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Zusammenfassung

Das Ziel dieser Arbeit war, ein Modell einer oxidierten Titan-Oberfläche zur Anwen-

dung in klassischen Molekulardynamik-Simulationen zu erstellen und dieses zur Unter-

suchung der Adsorption biologischer Molküle zu verwenden.

Neben einer Vielzahl anderer Anwendungsbereiche ist Titan besonders als Biomaterial,

z.B. für orthopädische Implantate, von größter Bedeutung. Im Hinblick auf die Verträglichkeit

im menschlichen Körper, aber auch in anderen technischen Anwendungen, z.B in So-

larzellen oder Sensoren, sind die Eigenschaften der Titan-Oberflächen von atomistischen

Prozessen bestimmt. Simulationen zur Untersuchung dieser Mechanismen basieren oft

auf idealisierten Modellsystemen, wie perfekten Kristalloberflächen, welche nicht die Kom-

plexität der experimentellen Systeme wiederspiegeln können. Es ist daher wünschenswert,

genauere Oberflächenmodelle zu betrachten, um die realistischen Gegebenheiten, wie z.B

Rauheit oder chemische Heterogeneität, besser berücksichtigen zu können.

Beginnend mit der Simulation der Oxidation einer Titan(0001)-Oberfläche mithilfe

quantenmechanischer Dichtefunktionlatheorie (DFT) wurde ein Strukturmodell einer trock-

enen, oxidierten Oberfläche erstellt, welches im weiteren Verlauf als Referenz für die

Entwicklung eines klassischen Kraftfeldmodells diente. Im nächsten Schritt wurden die

Wechselwirkungen zwischen Titanoxid-Oberflächen undWasser-Molekülen parametrisiert,

basierend auf DFT-MD-Simulationen und DFT-Energie-Berechnungen. Das resultierende

Modell erwies sich als übertragbar nicht nur auf die oxidierte Oberfläche, sondern, in

Kombination mit dem etablierten AMBER-Kraftfeld, auf verschiedene kleine organische

Moleküle. Neben der Validierung bezüglich DFT-Energien, wurden auch einige Simu-

lationsergebnisse mit den verfügbaren experimentellen Werten verglichen, z.B. die Im-

mersionswärme und die Adhäsionskraft eines einzelnen Tyrosin-Moleküls aus Atomic-

Force-Microscopy (AFM), entnommen aus der Literatur. In beiden Fällen stimmten die

Simulationsergebnisse sehr gut mit den Experimenten überein, was die Verlässlichkeit des

Modells bestätigte.

Das fertige Modell wurde verwendet, um die spezifische Adsorption des Titanium-

binding-Motifs (minTBP-1), ein Hexapeptid bestehend aus der Sequenz RKLPDA, auf

Titan- und Siliziumsubstraten zu untersuchen. Im Vergleich mit Experimenten zeigte

sich, dass das entwickelte Modell sowohl makroskopische Größen, wie die Freie Energie

xvi



der Adsorption, als auch mikroskopische Größen, wie die Adhäsionskräfte des Moleküls auf

der Oberfläche, exakt wiedergeben konnte. Die genaue Analyse der Trajektorien erlaubte

es nun, die Adhäsionskrafte direkt mit den zugrundeliegenden atomistischen Mechanismen

in Verbindung zu bringen und insbesondere die individuelle Rolle der beteiligten Residuen

zu untersuchen. Als Vergleichs dienten hier Simulationen auf einer oxidierte Silizium-

Oberfläche, auf welcher das Molekül mit etwas geringeren Kräften haftete. Bemerkenswert

in diesem Zusammenhang war, dass die maximalen Adhäsionskräfte auf beiden Substraten

durch die positiv geladenen Arginin und Lysin Residuen hervorgerufen wurden. Dieser

Aspekt spricht gegen eine selektive Adsorption verschiedener Aminosäuren als Ursache für

das spezifische Verhalten. Die Simulationen rücken vielmehr ein komplexes Wechselspiel

zwischen adsorbierten Residuen und der lokalen Wasserstruktur über der Oberfläche in

den Mittelpunkt. Hydrophile Endgruppen können sich dabei in lokalisierten Wasserdichte-

Maxima verankern, was insbesondere auf Titan stark zum tragen kommt, während sich

hydrophobe Teile der Seitenketten um diese Maxima herum in Regionen mit geringer

Wasserdichte anordnen.

Um die Anwendbarkeit des Modells über biologische Systeme hinaus zu demonstrieren,

wurden zudem die Kohäsionskräfte zwischen Titandioxid-Nanopartikeln simuliert. Die

resultierenden maximalen Kräfte lagen zwischen 2 und 6 nN, je nach Wasserbedeckung

der Oberfläche, in guter Übereinstimmung mit experimentell gemessenen Kräften für die

Kohäsion innerhalb eines Films aus Nanopartikel-Agglomeraten (3 nN). Diese Ergebnis

lässt darauf schließen, dass es sich bei den gemessenen Kräften tatsächlich um das Brechen

einzelner Partikel-Partikel-Kontakte handelt.

xvii



Chapter 1

Introduction

The outstanding mechanical and chemical properties of titanium have attracted the

attention of materials scientists for decades, leading to the development of Ti-based

alloys for a broad range of applications. Beside its wide use in the aerospace and marine

industries, its corrosion resistance and biocompatibility make titanium a material of choice

for medical and dental implants. In this case, a thorough knowledge of the physical and

chemical details of the interface between the implant and the physiological environment

is desired for tailoring the surface properties and optimizing the adhesion of cells within

the body tissues.

Since these processes are governed in a fundamental way by the adsorption of biologi-

cal macromolecules, an atomic-scale understanding of the interaction between proteins

and the metal surface is often sought, yet still lacking. Complementary to experiments,

atomistic molecular dynamics (MD) simulations, based on either quantum mechanical or

classical formalisms, may provide a powerful method to gain insight into the microscopic

mechanisms involved in protein adhesion. However, realistic simulations of the interface

between titanium and a physiological environment have to face the rich chemical complex-

ity of the system. In contact with water and oxygen, the metallic Ti surface is covered

by an oxide layer whose composition, structure and thickness strongly depends on the

oxidation conditions. Thin oxide layers for example which form at room temperature,

exhibit an amorphous structure and a broad spectrum of stoichiometric compositions.

Although providing valuable generic understanding of the atomistic mechanisms, the

widely used approach of considering perfect TiO2 crystal surfaces as idealized model sub-

strates might in the end not be capable to capture all aspects of the adsorption behavior.

1
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This sets the need for more realistic models.

Hence, the central topic of this thesis is the development of a realistic surface model by

atomistic simulations and its application to biomolecular adsorption. This challenge in-

herently comprises multiple length and time scales: The elementary oxidation reactions

at the bare metal surface crucially require to take into account the quantum mechanical

details of the electronic wavefunctions which drastically limits the time and length scale

of the model. On the contrary, when modeling biomolecular adsorption the mere size of

the molecule demands large length scales. In addition, the increased number of internal

degrees of freedom due to the flexibility of the molecule moves the emphasis from purely

energetic aspects towards statistical mechanics, or, in terms of thermodynamics, from po-

tential energies towards free energies which generally requires long simulation times. Both

points of view can hardly be combined in a unified model, thus a hierarchical approach

has been chosen in this work.

In detail, I have created a structural model of the charged, natively oxidized titanium

surface based on quantum mechanical calculations, for which a novel empirical force field

has been developed. This interaction model enables the simulation of the adsorption

of large molecules in very good agreement with experiments and ab initio calculations.

Using advanced simulation methods, in particular state-of-the-art sampling techniques

which have been combined in a novel way, the specificity of titanium binding peptides

has been investigated on a realistic system for the first time by quantifying the involved

adhesion mechanisms. Additionally, as an example beyond biotechnological applications,

the potential is used to simulate the contact forces between titania nanoparticles and their

agglomerates.

