results in Items (i) and (ii)

of Theorem 2.31 concerning the case k = 1 follow from the respective results in Theorem 2.29

by using that

C1(Fe−t , Gi
ω) =

⎧⎨⎩|Gi
ω| : t ≤ − ln(|Gi

ω|/2)
2e−t : t > − ln(|Gi

ω|/2),
(4.40)

which follows from the geometric interpretation for Ck(Fe−t , ·) from Proposition 2.7.

Thus, we concentrate on the case k = 0 and remark that the idea of proof is the same as

the one for Theorem 2.29: We first consider the limiting behaviour of e−tδC0(Fe−t , B) for

B ∈ EF and then apply Lemma 4.6 to obtain the results concerning the measures. Without

loss of generality we assume that F possesses exactly one primary gap which we denote by

G.

Remark 4.11. We can apply Lemma 4.5 since firstly, Cvar
0 (Fe−t , Oe−t \O)e−tδO = e−tδ0 is

uniformly bounded in t for δO = 0 and secondly,

Cvar
0 (Fe−t , Gω) · e−tδI = 1(− ln(|Gω |/2),∞)(t) · e−tδI

is bounded for all δI ∈ [0, δ) and all ω ∈ Σ∗ by 1.

An application of Lemma 4.5 implies that

lim
t→∞ e−tδC0(Fe−t , B) = 0 = ν(B) for B ∈ KF . (4.41)

Furthermore, for B = φκO ∈ EF \KF , where κ ∈ Σ∗, Lemma 4.5 implies that for all m ∈ N

and all x ∈ Σ∞ we have

C0(Fe−t , B) =
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx) · C0(Fe−t , Guω) + o(etδ).

Setting f0,ω(t) := C0(Fe−t , Gω) = 1(− ln(|Gω |/2),∞)(t) as in Lemma 4.9 and using that

|Guω| ≤ �m|φ′
u(πωx)| · |Gω| holds for all u ∈ Σ∗, ω ∈ Σm we obtain that

C0(Fe−t , Guω) = 1(− ln(|Guω |/2),∞)(t) ≤ 1(− ln(�m|φ′
u(πωx)|·|Gω |/2),∞)(t)

= C0(Fe−t−ln �m+Snξ(uωx) , Gω) = f0,ω(t+ ln �m − Snξ(uωx)) (4.42)

and analogously that

C0(Fe−t , Guω) ≥ f0,ω(t− ln �m − Snξ(uωx)) (4.43)

hold for all x ∈ Σ∞. Therefore, recalling the definition of N0,m,κ from Key Lemma 4.2

with this f0,ω we conclude that

C0(Fe−t , φκO) ≤ N0,m,κ(t+ ln �m) + o(etδ) and (4.44)

C0(Fe−t , φκO) ≥ N0,m,κ(t− ln �m) + o(etδ) (4.45)
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as t → ∞ for κ ∈ Σ∗.

Proof of Theorem 2.31(ii). For k = 1 the statement follows from Remark 4.10. Thus,

we assume k = 0 from now on. By Equation (4.41) it suffices to consider the case

B = φκO ∈ EF \KF for some κ ∈ Σ∗. Without loss of generality we assume that F posesses

exactly one primary gap which we denote by G. The associated main gaps are denoted

by Gω for ω ∈ Σ∗. We define f0,ω(t) := C0(Fe−t , Gω) for ω ∈ Σm, t ∈ R and some fixed

m ∈ N. Due to Lemma 4.9 we can apply Key Lemma 4.2(ii) to these f0,ω and obtain that

N0,m,κ satisfies

N0,m,κ(t, x) ∼R
∑

ω∈Σm

∫ ∞

−∞
e−TδC0(Fe−T , Gω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx)e
tδ (4.46)

as t → ∞. Evaluating the integral in Equation (4.46) by using that C0(Fe−T , Gω) =

1(− ln(|Gω |/2),∞)(T ) gives the asymptotic

N0,m,κ(t, x) ∼R
∑

ω∈Σm

2−δ|Gω|δ
δ

·
∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx)e
tδ

as t → ∞. Thus, Equations (4.44) and (4.45) imply that

lim sup
t→∞

e−tδC0(Fe−t , φκO) ≤ �δm
∑

ω∈Σm

2−δ|Gω|δ
δ

·
∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx) and

lim inf
t→∞ e−tδC0(Fe−t , φκO) ≥ �−δ

m

∑
ω∈Σm

2−δ|Gω|δ
δ

·
∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx)

hold for all m ∈ N. Applying Lemma 4.7 we hence obtain

lim sup
m→∞

∑
ω∈Σm

2−δ|Gω|δ
δ

·
∫
1[κ]dν−δξ∫
ξdμ−δξ

≤ lim inf
t→∞ e−tδC0(Fe−t , φκO)

≤ lim sup
t→∞

e−tδC0(Fe−t , φκO)

≤ lim inf
m→∞

∑
ω∈Σm

2−δ|Gω|δ
δ

·
∫
1[κ]dν−δξ∫
ξdμ−δξ

,

which shows that all the above limits exist and are equal. Since
∫
1[κ]dν−δξ = ν(φκO) (see

Equation (4.34)) this shows on the one hand that e−tδCvar
0 (Fe−t) is uniformly bounded for

t ∈ (1,∞) and on the other hand together with Equation (4.41) that

lim
t→∞ e−tδC0(Fe−t , B) = lim

m→∞
∑

ω∈Σm

|Gω|δ 2−δ

Hμ−δξ

· ν(B)

for all B ∈ EF . Thus, an application of Lemma 4.6 implies the assertion.



82 CHAPTER 4. PROOFS

Proof of Theorem 2.31(i). For k = 1 the statement follows from Remark 4.10. For k = 0

the proof is carried out in a similar vein as the proof of Theorem 2.29(i).

Without loss of generality, we assume that F possesses exactly one primary gap, which

we denote by G. We start by showing that t−1
∫ t
0 e

−δTC0(Fe−T , B)dT converges to the

well-defined limit

lim
m→∞

∑
ω∈Σm

2−δ|Gω|δ
Hμ−δξ

· ν(B)

as t → ∞ for every B ∈ EF , where EF is defined as in Equation (4.1). Due to Remark 4.11

we may apply Lemma 4.5. Lemma 4.5(i) states that C0(Fe−t , B) = o(eδt) as t → ∞ for

B ∈ KF . The same arguments as in the proof of Theorem 2.29(i) imply that

lim
t→∞ t−1

∫ t

0
e−δTC0(Fe−T , B)dT = 0 = ν(B)

for B ∈ KF (see Equation (4.36)). Now, take B = φκO ∈ EF \ KF for some κ ∈ Σ∗.
Lemma 4.5(ii) states that the following holds for all m ∈ N and x ∈ Σ∞.

C0(Fe−t , φκO) =
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)C0(Fe−t , Guω) + o(eδt) (4.47)

as t → ∞. As seen in Equations (4.42) and (4.43) we have for m ∈ N, ω ∈ Σm, u ∈ Σn

and x ∈ Σ∞ that

f0,ω(t− ln �m − Snξ(uωx)) ≤ C0(Fe−t , Guω) ≤ f0,ω(t+ ln �m − Snξ(uωx)) (4.48)

with f0,ω(t) := C0(Fe−t , Gω) as in Lemma 4.9. Recalling the definition of N0,m,κ from Key

Lemma 4.2, we conclude from Equations (4.47) and (4.48) that

N0,m,κ(t− ln �m, x) + o(etδ) ≤ C0(Fe−t , φκO) ≤ N0,m,κ(t+ ln �m, x) + o(etδ)

as t → ∞. Lemma 4.9 allows an application of Key Lemma 4.2, yielding

�−δ
m

∑
ω∈Σm

∫ ∞

−∞
e−TδC0(Fe−T , Gω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

· h−δξ(ωx)

≤ lim inf
t→∞ t−1

∫ t

0
e−TδC0(Fe−T , B)dT

≤ lim sup
t→∞

t−1

∫ t

0
e−TδC0(Fe−T , B)dT

≤ �δm
∑

ω∈Σm

∫ ∞

−∞
e−TδC0(Fe−T , Gω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

· h−δξ(ωx).

Recalling that C0(Fe−T , Gω) = 1(− ln(|Gω |/2),∞)(T ) for ω ∈ Σ∗ by Proposition 2.7, we have

that ∫ ∞

−∞
e−TδC0(Fe−T , Gω)dT = 2−δ|Gω|δ/δ.
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Hence an application of Lemma 4.7 gives

lim sup
m→∞

∑
ω∈Σm

|Gω|δ2−δ

∫
1[κ]dν−δξ

Hμ−δξ

≤ lim inf
t→∞ t−1

∫ t

0
e−δTC0(Fe−T , B)dT

≤ lim sup
t→∞

t−1

∫ t

0
e−δTC0(Fe−T , B)dT

≤ lim inf
m→∞

∑
ω∈Σm

|Gω|δ2−δ

∫
1[κ]dν−δξ

Hμ−δξ

.

Together with Equations (4.34) and (4.41) the assertion now follows from Lemma 4.6, since

it was shown in the end of the proof of Theorem 2.31(ii) that e−δtCvar
0 (Fe−t) is uniformly

bounded for t ∈ (1,∞).

4.2.3 Proof of Theorem 2.33

Items (i) and (ii) of Theorem 2.33 follow from the respective items in Theorem 2.31.

Item (iii) is the key part of Theorem 2.33. For its proof we use the following lemma.

Lemma 4.12. Assume that we are in the situation of Theorem 2.31 and that ξ is lattice.

Let ζ, ψ ∈ C(Σ∞) denote functions satisfying ξ − ζ = ψ − ψ ◦ σ and ζ(Σ∞) ⊆ aZ, where

a > 0 is maximal with this property. For x ∈ Σ∞ define the function η : R → R by

η(t) :=

∫
Σ∞

e−aδ
a−1(ψ(y)−t)�dν−δζ(y) · e−δt.

Then the following are equivalent.

(i) limt→∞ η(t) exists.

(ii) η is constant.

(iii)
∑
n∈Z

e−aδnν−δζ ◦ ψ−1([na, na+ t)) =
eδt − 1

eat − 1

∑
n∈Z

e−aδnν−δζ ◦ ψ−1([na, (n+ 1)a))

for all t ∈ [0, a).
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Proof. Clearly, η is periodic with period a. Therefore, (i) and (ii) are equivalent. Further,

η(t) =

∫
Σ∞

e−aδ
a−1(ψ(y)−t)�dν−δζ(y) · e−δt

=
∑
n∈Z

∫ (n+1)a

na
e−aδ
a−1(y−t)�dν−δζ ◦ ψ−1(y) · e−δt

=
∑
n∈Z

e−aδn

(
ν−δζ ◦ ψ−1([na, na+ a{a−1t})) · (1− e−aδ)

+ ν−δζ ◦ ψ−1([na, (n+ 1)a))e−aδ

)
eaδ{−a−1t}.

Thus, η is constant if and only if there exists a c ∈ R such that for all t ∈ [0, a) we have

∑
n∈Z

e−aδnν−δζ ◦ ψ−1([na, na+ t))

=

(
eδtc−

∑
n∈Z

e−aδnν−δζ ◦ ψ−1([na, (n+ 1)a))e−aδ

)
(1− e−aδ)−1.

Taking the limit as t → a we obtain that necessarily

c = e−aδ
∑
n∈Z

e−aδnν−δζ ◦ ψ−1([na, (n+ 1)a))

which proves the statement.

Proof of Theorem 2.33. Items (i) and (ii) are immediate consequences of the respective

items in Theorem 2.29. Thus, it remains to show Item (iii). For this, we are going to

apply Theorem 3.14 and therefore start by considering the 0-th fractal curvature measure.

Without loss of generality, we assume that F possesses exactly one primary gap, which we

denote by G. Recall that [∅] = Σ∞ from Definition 3.1. In Equations (4.44) and (4.45) we

have seen that

C0(Fe−t , O) ≤ N0,m,∅(t+ ln �m) + o(etδ) and (4.49)

C0(Fe−t , O) ≥ N0,m,∅(t− ln �m) + o(etδ) (4.50)

as t → ∞, where f0,ω : R → R is defined by f0,ω(t) := C0(Fe−t , Gω). Lemma 4.9 allows us

to apply Key Lemma 4.2. Since ξ is lattice by assumption, there exist ζ, ψ ∈ C(Σ∞) such

that ξ − ζ = ψ − ψ ◦ σ and such that the range of ζ is contained in a discrete subgroup

of R. We let a > 0 denote the maximal real number for which ζ(Σ∞) ⊆ aZ. Then Key
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Lemma 4.2(iii) yields

N0,m,∅(t, x) ∼R a
∑

ω∈Σm

e
aδ

⌊
t+ψ(ωx)

a

⌋
· h−δζ(ωx)∫

ζdμ−δζ

·
∫
Σ∞

∞∑
l=−∞

e−aδlf0,ω

(
al + a

{
t+ ψ(ωx)

a

}
− ψ(y)

)
dν−δζ(y)︸ ︷︷ ︸

=:A0,ω(x)

(4.51)

as t → ∞. The equality C0(Fe−t , Gω) = 1(− ln(|Gω |/2),∞)(t) implies that

f0,ω

(
al + a

{
t+ ψ(ωx)

a

}
− ψ(y)

)
= 1[l∗(y),∞)(l),

where

l∗(y) :=
⌊− ln(|Gω|/2) + ψ(y)

a
−
{
t+ ψ(ωx)

a

}⌋
+ 1.

