ANALYSIS AND DESIGN OF MULTIVIBRATORS

A THESIS
Submitted in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

by
Benjamin J. Dasher

Georgia School of Technology
Atlanta, Georgia
1945

ANALYSIS AND DESIGN OF MULTIVIBRATORS

Approved:

Date Approved by Chairman Keb. 161945

ACKNOWLEDGMENT

I wish to express my sincerest appreciation to Associate Professor M. A. Honnell for his interest and valuable assistance in the prosecution of this work.

table of Contents

PAGE

Acknowledgment iii
Definition of Symbols v
Introduction 1
Analysis of the Ideal Multivibrator 2
The Non-Ideal Vultivibrator 11
The Design Procedure 23
Experimental Verification of Theory 30
Conclusion 35
BIBLIO GRAPHY 37

A Voltage amplification of the amplifying devices of the ideal multivibrator.
A_{1} Amplifier number 1, or its amplification.
A_{2} Amplifier number 2, or its amplification.
C_{1} Condenser connected between the output terminal of A_{1} and the input terminal of A_{2}.
C_{2} Condenser connected between the output terminal of A_{2} and the input terminal of A_{1}.
C_{b} Output capacitance of either vacuum tube.
C_{g} Input capacitance of either vacuum tube.
$C_{m} \quad$ Coupling condenser connected between the plate terminal of one tube and the grid terminal of the other tube.
E_{b} D.C. plate voltage of either tube.
$E_{c} \quad$ D.C. grid bias of either tube.
$E_{e} \quad$ The change of voltage across R_{b} when the plate current of its driving tube changes from zero to its maximum value. It consists of two components, E_{x} and E_{s}.
E_{e} ' The change of voltage across R_{b} when the plate current of its driving tube changes from the quiescent value to zero.
${ }^{\mathrm{E}}$ gol The critical (negative) grid voltage of VT at which flip-over occurs. Also the critical (negative) input voltage of A_{1}.
$E_{\text {go2 }}$ The critical (negative) grid voltage of VT 2 at which flip-over occurs. Also the critical (negative) input voltage of A_{2}.
$\mathrm{E}_{\mathrm{s}} \quad$ The step-function component of E_{θ}.
$\mathrm{E}_{\mathrm{x}} \quad$ The exponential-function component of E_{e}.
e The base of natural logarithms.
f frequency.
$G_{1} \quad$ The input terminal of A_{1}.
$G_{2} \quad$ The input terminal of A_{2}.
$\mathrm{G}_{\mathrm{ml}} \quad$ The grid-plate transconductance of VT_{1}.
$\mathrm{G}_{\mathrm{m} 2}$ The grid-plate transconductance of VT_{2}.
γ The ratio of the maximum negative grid voltage to the critical negative grid voltage (for the ideal multivibrator).
γ The ratio of the equivalent maximum negative grid voltage to the critical negative grid voltage (for the non-ideal multivibrator).

Ib The D.C. plate current of either vacuum tube.
$i_{g} \quad$ The current in R_{g}.
$K_{1} \quad$ Cathode, or ground terminal of A_{1}.
$\mathrm{K}_{2} \quad$ Cathode, or ground terminal of A_{2}.
$\lambda=R_{g} R_{e}\left(C_{g} C_{m}+C_{b} C_{m}+C_{b} C_{g}\right)$
p $\quad \mathrm{d} / \mathrm{dt}=$ time derivative operator.
$\mathrm{R}_{1} \quad$ Resistance of the path over which C_{1} discharges.
R_{2} Resistance of the path over which C_{2} discharges.
$R_{a}=R_{e}\left(C_{b}+C_{m}\right) / C_{m}+R_{g} C_{g} / C_{m}$
$R_{b} \quad$ The plate load resistance of either tube.
$R_{e} \quad$ Equivalent resistance formed by putting R_{b} in parallel with the plate resistance of its driving tube.
$\mathrm{R}_{\mathrm{g}} \quad$ Resistance connected between the grid terminal of a tube and its cathode terminal.
r_{g} Dynamic grid resistance of either tube.
$R_{i}=R_{g} r_{g} /\left(R_{g}+r_{g}\right)$
T Time for one complete cycle of the multivibrator.
$\mathrm{T}_{1} \quad$ Time during which VT_{2} (or A_{2}) is inactive. (See also equation D1)
T_{2} Time during which VT_{1} (or A_{1}) is inactive. (See also equation D4)
t Time in seconds.
$\tau_{1} \quad$ Time constant of the circuit over which $C_{m l}$ discharges.
τ_{2} Time constant of the circuit over which $C_{m 2}$ discharges.
$\boldsymbol{\tau}_{\mathrm{gl}} \quad$ Time constant of the circuit over which C_{ml} charges.
$\tau_{\mathrm{g} 2}$ Time constant of the circuit over which $\mathrm{C}_{\mathrm{m} 2}$ charges.
U Ideal rectifier.
$\nabla_{1} \quad$ The voltage drop across $R_{g 2}$. Also the voltage drop across R_{2}.
v_{2} The voltage drop across $R_{g 1}$. Also the voltage drop across R_{1}.