The dissertation is structured as follows:

In chapter 2 the current knowledge regarding biomaterials, in particular the properties

of the oxidized titanium surface and the adsoprtion behaviour of peptides and proteins

on Ti is summarized. Chapter 3 provides an overview of the simulation methods used

in this work. In chapter 4 the development of the structural and interaction model for

the dry oxidized titanium surface is explained and the generation of a large scale oxidized

surface by purely classical methods is presented as an first application. Chapter 5 intro-

duces the interaction of the oxidized surface with water, investigated at first by ab initio

molecular dynamics simulations and then extended to the classical force field. The result-

ing potential model is tested for small organic molecules against DFT and experimental



3

results and its applicability to biologically relevant systems, such as the RGD peptide is

demonstrated. In chapter 6 I investigate the adsorption of the titanium binding motif, the

RKLPDA peptide, and compare the adhesion forces, the free energy and the microscopic

mechanisms on titanium and on the oxidized silicon surface. As an application from a

different field of engineering, chapter 7 presents simulations of the contact forces among

TiO2 nanoparticles and their agglomerates compared to experimental atomic force mi-

croscopy results. Finally, in chapter 8 all results are summarized and an outlook towards

future work is given.
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Chapter 2

Solid Surfaces in Physiological Environment

Progress in medicine in the last decades has been facilitated to a great extent by

the introduction of medical implants which replace parts of the human skeleton and

teeth, prevent blood vessels from being plugged, or, such as pacemakers, support the

body in its vital functions, to name just a few. The success of this technique is coupled

to the continuous improvement of both the surgical methods and the properties of the

employed implant materials and devices. The basis of this improvement is a growing un-

derstanding of the behavior of these biomaterials within a living organism which is due to

the concerted effort of engineers, biologists, chemists and physicists. The ambitious goal

is to combine enhanced cell and bone adhesion and growth at the implant surface with

controlled antibacterial properties to prevent infections, while at the same time retaining

the mechanical properties of the material itself. An equally important prerequisite is that

no toxic substances are released into the body by dissolution of the material or its coating.

The aggressive environment, i.e. the exposure to oxygen, water, ions and all kinds of small

and large organic molecules combined with mechanical load provide additional challenges

which have to be taken into account. All of these requirements have put titanium, i.e.

commercially pure (cp) Ti or titanium based alloys, e.g. Ti6Al4V or TiNi, into the focus

of biomaterials engineering, as this metal fulfills most of the criteria already in its native

state.

Engineering of biomaterials is by far not the only field which depends in a crucial

way on the interfacial properties between solid surfaces and a wet or physiological envi-

ronment. Considering for example pharmaceutical applications, the use of nanoparticles

5



6 CHAPTER 2. SOLID SURFACES IN PHYSIOLOGICAL ENVIRONMENT

as drug carriers has emerged as a promising technique. On the contrary, it is desirable

to prevent adhesion of drug molecules onto container walls while storing them, as these

effects can reduce their concentration or even alter their functionality in an uncontrolled

way. Furthermore, surface recognition exploiting the specific adhesion behavior of spe-

cially tailored peptides has become a field of highest interest, as it provides promising

new techniques in controlling biomineralization and bionanotechnology. Even the cohe-

sion forces between agglomerates of nanoparticles which can be used as catalysts, gas

sensing films or reinforcement in composite materials, are mediated to a great extend by

the water layer which forms at the surface under atmospheric conditions.

Fig. 2.1 provides a schematic overview of the complex picture and processes involved

at a metal surface in physiological environment. The key aspects are:

• The superficial oxide layer that passivates the surface and governs the interactions

with its environment.

• The reactivity towards water, defining the degree of hydroxylation as well as the

surface charge and electrostatic potential.

• The adsorption and immobilization of molecules like peptides and proteins.

The individual role of these points shall be explained briefly in the following sections.

2.1 Oxidation of Titanium

The corrosion resistance of metallic Ti [168], its electrical behavior as an electrode mate-

rial [120] and its biocompatibility in medical implants [74, 9] are governed by the structure

and composition of the passivating oxide layer which spontaneously grows on its surface.

The oxidation of metallic surfaces in general has been investigated both experimentally

and theoretically. Theoretical approaches exist to describe the kinetics of oxide growth

under various conditions. For thick oxide layers of about 0.5-1 µm width which are known

to form at high temperatures, the diffusion of atoms and electrons through the oxide region

is the rate determining process. Based on this assumption, the Wagner theory [185] de-

scribes oxide growth at high temperature as an activated process with a parabolic growth

L(t) ∼
√
κt. The formation of ultrathin superficial layers which is the dominant channel
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Figure 2.1: Schematic picture of a metal surface in a physiological environment ((left),

taken from Ref. [91]). Zoom into the atomistic structure of an adsorbed biomolecule,

in this case a lysozyme protein, on the oxidized titanium surface from our simulations

(right). For clarity only surface water molecules are displayed.

at low temperatures, takes place in a different way, though, as the initial stage of oxygen

chemisorption is associated with very small or even zero activation barrier. A description

of the growth of thin films is given for instance by the Cabrera-Mott model [31], assum-

ing the presence of a strong electric field due to the electron transfer, a non-equilibrium

reaction at the metal/oxide interface, and the transport of metal cations into the oxide

phase being the rate determining process. The Cabrera-Mott model predicts that below a

critical temperature the oxide growth asymptotically reaches a limiting thickness whereas

for higher temperatures film extends infinitely. However, as atomistic mechanisms play

an important role in particular in the initial stage, this continuum based model must be

assigned a rather qualitative than quantitative character.

Such microscopic insights in oxidation processes can be provided by quantum mechanical

simulations of the chemisorption of oxygen molecules at metal or semiconductor surfaces,

proposing a so-called hot-atom dissociation [43, 44, 41]. As depicted in Fig. 2.2, electron

donation into the partially filled anti-bonding π∗ orbital of the oxygen molecule effects a

Pauli repulsion of these molecular orbitals, and a sudden separation of both oxygen atoms

associated with a release of high kinetic energy.

Considering the titanium surface in particular, it is known from experiments that thin

oxide layers on Ti exhibit a rather amorphous structure and a broad spectrum of stoi-

chiometric compositions [135, 167, 28, 115, 10, 181]. The reactions of molecular oxygen
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Figure 2.2: Snapshots of the initial stages of the oxidation reaction at the aluminum

surface. The spin density is depicted by the green isosurface. (Taken from Ref. [43])

with Ti surfaces have been investigated extensively in the last decades by means of X-

ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), direct recoil

spectrometry (DRS) and electron diffraction methods like RHEED and LEED. Electron

spectroscopic methods generally reveal the appearance of a wide range of Ti oxidation

states (from Ti2O to TiO2) and indicate that oxidation processes go through various

stages at different temperatures [10, 135, 28, 167, 166]. Recent studies suggest that at low

temperature the initial oxidation reaction yields predominantly lower oxides like Ti2O and

TiO which become further oxidized to TiO2 upon increasing exposure to oxygen [167].

Based on DRS and RHEED experiments as well as on work function measurements, it is

agreed that oxygen molecules adsorb above the surface layer at low temperatures [167, 3],

while O atoms can diffuse underneath the surface layers at elevated temperatures, retain-

ing a top layer of metal atoms [181, 166, 22].

Besides these experimental observations, very few ab initio studies of the oxidation of

Ti surfaces have been reported, yet, they are limited to static energetic analysis of O

atoms adsorbed in different surface and subsurface sites [115]. In contrast, the prop-

erties of TiO2 crystals and surfaces have been investigated widely both via quantum

mechanical [4, 184, 36, 102] and classical simulations. The development and application

of classical potentials for titanium oxide have diverged in two main directions. On the one

hand rather simple force fields employing fixed point charges and two-body potentials are

commonly employed. A widely used potential form in this context is the one proposed

by Matsui and Akaogi [119]. This force field has been successfully adopted to simulate
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bulk amorphous TiO2 [79], TiO2 nanoparticles [96, 5], as well as crystalline TiO2 surfaces

and TiO2/water interfaces [13, 139]. Despite its deficiencies in reproducing exact cohe-

sive energies, the advantages of the model are the simplicity and the robustness, which

allow reliable simulations of a variety of systems, including in particular simulation cells

with large numbers of atoms. On the other hand, in order to increase the transferability

between different crystal polymorphs, more sophisticated classical potential models have

emerged. These approaches take into account for example the charge transfer between

metal and oxide atoms [162, 175, 69] and recently also the partially covalent character

of the titanium-oxygen bonds [174], or they include a description of the atomic polariz-

ability [73]. However, larger heterogeneous systems such as amorphous titanium oxides

or thin superficial oxide layers, and, more importantly, interfaces between oxide surfaces

and water, are still outside the scope of these potentials, at least in their present form.

