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Abstract 

 

Information about past environmental conditions is crucial for understanding 

ecological and paleoclimate trends of marine ecosystems. However, especially 

within the marine system instrumental data is limited to approximately the last 50 

years. To look further back in time, scientists rely on archives, such as bivalve 

shells, that contain records of environmental history with potentially high temporal 

resolution. The longest lived bivalve known to science is Arctica islandica. The 

elemental signature (e.g., trace element to calcium ratios (Me/Ca)) of A. islandica 

shells contains information about the ambient environmental conditions of the 

surrounding seawater at the time of carbonate formation. Various studies to link 

Me/Ca ratios in A. islandica shells to environmental parameters have lead to 

contradictory results. This shows that the relationship between bivalve shell 

chemistry and environmental parameters is complex and requires further 

research. The aim of this thesis is to optimize the process of reconstructing 

environmental history of marine ecosystems from bivalve shells and to contribute 

to a better understanding of the correlations between shell chemistry and 

environmental parameters.  

 

In two chapters I examine how sample preparation and data collection may affect 

the outcome of subsequent Me/Ca analyses in A. islandica shells. As organic 

matter content of bivalve shells may hamper the link between Me/Ca ratios and 

environmental parameters, it has been proposed to chemically remove the 

organic matrix prior to trace element analyses. Yet, chemical treatment itself may 

alter the trace element composition of the sample. I thus, analyzed the effects of 

eight treatments on the chemical composition of A. islandica shell powder. From 

my results I conclude that chemical removal of the organic matrix may affect the 

outcome of subsequent Me/Ca analyses, and thus, has to be conducted with 

extreme caution. Moreover, reconstruction of environmental history from Me/Ca 

shell ratios is based on the assumption that the trace element composition of the 

shell represents the ambient environmental conditions at the time of carbonate 

formation, and is thus, consistent within shell material deposited at the same 

time. However, Me/Ca (Ba/Ca, Mn/Ca, Mg/Ca, Sr/Ca) analyses that I conducted 

within isochronous growth layers of A. islandica shells support the opposite. 

Trace element profiles of contemporaneously deposited growth layers contain a 

high degree of variability, especially in close proximity to the periostracum and to 
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the inner shell layer. Hence, to minimize the impact of shell layer heterogeneities, 

I suggest performing trace element measurements along the midline of the outer 

shell layer where heterogeneities are least pronounced. 

 

The other two chapters of the thesis focus on the applicability of specific Me/Ca 

ratios in A. islandica shells to reconstruct the recent environmental history of the 

German Bight (North Sea). I analyzed Pb/Ca ratios as a tracer of anthropogenic 

lead pollution as well as Ba/Ca and Mn/Ca ratios as indicators of the pelagic 

primary production of the German Bight. Both studies demonstrate an empirical 

link between the examined element ratios and the corresponding environmental 

parameters. For one thing, Pb/Ca ratios reflect local influxes of lead into the 

seawater. Moreover, Ba/Ca and Mn/Ca ratios are coupled to phytoplankton 

abundance though through different processes. Ba/Ca ratios, on the one hand, 

are linked to phytoplankton abundance (mainly diatoms) through barite 

precipitation, which presumably involves an extended time delay (here: three to 

four months) between the diatom blooms and Ba/Ca shell peaks. Mn/Ca ratios, 

on the other hand, seem to record any phytoplankton (diatom and flagellate) 

debris falling to the bottom of the ocean either through direct influx manganese to 

the sediment water interface or through remobilization of manganese from 

sediments during post-bloom reductive conditions.  

 

However, while profiles of average annual lead concentrations in A. islandica 

shells are reliable indicators of the anthropogenic lead pollution at the sampling 

site, intra-annual lead profiles contain a high degree of variability. Besides, my 

results indicate that statistically the Ba/Ca and Mn/Ca ratios correlate well with 

the diatom abundance, and yet, there is a lack of a consistent correlation 

between peak amplitudes of diatom abundance and element ratios. In addition, 

on a year-to-year base there is no consistent reflection of diatom abundance 

patterns in the intra-annual Ba/Ca and Mn/Ca profiles. The latter observations 

illustrate that despite the empirical link between the latter Me/Ca ratios and the 

corresponding environmental parameters, the mechanisms determining the 

correlation are complex and largely unknown. Nevertheless, understanding these 

mechanisms is crucial, and thus, the next obstacle to overcome in order to 

reliably reconstruct environmental history from A. islandica shells.  
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Zusammenfassung 

 

Um Veränderungen mariner Ökosysteme im Hinblick auf sich wandelnde 

Umwelt- und Klimabedingungen einordnen und gegebenenfalls vorhersagen zu 

können, benötigen wir Aufzeichnungen über bisherige ökologische und 

paläoklimatische Entwicklungen. Instrumentelle Messungen beschränken sich 

jedoch, insbesondere im marinen Raum, auf etwa die letzten 50 Jahre. Um 

darüber hinaus Aussagen über vergangene Entwicklungen machen zu können, 

greifen Wissenschaftler auf Archive, darunter Muschelschalen, zurück, die 

Informationen über vergangene Umweltbedingungen - teils mit großer zeitlicher 

Auflösung - enthalten. Die bisher bekannte langlebigste Muschel ist Arctica 

islandica. Anhand der chemischen Zusammensetzung (z.B. der Spurenelement-

Kalzium Verhältnisse (Me/Ka)) ihrer Schale liefert A. islandica Informationen über 

die zum Zeitpunkt des Schalenwachstums vorherrschenden Umwelt-

bedingungen. Zahlreiche Studien, um Me/Ka Verhältnisse in A. islandica Schalen 

mit Umweltparametern zu korrelieren, führten zu unterschiedlichen Ergebnissen. 

Besagte Widersprüche zeigen, dass der Zusammenhang zwischen der 

Schalenchemie und den vorherrschenden Umweltbedingungen komplex ist und 

weiterer Forschung bedarf. Das Ziel der vorliegenden Arbeit besteht darin, den 

Prozess zur Rekonstruktion vergangener Umweltbedingungen anhand von 

Muschelschalen zu optimieren und zum besseren Verständnis der Zusammen-

hänge zwischen Schalenchemie und einzelnen Umweltparametern beizutragen. 

 

In zwei Kapiteln untersuche ich, inwiefern die Aufbereitung der Proben, sowie die 

Messmethode die Ergebnisse anschließender Spurenelementmessungen in A. 

islandica Schalen beeinflussen. Der Spurenelementgehalt der organischen 

Matrix von Muschelschalen kann den Zusammenhang zwischen Me/Ka 

Verhältnissen und Umweltparametern stören. Ein Ansatz, um dies zu verhindern, 

besteht darin, die Matrix vor den Spurenelementmessungen chemisch zu 

entfernen. Es lässt sich jedoch nicht ausschließen, dass eine derartige 

Behandlung der Proben, die zu bestimmenden Me/Ka Verhältnisse verändert. 

Um eventuelle Auswirkungen chemischer Behandlungen auf die Schalenchemie 

zu untersuchen, habe ich Pulverproben von A. islandica Schalen auf acht 

verschiedene Weisen chemisch aufbereitet und die Spurenelement-

zusammensetzung der Proben vor und nach der jeweiligen Behandlung 

untersucht. Meine Messergebnisse zeigen, dass die verschiedenen 
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Behandlungen unterschiedliche Einflüsse auf die Me/Ka Verhältnisse der 

Probenpulver haben und daher nur mit äußerster Vorsicht angewandt werden 

sollten. Die Rekonstruktion vergangener Umweltbedingungen anhand der 

Schalenchemie basiert ferner auf der Annahme, dass die Me/Ka Verhältnisse die 

zum Zeitpunkt des Schalenwachstums vorherrschenden Umweltbedingungen 

widerspiegeln und demnach in zeitgleich abgelagerten Schalenschichten 

konstant sind. Um diese Annahme zu überprüfen, habe ich in isochronen 

Schichten von A. islandica Schalen Me/Ka (Ba/Ka, Mn/Ka, Mg/Ka, Sr/Ka) 

Verhältnisse bestimmt. Anhand meiner Ergebnisse lässt sich die oben genannte 

Annahme jedoch nicht belegen. Vielmehr zeigen die Me/Ka Profile zeitgleich 

abgelagerter Schalenschichten ein hohes Mass an Variabilität, insbesondere mit 

zunehmender Nähe zum Periostracum und der inneren Schale. 

Spurenelementmessungen in A. islandica Schalen sollten demnach entlang der 

Mitte der äußeren Schale durchgeführt werden und damit in Bereichen mit 

geringst möglicher Me/Ka Heterogenität.  

 

In zwei weiteren Kapiteln messe ich Me/Ka Verhältnisse in A. islandica Schalen 

als Indikatoren für vergangene Umweltbedingungen in der Deutschen Bucht 

(Nordsee) und analysiere, ob anhand des Bleigehaltes in A. islandica Schalen 

die anthropogene Bleiverschmutzung des Meeres, sowie anhand des Barium- 

und Mangangehalts der Schalen die Diatomeenabundanz und damit die 

Primärproduktion der Deutschen Bucht rekonstruiert werden können. Beide 

Studien belegen einen empirischen Zusammenhang gibt zwischen den Me/Ka 

Verhältnissen in den Schalen und den zugehörigen Umweltparametern 

Bleiverschmutzung und Primärproduktion. Der Bleigehalt der Schalen zeichnet 

lokale Einträge von Blei am jeweiligen Standort der Muschel auf. Ferner belegen 

statistische Tests eine signifikante Korrelation zwischen der Diatomeenabundanz 

in der Deutschen Bucht und dem Barium-, sowie dem Mangangehalt der 

Schalen. Zugleich scheinen beide Elemente durch unterschiedliche Prozesse an 

die Diatomeenabundanz gekoppelt zu sein. Der Bariumgehalt der Schale ist 

höchst wahrscheinlich über die Ausfällung von Barit an die Diatomeenabundanz 

gekoppelt, was wiederum mit einer zeitlichen Verzögerung (hier: ca. drei bis vier 

Monate) zwischen den Diatomeen- und den Ba/Ka Spitzenwerten einhergeht. 

Demgegenüber korreliert der Mangangehalt der Schale vermutlich mit den 

Abbauprodukten des Phytoplankton (Diatomeen und Flagellaten), die auf den 

Meeresboden sinken, sowohl durch den damit verbundenen direkten Eintrag von 



Zusammenfassung 

 

5 
 

Mangan an der Sediment-Wasser-Grenze, als auch durch Remobilisation von 

Mangan aus dem Sediment unter anoxischen Bedingungen in Folge einer 

Planktonblüte.  

 

Obwohl der mittlere jährliche Bleigehalt von A. islandica Schalen die Entwicklung 

der anthropogenen Bleiverschmutzung am Standort der Muschel wiedergibt, 

zeigen intra-annuelle Pb/Ka Profile ein hohes Mass an Variabilität. Und obgleich 

statistisch gesehen, ein signifikanter Zusammenhang zwischen der Diatomeen-

abundanz in der Deutschen Bucht und dem Barium-, sowie dem Mangangehalt 

der Schalen besteht, spiegeln von Jahr zu Jahr betrachtet intra-annuelle Ba/Ka 

und Mn/Ka Profile den Verlauf der Diatomeenabundanz nicht konsistent wieder. 

Ferner lassen sich maximale Werte der Diatomeenabundanz in der Regel nicht 

mit Ba/Ka und Mn/Ka Spitzenwerten korrelieren. Diese Beobachtungen 

verdeutlichen, dass ein empirischer Zusammenhang zwischen den Me/Ka 

Verhältnissen in A. islandica Schalen und den zugehörigen Umweltparametern 

besteht, der Mechanismus, der letztere Faktoren miteinander verknüpft, jedoch 

komplex und weitgehend unbekannt ist. Eben diese Mechanismen gilt es, in 

zukünftigen Studien zu entschlüsseln, um letztendlich anhand von 

Spurenelementkonzentrationen in A. islandica Schalen vergangene Umwelt-

bedingungen mariner Ökosysteme zu rekonstruieren. 
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Abstract  
 

 
Information about past environmental conditions is preserved in the elemental 

signature of biogenic marine carbonates. Thus, trace element to calcium ratios 

(Me/Ca) of biogenic calcium carbonates, such as bivalve shells, are often used to 

reconstruct past environmental conditions at the time of carbonate formation 

(Foster et al., 2008). In this study, we examine the suitability of the long-lived 

(> 400 years) bivalve Arctica islandica as a high-resolution bioarchive by 

measuring Me/Ca ratios in the shell carbonate. Pb/Ca concentrations in 

A. islandica shells reflect anthropogenic gasoline lead consumption and further 

provide a centennial record of lead pollution for the collection site off the coast of 

Virginia, USA. With A. islandica shells from the North Sea we test the hypothesis 

that Ba/Ca and Mn/Ca ratios are indicators of the diatom abundance. Our results 

indicate that statistically both ratios correlate well with the diatom abundance, and 

yet, on a year-to-year base, there is no consistent reflection of diatom abundance 

patterns in the Ba/Ca and Mn/Ca annual profiles. These findings indicate that 

primary production affects Ba/Ca and Mn/Ca shell ratios, though we suggest that 

both elements are coupled to primary production through different processes and 

are affected by further, yet unknown processes. 

 

Keywords: Arctica islandica, bivalve, bioarchive, biogenic carbonate, trace 

elements, lead, barium, manganese, gasoline lead pollution, ocean production 
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1. Introduction  

 

"Bioarchives" are organisms that grow permanent hard body parts by periodic 

accretion of biogenic material. These hard parts, e.g., bivalve shells, record the 

ambient environmental conditions throughout the organism's life-span. In the 

terrestrial system trees (dendrochronology) and in the marine environment 

calcium carbonate parts of corals, bivalves, and finfish are used as such archives 

(sclerochronology). This section focuses on the long-lived (> 400 years) bivalve 

Arctica islandica as a high-resolution bioarchive. In several studies we analyze 

the biogeochemistry in terms of trace element to calcium ratios (Me/Ca) of 

A. islandica shells to reconstruct environmental parameters of the marine 

ecosystem over time scales of decades to centuries (Figure 1). 

  

 

Figure 1 Schematic illustration of the technique to analyze trace elements 
in bivalve shells. A laser is used to ablate sample material at specific 
locations within the shell (here: Arctica islandica). Next, the ablated 

material is transported into a mass spectrometer for trace element 
analyses. Finally, trace element to calcium (here: Pb/Ca) ratios are plotted 
against time (here: time period between 1770 and 2006). 

 

Sample treatment prior to Me/Ca analysis often includes chemical removal of 

organic matter from the biogenic calcium carbonate (Gaffey and Bronnimann, 

1993). The efficiency of this approach, however, remains questionable and 

chemical treatment itself may alter the outcome of subsequent Me/Ca analysis 

(Love and Woronow, 1991). Thus, we first examine the efficiency of eight 

chemical treatments and their impact on the carbonate composition (for further 

details see Krause-Nehring et al. (2011)) (Effect of sample preparation). 

 

Next, we aim at reconstructing environmental history by measuring trace 

elements along the growth trajectory of A. islandica shells. We determine Pb/Ca 
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ratios in an A. islandica shell to examine influxes of lead into the seawater and to 

establish a centennial record of anthropogenic lead pollution at the collection site 

off the coast of Virginia, USA (Krause-Nehring et al., accepted) (Lead as a 

pollution tracer). In addition, we measure Ba/Ca and Mn/Ca ratios in three 

A. islandica shells collected off the island of Helgoland and correlate our results 

with the diatom abundance in the North Sea to evaluate both ratios as potential 

indicators of ocean primary production (Krause-Nehring et al., submitted) (Barium 

and manganese as indicators of primary production).  

 

2. Methods 

 

2.1. Effect of sample preparation 

 

To examine the efficiency and side effects of eight chemical treatments, we 

conducted a systematic study on inorganic calcium carbonate and A. islandica 

shell powder. We combined different analytical techniques, such as  

(I) inductively coupled plasma mass spectrometry (ICP-MS), 

(II) nitrogen (N) analyses, and  

(III) X-ray diffractometry (XRD) to analyze the impact of each treatment on  

(I) Me/Ca ratios, 

(II) organic matter content (using N as a proxy), and  

(III) the composition of the carbonate and of newly formed phases (Figure 2). 

 

 

Figure 2 Preparation, treatment (control "c"; treatment 1 to 
8), and subsequent analyses (ICP-MS, N analyzer, XRD) of 
inorganic (HB01) and organic (Arctica islandica) calcium 
carbonate powder samples. 
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2.2. Lead, barium, and manganese measurements 

 

Prior to Me/Ca analyses, we embedded each shell in epoxy resin and cut a 

narrow section along the (red) line of strongest growth (Figure 3A). Next, we 

ground the section with sandpaper until the annual growth lines were clearly 

visible (Figure 3B). Finally, we used a laser ablation system connected to an 

inductively coupled plasma mass spectrometer (LA-ICP‐MS) for element 

analyses (Pb/Ca, Ba/Ca, Mn/Ca) of the shell carbonate (Figure 3C). In the end, 

we either assigned each laser spot a specific year using the growth lines as year 

markers (inter-annual Pb/Ca variations) or converted the location of each laser 

spot between two adjacent growth lines into a point in time during the year 

(Ba/Ca and Mn/Ca intra-annual variations). 

 

 

Figure 3 (A and B) Preparation of an Arctica islandica shell for 

subsequent element analyses of the shell carbonate (C) using a laser 
ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS).  
The red line in (A) indicates the line of strongest growth. 
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3. Results and discussion 

 

3.1. Effect of sample preparation 

 

Our results indicate that the different treatments  

(I) alter the Me/Ca ratios (Figure 4),  

(II) vary in their ability to remove organic matter  

(with NaOCl being the most efficient), and  

(III) can alter the phase composition of the sample  

(e.g., Ca(OH)2 formation during treatment 4). 

Thus, chemical removal of organic matter prior to Me/Ca analyses has to be 

applied with extreme caution (for further details see Krause-Nehring et al. 

(2011)).  

 

 

Figure 4 Effects of treatments (control "c"; treatments 1 to 8) on the Me/Ca ratios 
of the (left) HB01 and of the (right) Arctica islandica shell powder samples. 

(grey: no significant difference between the treated sample and the control, 
red: significant increase, green: significant decrease). 

 

3.2. Lead as a pollution tracer 

 

Our results indicate that the lead profiles we obtain from A. islandica shells reflect 

local influxes of lead into the seawater. The Pb/Ca profile we measure between 

1770 and 2006 in an A. islandica shell collected off the coast of Virginia, USA, is 

clearly driven by anthropogenic lead emissions due to gasoline lead combustion 

which are transported eastwards from the North American continent to the 

Atlantic Ocean by westerly surface winds (Figure 5). Depending on the prevalent 

sources of lead at certain locations, the lead profiles of A. islandica shells may as 
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well be driven by random natural influxes of lead into the water or various other 

sources of lead (e.g., dumping of sewage sludge or munitions; see Krause-

Nehring et al., accepted). Our findings support the applicability of Pb/Ca analyses 

in A. islandica shells to reconstruct anthropogenic lead pollution at specific 

locations. In addition, we provide a centennial record of lead pollution for the 

collection site off the coast of Virginia, USA. For comparison of A. islandica lead 

profiles from different boreal sites (Iceland, USA, and Europe) see Krause-

Nehring et al. (accepted). 

 

 

Figure 5 Top graph: US gasoline lead consumption (in 10
+6

 kg) (modified after Nriagu 
(1990)). Bottom graph: Pb/Ca profile (in mol/mol) between 1770 and 2010 determined in an 
Arctica islandica shell collected off the coast of Virginia, USA, with the black dots indicating 

the annual Pb/Ca ratios (± 1 standard error for years with > 1 sample spot) and the red line 
being a cubic spline trendline (λ = 8000). The yellow bar indicates the time of maximum 
gasoline lead emissions (1980 ± 10 years). 

 

3.3. Barium and manganese as indicators of primary production 

 

Over several decades, we find a significant correlation between the Mn/Ca and 

Ba/Ca ratios of three A. islandica specimens collected off the island of Helgoland 

and the diatom abundance in the North Sea (Krause–Nehring et al., submitted). 
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Nevertheless, the annual Ba/Ca (summer peak) and Mn/Ca profile (spring and 

summer peak) do not resemble the annual diatom profile (spring and summer 

peak) in a consistent manner (Figure 6). Thus, we conclude that primary 

production does affect Ba/Ca and Mn/Ca shell ratios, though we suggest that 

both elements are coupled to primary production through different processes. We 

suggest that peak concentrations of barium in bivalve shells result from sudden 

fluxes of barite to the sediment water interface as a consequence of 

phytoplankton blooms (Stecher et al., 1996), and that this mechanism involves an 

extended time delay between diatom blooms and Ba/Ca peaks in A. islandica 

shells, as observed in our study (Figure 6: ~ 3.5 months time lag between the 

spring bloom and subsequent Ba/Ca summer peak). The second diatom bloom in 

summer would cause another increase in barite in winter which coincides with the 

winter growth inhibition (mid-December to mid-February) (Schöne et al., 2005) of 

A. islandica, and is thus, not recorded by the shell. Mn/Ca ratios, on the other 

hand, seem to be coupled to diatom abundance both through direct influx of 

manganese to the sediment water interface or through remobilization of 

manganese from sediments during post-bloom reductive conditions, and thus, 

instantly record any phytoplankton debris reaching the ocean floor (Krause-

Nehring et al., submitted). 

 

 

Figure 6 Left: Typical annual profile of the diatom abundance measured off the coast of Helgoland 
as part of the Helgoland Roads time series (Wiltshire and Dürselen, 2004). All data points are 
plotted over the course of one calendar year (J = January to D = December) after filtering 
(removal of the upper 5% and lower 10% of the data) and normalization (minimum = 0; 
maximum = 1) of the data. Superimposed is the corresponding cubic spline trendline (λ = 0.025). 
Centre and right: Typical annual (centre) Mn/Ca and (right) Ba/Ca profile obtained from three 
Arctica islandica shells collected off the coast of Helgoland. All data points are plotted over the 

course of one calendar year (J = January to D = December) after detrending (removal of linear 
trends, where necessary), filtering (removal of the upper 5% and lower 10% of the data), and 
normalization (minimum = 0; maximum = 1) of the data. Superimposed are the corresponding 
cubic spline trendlines (λ = 0.0045). 



Publication I 

 

15 
 

4. Conclusion 

 

Since environmental data is often limited in time and space, bioarchives provide 

valuable information to reconstruct past environmental conditions. The bivalve 

A. islandica is an important bioarchive due to its longevity, wide distribution, and 

long-term occurrence throughout earth history. Our results demonstrate that both 

long-term and high-resolution records of environmental history can be extracted 

from A. islandica shells. They further illustrate, however, that it is crucial to 

understand the mechanistic links between bivalve shell chemistry and 

environmental parameters in order to extract valuable information from bivalve 

shells. Future studies on the biogeochemistry and growth morphology of 

A. islandica shells will facilitate our understanding of environmental processes 

within the field of earth system science. 
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1. Motivation and objectives  

 

1.1. Aim of the thesis 

 

The aim of this thesis is to optimize the process of reconstructing environmental 

history of marine ecosystems from bivalve shells and to contribute to a better 

understanding of the correlations between shell chemistry and environmental 

parameters.  

 

1.2. The process of reconstructing environmental history  

 

Information about past environmental conditions is crucial for understanding the 

ecological and paleoclimate trends and variability of marine ecosystems. 

Figure 1.1 (see next page) illustrates the individual steps of reconstructing 

environmental history from bioarchives (e.g., bivalve shells) and highlights 

various critical steps throughout this process. This study is exemplified at Arctica 

islandica (Linnaeus, 1767) shells (Figure 1.2) collected near Helgoland in the 

German Bight (North Sea) (Figure 1.1). 

 

 

 

Figure 1. 2 Right valve of an Arctica islandica shell. 
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Figure 1. 1 Individual steps within the process of reconstructing environmental history of marine 
ecosystems from archives. The red words mark critical steps within this process. Q1 to Q4 indicate 
the main questions of the thesis. An introduction of Q1 to Q4 together with a detailed description of 
the illustrated process exemplified at Arctica islandica shells collected in the German Bight off the 

island of Helgoland is given in the section "Motivation and objectives" of the thesis. 
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1.2.1. Study site: the German Bight (North Sea) 

 

The North Sea is a marginal sea of the North Atlantic which is connected to the 

latter ocean through a wide opening in the north and the English Channel in the 

south. Neighboring countries include Germany, Denmark, Norway, the 

Netherlands, Belgium, France, and the United Kingdom (England and Scotland) 

(Figure 1.3).  

 

 

Figure 1. 3 Map of the North Sea including its neighboring 
countries Germany (D), Denmark (DK), Norway (NO), the 
Netherlands (NL), Belgium (BE), France (F), and parts of 
the United Kingdom (UK) (England and Scotland). The red 
circle indicates the location of the German Bight in the 
southeastern part of the North Sea. 

 

Due to its significance to European fisheries the North Sea is of particular 

relevance especially to its adjacent nations (Clark, 2001). In addition, the North 

Sea constitutes an important economic (e.g., for shipping, oil and gas 

exploitation, or tourism) and recreational (e.g., for locals and summer visitors) 

resource for the surrounding countries (Clark, 2001). 

 

The North Sea is relatively shallow although its depth differs between the north, 

east, and the south. In the north, for example, the water depth varies between 50 

and 200 m while it can reach 270 to 700 m along the Norwegian coast down to 

the Skagerrak (Epplé, 2004).  

 

The German Bight, on the other hand, located in the southeast of the North Sea 

(Figure 1.3), is relatively shallow with a mean water depth of 22.5 m 
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(Sündermann et al., 1999). This semi-enclosed marine area is surrounded by the 

continental coastline of the Netherlands, Germany, and Denmark both in the 

south and in the east (Sündermann et al., 1999) (Figure 1.3). The atmosphere 

and continental rivers are the dominant external drivers of the dynamics (e.g., 

mixing processes) and substance (e.g., nutrient) concentrations, and 

consequently, of the high biological productivity of this region (Sündermann et al., 

1999). The German Bight further constitutes a transition zone between the 

saltwater of the sea and the freshwater of the rivers, whose average runoff is on 

the order of 1200 m3s-1 (Sündermann et al., 1999), and which thus, import a 

relatively large amount of water in comparison with the relatively small volume of 

the German Bight (Hickel, 1998). Among several continental rivers (Elbe, Weser, 

Ems, and Rhine) flowing into German Bight the Elbe is the most important 

freshwater input (Hickel, 1998; Sündermann et al., 1999). In addition to 

freshwater, rivers import a significant amount of particulate and dissolved 

substances, including nutrients and contaminants into the German Bight, which in 

turn is characterized by a relatively long flushing time with regard to its small 

volume (Sündermann et al., 1999). Highly variable atmospheric conditions as 

well as rates of river discharge lead to high variability of both the temperature and 

salinity (Sündermann et al., 1999). The island of Helgoland, close to which the 

majority of the samples used in this study were collected, is located in mixed 

waters in close proximity to the continental coast. In this region, for example, the 

salinity ranges between 28 and 33 PSU (Hoppenrath et al., 2009). The 

temperature varies between just below 0°C during winter and 22°C in summer 

(Hoppenrath et al., 2009). Previous studies indicate, however, that various 

environmental parameters including water temperature and salinity as well as 

light penetration and nutrient levels have changed considerably in the area 

around Helgoland over the last decades (Wiltshire et al., 2008; Wiltshire and 

Manly, 2004). Wiltshire and Manly (2004) determined a temperature increase of 

1.13°C of the German Bight near Helgoland over 40 years (since 1962) which 

compares to an approximate 0.6°C rise of average global temperatures over the 

last 100 years (IPCC, 2001). The authors further indicate that changes in water 

temperature altered the succession of phytoplankton in the German Bight, and 

may in turn, affect the entire ecosystem (Wiltshire and Manly, 2004). Although a 

temperature increase of 1.13°C does not reach the limits of these organisms, it 

does change the trigger mechanisms that control phytoplankton events and 

seasonality (Wiltshire and Manly, 2004). Upon elevated temperatures in fall 



Motivation and objectives 

 

 21 
 

(October to December) Wiltshire and Manly (2004), for example, observed a 

delay of the mean diatom day of the spring bloom and shift towards the end of 

the first quarter of the year. According to the authors this delay is not directly 

linked to elevated temperatures but rather indirectly through longer persistence of 

zooplankton grazers in autumn and early winter. Their occurrence may depress 

the buildup of biomass and consequently delay the spring bloom (Wiltshire and 

Manly, 2004) 

 

These observations clearly demonstrate how changing environmental 

parameters (e.g., temperature) can substantially alter the structure and dynamic 

of an ecosystem. Thus, information about past changes (e.g., of pelagic 

production) is crucial for a better understanding of the current status and possible 

future development of the German Bight.  

 

1.2.2. Lack of instrumental data 

 

In recent years, riparian states agreed on the necessity to preserve the ecological 

function and biological diversity of the North Sea as well as its value to human 

societies (e.g., as a natural environment, space to life, or to conduct commerce) 

(Sündermann et al., 1999). Reliable assessment of the status and possible 

development of any ecosystem, however, is based on the availability of 

information on various environmental parameters either in the form of 

instrumental or in the form of proxy data (for further information on proxy data 

see next paragraph). Especially within the marine system instrumental data is 

unfortunately limited to approximately the last 50 years (Foster, 2007) 

(Figure 1.1). One of the longest aquatic data sets in history is the Helgoland 

Roads time series, a series of regular measurements of abiotic and biotic 

parameters in the German Bight near Helgoland since 1963 (Franke et al., 2004; 

Wiltshire and Manly, 2004). 

 

1.2.3. The use of bioarchives 

 

However, in order to look further back in time, scientists rely on archives, such as 

sediment cores or bioarchives. Such archives contain valuable information in the 

form of proxy data (e.g., isotope or element ratios) which can be measured and 

from which environmental parameters (e.g., temperature or diatom abundance) 
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of interest can be derived (Figure 1.1). Sediment cores are often either not 

available or of poor temporal resolution, usually not better than decades. 

Bioarchives, on the other hand, are considered to contain information about 

environmental history with potentially high temporal resolution. The latter 

archives include organisms that grow permanent hard body parts by periodic 

accretion of biogenic material. These hard parts (e.g., bivalve shells) record the 

ambient environmental conditions throughout the organism´s life-span in the form 

of proxy data. In the terrestrial system, trees (dendrochronology) (Briffa et al., 

1990), in the marine environment calcium carbonate parts of bivalves (Brey et al., 

2011; Schöne et al., 2011), corals (Mitsuguchi et al., 1996; Sinclair, 2005), 

sclerosponges (Lazareth et al., 2000; Swart et al., 2002), or ostracods 

(Holmes, 1996) (sclerochronology) have been analyzed as such high-resolution 

bioarchives.  