ANALYSIS AND DESIGN OF NULIIVIBRATORS

INTPODUCTION

More than a quarter of a century has passed since Abraham and Bloch published a description of a circuit to generate "multiple vibrations". Their device was characterized by two essential features which determined its usefulness: an output voltage wave rich in harmonics, and a willingness to synchronize its fundamental frequency with that of an external voltage. Many early applications made use of these features to provide frequency standards, harmonic generators, and other devices of a similar nature. In more recent years there has grown an increasing demand for signal generators to supply an endless variety of complex wave shapes, in applications varying from television timers to electronic switches. The diversity of these applications has naturally resulted in a diversity of circuits, all of which may be properly called multivibrators. Yet, the basic circuit of Abraham and Bloch is generic to a great many, if not all, of these varied forms.

Much has been written concerning multivibrators, but the literature is inclined to go from one extreme to another, either neglecting too little, or neglecting too much. There is still a need for a treatment comprehensive enough to provide reasonable accuracy, yet simple enough to facilitate rapid engineering calculations. The following analysis provides a design procedure which the suthor believes meets this need.

ANALYSIS OF THE IDEAL MULTIVIBRATOR

The circuit diagram in Figure 1 shows the familiar prototype multivibrator. Applying Thevenin's Theorem and the equivalent platecircuit theorem, the circuit of Figure 2 is obtained. As far as the currents in C_{m} and R_{g} are concerned, Figure 2 is equivalent to Figure 1. A clearer understanding of the general aspects of the multivibrator can be gained by idealizing the circuit, as shown in Figure 3. This circuit will be called an "ideal multivibrator". From its behavior we can obtain the fundamental equation for frequency and also determine the basic wave-shapes of the voltages generated. Later it will be shown how these results can be modified so as to apply to actual circuits.

The ideal multivibrator consists of two amplifying devices and associated circuits connected as shown. For the sake of generality, the two devices are assumed to have different coefficients, although they are, of course, of the same nature otherwise. The subscripts 1 and 2 will be used when it is necessary to distinguish the sections, or stages, from each other as indicated in the diagram.

The amplifiers have input terminals K^{l} and G, and output terminals K and P. When the input voltage, v, is such as to make G positive, the impedance between G and K is zero; and when G is negative, this impedance is infinite. This property is indicated by the ideal rectifiers, labeled U. When \boldsymbol{V} is between zero and some critical neg-

[^0]

FIG. I. BASIC MULTIVIBRATOR CIRCUIT

FIG.3. THE IDEAL MULTIVIBRATOR
ative value, $E_{g o}$, the gain is A. When v is more negative than $E_{g o}$, the gain is zero. (Because of the properties of U, v cannot be positive.) The polarity of the amplified voltage is reversed with respect to the input voltage, so that when G is negative P is positive. Futhermore, the output sections of the amplifiers have zero internal impedance. Referring to Figure 3, let us suppose that the switch, S , is opened and that the condenser C_{1} is charged to a voltage $A_{1} E_{g o l}$, the terminal towards G_{2} being negative. Assume that the charge on C_{2} is zero. If S is closed, the voltage $A_{1} E_{g o l}$ instantly appears across R_{1}; and C_{1} begins to discharge. The voltage across R_{1} is amplified by A_{2}; but, since A_{2} cannot amplify voltages greater than $E_{\text {go } 2 \text {, }}$ the total voltage appearing in its output circuit is $A_{2} E_{g o 2}$. The polarity of this voltage is such as to make G_{1} positive and R_{2} is, therefore, shortcircuited through U_{1}. Thus C_{2} is charged instantly to a voltage $A_{2} E_{g o 2}$. As long as V_{2} is greater than $\mathrm{E}_{\text {go2 }}, \mathrm{A}_{2}$ cannot amplify and nothing more happens in the circuit of $R_{2} C_{2}$. However, C_{1} continues to discharge and the voltage across R_{1} decreases exponentially with time so that

$$
\begin{equation*}
-t / R_{1} C_{1} \tag{1}
\end{equation*}
$$

When $t=T_{1}, \nabla_{2}$ will have fallen to the critical value, $E_{\text {go2 }}{ }^{\circ}$

Thus

$$
\begin{equation*}
E_{g o 2}=A_{1} E_{g o l} e^{-T_{1} / \tau_{1}} \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
T_{1}=\text { time required for } v_{2} \text { to decrease from } A_{1} E_{\text {gol }} \text { to } E_{\text {go2 }} \tag{D1}\\
\qquad \tau_{1}=R_{1} C_{1} \tag{D2}
\end{gather*}
$$

Solving equation (2) for T_{1} we have

$$
\begin{equation*}
T_{1}=\tau_{1} \ln \left(A_{1} E_{g o l} / E_{g o 2}\right) \tag{2a}
\end{equation*}
$$

If we let

$$
\begin{equation*}
\gamma_{1}=A_{1} E_{g o l} / E_{\mathrm{go} 2} \tag{D3}
\end{equation*}
$$

Equation (2a.) becomes

$$
\begin{equation*}
\mathrm{T}_{1}=\tau_{1} \ln \gamma_{1} \tag{3}
\end{equation*}
$$

At the end of the interval T_{1}, A_{2} again amplifies, the voltage in its output circuit is reduced to zero ${ }^{2}$ (permitting C_{2} to discharge), the voltage $A_{2} E_{g o 2}$ appears across R_{2}, and C_{1} is again charged to the voltage $A_{1} E_{\text {gol }}$. During the interval T_{2}, C_{2} discharges, and we have

$$
\begin{equation*}
\mathrm{T}_{2}=\tau_{2} \ln \left(\mathrm{~A}_{2} \mathrm{E}_{\mathrm{go2}} / \mathrm{E}_{\mathrm{gol}}\right) \tag{4}
\end{equation*}
$$