Assuming that m is large enough so that l∗(y) is positive, we hence obtain

A0,ω(x) =

∫
Σ∞

∞∑
l=l∗(y)

e−aδldν−δζ(y)

=

∫
Σ∞

e−aδl∗(y)

1− e−aδ
dν−δζ(y)

= (eaδ − 1)−1

∫
Σ∞

e
−aδ

⌊− ln(|Gω |/2)+ψ(y)
a

−
{

t+ψ(ωx)
a

}⌋
dν−δζ(y).

Thus, with η as defined in Lemma 4.12 we have

N0,m,∅(t, x)

∼R a
∑

ω∈Σm

h−δζ(ωx)∫
ζdμ−δζ

(eaδ − 1)−1

∫
Σ∞

e
−aδ

⌊− ln(|Gω |/2)+ψ(y)−t−ψ(ωx)
a

⌋
dν−δζ(y)

= a(eaδ − 1)−1
∑

ω∈Σm

h−δζ(ωx)∫
ζdμ−δζ

η(t+ ln(|Gω|/2) + ψ(ωx)) · eδt
( |Gω|

2

)δ

eδψ(ωx).

The prerequisites of Theorem 2.33(iii) in tandem with Lemma 4.12 imply that η(t) = η(0)

for all t ∈ R. Using that h−δξ = eδψ · h−δζ and that C0(Fe−t) = C0(Fe−t , O) + 1 it thus

follows from Equations (4.49) and (4.50) that for all m ∈ N

a(eaδ − 1)−1
∑

ω∈Σm

h−δξ(ωx)∫
ζdμ−δζ

η(0)

( |Gω|
2

)δ

�−δ
m

≤ lim inf
t→∞ e−δtC0(Fe−t)

≤ lim sup
t→∞

e−δtC0(Fe−t)

≤ a(eaδ − 1)−1
∑

ω∈Σm

h−δξ(ωx)∫
ζdμ−δζ

η(0)

( |Gω|
2

)δ

�δm.
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An application of Lemma 4.7 shows that limt→∞ e−δtC0(Fe−t) exists. Theorem 3.14 implies

that limt→∞ e−t(δ−1)C1(Fe−t) also exists, showing the assertion.

4.3 Self-Similar Sets – Proofs of Theorems 2.37 and 2.38

Also in the self-similar situation, we want to apply Key Lemma 4.2. Therefore, we firstly

show that its prerequisites are satisfied for the setting of Section 2.4.2.

Lemma 4.13. Assume that we are in the situation of Theorem 2.37. Set

U := {t ∈ R | e−t is a regular distance for F},

Uk := U for k ∈ {0, . . . , d − 2} if d ≥ 4 and Uk := R else. Then for k ∈ {0, . . . , d} and

ω ∈ Σ∗ the functions fk,ω : Uk → R given by

fk,ω(t) :=

Q∑
i=1

Ck(Fe−t , Gi
ω),

satisfy Items (A) to (G) of Key Lemma 4.2.

Proof. Without loss of generality we assume that F possesses exactly one primary gap

which we denote by G. The case k = d has been treated in the more general situation of

self-conformal sets in Lemma 4.8. Thus, we only consider the case k < d here.

ad (A): For d ≤ 3 it has been shown in [Fu85] that Lebesgue-almost all distances are

regular, which implies λ1(R \U) = 0. For d ≥ 4 and k ∈ {d− 1, d}, the functions
t �→ Ck(Fe−t , Gω) are defined everywhere (see Remark 2.8) for ω ∈ Σ∗. For

d ≥ 4 and k ≤ d − 2 the assumptions of Theorem 2.37 imply λ1(R \ U) = 0.

The property that for every t ∈ U there exists an ε0 > 0 such that t− ε ∈ U for

every 0 ≤ ε ≤ ε0 is proven in Proposition 1 of [RZ03].

ad (B): See Lemma 2.3.4 in [Zäh11].

ad (C): Let rω denote the contraction ratio of φω (that is rω := |φ′
ω(x)| for an arbitrary

x ∈ X) and suppose that t ∈ U is such that t + ln rω ∈ U . By definition

Gω is contained in the interior of (φωO)e−t for all t ∈ R. Since Fe−t ∩ Gω =

(φωF )e−t ∩Gω for all t ∈ R we know by the locality and homogeneity properties

of curvature measures (see Proposition 2.7(v),(vi)) that

Ck(Fe−t , Gω) = Ck((φωF )e−t , Gω) = rkωCk(Fe−t/rω , G)
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for all t ∈ Uk for which also t+ ln rω ∈ Uk. Thus,

fk,ω(t) = rkωCk(Fe−t/rω , G)

for such t. If e−t/rω ≥ diam(G)/2, then Fe−t/rω = Oe−t/rω and, as Ck(Fe−t/rω , ·)
is concentrated on the boundary of Fe−t/rω for k < d (see Proposition 2.7(iv)),

we conclude Ck(Fe−t/rω , G) = 0. Since, by assumption, e−t(δI−k)Cvar
k (Fe−t , G) is

uniformly bounded by some constant C > 0 we thus conclude (for k < d) that∫ ∞

−∞
e−T (δ−k)|fk,ω(T )|dT ≤

∫ ∞

− ln(rωdiam(G)/2)
e−T (δ−k)rkωC

var
k (Fe−T /rω , G)dT

=

∫ ∞

− ln(diam(G)/2)
e−T (δ−k)rδωC

var
k (Fe−T , G)dT

≤ rδω

∫ ∞

− ln(diam(G)/2)
Ce−T (δ−δI)dT

=
Crδω
δ − δI

(
diam(G)

2

)δ−δI

< ∞.

ad (E): As we only consider the case k < d we know by Proposition 2.7(iv) that

Ck(Fe−t , ·) is concentrated on the boundary of Fe−t . Thus Ck(Fe−t , Gω) = 0

for e−t ≥ diam(Gω)/2. Hence Item (E)a obtains with t∗ := − ln(gm/2), where

gm := maxω∈Σm diam(Gω).

ad (D): The statement of (D) follows from the observation that

Nabs
k,m(t, x) :=

∑
ω∈Σm

∞∑
n=0

∑
u∈Σn

e−kSnξ(uωx)|fk,ω(t− Snξ(uωx))|

is a finite sum for every t in the domain of definition of Nabs
k,m(·, x). This is the

case, since fk,ω(t−Snξ(uωx)) = 0, whenever t−Snξ(uωx) ≤ t∗ (see ad (E)) and

there are only finitely many u ∈ Σ∗ for which t− Snξ(uωx) > t∗ for a given t

and a given ω ∈ Σm.

ad (F): The proof of this part will be carried out in analogy to the proof of Lemma 4.8(F).

Therefore, we try to keep it short here. For an ω ∈ Σm, x ∈ Σ∞ and t ∈ V define

Nω
k (t, x) :=

∞∑
n=0

∑
u∈Σn

e−kSnξ(ux)Ck(Fe−t+Snξ(ux) , Gω).

Then Nω
k satisfies a type of renewal equation:∑

y : σy=x

Nω
k (t− ξ(y), y)e−kξ(y) = Nω

k (t, x)− Ck(Fe−t , Gω).
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Thus, the function Mω
k given by Mω

k (t, x) := e−t(δ−k)Nω
k (t, x)/h−δξ(x) satisfies

Mω
k (t, x)

= e−t(δ−k)Ck(Fe−t , Gω)/h−δξ(x) +
∑

y : σy=x

e−δξ(y)Mω
k (t− ξ(y), y) · h−δξ(y)

h−δξ(x)
.

We now show that Mω
k is uniformly bounded for t ∈ V and x ∈ Σ∞. Set

h−δξ := infx∈Σ∞ h−δξ(x) and recall that h−δξ > 0. Further, define

M
ω
k (t) := sup

t′∈V, t′<t
x∈Σ∞

Mω
k (t

′, x).

Since Nω
k (t, x) = 0 for t < − ln(diamGω) we have that

M
ω
k (− ln(diamGω)) = 0.

The rest of the proof now follows through in exactly the same way as in

Lemma 4.8(F).

ad (G): The arguments in ad (E) give that Nabs
k,m(t, x) = 0 for all t < t∗ with the there

defined t∗.

4.3.1 Proof of Theorem 2.37

Proof of Theorem 2.37. We simultaneously prove Items (i) and (ii). We point out that the

main ideas of the proof are presented as Steps (I) to (V) in the beginning of Section 4.1.

Set

U := {t ∈ R | e−t is a regular distance for F},
Uk := U for k ∈ {0, . . . , d− 2} if d ≥ 4 and Uk := R else. For ω ∈ Σ∗ we let rω denote the

contraction ratio of φω, that is rω := |φ′
ω(x)| for an arbitrary x ∈ X. We start by showing

that e−t(δ−k)Ck(Fe−t , B) (resp. t−1
∫ t
0 e

−T (δ−k)Ck(Fe−T , B)dT ) converges essentially to∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi)dT · ν(B)∫
ξdμ−δξ

(4.52)

for every B ∈ EF , where the essential limit as t → ∞ is taken over Uk. Then we apply

Lemma 4.6.

By (COND 4’), there exists some C ∈ R for which Cvar
k (Fe−t , Gi)e−t(δI−k) ≤ C for all t ∈ Uk

and i ∈ {1, . . . , Q}. By using the Jordan decompositions of the signed Borel measures

Ck(Fe−t , ·) and Ck(Fe−t/rω , ·) one can show that this implies that

e−t(δI−k)Cvar
k (Fe−t , Gi

ω) ≤ rδIω · C (4.53)
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holds for all t ∈ Uk, ω ∈ Σ∗ and i ∈ {1, . . . , Q}. Thus, we can apply Lemma 4.5. For

B ∈ KF Lemma 4.5(i) yields

ess-lim
t→∞, t∈Uk

e−t(δ−k)Ck(Fe−t , B) = 0 = ν(B). (4.54)

Moreover, Ck(Fe−t , B) = o(et(δ−k)) implies that for all ε > 0 there exists a T̃ ∈ R such that

for all t ≥ T̃ we have |e−t(δ−k)Ck(Fe−t , B)| < ε. Thus,

lim
t→∞

∣∣∣∣t−1

∫ t

0
e−T (δ−k)Ck(Fe−T , B)dT

∣∣∣∣
≤ lim

t→∞

(∣∣∣∣∣t−1

∫ T̃

0
e−T (δ−k)Ck(Fe−T , B)dT

∣∣∣∣∣+ t−1

∫ t

T̃
εdT

)
= ε,

which implies that

lim
t→∞ t−1

∫ t

0
e−T (δ−k)Ck(Fe−T , B)dT = 0 = ν(B).

For B = φκO ∈ EF \KF , where κ ∈ Σ∗, we use the locality and the homogeneity properties

of the curvature measures (see Proposition 2.7(v) and (vi)) to obtain that

Ck(Fe−t , Gi
uω) = Ck((φuF )e−t , φu(G

i
ω)) = rkuCk(Fe−t/ru , G

i
ω)

holds for all u, ω ∈ Σ∗, i ∈ {1, . . . , Q} and t ∈ Uk for which t + ln(ru) ∈ Uk. Note that

ru = e−Snξ(uωx) for arbitrary ω ∈ Σm, x ∈ Σ∞ and u ∈ Σn. Together with Lemma 4.5(ii)

this shows for an arbitrary m ∈ N that

Ck(Fe−t , φκO) =
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)Ck

(
Fe−t ,

Q⋃
i=1

Gi
uω

)
+ o(et(δ−k))

=
∑

ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ](uωx)e
−kSnξ(uωx)

Q∑
i=1

Ck(Fe−t+Snξ(uωx) , Gi
ω) + o(et(δ−k))

= Nk,m,κ(t, x) + o(et(δ−k)) (4.55)

as t → ∞, where Nk,m,κ is defined as in Key Lemma 4.2 with fk,ω defined as in Lemma 4.13.

Due to Lemma 4.13 we can apply Key Lemma 4.2(i) and obtain

lim
t→∞ t−1

∫ t

0
e−T (δ−k)Ck(Fe−T , φκO)dT

=
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx),

since limt→∞ t−1
∫ t
0 e

−T (δ−k)f(T )dT = 0 for any f(t) which is o(et(δ−k)) (see Equation (4.36)).
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In the non-lattice case, Key Lemma 4.2(ii) yields

ess-lim
t→∞, t∈Uk

e−t(δ−k)Ck(Fe−t , φκO)

=
∑

ω∈Σm

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi
ω)dT ·

∫
1[κ]dν−δξ∫
ξdμ−δξ

h−δξ(ωx).

Note that Ck(Fe−t , Gi
ω) = Ck((φωF )e−t , Gi

ω) = rkωCk(Fe−t/rω , G
i) for t ∈ Uk for which

t+ ln rω ∈ Uk implies that

∑
ω∈Σm

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi
ω)dT =

∑
ω∈Σm

rδω

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi)dT

=

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi)dT. (4.56)

Using that h−δξ ≡ 1, since ξ is the geometric potential function to a self-similar system

and that
∫
1[κ]dν−δξ = ν(φκO) (see Equation (4.34)), we hence conclude the following.