 

Among other bioarchives, bivalve shells are sensitive monitors that record 

environmental information in several ways including variable shell growth rates 

as well as isotope and element ratios (Schöne et al., 2005b). In addition, bivalve 

shells function as calendars due to their annual and daily growth patterns 

(Schöne et al., 2005b). However, what distinguishes bivalve shells from other 

bioarchives is, first, their broad biogeographic distribution. Bivalves inhabit rivers, 

lakes, and both shallow and deep seas, as well as polar and tropical habitats 

(Zhang, 2009). Particularly at higher latitudes where few high-resolution marine 

records are available bivalves can be used to reconstruct environmental history 

(Foster, 2007). Second, some bivalve species grow very old, and thus, allow 

reconstructing past environmental conditions over time scales of decades to 

centuries.  

 

1.2.4. A unique bioarchive: Arctica islandica 

 

The longest lived bivalve and possibly the oldest non-colonial animal known to 

science is Arctica islandica (Cyprina islandica, "ocean quahog") (Abele et al., 

2008; Ridgway and Richardson, 2011). In relation to sclerochronology this 

species has also been referred to as the "tree of the North Atlantic shelf" 

(Thompson and Jones, 1977).  

 

Maximum individual ages of 375 (Schöne et al., 2005b) and 405 years 
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(Wanamaker et al., 2008) have been reported for Icelandic, and of 163 (Epplé et 

al., 2006) and 268 (Forsythe et al., 2003) years for North Sea specimens. Thus, 

individual shells of A. islandica can potentially provide century long records of 

environmental history (Witbaard et al., 2003) (Figure 1.1). 

 

A. islandica is the only extant species of the ancient family Arcticidae (Veneroida, 

Heterodonta) which originates from the early Cretaceous period ( 120 million 

years ago) (Merrill et al., 1969). This species occurs only in the northern 

hemisphere (Dahlgren et al., 2000) and is widely distributed on both sides of the 

boreal Atlantic (Brey et al., 1990) (Figure 1.4 A).  

 

 

Figure 1. 4 Distribution of the bivalve Arctica islandica (A) in the northern hemisphere (B) 

on both the American and European side of the North Atlantic. The red spots indicate the 
origin (left to right: USA (Virginia), Iceland, Europe (German Bight; North Sea)) of the 
different sample shells examined in the thesis. 

 

On the North American side of the Atlantic Ocean A. islandica occurs from just 

north of Cape Hatteras, North Carolina, to the southern coast of Newfoundland 

(Merrill et al., 1969) (Figure 1.4 B). On the European side of the Atlantic, this 

species can be found from the coast of northern France to northern Norway, as 

well as off the coast of the British Isles, the Faroers, the Shetlands, Spitzbergen, 

and Iceland (Dahlgren et al., 2000; Gulliksen et al., 1999; Merrill et al., 1969; 

Nicol, 1951). In addition, A. islandica occurs in the White Sea (Nicol, 1951), the 

Baltic (Brey et al., 1990), as well as in the North Sea (Schöne et al., 2004) 

(Figure 1.4 B). Fossil specimens have been found in regions outside A. 

islandica's present day distribution (Dahlgren et al., 2000; Witbaard, 1997), such 

as in the Mediterranean (Selli, 1965) or north of 65°N in West Greenland (Funder 

and Weidick, 1991). Such findings extend the knowledge we obtain from modern 

shells and provide important information about previous marine ecosystems 

beyond A. islandica's present geographical range.  
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A. islandica occurs at temperatures between 0°C to 19°C (Nicol, 1951) and at 

salinities of 20 PSU to 35 PSU (Strahl, 2011). The depth at which the species 

can be found varies considerably but is usually between 10 and 280 m 

(Thompson et al., 1980). A. islandica is a suspension feeder (Saleuddin, 1964) 

that lives buried in the sediment with its short siphons emerging from the 

sediment (Witbaard and Klein, 1994). At irregular intervals and without apparent 

reason this species burrows several centimeters into the sediment where it 

remains for a variable amount of time (commonly one to seven days) and 

respires anaerobically (Oeschger, 1990; Taylor, 1976). Hence, this species can 

tolerate short periods of low oxygen availability, e.g., during post-bloom reductive 

conditions at the sediment water interface (SWI). 

 

The periodic growth pattern of A. islandica shells is essential for their applicability 

as high-resolution bioarchives. The aragonitic shell of A. islandica is composed of 

an outer prismatic and an inner layer which are separated from each other by a 

thin myostracum (Kennedy et al., 1969; Witbaard, 1997) (Figure 1.5).  

 

 

Figure 1. 5 (A) Schematic cross section of an Arctica islandica shell in 

combination with (B) a high-resolution image showing the inner and outer 
shell layer. The latter layer contains a regular sequence of wide bands 
termed "growth increments" in between conspicuous thin lines commonly 
called "growth lines" (Jones, 1980). 

 

Cross sections of the outer shell layer reveal a regular sequence of wide bands 

termed "growth increments" in between conspicuous thin lines commonly called 

"growth lines" (Jones, 1980) (Figure 1.5). Individual growth increments represent 

the amount of calcium carbonate deposited by the organism over the course of 

one year (Witbaard, 1997). Besides annual growth lines A. islandica produces 
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daily growth lines (Schöne et al., 2005a), although the latter lines are often 

difficult to resolve and due to their high-resolution rather hard to match with LA-

ICP-MS (Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry; for 

further details see below) analyses of the shell. 

 

Growth rings are formed during time periods of minimum growth. A. islandica 

shells in the North Sea do not grow continuously throughout the year (Schöne et 

al., 2005a). Instead, the growing season starts in mid to late February and lasts 

through September with the fastest growth rates occurring presumably in August, 

the slowest ones in February (Schöne et al., 2004; Schöne et al., 2005a). 

Throughout the year, this species forms one distinct and another faint growth 

line. The first rather inconspicuous growth line is formed between early 

September and mid-November when growth is retarded during spawning 

(Schöne et al., 2005a). The second and comparably distinct growth line (see 

Figure 1.5) is formed between mid-December and mid-February when growth 

again decreases or possibly stops due to low temperatures or food scarcity 

during the cold season (Schöne et al., 2005a). These growth lines can both be 

used to age the shell of an organism and to accurately time changes in the shell 

chemistry, e.g., trace element concentrations. In addition, variations in annual 

growth rates of A. islandica shells can be used to reconstruct environmental 

changes, e.g., of the winter North Atlantic Oscillation (Schöne et al., 2003). 

 

1.2.5. LA-ICP-MS analyses of A. islandica shells 

 

As already mentioned, also the biogeochemistry (e.g., trace element to calcium 

ratios (Me/Ca); Me stands for divalent metal ions like magnesium (Mg), 

manganese (Mn), strontium (Sr), and barium (Ba) which can be substituted for 

calcium (Ca) in the calcium carbonate) of A. islandica shells contains valuable 

information about the history (e.g., of environmental lead or diatom abundance; 

Figure 1.1) of marine ecosystems. A limiting factor, however, in obtaining high-

resolution data on trace element concentrations in bivalve shells is the size of the 

growth increments (Toland et al., 2000). Shell growth of A. islandica continues 

throughout the bivalve's life but slows down after approximately 15 years 

(Thompson et al., 1980), possibly due to maturation (Witbaard, 1997). Thus, 

increment width decreases with increasing age of the organism (Figure 1.5) and 

can be less than 100 µm within the older part of the shell.  
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One powerful technique to conduct high-resolution trace element analyses of 

bivalve shells is LA-ICP-MS (Figure 1.1).  Here, the sample material is ablated 

using a laser and transported with a carrier gas into a mass spectrometer for 

subsequent trace element analyses (for a schematic illustration of this method 

see Figure 1 in publication I). The size and distance of the ablated spots 

determine the spatial, and consequently, the temporal resolution of the element 

profile. The spot size can be set to less than 10 µm using a New Wave Research 

UP 193 nm excimer laser system, although the minimum possible spot size also 

depends on the concentration of the examined trace elements in the sample. 

Alternatively, the sample material can be obtained through micro-drilling, though 

this technique again constrains the spatial, and thus, the temporal resolution of 

the analyses (Toland et al., 2000). Other common techniques to analyze the 

chemical composition of bivalve shells include SIMS (Secondary Ion Mass 

Spectrometry) and EMP (Electron Microprobe). While SIMS and EMP analyses 

are more suitable for scanning the element composition of small areas, LA-ICP-

MS analyses are commonly used to measure long element profiles across 

several growth increments. In comparison with SIMS, LA-ICP-MS analyses are 

both cheaper and less time consuming (Cabri and Jackson, 2011). Additional 

advantages include lower detection limits, higher precision and accuracy of the 

data as well as easier quantification of the data due to lower matrix effects 

(= combined effect of chemical or physical properties of the analyzed material on 

measured trace element concentrations (Kohn and Vervoort, 2008)) (Becker et 

al., 2008). In comparison with EMP the major advantage of LA-ICP-MS analysis 

are lower detection limits (Humayun et al., 2010). Finally, sample preparation for 

SIMS and EMP analyses is more stringent in comparison with LA-ICP-MS 

analyses as it requires a high polish and the application of a conductive coating 

(Humayun et al., 2010). 

 

Various studies have been conducted to analyze and link Me/Ca ratios in bivalve 

shells to environmental parameters. Pb/Ca ratios, for example, have been 

analyzed as a measure of anthropogenic lead (Pb) pollution (e.g., Gillikin et al., 

2005). Besides, Ba/Ca and Mn/Ca ratios have been proposed as indicators of 

ocean primary production (Lazareth et al., 2003; Vander Putten et al., 2000). 

Further studies examined a link between seawater temperature and Mg/Ca 

(Foster et al., 2008; Klein et al., 1996; Vander Putten et al., 2000) as well as 

Sr/Ca (Epplé, 2004; Foster et al., 2009) ratios. Many of these studies, however, 



Motivation and objectives 

 

 27 
 

yielded inconsistent results. Foster et al. (2008), for example, did not determine a 

significant correlation between seawater temperature and Mg/Ca variations in 

A. islandica shells. In contrast, Klein et al. (1996) observed a highly significant 

co-variation of temperature and the Mg/Ca ratios of calcitic Mytilus trossulus 

shells. In addition, Epplé (2004) examined a positive correlation between winter 

sea surface temperature and Sr/Ca ratios in A. islandica shells, unlike Foster et 

al. (2009) who observed no such correlation in shells of the same species. (For 

further details on previous Pb/Ca, Ba/Ca, and Mn/Ca analyses see publications 

III and IV)  

 

These inconsistencies suggest that the link between bivalve shell chemistry and 

environmental parameters is complex and that proxy-parameter-relationships, 

such as the link between trace element concentrations in bivalve shells and 

environmental parameters of marine ecosystems, require further research 

(Figure 1.1).  

 

1.2.6. Filling the gaps 

 

This thesis aims at improving the process of reconstructing environmental history 

of marine ecosystems from bivalve shells, and consequently, at contributing to a 

better understanding of the link between shell chemistry and environmental 

parameters. Thus, in two chapters I examine how sample preparation 

(Figure 1.1; Q1 - publication II) and data collection (Figure 1.1; Q2 – Pending 

manuscript) may affect the outcome of subsequent trace element analyses of 

A. islandica shells (Figure 1.1). The other two chapters of the thesis focus on the 

applicability of specific Me/Ca (Pb/Ca; Ba/Ca and Mn/Ca) ratios in A. islandica 

shells to reconstruct the recent environmental history of the German Bight (North 

Sea). In this relatively shallow region sediment-water interactions play a 

significant role in the biogeochemical cycle (Sündermann et al., 1999). Hence, 

trace element concentrations in shells of bivalves living at the SWI may provide 

valuable information about trace element availability and the biogeochemical 

processes occurring both at the SWI and in the water column above. I thus, 

analyzed Pb/Ca ratios in A. islandica shells as a tracer of anthropogenic lead 

pollution (Figure 1.1; Q3 - publication III) as well as Ba/Ca and Mn/Ca ratios as 

indicators of the pelagic primary production of the German Bight (Figure 1.1; Q4 -

 publication IV). 



Motivation and objectives 

 

28 
 

Q1:  Does chemical removal of the organic matrix alter the outcome of 
subsequent trace element analyses of A. islandica shells?  

1.3. Main questions of the thesis  

 

1.3.1. Question 1 (Q1; publication II) 

 

 

Biogenic calcium carbonates are complex structures of mineral and organic 

phases (Lowenstam and Weiner, 1989). In mollusk shells the organic matrix 

consists of water-insoluble chitin and the soluble organic matrix (Bourgoin, 1987; 

Schöne et al., 2010; Takesue et al., 2008) and its  average content ranges from 

0.3 to 4.0 wt % depending on the species (Bourgoin, 1987). A. islandica shells, 

for example, contain on average 99.54 wt % calcium carbonate and water-

soluble organic matrix, and only 0.46 wt % water-insoluble organic matrix 

(Schöne et al., 2010).  

 

In comparison with the entire biomineral the insoluble organic matrix of aragonitic 

bivalve shells is enriched in certain elements (e.g., magnesium) and depleted in 

others (e.g., strontium and calcium) (Schöne et al., 2010). Today's high-

resolution techniques for Me/Ca analysis, however, such as LA-ICP-MS, do not 

distinguish between mineral and organic phases but analyze the ablated sample 

as bulk. The calcium concentration of the sample is often used as internal 

standard but difficult to determine for the exact volume ablated by the laser. In 

addition, the organic matter is distributed unevenly across the shells. As a 

consequence, LA-ICP-MS analyses may locally overestimate the content of 

certain elements (e.g., magnesium) in shell regions with very high organic matter 

content where the calcium concentration is lower than on average (Schöne et al., 

2010). To account for this error, it has been suggested to chemically remove the 

organic matrix prior to LA-ICP-MS analyses (Schöne et al., 2010). Yet, previous 

studies question the effectiveness of different treatment agents and indicate that 

chemical treatment itself may alter the trace element composition of the sample 

(Keatings et al., 2006; Love and Woronow, 1991; Watanabe et al., 2001) (for 

detailed information on previous studies see publication II).  

 

For this reason, I conducted a systematic investigation on inorganic calcium 

carbonate and bivalve shell powder (A. islandica) to examine the efficiency of 
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Q2:  Does positioning of laser spots for LA-ICP-MS analyses affect the 
outcome of Me/Ca (Ba/Ca, Mn/Ca, Mg/Ca, Sr/Ca) analyses along cross 
sections of A. islandica shells due to Me/Ca heterogeneities within 

contemporaneously deposited material? 

eight chemical treatments and their impact on the carbonate composition.  That 

way, I aim at examining the question 1 (Q1; see above and Figure 1.1). I  applied 

different analytical techniques (inductively coupled plasma-mass spectrometry 

(ICP-MS), nitrogen (N) analyzer, X-ray diffractometry (XRD)) to analyze the effect 

of each treatment on Me/Ca (Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca) ratios, organic matter 

content using N as a proxy, and the composition of the carbonate and of newly 

formed phases (publication II).  

 

1.3.2. Questions 2 to 4 

 

The following questions (Q2 to Q4) each involve LA-ICP-MS analyses to examine 

Me/Ca ratios in cross sections of A. islandica shells. A brief overview of the 

methods of sample preparation and data collection is presented in the "Methods" 

section of publication I. Detailed information about the exact procedures is given 

in appendix II (lab manual for sample preparation) and the corresponding 

manuscripts (information on LA-IPC-MS analyses).  

 

1.3.2.1. Question 2 (Q2; Pending manuscript) 

 

 

Reconstruction of environmental history from Me/Ca ratios of bivalve shells is 

based on the assumption that the trace element composition of the shell 

represents the ambient environmental conditions at the time of carbonate 

formation, and is thus, consistent within shell material deposited at the same 

time.  

 

However, previous studies show that the distribution of trace elements within 

contemporaneously deposited shell layers can be heterogeneous (Lazareth et 

al., 2011 and references therein), as well in A. islandica shells (Foster et al., 

2009; Foster et al., 2008; Radermacher et al., 2010). Thus, in order to reliably 

reconstruct environmental parameters from Me/Ca profiles along cross sections 

of A. islandica shells, trace element analyses along isochronous growth layers 

are crucial to examine the reproducibility of Me/Ca profiles parallel to the shell 



Motivation and objectives 

 

30 
 

Q3:  Do Pb/Ca ratios in A. islandica shells reveal centennial records of 

anthropogenic lead pollution? 

periphery (Carre et al., 2006) and to avoid false interpretation of the latter profiles 

due to shell layer heterogeneities.  

 

Hence, the objective of this chapter is to determine the trace element (Ba/Ca, 

Mn/Ca, Mg/Ca, Sr/Ca) variability within contemporaneously deposited material of 

A. islandica shells using LA-ICP-MS in order to answer question 2 (Q2; see 

above) (Figure 1.1; Q2). In addition, Raman analyses of the same shell 

carbonate were conducted to examine possible reasons for Me/Ca 

heterogeneities, such as the aragonite distribution and crystallographic 

orientation as well as the spatial distribution of organic compounds throughout 

the shell carbonate (pending manuscript).  

 

1.3.2.2. Question 3 (Q3; publication III) 

 

 

Next, I measured Pb/Ca ratios in A. islandica shells and examined their 

applicability to reconstruct centennial records of anthropogenic lead pollution and 

to assess the lead contamination of the German Bight (North Sea) 

(publication III) (Figure 1.1; Q3). 

 

Lead pollution has been a matter of great concern due to the harmful effects of 

this element on human health and the sheer quantity of lead released into the 

environment. The majority of the anthropogenic lead is being mobilized by 

refining of ores, accelerated soil erosion, and fossil fuel or leaded gasoline 

burning where lead is injected into the atmosphere in the form of an aerosol 

(Libes, 1992). As a result of anthropogenic lead emissions the lead 

contamination of the ocean increased dramatically after 1750 and again after 

1950, largely due to atmospheric deposition (Clark, 2001). The first increase in 

the deposition rate of lead coincides with the beginning of the industrial revolution 

(Clark, 2001), whereas the second increase occurred as a consequence of the 

introduction of leaded gasoline with enhanced anti-knock properties (Boyle et al., 

1986; Harrison and Laxen, 1981). Starting in the 1970s the use of lead alkyl 

additives decreased in Europe as well as in the USA, which lead to declining 
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concentrations of environmental lead (Lazareth et al., 2000; Von Storch et al., 

2003). Nevertheless, anthropogenic emissions nowadays still account for the 

majority of lead, which is transported to the atmosphere and rivers (Libes, 1992), 

and consequently, to the ocean. 

 

Monitoring of marine pollution is mandatory for successful management and 

protection of coastal and estuarine environments of the North Sea, which provide 

a valuable environmental, economic, and recreational resource for its 

neighboring countries (Clark, 2001). Unfortunately, environmental data on lead 

pollution is limited in time and space and pollution levels are often difficult to 

estimate or reconstruct. Thus, biogenic carbonates have been examined to 

assess anthropogenic lead pollution (e.g., corals: Medina-Elizalde et al., 2002; 

Shen and Boyle, 1987; Shen and Boyle, 1988; sclerosponges: Lazareth et al., 

2000; Swart et al., 2002). None of the previous studies, however, examined 

marine biogenic carbonates from beyond the tropical and subtropical (> 35°N) 

range. Hence, there are no long-term records of marine lead concentrations from 

locations at > 35°N including the North Sea. Moreover, no comparative study has 

been conducted to examine site specific sources and levels of pollution. Such 

analyses may reveal important information about the magnitude and long-term 

trends of lead pollution, e.g., of the German Bight (North Sea) in comparison with 

other locations.  

 

Despite their applicability to reconstruct the trace metal contamination of the 

ocean and despite the longevity of certain species, few studies measured Pb/Ca 

ratios in bivalve shells to derive long-term records of lead pollution (e.g., Gillikin 

et al., 2005: ~ 50 year record of lead pollution). I thus, analyzed Pb/Ca ratios in 

the shell of a long-lived A. islandica specimen collected off the island of 

Helgoland in order to establish a centennial record of anthropogenic lead 

pollution of the German Bight. Besides the latter data set, I obtained two 

additional records of lead pollution from a US American and an Icelandic shell 

(publication III). With this study I aim at answering question 3 (Q3; see above) 

(Figure 1.1; Q3) and at contributing to a reliable assessment of the lead pollution 

of the German Bight (North Sea). 

 

 
 



Motivation and objectives 

 

32 
 

Q4:  Is there a clear relationship between trace element ratios (Ba/Ca and 
Mn/Ca) in A. islandica shells and pelagic primary production? 

 

1.3.2.3. Question 4 (Q4; publication IV)  

 

 

The second proxy-parameter-relationship investigated in this thesis is the link 

between Ba/Ca and Mn/Ca ratios in A. islandica shells and the diatom 

abundance of the German Bight (North Sea) as a measure of pelagic primary 

production (publication IV) (Figure 1.1; Q4). 

 

Phytoplankton plays a significant role in marine ecosystems in terms of carbon 

fixation and oxygen production. Moreover, biomass production through 

phytoplankton photosynthesis constitutes the basis of marine food webs 

(Hoppenrath et al., 2009; Thébault et al., 2009). The variability of phytoplankton 

in the German Bight is determined by the seasonal cycle of its two main 

components: diatoms (non-motile cells) and flagellates (motile cells) (Hickel, 

1998). In comparison with flagellates, which produce several pronounced blooms 

in summer, diatoms produce one distinct spring bloom and further blooms 

throughout the summer (Hickel, 1998). The development of a bloom depends on 

the interaction of various factors. Besides light and nutrient availability, also 

grazing pressure and species assemblages of both the grazing and the grazed 

communities determine the occurrence of a bloom (Irigoien et al., 2005). In 

general, high nutrient availability together with increasing light intensities, 

temperatures, as well as stratification of the water column set of a phytoplankton 

bloom in spring dominated by diatoms (Hoppenrath et al., 2009). Nutrient 

availability determines the duration of the bloom, whose date, intensity, and 

composition may vary between years (Hoppenrath et al., 2009). Herbivory as well 

as diminishing silicate availability eventually cause the bloom to crash allowing 

other species (e.g., Phaeocystis spp., and consequently, summer populations 

dominated by dinoflagellates) to move in. In late summer and fall, further smaller 

blooms again dominated by diatoms occur due to increased mixing providing new 

nutrients (Hickel, 1998; Hoppenrath et al., 2009). In the shallow and well-mixed 

waters of the German Bight near the island of Helgoland, stratification is less 

significant (Wiltshire et al., 2008). Besides, often incident light rather than nutrient 

availability limits the diatom abundance in this region (Wiltshire et al., 2008). 
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Due to its key role in the carbon and nutrient cycles, information about 

phytoplankton dynamics is crucial for understanding ecological and paleoclimate 

trends and variability of the German Bight (North Sea). However, instrumental 

data on primary production is limited in time and space (Thébault et al., 2009). 

For example, the Helgoland Roads time series includes a continuous (semi-daily) 

record of diatom abundance in the German Bight since 1962 (Franke et al., 2004; 

Wiltshire and Manly, 2004). However, to reconstruct the primary production 

beyond 50 years, scientists rely on archives that recorded phytoplankton 

abundance in the form of proxy data. For this purpose, trace element 

concentrations of biogenic carbonates (e.g., bivalve shells) are considered to 

provide an alternative approximation of past phytoplankton conditions with 

potentially high temporal resolution. 

 

Barium and manganese concentrations of bivalve shells have both been 

suggested to be tightly linked to ocean primary production (Lazareth et al., 2003; 

Vander Putten et al., 2000), though different studies yielded inconsistent results. 

While some studies suggested a link between the barium concentration of bivalve 

shells and phytoplankton blooms (Lazareth et al., 2003; Stecher et al., 1996; 

Thébault et al., 2009; Vander Putten et al., 2000), other authors argue that there 

is so far no satisfactory explanation for the observed barium peaks in bivalve 

shells (Gillikin et al., 2008). In addition, some authors proposed a link between 

increased manganese concentrations in bivalve shells and primary production 

(Lazareth et al., 2003; Vander Putten et al., 2000), in contrast to other authors 

who could not confirm this correlation (Barats et al., 2008) (for detailed 

information on previous studies see publication IV).  

 

To better understand the link between the latter two elements and pelagic 

primary production, I measured Ba/Ca and Mn/Ca ratios of three A. islandica 

shells collected off the island of Helgoland and correlated both ratios with the 

diatom abundance of the Helgoland Roads time series (Wiltshire and Dürselen, 

2004) (publication IV). That way, I aim at answering the question 4 (Q4; see 

above). 
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Abstract 

 

Correlating metal to calcium (Me/Ca) ratios of marine biogenic carbonates, such 

as bivalve shells, with environmental parameters has led to contradictory results. 

Biogenic carbonates represent complex composites of organic and inorganic 

phases. Some elements are incorporated preferentially into organic phases, and 

others are incorporated into inorganic phases. Chemical sample pretreatment to 

remove the organic matrix prior to trace element analysis may increase the 

applicability of the investigated proxy relationship, though its efficiency and side 

effects remain questionable. We treated inorganic calcium carbonate and bivalve 

shell powder (Arctica islandica) with eight different chemical treatments including 

H2O2, NaOH, NaOCl, and acetone and analyzed the effects on (1) Me/Ca ratios 

(Sr/Ca, Mg/Ca, Ba/Ca, and Mn/Ca), (2) organic matter (≈ N) content, and 

(3) mineralogical composition of the calcium carbonate. The different treatments 

(1) cause element and treatment specific changes of Me/Ca ratios, (2) vary in 

their efficiency to remove organic matter, and (3) can even alter the phase 

composition of the calcium carbonate (e.g., formation of Ca(OH)2 during NaOH 

treatment). Among all examined treatments there were none without any side 

effects. In addition, certain Me/Ca changes we observed upon chemical 

treatment contradict our expectations that lattice-bound elements (Sr and Ba) 

should not be affected, whereas non-lattice-bound elements (Mg and Mn) should 

decrease upon removal of the organic matrix. For instance, we observe that 

NaOCl treatment did not alter Sr/Ca ratios but caused unexpected changes of the 

Mg/Ca ratios. The latter demonstrates that the buildup of complex biogenic 

composites like the shell of A. islandica is still poorly understood. 

 

Keywords: biogenic carbonates; chemical treatment; organic matrix; proxy 

analyses 
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1. Introduction  

 

Since the 1940s when Urey (1948) and McCrea (1950) showed that information 

about past environmental conditions is preserved in the elemental/isotopic 

signature of biogenic marine carbonates, the field of paleoreconstruction has 

grown rapidly. Since then Me/Ca (Me stands for divalent metal ions like Mg, Mn, 

Sr, and Ba which can be substituted for Ca in the calcium carbonate) ratios of 

biogenic calcium carbonates (e.g., bivalves (Schöne et al., 2011; Vander Putten 

et al., 2000), corals (Mitsuguchi et al., 1996; Watanabe et al., 2001), ostracods 

(Holmes, 1996; Keatings et al., 2006), and foraminifera (Barker et al., 2003; 

Bryan and Marchitto, 2010)) are widely used to reconstruct past environmental 

conditions (Foster et al., 2008b). Sample preparation for Me/Ca analysis often 

includes chemical treatment to remove organic matter from the biogenic calcium 

carbonate (Gaffey and Bronnimann, 1993). However, the efficiency of chemical 

removal of organic matter remains questionable and a variety of side effects may 

alter the outcome of the analysis. 

 

Biogenic calcium carbonates consist of mineral and organic phases (Lowenstam 

and Weiner, 1989). The organic matrix occurs both within and between CaCO3 

crystals (Bourgoin, 1987; Schöne et al., 2010) and plays an important role in the 

biomineralization process by controlling crystal growth and structural organization 

(Addadi et al., 2006; Krampitz et al., 1983; Levi-Kalisman et al., 2001; Nudelman 

et al., 2006; Takeuchi et al., 2008). The organic matrix of mollusk shells is 

composed of water-insoluble chitin and the soluble organic matrix (Bourgoin, 

1987; Schöne et al., 2010; Takesue et al., 2008). The average content of organic 

matter varies among species, and was found to range from 0.3 to 4.0 wt % in 

mollusk shells (Bourgoin, 1987). According to Schöne et al. (2010) shells of the 

species Arctica islandica contain on average 99.54 wt % calcium carbonate and 

water-soluble organic matrix, and only 0.46 wt % water-insoluble organic matrix. 

 

Trace elements can be incorporated into biogenic calcium carbonates (e.g., 

mollusk shells) in various ways: (1) as lattice-bound elements that substitute for 

calcium in the calcite or aragonite crystal lattice and (2) as non-lattice-bound 

elements, such as surface adsorbed elements or constituents of organic 

compounds (Dodd, 1967; Takesue et al., 2008). For Me/Ca analyses it has to be 

taken into account that the insoluble organic matrix of aragonitic bivalve shells is 
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enriched in certain elements (e.g., Mg) and depleted in others (e.g., Sr and Ca) in 

comparison with the entire biomineral (Schöne et al., 2010). Today's high-

resolution techniques for Me/Ca analysis, such as laser ablation-inductively 

coupled plasma-mass spectrometry (LA-ICP-MS), however, do not distinguish 

between mineral and organic phases but analyze the ablated sample as bulk. 

The Ca concentration, which is commonly used as internal standard, is difficult to 

determine for the exact volume ablated by the laser. Furthermore, the organic 

matter is unevenly distributed across shells. As a consequence, LA-ICP-MS 

analyses may overestimate, e.g., the Mg content locally in shell regions with very 

high organic matter content where Ca concentrations are lower than on average 

(Schöne et al., 2010). Thus, the latter authors strongly recommended to either 

remove the organic matrix prior to LA-ICP-MS analyses or to mathematically 

correct for the Me content of the insoluble organic matrix. 

 

Previous studies question the effectiveness of different treatment agents and 

point out that pretreatment itself may alter the trace element composition of the 

calcium carbonate sample (Keatings et al., 2006; Love and Woronow, 1991; 

Watanabe et al., 2001). For example, Gaffey and Bronnimann (1993) studied the 

effectiveness of sample treatment to remove organic matter from green algae 

and echinoid skeletons. They concluded that NaOCl was the most and H2O2 the 

least effective agent, while NaOH treatment failed to remove the organic material. 

In addition, they observed that H2O2 treatment caused dissolution of the calcium 

carbonate. The authors did not evaluate changes in the element composition of 

the samples. Mitsuguchi et al. (2001) and Watanabe et al. (2001) examined 

changes in the trace element content of coral carbonate as a consequence of 

chemical treatment. Both studies observed that Mg/Ca ratios of coral carbonate 

were significantly altered by chemical treatment, while Sr/Ca ratios showed little 

or no variation. However, they detected opposite Mg/Ca changes upon H2O2 

treatment. Mitsuguchi et al. (2001) also observed dissolution of the calcium 

carbonate as a result of H2O2 treatment. Very few studies focus on bivalve shells 

when analyzing the effects of chemical treatment on biogenic calcium 

carbonates. Takesue et al. (2008), for example, found that oxidative removal of 

the organic matter decreased Mg/Ca and Mn/Ca but affected neither Sr/Ca nor 

Ba/Ca ratios in three powdered shells of the estuarine bivalve Corbula 

amurensis. 
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Here, we carried out a systematic investigation on inorganic calcium carbonate 

and bivalve shell powder (A. islandica) to examine the efficiency of eight 

chemical treatments and their impact on the carbonate composition. We combine 

different analytical techniques (inductively coupled plasma mass spectrometry 

(ICP-MS), nitrogen (N) analyzer, X-ray diffractometry (XRD)) to analyze the effect 

of each treatment on Me/Ca ratios (Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca), organic matter 

content using N as a proxy, and the composition of the carbonate and of newly 

formed phases. 