${ }^{2}$ At the instant when \mathbf{v}_{2} becomes less than the critical value, the voltage in the output circuit of A_{2} becomes less then $A_{2} E_{g o 2}$. This causes C_{2} to begin to discharge, which in turn causes a negative voltage to appear across R_{2}. The resulting voltage in the output circuit of A_{1} tends to make G_{2} positive, causing a further decrease in V_{2}. This is followed by further reduction in the output voltage of A_{2}, and so on. In actual circuits a finite time is required for this process to be propagated, but in the ideal circuit it is assumed that the events just described occur simultaneously, so that as soon as v_{2} becomes less than the critical value, v_{2} and $\mathrm{A}_{2} \mathrm{v}_{2}$ are reduced to zero.
or

$$
\begin{equation*}
T_{2}=\tau_{2} \ln \gamma_{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{gather*}
T_{2}=\text { time required for } v_{1} \text { to decrease from } A_{2} E_{\text {go2 }} \text { to } E_{\text {gol }} \tag{D4}\\
\qquad \begin{array}{c}
\tau_{2}=R_{2} C_{2} \\
\gamma_{2}=A_{2} E_{\text {go2 }} / E_{\text {gol }}
\end{array}
\end{gather*}
$$

The interval T_{2} completes one cycle. The total time is

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2} \tag{6}
\end{equation*}
$$

Equation (7) is the basic equation for the frequency of the multivibrator. As far as the ideal circuit is concerned, it involves no approximations and is, therefore, an exact equation for frequency. Figure 4 shows the wave-shapes of the voltages, v_{1} and v_{2}, which will be generated by the ideal multivibrator. These are the wave-shapes commonly associated with multivibrators, shown in ideal form. In fact, expressions similar to equation (7) are well known and have been derived by several writers.

The purpose of the foregoing analysis is two-fold. First, to establish a useful standard by which to evaluate the performance of actual circuits. Second, to establish the meaning of the terms τ and γ. It must not be thought that the use of the term "ideal" means that the ideal multivibrator would be the most desirable of all possible
circuits, for it is clear that such a choice would depend on the use to which any particular device would be put. Rather, the circuit is ideal in that it can be analyzed without making any approximations and its performance can be completely determined in terms of the known properties of the circuit.

Although γ_{1} is formally defined in equation (D3), its significance is more readily seen from equation (3). With this in mind, we may restate the definition of γ_{1} as follows. If the voltage across R_{1} follows an exponential law as C_{1} discharges, and if it has the value $\mathrm{E}_{\mathrm{go2}}$ at the end of the interval T_{1}, then its value at the beginning of the interval was $\gamma_{1} A_{1} E_{\text {gol }} . \tau_{1}$ is, of course, the time constant of the circuit over which C_{1} discharges. Similar statements apply to $\boldsymbol{\gamma}_{2}$ and τ_{2}. The implicationa are obvious. Although actual circuits differ in many respects from the ideal circuit, it is possible (within certain limits) to establish values for the τ^{\prime} s and γ_{\prime} s so that equation (7) can still be used to predict the frequency of oscillations. In other words, the concept of the ideal multivibrator reduces the analysis of actual circuits to the problem of finding the values of τ and $\gamma_{\text {. }}$

TIME

FIG. 4 WAVE-SHAPE OF THE VOLTAGE GENERATED BY THE IDEAL MULTIVIBRATOR

THE NON-IDEAL MULTIVIBRATOR

We now return to the circuit of Figure l. We know that its general behavior is similar to that of the ideal multivibrator. We also know that every detail of its behavior is different. In the first place, the "flip-over" does not occur instantaneously, but requires a finite time, during which both vacuum tubes follow non-linear operating paths. In the second place, the voltages across the R_{g} 's do not follow exponential laws; and even if they did, the time constants of the circuit would not be given by the simple RC products. In view of these facts, it is apparent that a complete analysis must be comparatively complicated. In order to avoid such complexity, it is necessary to make simplifying assumptions, or approximations. While such approximations may simplify the analysis, they do not simplify the circuit and it is to be expected that they will lead to errors in the results. The first step in the analysis is to decide what approximations are justified and what detail is justified in the licht of the desired accuracy.

The circuit is made up of vacuum tubes, resistors, capacitors, etc. It is difficult to measure the properties of such devices to a high order of precision. An accuracy exceeding 1% can hardly be obtained on an engineering basis. Besides, changes of this order of magnitude are likely to occur during normal operation. Accordingly, some means of adjustment must be provided and if a design can be executed to an accuracy of, say, 10% it will be satisfactory for most purposes. It is believed that the treatment which follows meets this specification
in predicting frequencies up to a fundamental frequency of at least 50 KC , provided certain requirements are fulfilled in design. Although based on the circuit of Figure 1, assuming approximately equal values for T_{1} and T_{2}, the method employed should prove useful in the analysis and design of many other similar circuits.

The following simplifying assumptions are made:

1. That the "flip-over" time is so short that it has no appreciable influence on the frequency.
2. That the stray inductance of the circuits is so small that it has no appreciable influence on the time constants of the circuit.
3. That the device is free from external disturbances, such as plate supply ripple, stray magnetic or electric fields, etc.
4. That the stray capacitances connected to the input and output terminals of the vacuum tubes may be adequately represented by lumped capacitances.