2.2 Reactivity towards Water

Exposed to a physiological environment or even at ambient conditions one expects not

only reactions with oxygen but also with water molecules to take place. These play an

equally important role, as they determine the surface termination and the surface charge.

While e.g. on silicon water always dissociates upon adsorption forming hydroxyl groups

on the surface [39, 42], the dominant channel on oxidized titanium and crystalline titania

is rather ambiguous and has been the subject of controversial discussions for decades [53].

As investigations of water adsorption are also part of this work, I shall refer to chapter 5

for a detailed discussion of this issue.

Experimentally, the reactions with water molecules on different titania surfaces have been

investigated by spectroscopic techniques, such as XPS, DRS, AES and HREELS [11, 77],

as well as temperature programmed desorption (TPD) [78, 106] and scanning tunneling

microscopy (STM) [190]. The point of zero charge (PZC) of titanium has been measured

to be around 5.5 [26] which is in consistence with an isoelectric point (IEP) of 5.0 as

determined from XPS experiments [121], indicating that both basic as well as acidic

surface terminations exist. The apparent surface charge of titanium has been measured

to be about -0.13 C/m2 at neutral pH-value [165].

From the modeling point of view, water adsorption on almost all possible TiO2 crystal

surfaces has been extensively investigated by means of density functional theory. An
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Figure 2.3: AFM picture of collagen fibrils immobilized on titanium ((a), taken from Ref.

[141]). Scheme of an artificial, motif-programmed protein which combines specificity to

titanium with enhanced cell adhesion ((b), taken from Ref. [95]).

excellent overview of these studies can be found in [161]. Empirical force field models of

the interactions of water with TiO2 crystals have been proposed as well, considering both

neutral [13, 155] and charged surfaces [139, 97].

2.3 Biomolecular Adsorption

Successful cell adhesion at titanium based implants depends to a great extent on the

adsorption and immobilization of proteins of the extracelluar matrix (ECM), such as

collagen and fibronectin [141]. Most of these contain the arginine-glycine-aspartic acid

(RGD) amino acid sequence which can be recognized by the integrin receptors at the

cell membrane [144]. Enhancement of cell and bone adhesion upon implant surfaces has

been achieved by coating the surface with ECM proteins or with small synthetic peptides

enriched with the RGD-motif [141, 20] which have been immobilized electrochemically on

the surface. In another study the cell adhesion could be controlled by the attachment of

peptides to saccharide polymer brushes covalently immobilized on Ti [142]. Plasma treat-

ment of the surface has also been found to facilitate protein adsorption [194], presumably

as it increases the surface hydrophilicity [72].

An alternative approach to chemical or radiation treatment involves specific-binding-

peptides [148, 152]. Extending the concept of molecular recognition to a surface being

the host, these molecules exhibit a binding affinity only to a small range of substrates,
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Figure 2.4: Adsorption isotherm and Langmuir fit of glutathione disulfide (GSSG) on α-

Al2O3 nanoparticles (a, taken from Ref. [54]) and of the titanium-binding-peptide (TBP)

RKLPDAPGMHTW on titanium and silicon particles (b, taken from Ref. [146]).

whereas they hardly adhere to other materials. Such peptide sequences have been iden-

tified for various kinds of materials including metals, metal oxides, compounds, carbon

based materials and polymers [152, 57]. Considering titanium, for example, a motif built

by the sequence RKLPDA has been found to exhibit strong specificity towards this ma-

terial, but not to other substrates such as gold or iron [147, 76]. It is thus a consequent

approach to utilize these molecules for immobilization of other molecules, such as spe-

cially tailored peptides, proteins and synthetic polymers on titanium surfaces in order

to achieve the desired functionalization. This concept has been successfully applied not

only to enhance cell adhesion [95], but also in the reverse way by coating the surface with

poly (ethylene glycol) (PEG) to prevent further biomolecular adsorption as desired for

anti-fouling surfaces [92]. Apart from medical purposes, the specificity seems to play an

important role in biomineralization processes and can generally be employed in several

bionanotechnological applications, e.g. the assembly of functional nano-devices [148, 152].

In spite of this progress, scientists are still at the verge of understanding the exact un-

derlying atomistic mechanisms of molecular adsorption and surface recognition. Different

theoretical models have been established to characterize the adsorption of molecules onto

a substrate out of solution in general. The most widely used approach in this field is due

to Langmuir [105] which assumes the presence of a certain density of equivalent adsorp-

tion sites [S0], a coverage below one monolayer and no interactions between adsorbate
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molecules. Its basic result is the formulation of the adsorption isotherm which quantifies

the coverage Γ = [Aads]/[S0] in dependence of the solution concentration c = [Abulk] or

partial pressure p of the adsorbate

Γ =
Γmaxc

K−1

L + c
. (2.1)

When [Aads] is the surface density of adsorbed molecules and [S] the density of unoccupied

sites, KL = [Aads]/(c[S]) is the equilibrium constant of the adsorption reaction which

is is this case referred to as the Langmuir constant. Fig. 2.4 shows two examples of

experimentally measured adsorption isotherms along with the respective Langmuir fit of

Eq. 2.1. Generally, the adsorption constant can be related to the free energy change upon

adsorption via [64, 54]

ΔGads = −kBT ln[KLcsolv] (2.2)

where csolv is the solvent concentration, e.g. for water csolv = 55.5 mol/l. Several modifica-

tions of the Langmuir theory have been proposed to describe the adsorption under different

circumstances, such as the Freundlich adsorption isotherm [60], the Temkin isotherm [170]

and the Brunauer-Emmet-Teller (BET) equation [27], where in particular the last model

also applies to multilayer adsorption.

While standard experimental techniques to investigate adsorption, such as quartz-crystal

microbalance (QCM) [92], surface-plasmon resonance (SPR) [169, 188] and light-extinction

measurements [146] yield adsorption isotherms and the corresponding equilibrium con-

stants, more advanced methods, e.g. nuclear magnetic resonance (NMR) and circular

dichroism (CD), have recently been adapted to investigate the structure of adsorbed

biomolecules [32, 66, 55, 156]. Moreover, atomic force microscopy (AFM) experiments

nowadays can not only visualize patterns of adsorbed molecules on the surface, but also

measure molecular adhesion forces, when the tip is functionalized with the respective

molecules [108, 76]. The forces obtained this way quantify the adhesion strength and

thus can be used to characterize the type of surface-molecule binding. Complementary to

adsorption free energy databases [189], these values also provide important benchmarks

to asses the accuracy of simulation models, as, in principle, they can be compared directly

to the results of molecular dynamics simulations [82].

Since modeling of biomolecular adsorption on solid surfaces in principle gives exhaus-

tive insights into the involved atomistic mechanisms, this field has received increasing

attention. These simulations range from electronic structure calculations of small organic
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molecules in vacuum [65, 110] over molecular dynamics simulations of peptides and small

proteins [98, 154, 126, 133] to coarse-grained Brownian dynamics simulations of entire

proteins [94].

2.4 Challenges in the Simulation of Interfaces

Although simulations have already contributed significantly to the understanding of phe-

nomena at the interface between solid surfaces and physiological environment, a large

number of questions and challenges remains open, with respect to the interpretation of

the experimental results on the one hand and the reliability of the simulation results on

the other hand [52].

Considering surface recognition and surface functionalization, the following aspects are of

primary interest:

• The surface properties which dominate the selective adsorption.

• The role that the individual amino acids and the structure of the peptides play with

respect to the specificity.

• The changes in the functionality of immobilized molecules after adsorption.