(i) We always have

lim
t→∞ t−1

∫ t

0
e−T (δ−k)Ck(Fe−T , φκO)dT =

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi)dT · ν(φκO)∫
ξdμ−δξ

.

(ii) If ξ is non-lattice, then

ess-lim
t→∞, t∈Uk

e−t(δ−k)Ck(Fe−t , φκO) =

∫ ∞

−∞
e−T (δ−k)

Q∑
i=1

Ck(Fe−T , Gi)dT · ν(φκO)∫
ξdμ−δξ

.

Thus, in both cases, we have convergence to the term in Equation (4.52) for all B ∈ EF .
By Lemma 4.13(C) the term in Equation (4.52) is finite. An application of Lemma 4.6

finishes the proof. Therefore, all that remains to be shown is, that e−t(δ−k)Cvar
k (Fe−t) is

uniformly bounded for t ∈ (1,∞) ∩ Uk. This is shown in the following.

That Cvar
d (Fe−t)e−t(δ−d) = λd(Fe−t)e−t(δ−d) is uniformly bounded for t ∈ (1,∞) has been

shown in the proof of Theorem 2.29 even for self-conformal subsets of Rd. Therefore, in

the following, we assume that k < d. From Equation (2.3) we deduce

Cvar
k (Fe−t) = Cvar

k (Fe−t , Xe−t \X) + Cvar
k

(
Fe−t ,

⋃
ω∈Σ∗

i∈{1,...,Q}

Gi
ω

)
+ Cvar

k (Fe−t , F ). (4.57)

By (COND 2’), the first summand on the right hand side of Equation (4.57) is o(et(δ−k)) as

t → ∞. Also, the third summand on the right hand side of Equation (4.57) is o(et(δ−k)), since
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Ck(Fe−t , ·) is concentrated on the boundary of Fe−t (see Proposition 2.7) and Fe−t ∩F = ∅

for all t ∈ R. Therefore, it remains to consider the second summand on the right hand side

of Equation (4.57).

Since Ck(Fe−t , ·) is concentrated on the boundary of Fe−t , we have that Cvar
k (Fe−t , Gω) =

0, whenever e−t ≥ diam(Gω)/2 = rωdiam(G)/2 ≥ r
n(ω)
min diam(G)/2, where rmin :=

mini∈{1,...,N} ri. Thus, setting

A(t) := −(t+ ln(diamG/2))/ ln rmin

the following holds.

e−t(δ−k)Cvar
k

(
Fe−t ,

⋃
ω∈Σ∗

i∈{1,...,Q}

Gi
ω

)

=

Q∑
i=1


A(t)�∑
n=0

∑
ω∈Σn

e−t(δI−k)Cvar
k (Fe−t , Gi

ω)e
−t(δ−δI)

(4.53)

≤
Q∑
i=1


A(t)�∑
n=0

∑
ω∈Σn

rδIω Ce−t(δ−δI)

≤
Q∑
i=1


A(t)�∑
n=0

∑
ω∈Σn

rδω︸ ︷︷ ︸
=1

(rnmin)
δI−δCe−t(δ−δI)

= QCe−t(δ−δI)
1− (rδI−δ

min )
A(t)�+1

1− rδI−δ
min

= QC(rδI−δ
min − 1)−1

((
diamG

2

)δ−δI

r
(δI−δ)(1−{− t+ln(diamG/2)

ln rmin
})

min − e−t(δ−δI)

)
.

Hence, e−t(δ−k)Cvar
k (Fe−t) is uniformly bounded for t ∈ (1,∞) ∩ Uk, which allows us to

apply Lemma 4.6.

4.3.2 Proof of Theorem 2.38

Proof of Theorem 2.38. Noting that Cd(Fe−t , Gi) = λd(Fe−t∩Gi) = λd(G
i) for t ≤ − ln(gi)

and every i ∈ {1, . . . , Q}, Item (i) is an immediate consequence of Theorem 2.37(i). For

proving Item (ii) we make use of some of the steps in the proof of Theorem 2.37. Firstly,

for B ∈ KF , we have

lim
t→∞ e−t(δ−d)λd(Fe−t , B) = 0 = ν(B)

by Equation (4.54). Secondly, for B = φκO ∈ EF \ KF , where κ ∈ Σ∗, we have that

λd(Fe−t ∩ φκO) = Nd,m,κ(t, x) + o(et(δ−d)) (4.58)
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holds for an arbitrary m ∈ N by Equation (4.55). Here, Nd,m,κ is defined as in Key

Lemma 4.2 with fd,ω : R → R defined by

fd,ω(t) :=

Q∑
i=1

λd(Fe−t ∩Gi
ω). (4.59)

In Lemma 4.13 we have shown that we may apply Key Lemma 4.2. By assumption, the

geometric potential function ξ is lattice. Therefore, there exist ζ, ψ ∈ C(Σ∞) satisfying

ξ − ζ = ψ − ψ ◦ σ, where the range of ζ is contained in a discrete subgroup of R. It follows

that the range of ξ is contained in a discrete subgroup of R because of the following. Firstly,

ξ is constant on cylinder sets of length one, as it is associated with a cIFS consisting of

similarities and secondly, every cylinder set of length one contains a word x ∈ Σ∞ satisfying

x = σx. Thus, the equation ξ − ζ = ψ − ψ ◦ σ is satisfied for ζ = ξ and ψ ≡ 0. We let

a > 0 denote the maximal real number for which ξ(Σ∞) ⊆ aZ holds. Further, we remark

that h−δξ ≡ 1. Then, combining Key Lemma 4.2(iii) with Equations (4.58) and (4.59) we

obtain the following.

e−t(δ−d)λd(Fe−t ∩ φκO)

∼R e−t(δ−d)a
∑

ω∈Σm

ea
a
−1t�(δ−d) ν−δξ([κ])∫

ξdμ−δξ

∞∑
l=−∞

e−al(δ−d)
Q∑
i=1

λd(Fe−al−a{a−1t} ∩Gi
ω) + o(1).

For i ∈ {1, . . . , Q} define Li
ω(t) := −a−1(ln(gi) + ln rω) − {a−1t} and assume that m is

large enough so that Li
ω(t) > 0 for all i ∈ {1, . . . , Q}, ω ∈ Σm and t ∈ R. Then using that

Fe−t ⊃ Gi for t ≤ − ln(gi) we have

∞∑
l=−∞

e−al(δ−d)λd(Fe−al−a{a−1t} ∩Gi
ω) =

∞∑
l=−∞

e−al(δ−d)λd((φωF )
e−al−a{a−1t} ∩Gi

ω)

= rdω

∞∑
l=−∞

e−al(δ−d)λd(Fe−al−a{a−1t}−ln rω ∩Gi)

= rdω

⎛⎝
Li
ω(t)�∑

l=−∞
e−al(δ−d)λd(G

i) +
∞∑

l=
Li
ω(t)�+1

e−al(δ−d)
d−1∑
j=0

ηj(G
i)e−(al+a{a−1t}+ln rω)(d−j)

⎞⎠
= −rdωλd(G

i)
e−a
Li

ω(t)�(δ−d)

ea(δ−d) − 1
+

d−1∑
j=0

rjωηj(G
i)
e−a
Li

ω(t)�(δ−j)

ea(δ−j) − 1
e−a{a−1t}(d−j)

=

d∑
j=0

rjωηj(G
i)
e−a
Li

ω(t)�(δ−j)

ea(δ−j) − 1
e−a{a−1t}(d−j).



4.4. C1+α-IMAGES OF SELF-SIMILAR SETS 93

Now, recall that a−1 ln rω ∈ Z for all ω ∈ Σ∗. Therefore, �Li
ω(t)� = −a−1 ln rω +

�−a−1 ln(gi)− {a−1t}�. It follows that

e−t(δ−d)λd(Fe−t ∩ φκO)

∼R e−a{a−1t}(δ−d)a
ν−δξ([κ])∫
ξdμ−δξ

∑
ω∈Σm

d∑
j=0

Q∑
i=1

rjωηj(G
i)
e−a
Li

ω(t)�(δ−j)

ea(δ−j) − 1
e−a{a−1t}(d−j) + o(1)

=
aν−δξ([κ])∫

ξdμ−δξ

∑
ω∈Σm

rδω︸ ︷︷ ︸
=1

d∑
j=0

Q∑
i=1

ηj(G
i)

ea(δ−j) − 1
e−a
−a−1 ln(gi)−{a−1t}�(δ−j)e−a{a−1t}(δ−j) + o(1)

=: q(t)

This is a periodic function in t with period a, which is non-constant because of the following.

The function χj : [0, a) → R,

χ(t) :=

Q∑
i=1

ηj(G
i)

ea(δ−j) − 1
e−a
−a−1 ln(gi)−{a−1t}�(δ−j)

is piecewise constant with at most Q points of discontinuity in [0, a) for each j ∈ {1, . . . , d}.
Moreover, the points of discontinuity coincide for all j ∈ {0, . . . , d}. Thus, there exists a

non-empty interval I ⊆ [0, a) on which each χj is constant. On this interval I, the function

q can be viewed as a polynomial in e−a{a−1t} = e−t. Since the monomials are linearly

independent, it follows that q is non-constant, as we can assume without loss of generality

that there exist i, j such that ηj(G
i) �= 0. Thus, e−t(δ−d)λd(Fe−t ∩ φκO) as a function in t

is asymptotic to a periodic non-constant function. This shows the statement.

4.4 C1+α-Images of Self-Similar Sets – Proofs of Theorems 2.39,

2.43 and 2.46 and Corollary 2.44

In this section we provide the proofs of the results concerning C1+α-diffeomorphic images

of self-similar sets. We start with proving Theorem 2.43 and Corollary 2.44. Since C1+α-

diffeomorphic images of self-similar sets are special self-conformal sets, Items (i) and (ii)

of Theorem 2.43 and Corollary 2.44 follow from the respective items in Theorem 2.31 by

using the special structure of C1+α-diffeomorphic images in the following way.

We let F denote an image of a self-similar set K ⊂ R under a conformal map g ∈ C1+α(U),
where α > 0 and U is a convex open neighbourhood of K. In both Theorem 2.43

and Corollary 2.44 we assume that |g′| is bounded away from 0 on its domain of definition.

Thus, g is bi-Lipschitz and therefore the Minkowski dimension of F coincides with the
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Minkowski dimension of K (see for instance Corollary 2.4 of [Fal03]). We denote the

common value by δ.

The similarities generating K are denoted by R1, . . . , RN and we set φi := g ◦Ri ◦ g−1 for

each i ∈ Σ. Recall from the comment in Setting 2.40 that the maps φi are not necessarily

contractions, but that an iterate Φ̃ of the system Φ := {φ1, . . . , φN} consists solely of

contractions, that F := g(K) is the invariant set of Φ̃ and that F is thus self-conformal. We

respectively denote by πK and πF the code maps from Σ∞ to K and F and recall that ν

denotes the δ-conformal measure associated with R. If we further let r1, . . . , rN denote the

respective similarity ratios of R1, . . . , RN , then we have the following list of observations.

(a) φi is differentiable for every i ∈ Σ with differential

φ′
i(y) =

g′(Ri ◦ g−1(y))

g′(g−1(y))
· ri,

where y ∈ Y and Y is the non-empty compact interval which each φi is defined on.

(b) The geometric potential function ξK associated with K is given by ξK(ω) = − ln rω1 ,

for ω = ω1ω2 · · · ∈ Σ∞. The geometric potential function ξF associated with F

is given by ξF (ω) = − ln|g′(g−1(πFω))| + ln|g′(g−1(πF σω))| − ln rω1 . Thus ξK is

non-lattice, if and only if ξF is non-lattice.

(c) The unique σ-invariant Gibbs measures for the potential functions −δξF and −δξK

satisfy μ−δξF = μ−δξK .

(d) From Items (b) and (c) we obtain

H−δξF =

∫
Σ∞

ξFdμ−δξF = −
∑
i∈Σ

ln ri · rδi =

∫
Σ∞

ξKdμ−δξK = H−δξK .

Further, let G̃1, . . . , G̃Q and G̃1
ω, . . . , G̃

Q
ω denote the primary and main gaps of K for ω ∈ Σ∗

and let G1, . . . , GQ and G1
ω, . . . , G

Q
ω respectively denote the primary and main gaps of F .

Then

(e) Gi
ω = g(G̃i

ω) for i ∈ {1, . . . , Q} and ω ∈ Σ∗. Since furthermore |G̃i
ω| = rω|G̃i|, we

have

lim
n→∞

Q∑
i=1

∑
ω∈Σn

|Gi
ω|δ = lim

n→∞

Q∑
i=1

∑
ω∈Σn

(
rω|G̃i| · |g′(xω)|

)δ
=

Q∑
i=1

|G̃i|δ
∫
K
|g′|δdν,

where xω ∈ RωX is arbitrary for each ω ∈ Σ∗. Note that the above line can be

rigorously proven by using the Bounded Distortion Lemma (see Lemma 2.21).
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(f) The δ-conformal measure νF associated with F and the push-forward measure of

the δ-conformal measure ν associated with K are absolutely continuous with Radon-

Nikodym derivative

dνF
d (g�ν)

= |g′ ◦ g−1|δ
(∫

K
|g′|δdν

)−1

.