Referring again to Figure 1, suppose that the grid of VT_{1} has just been driven to zero potential, causing a sudden increase in its plate current. During the interval immediately following, the equivalent circuit shown in Figure 5 applies. E_{e} is the change in voltage across $R_{b l}$. It is not necessary to specify its exact nature at this time and it may be considered to be merely an equivalent voltage in the circuit. R_{e} is an equivalent resistance formed by placing $R_{b l}$ and the plate resistance of VT_{1} in parallel. We wish to find the equation for

FIG. 5. EQUIVALENT CIRGUIT WHICH HOLDS DURING THE INTERVAL WHEN THE GRID IS NEGATIVE.
the voltage across R_{g}. Choose current directions as indicated in the figure. Starting with the voltage drop across R_{g} and summing up the voltage drops in the circuit, we obtain:

$$
\begin{align*}
& i_{g} R_{g}+\left(1 / p C_{m}\right)\left(i_{g}+C_{g} p i_{g} R_{g}\right)+R_{e}\left\{i_{g}+C_{g} p i_{g} R_{g}\right. \\
& \left.+p C_{b}\left[i_{g} R_{g}+\left(1 / p C_{m}\right)\left(i_{g}+C_{g} p i_{g} R_{g}\right)\right]\right\}=E_{e} \tag{8}
\end{align*}
$$

in which

$$
\begin{gather*}
\mathrm{p}=\mathrm{d} / \mathrm{dt}=\text { time derivative operator } \tag{D7}\\
1 / \mathrm{p}=\int_{0}^{t}() \mathrm{dt} \tag{D8}
\end{gather*}
$$

Rearranging and collecting terms, this gives for the differential equation for i_{g} :

$$
\begin{align*}
{\left[R _ { g } R _ { e } \left(C_{g} C_{m}+C_{b} C_{m}+\right.\right.} & \left.C_{b} C_{g}\right) p / C_{m}+R_{g}\left(C_{m}+C_{g}\right) / C_{m} \\
& \left.+R_{e}\left(C_{b}+C_{m}\right) / C_{m}+1 / p C_{m}\right] i_{g}=E_{e} \tag{8a}
\end{align*}
$$

Let

$$
\begin{equation*}
\lambda=R_{g} R_{e}\left(C_{g} C_{m}+C_{b} C_{m}+C_{b} C_{g}\right) / C_{m} \tag{D9}
\end{equation*}
$$

and let

$$
\begin{equation*}
R_{a}=R_{e}\left(C_{b}+C_{m}\right) / C_{m}+R_{g} C_{g} / C_{m} \tag{D10}
\end{equation*}
$$

Then equation (8a) becomes:

$$
\begin{equation*}
\left[\lambda p+\left(R_{a}+R_{g}\right)+1 / p C_{m}\right] i_{g}=E_{\theta} \tag{9}
\end{equation*}
$$

Equation (9) suggests the equivalent circuit of Figure 6. This circuit will give i_{g} correctly regardless of the nature of E_{e}. It shows very clearly the principle effects of the capacitances C_{b} and C_{g}, namely: (1) they cause a delay in the increase of voltage across R_{g} when flip-over occurs; (2) they increase the time constant of the circuit; and (3) they decrease the magnitude of the voltage which appears across R_{g} •

In order to solve equation (9) for i_{g}, E_{e} must be specified. Since flip-over occurs in a very short time, E_{e} may be assumed to be a step function. This gives:

$$
\begin{array}{r}
i_{g}=\left[E_{e} / \sqrt{\left(R_{a}+R_{g}\right)^{2} / 4-\lambda / C_{m}}\right] e^{-(t / 2 \lambda)\left(R_{a}+R_{g}\right)} \\
\sinh (t / \lambda) \sqrt{\left(R_{a}+R_{g}\right)^{2} / 4-\lambda / C_{m}} \tag{10}
\end{array}
$$

The terms under the radical sign may be written

$$
\begin{equation*}
\sqrt{\left(R_{a}+R_{g}\right)^{2} / 4-\lambda / C_{m}}=(1 / 2)\left(R_{a}+R_{g}\right) \sqrt{1-4 \lambda /\left(R_{a}+R_{g}\right)^{2} C_{m}} \tag{11}
\end{equation*}
$$

Also, from equation (D9) we find that
${ }^{3}$ It will be shown presently that this assumption is inadequate. A more accurate definition of E_{e} is given in connection with equation (17).

FIG. 6. CIRCUIT WHICH IS EQUIVALENT TO FIG. 5 SO FAR AS ig is CONCERNED.
$4 \lambda /\left(R_{a}+R_{g}\right)^{2} C_{m}=4\left[R_{g} R_{e}\left(C_{g} C_{m}+C_{b} C_{m}+C_{b} C_{g}\right) / C_{m}\right] /\left(R_{a}+R_{g}\right)^{2} C_{m}$

If $C_{m} \gg\left(C_{g} C_{m}+C_{b} C_{m}+C_{b} C_{g}\right)$, the numerical value of the left side of equation (12) will be much less than unity and we can make the approximation:

$$
\begin{gather*}
(1 / \lambda) \sqrt{\left(R_{a}+R_{g}\right)^{2} / 4-\lambda / C_{m}} \approx\left[\left(R_{a}+R_{g}\right) /(2 \lambda)\right] \\
{\left[1-2 \lambda\left(R_{a}+R_{g}\right)^{2} C_{m}\right]} \tag{13}
\end{gather*}
$$