 

2. Material and methods 

 

2.1. Preparation of the powder samples 

 

We used inorganic calcitic carbonate powder (HB01; heavy calcium carbonate, 

p.a. quality, by Janssen Chimica) and the right valves of two aragonitic 

A. islandica specimens (A and B) to examine the effect of sample pretreatment in 

biogenic calcium carbonates. Pure calcitic inorganic carbonate, which is at 

normal conditions the stable among the three calcium carbonate polymorphs, 

was chosen as an end-member for the experiments to separate the effect of 

chemical treatment on inorganic and organic calcium carbonate. We prepared 

and weighed six HB01 subsamples (170.9 ± 2.2 mg, Figure 1) that were all kept 

and treated in 2 ml Eppendorf tubes. The use of a sample divider was not 

necessary, because HB01 did not contain any organic matter to be unevenly 

distributed. 

 

 

Figure 1 We divided inorganic (HB01) and organic (Arctica islandica) calcium carbonate 

powder into six and nine subsamples, treated them with different chemicals/cocktails 
(control "c"; treatments 1 to 8), and analyzed the effects on (1) Me/Ca ratios (Sr/Ca, Mg/Ca, 

Ba/Ca, and Mn/Ca; ICP‐MS), (2) organic matter (≈ N) content (N analyzer), and (3) calcium 

carbonate structure and composition (XRD). 
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The shells had been live collected in the North Sea at 40 m water depth in 2005. 

Upon collection the shells were dried in the lab. The organic periostracum was 

ground from the outside of the valves on a two-speed grinder polisher (Buehler 

Alpha wheels) with P600 sandpaper and by using a hand dremel (PROXXON 

Minimot 40/E). Afterwards, we sonicated the valves for 30 s and dried them in 

closed petri dishes for 1 h at 54°C. We then pestled each valve to a grain size of 

less than 30 μm using an agate sphere mortar. We did not differentiate between 

the inner and outer shell layer but analyzed both valves as bulk samples, 

because according to Zhang (2009) the trace element composition (Mg, Sr, Ba, 

and Mn) differs only slightly between both shell layers. A grain size of less than 

30 μm was considered necessary to ensure that the chemical agents would 

completely penetrate into the grains and access all organic material embedded 

within the calcium carbonate. We divided the shell powder of each valve into nine 

subsamples (172.0 ± 58.6 mg, Figure 1) by means of a sample divider to ensure 

identical grain size distribution in all subsamples. In the following text we will refer 

to the shell powder samples of both valves (A and B) as "shell powder" due to the 

fact that both sets of samples were treated exactly the same way. 

 

2.2. Treatment of powder samples 

 

We chose eight different treatments and applied treatment 1 to 5 to the HB01 

samples and treatment 1 to 8 to the shell powder samples (Figure 1). One 

sample of each powder remained untreated and served as a control (Figure 1). 

We used highly purified chemicals (suprapure 30% NaOH by Merck, ultrapure 

31% H2O2 by Roth, ultrapure Acetone by AppliChem, and ultrapure 60% HNO3 

by Merck), except for NaOCl (13% NaOCl by AppliChem) that was available in 

technical quality only. After adding 1300 μl of each solution to the corresponding 

powders, we mixed each sample using a vortex shaker and incubated for 2 h at 

60°C, except for H2O2 treatments, which had to be incubated at room 

temperature. To prevent the sample tubes from bursting in the heat, we placed 

them into larger tubes filled with water. Over the course of 2 h, samples were 

mixed on the vortex shaker every 15 min to ensure that the powder did not 

agglomerate and that the reagent penetrated the entire sample. After 2 h, we 

centrifuged each sample at 22°C for five minutes and transferred the 

supernatants into new plastic tubes. The remaining solid was washed six times 

with reverse osmosis water (ROW, conductivity < 0.067 μS); between combined 
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treatments we washed each shell powder sample three times with ROW. To 

wash the samples, we filled the tubes with ROW, mixed them on a vortex shaker, 

and centrifuged each sample. HB01 samples were not washed after chemical 

treatment in order to examine the effect of washing and of chemical treatment 

separately. At the end, we dried all samples over night at 60°C. Samples were 

now ready for analyses. 

 

2.3. ICP-MS analyses 

 

2.3.1. Sample preparation for ICP-MS measurements 

 

The treated and untreated HB01 and shell powder samples were analyzed for 

their element concentrations (Mg, Sr, Ba, Mn, Ca) using a ThermoFinnigan 

Element2 ICP-MS at the University of Bremen, Germany. We transferred 10 to 

20 mg of each sample into 13 ml tubes and noted the exact weight. The HB01 

samples were dissolved in 10 ml of 2% ultrapure HNO3. These solutions were 

diluted 1:100 with HNO3 and spiked with 2.5 ng/ml indium as internal standard. 

Each shell powder sample was dissolved in 100 μl of 60% HNO3 and dried for 

3 h at 100°C. Next, we added ROW water to a total volume of 10 ml. These 

solutions were again diluted 1:100 and spiked for analysis. 

 

In addition, we determined the trace element content of the two most effective 

agents, NaOH and NaOCl. For this 10 μl of the reagent was diluted 1:100 with 

ultrapure HNO3 and spiked with 2.5 ng/ml indium as internal standard. In the 

same way we prepared the NaOH and NaOCl supernatants of the HB01 samples 

for ICP-MS analyses. 

 

2.3.2. Statistical analyses of the ICP-MS data 

 

From the ICP-MS data we calculated the Mg/Ca, Sr/Ca, Ba/Ca, and Mn/Ca ratios 

for each sample as well as the standard deviations (σ) of these ratios by using 

the respective analytical precision and the Gaussian propagation of uncertainty. 

Next, we tested for a significant difference in Me/Ca ratios before (control) and 

after treatment (sample). We considered a difference in Me/Ca ratios between 

sample and control as significant if it was larger than three standard deviations 

(equation 1): 
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(Ratiosample - Ratiocontrol) > 3 * sqrt (2
Ratio (sample) + 2

Ratio (control))     (1) 

 
Finally, the treatments were classified into three groups using the following 

criteria: (1) "No significance" means that there was no significant change in 

Me/Ca ratios observed for specimens A and B, or both specimens showed 

significant but opposite changes after the same treatment. (2) "Significant 

increase" means that sample treatment caused increasing Me/Ca ratios for both 

specimens A and B, with at least one increase being significant. (3) "Significant 

decrease" means that sample treatment caused decreasing Me/Ca ratios for both 

specimens A and B, with at least one decrease being significant. 

 

2.4. Nitrogen analyses 

 

2.4.1. Nitrogen measurements 

 

We analyzed all shell powder samples of specimens A und B for their nitrogen 

concentration using an element analyzer (Euro EA by HEKAtech, Germany). 

Nitrogen rather than carbon was used as an indicator for the organic content of 

the shell powder, as the EA cannot distinguish between organic and inorganic 

carbon. We analyzed as many 20 mg aliquots of each sample as possible and 

calculated the average N concentration and standard deviations of all 

measurements (specimens A and B) for each shell powder. To monitor the 

accuracy of our measurements, we measured a soil reference sample with a 

known N concentration of 0.214 ± 0.050 μg/mg N. In total, we measured 24 soil 

samples along with 138 shell powder samples. Acetanilid was used as calibration 

standard. 

 

2.4.2. Statistical analyses of the nitrogen data 

 

The N data were Box-Cox transformed to achieve normality and homogeneity of 

variances. Next, we applied a fully factorial two-way analysis of variance 

(ANOVA) followed by a post hoc Tukey HSD test on differences between means 

to test on effects of treatment and of specimen on the N content of the shell 

powder. 
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2.5. Sample preparation for XRD analyses 

 

Semiquantitative X-ray diffraction (XRD) analyses were conducted at the 

University of Bremen, Germany, using a Siemens D500 diffractometer to 

characterize the composition of polycrystalline phases. We measured all HB01 

powder samples as well as two shell powder samples of specimen B. The first 

shell sample (200 mg of untreated shell powder) was measured to examine the 

possible effect of grinding on the calcite-aragonite ratio of the calcium carbonate. 

The second shell sample (200 mg of untreated shell powder incubated over night 

at 60°C) was measured to examine the effect of heating on the calcite-aragonite 

ratio. 

 

3. Results 

 

3.1. Inorganic carbonate powder (HB01) samples 

 

XRD analyses of the treated HB01 samples reveal the formation of new 

compounds during treatment 4 (NaOH) and 5 (NaOCl) (Figure 2).  

 

 

Figure 2 Effects of treatments (control "c"; treatments 1 to 5) (left) on the Me/Ca ratios and (right) 
on the carbonate composition of the HB01 powder samples (see also Figure 1). NS indicates no 
significant difference between the treated sample and the control. Plus indicates a significant 
increase; minus indicates a significant decrease. 

 

After treatment 4 the sample consists of Ca(OH)2, Na2CO3, Na2Ca(CO3)2 * 5H2O, 

and NaOH; calcium carbonate was not detected. After treatment 5 the sample 

consists of circa 75% calcite and 25% NaCl. The Me/Ca ratios of the HB01 

samples before and after the different treatments, their standard deviations (σ 

values), as well as the respective analytical precisions (RSD values) of the ICP-

MS analyses are shown in Tables 1 to 3. (For element concentrations in 

untreated (c) and treated HB01 samples, see auxiliary material.)  

javascript:opentables('tab03')
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Table 1 Me/Ca ratios in untreated (c) and treated HB01 samples 

Treatment 
Mg/Ca 
(mg/g) 

Sr/Ca 
(mg/g) 

Ba/Ca 
(µg/g) 

Mn/Ca 
(µg/g) 

c 1.42 1.01 114.0 4.43 

1 1.37 0.99 109.9 4.69 

2 1.43 1.01 111.0 4.68 

3 1.33 1.00 109.9 19.68 

4 1.41 0.99 78.6 14.37 

5 1.39 1.00 110.7 6.67 

 

Table 2 The  values of the Me/Ca ratios of untreated (c) and treated HB01 samples 

Treatment 
Mg/Ca 
(mg/g) 

Sr/Ca 
(mg/g) 

Ba/Ca 
(µg/g) 

Mn/Ca 
(µg/g) 

c 0.024 0.016 2.503 0.301 

1 0.023 0.017 2.017 0.206 

2 0.026 0.016 1.884 0.204 

3 0.017 0.014 1.803 0.604 

4 0.020 0.011 1.869 0.589 

5 0.021 0.018 1.843 0.228 

 

Table 3 RSD values (%) of ICP‐MS analyses of untreated (c) and treated HB01 

samples and of the supernatants of treatments 4 and 5 

Treatment Mg Sr Ba Mn Ca 

c 1.3 1.1 1.9 6.7 1.1 

1 1.4 1.4 1.6 4.3 0.9 

2 1.4 1.1 1.2 4.2 1.2 

3 0.8 1.0 1.3 2.9 1.0 

4 1.1 0.7 2.2 4.0 0.9 

5 1.2 1.6 1.4 3.3 0.9 

Supernatant 4 18.7 1.1 1.0 17.8 0.8 

Supernatant 5 3.2 5.1 4.1 9.9 1.2 

 

ICP-MS analyses of the treated and untreated HB01 samples (Figure 2) show 

that there is no significant difference in Mg/Ca ratio between control and treated 

samples except for a significant decrease of Mg/Ca after treatment 3 (H2O2). 

Sr/Ca ratios are not significantly affected by any treatment. For Ba/Ca there is no 

significant difference between the control and the treated samples except for a 

significant decrease after treatment 4 (NaOH). In contrast, all treatments cause a 

significant increase in Mn/Ca with the exception of treatment 1 (washing) and 2 

(acetone). We note that due to the newly formed Na compounds, treatment 4 

reduced the Ca concentration in the solid by 19.3 wt % and treatment 5 by 

9.8 wt %, compared to the untreated control (39.9 wt %). 
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3.2. NaOH and NaOCl supernatants of the HB01 samples 

 

The concentrations of Ca, Ba, and Mn in the suprapure NaOH solution were 

below their detection limits (Ca < 0.0966 ng/ml; Ba < 0.0058 ng/ml; Mn < 0.0067 

ng/ml); the Mg concentration was 0.17 ng/ml, the Sr concentration 0.01 ng/ml. In 

the NaOCl solution all analyzed elements had concentrations between 1.24 ng/ml 

(Mn) and 25.57 ng/ml (Ca) (Table 4).  

 

Table 4 Element concentrations of the reagents and HB01 supernatants of treatments 4 and 5
a
 

 
Mg 

(ng/ml) 
Ca 

(ng/ml) 
Mn 

(ng/ml) 
Sr 

(ng/ml) 
Ba 

(ng/ml) 

Supernatant of treatment 4 0.09 0.00 0.01 5.90 8.66 

NaOH  0.17 0.00 0.00 0.01 0.00 
Supernatant of treatment 4 
minus NaOH -0.08 0.00 0.01 5.89 8.66 

Supernatant of treatment 5  0.00 0.00 0.01 0.00 0.13 

NaOCl 7.80 25.57 1.24 17.66 6.42 
Supernatant of treatment 5 
minus NaOCl -7.80 -25.57 -1.23 -17.66 -6.29 
a
 Italic rows show differences between reagent and supernatant. 

 

For the respective analytical precisions (RSD values) of the ICP-MS analyses of 

the supernatants see Table 3. The element concentrations of the HB01 samples 

before the treatments (control) and after treatment 4 (NaOH) and 5 (NaOCl) as 

well as the respective differences, are shown in Table 5.  

 

Table 5 Element concentrations of HB01 solid products after treatments 4 and 5 and of the 
control

a
 

 
Mg 

(µg/g) 
Ca 

(wt %) 
Mn 

(µg/g) 
Sr 

(µg/g) 
Ba 

(µg/g) 

HB01 control (untreated) 566 39.9 1.77 403 45.50 

HB01 sample treatment 4 291 20.6 2.96 204 16.18 

HB01 sample treatment 5 419 30.1 2.01 302 33.31 
HB01 sample treatment 4 minus 
HB01 control (untreated) -275 -19.3 1.19 -199 -29.32 
HB01 sample treatment 5 minus 
HB01 control (untreated) -147 -9.8 0.24 -101 -12.19 
a
Italic rows show differences between control and treatment. 

 

The data show that, except for Mn, all concentrations in the sample decreased 

during both sample treatments, which is due to the addition of Na compounds to 

the solid sample. The element concentrations of the reagent and supernatants of 

the treatments 4 and 5 are shown in Table 4. Despite the decrease of the calcium 

concentration in the solid products after treatment 4 and 5 (Table 5), there is no 
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corresponding increase in the supernatants of both treatments. During treatment 

4 the concentration of Sr and Ba in the solution increased and Mg decreased, 

whereas during treatment 5 these concentrations all decreased. 

 

Table 6 summarizes the changes of element concentrations in the solids and 

solutions during treatment 4 and 5.  

 

Table 6 Summary of the changes in element concentrations of the solid products (relative to the 
untreated sample) and in the supernatants after treatments 4 (NaOH) and 5 (NaOCl) (relative to 
the reagent) 

  
Increase, decrease, or no change of the element 

concentration after sample treatment
a
 

Treatment Sample Mg Ca Mn Sr Ba 

4 (NaOH) Supernatant  NC NC   

 Solid      

5 (NaOCl) Supernatant      

 Solid      
a
Increase (upward arrows), decrease (downward arrows), or no change (NC). 

 

We notice opposite changes of concentrations in solutions and solids for Ba and 

Sr during treatment 4, and for Mn during treatment 5. In all other cases changes 

in element concentrations of the solutions are not complementary to those of the 

powder samples. 

 

3.3. Shell powder (A. islandica) samples 

 

XRD analyses of the untreated and of the heated shell powder samples indicate 

that both grinding and heating do not cause aragonite-calcite conversion. Both 

samples were found to contain less than circa 0.5% calcite. 

 

The Me/Ca ratios of the shell powder samples before and after the different 

treatments, their standard deviations (σ values), as well as the respective 

analytical precisions (RSD values) of the ICP-MS analyses are shown in 

Tables 7 to 9.  
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Table 7 Me/Ca ratios in untreated (c) and treated shell powders 

Specimen Treatment 
Mg/Ca 
(mg/g) 

Sr/Ca 
(mg/g) 

Ba/Ca 
(µg/g) 

Mn/Ca 
(µg/g) 

A c 0.31 2.71 15.88 8.49 

A 1 0.29 2.71 17.12 13.98 

A 2 0.35 2.73 20.36 11.22 

A 3 0.47 2.70 24.35 15.07 

A 4 0.34 2.62 17.62 10.60 

A 5 0.37 2.72 22.39 9.11 

A 6 0.31 2.70 18.80 11.28 

A 7 0.38 2.40 13.37 11.14 

A 8 0.37 2.71 21.96 11.40 

B c 0.37 2.60 25.46 9.21 

B 1 0.36 2.57 29.26 10.76 

B 2 0.34 2.55 24.57 8.92 

B 3 0.53 2.56 31.65 15.44 

B 4 0.32 2.46 16.14 7.91 

B 5 0.36 2.59 28.09 10.08 

B 6 0.29 2.57 24.85 8.99 

B 7 0.31 2.54 31.29 8.29 

B 8 0.41 2.56 29.94 14.13 

 
 

Table 8 The  values of the Me/Ca ratios of untreated (c) and treated shell powders 

Specimen Treatment 
Mg/Ca 
(mg/g) 

Sr/Ca 
(mg/g) 

Ba/Ca 
(µg/g) 

Mn/Ca 
(µg/g) 

A c 0.006 0.036 0.428 0.416 

A 1 0.005 0.039 0.433 0.394 

A 2 0.008 0.049 0.613 0.563 

A 3 0.006 0.033 0.457 0.600 

A 4 0.006 0.041 0.481 0.379 

A 5 0.008 0.032 0.521 0.447 

A 6 0.008 0.038 0.630 0.520 

A 7 0.009 0.053 0.584 0.624 

A 8 0.005 0.031 0.465 0.485 

B c 0.006 0.037 0.605 0.342 

B 1 0.005 0.034 0.901 0.363 

B 2 0.006 0.036 0.746 0.340 

B 3 0.009 0.038 0.794 0.518 

B 4 0.005 0.025 0.595 0.369 

B 5 0.006 0.042 0.819 0.428 

B 6 0.005 0.033 0.911 0.588 
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Table 9 RSD values (%) of the ICP‐MS measurements of untreated (c) and treated 

shell powders 

Specimen Treatment Mg Sr Ba Mn Ca 

A c 1.6 0.9 2.5 4.8 1.0 

A 1 1.4 1.2 2.4 2.7 0.8 

A 2 1.9 1.4 2.8 4.9 1.1 

A 3 1.0 0.9 1.7 3.9 0.8 

A 4 1.2 1.1 2.5 3.4 1.1 

A 5 1.8 0.6 2.1 4.8 1.0 

A 6 2.3 1.0 3.2 4.5 1.0 

A 7 2.0 1.6 4.1 5.4 1.5 

A 8 1.2 0.9 2.0 4.2 0.7 

B c 1.4 1.1 2.2 3.6 0.9 

B 1 1.2 1.1 3.0 3.3 0.7 

B 2 1.4 1.1 2.9 3.7 0.9 

B 3 1.3 1.1 2.3 3.2 1.0 

B 4 1.3 0.6 3.6 4.6 0.8 

B 5 1.2 1.2 2.7 4.1 1.1 

B 6 1.5 1.1 3.6 6.5 0.7 

B 7 1.2 0.9 2.4 4.2 0.8 

B 8 1.0 0.8 2.1 4.4 0.7 

 

An overview of the changes of the Me/Ca ratios in shell samples after the 

different treatments is shown below in Figure 3.  

 

 

Figure 3 Treatment effects and organic content in A. islandica shells powder. (middle) Treatment 

number (control "c"; treatments 1 to 8). (left) Summary of treatment effects on the Me/Ca ratios (NS 
indicates no significant difference between the treated sample and the control, plus indicates a 
significant increase, and minus indicates a significant decrease). (right) Nitrogen content (mg/mg, 
mean and one SD) of control (white bar) and posttreatment samples. 

 

In the shell powder samples there is a significant increase in Mg/Ca after 

treatment 3 (H2O2) and 8 (NaOCl + Acetone), and a significant decrease after 

treatment 1 (washing) and 6 (H2O2 + Acetone). Sr/Ca decreased significantly 
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during both NaOH treatments (4 and 7) but was not affected by the other 

treatments. Ba/Ca and Mn/Ca showed similar behavior and increased 

significantly during treatment 1 (washing), 3 (H2O2), and 8 (NaOCl + Acetone). In 

addition, Ba/Ca increased significantly during treatment 5 (NaOCl). 

 

In comparison with the untreated control samples the Ca concentrations of both 

shell powder samples did not decrease during treatment 4 and 5 (NaOH and 

NaOCl) as observed in the HB01 samples. Instead, the Ca concentration 

increased on average by 5.6 wt % during treatment 4 and decreased by only 

2.7 wt % during treatment 5. 

 

3.4. Nitrogen analyses 

 

The average N concentration of the 24 soil reference measurements is 

0.213 ± 0.024 μg/mg N. The N content of the shell powder is significantly affected 

by treatment (P < 0.0001; F value = 1021.83; DF = 8), by specimen (P < 0.0001; 

F value = 126.70; DF = 1) and by the treatment x specimen interaction 

(P < 0.0001; F value = 10.94; DF = 8). The N content differs significantly between 

all treatment samples except between washing and Acetone and between both 

H2O2 treatments (Post Hoc Tukey HSD Test). 

N concentration of the untreated control sample (0.67 μg/mg = 100% N) was the 

highest among all samples (Figure 3 and Table 10).  

 

Table 10 Average N concentrations and decrease of the N content of each 
shell powder sample after treatment (1 to 8) in comparison with the control 

Treatment 
Average N concentration 

(g/mg) 

Removed 
N (%) 

c 0.67 0.00 

1 0.62 7.87 

2 0.63 6.46 

3 0.54 19.51 

4 0.24 64.42 

5 0.11 84.20 

6 0.55 17.75 

7 0.31 54.60 

8 0.14 78.62 

 

NaOCl treatment removed 84.2% (treatment 5) and 78.6% (treatment 8) of the N 

contained in untreated sample powder. The second most efficient treatment 
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agent was NaOH, which removed 64.4% (treatment 4) and 54.6% (treatment 7) 

of the original N concentration. Both H2O2 treatments (3 and 6) removed less 

than 20%, washing and acetone treatment removed less than 10%. 

 

4. Discussion 

 

The treatments we examined vary in their efficiency in removing the organic 

matrix. Moreover, each treatment altered the Me/Ca ratios differently, although 

the changes we observe in pure HB01 carbonate after chemical treatments do 

not always coincide with those we observe in the shell powder samples. These 

inconsistencies indicate effects of the organic matrix, which are investigated and 

discussed below. 

 
Analyses of the NaOH and NaOCl supernatants were carried out for the HB01 

samples. Theoretically, an increase of the element concentration in the treated 

sample powder should be accompanied by a decrease of the element 

concentration in the supernatant (and vice versa). However, this is only the case 

as long as no new reaction products form during chemical treatment and as long 

as no other treatment (e.g., washing) is applied prior to Me/Ca analysis of the 

sample. With few exceptions (see section 3.2.) the changes of the element 

concentrations in the supernatants do not match those we observe in the HB01 

powder samples (Table 6). This may be due to the formation of new Na 

compounds and sample loss during several handling steps per treatment. 

Analysis of the element concentrations of the supernatants was not carried out 

for the shell powder samples. Unlike the HB01 samples, the shell powder 

samples were washed multiple times between and after treatments. As a 

consequence, analysis of the element concentrations of the supernatants of the 

shell powder samples cannot yield proper mass balances and was not 

considered a helpful tool. 

 

4.1. Effect of treatments on organic matter 

 

According to our quantitative N analyses, the most efficient agent in removing the 

organic matter from biogenic calcium carbonate powder is NaOCl followed by 

NaOH, while H2O2 is the least effective agent (Figure 3 and Table 10). However, 

none of the examined treatments removed all organic material contained in the 

bivalve shell powder. 
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As previously observed by Takesue et al. (2008) changes in Me/Ca ratios due to 

chemical sample treatment can vary among different specimen of the same 

species. Statistical analyses of our N measurements reveal an effect of specimen 

on the N content of the shell powder, but this effect is rather small (F value = 

126.70) in comparison with the effect of chemical treatment (F value = 1021.83) 

and is of no concern when analyzing Me/Ca ratios. Thus, the focus of our N 

analyses remains on the impact of chemical treatment on the shell powder 

samples. 

 

The main constituents of the organic matrix are water-insoluble structural 

proteins ( chitin), water-soluble polyanionic proteins, and silk-like proteins (Levi-

Kalisman et al., 2001; Schöne et al., 2010). Chitin, a cellulose derivate, belongs 

to the polysaccharides and often occurs associated with proteins, in the case of 

the organic matrix as a chitin-protein complex (Beyer et al., 1998). Our N 

concentrations integrate all N containing organic substances, such as proteins, 

chitin, and their degradation products, thus, the most important constituents of 

the organic matrix. It neglects, however, the part of the organic matrix referring to 

carbohydrates and lipids. 

 

NaOH is a leach that cracks peptide and ester bonds. That way, it removes 

proteins, including those of the chitin-protein complex, and lipids but no 

carbohydrates (Hänsel and Sticher, 2009). NaOCl, an oxidant and leach, oxidizes 

organic partial structures and causes alkaline hydrolysis. Like NaOH, it removes 

proteins and lipids but no carbohydrates (Endres and Siebert-Raths, 2009). In 

addition, alkaline agents such as NaOH and NaOCl split off acetyl groups from 

chitin and that way convert water-insoluble chitin into water-soluble chitinosan 

(Nachtigall, 2002). Multiple washing at the end of NaOH and NaOCl treatments 

completes the removal of the chitin-protein complex from the shell powder. In 

comparison, H2O2, an oxidant and acid, oxidizes organic partial structures and 

causes acid hydrolyzes. It dissolves proteins, lipids, as well as carbohydrates. 

The glycoside bounds of polysaccharides, however, are harder to crack, though 

oxidative breakdown of polysaccharides into smaller components should be 

possible (Domininghaus, 2004; Klemm et al., 2005). As H2O2 loses its reactivity 

over time by exothermic decomposition, probably more N will be removed if the 

treatment agent is replaced over the course of incubation. Harsher H2O2 

treatment (e.g., elevated temperature) may succeed in removing the same 
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amount of N containing organic matter as NaOCl or NaOH treatment, but it 

presumably increases the amount of carbonate dissolution. In addition, Gaffey et 

al. (1991) point out that elevated temperatures may cause transition from 

aragonite to calcite and alter the chemical composition of the calcium carbonate. 

 

In agreement with previous findings we conclude that none of the examined 

chemical treatments can effectively remove all organic material contained in the 

sample powder (Love and Woronow, 1991; Weber et al., 1976). 

 

4.2. Effect of treatments on calcium carbonate 

 

Aragonite is a metastable polymorph of calcium carbonate at ambient conditions 

and may readily convert to calcite at heat or stress exposure. Foster et al. 

(2008a) detected a significant conversion of aragonite to calcite in otolith samples 

as an effect of micromilling. In our experiments we detected no calcite conversion 

in the shell powder after grinding or incubation for 2 h at 60°C. Love and 

Woronow (1991) achieved the same result after heating abiogenic aragonite for 2 

h at 400°C. From our observations we conclude that the formation of new phases 

and the changes we observe in the chemical composition of the carbonate were 

not influenced by sample preparation (grinding or heating) but solely result from 

chemical treatment. 

 

Due to the decrease of the Ca concentration in HB01 samples after NaOH and 

NaOCl treatment, the Me/Ca ratios cannot be directly compared among 

treatments. Opposite to our results, Love and Woronow (1991) observed no 

changes of the Ca concentration after NaOCl, NaOH, and H2O2 treatment of 

abiogenic aragonite. However, they chose different incubation parameters 

(temperatures and duration), which may alter the effect of treatment on the 

carbonate chemistry and formation of reaction products. In comparison with the 

pure HB01 carbonate, we do not observe the same decrease of the Ca 

concentration after NaOH and NaOCl treatment in the shell powder samples. 

This result may be ascribed to the effect of the organic matrix on the structure 

and chemistry of the carbonate, e.g., due to its calcium binding properties 

(Bourgoin, 1987). The polypeptide building of the organic matrix could form Ca 

complexes that are stable enough to withstand the conditions of leaching with 

NaOH and NaOCl. 
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4.2.1. Washing and acetone treatment 

 

Neither washing nor acetone treatment resulted in the formation of new solid 

phases in the HB01 samples (Figure 2). 

 

Washing and acetone treatments do not significantly alter any of the Me/Ca ratios 

of the HB01 samples (Figure 2). For the shell powders, however, washing causes 

a significant decrease of the Mg/Ca ratio (Figure 3). The results are consistent 

with the observation that Mg seldom substitutes for Ca in abiogenic calcium 

carbonates but occurs, for example, as surface adsorbed or interstitial ions (Love 

and Woronow, 1991). According to Foster et al. (2008b), Mg in A. islandica shells 

occurs as a non-lattice-bound ion, e.g., hosted in the organic matrix. Thus, 

washing the sample can remove non-lattice-bound Mg ions and consequently 

decrease the Mg/Ca ratio of the shell powder. It remains unclear why this 

outcome is limited to washing of the shell powder sample. 

 

The observation that washing resulted in a significant Ba/Ca and Mn/Ca increase 

in the shell powder samples is surprising. ROW, however, with a conductivity of 

< 0.067 μS, and thus, an approximate pH of 7 may partially dissolve the 

carbonate and cause similar Me/Ca changes as described for H2O2 treatment 

(see section 4.2.2., last paragraph). 

 

4.2.2. H2O2 treatment 

 

H2O2 treatment of pure HB01 calcite did not produce new solid phases in 

significant amounts (Figure 2), but partial dissolution of the sample may have 

occurred. H2O2 has been shown to dissolve abiogenic and biogenic calcium 

carbonates, even when buffered with NaOH (Boiseau and Juillet-Leclerc, 1997; 

Gaffey and Bronnimann, 1993; Keatings et al., 2006; Mitsuguchi et al., 2001; 

Pingitore et al., 1993), because H2O2 is a strong enough acid (pKa 11.6) (CRC 

Press, 2010-2011) to corrode CaCO3 (equations 2 and 3): 

 

H2O2 + H2O <=> H3O
+ + HOO-     (2) 

CaCO3 + 2 H3O
+ => Ca2+ + H2CO3 + 2 H2O => Ca2+ + CO2 + 3 H2O     (3) 

 

A 31% H2O2 solution as used in this study has a pH of approximately 5.3 

http://www.agu.org/journals/gc/gc1107/2011GC003630/2011GC003630.shtml#s4.2.2
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(calculated from pKa value and molar concentration). Under such circumstances 

calcium carbonate dissolves and forms an equilibrium mixture of circa 85 mol % 

CO2 and 15 mol % HCO3
− (calculated from Hägg diagram). In addition, H2O2 can 

cause oxidative dissolution of proteins, which further induces the formation of 

organic acids (amino acids or derivates thereof). Those organic acids are even 

stronger acids (pKa 2 to 6) (CRC Press, 2010-2011) than H2O2 itself and can, in 

turn, contribute to carbonate dissolution. 