A deeper understanding of these points might ultimately enable scientists to propose new

ways of tailoring the molecules and the surfaces to enhance the desired properties, e.g

increase the selectivity of specific binding peptides.

The reliability of the simulation results depends basically on the following three factors:

• Accuracy of the force fields.

• Realistic surface models.

• Advanced sampling methods.

The simulations of solid-liquid interfaces usually employ a combined approach of biomolec-

ular force fields and potentials to model the solid phase. As both sides are often developed

independent of each other based on different concepts, they may not necessarily be com-

patible with each other. Hence, their combination must be carried out carefully and in a

consistent way.
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In adsorption simulations it has become a common approach, to consider idealized sub-

strates, such as perfect crystal surfaces. Although these models provide valuable generic

insights, important aspect of experimentally used substrates particularly in bio-engineering

applications may not be captured. Features present on realistic surfaces can be of topolog-

ical nature, such as steps, islands, ridges or valleys, or of chemical nature, such as charged

terminations, different oxidation states of surface atoms or different surface compositions.

The latter aspects govern e.g. the local hydrophilicity [1]. On the contrary, increased

local heterogeneity makes it more difficult to derive converged quantitative results which

can be considered representative for the respective surface.

Finally, in order to relate the microscopic simulation results to macroscopic observables

such as free energies, it is crucial to take into account all possible microstates in a reason-

able way. With respect to the case of biomolecules this means all relevant conformations

as well as all adsorption and desorption pathways have to be included in the simulations

which becomes increasingly important for larger molecules with a considerable number of

internal degrees of freedom. Due to the limited accessible simulation time this can only

be achieved by using advanced sampling techniques which enhance the exploration of the

phase space, while keeping the computational cost as low as possible.

In this thesis I attempt to devise a multiscale based approach to tackle these challenges

and to provide a way towards a more realistic description of interfaces between solid

surfaces and physiological environment. Moreover, I will proceed to show that such a

model can provide valuable insight into the specificity of titanium-binding-peptides.



Chapter 3

Molecular Dynamics Simulations

In nanoscience and nanotechnology effects caused by microscopic processes at the atomic

length scale play a most important role. Although such effects can successfully be de-

tected and investigated in experiments, the exact underlying microscopic mechanism often

remains unclear. Attempting to retrace the motion of the involved particles, molecular

dynamics (MD) simulations provide a promising way to complement and understand the

experiments. MD simulations can not only reconstruct experimentally observed effects

but sometimes even predict formerly unknown effects and point out the route to new

experiments. However, when interpreting the simulation results one must always bear in

mind that these calculations contain approximations and that their results are only as

accurate as the assumptions underlying the respective simulation model.

In the following chapter the basic concepts of molecular dynamics simulations and the

most common atomic interaction models, from ab initio techniques to empirical force

fields, are summarized. Furthermore, a brief overview over thermodynamics and statisti-

cal mechanics in the context of molecular simulations is given, focusing in particular on

free energy calculations and sampling methods.

3.1 Classical Equations of Motion

In classical mechanics a system consisting of N particles can be described by its con-

figuration {R;P } in 6N -dimensional phase space, where R = (r1, . . . , rN ) and P =

(p1, . . . ,pN ) represent the particles’ positions and conjugate momenta. The motion of

this system can be formulated analytically within the framework of Hamiltonian me-

15
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chanics [70, 71]. The central quantity in this formalism is the Hamilton function, or

Hamiltonian, which is written as

H = T (P ) + V (R) , (3.1)

where T represents the kinetic energy and V the potential energy of the system. Relating

it to the original formulation of Lagrangian mechanics, the Hamiltonian is obtained from

the Lagrange function L = T − V via Legendre transformation. Based on the principle

of stationary action the Hamilton equations can be derived as

ṗi = −∂H
∂ri

, ṙi =
∂H
∂pi

. (3.2)

When writing the kinetic energy as T =
�

i p
2
i /(2mi), Newton’s second law

mir̈i = −∇iV = fi , (3.3)

is retrieved, where f i denotes the force acting on particle i. Hence, assuming the knowl-

edge of the potential energy V (R) for each point in configuration space and the initial

conditions {R(t = 0);P (t = 0)}, one can in principle integrate Eq. 3.3 and, in com-

bination with Newton’s first law, obtain the classical motion of the system for all times

[63]:

P (t) =

� t

0

dt�∇V (R(t�)) + P (0) (3.4)

R(t) =

� t

0

dt�
1

m
P (t�) +R(0) (3.5)

3.2 Time Integration

The basic limitation of this ansatz is the fact that Eqs. 3.4 and 3.5 cannot be solved

analytically for systems containing more than two particles. Yet, as pointed out in the

following, suitable strategies for a numeric solution exist.

3.2.1 Velocity Verlet

In order to integrate the system of equations 3.4 and 3.5 the time t is discretized into

small intervals δt. Assuming constant forces within each of these intervals, the trajectory

in phase space can be constructed step by step [6]. In the limit δt → 0 the schemes
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should converge to the exact integrals. However, the order of convergence is an important

factor, as it determines the accuracy of the integration and therefore the efficiency of the

simulation.

To propagate the system from a known state at time t to the next step at t+δt a truncated

Taylor expansion can be applied:

R(t+ δt) = R(t) + Ṙ(t)δt+
1

2
R̈(t)δt2 +O(δt3) (3.6)

As the time derivatives are only known up to the second order, the error for this scheme

is O(δt3).

A more efficient and thus more popular method is the velocity-verlet integration algorithm

[182, 163]. In contrast to Eq. 3.6 the velocities are evaluated in the middle of each

timestep, t + δt/2 based on the average force associated with the embracing positions t

and t+ δt. Its mathematical formulation writes as

R(t+ δt) = R(t) + V (t)δt+
1

2

F (t)

M
δt2 (3.7)

V (t+ δt) = V (t) +
F (t) + F (t+ δt)

2M
δt , (3.8)

where V = Ṙ stands for the array of particle velocities. The iterative application of

these equations yields the trajectory of each particle and propagates the system in time.

Compared to the truncated Taylor expansion it can be shown that the convergence of the

velocity verlet algorithm is O(δt4). It offers enhanced stability and it is time-reversible.

As the total energy of the system is conserved, the velocity verlet algorithm resembles a

microcanonical (NVE) ensemble.

3.2.2 Thermostats

Instead of considering a microcanonical ensemble one can as well simulate a system at

constant temperature which is useful in order to mimic an experimental setup. In exper-

iments the temperature is maintained by keeping the system in equilibrium with a heat

bath. Although its macroscopic size usually forbids the inclusion of an atomistic heat

bath in MD simulations, yet, several strategies have been devised to control the system

temperature. When doing so, one has to make sure that the distribution of energies

corresponds to a canonical ensemble.
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3.2.3 Langevin Thermostat

A widely used approach is to couple the system to a continuous heat bath [179]. This

can be accomplished by augmenting the equations of motion 3.3 by a friction force and a

fluctuating stochastic force as if the system was immersed into a dissipative medium. By

doing so one obtains the Langevin equation

mir̈i(t) = fi(t)− γṙi(t) + Γi(t) . (3.9)

The damping constant γ is related to the magnitude of the random force via the fluctuation

dissipation theorem


Γi(t) · Γj(t
�)� = 2γkBTδi,jδ(t− t�) . (3.10)

Obeying this relation assures that the energy which is additionally introduced into the

system by the random force, and the energy which is removed by dissipation, in total

balance each other in order to maintain a constant temperature. An essential effect of

this method is, that it couples every particle individually to the heat bath, as the forces

act locally on each particle. The temperature is uniformly distributed over the system,

avoiding temperature gradients. On the contrary, due to the random force this approach

no longer yields time-reversibility.

In the limit of large friction γ → ∞, inertial effects vanish completely. Instead of Langevin

dynamics the system obeys Brownian dynamics in that case.