Substituting equation (13) in equation (10) gives:

$$
\begin{align*}
i_{g}=\left\{E_{e} /\left(R_{a}+R_{g}\right)\right\} & \left\{e^{-t /\left(R_{a}+R_{g}\right) C_{m}}\right. \\
& -e^{\left.-t\left[\left(R_{a}+R_{g}\right) / \lambda-1 /\left(R_{a}+R_{g}\right) C_{m}\right]\right\}} \tag{14}
\end{align*}
$$

The second term in the bracket quickly disappears and hence, except for very small values of t,

$$
\begin{equation*}
i_{g}=\left[E_{e} /\left(R_{a}+R_{g}\right)\right] e^{-t /\left(R_{a}+R_{g}\right) C_{m}} \tag{15}
\end{equation*}
$$

and finally

$$
\begin{equation*}
v=i_{g} R_{g}=\left[E_{e} R_{g} /\left(R_{a}+R_{g}\right)\right] e^{-t /\left(R_{a}+R_{g}\right) C_{m}} \tag{16}
\end{equation*}
$$

It is evident that equations (15) and (16) may be obtained by merely neglecting λ in Figure 6, and this is justified when the value of the left hand side of equation (12) is small compared to unity. Equations (15) and (16) are not valid for very small values of t. On comparing equation (16) with equation (1) it is seen that for
the circuit of Figure 5:

$$
\begin{align*}
& \tau=c_{m}\left(R_{a}+R_{g}\right) \tag{D11}\\
& \gamma=\left(E_{e} / E_{g o}\right)\left(R_{g}\right) /\left(R_{a}+R_{g}\right) \tag{D12}
\end{align*}
$$

From a study of equations (16) and (D10) it may be concluded that the most important effect of the capacitances C_{b} and C_{g} is equivalent to increasing R_{a}. This results in an increase in the time constant, τ, but it decreases the gain, γ, and equation (7) shows that these two variations tend to cancel each other as far as frequency is concerned. If γ is small, an increase of C_{b} or C_{g} may cause an increase of frequency, whereas if γ is large, the frequency may decrease. As a rule, it is not easy to measure either of these capacitances, and the best way of handling the situation is to keep C_{m} large in comparison with C_{b} and C_{g}.

The grid-to-plate capacitances are usually smaller than C_{b} and C_{g}. Although no satisfactory method of taking these into account has been found, they seem to have very little effect on frequency, at least up to 100 KC .

When calculations were made, based on the theory thus far developed, it was found that the operating frequency was invariably higher than the predicted value. The approximations which have been made ought to lead to operating frequencies which are lower than calculated values. In seeking the cause of this discrepancy, a careful study was made of the wave shape of the grid voltage. It was found that this non-exponential curve could be closely approximated by adding together two true
exponentials having different time constants. The larger of these time constants was in fair agreement with equation (D1l), but the magnitude of the voltage was much less than had been expected. In other words, the value of γ was wrong. This led to a reconsideration of the whole process.

In describing the ideal multivibrator, the input circuits of the amplifying devices were assumed to contain ideal rectifiers which prevented any positive voltage from appearing in their input circuits. In actual circuits employing vacuum tubes this is not the case. When flipover occurs, the grid of one tube is driven well into the positive region. It remains positive as long as C_{m} is charging, but it is zero (or even slightly negative) before the end of the half-period is reached. It was at first assumed, therefore, that the "over-shoot" could be disregarded as long as C_{m} had sufficient time to become completely charged. A more careful analysis shows that this is not permissible. The positive component of v causes a component of plate current which persists for the complete helf-period. Furthemore, this component is negative with respect to the current which has already been considered. This results in a reduction of output voltage which is equivalent to reducing the gain. With designs ususlly employed, this effect is much more important then the effect of the shunt capacitances.

During the intervel when the grid of VT_{1} is positive, (see Figure 1), the equivalent circuit of Figure 7 applies. Here R_{i} is the resistance measured across the input terminals of VT_{1} when its grid is positive, including the effect of $R_{g} \cdot E_{e}$ ' is the total change in volt-

FIG.7. EQUIVALENT CIRCUIT WHICH APPLIES WHEN THE GRID IS POSITIVE.
age across $R_{b 2}$ when the plate current of VT_{2} goes to zero. This is, for all practical purposes, a step-function voltage. The grid of VT_{1} will be positive as long as current flows in this circuit, and its voltage will follow a nearly-exponential law with a time constant given by:

$$
\begin{equation*}
\tau_{g}=R_{b}\left(C_{m}+C_{b}\right)+R_{i}\left(C_{m}+C_{g}\right) \tag{D13}
\end{equation*}
$$

The plate circuit of VT_{1} will contain a corresponding component of voltage, essentially exponential in wave-shape and having the same time constant as given by equation (Dl3). Therefore, in equation (8a), E_{e} is in reality made up of two components, one of which is essentially a step-function and the other essentially an exponential function. If we neglect $\boldsymbol{\lambda}$ in equation (9), then we can write:

$$
\begin{equation*}
\left[\left(R_{a}+R_{g}\right)+1 / p C_{m}\right]_{g}=E_{s}+E_{x} e^{-t / \tau_{g}} \tag{17}
\end{equation*}
$$

Here E_{S} gives the step-function component and E_{X} gives the exponentialfunction component of the voltage E_{e}. The solution of equation (17) is:

$$
\begin{align*}
& i_{g}=\left[E_{s} /\left(R_{a}+R_{g}\right)\right]\left[1-\left(E_{x} / E_{s}\right)\left(\tau_{g}\right) /\left(\tau-\tau_{g}\right) e^{-t / \tau}\right. \\
&+\left[E_{x} /\left(R_{a}+R_{g}\right)\right]\left[(\tau) /\left(\tau-\tau_{g}\right)\right] e^{-t / \tau_{g}} \tag{18}
\end{align*}
$$