 

We found that Mg/Ca decreases significantly after H2O2 treatment of HB01 and 

after combined H2O2/Acetone treatment of shell powder (Figures 2 and 3). This 

observation agrees with previous research which examined the effect of H2O2 

treatment on Mg/Ca ratios of inorganic (Love and Woronow, 1991) and organic 

calcium carbonate (corals (Watanabe et al., 2001), bivalves (Takesue et al., 

2008), and foraminifera (Barker et al., 2003). According to Love and Woronow 

(1991) the Mg/Ca decrease in pure HB01 carbonate may result from the 

occurrence of Mg as surface adsorbed or interstitial ions, which are removed 

more easily than lattice-bound ions during chemical treatment. As discussed 

above, the Mg/Ca decrease in the shell powder is due to the preferred location of 

Mg within the organic matrix rather than in biogenic calcium carbonate, and the 

removal of the organic matrix by H2O2. In contrast, the observed significant 

Mg/Ca increase in the shell powder samples after pure H2O2 treatment is difficult 

to explain. The magnitude of this change (51.6% and 43.2% in specimens A and 

B, respectively) and consistency of both values render a contamination scenario 

as unlikely. It is possible that Mg deliberated from organic matrix dissolution 

became incorporated in residual matrix material and was not removed during 

subsequent washing. 

 

In contrast to Mg/Ca, none of our H2O2 treatments caused significant changes in 

the Sr/Ca ratio of inorganic or organic calcium carbonate. In bivalve shells, 

opposite to Mg, Sr occurs dominantly in the carbonate phase rather than in the 

matrix because Sr substitutes easily for Ca in the aragonite lattice (Foster et al., 

2009; Takesue et al., 2008). Thus, chemical treatment removing the organic 

matrix does not alter the Sr/Ca ratio of the sample. This result of our study 

corroborates results on the chemical treatment of corals (Watanabe et al., 2001) 

and foraminifera (Barker et al., 2003) samples, but we discuss below that NaOH 

treatment is an exception (Figures 2 and 3). 
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Regarding Ba/Ca and Mn/Ca, the (partial) removal of the organic matrix does not 

explain the changes in the ratios we observe throughout this study 

(Figures 2 and 3). Ba, similar to Sr, is a lattice-bound cation preferably located 

within aragonite (Takesue et al., 2008), thus, the removal of organic matrix by 

chemical treatment should not alter the Ba/Ca ratios. Mn, similar to Mg, is a small 

cation preferably associated with the organic matrix (Carriker et al., 1980; 

Takesue et al., 2008) so that Mn/Ca ratios are expected to decrease after 

removal of the organic matrix. Accordingly, Takesue et al. (2008) detected a 

Mn/Ca decrease and no Ba/Ca change after removal of the organic matrix from 

clam shells, whereas Love and Woronow (1991) observed no Mn/Ca changes 

after chemical treatment of abiogenic calcium carbonate. Contrary to these 

findings, we observe significant Mn/Ca and Ba/Ca increases for the shell powder 

samples, and a significant Mn/Ca increase for HB01, after H2O2 treatment. The 

Me/Ca increases we observe here during H2O2 treatment may be ascribed to the 

fact that acid treatment had a stronger impact on the calcium carbonate than on 

the organic phase. Dissolution of the carbonate results in increased Me/Ca ratios 

for elements (e.g., Mn) preferentially located in the organic matrix. In comparison, 

Ba occurs in the carbonate lattice as BaCO3, which is slightly less soluble than 

CaCO3. As a consequence, Ba is removed less easily than Ca during carbonate 

dissolution and Ba/Ca ratios increase. Thus, not all Me/Ca changes we observe 

can be ascribed to the removal of the organic matrix but may be results of 

complex reactions between the acid treatment agent and the shell powder. 

 

4.2.3. NaOH treatment 

 

In the case of NaOH treatments we distinguish between two main processes that 

can be coupled to each other: (1) chemical reactions between calcite and 

hydroxide resulting in the formation of new solid phases and (2) chemical 

reactions causing dissolution of the organic matrix. The main inorganic reaction is 

the conversion of CaCO3 (40 wt % Ca) to Ca(OH)2 (portlandite; 54 wt % Ca) and 

Na2CO3 (equation 4): 

 

CaCO3 + 2 NaOH <=> Ca(OH)2 + Na2CO3     (4) 

 

The same formation of portlandite was reported by Pingitore et al. (1993). Our 

XRD data show that in addition Na2Ca(CO3)2 * 5H2O and NaOH was formed in 
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the solid residue during drying of the sample. The composition of the resulting 

solid clearly depends on the amount of reagents; in our HB01 experiments the 

entire calcium carbonate had reacted. Remains of NaOH are easily removed by 

washing the samples at the end of chemical treatment. 

 

The consequences for element concentrations and Me/Ca ratios in the treated 

sample are twofold. First, element concentrations in the sample change simply 

because the mass and type of solid compounds change. The same mass of Ca 

has a higher concentration in a portlandite dominated sample than in a calcite 

dominated one. Second, the ability of the newly formed phases to incorporate 

trace elements such as Sr strongly differs from that of calcite or aragonite 

because of the different crystal structures. Portlandite, for example, has a layered 

structure that strongly contrasts with the calcite or aragonite structure. 

 

The Mg/Ca ratios of both the HB01 and shell powder samples are not 

significantly affected by the NaOH treatments (Figures 2 and 3). For the HB01 

samples this observation suggests that both elements remained quantitatively in 

the solid phases during the chemical reactions. For the shell powder samples, 

however, a decrease in Mg/Ca due to removal of the organic matrix would be 

expected. We suggest that the released Mg was incorporated into the newly 

formed solids, possibly in the form of Mg(OH)2 (brucite), the amounts of which 

would be too small as to be recognized by the XRD investigations. 

 

Sr/Ca in the HB01 samples did not significantly decrease during the NaOH 

treatments (Figure 2). This shows that most of the Sr released during calcite 

decomposition may have been fixed in the newly formed solid phases, and 

possibly in minor amounts of SrCO3 (strontianite) that cannot be revealed by the 

XRD analyses. For the shell powder samples there is a significant decrease in 

Sr/Ca during NaOH treatments (with and without acetone; Figure 3). In contrast 

to the HB01 samples, the shell powder samples were washed multiple times after 

chemical treatment. This procedure obviously resulted in repeated solvation of Sr 

cations and their subsequent removal, which explains the significant decrease in 

Sr/Ca compared to the HB01 experiments. This shows that washing after 

chemical treatments can result in re-equilibration between solid phases and 

solution and can significantly affect Me/Ca ratios, even though simple washing 

does not. 
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The strong Ba/Ca decrease in the HB01 samples compared to Sr/Ca is expected 

for NaOH treatment. Both elements show similar chemical behavior, but owing to 

its better solubility (lower ionic potential) more Ba becomes solvated and 

removed during centrifuging. The fact that we do not observe a similar Ba/Ca 

decrease in the shell powder samples is puzzling and presumably due to the 

impact of the organic matrix. The Mn/Ca increase in the HB01 samples after 

NaOH treatment is associated with the simultaneous increase of the Mn 

concentration and decrease of the Ca concentration (Table 5). The fact that the 

Ca concentration did not decrease in the shell powder sample may explain why 

Mn/Ca ratios of the shell powder samples remain unchanged. 

 

4.2.4. NaOCl treatment 

 

NaOCl treatment does not cause reaction of calcium carbonate to other Ca 

phases as is shown by XRD analyses of treated HB01 samples (Figure 2). 

However, drying of the centrifuged sample resulted in the precipitation of NaCl 

that makes up circa 25 wt % of the remaining solid. For the shell powder 

samples, multiple washing after NaOCl treatment most likely removed all of the 

NaCl owing to its high solubility in H2O. 

 

As expected, the Sr/Ca ratios of the HB01 and shell powder samples are not 

significantly affected by NaOCl treatment because the carbonate-bound Sr 

remains fixed in the crystal lattice (Figures 2 and 3). Also, the Mg/Ca ratio of the 

HB01 powder did not change significantly during NaOCl treatment. For the shell 

powders, however, a significant decrease of Mg/Ca due to organic matrix 

removal would be expected but is not shown by our data; to the contrary, one of 

the treatments yielded an increase (Figure 3). Mg contamination by the NaOCl 

reagent, despite its limited purity, does not seem a viable explanation for 

ambiguous Mg behavior because the unwashed HB01 sample was not affected. 

Instead, interactions between the reagent and the organic matrix during 

treatment and subsequent washing may be the reason for these ambiguous 

results. Washing in particular may have a subtle control on the final Mg/Ca of the 

dried sample. The same effect of washing may apply to the Ba/Ca increase, 

which we observe in the shell powder but not in the HB01 samples. 

 

The Mn/Ca increase in the HB01 samples may again be associated with the 
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combined increase of the Mn and decrease of the Ca concentration after NaOCl 

treatment. The same explanation may apply to the Mn/Ca increase we observe in 

the shell powder samples, though the decrease of the Ca concentration after 

NaOCl treatment is rather small. 

 

5. Summary 

 

We used inorganic calcite and bivalve shell powder (A. islandica) to examine the 

efficiency of eight chemical treatments and their impact on the chemical and 

phase composition of the residual carbonate. The treatments vary in their 

efficiency in removing organic matter with NaOCl being the most efficient 

treatment agent followed by NaOH. The latter treatment, however, removes 

significant portions of the carbonate and produces new compounds including 

Ca(OH)2, and is thus, not suitable for chemical treatment of calcium carbonates. 

Such reactions do not occur during NaOCl treatments. H2O2 is the least efficient 

agent in removing organic matter and causes partial dissolution of the calcium 

carbonate. For these reasons, we do not recommend H2O2 treatment to remove 

the organic matrix from biogenic carbonates. Regarding the effect of treatment on 

the Me/Ca ratios, every treatment has some impact on the chemical composition 

of the calcium carbonate, although certain Me/Ca changes we observed do not 

match the expectations. Lattice-bound elements (Sr and Ba) should not be 

affected, while non-lattice-bound elements (Mg and Mn) should decrease upon 

removal of the organic matrix. In agreement with these assumptions, we 

detected, for instance, that NaOCl treatment did not alter Sr/Ca ratios. However, 

it caused unexpected changes of the Mg/Ca ratios. For a summary of all Me/Ca 

changes we observed see Figures 2 and 3. 

 

To predict the outcome of chemical reactions chemical equilibrium conditions are 

generally assumed. Bivalve shells, however, are complex structures or inorganic 

and organic compounds. As a consequence, we often cannot predict the results 

of local reactions at the boundary layer between the inorganic and organic phase. 

Our results demonstrate that the composition of complex biogenic composites 

like the shell of A. islandica are still poorly understood and sample pretreatment 

prior to Me/Ca analyses has to be conducted with extreme caution. As previously 

suggested by Keatings et al. (2006), we recommend to avoid sample treatment 

prior to Me/Ca analyses when possible. The necessity to remove the organic 
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matrix also depends on the amount of organic matter in the biogenic carbonate 

(Lingard et al., 1992) and may be less crucial for samples with low organic 

content. If pretreatment is essential, NaOCl treatment can be applied prior to 

Sr/Ca analyses. 

 

6. Outlook 

 

In addition to the chemical side effects discussed above, further complications 

arise when applying chemical treatment to cross sections of bivalve shells which 

are used for LA-ICP-MS analysis. Some bivalves, such as A. islandica, have a 

distinctive homogeneous shell structure composed of small, irregular aragonite 

granules. These granules are each surrounded by an organic membrane and 

arranged in regular sheets and columns (Kennedy et al., 1969). Due to the dense 

structure of the shell and fine distribution of the organic matrix, it is difficult to 

achieve deep penetration of the treatment agent and subsequently extract the 

dissolved organics from the sample. In conclusion, this technique fails to remove 

all organic matter from bivalve shell powder and is consequently even less 

applicable for cross sections of bivalve shells. Instead, the use of a mathematical 

correction to account for the trace element content of the insoluble organic matrix 

as proposed by Schöne et al. (2010) may be an alternative approach for future 

studies. 
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Auxiliary material 

 

TableA 1 Element concentrations in untreated (c) and treated HB01 samples 

Treatment 
Mg 

(µg/g) 
Sr 

(µg/g) 
Ba 

(µg/g) 
Mn 

(µg/g) 
Ca 

(µg/g) 

c 566 403 45.50 1.77 399000 
1 582 423 46.80 2.00 425944 
2 570 403 44.36 1.87 399489 
3 534 402 44.21 7.92 402216 
4 291 204 16.18 2.96 205795 
5 419 302 33.31 2.01 300844 
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Abstract 

 

In the present study, we establish centennial records of anthropogenic lead 

pollution at different locations in the North Atlantic (Iceland, USA, and Europe) by 

means of lead deposited in shells of the long-lived bivalve Arctica islandica. 

Regarding local oceanographic and geological conditions we conclude that the 

lead concentrations in the Icelandic shell reflect natural influxes of lead into 

Icelandic waters. In comparison, the lead profile of the US shell is clearly driven 

by anthropogenic lead emissions transported from the continent to the ocean by 

westerly surface winds. Lead concentrations in the European North Sea shell, in 

contrast, are dominantly driven by local lead sources resulting in a much less 

conspicuous 1970s gasoline lead peak. In conclusion, the lead profiles of the 

three shells are driven by different influxes of lead, and yet, all support the 

applicability of Pb/Ca analyses of A. islandica shells to reconstruct location 

specific anthropogenic lead pollution.  

 

Keywords: Arctica islandica, bivalve, bioarchive, lead pollution, Northern Atlantic  
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1. Introduction  

 

Metals constitute significant pollutants of the marine environment, which are 

introduced into the seawater by gas exchange at the sea surface, fall out of 

particles, or by being scavenged from the air column via precipitation (Clark, 

2001). Natural sources of metals in seawater include volcanic activity, wind-

blown dust, erosion of ore-bearing rocks, and forest fires (Clark, 2001). In 

addition, metals mobilized by anthropogenic activities reach the oceans via 

atmospheric deposition, rivers, and direct discharges or dumping (Clark, 2001). 

 

Lead has been a matter of great concern due to its harmful effects on human 

health and the sheer quantity released into the environment. Its ability to imitate 

biologically important metals and to damage membranes determines the toxicity 

of lead (Company et al., 2008). As a neurotoxin lead may impair the normal 

neurological development of children even at low exposure levels and increase 

the risk of cardiovascular diseases and renal deficiencies in adults (Von Storch et 

al., 2003). Human activity has changed the intensity of natural biogeochemical 

fluxes of lead (Bashkin, 2002). The history of lead use goes back to the times of 

the Egyptians and Babylonians (Bashkin, 2002). Also during the Roman Era lead 

was used extensively for the water supply system (Harrison and Laxen, 1981). 

However, the first mayor increase in the deposition rate of lead coincides with the 

beginning of the industrial revolution in the middle of the 18th century (Clark, 

2001). The second major increase in the flux of elemental lead into the ocean 

occurred between 1930 and 1970 as a consequence of the introduction of leaded 

gasoline with enhanced anti-knock properties (Boyle et al., 1986; Harrison and 

Laxen, 1981). Starting in the 1970s the use of lead alkyl additives decreased 

both in Europe and the USA, resulting in a drop of the environmental lead 

concentrations (Lazareth et al., 2000; Von Storch et al., 2003).  

 

Most of the anthropogenic lead is being mobilized by refining of ores, accelerated 

soil erosion, and fossil fuel or leaded gasoline burning during which lead is 

injected into the atmosphere in the form of an aerosol (Libes, 1992). Upon 

deposition of lead in the surface ocean, the metal is converted into soluble form 

(Wu and Boyle, 1997). The main forms of occurrence of dissolved lead include 

carbonate, hydroxide, and chloride complexes (Libes, 1992). According to 

Veron et al. (1987) the residence time of lead in surface waters is less than five 
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years; the metal is removed by adsorption onto sinking biological particles (Wu 

and Boyle, 1997). As a consequence of anthropogenic lead emissions, the lead 

contamination of the ocean increased dramatically after 1750 and again after 

1950, largely due to atmospheric deposition (Clark, 2001). At present, 

anthropogenic emissions account for the majority of lead, which is transported to 

the atmosphere and rivers (Libes, 1992). 

 

Monitoring of marine pollution is mandatory for successful management and 

protection of coastal and estuarine environments, which provide valuable 

environmental, economic, and recreational resources. However, environmental 

data is limited in time and space. As a consequence, pollution levels are often 

difficult to estimate or reconstruct. Bivalves are widely used to assess pollution 

levels by examining contaminant accumulation in soft tissues. Assessment of 

long-term pollution records from bivalve tissues, however, requires years of 

continuous monitoring and does not provide hindsight reconstruction of past long-

term development of contamination. Bioarchives, on the contrary, record ambient 

environmental conditions over long time spans, and are thus, more suitable to 

obtain long-term records of environmental pollution. Besides sediments (Veron et 

al., 1987) and ice cores (Murozumi et al., 1969), various bioarchives including 

trees (e.g., Tommasini et al., 2000), and particularly biogenic carbonates such as 

corals (Medina-Elizalde et al., 2002; Shen and Boyle, 1987; Shen and Boyle, 

1988), sclerosponges (Lazareth et al., 2000; Swart et al., 2002) and bivalves 

(Gillikin et al., 2005) have been used to assess anthropogenic lead pollution. 

None of the marine studies, however, examined samples from beyond the 

tropical and subtropical (> 35°N) range. Hence, there are no long-term records of 

marine lead concentrations from locations at > 35°N. In addition, no comparative 

study has been conducted to examine the history of lead pollution at different 

sites in the northern Atlantic. Such analysis may reveal the distribution of lead 

pollution throughout northern Atlantic regions and the extent of anthropogenic 

lead pollution at different locations.  

 

In aragonitic carbonates lead may substitute directly for calcium in the aragonite 

lattice (Bourgoin, 1987; Ramos et al., 2004). Pitts and Wallace (1994) observed 

that the lead content of aragonitic Mya arenaria shells was strongly correlated 

with dissolved lead concentrations of the seawater in which the organism grew, 

while Bourgoin (1990) found a relationship between the lead content of the 
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aragonitic layer of Mytilus edulis shells and suspended particulate lead 

concentrations.  Vander Putten et al. (2000), on the other hand, assumed that 

both dissolved and particulate lead influence the skeletal lead content.  

 

Despite the applicability of bivalve shells in reconstructing the trace metal 

contamination of the ocean, barely any studies analyzed bivalve shells to derive 

long-term records of lead pollution. Gillikin et al. (2005), for example, strung 

together 11 Mercenaria mercenaria shells building a master chronology that 

covered more than 50 years. From his work he concluded that bivalve shells are 

suitable for studying long-term lead records given that enough specimens are 

pooled together. However, the authors observed a lot of "noise" in their data and 

large variations between shells. In conclusion, Gillikin et al. (2005) suggest using 

bivalve shells from deeper, and thus, biogeochemically more stable areas, such 

as Arctica islandica, which commonly lives between 10 and 280 m water depth 

(Thompson et al., 1980). Other authors previously indicated that slow growing 

and long-lived animals like A. islandica may be suitable for reconstructing long-

term records of environmental changes covering several centuries (Schöne et al., 

2004; Vander Putten et al., 2000). 

 

In this study, we use long-lived A. islandica specimens in order to establish 

centennial records of anthropogenic lead pollution at three different locations in 

the North Atlantic (Iceland, USA, and Europe). By using single long-lived 

specimens from deeper waters (> 14 meters) instead of building a master 

chronology from several short-lived specimens we aim at excluding between-

specimen variation caused by physiological differences as well as by spatial 

environmental variability as observed by Gillikin et al. (2005). 

 

2. Material and methods 

 

2.1. Shell samples and environmental data 

 

Three A. islandica specimens were collected alive at three different locations in 

the northern Atlantic (Figure 1): Specimen ICEL was collected off the coast of 

Northeast Iceland (66°01.68'N; 14°50.96'W) at 14 meters water depth in 2005, 

specimen VIRG was collected off the coast of Virginia, USA, (38°30'0"N; 

74°00'0"W) at 80 meters water depth in 2010, and specimen HELG was collected 
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in the North Sea near Helgoland, Germany, (54°09.02'N, 07°47.06'E) at 

40 meters water depth in 2005.  

 

 

Figure 1 The three sampling locations in the northern Atlantic: (1) off the coast of Virginia, 
USA (38°30'0"N; 74°00'0"W), (2) off the coast of Northeast Iceland (66°01.68'N; 
14°50.96'W), and (3) in the North Sea near Helgoland, Germany (54°09.02'N, 07°47.06'E). 

 

2.2. Sample preparation 

 

We selected the right (specimens VIRG and HELG) or the left valve (specimen 

ICEL) of each specimen, cleaned the outside of each valve in an ultrasonic bath 

filled with reverse osmosis water (ROW, conductivity < 0.067 μS) for 15 seconds 

and placed the samples under the fume hood to dry. After that, we covered each 

valve with a thin layer of polyvinyl alcohol (by Sigma Aldrich; av.mol.wt. 70,000 -

 100,000) (Carroll et al., 2009) to prevent the epoxy resin (see below) from 

entering the shell. For this we dissolved under constant stirring and heating 10 g 

polyvinyl alcohol in 90 ml ROW and spread a thin layer on each valve. Once the 

polyvinyl alcohol was cured, we embedded each valve in three layers of stained 

blue epoxy resin (EpoxyCure by Buehler) (Carroll et al., 2009). The transparent 

resin had been dyed with Blue Pigment for Castable Mounts (by Buehler) 

(W. Ambrose Jr., pers.com.) to visually verify that the resin did not penetrate into 

the shells where it may affect our measurements. Next, we cut from each valve a 

three millimeter thick section along the line of strongest growth (LSG) using a low 

speed Buehler Isomet saw equipped with a diamond blade (Figure 2).  
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Figure 2 Right valve of an Arctica islandica 

shell with a white line indicating the line of 

strongest growth (= LSG). 

 

We mounted each section on a custom made glass slide with stained blue epoxy 

resin and ground it on a two-speed grinder polisher (Buehler Alpha wheels) with 

different sandpapers (P1200, P2400, and P4000 grit). Finally, we again cleaned 

the samples by gently brushing them under ROW and by placing them in an 

ultrasonic bath for 15 seconds. 

 

2.3. LA-ICP-MS measurements 

 

We used a Thermo Finnigan Element2 single collector inductively coupled 

plasma-mass spectrometer (ICP-MS) connected to New Wave Research UP 193 

nm excimer laser ablation system for element analyses of the shell carbonate. A 

large-format laser ablation cell was used to accommodate entire shell sections 

without cutting the samples into smaller pieces. We analyzed Pb/Ca ratios (48Ca 

and 208Pb) within the outer shell section using a 150 µm laser beam size, 450 µm 

distance between spots, frequency of 10 Hz, and 100% output (Figure 3).  

 

 

Figure 3 (A) Schematic cross section of an Arctica islandica shell in 

combination with a high-resolution image (B) showing the transect 

of 150 µm LA-ICP-MS laser spots along the midline of the outer 

shell section perpendicular to the annual growth line pattern. 
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A helium gas stream transported the ablated material to a dual-inlet quartz spray-

chamber where the sample was mixed with a 2% HNO3 aerosol supplied by a 

self-aspirating PFA. In total, we measured 96 spots per shell. 

 

Along with the sample spots we analyzed an instrumental blank (2% HNO3) and 

two standards. We interpolated linearly between adjacent blanks to obtain a 

blank value for the correction of each sample spot. To correct for instrumental 

mass bias, we used a certified reference material (FEBS-1; Sturgeon et al., 2005) 

dissolved and diluted in 2% HNO3 to a final Ca concentration of 80 µg/g. We 

calculated instrumental mass bias from the published Pb/Ca reference values for 

the FEBS-1 standard, interpolated correction factors between adjacent 

measurements of the FEBS-1 reference material, and applied the correction 

factors to the blank corrected Pb/Ca ratios. External precision (relative standard 

deviation) was calculated by running an internal powdered aragonite sample, 

also dissolved and diluted in 2% HNO3 to a final Ca concentration 80 µg/g, as an 

unknown. Estimates (N = 18) for the Pb/Ca were 8%. 

 

2.4. Dating the laser spots 

 

Upon completion of all ICP-MS measurements, we polished the samples with 

polycrystalline diamond suspensions (METADI SUPREME) (1 µm, 0.1 µm, and 

0.05 µm) on a two-speed grinder polisher (Buehler Alpha wheels) for maximum 

smoothness of the surface and rinsed them thoroughly with deionized water. To 

increase the contrast of the growth lines, we etched and dyed the samples in a 

Mutvei Solution (Mutvei et al., 1996; Schöne et al., 2005a) for 30 minutes at 

40°C, rinsed them with deionized water and then kept them under the fume hood 

to dry. The Mutvei solution consisted of 500 ml of 1% acetic acid to etch the 

calcium carbonate, 500 ml of 25% glutaraldehyde to stabilize the organic matrix, 

and 5 g of Alcian blue for coloration of muco-polysaccharides and glucosaminds 

enriched near the growth lines (Schöne et al., 2005a; Schöne et al., 2005b). 

 

We digitized the etched samples under a binocular microscope (Olympus SZX12) 

that was connected to a digital camera (Olympus DP72, 4140 x 3096 pixels 

maximum, Software analySIS DOCU FIVE). In the end, we assigned each laser 

spot a specific year using the growth lines as year markers. If an increment 

(= material deposited between two growth lines ̂  one year) contained more than 
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one laser spot, we calculated the average Pb/Ca ratio ( 1 standard error) of all 

spots as the annual mean. For each specimen we used the median (= 50% 

quantile) as the Pb/Ca background signal level. 

 

3. Results 

 

The distributions of the Pb/Ca values in the three A. islandica shells are shown in 

Figure 4.  

 

 

Figure 4 Distributions of the Pb/Ca values (in mol/mol) of the 

three Arctica islandica specimens collected (top graph; ICEL) off 

the coast of Northeast Iceland, (centre graph; VIRG) off the coast 

of Virginia, USA, and (bottom graph; HELG) in the North Sea 

near Helgoland, Germany. 

 
The Pb/Ca profiles in the common time window 1770 - 2010 are shown in Figure 

5 (graphs 2 to 4).  
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Figure 5 Graph 1: US gasoline lead consumption (in 10
+6

 kg) (modified after Nriagu (1990)). Graphs 
2 to 4: Pb/Ca profiles (in mol/mol; determined by LA-ICP-MS with an external precision of 8% 
(N = 18)) in the common time window 1770 - 2010 of the three Arctica islandica specimens 
collected (graph 2; ICEL) off the coast of Northeast Iceland, (graph 3; VIRG) off the coast of Virginia, 
USA, and (graph 4; HELG) in the North Sea near Helgoland, Germany: The black dots indicate the 

annual Pb/Ca ratios ( 1 standard error for years with > 1 sample spot). Each graph shows a grey 
cubic spline trendline (λ = 8000) and a black arrowed line at the top of each graph indicating the 
total life span of each specimen. The grey bar indicates the time of maximum gasoline lead 

emissions (1980  10 years). 
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3.1. Iceland 
 

The Pb/Ca background signal of the ICEL shell is the lowest among the three 

specimens with the median being 0.27  10-8 mol/mol. The Pb/Ca profile of this 

shell starts off with a peak value of 0.88  10-8 mol/mol in 1835 followed by a 

continuous decrease of the Pb/Ca values until the 1860s (Figure 5; graph 2). The 

cubic spline trendline indicates another peak around 1890 with maximum values 

of > 0.6  10-8 mol/mol but no increase of the Pb/Ca ratios between 1910 and 

1980 (Figure 5; graph 2). 

 

3.2. Virginia 

 

The Pb/Ca background signal of the VIRG shell (median 0.96  10-8 mol/mol) is 

3.6 times higher than the background signal of the ICEL shell. Between 1775 and 

1910 the cubic spline trendline indicates a flat profile with an average Pb/Ca ratio 

of 0.90  10-8 mol/mol ( 0.40  10-8 mol/mol S.D.) (Figure 5; graph 3). Pb/Ca 

increases steeply after 1910 reaching a peak value of 1.01  10-7 mol/mol in 

1979, i.e., there is an eleven-fold increase in the Pb/Ca ratio from pre-1920 levels 

to 1979. The cubic spline trendline indicates a sharp decrease of the Pb/Ca 

values after 1980 down to pre-1930 values of 0.22  10-7 mol/mol after 2000 

(Figure 5; graph 3). 

 

3.3. Helgoland 

 

With a median Pb/Ca ratio of 0.83  10-7 mol/mol the background signal of the 

HELG shell is 30.7 times higher than in the ICEL and 8.6 times higher than in the 

VIRG shell. The Pb/Ca profile of this shell starts off with a peak annual mean of 

1.65  10-7 mol/mol in 1915 (Figure 5; graph 4). Pb/Ca decreases until the late 

1930s and increases after 1940 reaching a peak value of 1.82  10-7 mol/mol in 

1985 (Figure 5; graph 4). This peak value is 1.8 times higher in comparison with 

the peak Pb/Ca value of the VIRG shell in 1979. Starting in the late 1980s, Pb/Ca 

ratios appear to decrease again (Figure 5; graph 4). 
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4. Discussion 

 

The Pb/Ca profiles we observe between 1775 and 2006 vary among the three 

A. islandica specimens from different sites in the North Atlantic indicating location 

specific differences in sources and levels of lead exposure. Although the majority 

of emitted lead is deposited in close vicinity to its site of output (Libes, 1992), the 

metal attaches to fine particles in the atmosphere so that a significant percentage 

is transported over long distances and deposited in the surface water of the 

ocean (Wu and Boyle, 1997). The atmospheric transport of lead is strongly driven 

by large-scale tropospheric transport processes from continents to oceans, which 

can be divided into three main zones of movement of air masses (Risebrough et 

al., 1968). The equatorial easterlies are a broad belt of easterly surface winds at 

low latitudes (between 30°N and 30°S). Westerly surface winds at mid latitudes 

(between 30°N and 60°N and between 30°S and 60°N) are called temperate 

westerlies (Eady, 1957; Schneider, 2006). Outside this range (> 60°N and 60°S) 

surface winds are generally easterly or almost vanishing in high latitudes 

(Schneider, 2006). Due to global wind circulation patterns, the origin and influx of 

anthropogenic lead varies among different latitudes. 

 

4.1. Iceland 

 

Our sampling site near Iceland is located at > 66°N, and thus, just outside the 

zone of westerly surface winds. As air masses from the mid latitudes are hardly 

transported to high latitudes, lead emissions from Europe and the USA generally 

do not reach Iceland.  