From these observations we can infer the statements concerning the average and the non-

lattice case of Theorem 2.43 and Corollary 2.44. This is done in the following subsections.

4.4.1 Proof of Theorem 2.43

We prove the three parts (i) to (iii) of Theorem 2.43 separately.

Proof of Theorem 2.43(i),(ii). Using the notation that we set up in the beginning of Sec-

tion 4.4 and Items (a) to (f) from there, an application of Items (i) and (ii) of Theorem 2.31

to Φ and of Theorem 2.39 to R proves Items (i) and (ii) of Theorem 2.43.

Now, we turn to the lattice case. In order to show the statements on the non-existence, we

use the following lemma.

Lemma 4.14. Let F denote a self-conformal subset of R associated with the cIFS Φ :=

{φ1, . . . , φN}. Let δ := dimM (F ) denote the Minkowski dimension of F and let B ⊆ R

denote a Borel set for which Fe−t ∩B = (F ∩B)e−t for all sufficiently large t > 0. Assume

that there exists a positive, bounded, periodic and Borel-measurable function q : R+ → R+

which has the following properties.

(i) q is not equal to an almost everywhere constant function.

(ii) There exist sequences (am)m∈N and (cm)m∈N, where am, cm > 0 for all m ∈ N and

am → 1 as m → ∞ such that the following property is satisfied. For all ε > 0 and

m ∈ N there exists an M ∈ N such that for all t ≥ M

(1− ε)a−δ
m q(t− ln am)− cme−δt ≤ e−δtλ0(∂Fe−t ∩B)

≤ (1 + ε)aδmq(t+ ln am) + cme−δt. (4.60)

Then for k ∈ {0, 1} we have that

Cf
k(F,B) < C

f
k(F,B).
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Proof. We first cover the case k = 0. Since q is positive and not equal to an almost

everywhere constant function, there exist t̃1, t̃2 > 0 such that R := q(t̃2)/q(t̃1) > 1. Choose

m ∈ N so that a2δm <
√
R and choose ε > 0 such that (1 + ε)/(1 − ε) <

√
R. Then

R̃ := (1− ε)a−δ
m q(t̃2)− (1 + ε)aδmq(t̃1) > 0. By Item (ii) we can find an M ∈ N for these ε

and m such that Equation (4.60) is satisfied for all t ≥ M . Because of the periodicity of q

we can find t1, t2 ≥ M such that q(t̃1) = q(t1 + ln am) and q(t̃2) = q(t2 − ln am). Moreover,

we can assume that t1, t2 are so large that cme−δt1 + cme−δt2 ≤ R̃/2. Then

e−δt1λ0(∂Fe−t1 ∩B) ≤ (1 + ε)aδmq(t1 + ln am) + cme−δt1

≤ (1− ε)a−δ
m q(t2 − ln am)− R̃/2− cme−δt2

< e−δt2λ0(∂Fe−t2 ∩B).

Because of the periodicity of q this proves the case k = 0.

For k = 1 observe that the function g : R+ → R+ defined by

g(t) :=

∫ ∞

0
q(s+ t)e(δ−1)sds

is periodic. Also, g is not a constant function. Since if it was, then 0 = g(0) − g(t)

for all t ≥ 0. This would imply
∫∞
t q(s)e(δ−1)sds = e(δ−1)t

∫∞
0 q(s)e(δ−1)sds for all t ≥ 0.

Differentiating with respect to t would imply that q itself is constant almost everywhere

which is a contradiction. Using that Fe−t ∩B = (F ∩B)e−t for sufficiently large t > 0 and

Stachó’s Theorem (Proposition 3.15), we obtain for sufficiently large t ≥ 0 that

e−t(δ−1)λ1(Fe−t ∩B) = e−t(δ−1)

∫ ∞

t
λ0(∂Fe−s ∩B)e−sds

≤ e−t(δ−1)(1 + ε)aδm

∫ ∞

t
q(s+ ln am)es(δ−1)ds+ cme−tδ

= (1 + ε)aδmg(t+ ln am) + cme−δt.

Analogously, we obtain

e−t(δ−1)λ1(Fe−t ∩B) ≥ (1− ε)a−δ
m g(t− ln am)− cme−δt.

Therefore, the same arguments which were used in the proof of the case k = 0 imply that

lim inf
ε↘0

εδ−1λ1(Fε ∩B) < lim sup
ε↘0

εδ−1λ1(Fε ∩B).

Proof of Theorem 2.43(iii). We want to apply Lemma 4.14 in order to show that there

exists a Borel set B ⊆ R for which Cf
k(F,B) < C

f
k(F,B) for k ∈ {0, 1} from which we then
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deduce that the fractal curvature measures do not exist. For applying Lemma 4.14 we first

introduce a family Δ of non-empty Borel subsets of Σ∞, where Σ∞ denotes the code space

associated with R. For every κ ∈ Δ we then construct a pair (B(κ), qκ) which consists of a

non-empty Borel set B(κ) ⊆ R satisfying Fe−t ∩B(κ) = (F ∩B(κ))e−t for all sufficiently

large t > 0 and a positive bounded periodic Borel-measurable function qκ : R
+ → R+, such

that Lemma 4.14(ii) is satisfied for B = B(κ) and q = qκ. Then, we show that there

always exists a κ ∈ Δ for which qκ is not equal to an almost everywhere constant function,

verifying Lemma 4.14(i).

We let R1, . . . , RN denote the similarities which the cIFS R consists of, that is R =:

{R1, . . . , RN} and let r1, . . . , rN denote their respective similarity ratios, that is ri := R′
i(x)

for any x ∈ X. Note that g is a bijective function by definition. For i ∈ {1, . . . , N}
define φi := g ◦ Ri ◦ g−1 and set Φ := {φ1, . . . , φN}. From the fact that R1, . . . , RN are

contractions and g′ is Hölder continuous and bounded away from zero, one can deduce

that there exists an iterate Φ̃ of Φ which solely consists of contractions. Without loss of

generality we assume that φ1, . . . , φN are contractions themselves. Then Φ is a cIFS with

open set int(gX) and bounded distortion constants �m = 1+maxω∈Σm c|RωX|α/kg, where
kg > 0 is such that |g′| ≥ kg on U and c is a constant depending on the Hölder constant of

g. Clearly, �m → 1 as m → ∞. Moreover, F := g(K) is its associated self-conformal set,

since
⋃N

i=1 φiF =
⋃N

i=1 gRig
−1g(K) =

⋃N
i=1 gRi(K) = F .

Let us begin by introducing the family Δ. Recall that 〈Y 〉 denotes the convex hull of a

compact set Y ⊂ R. Fix an n ∈ N0 and define

Δn :=
{ l⋃

j=1

[κ(j)]
∣∣∣ κ(j) ∈ Σn, l ∈ {1, . . . , Nn},

l⋃
j=1

〈φκ(j)F 〉 is an interval,

l⋃
i=1

φκ(i)F ∩ φωF = ∅ for every ω ∈ Σn \ {κ(1), . . . , κ(l)}
}
.

(Note that if the strong separation condition was satisfied, then Δn = {[ω] | ω ∈ Σn}.)
We remark that the condition λ1(X \ ΦX) > 0 implies that κ � Σ∞ for every κ ∈ Δn,

whenever n ∈ N. Further, note that Δn �= ∅ for all n ∈ N because of the OSC and set

Δ :=
⋃

n∈N0
Δn. Now, fix an n ∈ N0 and a κ =

⋃l
j=1[κ

(j)] ∈ Δn and choose θ > 0 such that⋃l
j=1〈φκ(j)F 〉3θ∩φωF = ∅ for every ω ∈ Σn\{κ(1), . . . , κ(l)}. Then B(κ) :=

⋃l
j=1〈φκ(j)F 〉θ

is a non-empty Borel subset of R satisfying Fε ∩B(κ) = (F ∩B(κ))ε for all ε < θ.

Denote by G1, . . . , GQ the primary gaps of F and by G1
ω, . . . , G

Q
ω the associated main gaps

for ω ∈ Σ∗. For constructing the function qκ fix an m ∈ N and choose M ∈ N so that

e−M < θ and that for every ω ∈ Σm all main gaps G1
ω, . . . , G

Q
ω which lie in B(κ) are of



98 CHAPTER 4. PROOFS

length greater than 2e−M . Then for all T ≥ M we have

λ0 (∂Fe−T ∩B(κ)) /2 =

Q∑
i=1

#{ω ∈ Σ∗ | Gi
ω ⊆ B(κ), |Gi

ω| > 2e−T }+ 1

≤
Q∑
i=1

∑
ω∈Σm

Ξi
ω(e

−T ) +

m−n∑
j=1

Q ·N j−1 + 1︸ ︷︷ ︸
=:cm

,

where we agree that
∑m−n

j=1 Q ·N j−1 = 0 if m− n < 1 and where

Ξi
ω(e

−T ) := #{u ∈ Σ∗ | Gi
uω ⊆ B(κ), |Gi

uω| > 2e−T }
for ω ∈ Σ∗. Likewise

λ0 (∂Fe−T ∩B(κ)) /2 ≥
Q∑
i=1

∑
ω∈Σm

Ξi
ω(e

−T ).

We let ξ and ζ respectively denote the geometric potential functions associated with Φ and

R. Moreover, we let πF and πK respectively denote the code maps from Σ∞ to F and K.

They satisfy πF = gπK . For x ∈ Σ∞ we have the following relation.

ξ(x) = − ln|φ′
x1
(πF σx)|

= − ln|g′(Rx1g
−1πF σx)| − ln|R′

x1
(g−1πF σx)|+ ln|g′(g−1πF σx)|

= − ln|g′(πKx)|+ ζ(x) + ln|g′(πKσx)|.
Therefore, ψ : Σ∞ → R given by ψ(x) := − ln|g′(πKx)| defines a continuous function which

satisfies

ξ − ζ = ψ − ψ ◦ σ.
Recall that cg denotes the Hölder constant of g′ and that kg > 0 is such that |g′| ≥ kg on U .
Also, g satisfies a bounded distortion property, since we have for all x, y ∈ 〈RωK〉, where
ω ∈ Σn, and n ∈ N that∣∣∣∣g′(x)g′(y)

∣∣∣∣ ≤ ∣∣∣∣g′(x)− g′(y)
g′(y)

∣∣∣∣+ 1 ≤ cg|x− y|α
kg

+ 1 ≤ max
ω∈Σn

cg|〈RωK〉|α
kg

+ 1 =: pn (4.61)

and clearly, pn → 1 as n → ∞.

Denote by G̃i the primary gaps ofK and by G̃i
ω the main gaps of RωK, where i ∈ {1, . . . , N}

and ω ∈ Σ∗. Thus, for an arbitrary x ∈ Σ∞, i ∈ {1, . . . , Q}, ω ∈ Σm and u ∈ Σn we have

that

|Gi
uω| = |gG̃i

uω| ≤ pm · |g′(RuωπKx)| · |RuωG̃
i|

= exp
(
ln pm − ψ(uωx)− Snζ(uωx) + ln|RωG̃

i|
)

= exp
(
ln pm − ψ(ωx)− Snξ(uωx) + ln|RωG̃

i|
)
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Therefore, for x ∈ Σ∞ and ω ∈ Σm

Ξi
ω(e

−T ) ≤ #{u ∈ Σ∗ | Gi
uω ⊆ B(κ),

ln(2/pm) + ψ(ωx)− ln|RωG̃
i| < T − Snξ(uωx)}.

By construction κ is a finite union of cylinder sets. Moreover, it is easy to verify that

Items (A) to (G) of Key Lemma 4.2 are satisfied for f0,ω : R → R defined by f0,ω(t) :=∑Q
i=1 1(ψ(ωx)+ln(2/pm)−ln|RωG̃i|,∞)

(t), where Item (F) can be checked in the same way as in

Lemma 4.9(F).

Recall the definition of N0,m,κ(j) from Key Lemma 4.2 with this f0,ω. By hypothesis, ζ is

lattice. Since it is the geometric potential function associated with an IFS which consists of

similarities, ζ is thus contained in a discrete subgroup of R (see proof of Theorem 2.38). Let

a > 0 denote the maximal real number for which ζ(Σ∞) ⊆ aZ. Then Key Lemma 4.2(iii)

gives

λ0(Fe−T ∩B(κ))/2− cm

≤
l∑

j=1

∑
ω∈Σm

∞∑
n=0

∑
u∈Σn

1[κ(j)](uωx)f0,ω(T − Snξ(uωx))

=

l∑
j=1

N0,m,κ(j)(T, x)

∼R
l∑

j=1

a
∑

ω∈Σm

e
aδ

⌊
T+ψ(ωx)

a

⌋
h−δζ(ωx)∫
ζdμ−δζ∫

Σ∞
1[κ(j)](y)

∞∑
z=−∞

e−aδzf0,ω

(
az + a

{
T + ψ(ωx)

a

}
− ψ(y)

)
dν−δζ(y) (4.62)

as T → ∞. For i ∈ {1, . . . , Q}, ω ∈ Σm and x, y ∈ Σ∞ define

Ai
ω(y) :=

ln(2/pm) + ψ(ωx)− ln|RωG̃
i|+ ψ(y)

a
−
{
T + ψ(ωx)

a

}
.