If τ is greater than about $2 \tau_{g}$ the second term of equation (18) will be negligible at the time when flip-over occurs, and we have as an approximation:

$$
\begin{equation*}
i_{g}=\left[E_{s} /\left(R_{a}+R_{g}\right)\right]\left[1-\left(E_{x} / E_{s}\right)\left(\tau_{g}\right) /\left(\tau-\tau_{g}\right)\right] e^{-t / \tau} \tag{19}
\end{equation*}
$$

There are several reasons why it is desirable to keep τ_{g} small compared to τ. If these should have nearly the same value, equation (19) fails and, of course, equation (18) is not readily solved for t. Besides, if g is too large, C_{m} will not have time to completely charge and flipover will occur while the grid is still positive. The value of E_{x} for each successive cycle will then be different until equilibrum is established according to equation (18). When operation is desired at very high frequencies (above 100 KC) it may be desirable to forsake the restriction on τ_{g} and use equation (18), in spite of the ensuing difficulties.

From equation (19):

$$
\begin{equation*}
v=i_{g} R_{g}=\left[E_{s} R_{g} /\left(R_{g}+R_{g}\right)\right]\left[1-\left(E_{x} / E_{s}\right)\left(\tau_{g}\right) /\left(\tau-\tau_{g}\right)\right] e^{-t / \tau} \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\gamma=\left[\left(E_{\mathrm{g}} / \mathrm{E}_{\mathrm{go}}\right)\left(\mathrm{R}_{\mathrm{g}}\right)\left(R_{\mathrm{a}}+R_{\mathrm{g}}\right)\right]\left[1-\left(\mathrm{E}_{\mathrm{x}} / \mathrm{E}_{\mathrm{s}}\right)\left(\tau_{\mathrm{g}}\right) /\left(\tau-\tau_{\mathrm{g}}\right)\right] \tag{D14}
\end{equation*}
$$

When suitable values are used for the two stages, equation (7) gives the frequency.

It should be noted that equation (20) gives v correctly only for values of t which approach T. In other words, a multivibrator having values of γ and τ found from equations (D14) and (D11) will have the same frequency as on ideal multivibrator having these same values. Thus the correlation between the ideal multivibrator and the actual circuit is established.

THE DESIGN PROCEDURE

In order to show how the foregoing analysis may be used to design a multivibrator, calculations will be given for a circuit operating at 50 KC and employing a type 7 N 7 twin triode tube.

A part of the plate family for one section of this tube is shown in Figure 8, and the grid-plate transfer characteristic corresponding to a plate-supply voltage of 150 is given in Figure 9. The latter curve is plotted on semi-logarithmic coordinates. From it the curve giving G_{m} as a function of grid voltage is easily obtained in the following manner.

Draw a tangent to the $E_{c}-I_{b}$ curve at a point such as $E_{c 2}, I_{b 2}$ (see Figure 9). On this tangent line locate E_{cl} corresponding to a plate current exactly ten times $I_{b 2}$. The mutual conductance, G_{m}, corresponding to $E_{c 2}$ is then:

$$
\begin{equation*}
G_{m}=2.302 I_{b 2} /\left(E_{c 2}-E_{c l}\right) \tag{21}
\end{equation*}
$$

If I_{b} is in microamperes, G_{m} is in micromhos.
The design procedure begins with the choice of R_{b}. The value is not critical, but it is probably better to make it approximately equal to the plate resistance of the tube. For operation at low frequencies considerably larger values may be used. In this case, two resistors having 9600 ohms resistance were available and these were selected. R_{g} should not be less than twice R_{b}. Here a relatively large value, 48000 ohms, was chosen so that C_{m} would be small enough to show the effects of the tube capacitances. A smaller value, say 25000 ohms, would give

a circuit of lower impedance, and hence one less likely to be disturbed by stray couplings.

When the values of R_{b} and R_{g} have been fixed, draw the load line on the plate family. The point 0', rather than point 0, corresponds to the quiescent value of plate current since the tube developes a small negative grid bias due to its own grid current. The magnitude of this bias depends on both R_{g} and R_{b}, and the easiest way to locate the point 0^{\prime} is to measure the plate current with the resistors in place. The dynamic grid resistance must also be measured. This resistance decreases very rapidly as the grid is made more positive and depends to a considerable extent on the plate current. It should be measured with R_{b} in place and plate voltage applied. The value used is not critical, and may be obtained with a grid voltage of plus one to two volts. For this particular tube, the resistance is 2000 ohms.
R_{e} may be found directly from the plate diagram of Figure 8. At the point 0, draw a tangent line, OP. Then:

$$
R_{e}=\Delta E_{b} / \Delta I_{b}=51.7 / 11.55=4.5 \mathrm{~K} \text { ohms }
$$

R_{i} is an equivalent resistance formed by putting R_{g} in parallel with the dynamic grid resistance.