 

In addition, currents off the coast of Iceland facilitate constant exchange of water 

masses. The Irminger Current branches off the warm North Atlantic Drift 

enclosing the south, west, and north coast of Iceland (Zhang, 2009). The East 

Iceland Current, on the other hand, passes by the coast of Iceland in southerly 

and south-easterly direction after branching off the cold East Greenland Current 

(Zhang, 2009).  

 

Accordingly, lead concentrations in the ICEL shell are very low in comparison with 

the other two shells in general (Figure 5; graphs 2 to 4). For the same reasons, 

the lead profile of this shell does not reflect the "typical" 1970s/80s lead peak 
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caused by industrial and gasoline lead emissions (Figure 5; graphs 1 and 2).  

 

Instead, the lead peaks in the ICEL shell in the 1840s and around 1890 are most 

likely ascribed to natural influxes of lead into Icelandic coastal waters (Figure 5; 

graph 2). With a total of 205 volcanic eruptions identified for the last 1100 years 

Iceland is an island with exceptionally high volcanic activity (Thordarson and 

Larsen, 2007).  Detailed records indicate an average of 20 to 25 eruptions per 

century including nearly all types of volcanoes (e.g., submarine basalt volcanoes) 

(Thordarson and Larsen, 2007). Previous research documented irregular natural 

augmentation of lead fluxes into the environment as a consequence of great 

volcanic emissions (Hong et al., 1996). 

 

From the above described prevailing oceanographic and geological conditions in 

Iceland we conclude that the lead concentrations we observe in the ICEL shell 

reflect natural influxes of lead into Icelandic waters, for example, due to volcanic 

emissions, rather than large-scale anthropogenic lead emissions transported to 

Iceland from the mid latitudes. 

 

4.2. Virginia (USA) 

 

Among all countries surrounding the North Atlantic Ocean, the USA has been by 

far the prevalent gasoline lead consumer accounting for more than 80% of the 

total consumption prior to 1970, because Europeans and Japanese use smaller 

and more efficient cars (Nriagu, 1990; Wu and Boyle, 1997). 

 

Unlike the sampling location near Iceland, the collection site off the coast of 

Virginia receives US lead emissions which are transported from the continent to 

the Atlantic Ocean by westerly surface winds (as described above) and deposited 

in the ocean's surface waters. This results in a 3.6 times elevated background 

signal in the VIRG shell compared to the ICEL shell (Figure 5; graphs 2 and 3).  

 

Previous studies observed a link between anthropogenic lead emissions and the 

lead content of biogenic carbonate samples collected in North American tropical 

and subtropical waters. Lead profiles measured in sclerosponges (Lazareth et al., 

2000; Swart et al., 2002), corals (Shen and Boyle, 1987), and bivalves (Gillikin et 

al., 2005) from sampling locations at < 35°N  yielded similar lead profiles 
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indicating (1) a limited lead increase prior to the mid-19th century (Lazareth et al., 

2000), followed by (2) a first significant increase in lead concentrations until the 

1920/30s (Lazareth et al., 2000; Shen and Boyle, 1987), and (3) a second even 

larger increase in lead concentrations until the late 1970s (Gillikin et al., 2005; 

Lazareth et al., 2000; Shen and Boyle, 1987; Swart et al., 2002). After the 

1970/80s all authors observe (4) a significant decline in the lead concentration 

(Gillikin et al., 2005; Lazareth et al., 2000; Shen and Boyle, 1987; Swart et al., 

2002). 

 

In comparison with these studies, we observe very similar changes in lead 

concentrations in the VIRG shell after but a slightly different lead profile prior to 

the beginning of the 20th century (Figure 5; graph 3). Unlike Lazareth et al. 

(2000), we observe no significant increase in the lead concentration in our 

sample prior to the beginning of the 20th century (Figure 5; graph 3). The 

increase in the lead concentration observed by Lazareth et al. (2000),  which the 

authors ascribed to increased smelting activity, coincides with the beginning of 

the industrial revolution in the USA (Parker, 2010). In comparison with Europe 

the industrial revolution of the USA started several decades later (Parker, 2010) 

setting off a first increase in lead emissions in the 1840s. As emissions are 

generally transported eastwards, an increase in the lead concentration should be 

seen in the VIRG shell after 1840. The lack of this increase prior to 1910 remains 

unclear but may be due to local effects (e.g., local winds or currents). Besides, 

the signal of the industrial revolution may be more pronounced in tropical and 

subtropical regions, where trade winds import additional aerosols from the 

European continent to the southern North Atlantic (Hamelin et al., 1989). Such 

transport processes may increase the lead signal in tropical and subtropical 

bioarchives.  

 

After the beginning of the 20th century, our lead profile closely matches the trends 

previously observed in corals, sclerosponges, and bivalves with a continuous 

increase in lead concentration after 1910 reaching its peak value in 1979 and a 

sharp decrease thereafter (Figure 5; graph 3).  

 

After the selling of the very first gallon of gasoline enhanced with tetraethyl lead 

in the USA in 1923, the consumption of leaded gasoline increased continuously 

(Nriagu, 1990) reaching peak emissions in the USA in 1972 (EPA, 2000) 
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(Figure 5; graph 1). Assuming a residence time of lead in surface waters of less 

than five years (according to Veron et al. (1987)), the year of maximum lead 

concentration in the VIRG shell (1979) closely matches the point in time of 

maximum US gasoline lead emission (1972). The USA reacted quickly to largely 

rising lead  emissions (Hagner, 2000). In 1970, a federal agency (EPA) was 

created to set national ambient air quality standards and to develop national 

emissions standards for cars, trucks, and buses (EPA, 2000), and in 1975, the 

sale of unleaded gasoline and phase-down in average lead content of gasoline 

became mandatory (Nriagu, 1990). As a consequence, the consumption of 

leaded gasoline sharply declined in the USA after 1975 (Nriagu, 1990) (Figure 5; 

graph 1). Together with the decrease in leaded gasoline consumption levels of 

atmospheric lead declined in urban areas of the USA (Nriagu, 1990), and thus, 

less lead was being transported eastwards and deposited in surface waters of 

the ocean (Figure 5; graphs 1 and 3).  

 

It is consensus that the lead curves of all of the above discussed studies reflect 

primarily the history of leaded gasoline combustion (Figure 5; graph 1). The 

different studies, however, deviate from each other with regard to the year they 

assign to the point in time of maximum lead concentrations (1980: (Gillikin et al., 

2005); 1971: (Shen and Boyle, 1987); 1983: (Lazareth et al., 2000); 1979:  this 

study). In addition, the magnitude of changes of lead concentrations and 

emissions varies among different data sets. Gillikin et al. (2005), for example, 

could not confirm a lead decrease to pre-1970 concentrations which they 

expected to measure in bivalve shells until 2002, whereas we determine pre-

1930 values after 2000 in A. islandica. These differences among data sets 

indicate that the path of lead from its emission into the atmosphere to its 

incorporation into the biogenic carbonate of marine organisms is mediated by 

various parameters, such as by local atmospheric transport processes, water 

circulation processes (e.g., horizontal advection or lateral transport (Libes, 

1992)), differences in the residence time of lead in surface waters (e.g., values 

given by Nozaki et al. (1976), Bacon et al. (1976), and Veron et al. (1987) for 

different locations vary between 1.7 and less than 5 years), or the chemical form 

of lead in water. The latter depends on the prevailing water properties and 

determines the mobility and distribution of lead in the water (Harrison and Laxen, 

1981).  
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Nevertheless, the lead profile we observe in the VIRG shell is clearly driven by 

gasoline lead emissions (Figure 5; graphs 1 and 3), and thus, supports the 

applicability of Pb/Ca analyses of marine bioarchives to reconstruct long-term 

records of gasoline lead emissions. It further extends previous knowledge to 

northern Atlantic regions. 

 

4.3. Helgoland (North Sea; Europe) 

 

The HELG lead profile is much noisier and less clear-shaped than the VIRG 

profile, indicating that besides gasoline lead emissions a variety of local/regional 

factors affect the lead content of this shell (Figure 5; graph 4).  

 

Regrettably, the HELG sample reaches back to 1914 only, i.e., it does not show 

pre-industrial lead concentrations (Figure 5; graph 4). As there are no other 

studies, which analyzed the lead content of marine bioarchives to establish long-

term profiles of lead pollution in the North Sea, no pre-industrial data are 

available at all.  

 

Within the lead profile of the HELG shell the cubic spline trendline indicates two 

maxima of which the second one together with the subsequent decline of the 

lead concentration may be ascribed to the increase and reduction in gasoline 

lead emissions during the second half of the 20th century (Figure 5; graph 4). 

Compared to the VIRG shell the HELG shell reaches its peak concentration six 

years later in 1985 (Figure 5; graphs 3 and 4). This delay as well as the less 

drastic decline of lead in the HELG shell in comparison with the VIRG shell may be 

due to differences in lead regulations in the USA and in Europe.  

 

Regulations to lower the gasoline lead content were less uniform and included 

various delays among European countries in comparison with the USA. While the 

USA reacted quickly, the EU was lagging behind, e.g., by mandating the sale of 

super unleaded gasoline only by the year 1989 and deciding on the exclusive 

usage of unleaded gasoline by the year 2005 (Von Storch et al., 2003). 

Nevertheless, despite differences in the timing and type of regulations (Hagner, 

2000; Nriagu, 1990; Von Storch et al., 2003) the consumption of leaded gasoline, 

and consequently, lead emissions to the atmosphere decreased sharply after the 

mid-1970s both in the USA and in Europe (Nriagu, 1990; Von Storch et al., 
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2003). These changes in gasoline lead emissions are reflected in both the lead 

profile of the VIRG and the HELG shell (Figure 5; graphs 1, 3, and 4), although 

exact points in time (e.g., years of maximum lead concentrations) and 

magnitudes of changes cannot be lined up, firstly due to differences in 

regulations among countries, and secondly, due to various other sources of lead 

and prevailing conditions in the North Sea. 

 

Although Western European countries of the European Community were 

responsible for only for about a fifth of the leaded gasoline consumption of the 

USA at peak usage (Wu and Boyle, 1997), the maximum lead concentration in 

the HELG shell is almost twice as high as in the VIRG shell (Figure 5; graphs 3 

and 4). In addition, the background signal of the HELG shell is 8.6 times higher 

than in the VIRG shell. The comparably high background signal as well as the 

lead peak in 1915 are unlikely to be due to leaded gasoline emissions but due to 

various local factors and local sources of lead.  

 

While the sampling location off the coast of Virginia is located in the open ocean 

with constantly mixing water masses, the North Sea is an enclosed sea with 

partially limited water exchange, and thus, not a homogenous body of water 

(Clark, 2001). Its southeastern part is shallow with mostly less than 50 m water 

depth and slow water exchange with the rest of the North Sea (Clark, 2001). 

Hence, unlike off the coast of Iceland and Virgina, there is no constant exchange 

of water masses in the German Bight, and consequently, the background signal 

of the HELG shell is much higher compared to the ICEL and VIRG shell.  

 

According to Libes (1992) high concentrations of lead have been documented in 

coastal waters next to urban areas. The North Sea is surrounded by densely 

populated and highly industrialized countries. Thus, large amounts of lead are 

being mobilized by anthropogenic activities (e.g., industrial emissions, fossil fuel 

combustion, or vehicular emissions (Harrison and Laxen, 1981)) and reach the 

North Sea via atmospheric deposition. Industrial and sewage effluents as well as 

highway runoff further introduce lead into the environment (Harrison and Laxen, 

1981) either directly or through rivers. Various large rivers like the Rhine, Elbe, 

Weser, Scheldt, Ems, Thames, Trent, Tees, and Tyne transport wastes from 

much of western and central Europe into the North Sea (Clark, 2001). Hence, 
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fluvial discharge constitutes another mayor influx of lead into the North Sea 

besides atmospheric deposition (Hagner, 2002).  

 

Other point sources of lead in the North Sea are dumping of sewage sludge or 

munitions. In the German Bight, dumping of sewage sludge has been forbidden 

since 1981 (Hagner, 2002). Ceased dumping activity reduces the influx of lead 

especially at the dumpsite. Richardson et al. (2001), for example, discussed 

decreasing metal concentration in shells in terms of ceased dumping of sewage 

sludge and industrial waste after the introduction of the "Dumping at Sea Act" in 

1974. Dumping of munitions constitutes additional local sources of lead in the 

North Sea (Liebezeit, 2002). After World War II, a total of 750,000 to 1.5 million 

tons of ammunition were dumped along the German coast by German and allied 

forces (Liebezeit, 2002). Upon contact with seawater munition can corrode and 

release chemical compounds, such as lead as one of the most common metals 

of munitions, into the seawater (Van Ham, 2002) and constitute a significant 

source of lead, e.g., for bivalves living in close proximity. Several of the above-

discussed sources of lead (e.g., dumping) may cause temporary increases in the 

lead concentration of biogenic carbonates as observed in the HELG shell in 1915. 

Others continuously pollute the North Sea (e.g., atmospheric deposition or river 

discharge) causing an elevated background signal of lead in bivalve shells from 

the North Sea.  

 

In conclusion, lead concentrations in the HELG shell are dominantly driven by 

local sources of lead, so that the atmospheric influx of lead due to gasoline lead 

combustion is contained in the overall lead signal but is less conspicuous than in 

the VIRG shell. Yet, A. islandica shells are a useful bioarchive to reconstruct and 

evaluate levels of lead pollution at specific collection sites. 

 

5. Conclusion 

 

From our results we conclude that the lead profiles we obtained from Pb/Ca 

analyses of A. islandica shells record local influxes of lead into the seawater. 

Depending on the prevalent sources of lead at certain locations, the lead profile 

may be predominantly driven by random natural influxes of lead into the water 

(ICEL shell), atmospheric deposition of anthropogenic lead emissions (VIRG shell), 

or by various other sources of lead (HELG shell). Large-scale atmosperhic 
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transport processes as well as prevailing local conditions further determine the 

lead concentration in biogenic carbonates and need to be taken into account for 

the interpretation of lead profiles of bivalve shells. In conclusion, A. islandica 

shells are a suitable bioarchive to reconstruct long-term lead pollution and 

monitor for local levels of lead pollution in order to establish successful 

environmental management policies. Future studies may further consider 

analyzing lead isotope ratios in order to assign elevated lead concentrations to 

specific sources of lead.  
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Abstract 

 

We examine if Ba/Ca and Mn/Ca ratios in shells of the bivalve Arctica islandica 

are indicators of the diatom abundance in the German Bight (North Sea). Our 

results indicate a significant correlation between both ratios and diatom 

abundance, and yet, we observe differences in the annual Ba/Ca (summer peak) 

and Mn/Ca profile (spring and summer peak). While our data support the 

hypothesis that primary production does affect Ba/Ca and Mn/Ca shell ratios, 

both elements are likely coupled to primary production through different 

processes. We propose that barium is passively taken up by diatoms and rapidly 

released again during plankton decomposition. This facilitates the precipitation 

and downward flux of barite that is ingested by the bivalve, and in turn, results in 

increased Ba/Ca shell ratios. This mechanism involves an extended time delay 

(~ 3.5 months) between diatom blooms and Ba/Ca peaks in A. islandica shells, 

as observed in our study. Mn/Ca ratios, on the other hand, seem to instantly 

record any phytoplankton debris reaching the ocean floor. The correlation 

between Mn/Ca shell ratios and diatom abundance appears to be a function of 

the direct influx of manganese to the sediment water interface or of the 

remobilization of manganese from sediments during post-bloom reductive 

conditions. The lack of a consistent correlation between peak amplitudes of 

diatom abundance and element ratios indicates, however, that additional 

processes, e.g., vital effects of bivalves, diatom characteristics, or environmental 

conditions are likely to control element concentrations in bivalve shells.  

 

Keywords: primary production, diatoms, barium, manganese, Arctica islandica, 

North Sea
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1. Introduction 

 

Phytoplankton is a key component of marine ecosystems in terms of carbon 

fixation and oxygen production. Thus, it plays a major role in the global carbon 

cycle, particularly as a vector of carbon transport from atmosphere to deep sea 

deposits (Thébault et al., 2009). Moreover, biomass production through 

phytoplankton photosynthesis constitutes the basis of marine food webs 

(Hoppenrath et al., 2009; Thébault et al., 2009).  Due to its role in the carbon and 

nutrient cycles, information about phytoplankton dynamics is crucial for 

understanding ecological and paleoclimate trends and variability of marine 

ecosystems. The North Sea is of particular relevance owing to its significance to 

European fisheries (Clark, 2001). Besides, the North Sea provides an important 

economic and recreational resource for the surrounding countries (Clark, 2001). 

North Sea waters have followed global trends in temperature and have become 

warmer and more saline over the last century (Franke et al., 2004). These 

changes have altered the succession of phytoplankton in the North Sea, and may 

in turn, affect the entire ecosystem (Wiltshire and Manly, 2004). Thus, information 

about past changes of pelagic primary production is needed for a better 

understanding of the current status and future development of the North Sea.  

 

However, instrumental data on primary production is limited in time and space 

(Thébault et al., 2009). One of the longest aquatic data sets in history is the 

Helgoland Roads time series (Wiltshire and Manly, 2004). This series of regular 

measurements of abiotic and biotic parameters in the German Bight near 

Helgoland includes a continuous (semi-daily) record of diatom abundance since 

1962 (Franke et al., 2004; Wiltshire and Manly, 2004). In order to look further 

back in time, scientists rely on archives of phytoplankton history, particularly on 

sediment records. Such records, however, are not always available and are of 

poor temporal resolution, usually not better than decades. The concentrations of 

specific trace elements in biogenic carbonates (e.g., corals or mollusks) are 

considered to provide an alternative approximation of past phytoplankton 

conditions with potentially high temporal resolution. 

 

Barium and manganese concentrations in sediments and bioarchives have both 

been suggested to be tightly linked to ocean primary production (Dymond et al., 

1992; Vander Putten et al., 2000). Several studies indicate an empirical link 
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between barium and manganese concentrations in mollusk shells and 

phytoplankton abundance (Lazareth et al., 2003; Thébault et al., 2009; Vander 

Putten et al., 2000). The most frequently discussed hypothesis to explain Ba/Ca 

peaks in bivalve shells suggests that peak concentrations of barium in bivalve 

shells result from sudden fluxes of barite to the sediment water interface (SWI) as 

a consequence of phytoplankton blooms (Stecher et al., 1996). Barium ions can 

passively diffuse into diatom cells through the transporters of other ions (e.g., 

Ca2+) (Sternberg et al., 2005). Consequently, dissolved barium is rapidly released 

during plankton decomposition following bloom events (Ganeshram et al., 2003). 

A small fraction of the released barium is precipitated as barite in supersaturated 

microenvironments (Ganeshram et al., 2003), bound to organic matter in the 

water column, and then transported to the SWI via sinking particles (Ganeshram 

et al., 2003). Bivalves living at the SWI subsequently filter these enriched barium 

particulates and this barium becomes bioavailable as the particles pass through 

the digestive process. While this mechanism may explain the link between 

phytoplankton abundance and the formation of barium peaks in bivalve shells, 

the exact pathway for barium incorporation into bivalve shells remains unclear. 

Thus, although some studies have suggested a link between the barium 

concentration of biogenic carbonates and phytoplankton blooms (Lazareth et al., 

2003; Stecher et al., 1996; Thébault et al., 2009; Vander Putten et al., 2000), 

other authors have argued that a satisfactory explanation for the observed 

barium peaks has yet to be found (Gillikin et al., 2008; Sinclair, 2005). 

 

Manganese is also linked to phytoplankton abundance, and plankton blooms may 

increase suspended particulate manganese in several ways. Algae can take up 

Mn2+ ions directly (Sunda and Huntsman, 1985), removing the element from 

ambient seawater and supporting a downward flux of manganese during post-

bloom phytoplankton decay. In addition, certain types of phytoplankton (e.g., 

Phaeocystis spp.) may catalyze the oxidation of manganese (Vander Putten et 

al., 2000) and enhance the formation of insoluble MnO2. Adsorption of 

manganese onto organic particles originating from phytoplankton may further 

enhance the downward flux to the SWI (Roitz et al., 2002). Finally, manganese is 

a redox-sensitive element (Ouddane et al., 1997) that can be remobilized from 

the sediments during anoxic conditions (Gingele and Kasten, 1994) following 

phytoplankton blooms (Schoemann et al., 1998). This process would similarly 

increase the availability of manganese for uptake by the bivalve and 
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incorporation into the shell carbonate. Previous studies have found that 

manganese concentrations in bivalve shells are positively correlated with primary 

production (Vander Putten et al., 2000), possibly via freshwater influx causing 

subsequent phytoplankton blooms (Lazareth et al., 2003). Finally, Barats et 

al. (2008) suggested that bivalves take up manganese-rich particles, although 

they could not confirm that direct uptake of particulate manganese was driving 

the incorporation of manganese into the shell during the enrichment period. 

 

In this study, we examine Ba/Ca and Mn/Ca ratios of Arctica islandica shells 

collected off the island of Helgoland as indicators of the diatom abundance in the 

German Bight (North Sea). In order to examine possible drivers of Ba/Ca and 

Mn/Ca changes, we correlate both ratios with the diatom abundance of the 

Helgoland Roads time series (Wiltshire and Dürselen, 2004) as well as with the 

freshwater discharge of the river Elbe, the most important freshwater input of the 

German Bight (Hickel, 1998).  

 

2. Material and methods 

 

2.1. Shell samples and environmental data 

 

Three A. islandica specimens (A, B, C) were collected alive in the North Sea near 

Helgoland (54°09.02'N, 7°47.06'E) at 40 meters water depth in 2005 (Figure 1).  

 

 

Figure 1 Map showing the sampling location of three 

Arctica islandica specimens in the German Bight 

(North Sea) near Helgoland. 



Publication IV 

 

94 
 

The diatom data we use in our study is part of the Helgoland Roads time series, 

a series of regular measurements and water sampling (on every workday) at the 

Cable buoy site (54°11.3'N, 7°54.0'E) between the two islands at Helgoland at 

less than 10 meters water depth (Wiltshire and Dürselen, 2004).  

 

2.2. Sample preparation 

 

We selected the right valve of each specimen, cleaned the outside of the valves 

in an ultrasonic bath filled with reverse osmosis water (ROW, conductivity 

< 0.067 μS) for 15 seconds and placed the samples under the fume hood to dry. 

We then covered each valve with a thin layer of polyvinyl alcohol (by Sigma 

Aldrich; av.mol.wt. 70,000 - 100,000) (Carroll et al., 2009) to prevent the epoxy 

resin from entering the shell. Once the polyvinyl alcohol was cured, we 

embedded each valve in three layers of stained blue epoxy resin (EpoxyCure by 

Buehler) (Carroll et al., 2009). The transparent resin had been dyed with Blue 

Pigment for Castable Mounts (Buehler) (W. Ambrose Jr., pers. com.) to visually 

verify that the resin did not penetrate into the shells. Next, we cut a three 

millimeter thick section along the line of strongest growth (LSG) from each valve 

using a low speed Buehler Isomet saw equipped with a diamond blade 

(Figure 2).  

 

 

Figure 2 Line of strongest growth (= LSG; 

grey line) across the right valve of an 

Arctica islandica shell. 

 

We mounted each section on a glass slide with stained blue epoxy resin and 

ground it on a two-speed grinder polisher (Buehler Alpha wheels) with different 

sandpapers (P1200, P2400, and P4000 grit). Finally, we again cleaned the 

samples by gentle brushing in ROW before placing them in an ultrasonic bath for 

15 seconds. 
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2.3. LA-ICP-MS measurements 

 

We used a Thermo Finnigan Element2 single collector inductively coupled 

plasma-mass spectrometer (ICP-MS) connected to New Wave Research UP 

193 nm excimer laser ablation system for element analyses of the shell 

carbonate. A large-format laser ablation cell was used to accommodate entire 

shell sections without cutting the samples into smaller pieces. We determined the 

Ba/Ca (138Ba and 48Ca) and Mn/Ca (55Mn and 48Ca) ratios along the midline of the 

outer shell section using a 50 µm laser beam size, 100 µm distance between 

spots, frequency of 5 Hz, and 100% output. A total number of 325 spots were 

measured per shell (Figure 3).  

 

 

Figure 3 Cross section of an Arctica islandica shell illustrating (A) 

the annual growth lines and (B) a high-resolution image showing 

the 50 µm LA-ICP-MS laser spots along the midline of the outer 

shell section across two growth lines. 

 

A helium gas stream transported the ablated material to a dual-inlet quartz spray 

chamber where the sample was mixed with a 2% HNO3 aerosol supplied by a 

self-aspirating PFA.  

 

Along with the sample spots we analyzed an instrumental blank (2% HNO3) and 

two standards. We interpolated linearly between adjacent blanks to obtain a 

blank value for the correction of each sample spot. To correct for instrumental 

mass bias, we used a certified reference material (CRM) consisting of powdered 

otoliths (FEBS-1; Sturgeon et al., 2005) dissolved and diluted in 2% HNO3 to a 

final Ca concentration of 40 µg/g. We calculated instrumental mass bias from the 
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published Me/Ca reference values for the FEBS-1 standard, interpolated 

correction factors between adjacent measurements of the FEBS-1 reference 

material, and applied the correction factors to the blank corrected element ratios. 

External precision (relative standard deviation, RSD) for Ba/Ca was calculated by 

running a second otolith CRM (Yoshinaga et al., 2000) with a certified Ba/Ca ratio 

of 2.17 µmol/mol, diluted to a final Ca concentration of 40 µg/g as an unknown. 

We estimated external precision for Mn/Ca ratios from the RSD value for the 

uncorrected ratios measured in the FEBS-1 standard because Yoshinaga et al. 

(2000) did not report a certified value for manganese in their CRM.  The resulting 

RSDs were 2% and < 5% for Ba/Ca and Mn/Ca, respectively. 

 

2.4. Dating the laser spots 

  

Upon completion of all ICP-MS measurements, we polished the samples with 

polycrystalline diamond suspensions (METADI SUPREME) (1 µm, 0.1 µm, and 

0.05 µm) on a two-speed grinder polisher (Buehler Alpha wheels) for maximum 

smoothness of the surface and rinsed them thoroughly with deionized water. The 

shell cuts display a prominent pattern of annual growth increments separated by 

distinct growth lines that represent the seasonal halt in shell growth in fall/winter 

(Schöne et al., 2004). We digitized the samples under a binocular microscope 

(Olympus SZX12) that was connected to a digital camera (Olympus DP72, 

4140 x 3096 pixels maximum, Software analySIS DOCU FIVE).  

 

We assigned calendar years to each annual shell increment using the annually 

formed growth lines. Next, we determined the exact location of each laser spot 

within the corresponding increment by measuring its distance to the adjacent 

growth lines. We then allocated each spot location within an increment an 

approximate point in time (= DOY; day of year) during the yearly growth period of 

the shells from February through September (maximum of 240 expected growth 

days) (Schöne et al., 2004). For this we derived an approximate intra-annual 

growth function (x = DOY; y = cumulative µm) from the micro-increment data 

presented in Schöne et al. (2004) using a cubic spline trendline (λ = 1300). We 

used this growth function to calculate the daily increment width for each day 

during the growth period, added all values up to the total increment width, and 

finally, calculated the cumulative increment width for each day. Upon plotting the 

cumulative increment width (= x) against the DOY (= y) we fit a 2nd-degree 
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polynomial function to our data with all terms being significant at a level of < 0.05 

(F ratio = 527511.7; P value < 0.0001*; DF = 2) (equation 1): 

 

DOY = 57.642694 + 241.81524  x - 61.276274  (x - 0.46541)2   (1) 

 

DOY = day of year;  x = cumulative increment width (µm)  

 

Finally, we used the derived polynomial function to convert each laser spot 

location (cumulative µm) within an annual increment into a decimal DOY (e.g., 

261.06) and in the next step into a decimal date (e.g., 1990.72). 

 

2.5. Statistical analyses 

 

We first tested for a significant correlation between the Ba/Ca and Mn/Ca as well 

as between the Ba/Ca and the Sr/Ca ratios of all shells using a Kendall’s Tau. 

Next, we tested for a significant correlation between Ba/Ca (and Mn/Ca) ratios 

within the common time window of two shells (shell A and B as well as shell A 

and C). After a decimal date had been assigned to each laser spot on shell A, we 

interpolated linearly between adjacent measurements in shell B in order to 

calculate for each spot on shell A the corresponding Ba/Ca (and Mn/Ca) ratios of 

shell B. We then used a Kendall’s Tau to examine significant correlations 

between the Ba/Ca (and Mn/Ca) ratios of shell A and B. The same calculations 

were performed for shell A and C. 

 

In order to examine possible mechanisms generating Ba/Ca (and Mn/Ca) 

variability in the shells, we tested for significant correlations between the Ba/Ca 

(and Mn/Ca) ratios of the shells and the diatom abundance (= diatom 

concentration of the seawater in cells/l) as well as the rate of freshwater 

discharge of the river Elbe. For these analyses we used the daily diatom 

abundance (in cells/l) of the Helgoland Roads time series (Wiltshire and 

Dürselen, 2004) and the daily mean Elbe discharge data measured at the 

gauging station near Neu-Darchau (in m3s-1) provided by Engel (2002). For both 

data sets we averaged the daily values over 30 (and 60) days prior to each point 

in time of element analyses in the shells. We then used a Kendall’s Tau to test for 

a significant correlation between the element ratios of the shells and the 

corresponding mean diatom abundances or mean Elbe rates of discharge. 
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To visualize the "typical" annual pattern in Ba/Ca and Mn/Ca, we removed the 

linear trend in the Ba/Ca data of each shell where necessary, removed the upper 

5% and lower 10% of the data in order to remove outliers as well as the 

background signal and normalized the data to minimum = 0 and maximum = 1. 

The normalized Ba/Ca ratios of all shells were plotted against decimal time 

between January and December including a cubic line trendline in order to depict 

the typical Ba/Ca profile throughout the year. The Mn/Ca and diatom data were 

transformed and visualized the same way. The "typical" annual pattern of 

freshwater discharge of the river Elbe was obtained from Epplé (2004). 

 

3. Results 

 

Our analyses indicate a significant correlation between the Ba/Ca and Mn/Ca 

(Kendall’s  = 0.3324; P value < 0.0001*) as well as between the Ba/Ca and the 

Sr/Ca (Kendall’s  = 0.1286; P value < 0.0001*) ratios of all shells.  

 

We determine consistent peaks in both Ba/Ca and Mn/Ca profiles among the 

three A. islandica shells between 1970 and 1994 (Figures 4 and 5).  

 

 

Figure 4 Ba/Ca profiles (top graph: in mol/mol; bottom graph: in log(mol/mol); determined by LA-

ICP-MS with an external precision of 2% in the common time window 1970 – 1994 of three Arctica 

islandica shells (A, B, C) collected in the North Sea off the coast of Helgoland. Results of statistical 

analyses (Kendall´s Tau test) to examine significant correlations between Ba/Ca ratios within the 

common time window of two shells (shell A and B as well as shell A and C) are displayed in the text 

box on the upper right hand side. 
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Figure 5 Mn/Ca profiles (in mol/mol; determined by LA-ICP-MS with an external precision of < 5% 

in the common time window 1970 – 1994 of three Arctica islandica shells (A, B, C) collected in the 

North Sea off the coast of Helgoland. Results of statistical analyses (Kendall´s Tau test) to examine 

significant correlations between Mn/Ca ratios within the common time window of two shells (shell A 

and B as well as shell A and C) are displayed in the text box on the upper right hand side. 