Then the definition of f0,ω implies

∞∑
z=−∞

e−aδzf0,ω

(
az + a

{
T + ψ(ωx)

a

}
− ψ(y)

)
=

Q∑
i=1

∞∑
z=
Ai

ω(y)�+1

e−aδz

=

Q∑
i=1

(eaδ − 1)−1e−aδ
Ai
ω(y)�.

Moreover, note that h−δζ ≡ 1. Thus, the term on the right hand side of Equation (4.62) is
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equal to

a(eaδ − 1)−1∫
ζdμ−δζ

Q∑
i=1

∑
ω∈Σm

e
aδ

⌊
T+ψ(ωx)

a

⌋∫
Σ∞
1κ(y)e

−aδ

⌊
ln(2/pm)+ψ(ωx)−ln|Rω ˜Gi|+ψ(y)

a
−
{

T+ψ(ωx)
a

}⌋
dν−δζ(y)

=
a(eaδ − 1)−1∫

ζdμ−δζ

Q∑
i=1

∑
ω∈Σm

rδω︸ ︷︷ ︸
=1

∫
Σ∞

1κ(y)e
−aδ

⌊
ln(2/pm)−ln| ˜Gi|+ψ(y)−T

a

⌋
dν−δζ(y),

where we used the fact that rω ∈ aZ for ω ∈ Σ∗. Define the function qκ : R
+ → R+ by

qκ(T ) := e−δT 2a(e
aδ − 1)−1∫
ζdμ−δζ

Q∑
i=1

∫
Σ∞

1κ(y)e
−aδ

⌊
ln 2−ln| ˜Gi|+ψ(y)−T

a

⌋
dν−δζ(y). (4.63)

Altogether, for all ε > 0 there exists an M ′ ≥ M such that for all t ≥ M ′ we have

e−δTλ0(∂Fe−T ∩B) ≤ (1 + ε)pδmqκ(T + ln pm) + 2cme−δT

and likewise

e−δTλ0(∂Fe−T ∩B) ≥ (1− ε)p−δ
m qκ(T − ln pm).

Clearly, qκ is periodic with period a. Thus, Lemma 4.14(ii) is satisfied for B = B(κ)

and q = qκ. Thus, in order to apply Lemma 4.14 it remains to prove the validity of

Lemma 4.14(i), that is that there exists a κ ∈ Δ for which qκ is not equal to an almost

everywhere constant function. For this, it suffices to consider the function q̃κ : R
+ → R+

given by

q̃κ(t) := e−δt
Q∑
i=1

∫
Σ∞

1κ(y)e
−aδ

⌊
− ln| ˜Gi|+ψ(y)−t

a

⌋
dν−δζ(y).

Set β := min{{a−1 ln|G̃i|} | i = 1, . . . , Q} and β := max{{a−1 ln|G̃i|} | i = 1, . . . , Q}. We

first assume that β > 0 and consider the following four cases.

Case 1: D := {y ∈ Σ∞ | {a−1ψ(y)} < β} �= ∅.

Since ψ ∈ C(Σ∞) and thus D is open, there exists a κ ∈ Δ such that κ ⊆ D. For n ∈ N

and r ∈ (0, 1− β) define Tn(r) := a(n+ r). Then

q̃κ(Tn(r)) = e−δar
Q∑
i=1

∫
Σ∞

1
κ
(y)e

−δa

⌊
ψ(y)−ln| ˜Gi|

a

⌋
dν−δζ(y).

This shows that q̃κ is strictly decreasing on (an, a(n+ 1− β)) for every n ∈ N. Therefore,

qκ is not equal to an almost everywhere constant function.

Case 2: D := {y ∈ Σ∞ | {a−1ψ(y)} > β} �= ∅.

Like in Case 1, there exists a κ ∈ Δ such that κ ⊆ D. For n ∈ N and r ∈ (0, β) set
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Tn(r) := a(n− r). Then

q̃κ(Tn(r)) = eδar
Q∑
i=1

∫
Σ∞

1
κ
(y)e

−δa

⌊
ψ(y)−ln| ˜Gi|

a

⌋
dν−δζ(y).

This shows that q̃κ is strictly decreasing on (a(n− β), an) for every n ∈ N. Therefore, qκ is

not equal to an almost everywhere constant function.

For the remaining cases we let n∗ ∈ N0 be maximal such that β + n∗(1− β) ≤ β.

Case 3: There exists an n′ ∈ {0, . . . , n∗} such that

Dn′ := {y ∈ Σ∞ | β + n′(1− β) < {a−1ψ(y)} < β + (n′ + 1)(1− β)} �= ∅.

As in the above cases, there exists a κ ∈ Δ such that κ ⊆ Dn′ . For n ∈ N and r ∈ (0, β)

set Tn′
n (r) := a(n− β + β + n′(1− β)− r). Then

q̃κ(T
n′
n (r)) = eδareδa(β−β−n′(1−β))

Q∑
i=1

∫
Σ∞

1
κ
(y)e

−δa
⌊
ψ(y)
a

⌋
dν−δζ(y).

This shows that q̃κ is strictly decreasing on (a(n− β + q(1− β)), a(n− β + β + q(1− β))).

Therefore, qκ is not equal to an almost everywhere constant function.

If we are not in any of the above three cases, then we have the following.

Case 4: {y ∈ Σ∞ | {a−1ψ(y)} ⊆ {β + n′(1− β) | n′ ∈ {0, . . . , n∗}}} = Σ∞.

Define si := max({β + n′(1 − β) − {a−1 ln|G̃i|} < 0 | n′ ∈ {0, . . . , n∗}} ∪ {1}) and

s := max{s1, . . . , sN , 1−β+β}. For n ∈ N and r ∈ (0, s/2) define Tn(r) := a(n+ r). Then

q̃
∅
(Tn(r)) = e−δar

Q∑
i=1

∫
Σ∞

e
−δa

⌊
ψ(y)−ln| ˜Gi|

a

⌋
dν−δζ(y).

This shows that q̃
∅
is strictly decreasing on (an, a(n+ s/2)). Therefore, q

∅
is not equal to

an almost everywhere constant function.

If β = 0, then the same methods can be applied after shifting the origin by (1− β)/2 to

the left.

Thus, we can apply Lemma 4.14 in all four cases and obtain that there always exists a

Borel set B(κ) such that Cf
k(F,B(κ)) < C

f
k(F,B(κ)) for k ∈ {0, 1}.

In order to deduce that the fractal curvature measures do not exist, construct a function

η : R → [0, 1] which is continuous, equal to 1 on B(κ) and equal to 0 on R \B(κ)θ. Then

lim infε→0

∫
ηεδdλ0(∂Fε∩ ·)/2 = Cf

0(F,B(κ)) < C
f
0(F,B(κ)) = lim supε→0

∫
ηεδdλ0(∂Fε∩

·)/2. Thus, the 0-th fractal curvature measure does not exist. Using the same function η it

follows analogously, that the 1-st fractal curvature measure does not exist, which completes

the proof.
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4.4.2 Proof of Corollary 2.44

Proof of Corollary 2.44. Items (i) and (ii) of Corollary 2.44 are immediate consequences

of Theorem 2.43. Corollary 2.44(iii) is going to be deduced from Theorem 2.33(iii). We let

πK and πFn
respectively denote the code maps from Σ∞ to K and Fn and observe that

πK = g−1
n ◦ πFn

. Further, we let ξn denote the geometric potential function associated with

Fn. By Property (b) from the beginning of Section 4.4 we see that ξn − ξK = ψ − ψ ◦ σ,
where ψ := − ln|g′n ◦ πK |. By definition we have that g′n(x) =

(
g̃(x)(eδan − 1) + 1

)−1/δ
for

x ∈ [−1,∞). Thus, ψ(Σ∞) = − ln|g′n ◦ πK (Σ
∞)| ⊆ [0, an]. We now show that Condition

(2.6) from Theorem 2.33(iii) is satisfied.∑
z∈Z

e−δazν−δξK ◦ ψ−1([za, za+ t)) =

n∑
i=0

e−δaiν−δξK ◦ ψ−1([ai, ai+ t))

=

n∑
i=0

e−δaiν ◦ g̃−1

([
eδai − 1

eδan − 1
,
eδai+δt − 1

eδan − 1

))
=

n∑
i=0

eδt − 1

eδan − 1

=
eδt − 1

eδa − 1

n∑
i=0

e−δaiν ◦ g̃−1

([
eδai − 1

eδan − 1
,
eδa(i+1) − 1

eδan − 1

))

=
eδt − 1

eδa − 1

n∑
i=0

e−δaiν−δξK ◦ ψ−1([ai, a(i+ 1)))

holds for all t ∈ [0, a) which completes the proof.

4.4.3 Proof of Theorem 2.46

Here, we show that every analytic lattice cIFS is conjugate to a cIFS consisting of similarities

and by this prove Theorem 2.46.

Proof of Theorem 2.46. For ease of notation, we assume without loss of generality that

{0, 1} ⊂ F ⊂ [0, 1]. Let ξ denote the geometric potential function associated with Φ

and let π denote the code map from Σ∞ to F . By Theorem 3.7 the eigenfunction h−δξ

of the Perron-Frobenius operator L−δξ possesses a real-analytic extension to an open

neighbourhood of X in R. Denote this extension by h and define ψ̃ := δ−1 lnh. Since ξ is

lattice, there exist ζ, ψ ∈ C(Σ∞) such that

ξ − ζ = ψ − ψ ◦ σ

and such that ζ is a function whose range is contained in a discrete subgroup of R. Let

a > 0 be the maximal real number for which ζ(Σ∞) ⊆ aZ. The function ψ̃ satisfies the

equation

ψ̃ ◦ π = ψ + δ−1 lnh−δζ ,
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since h satisfies

h ◦ π = h−δξ =
dμ−δξ

dν−δξ
=

dμ−δζ

e−δψdν−δζ
= eδψh−δζ .

We define the function g̃ : [0, 1] → R by g̃(x) :=
∫ x
0 eψ̃(y)dy/A for x ∈ [0, 1], where

A :=
∫ 1
0 eψ̃(y)dy. As ψ̃ is analytic, the Fundamental Theorem of Calculus implies that

ψ̃ − lnA = ln g̃′. Moreover, the analyticity of ψ̃ implies that ψ̃ is bounded on [0, 1].

Therefore, g̃′ is bounded away from both 0 and ∞ and thus g̃ is invertible. Note that

g̃([0, 1]) = [0, 1], set g := g̃−1 : [0, 1] → [0, 1] and extend g to an analytic function on an

open neighbourhood U of [0, 1] such that |g′| > 0 on U . Define

Ri := g−1 ◦ φi ◦ g for i ∈ {1, . . . , N} and K := g−1(F ) ⊆ [0, 1].

Then setting πK
:= g−1 ◦ π, we have for x ∈ Σ∞ that

− ln|R′
x1
(πKσx)| = − ln g̃′(φx1gπKσx)− ln|φ′

x1
(gπKσx)|+ ln g̃′(gπKσx)

= −ψ̃(πx) + lnA+ ξ(x) + ψ̃(πσx)− lnA

= −ψ(x)− δ−1 ln(h−δζ(x)) + ξ(x) + ψ(σx) + δ−1 ln(h−δζ(σx))

= ζ(x)− δ−1 ln

(
h−δζ(x)

h−δζ(σx)

)
.

Since the range of ζ is contained in the group aZ and ξ and ψ are bounded on Σ∞, ζ in fact

takes a finite number of values. Moreover, ζ is continuous which implies that there exists

an N ∈ N such that ζ is constant on each [ω] for ω ∈ ΣN . This cleary implies that Ln
−δζ1

is constant on [ω] for all ω ∈ ΣN and all n ∈ N, where 1 denotes the constant one-function.

Thus, Equation (3.3) implies that also h−δζ is constant on cylinder sets of length N . This

can be seen by considering |h−δζ(x)− h−δζ(y)| for x, y lying in the same cylinder of length

N and applying the triangle inequality. Therefore, x �→ − ln|R′
x1
(πKσx)| is constant on

cylinder sets of length N+1. Hence, for ω ∈ ΣN+1 and i ∈ {1, . . . , N} there exists a ciω ∈ R

such that R′
i(πKx) = ciω for all x ∈ [ω]. Since for each ω ∈ ΣN+1 the set {πKx | x ∈ [ω]}

has got accumulation points and is compact and the map R′
i is analytic by construction, it

follows that R′
i is constant on its domain of definition. Therefore, the maps R1, . . . , RN

are similarities. From the fact that φ1, . . . , φN are contractions and g′ is differentiable and

bounded away from 0, one can deduce that there exists an iterate R̃ of R := {R1, . . . , RN}
which solely consists of contractions. The system R̃ satisfies the OSC with open set

(0, 1) = g−1(0, 1). Therefore, the unique non-empty compact invariant set of R̃ is a self-

similar set. It coincides with K := g−1(F ), since Ri(g
−1F ) = g−1φig(g

−1F ) = g−1F for

each i ∈ {1, . . . , N}.
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4.4.4 Proof of Theorem 2.39

Clearly, every self-similar set belongs to the class of C1+α-diffeomophic images of self-similar

sets. Thus, we infer Theorem 2.39 from the more general proofs presented in this subsection.