3.2.4 Berendsen Thermostat

A way to control the temperature without introducing a random force, is offered by the

Berendsen thermostat. In the Berendsen approach it is assumed that the temperature

development of the system obeys the following equation:

dT

dt
=
T0 − T (t)
τT

, (3.11)

introducing a temperature coupling time constant τT and a target temperature T0. This

scheme is commonly implemented into the velocity verlet algorithm by scaling all velocities

after the integration by a uniform scaling factor

ξ =

�

1 +
δt

τT

�

T0
T (t+ δt)

− 2

��1/2

, (3.12)
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where T (t+ δt) = 2Ekin(t+ δt)/(fkB) is the new temperature and f denotes the number

of degrees of freedom of the system. Hence, the system temperature approaches the target

temperature exponentially which, under normal circumstances, keeps the system rather

stable even for small time constants.

Compared to the Langevin thermostat the temperature coupling is less tight, as it acts

uniformly on all particles and therefore does not disturb the local dynamics of the sys-

tem. Since the distribution of the velocities differs slightly from the Maxwell-Boltzmann

distribution, it does not maintain an exact canonical ensemble, yet, the deviations are

usually negligible.

3.2.5 Nosé-Hoover Thermostat

An exact NVT ensemble can be achieved by employing a Nosé-Hoover-thermostat [81]. In

this approach the scale factor ξ(t) is introduced into the equations of motion as a further

equivalent degree of freedom of the system:

R̈(t) =
F (t)

M
− ξ(t)Ṙ(t) (3.13)

dξ(t)

dt
=
T (t)− T0
Q

. (3.14)

Q = T0τT
2 includes the coupling time constant and can be interpreted as a mass of ξ. The

integration of Eq. 3.14 is embedded into the velocity verlet scheme in which the velocities

are scaled twice during one time step. As the mass Q introduces an inertial effect into the

temperature dynamics, the Nosé-Hoover method has the shortcoming that particularly

for small time constants the temperature can exhibit large oscillations. Therefore the

system can turn out less stable in some cases, compared the Berendsen ensemble.

Apart from these methods, several other approaches have been devised to control the

temperature of the system, such as the Andersen thermostat [7] or stochastic velocity

rescaling [29], which might be suitable under certain conditions.

3.2.6 Barostats

Sometimes it is desired to couple the system not only to a heat bath but also to control

the pressure in the system allowing for changes of the simulation cell size. The simulated

system then corresponds to an NPT ensemble.
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Pressure coupling is generally accomplished in a way that is similar to temperature cou-

pling:

The pressure tensor or, for isotropic systems, the scalar pressure is evaluated and the

cell size (including its interior, i.e. the particle coordinates) is scaled by a factor which

is determined similarly to the temperature scale factor from the difference between the

current pressure P (t) and the target pressure P0. For anisotropic systems the scale factor

η is a tensor itself which acts on the cell vectors as Lα
� = η · Lα. This changes not only

the size of the cell but also its shape. It is furthermore possible to include only selected

components of the pressure tensor in the coupling, e.g. for surface-liquid interfaces it is

sometimes useful to control the pressure only along the direction of the surface normal,

while the lateral dimensions of the cell which are determined by the crystal structure of

the substrate remain constant.

Two of the most common schemes are the Berendsen barostat and the Nosé-Hoover baro-

stat. In both approaches the scale factor is determined in analogy to the respective

thermostat. Accordingly, the Berendsen barostat offers better stability compared to the

Nosé-Hoover barostat, as it does not cause pressure oscillations. On the contrary, only

the Nosé-Hoover scheme yields an accurate NPT ensemble.

3.2.7 Periodic Boundary Conditions

The number of particles that can be treated in molecular dynamics ranges from a few

atoms to about a million particles, depending on how elaborate the computation of the

interactions is. Even at the upper boundary of this range, the corresponding system

size is usually still small compared to macroscopic systems which means that artificial

boundary effects can contribute considerably to the systems’ properties. A practical way

to deal with this problem is to apply periodic boundary conditions. This means that

images of the system are copied and translated by all possible linear combinations of the

cell vectors. These images interact with the original particles which mimics an infinitely

extended macroscopic system. This way artificial boundaries, such as walls, imposed to

contain the particles in the cell are avoided. Moreover, since the interactions are in most

cases short-ranged it is enough to consider only the first “shell” of images.

The calculation of short-ranged interactions obeys the minimum image convention which

means one always takes into account only the smallest possible distance between two

particles or between its periodic images. In order to calculate long-ranged interactions,
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e.g. electrostatic interactions, strategies have been developed (cf. Sec. 3.3.2). Of course,

the concept of periodic boundary conditions does not completely prevent finite-size effects,

as the periodicity of the repeated images might still influence the system’s behavior, in

particular for small cells. Thus, one is always advised to test the convergence of certain

properties with respect to the system size to exclude significant artefacts.

3.3 Interaction Models

A central issue in molecular dynamic simulations are the interactions among the particles,

as they determine the forces as well as the energies and thus all the properties of the

system. It is thus of great importance to choose an appropriate interaction model. In

doing so, one has to balance computational efficiency and accuracy depending on what

properties one desires to investigate.

One commonly differenciates between ab initio methods which are based on quantum

mechanics, and empirical pre-defined force fields. While the former class additionally

takes into account the electronic degrees of freedom of the atoms, the latter methods

usually only depend on the positions of the atoms themselves.

3.3.1 Ab Initio Methods

On the atomic scale, the system no longer follows exactly the classical equations of motion,

but rather obeys the laws of quantum mechanics. One of the fundamental differences is

that the particles, in particular the electrons, are not represented by their positions and

momenta anymore, but in terms of wave functions. The wave functions are determined

by solving the Schrödinger-Equation [151]

Ĥ|Ψi� = Ei|Ψi� . (3.15)

where Ĥ = T̂ + V̂ is the Hamilton operator, the quantum mechanical analogon to the

classical Hamiltonian, and Ei, |Ψi� are the energy eigenvalue and the wavefunction of

state i.

In principle this equation has to be solved for both core ions and electrons of the

system. Considering the heavy mass of the atomic cores which exceeds the electronic

mass by several orders of magnitude, a way to approximately treat such systems is to

separate the motion of the electrons from the motion of the ions. In this adiabatic
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approximation the resulting electronic Hamilton operator includes the ionic positions

merely as parameters, by treating the electrostatic interactions between ions and electrons

as an external field v(r) [25]:

ĤBO = −1

2

�

i

∇i +
1

2

�

i,ji �=j

1

|ri − rj |
+ v(r) = T̂ + V̂ee + V̂ext . (3.16)

The corresponding wave function Ψ({ri}) depends only on the coordinates of the elec-

trons. This approximation is well-known under the name Born-Oppenheimer approxima-

tion.

Density Functional Theory

Another difficulty that is still contained in the Born-Oppenheimer electronic Hamiltonian

is the exchange symmetry of the electrons which renders the calculation of the exact

electronic wavefunction complicated and computationally demanding. Instead of dealing

with the full electronic wave functions one can consider the electronic density n(r) as the

central quantity and express observables as functionals of this quantity [136, 117].

The basic idea behind density functional theory was formulated by Hohenberg and Kohn

in 1964 [80], which states that a unique mapping between the external potential Vext(r)

and the density n(r) exists.

As a consequence, the energy can be written as:

E[n] = T [n] + Vee[n] +

�

drv(r)n(r) . (3.17)

The density function n0(r) which minimizes this energy functional corresponds to the

ground state density. In principle Eq. 3.17 is exact, however, the functional dependence

of the kinetic energy T [n] as well as the electron-electron interaction Vee[n] is unknown.

The basic approximation of density functional theory, as proposed by Kohn and Sham

[93], is to replace the exact system by an auxiliary system of uncorrelated electrons with

single particle wave functions Ψ0
i (r). This still yields the exact properties of the system

as long as the density of the auxiliary system is equal to the original density. The notion

of uncorrelated electrons, though, simplifies the calculation of the kinetic energy operator

T̂ 0 and it reduces the electron-electron interaction to a coulombic Hartree energy VHartree.