$$
R_{i}=(2)(48) /(2+48)=1.9 \mathrm{~K} \text { ohms }
$$

Assume that the foregoing values apply to VT_{1}. Then flip-over will occur when the G_{m} of $V I_{2}$ becomes large enough to make the net amplification around the circuit equal to unity. From Figure 8 it is
found that a change of 1 volt on the grid of $V T_{1}$ causes a change of 10 volts across R_{b}. Taking into account the voltage-dividing effect of R_{g}, we have for the "normal gain" of VT_{l} :

$$
\text { normal gain of } \mathrm{VT}_{1}=(10)(48) / 52.5=9.15
$$

When flip-over occurs the plate current of VT 2 will be very small and its plate resistance will be very high. Its amplification is therefore:

$$
G_{m} R_{b} R_{g} /\left(R_{b}+R_{g}\right)
$$

The net amplification will equal unity when:

$$
\left(\text { normal gain of } \mathrm{VT}_{1}\right)\left(\text { amplification of } \mathrm{VT}_{2}\right)=1
$$

or when:

$$
G_{m 2}=\left(R_{b}+R_{g}\right) /\left(R_{b} R_{g}\right)\left(\text { normal gain of } V_{1}\right)
$$

Therefore, when the critical grid voltage of VT_{2} is reached:

$$
G_{m 2}=(48+9.6) /(48)(9.6)(9.15)=.0137 / 10^{3} \text { mhos, or } 13.7 \text { micromhos }
$$

From Figure $9 \mathrm{E}_{\mathrm{go} 2}$ is found to be 10.7 volts. Theoretically E_{x} is the difference between the plate voltage at O^{\prime} and the lowest instantaneous plate voltage when the grid is positive. However, the non-linearity of the dynamic grid resistance causes the circuit to behave as if it had a larger time constant than that given by equation (D13), and this can be offset by using a larger value for E_{x}. A compromise which seems to be satisfactory is to take E_{x} as being equal to the value of E_{b} at the
point 0'. From Figure 8:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{x}}=79.6 \\
& \mathrm{E}_{\mathrm{s}}=70.4
\end{aligned}
$$

We now find $\tau_{g} /\left(\tau-\tau_{g}\right)$. If C_{b} and C_{g} are equal, this value is independent of C_{m}. Thus we have, without much error:

$$
\begin{aligned}
\tau_{g} /\left(\tau-\tau_{g}\right) & =\left(R_{b}+R_{i}\right) /\left(R_{e}+R_{g}-R_{b}-R_{i}\right) \\
& =(11.5) /(52.5-11.5)=0.28
\end{aligned}
$$

Then from equation (D14), neglecting C_{b} and C_{g} :

$$
\gamma_{1}=(48)(70.4)(1-0.28 \times 1.13) /(10.7)(52.5)=4.1
$$

In the same way γ_{2} was also found to be 4.1. The two values are not always equal and must be calculated separately if precise results are desired.

Next, find a tentative value of C_{m}. From equation (3):

$$
\tau_{1}=\mathrm{T}_{1} / \ln \gamma_{1}=1 / 2 \mathrm{fln} \gamma_{1}=1 /\left(2 \times 50 \times 10^{3} \times 1.41\right)=7.1 \times 10^{-6}
$$

From equation (DII), neglecting C_{b} and C_{g} :

$$
\mathrm{c}_{\mathrm{m}}=7.1 \times 10^{-6} / 52.5 \times 10^{3}=135 \mathrm{mmfd} \text {. (tentative) }
$$

This value is sufficiently accurate to permit corrections for C_{b} and C_{g}. These were estimated to be 7 mmfd . each. Therefore:
$R_{a}+R_{g}=\left(R_{e}+R_{g}\right)\left(C_{m}+C_{b}\right) / C_{m}=(52.5)(135+7) /(135)=55.2 \mathrm{~K} \circ \mathrm{hm}$.
and the new value of γ_{1} is, from equation (D14):

$$
\gamma_{1}=(4.1)\left(R_{e}+R_{\mathrm{g}}\right) /\left(\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{g}}\right)=(4.1)(52.5) /(55.2)=3.9
$$

Finally, the corrected value of C_{m} is found to be 133 mmfd .

A multivibrator was set up using a type $7 N 7$ tube with $R_{b}=9.6$ K ohms, $\mathrm{R}_{\mathrm{g}}=48 \mathrm{~K}$ ohms, and $\mathrm{C}_{\mathrm{m}}=133 \mathrm{mnfd}$. The measured frequency was 49 KC . This is in good agreement with the predicted value of 50 KC .

A series of tests was performed using several different circuit designs, and covering a wide range of frequencies. The results of these tests are given in Table 1. The values of R_{b}, R_{g}, and the frequencies calculated by the method described above for $C_{m}=.1 \mathrm{mfd}$., are indicated at the top of the columns. Below are shown the ratios of the measured frequencies to the calculated frequencies for various values of C_{m}. In each case the highest measured frequency is given by the numbers in parenthesis. The maximum error is seen to be 10%. This is considered to be good agreement, in view of the wide range of frequencies involved. It is possible that a more rigorous treatment of the E_{x} voltage would improve the results. However, when it is remembered that variations in the tube characteristics can cause variations in frequency which may be as high as 10%, the additional labor does not seem justified. By keeping R_{g} large compared to R_{b}, the effects of overshoot can be minimized. This is evident from a study of Table 1. The circuit in which R_{b} was 17.7 K and R_{g} was only 42 K shows larger errors than any of the others. No measurements were made on this circuit for C_{m} less than .00051 mfd ., but it is likely that the error would be larger for smaller values of c_{m}.