Proof of Theorem 2.39. We let rω denote the similarity ratio of φω. Using that |Gi
ω| =

rω · |Gi|, Item (i) is a direct consequence of Theorem 2.31(i). Since self-similar sets

form a sub-class of C1+α-diffeomorphic images of self-similar sets, the statement from

Item (ii) concerning the fractal curvature measures follows from the stronger result in

Theorem 2.43(iii). Thus, all that remains to be shown is the statement Cf
k(F,B) < C

f
k(F,B).

With regard to the proofs of Theorem 2.43 and Lemma 4.14, we only need to show that

the function qκ from Equation (4.63) is non-constant. In the situation of a self-similar set,

qκ simplifies to the following.

qκ(T ) = e−δT 2aν−δξ([κ])∫
ξdμ−δξ(eaδ − 1)

Q∑
i=1

e
−aδ

⌊
ln 2−ln|Gi|−T

a

⌋
.

Since qκ is a periodic function with period a which is non-constant the statement follows.



5 Extensions to Conformal Graph Directed

Markov Systems

In this chapter we provide a preview to work that has been carried out by the author

regarding conformal graph directed Markov systems (cGDMS), which is soon to appear in

[KK11]. Such systems form an interesting extension to the systems which were discussed

in Chapter 2. Here, we exhibit the main results of [KK11] and illustrate their importance

through a collection of examples. The examples moreover serve to clarify the more involved

definition of the primary gaps. We remark that the results are new, even for systems which

consist of similarities.

We start this chapter in Section 5.1 by introducing cGDMS and presenting important

examples. Then, in Section 5.2, we provide statements on the existence of the fractal

curvature measures and the Minkowski content of limit sets of cGDMS and evaluate the

Minkowski content for the examples from Section 5.1.

5.1 Conformal Graph Directed Markov Systems

A core text concerning conformal graph directed Markov systems (cGDMS) is [MU03].

The class of cGDMS generalises the notion of cIFS and gives rise to a broader collection of

fractal sets. Before formally defining cGDMS, we first introduce some necessary notions.

Definition 5.1 (Directed multigraph). A directed multigraph (V,E, i, t) consists of a finite

set of vertices V , a finite set of directed edges E and functions i, t : E → V which determine

the initial and terminal vertex of an edge. The edge e ∈ E goes from i(e) to t(e). Thus,

the initial and terminal vertices of e are i(e) and t(e) respectively.

Definition 5.2 (Incidence matrix). Given a directed multigraph (V,E, i, t), an (#E)×
(#E)-matrix A with entries in {0, 1} is called an incidence matrix . It determines which

edges may follow a given edge via Ae,e′ = 1 if and only if t(e) = i(e′) for edges e, e′ ∈ E.

The incidence matrix is called aperiodic and irreducible if there exists an n ∈ N such that

the entries of the n-th iterate An =: (A
(n)
e,e′)e,e′∈E are positive, that is A

(n)
e,e′ > 0 for all

e, e′ ∈ E.

Definition 5.3 (GDMS). A graph directed Markov system (GDMS) consists of a directed

multigraph (V,E, i, t), an incidence matrix A, a set of non-empty compact metric spaces

105
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{Xv}v∈V , r ∈ (0, 1) and for every edge e ∈ E an injective contraction φe : Xt(e) → Xi(e)

with contraction ratio less than or equal to r. Briefly, the set Φ := {φe : Xt(e) → Xi(e)}e∈E
is called a GDMS.

In Section 5.2 we consider fractal subsets of the real line. Therefore, we restrict the

definition of a cGDMS to the one-dimensional Euclidean space (R, |·|). For a subset Y ⊂ R

we write int(Y ) := intR(Y ) for the interior of Y .

Definition 5.4 (cGDMS). We call a GDMS a conformal graph directed Markov system

(cGDMS) if

(i) for every vertex v ∈ V , Xv ⊂ R is a compact and connected, Xv = int(Xv) and

int(Xv) ∩ int(Xv′) = ∅ for distinct v, v′ ∈ V ,

(ii) the open set condition (OSC) is satisfied, in the sense that, for all e �= e′ ∈ E we have

φe(int(Xt(e))) ∩ φe′(int(Xt(e′))) = ∅ and

(iii) if for every vertex v ∈ V there exists an open connected set Wv ⊃ Xv such that for

every e ∈ E with t(e) = v the map φe extends to a C1+α-diffeomorphism from Wv

into Wi(e), whose derivative φ′
e is bounded away from zero on Xv, where α ∈ (0, 1].

We consider also the special case of cGDMS where the contractions {φe}e∈E are similarities.

Definition 5.5 (sGDMS). A cGDMS whose maps {φe}e∈E are similarities is referred to

as sGDMS .

Remark 5.6. Our definition of a cGDMS differs slightly from the definition given in [MU03].

Firstly, an incidence matrix in [MU03] is defined via the property that Ae,e′ = 1 implies

t(e) = i(e′). Secondly, the condition that int(Xv) ∩ int(Xv′) = ∅ for distinct v, v′ ∈ V is

not required in the definition of a cGDMS in [MU03]. Thirdly, we require the contractions

φe for e ∈ E to extend to C1+α-diffeomorphisms with derivatives bounded away from zero,

whereas in [MU03] the contractions need to extend to C1-diffeomorphisms and are required

to satisfy a bounded distortion property. However, disregarding the third difference, a

cGDMS in the sense of [MU03] can always be represented by a cGDMS in our sense, namely

by substituting {φe(Xt(e))}e∈E in for the sets {Xv}v∈V and defining the edges accordingly.

Conversely, every cGDMS in our sense is a cGDMS in the sense of [MU03].

For defining a limit set of a cGDMS, we fix a cGDMS with the notation from Definitions 5.3

and 5.4. The set of infinite admissible words given by the incidence matrix A is defined to

be

E∞
A := {ω = ω1ω2 · · · ∈ EN | Aωn,ωn+1 = 1 for all n ∈ N}. (5.1)
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The set of subwords of length n ∈ N is denoted by En
A and the set of all finite subwords

including the empty word ∅ by E∗
A. For ω ∈ E∗

A we let n(ω) denote its length, where

n(∅) := 0, define φ∅ to be the identity map on
⋃

v∈V Xv and for ω ∈ Σ∗ \ {∅} set

φω := φω1 ◦ · · · ◦ φωn(ω)
: Xt(ωn(ω)) → Xi(ω1),

where we let ωi denote the i-th letter of the word ω, for i ∈ {1, . . . , n(ω)}, that is

ω = ω1 · · ·ωn(ω). As in Chapter 2 the initial word of length n ∈ N of ω = ω1ω2 . . . ∈ E∞
A is

defined to be ω|n := ω1 · · ·ωn.

For ω ∈ E∞
A the sets {φω|n(Xt(ωn))}n∈N form a descending sequence of non-empty compact

sets and therefore
⋂

n∈N φω|n(Xt(ωn)) �= ∅. Recall from Definition 5.3 that r ∈ (0, 1)

denotes an upper bound for the contraction ratios of the functions φe for e ∈ E. Since

diam(φω|n(Xt(ωn))) ≤ rndiam(Xt(ωn)) ≤ rnmax{diam(Xv) | v ∈ V } for every n ∈ N, the

intersection ⋂
n∈N

φω|n(Xt(ωn))

is a singleton and we denote its only element by π(ω). In analogy to the situation for cIFS

the projection π : E∞
A → ⋃

v∈V Xv is called the code map.

Definition 5.7 (Limit set of a cGDMS). The limit set of a cGDMS is defined to be

F := π(E∞
A ).

Limit sets of cGDMS often have a fractal structure. They include self-conformal sets as

well as self-similar sets. In order to show the significance of cGDMS we are now going to

present three important classes of sets which can be obtained as limit sets of cGDMS.

Conformal Iterated Function Systems with Incidence Matrix.

Assume that the cIFS Ψ := {ψ1, . . . , ψN} is equipped with an N × N incidence matrix

A′ := (A′
i,j)i,j∈{1,...,N} with entries 0, 1 which determines which functions may follow a

given function, that is A′
i,j = 1 if and only if ψi ◦ ψj is allowed. The system (Ψ, A′)

can be represented by a cGDMS by setting V := {1, . . . , N}, E := {1, . . . ,M}, where
M :=

∑N
i,j=1A

′
i,j and where for all v, v′ ∈ V with A′

v,v′ = 1 there exists an edge e ∈ E

such that i(e) = v and t(e) = v′.

Example 5.8. For i ∈ {1, 2, 3} define ψi : [0, 1] → [0, 1] by setting ψ1(x) := x/4, ψ2(x) :=

x/4 + 3/8 and ψ3(x) := x/4 + 3/4 and set

A′ :=

⎛⎜⎝ 1 0 1

0 0 1

1 1 1

⎞⎟⎠ .
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A corresponding sGDMS is given by V := {1, 2, 3}, E := {1, . . . , 6},

i(e) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 : e ∈ {1, 2}
2 : e = 3

3 : e ∈ {4, 5, 6}
, t(e) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 : e ∈ {1, 4}
2 : e = 5

3 : e ∈ {2, 3, 6}
, A :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Xv := ψv([0, 1]) for v ∈ V , r = 1/4 and

φ1 : X1
ψ1−→ X1, φ3 : X3

ψ2−→ X2, φ5 : X2
ψ3−→ X3,

φ2 : X3
ψ1−→ X1, φ4 : X1

ψ3−→ X3, φ6 : X3
ψ3−→ X3.

An illustration for this system is provided in Figure 5.2.

Conformal iterated function systems with disconnected open set.

By definition, a cIFS acting on X needs to satisfy the OSC with open set int(X). If

we allow the OSC to be satisfied with a different open set, then the system can still be

represented by a cGDMS.

Example 5.9. For i ∈ {1, 2, 3} define ψi : [0, 1] → [0, 1] by ψ1(x) := x/3, ψ2(x) := x/3 + 2/3

and ψ3(x) := x/9 + 1/9 and set Ψ := {ψ1, ψ2, ψ3}. Then Ψ is not a cIFS since the open

set condition is not satisfied with (0, 1) as open set. However, Ψ can be represented by a

sGDMS as follows. Set V := {1, 2}, E := {1, . . . , 6},

i(e) :=

⎧⎨⎩1 : e ∈ {1, . . . , 4}
2 : e ∈ {5, 6}

, t(e) :=

⎧⎨⎩1 : e ∈ {1, 3, 5}
2 : e ∈ {2, 4, 6}

, A :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0

0 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Xv := ψv([0, 1]) for v ∈ {1, 2}, r = 1/3 and

φ1 : X1
ψ1−→ X1, φ3 : X1

ψ3−→ X1, φ5 : X1
ψ2−→ X2,

φ2 : X2
ψ1−→ X1, φ4 : X2

ψ3−→ X1, φ6 : X2
ψ2−→ X2.

An illustration for this example is given in Figure 5.3.
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Markov Interval Maps.

For closed intervals X1, . . . , XN in [0, 1] with disjoint interior, N ≥ 2, and X :=
⋃N

i=1Xi

we call a map f : X → [0, 1] a Markov interval map if

(i) f |Xi is expanding and there exists a C1+α-continuation to a neighbourhood of Xi

and

(ii) if f(Xi) ∩Xj �= ∅, then Xj ⊂ f(Xi) for i, j ∈ {1, . . . , N}.

For a representation by a cGDMS, set V := {1, . . . , N} and for v ∈ V define fv := {v′ ∈
V | Xv′ ⊆ f(Xv)}. For every pair (v, v′), where v ∈ V and v′ ∈ fv, introduce an edge

e = e(v, v′) with i(e) = v and t(e) = v′. Set E := {e(v, v′) | v ∈ V, v′ ∈ fv} and define

φe : Xt(e) → Xi(e) by φe := (f |Xi(e)
)−1
∣∣
Xt(e)

.

Example 5.10. Set X1 := [0, 1/4], X2 := [1/4, 1/2], X3 := [2/3, 1] and let the Markov

interval map f :
⋃3

i=1Xi → [0, 1] be given by f |X1(x) := 5x/2, f |X2(x) := 3x − 1/2 and

f |X3(x) := 3x− 2.
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Figure 5.1: Graph of the Markov Interval Map f from Example 5.10.
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A corresponding sGDMS is given by V := {1, 2, 3}, E := {1, . . . , 7},

i(e) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 : e ∈ {1, 2}
2 : e ∈ {3, 4}
3 : e ∈ {5, 6, 7}

, t(e) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 : e ∈ {1, 5}
2 : e ∈ {2, 3, 6}
3 : e ∈ {4, 7}

, A :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

r = 3/4 and

φ1 : X1

(f |X1)
−1

−−−−→ X1, φ3 : X2

(f |X2)
−1

−−−−→ X2, φ5 : X1

(f |X3)
−1

−−−−→ X3,

φ2 : X2

(f |X1)
−1

−−−−→ X1, φ4 : X3

(f |X2)
−1

−−−−→ X2, φ6 : X2

(f |X3)
−1

−−−−→ X3, φ7 : X3

(f |X3)
−1

−−−−→ X3.