In order to account for the difference between the original system and the auxiliary sys-

tem of independent electrons, one introduces another energetic contribution, the so-called
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exchange-correlation functional Vxc[n], which is the only remaining unknown expression

in the formalism of density functional theory. Fortunately, in most cases its contribution

appears to be small compared to the kinetic energy. Moreover, approximations to this

term exist, which have been proven sufficiently accurate to calculate many physical prop-

erties for a wide range of materials.

The most common classes of exchange correlation functionals are the local density approx-

imation (LDA), the generalized gradient approximation (GGA) and hybrid functionals,

such as B3LYP [18]. All of them have revealed certain advantages and drawbacks in

their performance and their computational efficiency, depending on the particular case

and material.

Further practical approximations are common in state-of-the-art DFT codes to in-

crease the computational efficiency.

The wave functions are expanded in an appropriate basis set for which the mathematical

operations are easy to perform. The two most popular types of basis sets are (simplified)

atomic orbitals and plane waves. While the former type is well suited for isolated atoms

or molecules, the latter type intrinsically contains a periodicity, which makes them ideal

for crystalline solids. The precision of this expansion can be controlled by the number of

basis functions being included. For plane waves this is determined by the maximum wave

vector kmax which is usually given in terms of the associated maximum electronic kinetic

energy Ecut.

Crystalline solids require integrals over the wave vectors in the Brillouin zone (BZ), which

can be approximated by a weighted sum including only a limited number of special points.

The most popular choice for this k-point sampling is the Monkhorst-Pack scheme [125].

Problems arise for metals featuring partially filled bands near the fermi level, which in-

troduce discontinuities. Such systems have to be treated with special algorithms, which

apply a fictitious temperature and thus smear the discontinuities smoothly over a finite

energy range of about 0.1 eV [180, 159].

Finally, it is common in DFT to treat only the valence electrons explicitly, whereas the

core electrons are considered as fixed, because they hardly contribute to the properties and

the reactivity of the material. By introducing so-called pseudopotentials which imitate

the interaction between the core electrons and the valence electrons, this approximation
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saves computational time due to the reduced number of degrees of freedom. These pseu-

dopotentials characteristically have a very smooth shape avoiding the rapid oscillations

and the coulomb singularity close to the atomic core which would require high-frequency

plane waves and correspondingly high cutoff energies. Of course, one has to be careful

when constructing such pseudopotentials, as they must not change the properties of the

material significantly. The scheme that has been used throughout this work is the so-

called projector augmented wave (PAW) method, proposed by Blöchl[23].

First Priciples Molecular Dynamics

Apart from the electronic density and total energy, density functional theory allows to

calculate the forces acting on the core ions. This task is tremendously simplified by the

Hellman-Feynman theorem, which states that if the system is in its ground state, these

forces correspond the expectation value of the derivative of the Hamilton operator [58]:

F I =
�

i


Ψi|−
∂ĤKS
∂RI

|Ψi� . (3.18)

The knowledge of the forces generally enables to perform molecular dynamics according

to the schemes described in the previous section. One distinguishes between two ways in

which these simulations can be carried out [118]. In Born-Oppenheimer (BO) molecular

dynamics the electronic wave functions and the resulting forces are calculated at every

time step by solving the Born-Oppenheimer-Schrödinger equation 3.16.

A usually more efficient way is the Car-Parrinello method [34], which is also based on

the Born-Oppenheimer approximation, but in addition it includes the electronic degrees

of freedom into the classical dynamics. Assigning a fictitious mass µ to the electronic

orbitals, the classical Lagrangian can be written as

L =
�

i

1

2
µ

�

dr|Ψ̇i|2 +
�

I

1

2
MṘI − E [{Ψi}, {RI}] , (3.19)

where the Ψi are subject to the constraints of orthonormality. The associated equa-

tions of motions are formulated as described in Sec. 3.1. This approach allows to apply

dynamical minimization methods to reach the ground state instead of repeated matrix

diagonalization or direct minimization. Furthermore, given that in MD simulations two

subsequent configurations of ions differ only very little from each other, it is often suffi-

cient to integrate the electronic equations of motion over just one timestep to obtain new
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Figure 3.1: Charge values for the truncated tyrosine amino acid obtained from Bader

analysis and ESP fit compared to the charges taken from the AMBER force field [45].

wavefunctions that are reasonably close to the actual ground state, instead of performing

a full self-consistent minimization.

Charge Calculation

The local distribution of the electronic density obtained in a DFT calculation may be

analyzed in terms of atomic point charges which is useful, e.g. to quantify the atomic

oxidation state. Apart from that, quantum mechanical charges play an important role

in the parametrization of empirical force fields, as they determine the electrostatic inter-

actions. Various methods have been devised to calculate atomic charges from quantum

mechanical calculations. Since they are based on different concepts the results commonly

deviate from each other.

One possible approach are electrostatic potential derived (ESP) charges. One utilizes the

electrostatic potential

V (r) =
�

I

ZI
|r −RI |

−
�

dr� ρ(r
�)

|r − r�| (3.20)

originating from the electronic density ρ and the charge of the core ions I. The charges

are determined by fitting a set of point charges located at the positions of the ions to

reproduce this potential outside the Van der Waals radii of the atoms [124, 46, 153, 191].

The last requirement renders this method feasible only for isolated molecules or surfaces,

as one needs a considerable amount of unoccupied volume to obtain reasonable values.
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Moreover, it implies that the electrostatics arising from ESP charges are well-suited pri-

marily to calculate intermolecular interactions. In some cases subsurface atoms can suffer

from unphysically high charge values as their electrostatic potential is screened by atoms

close to the surface, as discussed in chapter 5. A common modification to this technique

is the restrained electrostatic potential (RESP) charges method [17] which introduces re-

straints into the fitting procedure in order to increase the transferability of the charges

of functional groups among different molecular contexts. This method is very popular in

the field of biomolecular modeling, and most of the partial charges used in biomolecular

force fields are obtained this way.

Another set of charges which is calculated in a very robust and unambiguous way, are

the Bader charges, obtained on the basis of the atoms in molecules concept [12]. This

approach defines atomic volumes by dividing space into separate basins, each associated

with a certain atom. The division is carried out based on the gradients of the electronic

density. In detail, each grid point is assigned to the atom that is ultimately reached when

following the path of steepest increase of the density. Consequently, surfaces with van-

ishing gradient define the boundaries between different atomic volumes. In a second step

the charges are calculated by integrating the charge density within these atomic basins.

In contrast to Mulliken charges [130] for example which are calculated as a population

analysis by a projection of the wave function onto atomic orbital basis functions cen-

tered on the respective atom, the Bader charges are independent of the chosen basis set.

Moreover, as Bader charges do not suffer from screening of buried atoms, changes in the

oxidation state are captured reliably by this method, making it a good starting point to

calculate the cohesive interactions within heterogeneous ionic solids for example. How-

ever, compared to the ESP charges the magnitude of the Bader charges is usually larger

which can result in incorrect electrostatic potential values outside the molecule or the

surface. As an example, Bader and ESP charge values for the tyrosine amino acid are

displayed in Fig. 3.1 along with the RESP charges from the AMBER force field.

3.3.2 Empirical Force Fields

The prize one has to pay for the chemical accuracy of ab initio methods is the relatively

small system size. Depending on the particular system, energy calculations are possible

for up to about one thousand atoms at most, whereas molecular dynamics simulations

using the Car-Parrinello method are feasible for only a few hundreds of atoms to achieve
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reasonable simulation times of the order of 10 picoseconds. Generally, this limits the

applicability of ab initio methods to very simplified model systems.

Fortunately, many molecules and solids move on a rather well-defined and reproducible

potential energy landscape. As long as no chemical reactions are involved one can utilize

this finding by defining the interaction potentials prior to the simulation. When calculat-

ing the interactions merely as a function of the atomic positions one avoids solving the

Schrödinger equation for the electronic degrees of freedom which is the most elaborate

part of ab initio calculations.