Figure 10 shows the grid-voltage and plate~voltage waves of the multivibrator having $\mathrm{R}_{\mathrm{b}}=9.7 \mathrm{~K}, \mathrm{R}_{\mathrm{g}}=42 \mathrm{~K}$, and $\mathrm{C}_{\mathrm{m}}=.012 \mathrm{mfd}$. These

FIGURE 10. VOLTAGES GENERATED BY A MULTIVIBRATOR. THE SOLID LINES SHOW THE ACTUAL VOLTAGES. THE DOTTED LINES SHOW HOW THESE VOLTAGES WOULD APPEAR IF THERE WERE NO OVERSHOOT. THE DASHED LINEG AKE FOR AN IDEAL MULTIVIBRATOR WITH THE SAME VALUE OF \quad. FREQUENCY $=670 \mathrm{CPS}$,

Plate voltage

Grid voltage
Fig. 11. Voltages generated by a
multivibrator
curves were copied from the oscillograms in Figure 11. The dotted lines show how these voltages would look if there were no over-shoot. The dashed lines show the voltages of an ideal multivibrator with the same γ.

The effects of the tube capacitances become noticeable for values of C_{m} in the order of .001 mfd . Besides modifying τ, τ_{g}, and γ they reduce the "normal gain", and this in turn reduces $\mathbb{E}_{\text {go }}$. The change in $E_{\text {go }}$ is small and usually can be neglected.

Table 1

	$\begin{gathered} \text { Two type 7A4 } \\ \text { tubes } \end{gathered}$			$\begin{gathered} \text { One type 7N7 } \\ \text { tube } \end{gathered}$	
R_{b}	48 K	9.7 K	17.7 K	48 K	9.6 K
R_{g}	220 K	42 K	42 K	220 K	48 K
Calculated frequency for $\mathrm{C}_{\mathrm{m}}=.1 \mathrm{mfd}$.	10.3 cps	79 cps	71 cps	10.3 cps	67 cps
$\mathrm{C}_{\mathrm{m}} \mathrm{mfd}$. measured					
. 107	1.08	1.0	. 97	1.05	1.04
. 048	1.08	1.0	. 97	1.01	1.04
. 012	1.08	1.0	--	1.03	1.04
. 0053	1.09	. 98	. 93	1.02	1.02
. 00113	1.04	. 96	. 93	1.05	. 99
. 00051	1.05	. 93	$\begin{aligned} & .90 \\ & . .1 \mathrm{KC}) \end{aligned}$	1.00	. 97
. 000102	---	. 92	---	. 97	---
. 000065	---	$(104 \mathrm{KC})$	---	---	---
. 000053	---	---	---	---	$(115 \mathrm{KC})$
. 000030	$\begin{gathered} 1.03 \\ (31 \mathrm{KC}) \end{gathered}$	---	--	1.00	---
. 000015	---	---	---	$\begin{aligned} & 1.00 \\ & (57 \mathrm{KC}) \end{aligned}$	---

CONCLUSION

The "ideal multivibrator" has been defined and analyzed. In describing its behavior, the concepts of τ and γ have been introduced. The non-ideal multivibrator has been analyzed and the effects of tube capacitances have been considered. It has been shown that the "overshoot", or positive component of grid voltage, causes a reduction in output voltage which is equivalent to a reduction in the amplification of the tubes. If the grid resistor, R_{g}, has several times the resistance of the plate resistor, R_{b}, an approximate method of accounting for the "overshoot" yields reasonably satisfactory results.

Equations have been derived which can be used to predict the operating frequency with an error which does not exceed 10% over a wide range of frequencies.

A procedure has been described which can be used to design a multivibrator to operate at a specified frequency.

The writer believes that this analysis is accurate and reliable enough for practical design. Yet there are still some questions which remain unanswered. There is good reason to believe that further investigation along these lines will reduce still more the gap between predicted performance and actual behavior.

Two views of the 50 KC multivibrator

The chassis used for the tests
Equipment set up for checking wave shapes

Abraham, H., and E. Bloch, Annales de Physique, Vol. 12, SeptemberOctober, 1919. p. 237.

Andrew, J.J., "The Adjustment of the Multivibrator for Frequency Division," Proceedings of the Institute of Radio Engineers, Vol. 19, November, 1941. pp. 1911-1917.

Bartelink, E.H.B., "A Wide-Band Square Wave Generator," Transactions of the American Institute of Electrical Engineers, Vol. 60, 1941, pp. 371-376.

Le Corbeiller, P., "Nonlinear Theory of the Maintenance of Oscillations," Journal of the Institution of Electrical Engineers, Vol. 79, September, 1936. pp. 361-378.

Lifshutz, H., and J.L. Lawson, "A Triode Vacuum Tube Scale-of-Two Circuit," Review of Scientific Instruments, Vol. 9, March, 1938. pp. 83-89.

Schiff, L.I., Physical Review, Vol. 50, No. 88, 1936.
Shenk, E.R., "The Multivibrator--Applied Theory and Design," Electronics, Vol. 17, No. 1, January, 1944. p. 136.

Shumard, C.C., "Some Electronic Switching Circuits," Electrical Engineering, Vol. 57, May, 1938. pp. 209-220.

Van der Pol, B., "On Relaxation Oscillators," Philosophical Nagazine, Vol. 2, November, 1926. pp. 978-992.

Watanabe, Y. "Some Remarks on the Multivibrator," Proceedings of the Institute of Radio Engineers, Vol. 18, February, 1930. pp. 327-335.

[^0]: $I_{\text {A table of symbols }}$ is given on page v.