The graph of the Markov interval map f is presented in Figure 5.1. An illustration of how

the limit set is obtained is given in Figure 5.4.

5.2 Results for Conformal Graph Directed Markov Systems

In this section, we will characterise limit sets of cGDMS with aperiodic irreducible incidence

matrices for which the (average) fractal curvature measures and the (average) Minkowski

content exist. We concentrate on the results and the examples which we introduced in the

preceding section and refer to [KK11] for the proofs. The original results presented below

are generalisations of the results for self-conformal subsets of R from Chapter 2 and are

new even in the setting of sGDMS.

It follows from Theorems 4.2.9, 4.2.11 and 4.2.13 in [MU03] that the Minkowski dimension

of a limit set of a cGDMS always exists. Moreover, we can show that such a limit set either

is a non-empty compact interval or has zero one-dimensional Lebesgue measure. We now

distinguish between these two cases.

Proposition 5.11. If Y ⊂ R is a non-empty compact interval, then the 1-st fractal

curvature measure exists and satisfies

Cf
1 (Y, ·) = λ1(Y ∩ ·).

Moreover, taking Winter’s definition of the fractal curvature measures (see Remark 2.10),

we have that s0(Y ) = 0 and that w-limε→0 ε
s0(Y )C0(Yε, ·) = λ0(∂Y ∩ ·)/2.
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Let us now focus on limit sets with zero one-dimensional Lebesgue measure. For stating our

results we fix a cGDMS (V,E, i, t, A) and assume that the incidence matrix A is aperiodic

and irreducible (see Definition 5.2). Let {Xv}v∈V denote the associated non-empty compact

connected subsets of R and let Φ := {φe : Xt(e) → Xi(e)}e∈E denote the set of injective

contractions whose contraction ratios are bounded by some r ∈ (0, 1). Further, let F

denote the unique limit set and let δ := dimM (F ) be its Minkowski dimension.

Note that the notions from Chapters 2 and 3 concerning the full shift space (Σ∞, σ) can

be analogously introduced for the code space E∞
A . In particular, the geometric potential

function ξ : E∞
A → R is given by ξ(ω) := − ln|φ′

ω1
(π(σω))| for ω = ω1ω2 · · · ∈ E∞

A , where

σ denotes the shift-map on E∞
A , which is defined in the same manner as in Section 2.2.

Moreover, the results presented in Section 3.1.2 concerning Ruelle’s Perron-Frobenius

theorem are valid also for E∞
A (see [Bow08]). Specifically, there exists a unique σ-invariant

Gibbs measure μ−δξ for the potential function −δξ. Further, the measure theoretical

entropy Hμ−δξ
of σ with respect to μ−δξ is defined as in Equation (3.4).

Now, we present necessary notions which are specific for cGDMS. The unique probability

measure ν supported on F , which for all distinct e, e′ ∈ E satisfies

ν
(
φe(Xt(e)

) ∩ φe′(Xt(e′))) = 0 and ν(φeB) =

∫
B
|φ′

e|δdν (5.2)

for all Borel sets B ⊆ Xt(e) is called the δ-conformal measure associated with Φ. The

statement on the uniqueness and existence for cGDMS is provided in Theorem 4.2.9 of

[MU03] and goes back to the work of [Pat76, Sul79, DU91]. For a vertex v ∈ V we denote

the set of edges whose initial and respectively terminal vertex is v by

Iv := {e ∈ E | i(e) = v} and Tv := {e ∈ E | t(e) = v}.

Moreover, for n ∈ N we set

Inv := {ω ∈ En
A | i(ω1) = v}, Tn

v := {ω ∈ En
A | t(ωn) = v},

I∗v :=
⋃

n∈N Inv , T ∗
v :=

⋃
n∈N Tn

v and

I∞v := {ω ∈ E∞
A | i(ω1) = v}.

For a finite word ω ∈ E∗
A the ω-cylinder set is defined to be

[ω] := {u ∈ E∞
A | ui = ωi for i ∈ {1, . . . , n(ω)}}, in particular [∅] = E∞

A .

As in the situation of self-conformal sets, another central role is played by the primary and

main gaps of F . Like for self-conformal sets, these are certain intervals in the complement

of the limit set. Such a definition for limit sets of cGDMS is more involved and is given as

follows. Recall that 〈Y 〉 denotes the convex hull of a set Y ⊂ R. For v ∈ V we define

Gv :=
〈⋃

e∈Ivπ[e]
〉 \⋃e∈Iv 〈π[e]〉 (5.3)



112 CHAPTER 5. EXTENSIONS TO CGDMS

and denote by nv the number of connected components of Gv. In [KK11] we show that⋃
v∈V Gv �= ∅ if λ1(F ) = 0, hence,

∑
v∈V nv ≥ 1. If Gv �= ∅, we denote the connected

components of Gv by Gv,j , where j ranges over {1, . . . , nv} and call them the primary gaps

of F . For every ω ∈ T ∗
v we define Gv,j

ω := φω(G
v,j) and call these sets the main gaps of F .

Having introduced these notions, we are now able to present our results and fix the following

notation.

Notation 5.12. We let Φ := {φe}e∈E denote a cGDMS with aperiodic irreducible incidence

matrix and let F denote its limit set. We set δ equal to the Minkowski dimension of F and

let ξ denote the geometric potential function associated with Φ. Further, denote by H−δξ

the measure theoretical entropy of the shift map with respect to the unique shift-invariant

Gibbs measure μ−δξ for the potential function −δξ (see Section 3.1.2).

Theorem 5.13 (cGDMS – fractal curvature measures). Fix the notation from Notation 5.12

and assume that λ1(F ) = 0. Then the following hold.

(i) The average fractal curvature measures always exist and are both constant multiples

of the δ-conformal measure ν associated with F , that is

C̃f
0 (F, ·) =

2−δc

Hμ−δξ

· ν(·) and C̃f
1 (F, ·) =

21−δc

(1− δ)Hμ−δξ

· ν(·),

where the constant c is given by the well-defined positive and finite limit

c := lim
m→∞

∑
v∈V

nv∑
j=1

∑
ω∈Tm

v

|Gv,j
ω |δ. (5.4)

(ii) If ξ is non-lattice, then both the 0-th and 1-st fractal curvature measures exist and

satisfy Cf
k (F, ·) = C̃f

k (F, ·), for k ∈ {0, 1}.

(iii) If ξ is lattice, then there exists a constant c ∈ R such that C
f
k(F,B) ≤ c for every

Borel set B ⊆ R and k ∈ {0, 1}. Additionally, Cf
k(F,R) is positive for k ∈ {0, 1}.

Using the definition of the Minkowski content, we see that the existence of the fractal

curvature measures immediately implies the existence of the Minkowski content. Thus,

the Minkowski content of F exists, if ξ is non-lattice. As in the situation of self-conformal

sets, the lattice case is quite interesting with regard to the Minkowski content. A sufficient

condition under which the Minkowski content exists is given in Part (iii) of the next theorem.

Parts (i) and (ii) of the following theorem are immediate consequences of Theorem 5.13.

For stating the result, we equip EN with the product topology of the discrete topologies

on E and equip the set of infinite admissible words E∞
A ⊂ EN with the subspace topology.
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This is the weakest topology with respect to which the canonical projections onto the

coordinates are continuous. The space of real-valued continuous functions on E∞
A is denoted

by C(E∞
A ).

Theorem 5.14 (cGDMS – Minkowski content). Under the conditions of Theorem 5.13

and letting c denote the constant given in Equation (5.4), the following hold.

(i) The average Minkowski content exists and is equal to

M̃(F ) =
21−δc

(1− δ)Hμ−δξ

.

(ii) If ξ is non-lattice, then the Minkowski content M(F ) of F exists and coincides with

M̃(F ).

(iii) If ξ is lattice, then we have that

0 < M(F ) ≤ M(F ) < ∞.

Further, equality in the above equation can be attained. More precisely let ζ, ψ ∈ C(E∞
A )

denote the functions satisfying ξ − ζ = ψ − ψ ◦ σ, where the range of ζ is contained

in a discrete subgroup of R and a ∈ R is maximal such that ζ(E∞
A ) ⊆ aZ. Moreover,

let ν−δζ denote the unique eigenmeasure with eigenvalue one of the dual for the

Perron-Frobenius operator for the potential function −δζ (see Section 3.1.2). If for

every t ∈ [0, a) we have that∑
n∈Z

e−δanν−δζ ◦ψ−1([na, na+t)) =
eδt − 1

eδa − 1

∑
n∈Z

e−δanν−δζ ◦ψ−1([na, (n+1)a)), (5.5)

then M(F ) = M(F ).

Remark 5.15. (i) The sums occurring in Equation (5.5) are finite.

(ii) Condition (5.5) not only implies the existence of the Minkowski content but also that

Cf
0(F,R) = C

f
0(F,R).

We have already presented an example for a self-conformal set, which satisfies Condition

(5.5) in Chapter 2. An example of a limit set of a lattice cGDMS, which satisfies Condition

(5.5), thus is Minkowski measurable, and which is not a self-conformal set will be presented

in Example 5.20. Observe that, in the special case, when the maps {φe}e∈E of the cGDMS

are similarities, Condition (5.5) cannot be satisfied. In this case it even turns out, that the

limit set F is Minkowski measurable if and only if the system is non-lattice. This provides

an important extension to the result for self-similar sets given in [LP93, Fal95, LvF06] and

is reflected in the following theorem.
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Theorem 5.16 (sGDMS – fractal curvature measures). Fix the notation from Nota-

tion 5.12. Suppose that φe is a similarity for each e ∈ E, so that Φ is an sGDMS. Assume

that λ1(F ) = 0 and let h−δξ denote the unique strictly positive eigenfunction with eigenvalue

one of the Perron-Frobenius operator for the potential function −δξ (see Section 3.1.2).

Then, additionally to the statements of Theorem 5.13, the following hold.

(i) The constant c from Equation (5.4) simplifies to

c =
∑
v∈V

nv∑
j=1

h−δξ(x
v)|Gv,j |δ,

where xv ∈ I∞v is arbitrary for v ∈ V .

(ii) If ξ is lattice, then the following holds. For k ∈ {0, 1} and for every Borel set B ⊆ R

for which F ∩B is non-empty and is equal to a finite union of sets of the form π[ω],

where ω ∈ E∗
A, and for which Fε ∩B = (F ∩B)ε for all sufficiently small ε > 0 we

have that

0 < Cf
k(F,B) < C

f
k(F,B) < ∞.

The statement that the limit set of an sGDMS is Minkowski measurable if and only if it is

non-lattice is a speciality for GDMS consisting of similarities. We have already seen in

Theorem 5.14 that this dichotomy is not valid for limit sets of general cGDMS. Below, we

will see that this dichotomy already fails to hold for the subclass of C1+α-diffeomorphic

images of limit sets of sGDMS. However, here there is a dichotomy for the fractal curvature

measures. That is, the fractal curvature measures exist if and only if the underlying system

is non-lattice. This is stated in the next theorem, where we moreover give a relationship

between the (average) fractal curvature measures of the limit set of the sGDMS and of its

C1+α-diffeomorphic image.

Theorem 5.17 (C1+α-images – fractal curvature measures). Let K ⊂ R denote the limit set

of the sGDMS Φ with aperiodic irreducible incidence matrix and let δ denote its Minkowski

dimension. Set X :=
〈⋃

v∈V Xv

〉
and let U ⊃ X be a connected open neighbourhood of X

in R. Define g : U → R to be a C1+α(U) map, for which |g′| is bounded away from zero and

α ∈ (0, 1]. Assume that λ1(K) = 0 and set F := g(K).

(i) The average fractal curvature measures of both K and F exist. Moreover, C̃f
k (F, ·)

is absolutely continuous with respect to the push-forward measure g�C̃
f
k (K, ·) for

k ∈ {0, 1}. Their Radon-Nikodym derivative is given by

dC̃f
k (F, ·)

d
(
g�C̃

f
k (K, ·)

) = |g′ ◦ g−1|δ.

(We refer the reader to the appendix for the definition of the push-forward measure.)
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(ii) If Φ is non-lattice, then the fractal curvature measures of both K and F exist and

coincide with the respective average fractal curvature measures.

(iii) If Φ is lattice, then neither the 0-th nor the 1-st fractal curvature measure of K and

F exist.

Theorem 5.18 (C1+α-images – Minkowski content). Suppose that we are in the situation

of Theorem 5.17. Let ν denote the δ-conformal measure associated with K. Then we have

the following.

(i) The average Minkowski content of both K and F exist and are related by

M̃(F ) = M̃(K) ·
∫

|g′|δdν.

(ii) If Φ is non-lattice, then the Minkowski contents of both K and F exist and coincide

with the respective average Minkowski contents.

(iii) Assume that K ⊆ [0, 1] and that the geometric potential function ξ associated with Φ

is lattice. Let a > 0 be maximal such that the range of ξ is contained in aZ. Define

g̃ : R → R, g̃(x) := ν((−∞, x]) to be the distribution function of ν. For n ∈ N define

the function gn : [−1,∞) → R by

gn(x) :=

∫ x

−1

(
g̃(r)(eδan − 1) + 1

)−1/δ
dr

and set Fn := gn(K). Then for every n ∈ N we have M(Fn) = M(Fn).