Such interaction models can be defined either on a semi-empirical basis by deriving the

potential energy functions directly from the quantum mechanical equations or empirically

by mapping the potential energy to appropriate functions. The parameters of these func-

tions are tuned by fitting to suited target values which can be DFT energies, experimental

observables or atomic and molecular structures. These reference values have to be chosen

carefully according to which properties one is ultimately interested in investigating. Spe-

cial care has to be taken when a model is transferred into a new context, for which it has

not been explicitly tailored. One has to test carefully by comparing to experiments or to

ab inito calculations whether the model still extrapolates well to the new situation, and

possibly reparametrize the force field.

A large number of established force field models exist for a broad range of materials, such

as biological molecules, metallic or ionic crystals and all kinds of liquids which will be

described briefly in the following.

Ionic Force Fields

To model a purely ionic crystal it often turns out to be sufficient to include only electro-

static and short-ranged interactions:

V ionic =
�

i<j

qiqj
rij

+
�

i<j

V SR(rij) (3.21)

The electrostatic interactions are determined by the point charges of each ion which can be

partial charges or formal charges. The short-ranged interactions accomplish the repulsion

between the ions at small distances due to the Pauli-principle. Furthermore, they can

account for dispersion effects. A typical function that is used for this kind of interactions
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is the Buckingham potential

V Buck(rij) = Aije
−rij/ρij − Cij

rij6
. (3.22)

Embedded Atom Potentials

For metallic crystals the cohesion is not accomplished primarily by classical electrostatic

interactions as it is the case for ionic materials, but rather by the nearly free electrons in

the valence band. Such interactions are basically of quantum mechanical nature which

renders a classical description more complicated. The semi-empirical embedded atom

method (EAM) [50] or the closely related Finnis-Sinclair (FS) [59] potentials have turned

out successful in the description of many different metals. In contrast to the previous case

of pair-interactions these methods are formulated as manybody potentials. The general

form is described as

V EAM =
�

i<j

V pair(rij)−
�

i

F embed(ρi) , (3.23)

where the first term V pair describes pairwise repulsion and the second term F embed repre-

sents the embedding energy which is a functional of the embedding density

ρi =
�

j

ρij(rij) . (3.24)

The density ρi of each atom is calculated as the sum over all contributions ρij from

neighboring atoms. The embedding functional F embed is, especially for FS-type potentials,

typically the square root of the density, although for general EAM potentials it can also

have different forms.

Biomolecular Force Fields

Modeling of biological molecules, such as proteins, nucleic acids or lipids, has developed

into a vital field offering several well-established force fields. Among the most popular

ones are the AMBER [45], CHARMM [116] or the OPLS [90] force field. As the AMBER

force field has been used in the present work, its functional forms will be introduced in

detail. It should be remarked, though, that most of these potential models use the same

or very similar functional forms, only with different parameters.
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The AMBER force field consists of the following terms:

V =
�

bonds

kb(rij − r0)2 +
�

angles

kθ(θijk − θ0)2 +
�

dihedrals

kφ

2
[1 + cos(nφijkl − γ)]

+
�

pairs

4ij

�

�

σij
rij

�12

− 2

�

σij
rij

�6
	

+
�

pairs

qiqj
rij

(3.25)

The model includes intramolecular terms which describe the topology and the structure

of a molecule. These are chemical bonds, angle bending, and dihedral angles. Bonds are

modeled by a harmonic potential with spring constant k and equilibrium bond length r0.

Angle bending terms account for the stiffness of two connected bonds by including an

angle force constant kθ and equilibrium angle θ0. Dihedral angles describe the torsion of

four atoms around the central bond by the dihedral force constant kφ, the periodicity n

and the phase γ. Improper dihedrals have the same functional form as dihedral potentials,

but describe the out-of-plane torsion of a planar group of atoms.

Additionally, Eq. 3.25 contains intermolecular terms which govern primarily the inter-

action between different molecules and between topologically remote parts of the same

molecule. These contributions are described by Lennard-Jones and electrostatic Coulomb

interactions. The Lennard-Jones term originally accounts for interatomic repulsion and

van-der-Waals interactions, although it is often used to include all kinds of energetic contri-

butions that are not captured by the previous potentials. The Lennard-Jones coefficients

for a pair of interacting atoms i and j can be obtained from the atomic coefficients 4i and

σi using combination rules. In the context of the AMBER force field Lorentz-Berthelot

rules apply, yielding 4ij =
√
4i4j and σij = σi + σj. The electrostatic interactions are

based on partial charges qi which are usually determined from ab initio calculations by

the RESP method (cf. Sec. 3.3.1).

A special case of particular importance is the modeling of water molecules which is

present as solvent in most systems. As molecules and surfaces interact with each other

primarily via their solvation shell, an accurate description of water molecules is of vital

importance. Several water models exist, yielding properties that sometimes differ slightly

from each other. The most common ones are the simple point charge (SPC) model, the

TIP3P or the TIP4P models [89]. The AMBER force field normally employs the TIP3P

model which features constrained O-H bonds and constrained H-O-H angles. It interacts
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with other molecules via non-bonded Lennard-Jones and electrostatic interactions with

partial charges of qO = −0.834 e and qH = 0.417 e.

Electrostatic Interactions

The Lennard-Jones potential decays quickly as r−6 and can thus safely be truncated af-

ter an appropriate cutoff distance, rendering its computation quite efficient. In contrast,

coulomb interactions merely decay as r−1. Truncating such long ranged interactions gen-

erally leads to more pronounced errors, unless the cut-off radius is increased significantly

which slows down the calculation considerably. A computationally efficient way to avoid

the truncation of the coulomb interactions for neutral systems is the Ewald sum [6]. This

method adds to each point charge a fictitious cloud of opposite charges which effectively

screens the electrostatic potential at large distances. To compensate for this, the inter-

actions of the additional set of charged clouds alone are evaluated in reciprocal space

using the Poisson equation. The results are then subtracted from the previously calcu-

lated forces and energies. In practice the electrostatics are calculated using the following

formula:

V es =
�

i<j,rij<rc

qiqj
r
erfc(αrij) +

2π

V

�

k

exp(−k2/4α2)
k2

|
�

i

qi exp(−ik · ri)|2 , (3.26)

where the first term describes the truncated screened real space contribution and the

second term represents the reciprocal space part. For the calculation of the reciprocal

space contribution several schemes exist to map the charges onto a mesh prior to the

fourier transform and to evaluate the interactions of the electric field with the particles

afterwards. The methods employed in this work are the smoothed particle mesh ewald

(SPME) [56] and the particle-particle particle-mesh (PPPM) [48] technique.

3.4 Free Energy Calculations

In order to compare the results with experiments one has to bear in mind that usually

only a limited collection of possible microstates is considered in simulations. Therefore

the thermodynamics and statistical mechanics of the ensemble in which the experiments

and the simulations are performed play a crucial role in linking the simulation results to

macroscopic observables.
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In statistical mechanics the measured quantities are expressed as an average over all

possible microstates spanning the entire phase space Γ = {R;P } (cf. section 3.1) of the

system. Most of the simulations presented in this work are performed in the canonical

NVT ensemble. The corresponding probability associated with each microstate i and

corresponding (Ri,P i) is thus

P (Ri,P i) =
1

Z
exp(−βH(Ri,P i)) , (3.27)

Here H = T + V is the classical (or quantum mechanical) Hamiltonian of the system,

β = 1/(kBT ) is the inverse thermal energy and

Z =

� �

dRdP exp(−βH(R,P )) (3.28)

is the canonical partition function of the system which normalizes the probabilities. The

thermodynamic potential associated with the canonical ensemble is the Helmholtz free

energy G = U − TS which is composed of the internal energy U and the entropy S of

the system (whereas the Gibbs free energy contains the enthalpy instead of the internal

energy, as it is associated with an NPT ensemble). Relating thermodynamics to statistical

mechanics, the free energy can be expressed in terms of the partition function

G = −kBT lnZ . (3.29)

In contrast to the calculation of the average observables, the direct evaluation of Eq. 3.29

from molecular dynamics simulations appears to be a difficult task, as the probability

distribution 3.27 does not favor high-energy microstates. Such states, though, may con-

tribute significantly to the free energy. In practice however, one is more interested in free

energy differences between different subsystems than in absolute values. Since free energy

is the driving force in the canonical ensemble, its differences govern the relative popula-

tion of the subsystems. Introducing the partition functions ZA and ZB of subsystems A

and B, one obtains

ΔG = −kBT ln
ZA
ZB
. (3.30)