 

This observation is supported by statistical analyses that indicate a significant 

correlation for both Ba/Ca (Kendall’s  = 0.3298; P value < 0.0001*) and Mn/Ca 

(Kendall’s  = 0.4302; P value < 0.0001*) ratios between shells A and B and for 

Mn/Ca ratios (Kendall’s  = 0.2534; P value = 0.0006*) between shells A and C. 

The Ba/Ca ratios of shell A and C do not correlate significantly (Kendall’s  = 

0.1050; P value = 0.1531). Due to the consistency of the elemental profiles 

among shells we compiled the Ba/Ca (and Mn/Ca) ratios of all shells together 

with the corresponding decimal times for further analyses.  

 

Peaks of the monthly mean diatom abundance and monthly mean rate of 

freshwater discharge of the river Elbe between 1970 and 1994 do not coincide 

with peaks in Ba/Ca or Mn/Ca (Figure 6; next page).  

 

Despite the lack of correlation between peak amplitudes our rank correlation 

tests (Kendall’s Tau) reveal that both the Ba/Ca and the Mn/Ca ratios of the 

shells (including and excluding shell C) are significantly correlated with diatom 

abundance averaged over 30 (and 60) days (Table 1). The same pattern is 

observed for Mn/Ca ratios and the Elbe discharge rates averaged over 30 (and 

60) days (including and excluding shell C) (Table 1). In the case of barium, 

merely correlations between the Ba/Ca ratios and the Elbe discharge rates 

averaged over 60 days (including and excluding shell C) are not significant 

(Table 1). 
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Figure 6 Ba/Ca and Mn/Ca ratios measured in three Arctica islandica shells plotted together with 

the monthly mean diatom abundance and Elbe discharge between 1970 and 1994. Graphs 1 and 2: 

Ba/Ca and Mn/Ca profiles (in mol/mol; determined by LA-ICP-MS with an external precision of 2% 

and < 5%, respectively) of three A. islandica shells (A, B, C) upon collection in the North Sea off the 

coast of Helgoland. Graph 3: Monthly mean diatom abundance (in cells/liter) measured in the North 

Sea off the coast of Helgoland as part of the Helgoland Roads time series (Wiltshire and Dürselen, 

2004). Graph 4: Monthly mean freshwater discharge of the river Elbe (in m
3
s

-1
) into the North Sea 

(Engel, 2002). Correlations between the Ba/Ca (and Mn/Ca) ratios of the shells and the diatom 

abundance as well as the Elbe discharge are summarized in Table 1. 
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Table 1 Correlations between the Me/Ca (Ba/Ca and Mn/Ca) ratios of the sample shells and the 

diatom abundance (in cells/liter) averaged over 30 (and 60) days as well as the Elbe discharge 

(in m
3
s

-1
) averaged over 30 (and 60) days 

 Ba/Ca Mn/Ca 

Correlation between the shell Me/Ca ratios and 
Kendall’s 

 

P  
value 

Kendall’s 

 

P  
value 

the diatom abundance averaged over 30 days 
1
 0.2203 < .0001

*
 0.2261 < .0001

*
 

the diatom abundance averaged over 30 days 
2
 0.2313 < .0001

*
 0.2167 < .0001

*
 

the diatom abundance averaged over 60 days 
1
  0.2272 < .0001

*
 0.2248 < .0001

*
 

the diatom abundance averaged over 60 days 
2
  0.2591 < .0001

*
 0.2002 < .0001

*
 

the Elbe discharge averaged over 30 days 
1
 -0.0673 0.0017

*
 -0.1068 < .0001

*
 

the Elbe discharge averaged over 30 days 
2
  -0.0573 0.0290

*
 -0.1033 < .0001

*
 

the Elbe discharge averaged over 60 days 
1
 -0.0326 0.1278 -0.0763 0.0004

*
 

the Elbe discharge averaged over 60 days 
2
 -0.0346 0.1878 -0.0783 0.0029

*
 

1
 including all shells; 

2
 including shell A and B only; * significant at  = 0.05 

 

Analysis of "typical" annual variability in Ba/Ca, Mn/Ca, and diatom profiles 

reveals a bimodal trend for Mn/Ca and diatom profiles, and a unimodal trend of 

Ba/Ca (Figures 7 to 9).  

 

 

Figure 7 Typical annual (J = January to D = December) Ba/Ca 

profile in Arctica islandica off the coast of Helgoland. All data points 

measured in the three shells are projected on one calendar after 

detrending (removal of linear trends, where necessary), filtering 

(removal of the upper 5% and lower 10% of the data), and 

normalization (minimum = 0; maximum = 1) of the data. 

Superimposed are the corresponding cubic spline trendline 

(λ = 0.0045) and a histogram of the Ba/Ca data. 
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Figure 8 Typical annual (J = January to D = December) Mn/Ca 

profile in Arctica islandica off the coast of Helgoland. All data points 

measured in the three shells are projected on one calendar after 

detrending (removal of linear trends, where necessary), filtering 

(removal of the upper 5% and lower 10% of the data), and 

normalization (minimum = 0; maximum = 1) of the data. 

Superimposed are the corresponding cubic spline trendline 

(λ = 0.0045) and a histogram of the Mn/Ca data. 

 

 

Figure 9 Typical annual (J = January to D = December) profile of 
the diatom abundance measured off the coast of Helgoland as part 
of the Helgoland Roads time series (Wiltshire and Dürselen, 2004). 
All data points are projected on one calendar after filtering (removal 
of the upper 5% and lower 10% of the data) and normalization 
(minimum = 0; maximum = 1) of the data. Superimposed are the 
corresponding cubic spline trendline (λ = 0.025) and a histogram of 
the diatom data. 
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Cubic spline trendlines indicate spring and summer peaks during the year for 

Mn/Ca and diatoms, and a summer peak for Ba/Ca. 

 

4. Discussion  

 

Vander Putten et al. (2000) proposed that barium and manganese incorporation 

into bivalve shells are driven by similar processes such as phytoplankton blooms 

inducing increases in particulate barium and manganese concentrations. In this 

study, however, we find differences in the typical Ba/Ca and Mn/Ca profiles over 

the course of the year (Figures 7 and 8). In comparison with the typical Mn/Ca 

profile, which contains one distinct peak at the end of May and another weaker 

peak in August, the typical Ba/Ca profile displays only the August peak. Our 

results, thus, indicate that different processes are determining barium and 

manganese uptake in A. islandica shells.  

 

4.1. Barium 

 

The Ba/Ca profiles of the three A. islandica shells consist of a flat background 

with sharp peaks (Figure 4). The same pattern was observed in A. islandica 

shells by Toland et al. (2000), and in other bivalves by a number of researchers 

(Mytilus edulis (Gillikin et al., 2006; Vander Putten et al., 2000); Pecten maximus 

(Barats et al., 2009); Mercenaria mercenaria and Spisula solidissima (Stecher et 

al., 1996); Comptopallium radula (Thébault et al., 2009)). However, while some 

authors observed maximum barium concentrations in spring (Gillikin et al., 2006; 

Vander Putten et al., 2000), others detected two Ba/Ca peaks in early and late 

summer (Barats et al., 2009). Our analyses reveal maximum Ba/Ca values 

typically occurring once a year in summer (August) in the waters off Helgoland. 

Differences in the timing of Ba/Ca peaks among locations may either be due to 

inter-specific differences in the processes determining elemental uptake (e.g., 

growth kinetics, reproductive cycles, etc.) or due to differing environmental 

conditions (e.g., timing and magnitude of diatom blooms, freshwater input, etc.) 

at different sampling sites.  

 

In compliance with previous findings (Gillikin et al., 2008; Vander Putten et al., 

2000) we determine a significant correlation between the Ba/Ca profiles of 

sample A and B (Figure 4). This high reproducibility indicates that the barium 
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content of bivalve shells is controlled by environmental factors (Thébault et al., 

2009). We determine no such correlation between the Ba/Ca ratios of shell A and 

C (Figure 4). Uncertainties in dating the elemental record or regional 

environmental differences cannot explain the lack of correlation due to the fact 

that, unlike the Ba/Ca ratios, the Mn/Ca ratios of shell A and C correlate 

significantly (Figure 5). For this reason, we suggest that the Ba/Ca content of 

A. islandica shells is not exclusively environmentally controlled.  

 

A number of hypotheses have been postulated to explain Ba/Ca peaks in bivalve 

shells. Gillikin et al. (2006) suggested that Ba/Ca peaks may be related to an 

increase in shell organic matter content. However, barium ions generally 

substitute for Ca in the aragonite lattices of bivalve shells (Takesue et al., 2008), 

and thus, a link between shell organic content and Ba/Ca seems unlikely in A. 

islandica. The authors further hypothesized that Ba/Ca peaks may result from 

remobilization of barium from tissues during the spawning period (Gillikin et al., 

2006). We disregard this hypothesis, since A. islandica spawning occurs 

approximately between early September and mid-November (Schöne et al., 

2005), and thus, after the barium maximum in August. Besides, there is no 

known physiological function of barium (Sternberg et al., 2005) to explain the 

necessity to remobilize barium from tissues during spawning. Finally, this theory 

would render reproducibility among specimens highly unlikely (Gillikin et al., 

2008). Variability in seawater Ba/Ca (Gillikin et al., 2006) as well as changes in 

fluvial barium inputs (Thébault et al., 2009) have been ruled out as possible 

causes of such large Ba/Ca shell peaks. Previous studies, on the other hand, 

observed a link between the barium content of shells and increased freshwater 

input, e.g., after periods of heavy rainfall (Lazareth et al., 2003) or from rivers 

(Epplé, 2004). They suggested that freshwater flows deliver nutrients to coastal 

waters that facilitate phytoplankton blooms, and thus, enhanced vertical flux of 

barium to the SWI.  Although we observe a significant correlation between the 

Ba/Ca ratios and the Elbe discharge rates (averaged over 30 days; Table 1), 

there is a lack of correlation between Elbe discharge and Ba/Ca peak amplitudes 

(Figure 6). In addition, the time period of maximum Elbe discharge occurs in 

spring (Lenhart et al., 1996 fide Epplé, 2004), while maximum Ba/Ca ratios of A. 

islandica shells occur in summer (Figure 7).  Finally, the limiting factors of 

phytoplankton abundance in the North Sea in spring are light and stratification 
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but not nutrients (Hoppenrath et al., 2009). Hence, Elbe discharge may influence 

but does not necessarily set off the spring bloom. 

 

Another explanation for the annual barium profile of the shells (Figure 7) is the 

effect of kinetic growth rate on the trace element composition of bivalve shells as 

mentioned by Gillikin et al. (2006). Sr2+ discrimination in bivalve shells may occur 

during shell crystallization (Gillikin et al., 2005) or through ion channels. Gillikin et 

al. (2005) previously demonstrated a significant positive correlation between the 

Sr/Ca ratios and the growth rate of Saxidomus giganteus shells. The same may 

apply to other divalent ions, such as barium, that are incorporated into the 

aragonite crystal lattice. Carre et al. (2006), for example, showed that in certain 

species (Mesodesma donacium and Chione subrugosa) crystal growth rate can 

explain up to 44% of the Ba/Ca variations in their sample shells. The assumption 

that growth rate may strongly influence the barium concentration of A. islandica 

shells is supported by the significant correlation between the Ba/Ca and Sr/Ca 

ratios. In addition, the maximum barium concentrations coincide with the period 

of maximum growth during summer (Schöne et al., 2004). 

 

Finally, the most frequently discussed hypothesis related peak concentrations of 

barium in bivalve shells with sudden fluxes of barite to the SWI as a 

consequence of phytoplankton blooms (Stecher et al., 1996). Several 

mechanisms have been proposed to explain the transformation of dissolved 

barium into a particulate form that is related to phytoplankton abundance 

including (i) active barite precipitation by plankton, (ii) incorporation of barium into 

siliceous plankton skeletons, and (iii) the formation of barite in microenvironments 

enriched with sulphate from decaying organic matter (Bishop, 1988).  Given that 

marine phytoplankton neither actively form nor contain any barite crystals 

(Bishop, 1988), we may reject the first hypothesis. Similarly, the majority of 

barium associated with total suspended particulates does not originate from 

siliceous frustules or calcareous tests (Fisher et al., 1991), thereby rendering the 

second hypothesis unlikely. However, previous findings support the suggestion 

that barite is formed in microenvironments that are enriched with sulphate from 

decaying organic matter (Bishop, 1988). Plankton decomposition in bloom events 

is accompagnied by the rapid release of dissolved barium due to cell lyses or 

organic matter decay (Ganeshram et al., 2003). The mayority of barium returns 

into the dissolved phase. A small fraction, however, is precipitated as barite in 
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supersaturated microenvironments resulting from rapid barium release 

(Ganeshram et al., 2003). Next, barites and barium are bound to organic matter 

and removed from the water column to the SWI via sinking particles (Ganeshram 

et al., 2003).These particles enriched in barium can then be ingested by bivalves 

living at the SWI (Barats et al., 2009). Although we find a significant correlation 

between diatom abundance in the German Bight and the barium content of 

A. islandica shells (Table 1), the annual Ba/Ca profile does not reflect the 

plankton spring bloom but shows only one summer peak (Figures 7 and 9). 

Based on these observations, we propose an alternative hypothesis for the 

formation of Ba/Ca peaks in A. islandica shells. We suggest that the maximum 

barium concentration in summer may be ascribed to increased barite availability 

approximately three to four months after the diatom spring bloom. The summer 

diatom bloom would cause a second increase in barite in winter that coincides 

with the winter growth inhibition (mid-December to mid-February) (Schöne et al., 

2005) of A. islandica and would not be recorded by the shell.  

 

This theory is supported by a previous study that determined an approximate 

30% increase in the number of barite crystals after ten weeks of phytoplankton 

decay under laboratory conditions. Thus, a variety of biological factors (e.g., 

trophic processing, fecal-pellet packaging, or particle aggregation) may mediate 

the barite precipitation in supersaturated microenvironments, although their 

specific function has yet to be determined (Ganeshram et al., 2003). Even 

catalytic surfaces (Ganeshram et al., 2003), such as diatom frustules, may be 

necessary in order to supply a suitable substrate for barite formation (Bishop, 

1988). Barite formation following natural diatom blooms may be even more 

variable owing to the intrinsic variability of the ambient environmental conditions. 

Known and yet unknown factors may affect the migration of barium from the 

dissolved phase until incorporation into A. islandica shells, which we suggest 

may take up three to four months under natural conditions. 

 

Our hypothesis explains the time lag between the diatom and the Ba/Ca peak but 

not the lack in peak amplitude correlation (Figure 6). The same discrepancy was 

observed by Gillikin et al. (2006) between shell Ba/Ca and Chl a peaks. We 

presume that this lack of correlation is due to different diatom species containing 

different amounts of barium and blooming at different times during the year. As a 
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result, Ba/Ca – bloom correlations may be species specific as previously 

proposed by Vander Putten et al. (2000).  

 

4.2. Manganese 

 

In accordance with previous findings (Barats et al., 2008) we observe a high 

degree of synchronity of Mn/Ca profiles among specimens, again suggesting an 

external driver to govern the manganese concentration of these shells. In 

addition, the Ba/Ca and Mn/Ca ratios of our sample shells correlate significantly. 

Correlations between the latter two element ratios previously lead to the 

conclusion that Mn/Ca and Ba/Ca shell peaks may be driven by similar 

processes, such as increases in particulate concentrations due to phytoplankton 

blooms (Lazareth et al., 2003; Vander Putten et al., 2000). Basically, we agree 

with this hypothesis, although we suggest that Mn/Ca ratios are coupled to 

phytoplankton dynamics through different processes. 

 

Several hypotheses have been postulated to explain the occurrence of seasonal 

Mn/Ca peaks in bivalve shells. Langlet et al. (2006), for example, suggested that 

water temperature together with abiotic and biotic parameters may govern Mn2+ 

bioavailability through biogeochemical processes. In addition, these factors may 

control biomineralization, and thus, Mn2+ uptake by Crassostrea gigas (Langlet et 

al., 2006). Other studies contradicted these findings and concluded that neither 

seawater temperature nor growth rate significantly influence the manganese 

content of bivalve shells (Carre et al., 2006; Freitas et al., 2006). While both 

temperature and growth rate of A. islandica reach their maximum in summer 

(Schöne et al., 2004), we observe two manganese maxima with the spring peak 

being more pronounced than the summer peak. Accordingly, temperature and 

growth rate may influence but are likely not the primary driver of the manganese 

uptake in A. islandica shells. Manganese influx from freshwater discharge has 

been proposed to correlate with manganese shell concentrations (Barats et al., 

2008). We observe a significant correlation between the Mn/Ca ratios and the 

Elbe discharge rates (Table 1), which indicates that riverine input may affect the 

Mn/Ca ratios of A. islandica shells in the North Sea. In summer, however, Elbe 

discharge decreases, and yet, we detect another Mn/Ca maximum in August. 

Thus, additional sources other than riverine input may govern manganese shell 

concentrations in late summer (Barats et al., 2008). Previous studies suggest a 



Publication IV 

 

108 
 

link between Mn/Ca shell ratios and seasonal changes in ocean primary 

production (Vander Putten et al., 2000) through consumption of manganese-rich 

particles (Barats et al., 2008). An increase in suspended particulate manganese 

may result from several processes. First, algae have the ability to take up 

manganese into their cells (Sunda and Huntsman, 1985), because unlike barium, 

manganese is an essential trace element for phytoplankton (Roitz et al., 2002). 

That way, algae may promote the vertical flux of manganese to the SWI during 

post-bloom conditions. Second, certain phytoplankton (e.g., Phaeocystis spp.) 

may catalyze manganese oxidation (Vander Putten et al., 2000), thus, enhancing 

the formation of insoluble MnO2. One of these species, Phaeocystis pouchetii, 

occurs in the southern North Sea and often constitutes the most significant part 

of the phytoplankton community in spring (Alderkamp et al., 2006). Finally, 

manganese is a redox-sensitive element (Ouddane et al., 1997) and can be 

remobilized from the sediment under anoxic conditions (Gingele and Kasten, 

1994). Phytoplankton produce particulate organic matter, which is degraded by 

heterotrophic organisms in the water column and after sedimentation in the SWI, 

where these oxygen consuming processes may enhance anoxic conditions 

(Schoemann et al., 1998). Thus, post-bloom reductive conditions may increase 

the availability of manganese for uptake by bivalves living at the SWI. We 

observe a significant correlation between diatom abundance in the German Bight 

and the manganese content of A. islandica shells (Table1). Both the annual 

diatom (Figure 9) and the annual Mn/Ca profile (Figure 8) reveal a spring and 

summer peak, which coincide in time, and thus, provide further evidence for a 

link between diatom abundance and shell chemistry.  

 

Due to these findings we conclude that in the German Bight diatom abundance is 

a significant driver of the manganese concentrations in A. islandica shells. 

Discrepancies with previous studies (Barats et al., 2008; Freitas et al., 2006), 

who could not confirm this link, may have been hampered by variable water 

properties (e.g., temperature, oxygen availability, etc.) at the different sampling 

sites or inter-species differences (as mentioned above for barium). Although 

manganese concentrations in A. islandica shells seem to be linked to primary 

production, there is a lack of correlation between peak amplitudes of 

phytoplankton abundance and Mn/Ca ratios (Figure 6). This may be due to vital 

effects (e.g., organic matter content of the shells) or other parameters (e.g., Elbe 

discharge) exerting minor but no negligible influence on the shell chemistry.  
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5. Conclusion 

 

Based on our results, we concur with Vander Putten et al. (2000) and Lazareth et 

al. (2003) that the manganese and barium content of bivalve shells is related at 

least to some extent with phytoplankton dynamics. We propose, however, that 

both elements are coupled to phytoplankton abundance through different 

processes.  Barium is linked to phytoplankton abundance (mainly diatoms) 

through barite precipitation. The latter process is controlled by the availability of 

microenvironments, which in turn, depends on the properties of the surrounding 

water masses. Thus, there may be an extended time delay of up to three to four 

months between the occurrence of diatom blooms and Ba/Ca peaks in 

A. islandica shells. Manganese, on the other hand, seems to record any 

phytoplankton (diatom and flagellate) debris falling to the bottom of the ocean. 

The correlation between Mn/Ca shell ratios and diatom abundance occurs 

through direct influx of manganese to the SWI (e.g., due to catalysis of 

manganese oxidation or manganese adsorption onto organic particles) or 

through remobilization of manganese from sediments during post-bloom 

reductive conditions. However, the lack of correlation between diatom abundance 

and Ba/Ca, along with Mn/Ca peak amplitudes, indicates that additional 

processes exert some control on the composition of bivalve shells. Both vital 

effects (e.g., growth kinetics or organic matter shell content) of bivalves and 

diatom characteristics (e.g., species specific abilities to accumulate or adsorb 

trace elements), along with ambient environmental conditions are clearly likely to 

influence A. islandica shell chemistry. 
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1. Introduction 

 

Reconstruction of environmental history from trace element to calcium ratios 

(Me/Ca; Me stands for divalent metal ions like Mg, Mn, Sr, and Ba which can be 

substituted for Ca in the calcium carbonate) of bivalve shells is based on the 

assumption that the trace element composition of the shell layers represents the 

ambient environmental conditions at the time of carbonate formation, and is thus, 

consistent within contemporaneously deposited material.  

 

However, previous studies including calcitic and aragonitic shells indicate that the 

distribution of trace elements within shell material deposited at the same time can 

be heterogeneous (Lazareth et al., 2011; and references therein). Freitas et al. 

(2009) reported highly variable Mg/Ca, Sr/Ca, and Mn/Ca ratios within 

contemporaneously deposited growth layers of calcitic shells (Mytilus edulis and 

Pecten maximus). The shell carbonate had been deposited from the same 

extrapallial fluid (EPF), though at different locations. Hence, the authors 

attributed the observed variability to small scale processes controlling element 

incorporation into the shell at the shell crystal-solution interface (Freitas et al., 

2009). Besides, Carré et al. (2006) found relative Sr/Ca deviations along 

individual growth lines of aragonitic shells (e.g., Chione subrugosa) of up to 28%, 

possibly due to microstructural changes within the sample material. In addition, 

Foster et al. (2009; 2008) analyzed Sr/Ca and Mg/Ca changes in aragonitic 

Arctica islandica shells. In both studies, the authors observed a decrease of the 

element ratios with increasing distance from the periostracum, which they 

ascribed to crystal growth effects or EPF heterogeneity. Unlike strontium (Foster 

et al., 2009), magnesium does not substitute for calcium in the aragonite lattice 

but is incorporated into a disordered phase (e.g., the organic matrix or 

nanoparticles of an inorganic phase (Foster et al., 2008). According to Foster et 

al. (2008) Mg/Ca changes may consequently be related to changes in the 

concentration or composition of the latter phase. Thus, the correlation between 

shell architecture and Me/Ca variability may depend on how an element is hosted 

within the bivalve shell. Alternatively, Mg/Ca changes may be ascribed to EPF 

heterogeneity possibly due to different relative transportation rates of both 

elements to the site of calcification (Foster et al., 2008). Regarding Sr/Ca 

variations Foster et al. (2009) concluded that element incorporation into 

A. islandica shells  is presumably governed by a complex interaction of several 



Pending manuscript 

 

115 
 

factors including temperature, the composition of the EPF, and kinetic processes 

determining the constituents of the precipitated material. Radermacher et al. 

(2010) as well analyzed Sr/Ca changes within isochronous profiles of A. islandica 

shells and ascribed the heterogeneity they observed to differences in shell 

fabrics.  

 

These studies illustrate that the distribution of trace elements within 

contemporaneously deposited shell carbonate can be heterogeneous, and that 

this observation applies to various bivalve species including A. islandica. In fact, 

element variability along isochronous profiles is thought to be species specific 

(Lazareth et al., 2011). Thus, in order to use A. islandica shells as high-resolution 

bioarchives, trace element analyses along isochronous growth layers are crucial 

to examine the reproducibility of element profiles along shells (Carre et al., 2006) 

and avoid false interpretation of trace element variability due to heterogeneities 

within growth layers.  

 

In the present study, we aim at examining trace element (Ba/Ca, Mn/Ca, Mg/Ca, 

and Sr/Ca) changes within contemporaneously deposited material of A. islandica 

shells. We further conduct Raman analyses of the same shell carbonate in order 

to examine possible links between trace element variability and the aragonite 

distribution and crystallographic orientation as well as the spatial distribution of 

organic compounds throughout the shell carbonate. These analyses may provide 

further insight into the process of biomineralization, and that way, contribute to a 

better understanding of what information is recorded in the shell. 

 

2. Material and methods 

 

2.1. Sample material and preparation 

 

Two A. islandica specimens (A and B) were collected alive in the North Sea near 

Helgoland (54°09.02'N, 07°47.06'E) at 40 meters water depth in 2005. Sample 

preparation was conducted as described in Krause-Nehring et al. (submitted). 
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2.2. LA-ICP-MS measurements 

 

We used a Thermo Finnigan Element2 single collector inductively coupled 

plasma-mass spectrometer (ICP-MS) connected to New Wave Research 

UP 193 nm excimer laser ablation system for element analyses of the shell 

carbonate. A large-format laser ablation cell was used to accommodate entire 

shell sections without cutting the samples into smaller pieces. We determined the 

Ba/Ca (138Ba and 48Ca), Mn/Ca (55Mn and 48Ca), Mg/Ca (25Mg and 48Ca), and 

Sr/Ca (88Sr and 48Ca) ratios along three traverses parallel to adjacent growth 

lines in the outer shell layer using a 50 µm laser beam size, 100 µm distance 

between spots, frequency of 5 Hz, and 100% output (Figure 1). 

 

 

Figure 1 Cross section of an Arctica islandica shell illustrating 
(A) the annual growth lines and (B) a high-resolution image 
showing the 50 µm LA-ICP-MS laser spots along a traverse in the 
outer shell layer parallel to the previous growth line (indicated with 
a white arrow). 

 

One traverse was measured on shell A; two traverses parallel to consecutive 

growth lines were measured on shell B. A helium gas stream transported the 

ablated material to a dual-inlet quartz spray chamber where the sample was 

mixed with a 2% HNO3 aerosol supplied by a self-aspirating PFA. 

 

Along with the sample spots we analyzed an instrumental blank (2% HNO3) and 

two standards. We interpolated linearly between adjacent blanks to obtain a 

blank value for the correction of each sample spot. To correct for instrumental 

mass bias, we used a certified reference material (CRM) consisting of powdered 

otoliths (FEBS-1; Sturgeon et al., 2005) dissolved and diluted in 2% HNO3 to a 

final Ca concentration of 40 µg/g. We calculated instrumental mass bias from the 
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published Me/Ca reference values for the FEBS-1 standard, interpolated 

correction factors between adjacent measurements of the FEBS-1 reference 

material, and applied the correction factors to the blank corrected element ratios. 

External precision (relative standard deviation, RSD) for Ba/Ca, Mg/Ca, and 

Sr/Ca, was calculated by running a second otolith CRM (Yoshinaga et al., 2000) 

diluted to a final Ca concentration of 40 µg/g as an unknown. The certified Ba/Ca, 

Mg/Ca, and Sr/Ca ratios of this standard were of 2.17 µmol/mol, 89.25 µmol/mol, 

and 2.78 mmol/mol, respectively. We estimated external precision for Mn/Ca 

ratios from the RSD value for the uncorrected ratios measured in the FEBS-1 

standard because Yoshinaga et al. (2000) did not report a certified value for 

manganese in their CRM.  The resulting RSDs were < 4%, < 2%, and < 2% for 

Ba/Ca, Mg/Ca, and Sr/Ca, respectively, and 1% for Mn/Ca. 

 

2.3. Dating the laser spots  

 

Upon completion of all ICP-MS measurements, samples were polished and 

cleaned as described in Krause-Nehring et al. (submitted) until the growth lines 

were clearly visible. We then digitized the samples under a binocular microscope 

(Olympus SZX12) that was connected to a digital camera (Olympus DP72, 

4140 x 3096 pixels maximum, Software analySIS DOCU FIVE). Next we 

determined, along each traverse, the exact distance (cumulative µm) of each 

spot from the periostracum (0 = periostracum; 1 = inner shell layer). By dividing 

each of the latter values through the total width of the outer shell layer, we 

obtained the relative position of each spot within the outer shell layer. Spots 

beyond the outer and located within the inner shell layer were excluded from 

analyses. We analyzed between 12 and 23 spots per traverse depending on the 

thickness of the outer shell layer. 

 

2.4. Statistical analyses 

 

ICP-MS analyses yielded a RSD value for each individual element and sample 

spot. From these values we calculated for each sample spot the ratio RSDs, and 

next, the standard deviations () (in mol/mol) of the Ba/Ca, Mn/Ca, Mg/Ca, and 

Sr/Ca ratios using the Gaussian propagation of uncertainty. Me/Ca ratios were 

then plotted against the relative position of the sample spot including the 

standard deviation values as error bars. 
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2.5. Raman measurements 

 

In order to determine the composition and spatial distribution of inorganic and 

organic compounds of the shell along the examined traverses, we conducted 

additional measurements using a Confocal Raman microscope (CRM). Raman 

maps were generated using a WITec alpha 300 R (WITec GmbH, Germany) 

CRM and a 532 nm laser. The WITecProject software (verion 2.04, WITec 

GmbH, Germany) was used for subsequent spectral analyses and imaging 

processing; "Mulipeak Fitting 2" routine of IGOR Pro (version 6.11, WaveMetrics, 

Inc. USA) was used to determine the peak positions. The experimental setup and 

method are described in Nehrke and Nouet (2011). 

 

3. Results and discussion 

 

The element profiles (Ba/Ca, Mn/Ca, Mg/Ca, and Sr/Ca) of the three traverses 

are shown in Figures 2 to 5 (see following pages). We observe very few common 

trends of Me/Ca changes among the three traverses. In comparison, Lazareth et 

al. (2011) determined similar element profiles between Protothaca thaca 

specimens both from the same and from different locations, whereas profiles 

differed depending on the location of the isochronous growth layer within the 

shells. Here, we observe very few common patterns within the same as well as 

between the two specimens (Figures 2 to 5), which further supports the 

assumption that element variability along isochronous profiles is most likely 

species specific (Lazareth et al., 2011). 