For the reason why ξ ⊂ aZ for some a > 0 we refer to the proof of Theorem 2.38 and remark

that Items (i) and (ii) of the above theorem are direct consequences of the respective items

in Theorem 5.17.

Remark 5.19. The sets Fn constructed in Theorem 5.18 are not only Minkowski measurable

but also satisfy Cf
0(Fn) = C

f
0(Fn).

We now illustrate the above results by calculating the Minkowski content of the examples

which were presented at the end of the preceding section.

Example 5.8 continued. For determining the Minkowski content of the limit set F of the

cGDMS from Example 5.8, we apply Theorem 5.16 and thus need to find the primary gaps.

Observe that

〈π[1]〉 = [0, 1/16], 〈π[2]〉 = [3/16, 1/4], 〈π[3]〉 = [9/16, 5/8],

〈π[4]〉 = [3/4, 13/16], 〈π[5]〉 = [57/64, 29/32] and 〈π[6]〉 = [15/16, 1].
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Thus,

G1 =

(
1

16
,
3

16

)
︸ ︷︷ ︸

=:G1,1

, G2 = ∅ and G3 =

(
13

16
,
57

64

)
︸ ︷︷ ︸

=:G3,1

∪
(
29

32
,
15

16

)
︸ ︷︷ ︸

=:G3,2

.

The primary gaps G1,1, G3,1 and G3,2 are illustrated in Figure 5.2.

Another ingredient in the formula of Theorem 5.16 is the eigenfunction h−δξ of the Perron-

Frobenius operator L−δξ (see Section 3.1.2), where δ denotes the Minkowski dimension

of F and ξ is the geometric potential function associated with Φ. In order to determine

h−δξ, we first determine the measure ν−δξ. This is done by solving the linear system of

equations which arises by combining the following three ingredients. (i) For e ∈ E the

defining equation for ν−δξ implies that ν−δξ([ee
′]) = 4−δ · ν−δξ([e

′]) for every e′ ∈ Ti(e). (ii)

ν−δξ([e]) =
∑

e′∈Ti(e)
ν−δξ([ee

′]) and (iii)
∑

e∈E ν−δξ([e]) = 1. The resulting measure ν−δξ

satisfies

ν−δξ([1]) = ν−δξ([4]) = (3 · 4δ − 4−δ)−1,

ν−δξ([2]) = ν−δξ([3]) = ν−δξ([6]) = (4δ − 1) · ν−δξ([1]) and

ν−δξ([5]) = (1− 4−δ) · ν−δξ([1]).

For finding h−δξ, we use the approximation argument from Equation (3.3). We let 1

denote the constant one-function on Σ∞. Since Ln
−δξ1(x) =

∑
ω∈Tn

i(x)
rδω = Ln

−δξ1(y) for

all x, y ∈ Xv, where v ∈ V is arbitrary, it follows that h−δξ is constant on one-cylinders.

Using that the eigenvalue γ−δξ is equal to one, that L−δξh−δξ = γ−δξh−δξ and that∫
h−δξdν−δξ = 1, it follows that

h−δξ(x
1) = 3−4−2δ

−2·4−δ+6−4δ
for x1 ∈ I∞1 ,

h−δξ(x
2) = (1− 4−δ) · h−δξ(x

1) for x2 ∈ I∞2 and

h−δξ(x
3) = (4δ − 1) · h−δξ(x

1) for x3 ∈ I∞3 .

From the above evaluations we additionally infer that the Minkowski dimension δ is the

unique positive root of 4−δ − 4−2δ + 2− 4δ. Clearly, Hμ−δξ
= δ ln 4. Thus, altogether we

0 1

X1 X2 X3

〈π[1]〉 〈π[2]〉 〈π[3]〉 〈π[4]〉 〈π[5]〉 〈π[6]〉︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸
G1,1 G3,1 G3,2

Figure 5.2: Construction of the primary gaps of the cGDMS from Example 5.8.
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obtain from Theorem 5.16 that

M̃(F ) =
21−δ

(1− δ)δ · ln 4 · 3− 4−2δ

−2 · 4−δ + 6− 4δ
·
((

1

8

)δ

+ (4δ − 1) ·
((

5

64

)δ

+

(
1

32

)δ
))

.

Example 5.9 continued. For the system which we introduced in Example 5.9, the con-

struction of the primary gaps is illustrated in Figure 5.3. Here, G1,1 = (4/27, 5/27) and

G2,1 = (7/9, 8/9). The eigenfunction h−δξ of the Perron-Frobenius operator L−δξ with

eigenvalue 1 is equal to the constant one function 1 because of the following. Firstly,

L−δξ1 ≡ 2/3δ + 1/9δ and secondly, 1 = 2/3δ + 1/9δ which can be concluded from the fact

that 0 = P (−δξ), where P denotes the topological pressure function. Thus,

M̃(F ) =
21−δ · (27−δ + 9−δ)

(1− δ)Hμ−δξ

.

0 1

X1 X2

〈π[1]〉 〈π[2]〉〈π[3]〉 〈π[4]〉 〈π[5]〉 〈π[6]〉︸︷︷︸ ︸ ︷︷ ︸
G1,1 G2,1

Figure 5.3: Primary gaps of the limit set of the cGDMS from Example 5.9.

Let us now turn to the last example from the end of the previous section. For this

example, we limit ourselves to illustrating the primary gaps, since presenting the complete

calculations would not give any further insights.

Example 5.10 continued. For the limit set of the sGDMS from Example 5.10, the convex

hulls of the projections of the cylinder sets are given by

〈π[1]〉 = [0, 2/25], 〈π[3]〉 = [1/4, 1/3], 〈π[5]〉 = [2/3, 11/15],

〈π[2]〉 = [1/10, 1/5], 〈π[4]〉 = [7/18, 1/2], 〈π[6]〉 = [3/4, 5/6], 〈π[7]〉 = [8/9, 1].

Thus, the primary gaps are

G1,1 = (2/25, 1/10), G2,1 = (1/3, 7/18), G3,1 = (11/15, 3/4) and G3,2 = (5/6, 8/9).

They are illustrated in Figure 5.4. This cGDMS is non-lattice and hence its Minkowski

content exists.

We end this chapter with concluding remarks addressing Conjecture 4 from [Lap93] which

we commented on in Remark 2.35. With Theorem 5.16 we have seen that the Minkowski

content of a limit set of an sGDMS in R exists if and only if the sGDMS is non-lattice.
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0 1

X1 X2 X3

〈π[1]〉 〈π[2]〉 〈π[3]〉 〈π[4]〉 〈π[5]〉 〈π[6]〉 〈π[7]〉︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
G1,1 G2,1 G3,1 G3,2

Figure 5.4: Primary gaps of the limit set of the cGDMS given in Example 5.10.

Theorem 5.14 shows that the Minkowski content of the limit set of a non-lattice cGDMS in

R exists. It furthermore provides a condition, which implies the existence of the Minkowski

content in the lattice case. How this condition simplifies for cGDMS which arise via C1+α

conjugation of sGDMS is stated in Theorem 5.18. An explicit example which satisfies this

condition is given below.

Example 5.20. Let K ⊆ [0, 1] denote the limit set of the sGDMS given in Example 5.8. Let

δ denote its Minkowski dimension and let ν denote the associated δ-conformal measure.

Further, let g̃ : R → R denote the distribution function of ν, that is g̃(x) := ν((−∞, x]).

Define the function g : [−1,∞) → R by

g(x) :=

∫ x

−1
(g̃(r) + 1)−1/δdr

and set F := g(K). Then we have M(F ) = M(F ), although M(K) < M(K). This is a

consequence of Theorems 5.16 and 5.18.

Thus, altogether, we obtain that for limit sets of cGDMS the dichotomy that the Minkowski

content exists if and only if the cGDMS is non-lattice is not true in general. In this context

it is worth to point out that we obtain such a dichotomy statement for the fractal curvature

measures of C1+α-diffeomorphic images of limit sets of sGDMS in Theorem 5.17.

Finally, note that limit sets of Fuchsian groups of Schottky type (see for instance [Nic89]

for a definition) can be represented as limit sets of cGDMS. In Part II of [Lal89] it is stated

that such objects are non-lattice. Combined with Corollary 2.3 of [LP93], Theorem 5.14

thus verifies Conjecture 4 of [Lap93] for limit sets of Fuchsian groups of Schottky type.



A Measure Theory

Here, we collect some facts and notions from measure theory, which are needed throughout

this thesis. Good references are [Bog07, Els05].

We let B(Rd) denote the Borel σ-algebra on Rd, that is the σ-algebra generated by open

sets in Rd.

Definition A.1 (Intersection stable generator). An intersection stable generator of B(Rd)

is a collection of sets E ⊂ B(Rd) such that the smallest σ-algebra containing E coincides

with B(Rd) and such that the intersection of any two elements of E again is an element of

E .

Definition A.2 (Signed Borel measure). A signed Borel measure is a σ-additive set

function μ : B(Rd) → R ∪ {±∞} for which μ(∅) = 0. If a signed Borel measure in

non-negative, then it is a Borel measure.

For a signed Borel measure μ on B(Rd) the Hahn decomposition theorem provides a disjoint

decomposition of Rd into two sets P,N ∈ B(Rd) for which μ(A) ≥ 0 for all Borel sets

A ⊆ P and μ(A) ≤ 0 for all Borel sets A ⊆ N . Here, the sets P and N are unique up to

sets of μ-measure zero.

Definition A.3 (Variation measures, Jordan decomposition). For a signed Borel measure

μ we define the set functions μ+, μ−, μvar : B(Rd) → R+
0 ∪ {∞} through

μ+(B) := μ(B ∩ P), μ−(B) := −μ(B ∩N ) and μvar(B) := μ+(B) + μ−(B)

for B ∈ B(Rd), where the sets P,N ∈ B(Rd) are given by the Hahn decomposition

theorem. μ+, μ− and μvar are respectively called the positive, negative and total variation

measures of μ. The decomposition μ = μ+ − μ− is known as the Jordan decomposition of

the signed Borel measure μ.

Proposition A.4 (Theorem 6.1.2 in [Win08]). Let μ1 and μ2 be signed Borel measures

on B(Rd) whose total variation measures are finite. Let E denote an intersection stable

generator of B(Rd) such that μ1(E) = μ2(E) for all E ∈ E. Then μ1 and μ2 agree on the

whole of B(Rd).

Definition A.5 (Weak convergence). A family (μn)n∈N of signed Borel measures on

(Rd,B(Rd)) is called weakly convergent to a signed Borel measure μ as n → ∞ , if for every

119
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bounded continuous real-valued function f on Rd one has

lim
n→∞

∫
Rd

f(x)dμn(x) =

∫
Rd

f(x)dμ.

The definition of the integral with respect to a signed Borel measure is deduced from the

definition of the integral with respect to a non-negative measure, by using the Jordan

decomposition of the signed Borel measure. If I ⊂ R is an index set having x as a limit

point, then the family of signed measures (με)ε∈I is said to be weakly convergent to μ as

ε → x, if (μεn)n∈N is weakly convergent to μ for every sequence (εn)n∈N with εn ∈ I and

limn→∞ εn = x.

Definition A.6 (Uniformly tight, totally bounded). A family P of signed Borel measures

on Rd is called uniformly tight , if for every ε > 0 there exists a compact set Kε ∈ B(Rd)

such that μvar(Rd \Kε) < ε for all μ ∈ P. The family P is called totally bounded if there

exists a c ∈ R such that μvar(Rd) ≤ c for all μ ∈ P.

Theorem A.7 (Prohorov, (see for instance Theorem 8.6.7 in [Bog07])). Let P denote a

uniformly tight and totally bounded family of signed Borel measures on B(Rd). Then every

sequence in P contains a weakly convergent subsequence.

Definition A.8 (Push-forward measure). Let (U,B1) and (V,B2) denote two measurable

spaces. Let T : U → V be measurable and let μ denote a signed Borel measure on B1. The

push-forward measure of μ is defined to be the signed Borel measure T�μ : B2 → R given

by T�μ(B) = μ ◦ T−1(B) for B ∈ B2.
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local, 11

local average, 11

lower, 10

upper, 10
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upper, 10

Minkowski measurable, 10
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non-degenerate, 21
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open set condition (OSC), 18

for cGDMS, 106

operator norm, 17
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Perron-Frobenius operator, 43
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for cGDMS, 112
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positive, 12

regular distance, 14
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self-similar set, 18

shift space, 19

shift-map, 19
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spectral radius, 45

spectral radius formula, 45

spectrum, 45

strong separation condition (SSC), 33

tight, 120

topological pressure function, 41
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initial, 105

terminal, 105

weak convergence, 119
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Fα(Σ
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Hμ−δξ
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μ+, 119
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N0, 9

n(ω), 18

ν, 20

νf , 43

o, 50

ω|n, 18
P , 42

φω, 18

π, 18

Π, 54

prY , 12

R, 9

R+, 9

R+
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�(z), 45
reach(Y ), 12

Σ, 18

σ, 19

Σ∞, 18

Σn, 18

Σ0, 18

Σ∗, 18
Sn, 41

ξ, 19

Yε, 9

Y<ε, 9
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[Kne51] M. Kneser, Über den Rand von Parallelkörpern, Math. Nachr. 5 (1951), 241–251.
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