 

The Ba/Ca profiles of the three traverses display few similarities, besides a slight 

decrease within the first few spots close to the periostracum (Figures 2 to 5). In 

addition, Ba/Ca ratios exhibit a small peak (shell A) or increase (shell B; 

traverses 1 and 2) towards the inner shell layer ( last two to three spots of the 

profiles). The conspicuous increase of the Ba/Ca ratios of traverse 1 on shell B at 

the end of the profile coincides with a distinct increase of the Mn/Ca, Mg/Ca, and 

Sr/Ca ratios (Figure 4; grey bar). The most likely reason for this co-variation are 

small-scale changes in the structure or composition of the shell possibly due to 

the subsequent growth line crossing the examined traverse. Both the architecture 

and the organic matter content of the shell are known to change at such growth 

lines (Foster et al., 2008). 
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Figure 2 (1) Ba/Ca, (2) Mn/Ca, (3) Mg/Ca, and (4) Sr/Ca ratios (in mol/mol) along three 
traverses across the outer shell layers of two Arctica islandica specimens (A and B) 

determined by LA-ICP-MS with an external precision of < 4%, < 2%, and < 2% for Ba/Ca, 
Mg/Ca, and Sr/Ca, respectively, and 1% for Mn/Ca. Concentrations are plotted against the 
relative position of each laser spot within the outer shell layer (0 = periostracum; 1 = inner 
shell layer). 
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Figure 3 Maps 1 to 4: Raman scans across a line of consecutive LA-ICP-MS laser spots within the 
outer layer of an Arctica islandica shell (specimen A): (1) overview of the examined traverse; 

distributions of (2) aragonite (colors indicate different concentrations or relieves), (3) fluorescence 
(yellow = high fluorescence), and (4) pigments (yellow = high concentration) in the sample. 
Graphs 5 to 8: (5) Ba/Ca, (6) Mn/Ca, (7) Mg/Ca, and (8) Sr/Ca ratios (in mol/mol) of the 
corresponding laser spots within the outer shell layer determined by LA-ICP-MS. Concentrations 
are plotted against the relative position of each laser spot within the outer shell layer 

(0 = periostracum; 1 = inner shell layer). The error bars indicate the standard deviation () 
(± 1 stdev) of each ratio. 
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Figure 4 Maps 1 to 4: Raman scans across a line of consecutive LA-ICP-MS laser spots within the 
outer layer of an Arctica islandica shell (specimen A - traverse 1): (1) overview of the examined 

traverse; distributions of (2) aragonite (colors indicate different concentrations or relieves), 
(3) fluorescence (yellow = high fluorescence), and (4) pigments (yellow = high concentration) in the 
sample. Graphs 5 to 8: (5) Ba/Ca, (6) Mn/Ca, (7) Mg/Ca, and (8) Sr/Ca ratios (in mol/mol) of the 
corresponding laser spots within the outer shell layer determined by LA-ICP-MS. Concentrations 
are plotted against the relative position of each laser spot within the outer shell layer 

(0 = periostracum; 1 = inner shell layer). The error bars indicate the standard deviation () 
(± 1 stdev) of each ratio. 
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Figure 5 Maps 1 to 4: Raman scans across a line of consecutive LA-ICP-MS laser spots within the 
outer layer of an Arctica islandica shell (specimen A – traverse 2): (1) overview of the examined 

traverse; distributions of (2) aragonite (colors indicate different concentrations or relieves), 
(3) fluorescence (yellow = high fluorescence), and (4) pigments (yellow = high concentration) in the 
sample. The black rectangle in map 2 indicates an area where a previous scan had been 
performed. Graphs 5 to 8: (5) Ba/Ca, (6) Mn/Ca, (7) Mg/Ca, and (8) Sr/Ca ratios (in mol/mol) of the 
corresponding laser spots within the outer shell layer determined by LA-ICP-MS. Concentrations 
are plotted against the relative position of each laser spot within the outer shell layer 

(0 = periostracum; 1 = inner shell layer). The error bars indicate the standard deviation () 
(± 1 stdev) of each ratio. 
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An additional scan with higher resolution will be conducted to obtain further 

information in this area. 

 

Common features of the Mn/Ca profiles of the three traverses include little 

variability within the first few spots close to the periostracum and again a small 

peak (shell A) or increase (shell B; traverses 1 and 2) towards the inner shell 

layer ( last two to three spots of the profiles; Figures 2 to 5).  

 

The Mg/Ca ratios show no consistency among the element profiles of the three 

traverses (Figures 2 to 5). Instead, we observe opposite changes (shell A: 

increase (Figure 3); shell B - traverse 1: decrease (Figure 4); shell B - traverse 2: 

decrease followed by an increase (Figure5)) within the first few spots close to the 

periostracum. Towards the inner shell layer ( last two spots of the profiles) 

Mg/Ca ratios either increase (shell A; shell B – traverse 1) or barely change at all 

(shell B – traverse 1) (Figures 2 to 5).  

 

In comparison, the Sr/Ca profiles show the highest degree of reproducibility 

among the three traverses (Figures 2 to 5). All profiles exhibit a Sr/Ca decrease 

within the first few spots close to the periostracum, little variability over the course 

of the profile and a conspicuous (shell B – traverse 1) or slight (shell A; shell B – 

traverse 2) increase towards the inner shell layer ( last two spots of the profiles).  

 

In addition to the element profiles, Figures 3 to 5 contain four maps (= maps 1 to 

4) of Raman scans across each of the examined traverses.  Map 1 provides an 

overview of the examined traverse, whereas maps 2 to 4 display information 

about the mineral and organic phases as well as their spatial distribution within 

the shell.  

 

Map 2 displays the spatial distribution of aragonite including its crystallographic 

orientation. The colors of the map indicate different concentrations or relieves but 

not phases. Thus, all of the three maps (Figures 3 to 5; map 2) display a 

homogeneous distribution and uniform orientation of the aragonite crystals 

across each of the examined growth layers. This observation matches the 

description by Kennedy et al. (1969) of A. islandica shells as homogeneous 

structures composed of small, irregular aragonite granules. As a consequence, 
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we do not ascribe the observed Me/Ca changes to differences in the carbonate 

structure of the samples.  

 

Map 3 displays the distribution of the fluorescence (yellow = high fluorescence) of 

the examined area, which is most likely induced by organic molecules. 

Fluorescence levels are commonly high near the periostracum as well as towards 

the inner shell layer (Figures 3 to 5; map 3). Thus, Me/Ca changes at the 

beginning or end of the traverses may be related to higher organic matter content 

in comparison with the middle part of the outer shell layer. Although fluorescence 

is low in the middle, this part as well contains small amounts of organic matter, 

e.g., in the form of organic membranes surrounding the aragonite granules 

(Kennedy et al., 1969). This can be seen in the black rectangle (Figure 5, map 3), 

where a previous scan most likely bleached the organic matter, which in turn 

resulted in a lack of fluorescence during the subsequent scan. Hence, small-

scale differences in organic matter content cannot be ruled out as possible 

reasons for local Me/Ca changes.  

 

Although elevated levels of fluorescence ( organic matter content) may explain 

some of the Me/Ca changes we observe, organic matter content alone does not 

provide sufficient information to explain all of the examined variability. In shell A, 

for example, Ba/Ca and Mn/Ca peaks at the end of the profile coincide with high 

levels of fluorescence around the corresponding laser spot (Figure 3; red 

arrows). In shell B – traverse 2 Ba/Ca, Mn/Ca, and Sr/Ca increases towards the 

inner shell layer as well coincide with high levels of fluorescence around the 

corresponding two laser spots (Figure 5; red arrows). However, we observe no 

common pattern, and high levels of fluorescence do not always coincide with 

increases of the latter Me/Ca ratios.  

 

It would be expected that Me/Ca changes related to organic matter content differ 

depending on how the element is hosted in the shell. If an element is hosted in 

the organic matrix and the content of the latter increases while the carbonate 

concentration simultaneously decreases, one would expect the Me/Ca ratio of the 

corresponding element to increase. However, the observed Me/Ca changes often 

contradict this assumption. Strontium, for example, has been reported to 

substitute for calcium within the aragonite lattice of A. islandica shells (Foster et 

al., 2009). Yet, as mentioned above, Sr/Ca ratios increased in spots associated 
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with high levels of fluorescence (Figure 5; red arrows). Magnesium, on the other 

hand, is not hosted within the aragonite but within a disordered phase, possibly 

the organic matrix (Foster et al., 2008). Nevertheless, the above discussed high 

levels of fluorescence do not coincide with a distinct Mg/Ca increase (Figures 3 

and 5; red and grey arrows). Hence, additional parameters besides organic 

matter content seem to govern Me/Ca changes along contemporaneously 

deposited growth layers.  

 

Map 4 displays the distribution of pigments (yellow = high concentration) in the 

sample, most likely polyenes or carotenoids, which have previously been 

documented in some biogenic carbonates (Nehrke and Nouet, 2011; and 

references therein). Along each of the examined growth layers, the pigment 

concentration is highest near the periostracum and rapidly decreases towards the 

inside of the shell (Figures 3 to 5; map 4). The distribution of pigments may 

provide an additional explanation for Me/Ca variability at the beginning of the 

element profiles in close proximity to the periostracum. In shell B, for example, 

Ba/Ca, Mg/Ca, and Sr/Ca changes across the first laser spots may be related to 

high concentrations of pigments, although changes again appear to be element 

specific (Figure 5; blue arrows). Alternatively, a complex interaction of high 

pigment and organic matter content or an associated decrease in the hardness of 

the carbonate may determine Me/Ca variability in this shell region. The only ratio 

that does not exhibit any significant variations within the first few laser spots 

close to the periostracum, and consequently, in regions of high pigment and 

organic matter content is Mn/Ca (Figures 3 to 5).  

 

4. Preliminary conclusion 

 

Trace element (Ba/Ca, Mn/Ca, Mg/Ca, and Sr/Ca) profiles of contemporaneously 

deposited growth layers of A. islandica shells display a high degree of variability, 

especially close to the periostracum and the inner shell layer. Me/Ca changes are 

less pronounced in the middle of the outer shell layer. Correlating our trace 

element measurements (laser spots) with Raman analyses of the same shell 

region provides information about possible reasons (e.g., high organic matter or 

pigment content) for the observed variability. Additional high-resolution Raman 

scans of selected areas with distinct Me/Ca changes as well as AFM and REM 
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analyses will contribute to a better understanding of the link between the shell 

structure and composition and the corresponding trace element concentrations.  

 

Reconstruction of environmental history from bivalve shell chemistry is based on 

the assumption that the trace element composition is consistent within 

contemporaneously deposited material. Our findings, however, support the 

opposite, and consequently, the hypothesis that trace element analyses may 

yield different results depending on where they are conducted within the shells 

(Lazareth et al., 2011). We thus, agree with Lazareth et al. (2011), that locations 

of trace element analyses within bivalve cross sections need to be both 

accurately defined and consistently placed along the examined shell sections in 

order to obtain a reliable record of environmental history. Considering 

A. islandica shells, we suggest performing trace element measurements along 

the midline of the outer shell layer where organic matter content is low and 

evenly distributed, and pigments generally do not interfere with the analyses. 

That way bias due to shell layer heterogeneities will be minimized.  
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A1:  YES. Chemical removal of the organic matrix does alter the outcome of 

subsequent trace element analyses of A. islandica shells!  

2. Synthesis 

 

Four major questions (Q1 to Q4; Figure 1.1 in "Motivation and objectives") were 

examined in this thesis in order to improve the process of reconstructing 

environmental history of marine ecosystems (here: German Bight (North Sea)) 

from bivalve shells (here: A. islandica) and to gain a better understanding of the 

links between shell chemistry and environmental parameters. The outcome of the 

related studies including the corresponding answers (A1 to A4; Figure 2.1 - see 

next page) are summarized and discussed below. A detailed description of the 

results of the individual projects together with a comprehensive discussion is 

presented in the corresponding manuscripts. 

 

2.1. Answer to question 1 (A1; publication II) 

 

 

I used inorganic calcite and bivalve shell powder (A. islandica) to examine the 

efficiency of eight chemical treatments (H2O2, NaOH, and NaOCl in combination 

with acetone and/or washing) and their impact on the chemical and phase 

composition of the residual carbonate (publication II).  

 

Besides the fact that none of the examined treatments removed all organic 

material contained in the A. islandica shell powder, the different treatments vary 

in their efficiency in removing organic matter. NaOCl is the most efficient 

treatment agent achieving up to 84.2% removal of organic matter followed by 

NaOH (up to 64.4% removal). The latter treatment, however, removes significant 

amounts of calcium carbonate and produces new compounds including Ca(OH)2 

(portlandite) and Na2CO3. As a consequence, NaOH treatment is not suitable for 

chemical treatment of calcium carbonates. Such reactions do not occur during 

NaOCl treatment. However, drying of the centrifuged inorganic calcite sample 

without washing it first resulted in the precipitation of NaCl that made up 

approximately 25 wt % of the remaining solid. In contrast, multiple washing of the 

shell powder samples after NaOCl treatment most likely removed all of the NaCl 

owing to its high solubility in H2O. H2O2 is the least efficient agent removing less 

than 20% of organic matter and causes partial dissolution of the calcium
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Figure 2. 1 Individual steps within the process of reconstructing environmental history of marine 
ecosystems (here: German Bight (North Sea)) from archives (here: Arctica islandica shells). The 

red words mark critical steps within the process. Together with A1 to A4 they refer to the four 
main questions (Q1 to Q4) investigated in this thesis. The red arrows refer to possible factors 
that may hamper the examined proxy-parameter-relationship. The outcome of the related 
studies including the corresponding answers (A1 to A4) is presented in the "synthesis" of the 
thesis. 
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carbonate. As H2O2 loses its reactivity over time by exothermic decomposition, 

probably more N will be removed if the treatment agent is replaced over the 

course of incubation. Harsher H2O2 treatment (e.g., elevated temperatures) may 

succeed in removing the same amount of N containing organic matter as NaOCl 

or NaOH treatment but presumably increases the amount of carbonate 

dissolution. In addition, Gaffey et al. (1991) point out that elevated temperatures 

may cause transition from aragonite to calcite, and that way, alter the chemical 

composition of the calcium carbonate. For these reasons, I do not recommend 

H2O2 treatment to remove the organic matrix from biogenic carbonates.  

 

In addition, every treatment has an impact on the chemical composition of the 

samples (Figure 2.1; A1), although certain Me/Ca changes I observed in the shell 

powder samples do not match the expected results. Lattice-bound elements 

(strontium and barium) should not be affected, while non-lattice-bound elements 

(magnesium and manganese) should decrease upon removal of the organic 

matrix. In agreement with these assumptions I detected, for instance, that NaOCl 

treatment does not alter Sr/Ca ratios (Figure 2.2). However, it had unexpected 

effects on the Mg/Ca ratios causing either no change or a significant increase 

instead of the expected increase (Figure 2.2). For a summary of all Me/Ca 

changes observed in the shell powder samples see Figure 2.2. 

 

 

Figure 2. 2 Summary of the effect of each treatment on the Me/Ca 
ratios of the Arctica islandica shell powder samples. NS indicates 

no significant difference between the treated sample and the 
control, plus indicates a significant increase, and minus indicates a 
significant decrease. 

 

In order to predict the outcome of chemical reactions, chemical equilibrium 

conditions are generally assumed. However, bivalve shells are complex 

structures of inorganic and organic compounds. For this reason, we often cannot 
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A2:  YES. Positioning of laser spots for LA-ICP-MS analyses does affect the 
outcome of Me/Ca (Ba/Ca, Mn/Ca, Mg/Ca, Sr/Ca) analyses along cross 
sections of A. islandica shells due to Me/Ca heterogeneities within 
contemporaneously deposited material! 

 

predict the results of local reactions at the boundary layer between the inorganic 

and organic phase. The results of this study show that the composition of 

complex biogenic composites like the shell of A. islandica is still poorly 

understood. My findings further demonstrate that chemical sample pretreatment 

may affect the outcome of subsequent Me/Ca analyses of A. islandica shells 

(Figure 2.1; A1), and thus, has to be conducted with extreme caution. 

 

2.2. Answer to question 2 (A2; pending manuscript) 

 

 

In order to determine Me/Ca heterogeneities within contemporaneously 

deposited material and to examine possible reasons for the observed variability, I 

conducted trace element (Ba/Ca, Mn/Ca, Mg/Ca, Sr/Ca) analyses along three 

traverses within two A. islandica shells in combination with Raman analyses of 

the same shell carbonate (pending manuscript).  

 

None of the analyzed ratios remains constant along the examined traverses. 

Instead, the examined trace element concentrations within contemporaneously 

deposited growth layers of A. islandica shells contain a high degree of variability, 

especially in close proximity to the periostracum and to the inner shell layer. 

Moreover, there are very few common trends of Me/Ca changes among the three 

traverses. Nevertheless, Me/Ca changes are less pronounced in the middle of 

the outer shell layer.  

 

Raman analyses of the same shell regions show that, unlike the spatial 

distribution and crystallographic orientation of aragonite, organic matter and 

pigment content most likely determine, at least partially, the observed variability. 

Further high-resolution Raman scans of selected areas with distinct Me/Ca 

changes as well as AFM and REM analyses are necessary to fully explain the 

observed Me/Ca heterogeneities. Besides, such measurements will contribute to 

a better understanding  of the  link  between  the  shell  structure and composition 

and the corresponding trace element concentrations.  
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Reconstruction of environmental history from bivalve shell chemistry implies that 

the trace element composition is consistent within contemporaneously deposited 

material. My findings, however, support the opposite, and consequently, the 

assumption that trace element analyses may yield different results depending on 

where they are conducted within the shells (Lazareth et al., 2011). I thus, agree 

with the latter authors that locations of trace element analyses within bivalve 

cross sections have to be both accurately defined and consistently placed along 

the examined shell sections in order to obtain a reliable record of environmental 

history (Figure 2.1; A2).  

 

2.3. Conclusions from answers 1 and 2 (A1 and A2) 

 

From the latter two chapters of this thesis I conclude that both sample 

preparation (publication II) and data collection (pending manuscript) can affect 

the outcome of subsequent trace element analyses of A. islandica shells, and 

thus, hamper the relationship between the examined proxy and environmental 

parameter (Figure 2.1; A1 and A2). 

 

First, my findings clearly demonstrate the different effects of chemical sample 

pretreatment on the chemical and phase composition of inorganic calcite and 

bivalve shell powder (A. islandica) (publication II). These results provide valuable 

information for authors considering chemical sample treatment. I recommend 

avoiding sample treatment prior to Me/Ca analyses of A. islandica shells when 

possible. If pretreatment is essential, NaOCl treatment can be applied prior to 

Sr/Ca analyses. Nonetheless, based on my data I cannot give a general advice 

on whether or not to chemically remove the organic matrix prior to trace element 

analyses of bivalve shells. Instead, this decision depends on the individual 

project, such as on the examined Me/Ca ratio(s), as well as the sample 

properties and study species. The necessity to remove the organic matrix, for 

example, depends on the amount of organic matter in the biogenic carbonate 

(Lingard et al., 1992) and may be less crucial for samples with low organic 

content. For instance, A. islandica shells contain approximately 0.46 wt % water-

insoluble organic matrix (Schöne et al., 2010), whereas the organic matter 

content of other mollusk species may be up to 4.0 wt % (Bourgoin, 1987). 

 

Further complications arise when applying chemical treatment to cross sections 
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A3:  YES. Pb/Ca ratios in A. islandica shells reveal centennial records of 

anthropogenic lead pollution! 

of A. islandica shells commonly used for LA-ICP-MS analysis. This species has a 

distinctive homogeneous shell structure composed of small, irregular aragonite 

granules each surrounded by an organic membrane (Kennedy et al., 1969). Due 

to the dense structure of the shell and fine distribution of the organic matrix, deep 

penetration of the treatment agent and subsequent extraction of the dissolved 

organics from the sample are very difficult to achieve. In conclusion, this 

technique fails to remove all organic matter from bivalve shell powder, and is 

consequently, even less applicable for cross sections of A. islandica shells. On 

the contrary, chemical treatment of the cross sections may alter the outcome of 

subsequent LA-ICP-MS analyses.  

 

Although no solution other than chemical treatment has been established so far 

in order to account for the effect of the organic matrix, I decided not to apply 

chemical treatment prior to Me/Ca analyses of A. islandica shells. Based on my 

findings, chemical treatment of A. islandica shell cross sections is considered 

both inefficient and accompanied with greater disadvantages than advantages.   

 

Second, regarding trace element heterogeneities within contemporaneously 

deposited shell layers Me/Ca changes are least pronounced in the middle of the 

outer section of A. islandica shells (pending manuscript). Based on this 

observation, I suggest to perform trace element measurements along the midline 

of the outer shell layer where organic matter content is both low and evenly 

distributed, and pigments generally do not interfere with the analyses. That way 

the impact of shell layer heterogeneities will be minimized.  

 

2.4. Answer to question 3 (A3; publication III) 

 

 
I measured Pb/Ca ratios in three long-lived A. islandica specimens (HELG, VIRG, 

and ICEL) from three locations in the North Atlantic (Europe (German Bight; North 

Sea), USA, and Iceland, respectively) in order to establish centennial records of 

anthropogenic lead pollution at different sites (publication III). The lead profiles of 

the three specimens illustrate that A. islandica shells record local influxes of lead 

into the seawater (Figure 2.3; graphs 2 to 4). 
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Figure 2. 3 Graph 1: US gasoline lead consumption (in 10

+6
 kg) (modified after Nriagu (1990)). 

Graphs 2 to 4: Pb/Ca profiles (in mol/mol; determined by LA-ICP-MS with an external precision of 
8% (N = 18)) in the common time window between 1770 and 2010 of three Arctica islandica 

specimens collected (graph 2; ICEL) off the coast of Northeast Iceland, (graph 3; VIRG) off the coast 
of Virginia, USA, and (graph 4; HELG) in the German Bight near Helgoland, Germany. The black 

dots indicate the annual Pb/Ca ratios ( 1 standard error for years with > 1 sample spot). Each 
graph shows a red cubic spline trendline (λ = 8000) and a black arrowed line at the top of each 
graph indicating the total life span of each specimen. The yellow bar indicates the time 

(1980  10 years) of maximum gasoline lead emissions. 
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Thus, shells of this species are a suitable bioarchive to both reconstruct long-

term records of lead pollution (Figure 2.1; A3) and to monitor local levels of lead 

pollution of the German Bight (North Sea).  

 

Regrettably, the Pb/Ca profile of the HELG sample reaches back until 1914 only, 

i.e., it does not show pre-industrial lead concentrations (Figure 2.3; graph 4). As 

there are no other studies, which analyzed the lead content of marine bioarchives 

to establish long-term records of lead pollution in the North Sea, no pre-industrial 

data are available at all. Hence, there is no baseline for comparison to current 

lead levels of the German Bight. However, lead concentrations of the other two 

shells may provide a useful estimate.  

 

The Pb/Ca profiles between 1770 and 2010 vary among the three A. islandica 

specimens from different sites in the North Atlantic indicating location specific 

differences in sources and levels of lead exposure (Figure 2.3; graphs 2 to 4). 

The majority of emitted lead is deposited in close vicinity to its site of output 

(Libes, 1992). Nevertheless, the metal attaches to fine particles in the 

atmosphere, so that a significant percentage is transported over long distances 

and deposited in the surface water of the ocean (Wu and Boyle, 1997). The 

atmospheric transport of lead from continents to oceans is strongly driven by 

large-scale tropospheric transport processes, which can be divided into three 

main zones of movement of air masses (Risebrough et al., 1968) (Figure 2.4).  

 

 

Figure 2. 4 Three main zones of movement of air masses on earth:  the polar easterlies at 
> 60°N and 60°S, the temperate westerlies between 30°N and 60°N and between 30°S and 
60°N, and the equatorial easterlies between 30°N and 30°S. The red spots indicate the 
origin (left to right: USA (Virginia), Iceland, Europe (German Bight; North Sea)) of the 
different sample shells examined in the thesis. 
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The equatorial easterlies are a broad belt of easterly surface winds at low 

latitudes (between 30°N and 30°S), whereas westerly surface winds at mid-

latitudes (between 30°N and 60°N and between 30°S and 60°N) are called 

temperate westerlies (Eady, 1957; Schneider, 2006). Outside this range (> 60°N 

and 60°S) surface winds are generally easterly (= polar easterlies) or almost 

vanishing in high latitudes (Schneider, 2006). Due to global wind circulation 

patterns, the origin and influx of anthropogenic lead varies among different 

latitudes.  

 

The sampling site near Iceland is located at > 66°N (Figure 2.4), and thus, just 

outside the zone of westerly surface winds. The lead peaks in the ICEL shell in 

the 1840s and around 1890 (Figure 2.3; graph 2) most likely reflect natural 

influxes of lead into Icelandic waters, for example, due to volcanic emissions 

rather than large-scale anthropogenic lead emissions transported to Iceland from 

the mid-latitudes. As air masses from the mid-latitudes are hardly transported to 

high latitudes, lead emissions from Europe and the USA generally do not reach 

Iceland. Consequently, the background signal in this shell is 30.7 times lower 

than in the HELG shell. Thus, the ICEL shell serves as a clean control site for 

comparison.  

 

Unlike the sampling location near Iceland, the collection site off the coast of 

Virginia receives US lead emissions which are transported from the continent to 

the Atlantic Ocean by westerly surface winds (as described above; Figure 2.4) 

and deposited in the ocean's surface waters. This results in a 3.6 times elevated 

background signal in the VIRG shell in comparison with the ICEL shell. Although 

there is no significant increase in the lead concentration in the VIRG shell prior to 

the beginning of the 20th century related to the industrial revolution (possibly due 

to local effects like, e.g., local winds or currents), the lead profile after the 

beginning of the 20th century is clearly driven by gasoline lead emissions (Figure 

2.3; graphs 1 and 3). After the selling of the first gallon of gasoline enhanced with 

tetraethyl lead in the USA in 1923, the consumption of leaded gasoline increased 

continuously (Nriagu, 1990) reaching peak emissions in the USA in 1972 (EPA, 

2000) (Figure 2.3; graph 1). Assuming a residence time of lead in surface waters 

of less than five years (according to Veron et al. (1987)), the year of maximum 

lead concentration in the VIRG shell (1979) closely matches the point in time of 

maximum US gasoline lead emission (1972). The USA reacted quickly to largely 
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rising lead  emissions (Hagner, 2000) and mandated the sale of unleaded 

gasoline and phase-down in average lead content of gasoline already in 1975 

(Nriagu, 1990). As a consequence, the consumption of leaded gasoline strongly 

decreased in the USA after 1975 (Nriagu, 1990) (Figure 2.3; graph 1). Together 

with the decline in leaded gasoline consumption levels of atmospheric lead 

decreased in urban areas of the USA (Nriagu, 1990), and thus, less lead was 

being transported eastwards and deposited in surface waters of the ocean. This 

development is clearly recorded in the lead profile of the VIRG shell (Figure 2.3; 

graphs 1 and 3). 

 

While the sampling location off the coast of Virginia is located in the open ocean 

with constantly mixing water masses, the North Sea is an enclosed sea with 

partially limited water exchange, and thus, not a homogenous body of water 

(Clark, 2001). The German Bight in the southeastern part of the North Sea is 

shallow with mostly less than 50 m water depth (Clark, 2001) and a relatively 

long flushing time compared to its small volume (Sündermann et al., 1999). As a 

consequence, the background signal of the HELG shell is 8.6 times higher than in 

the VIRG shell. In addition, the HELG lead profile is much noisier and less clear-

shaped in comparison with the VIRG profile (Figure 2.3; graphs 3 and 4), 

indicating that besides gasoline lead emissions a variety of local factors 

determine the lead content of this shell. Nevertheless, the changes in gasoline 

lead emissions are reflected in both the lead profile of the VIRG and the HELG 

shell (Figure 2.3; graphs 1, 3, and 4). However, exact points in time (e.g., years 

of maximum lead concentrations) and magnitudes of changes cannot be lined up, 

firstly, due to differences in regulations among countries, and secondly, due to 

various additional sources contributing to the lead pollution of the German Bight 

(North Sea). 

 

The German Bight is surrounded by densely populated and highly industrialized 

countries. Thus, large amounts of lead are mobilized by anthropogenic activities 

(e.g., industrial emissions, fossil fuel combustion, or vehicular emissions 

(Harrison and Laxen, 1981)) and reach the sea via atmospheric deposition. 

Industrial and sewage effluents as well as highway runoff further introduce lead 

into the environment (Harrison and Laxen, 1981) either directly or through rivers. 

Among various continental rivers including the Rhine, Elbe, Weser, Scheldt, Ems, 

Thames, Trent, Tees, and Tyne transporting wastes from much of western and 
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central Europe into the North Sea (Clark, 2001) the Elbe constitutes the most 

important influent into the German Bight (Hickel, 1998). Other point sources of 

lead include dumping of sewage sludge or munitions. Only since 1981, dumping 

of sewage sludge has been forbidden in the German Bight (Hagner, 2002). In 

addition, a total of 750,000 to 1.5 million tons of ammunition were dumped along 

the German coast by German and allied forces after World War II (Liebezeit, 

2002). Upon contact with seawater munition can corrode and release chemical 

compounds, such as lead as one of the most common metals of munitions, into 

the seawater (Van Ham, 2002) and constitute a significant source of lead, e.g., 

for bivalves living in close proximity. Several of the above-discussed sources of 

lead (e.g., dumping) may cause temporary increases in the lead concentration of 

biogenic carbonates as observed in the HELG shell in 1915. Others continuously 

pollute the North Sea (e.g., atmospheric deposition or river discharge) causing an 

elevated background signal of lead in bivalve shells from the North Sea.  

 

This study illustrates that A. islandica shells are a suitable archive to reconstruct 

centennial records of lead pollution at specific locations (Figure 2.1; A3). Besides, 

a comparative study is useful to reliably assess the magnitude and development 

of lead pollution of the German Bight (North Sea) by comparing current levels to 

both pre-industrial levels (VIRG shell) and a clean site (ICEL shell).  

 

However, in order to obtain a reliable long-term record of lead pollution intra-

annual variability has to be taken into account. My data set is not suited for intra-

annual analyses, as it contains merely three increments (= years 1915, 1916, and 

1918 in the HELG shell) that are located within the younger section, and thus, 

wide enough to contain more than four laser spots per increment (Figure 2.5; see 

next page). Nevertheless, Figure 2.5 (left graph) illustrates that there is a high 

degree of variability both within and among the intra-annual Pb/Ca profiles of the 

three different years. This observation leads to two main conclusions. First, the 

high variability within the intra-annual profiles shows that within increments large 

enough to accommodate more than one laser spot more than one measurement 

has to be conducted in order to obtain a reliable value of the average annual lead 

concentration. Second, the high variability within intra-annual Pb/Ca profiles as 

well as the few common patterns among years indicate that several factors may 

influence Pb/Ca ratios in A. islandica shells, and that the pathway of lead from its 

source into the shell may be mediated by various processes. 
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A4:  NO. There is no clear relationship between trace element ratios (Ba/Ca 
and Mn/Ca) in A. islandica shells and pelagic primary production! 

 

 

Figure 2. 5 Pb/Ca profiles (in mol/mol; determined by LA-ICP-MS) of an Arctica islandica shell 

collected in the German Bight near Helgoland, Germany. (left) Intra-annual Pb/Ca profiles of the 
years 1915, 1916, and 1918. The corresponding increments are located within the younger section 
of the shell, and thus, the only ones wide enough to contain more than four laser spots per 
increment. The black dots indicate the Pb/Ca ratios of each sample spot. Pb/Ca values are plotted 
against the relative position of each sample spot within the increment (0 and 1 = adjacent growth 
lines). (right) Inter-annual Pb/Ca profile between 1914 and 2003. The black dots indicate the annual 

Pb/Ca ratios ( 1 standard error for years with > 1 sample spot). In addition, the graph displays a 
grey cubic spline trendline (λ = 8000). 

 

Thus, further studies analyzing intra-annual Pb/Ca changes are necessary to 

determine the drivers of the lead concentration in A. islandica shells, and in turn, 

the mechanistic link between the shell Pb/Ca ratios and environmental lead 

concentrations. Since reconstruction of lead pollution from Pb/Ca ratios in bivalve 

shells is more difficult in systems with a lot of noise, such as the German Bight, 

future studies may consider examining shells from deeper parts of the North Sea, 

such as the Fladen Ground in the northern part of the North Sea with a water 

depth of up to 200 m.  

 

2.5. Answer to question 4 (A4; publication III) 

 

 

In order to examine possible drivers of Ba/Ca and Mn/Ca changes in A. islandica 

shells, I analyzed both element ratios in three specimens (A, B, and C) collected 

off the island of Helgoland and correlated my measurements with the diatom 

abundance of the Helgoland Roads time series (Wiltshire and Dürselen, 2004) 

(publication IV). My results indicate a significant correlation between both 

element ratios and the diatom abundance, and yet, I observe differences in the 

annual Ba/Ca (summer peak) and Mn/Ca profile (spring and summer peak), in 

comparison with the diatom profile (spring and summer peak) (Figure 2.6). 
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Figure 2. 6 Typical annual (J = January to D = December) profile of the (left) diatom abundance 
measured off the coast of Helgoland as part of the Helgoland Roads time series (Wiltshire and 
Dürselen, 2004) as well as of the (middle) Mn/Ca and (right) Ba/Ca ratios in Arctica islandica 

shells in the German Bight off the coast of Helgoland, Germany. All data points are projected on 
one calendar after detrending (removal of linear trends, where necessary), filtering (removal of 
the upper 5% and lower 10% of the data) and normalization (minimum = 0; maximum = 1) of the 
data. Superimposed are the corresponding cubic spline trendlines (λ = 0.025 for the diatom data; 
λ = 0.0045 for the Mn/Ca and Ba/Ca data). 

 

Based on the latter findings I conclude that the manganese and barium content of 

bivalve shells is related at least to some extent to phytoplankton dynamics, but I 

propose that both elements are coupled to phytoplankton abundance through 

different processes (Figure 2.1; A4). 

 

Various hypotheses have been postulated to explain the Ba/Ca and Mn/Ca peaks 

in bivalve shells. A detailed discussion of all theories with regard to my results is 

presented in the corresponding manuscript (publication IV). In this section I focus 

exclusively on the hypotheses that are considered most relevant for the 

interpretation of my results.  

 

First, previous studies observed a link between the barium content of shells and 

increased freshwater input, e.g., after periods of heavy rainfall (Lazareth et al., 

2003) or through rivers (Epplé, 2004). The latter authors proposed that 

freshwater brings in nutrients, which facilitates phytoplankton blooms, and in turn, 

enhances the vertical flux of barium to the SWI (sediment water interface). To 

examine this hypothesis, I analyzed the link between the barium content of 

A. islandica shells and the discharge rates of the river Elbe, the most important 

freshwater input of the German Bight (Hickel, 1998). Although I observe a 

significant correlation between the Ba/Ca ratios and the Elbe discharge rates, 

there is at the same time a lack of correlation between Elbe discharge and Ba/Ca 

peak amplitudes. Moreover, the time period of maximum Elbe discharge occurs 
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in spring (Lenhart et al., 1996 fide Epplé, 2004), whereas maximum Ba/Ca ratios 

in A. islandica shells occur in summer (Figure 2.6; right graph).  Finally, nutrient 

availability is not the limiting factor of phytoplankton abundance in spring 

(Hoppenrath et al., 2009). Even though, Elbe discharge seems to influence 

diatom abundance, it does not necessarily set off the spring bloom. Thus, I do not 

consider Elbe discharge the primary driver of the barium concentration in 

A. islandica shells.  

 

Second, Gillikin et al. (2005) previously demonstrated a significant positive 

correlation between the Sr/Ca ratios and the growth rate of Saxidomus giganteus 

shells. The same may apply to other divalent ions, such as barium, that are 

incorporated into the aragonite crystal lattice. Carre et al. (2006), for example, 

demonstrated that in certain species (Mesodesma donacium and Chione 

subrugosa) crystal growth rate can explain up to 44% of the Ba/Ca variations in 

their sample shells. Accordingly, growth rate may strongly influence the barium 

concentration of A. islandica shells. This assumption is supported by a significant 

correlation between the Ba/Ca and Sr/Ca ratios. In addition, maximum barium 

concentrations coincide with the period of maximum growth in summer 

(Schöne et al., 2004). 

 

Finally, the most frequently discussed hypothesis implies that peak 

concentrations of barium in bivalve shells result from sudden fluxes of barite to 

the SWI as a consequence of phytoplankton blooms (Stecher et al., 1996). Ba2+ 

ions can passively diffuse into diatom cells through the transporters of other ions 

(e.g., Ca2+) (Sternberg et al., 2005), which results in a slight accumulation of 

barium within the cells without any specific transport mechanisms (Sternberg et 

al., 2005). Nonetheless, marine phytoplankton neither actively form nor contain 

any barite crystals (Bishop, 1988). Next, plankton decomposition upon bloom 

events is accompanied by the rapid release of dissolved barium due to cell lyses 

or organic matter decay (Ganeshram et al., 2003). The majority of barium returns 

into the dissolved phase but a small fraction is precipitated as barite in 

supersaturated microenvironments resulting from rapid barium release 

(Ganeshram et al., 2003). The fact that only a small fraction of the released 

barium precipitates as barite leads to the conclusion that the availability of 

microincrements effectively retaining barium rather than the availability of 

dissolved barium constitutes the main limiting factor of barite formation 
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(Ganeshram et al., 2003). Finally, both barites and barium are bound to organic 

matter and removed from the water column to the SWI via sinking particles 

(Ganeshram et al., 2003).These particles enriched in barium can then be 

ingested by bivalves living at the SWI (Barats et al., 2009). Despite the significant 

correlation between diatom abundance in the German Bight and the barium 

content of A. islandica shells, the annual Ba/Ca profile does not reflect the diatom 

spring bloom but shows only one summer peak (Figure 2.6; left and right graph). 

I thus, propose an alternative hypothesis for the formation of Ba/Ca peaks in 

A. islandica shells. I suggest that the maximum barium concentration in summer 

may be ascribed to increased barite availability approximately three to four 

months after the diatom spring bloom. The diatom blooms in summer would 

cause a second increase in barite in winter that coincides with the winter growth 

inhibition (mid-December to mid-February) (Schöne et al., 2005)) of A. islandica. 

Hence, the second barite peak is not recorded by the shell.  

Is there evidence for a time lag between phytoplankton bloom and barite 

formation? Ganeshram et al. (2003) examined barite formation during 

phytoplankton decay under laboratory conditions. After ten weeks of incubation in 

the dark, the latter authors observed an approximate 30% increase in the number 

of barite crystals. Thus, a variety of biological factors (e.g., trophic processing, 

fecal-pellet packaging, particle aggregation, or catalytic surfaces) may mediate 

the barite precipitation in supersaturated microenvironments, although their 

specific function has yet to be determined (Ganeshram et al., 2003). Under 

natural conditions barite formation upon diatom blooms may be even more 

variable owing to the intrinsic variability of the ambient environmental conditions. 

Known or yet unknown factors may govern the migration of barium from the 

dissolved phase until incorporation into A. islandica shells.  

 

As for the Ba/Ca, several hypotheses have been postulated to explain the 

occurrence of seasonal Mn/Ca peaks in bivalve shells. The first hypothesis 

discussed in this section implies that manganese influx as a consequence of 

freshwater discharge correlates with manganese shell concentrations (Barats et 

al., 2008). My results demonstrate a significant correlation between the Mn/Ca 

ratios and the Elbe discharge rates, which indicates that riverine input may affect 

Mn/Ca ratios in A. islandica shells in the German Bight. However, in summer 

Elbe discharge decreases, and yet, I detect another Mn/Ca maximum in August. I 

thus, agree with Barats et al. (2008) who concluded that in late summer 
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additional sources other than riverine input seem to govern manganese shell 

concentrations.  

 

The second and most applicable hypothesis suggests a link between Mn/Ca shell 

ratios and seasonal changes in ocean primary production (Vander Putten et al., 

2000) through consumption of manganese-rich particles by the bivalve (Barats et 

al., 2008). An increase in suspended particulate manganese can result through 

several processes. First, algae have the ability to take up manganese into their 

cells (Sunda and Huntsman, 1985), because unlike barium manganese 

constitutes an essential trace element for phytoplankton (Roitz et al., 2002). That 

way, phytoplankton may enhance the vertical flux of manganese to the SWI upon 

bloom events. Second, certain phytoplankton (e.g., Phaeocystis spp.) may 

catalyze manganese oxidation (Vander Putten et al., 2000). Phaeocystis spp. 

colonies accumulate manganese primarily within their mucus (Schoemann et al., 

2001). During photosynthesis pH and dissolved oxygen concentrations increase 

inside or around the colonies, which promotes the oxidation of manganese 

(Schoemann et al., 2001), and that way, the formation of insoluble MnO2. 

Phaeocystis species, such as P. pouchetii and P. globosa, occur in the southern 

North Sea (Alderkamp et al., 2006; Schoemann et al., 2001), and may thus, 

influence particulate manganese availability in this region. Finally, as indicated 

above, manganese is a redox-sensitive element (Ouddane et al., 1997). 

Consequently, manganese can be remobilized from the sediment under anoxic 

conditions (Gingele and Kasten, 1994). Phytoplankton blooms produce 

particulate organic matter, which is degraded by heterotrophic organisms in the 

water column and after sedimentation in the SWI, where these oxygen 

consuming processes may enhance anoxic conditions (Schoemann et al., 1998). 

In the anoxic layer, manganese is converted into soluble Mn2+ and as such 

diffuses upward into the oxic layer (Libes, 1992). There the ions are converted 

into insoluble MnO2 upon reaction with O2 (Libes, 1992). MnO2 sinks back into the 

anoxic zone from where the cycle starts again, and finally, results in a particulate 

MnO2 maximum on top of a dissolved Mn2+ maximum at the oxic-anoxic interface 

(Libes, 1992). Hence, post-bloom reductive conditions increase the availability of 

particulate manganese for uptake by bivalves living at the SWI. In conclusion, 

phytoplankton blooms increase manganese availability at the SWI in several 

ways. Hence, bivalves may take up and incorporate increased amounts of 

manganese during periods of high primary production or shortly after 
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phytoplankton blooms. This theory concurs with my results which indicate a 

significant correlation between the diatom abundance in the German Bight and 

the manganese content of A. islandica shells. In addition, the annual diatom and 

the annual Mn/Ca profile both contain a spring and summer peak (Figure 2.6, left 

and middle graph), which provides further evidence for a link between the diatom 

abundance of the German Bight and Mn/Ca ratios in A. islandica shells from the 

same region.  

 

In summary, both Ba/Ca and Mn/Ca ratios in A. islandica shells are coupled to 

phytoplankton abundance though through different processes (Figure 2.1; A4).  

Barium, on the one hand, is linked to phytoplankton abundance (mainly diatoms) 

through barite precipitation. The latter process is controlled by the availability of 

microenvironments, which in turn, depends on the properties of the surrounding 

water masses. Thus, there may be an extended time delay (here: three to four 

months) between the occurrence of diatom blooms and Ba/Ca peaks in 

A. islandica shells. Manganese, on the other hand, seems to record any 

phytoplankton (diatom and flagellate) debris falling to the bottom of the ocean. 

The correlation between Mn/Ca shell ratios and diatom abundance occurs 

through direct influx of manganese to the SWI or through remobilization of 

manganese from sediments during post-bloom reductive conditions.  

 

However, despite the observed correlations between diatom abundance and 

Ba/Ca as well as Mn/Ca ratios in A. islandica shells, there is a lack of a 

consistent correlation between peak amplitudes of diatom abundance and 

element ratios (Figure 2.7; left graph). Moreover, on a year-to-year base there is 

no consistent reflection of diatom abundance patterns in the intra-annual Ba/Ca 

and Mn/Ca profiles (Figure 2.7; left graph). 
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Figure 2. 7  (blue) Ba/Ca and (orange) Mn/Ca profiles of an Arctica islandica shell (specimen C) 
collected in the German Bight off the coast of Helgoland, Germany, plotted together with the 
(green) monthly mean diatom abundance measured near Helgoland as part of the Helgoland 
Roads time series (Wiltshire and Dürselen, 2004). (left) Ba/Ca and Mn/Ca ratios (in mol/mol; 
determined by LA-ICP-MS) measured in specimen C plotted together with the monthly mean 
diatom abundance (in cells/liter) between 1984 and 1993. (right) Typical annual (J = January to 
D = December) profile of the Ba/Ca and Mn/Ca ratios in A. islandica and of the diatom 

abundance off the coast of Helgoland. The graph displays only the cubic spline trendlines 
(λ = 0.025 for the diatom data; λ = 0.0045 for the Mn/Ca and Ba/Ca data) upon detrending 
(removal of linear trends, where necessary), filtering (removal of the upper 5% and lower 10% of 
the data) and normalization (minimum = 0; maximum = 1) of the data.  

 

The latter discrepancies indicate that besides diatom abundance additional 

parameters most likely govern the element concentrations of the sample shells. 

The high synchrony of the Mn/Ca profiles among the three shells indicates that 

external drivers primarily control the latter ratios. Environmental parameters (e.g., 

Elbe discharge) or phytoplankton characteristics (e.g., the species composition of 

the bloom including Phaeocystis spp.) may exert minor but no negligible 

influence on the shell chemistry. Nevertheless, vital effects (e.g., organic matter 

content of the sample shell) cannot be completely excluded as possible drivers of 

Mn/Ca shell variability. In comparison, correlation of the Ba/Ca ratios is 

significant among shell A and B but not among shell A and C. Uncertainties in 

timing the elemental record or the possibility that specimens A and C may have 

lived further apart than specimens A and B, and thus, been exposed to slightly 

different environmental conditions are unlikely explanations for the lack of 

correlation regarding the fact that the Mn/Ca ratios of shell A and C correlate 

significantly. Instead, the Ba/Ca content of A. islandica shells is possibly not 

exclusively environmentally controlled. Both vital effects (e.g., growth kinetics) as 

well as environmental parameters (e.g., Elbe discharge) or phytoplankton 
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characteristics (e.g., species specific abilities to accumulate or adsorb trace 

elements and different species blooming at different times during the year) may 

influence Ba/Ca ratios in A. islandica shells.  

 

A log multi linear regression model including Ba/Ca, Mn/Ca, Elbe discharge rate, 

temperature, as well as the time of the year explains up to 52% 

(RSquare = 0.5296; F ratio = 81.4426; P value < 0.0001) of the variability of the 

diatom abundance. This itself is not sufficient to reconstruct past records of 

diatom abundance but may provide valuable supplemental information for 

coupled ocean-atmosphere models. 

 

2.6. Conclusions from answers 3 and 4 (A3 and A4) 

 

The development of powerful techniques, such as LA-ICP-MS, to conduct trace 

element analyses in bivalve shells with high spatial resolution nowadays makes it 

possible to determine element concentrations within the smallest portion of the 

shells. That way, element profiles with high temporal resolution can be obtained 

from bivalve shells. 

 

A. islandica is a unique bioarchive due to its wide distribution and long-term 

occurrence throughout Earth history, but primarily due to its extreme longevity. 

Consequently, shells of this species can provide century long records of 

environmental history. In order to reconstruct the environmental history of marine 

ecosystems, the chemical composition of A. islandica shells is often analyzed as 

an indicator of past environmental conditions at the time of carbonate formation.  

 

In this study, I show that Me/Ca ratios of A. islandica shells can be used to 

reconstruct environmental parameters over long time spans. Inter-annual Pb/Ca 

variability clearly is an indicator of lead pollution at the sampling site 

(publication III) (Figure 2.1; A3). Moreover, there is a significant correlation 

between the diatom abundance of the German Bight and Ba/Ca as well as 

Mn/Ca ratios in A. islandica shells collected off Helgoland (publication IV). Thus, 

both studies demonstrate an empirical link between the examined element ratios 

and the corresponding environmental parameters.  

 

However, increasing the temporal resolution of the Me/Ca profiles by examining 
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correlations at specific points in time (Figures 2.5 and 2.7; left graph each) 

hampers the correlation between the element ratios and the environmental 

parameters, in other words the examined proxy-parameter-relationships 

(Figure 2.1). While profiles of average annual lead concentrations in A. islandica 

shells serve as a reliable indicator of lead pollution at the sampling site 

(Figure 2.3; graphs 2 to 4), intra-annual lead profiles contain a high degree of 

variability (Figure 2.5; left graph). And although my results indicate that 

statistically the Ba/Ca and Mn/Ca ratios correlate well with the diatom 

abundance, there is a lack of a consistent correlation between peak amplitudes 

of diatom abundance and element ratios (Figures 2.7; left graph). Besides, on a 

year-to-year base there is no consistent reflection of diatom abundance patterns 

in the intra-annual Ba/Ca and Mn/Ca profiles (Figure 2.7; left graph). These 

observations clearly illustrate that despite the empirical link between the trace 

element concentrations (Pb/Ca; Ba/Ca and Mn/Ca) of A. islandica shells and 

environmental parameters (lead pollution and diatom abundance), the 

mechanisms determining these correlations are complex and largely unknown. 

Nevertheless, understanding these mechanisms is crucial in order to determine 

to which extend different parameters govern trace element concentrations in 

A. islandica shells, and in the next step, to reliably reconstruct environmental 

history from bivalve shells. Thus, bridging the gap between empiricism and 

mechanistic understanding constitutes a significant milestone in reconstructing 

environmental history from bivalve shells.  
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Lab manual to prepare Arctica islandica shell cross sections  

for LA-ICP-MS analyses 

 

1. Sample preparation 

 

Step 1: sample selection 

 Choose the right or left valve of the shell for preparation and subsequent 

LA-ICP-MS analyses (e.g., right valve; Figure 1A).  

 Label the selected valve properly (e.g., 080R; Figure 1A).   

 

 

Figure 1 Right valve of an Arctica islandica shell. (A) Inside of the shell with two red 

lines indicating the length and the height (= LSG: Line of Strongest Growth) of the 

valve. (B) Outside of the shell with the red line indicating the width of the valve. 

 

Step 2: cleaning the valve 

 Mechanically remove loose parts of the periostracum (e.g., with a brush). 

 Put the sample valve in an ultrasonic bath filled with reverse osmosis water 

(ROW) for 15 seconds.  

 Leave the valve under the fume hood to dry. 

 

Step 3: measuring and marking the valve 

 Take measurements of the shell (Figures 1A and 1B): 

- Weight      (g) 

- Height (= LSG: Line of Strongest Growth)  (mm) 

- Length       (mm) 

- Width      (mm) 

 Mark the following lines on the outside of the valve for sawing (Figure 2):  

- Line 1 = LSG 

- Line 2 = a line 3 mm parallel to the LSG 

- Line 3 = a line 10 mm parallel to the LSG  
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Figure 2 Right valve of an Arctica islandica shell. The 

red line (= line 1) indicates the LSG (= Line of Strongest 

Growth). The blue (= line 2) and yellow (= line 3) line run 

3 mm and 10 mm parallel to the LSG, respectively. 

 

Step 4: embedding the valve  

 Dissolve 10.7 g polyvinyl alcohol (for information on chemicals/resins see 

section 3) in 90 ml of water under constant stirring and heating until it is a 

clear paste. 

 Use a paintbrush to spread a thin layer of the paste across the inside and 

the outside of the valve. 

 A thin layer of polyvinyl alcohol prevents the epoxy resin (see below) 

from entering the shell. 

 Leave the valve under the fume hood to dry over night. 

 Prepare a 5:1 mixture (by weight) of epoxy resin and hardener and stir both 

components until no more streaks are visible. 

 Add one drop of blue pigment to the epoxy and stir again until the epoxy is 

of uniform color.  

 The transparent resin is being dyed to visually verify that the epoxy 

does not penetrate into the shells where it may affect subsequent 

measurements. 

 Spread a layer of stained blue epoxy across the inside and the outside of 

the valve. 

 Leave the valve under the fume hood to dry over night. 

 Before applying another layer of epoxy, the first layer has to be completely 

cured. Otherwise the layers may mix, which can alter the 5:1 mixture and 

that way prevent complete hardening of both layers. 

 Apply at least two or more additional layers of stained blue epoxy (as 

described above) for maximum stabilization of the valve during sawing. 
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Step 5: sawing the valve  

 

NOTE: There are two procedures (version I and II) described below in order to 

prepare samples for (I) large-format laser chambers or (II) laser chambers 2.5 cm 

in diameter. 

  

Version I:  preparation of < 5 mm thick cross sections attached to a glass slide 

for large-format laser chambers 

 Cut along line 3 (Figure 2; yellow line) using a stand saw equipped with a 

diamond blade (for information on technical equipment see section 3). 

 Grind the surface cut of the valve with sandpaper (P180 grit) on a two-

speed grinder polisher down to line 2 (Figure 2; blue line). 

 Prepare a stained blue 5:1 mixture of epoxy resin and hardener (as 

described above) to attach the ground surface of the valve to a glass slide. 

 Attach a small wooden cube (24 x 20 x 14 mm) to the back of the glass 

slide with a little drop of metal epoxy (Figure 3A). 

 Keep the drop small, otherwise the sample may break when removing 

the wooden block by swelling it in water. 

 

 

Figure 3 (A) Cut valve and (B) cross section (< 5 mm thick) of an Arctica islandica shell attached to 

a glass slide with stained blue epoxy. A wooden cube is attached to the back of the glass slide with 

a small drop of metal epoxy.  

 

 Leave the valve under the fume hood to dry over night. 

 Mount the wooden block with the attached glass slide and sample in the 

low speed saw equipped with a diamond blade and cut along line 1 

(Figure 2; red line) to get a < 5 mm thick cross section (Figure 3B). 

 Place the wooden cube in a bowl filled with water and let the wood swell 

until the glass slide detaches. 
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Version II:  preparation of < 10 mm thick cross sections cut into separate pieces 

for laser chambers 2.5 cm in diameter 

 Cut along line 3 (Figure 2; yellow line) using a stand saw equipped with a 

diamond blade. 

 Attach a small wooden cube (24 x 20 x 14 mm) to the cut surface near the 

umbo with a little drop of metal epoxy (Figure 4A). 

 Keep the drop small, otherwise the sample may break when removing 

the wooden block by swelling it in water. 

 

 

Figure 4 (A) Cut valve and (B) cross section (< 10 mm thick) of an Arctica islandica shell attached 

to a wooden cube with a small drop of metal epoxy.  

 

 Leave the valve under the fume hood to dry until the metal epoxy is cured. 

 Mount the wooden block with the attached sample in the low speed saw 

equipped with a diamond blade and cut along line 1 (Figure 2; red line) to 

get a < 10 mm thick cross section (Figure 4B). 

 Place the wooden cube in a bowl filled with water and let the wood swell 

until the glass slide detaches. 

 

Step 6: grinding the cross section  

 Grind the surface of the cross section with sand paper of successively 

smaller grit size (P1200, P2400, and P4000 grit) on a two-speed grinder 

polisher until the growth lines are clearly visible. 

 Verify the surface smoothness under a binocular before moving on to the 

next smaller grit size.  

 Samples can be polished by hand or by using a custom made polishing 

device where the sample is ground until the glass spacers of 2.92 mm 

thickness touch the sandpaper (Figure 5). 
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Figure 5 Custom made polishing device (A) holding a cross section of an Arctica islandica shell and 

(B) without a sample. The sample is ground on sandpaper on a two-speed grinder polisher until the 

glass spacers of 2.92 mm thickness touch the ground. 

 

Step 7: final processing 

 Additional step of version II only:  

Cut a few millimeters into the back of the cross section every 2.3 mm 

using a stand saw to create several predetermined break points. Break 

the sample carefully into several pieces of less than 2.5 mm in size for 

laser chambers that are 2.5 cm in diameter.  

 Put the sample in an ultrasonic bath filled with ROW for 15 seconds.  

 Extended duration may occasionally lead to dull spots in the cross 

section of the sample. 

 Leave the sample under the fume hood to dry. 

 Wrap the sample in dust free paper and keep it in a plastic bag. 

 

2. Comparison of two different cuts 

 

The aim of sawing along the LSG is to cut the valve where increment widths are 

largest, and thus, achieve the maximum spatial resolution of the sample. 

Maximum spatial resolution, in turn, leads to the maximum temporal resolution 

(= maximum number of laser spots per increment) of LA-ICP-MS analyes along 

cross sections of A. islandica shells. 

 

If the sample shell is bent, the stand saw whose diamond blade is at an 90° angle 

with the cutting table would hit the LSG at the beginning and at the end, but partly 

miss maximum increment widths in the middle of the valve. (The effect remains 

the same, whether I cut directly along the LSG or along a paralell line first, as 

described in section 1 step 5) To account for this effect, I compared two 

techinques (method I and II; Figure 6: red and yellow line, respectively) of cutting 

the shell from the start to the end point of the LSG. 
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Does method II of cutting the valve of an A. islandica shell increase the spatial 
(= increment width), and thus, the temporal resolution of the sample in 
comparison with method I? 

 

 

Figure 6 Right valve of an Arctica islandica shell. 

The red and yellow lines indicate two ways 

(method I and II, respectively) of cutting the valve 

from the start to the end point of the LSG. 

 

That way, I aim at examining the following question: 

 

 

If the sample shell is hardly bend, the red and yellow lines (Figure 6) follow the 

same path across the shell, and method I and II would yield the same result, i.e., 

cut across the valve. If the sample shell is bend, the red and yellow lines (Figure 

6) both run from the start to the end point of the LSG, but deviate from each other 

in the middle (as shown in Figure 6), and method I and II would yield different 

results, i.e., cuts that deviate from each other in the middle of the valve. 

 

In order to examine, if method II increases the spatial (= increment width), and 

thus, the temporal resolution of the sample in comparison with method I, I 

selected three shells and prepared cross sections of both valves (as described in 

section 1). One valve of each shell was cut at a 90° angle through the umbo to 

follow the red line across the valve (= method I; Figures 6 and 7A); the other 

valve of the shell was cut at a < 90° angle through the umbo to follow the yellow 

line across the valve (= method II; Figures 6 and 7B).  
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NO. Method II of cutting the valve of an Arctica islandica shell does not 
increase the spatial (= increment width), and thus, the temporal resolution of 
the sample in comparison with method I! 

 

 

Figure 7 Right valve of an Arctica islandica shell. The (A) red and (B) yellow angles indicate two 

ways (method I and II, respectively) of cutting the valve from the start to the end point of the LSG. 

(A) The valve is cut at a 90° angle through the umbo to follow the red line shown in Figure 6 across 

the valve (= method I). (B) The valve is cut at a < 90° angle through the umbo to follow the yellow 

line shown in Figure 6 across the valve (= method II). 

 

Next, I measured the width of each increment in the cross sections of both 

valves. Increments smaller than 250 µm were excluded from analyses to 

minimize the effect of measurement errors. Afterwards, I calculated for all 

increments (N = 137) the ratio of the corresponding measurements in both valves 

(equation 1):  

 

  Ratio = increment width (µm; method II)/increment width (µm; method I)    (1). 

 

In the end, I tested the mean of all ratios against 1 using a Wilcoxon Rank Sum 

Test.  

 

My results indicate that the latter mean is not > 1 (Wilcoxon test; P value > 0.05; 

Prob > t), and thus, lead to the conclusion that: 

 

 

3. Chemicals/resins and equipment: 

 Polyvinyl alcohol: Sigma Aldrich/No. P1763; av. mol. wt. 70,000 - 100,000 

 EpoxyCure - epoxy resin: Buehler/No. 20-8130-128 

 EpoxyCure - hardener: Buehler/No. 20-8132-032 

 Blue Pigment for Castable Mounts: Buehler/No. 20-8501 

 Liquid Metal (Metall Epoxy): Toolcraft/No.886518 

  FKS/E Proxxon stand saw (with a diamond blade; 85 x 0.7 mm) 

 Buehler Isomet low speed saw (with a diamond blade; 102 x 0.3mm)  

 Buehler Alpha wheels (= two-speed grinder polisher) 



 

172 
 

 



173 
 

Name/name: JACQUELINE KRAUSE-NEHRING  
 
Ort/place, Datum/date:   BREMEN, 15.01.2012 
 
 
 
 
 

ANMERKUNGEN ZUR DISSERTATION / ANNOTATIONS NOT PART OF THE THESIS 
 
 
 
 
 

1. DATUM DER VERTEIDIGUNG / DATE OF THE DEFENSE: 19.12.2011 
 
 
2. AKTUALISIERTE ANGABEN ZU DEN VERÖFFENTLICHUNGEN / UPDATED PUBLICATION 

INFORMATION:  
 
 

Publication II: 
 
Krause‐Nehring, J., A. Klügel, G. Nehrke, B. Brellochs, and T. Brey (2011), 
Impact of sample pretreatment on the measured element concentrations in the 
bivalve Arctica islandica, Geochem. Geophys. Geosyst., 12, 
Q07015, doi:10.1029/2011GC003630.  

Copyright (2011) American Geophysical Union. 
 
 
Publication III: 
 
Krause-Nehring, J., T. Brey, and S.R. Thorrold (2012), Centennial records of 
lead contamination in northern Atlantic bivalves (Arctica islandica), Mar. Pollut. 
Bull. (in press), doi:10.1016/j.marpolbul.2011.11.028.  

Copyright (2012) Marine Pollution Bulletin. 
 
 
 Publication IV: 
 
Submitted to the Journal of Geophysical Research – Biogeosciences  
(currently under review) 

 
 

 
 

 
 
 
 
 
 


	0a_Titelblatt_pdf_a
	0b_Acknowledgements_pdf_a
	1_Gliederung_pdf_a
	2_Abstract_pdf_a
	3_Zusammenfassung_pdf_a
	4_Leerseite-ok_pdf_a
	5_Publication I_Intro_pdf_a
	6_Leerseite-ok_pdf_a
	7_Motivation_pdf_a
	8_Publication_II_pdf_a
	9_Publication_III_pdf_a
	10_Publication_IV_pdf_a
	11_Pending manuscript_pdf_a
	12_Leerseite-ok_pdf_a
	13_Synthese_pdf_a
	14_Leerseite-ok_pdf_a
	15_Bibliography_pdf_a
	16_Leerseite-ok_pdf_a
	17_Appendix_pdf_a
	18_Leerseite-ok_pdf_a
	19_BIB Anmerkung statt Erklärung_pdf_a