The differences between the two subsystems can be of various nature: One can imagine

subsystems which differ from each other in their Hamiltonians, their temperatures, or

they occupy different regions ΓA and ΓB in phase space. In the context of this work

one can distinguish for instance between a molecule adsorbed on a surface and the free
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molecule in solution. Instead of a single ΔG value between two separate subsystems one

can as well consider a continuous reaction coordinate λ = λ(R) and calculate the free

energy profile along its path:

G(λ) = −kBT lnP (λ) +G0 (3.31)

Here G0 is an arbitrary additional constant, P (λ) = Z(λ)/Z and

Z(λ) =

�

dRdP exp(−βH(R,P ))δ(λ− λ(R)) . (3.32)

Since Eq. 3.31 can be written in terms of the driving force dG/dλ as

G(λ) =

� λ

λ0

dG(λ�)

dλ�
dλ� +G(λ0) , (3.33)

the free energy profile is often called the potential of mean force (PMF).

When using non-cartesian reaction coordinates one additionally has to take into account

the change of phase space volume in dependence of the reaction coordinate value [178].

Although the consideration of free energy differences instead of absolute values in

principle simplifies the numerical treatment, one still has to devise suitable methods to

practically calculate these values in simulations.

A straightforward way is to utilize Eq. 3.31 and run an equilibrium simulation for a

long time to measure the probability distribution P (λ) by counting the occurrences asso-

ciated with each value of λ. While this works well for rather flat free energy landscapes,

for more structured profiles it often leads to the reaction coordinate being trapped in a

local free energy minimum which it cannot escape in the accessible simulation time. Other

regions which might contribute significantly to the global free energy profile, are sampled

insufficiently. This sampling problem constitutes the main challenge in free energy calcu-

lations.

Several strategies exist to overcome this problem, such as thermodynamic perturbation,

thermodynamic integration, umbrella sampling or biased calculations to name just a few.

In the following sections the most important ones in the context of molecular adsorption

will be introduced briefly.

3.4.1 Thermodynamic Integration

A rigorous approach to sample the free energy profile properly is to apply constraints

which enforce the reaction coordinate to assume certain values along the reaction path.
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Figure 3.2: Combined probability distribution (black solid line) of a series of umbrella

sampling simulations for the RGD-peptide on the oxidized titanium surface (cf. Chap. 5).

The applied harmonic bias potentials are displayed by the dashed lines. The associated

PMF is displayed in the inset.

Using Eq. 3.32 the free energy derivative in Eq. 3.33 can be written as

dG(λ)

dλ
= −kBT

d lnZ(λ)

dλ
= −kBT

1

Z(λ)

∂Z(λ)

∂λ

=
1

Z(λ)

�

dRdP
∂H(λ)

∂λ
exp(−βH)δ(λ− λ(R)) =




∂H(λ)

∂λ

�

. (3.34)

Under the assumption of ergodic sampling, the derivative of the free energy equals the

average of the derivative of the Hamiltonian, a quantity that can easily be evaluated in

simulations. A series of simulations is carried out in each of which the reaction coordinate

is constrained to a certain value of the reaction coordinate, thus spanning the entire range

from initial to final state.

3.4.2 Umbrella Sampling

A different, probability-based approach is the so-called umbrella sampling method. Gen-

erally, the notion umbrella sampling comprises simulations with additional bias potential

V bias(λ) that favors a certain region of the reaction coordinate. This way one obtains a

biased probability distribution

P biased(λ) = exp[−β(G(λ) + V bias(λ))] = P (λ) exp(−βV bias(λ)) . (3.35)
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Consequently, the unbiased probability is

P (λ) = P biased(λ) exp(βV bias(λ)) , (3.36)

which can be inserted into Eq. 3.31. In practice, one often uses harmonic bias potentials

V umbr(λ) =
1

2
kumbr(λ(R)− λi)2 (3.37)

to restrain the reaction coordinate to a certain window around λi. A series of simula-

tions with different values for λi spanning the reaction coordinate range of interest is then

carried out and the resulting biased probability distributions are reweighted using the

so-called weighted histogram analysis method (WHAM) [24, 101] to obtain the free energy

profile. The WHAM technique involves an iterative determination of the additional con-

stants Gi0, until total free energy profile composed of the individual simulations assumes

a continuous form.

The advantage of this method in comparison with thermodynamic integration is that the

spacing of the sampling points λi can be chosen larger, as the harmonic potential allows

exploring not only of the exact reaction coordinate value, but also of its vicinity. This

decreases the number of simulations to be performed. The only strict requirement is that

the histograms of adjacent windows have to overlap sufficiently.

As an example Fig. 3.2 shows the probability distribution of a series of umbrella sam-

pling simulations of a peptide adsorbed on a surface. While the probability peaks for large

reaction coordinate values, i.e. when the molecule is far from the surface, correspond ex-

actly to the centers of the umbrella windows, in the transition region some probability

peaks are shifted towards smaller z values, indicating a negative free energy change upon

adsorption.

3.4.3 Metadynamics

Metadynamics provides another probability-based method which, at least theoretically,

yields the exact free energy profile of one or more reaction coordinates [103]. In meta-

dynamics the system starts from an unbiased equilibrium simulation and builds up the

bias potential continuously during the simulation which in the end cancels the entire

free energy profile. This means that the effective free energy profile which the reaction

coordinate experiences, becomes increasingly flat and the motion of reaction coordinate

becomes diffusive, preventing the system from being trapped in local minima. For this
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Figure 3.3: Convergence of the bias potential in a well-tempered metadynamics simula-

tion(a) and the corresponding trajectory of the reaction coordinate (b) for the case of an

amino acid side chain on the oxidized titanium surface (cf. Chap 6). The convergence of

the integrated free energy difference ΔG according to Eq. 6.1 is displayed in (c)

purpose the bias potential is constructed in a way which repels the reaction coordinate

from previously visited locations. In practice, a gaussian shaped hill is added, centered

at every λ value that is assumed during the simulation:

V bias(λ, t) =
�

t�<t

W0 exp

�

−
d

�

i=1

(λi − λi(t�))2
2σ2

	

. (3.38)

The deposition takes place with a certain frequency. The probability to encounter the

system in a minimum is higher than elsewhere, hence, a lot of gaussian hills are added

around this location. As they increasingly fill the minimum, the bias potential eventually

compensates the free energy well and allows the molecule to escape the trap.

The bias potential is time dependent which makes simple reweighting according to Eq.

3.36 impossible. However, in the end the bias potential effectively flattens the free energy

surface, thus one can use its negative (modulo an additive constant) as an estimate of the

free energy profile.

As the gaussian hills are continuously added during the simulation the bias potential

does not exactly converge to a stationary form equal to the negative of the free energy

profile but rather oscillates around it. For this reason the previous assumption remains an

approximation. Nevertheless, one can obtain the exact profile from metadynamics, when

the well-tempered ensemble is used [14]. In this scheme the height of a hill in Eq. 3.38
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added at the time t is

W (t) = W0 exp[−V bias(λ, t)/ΔT ] . (3.39)

By choosing a suitable bias factor ΔT , the addition of new hills is exponentially switched

off as the bias potential grows, so that ∂V bias/∂t→ 0 with t→ ∞.

At large times the bias potential grows slowly, allowing the system to maintain an equi-

librated probability distribution P (λ) ∼ exp[−β(G(λ) + V bias(λ)]. The deposition rate is

then proportional to this distribution and one obtains [14]

V̇ bias(λ, t) ∼ W exp
�

−V bias(λ, t)/ΔT



exp[−β(G(λ) + V bias(λ, t)] . (3.40)

Ultimately, the condition that V̇ bias(λ, t→ ∞) → 0 for all λ-values requires

V bias(λ, t→ ∞) = −ΔT/(T +ΔT )G(λ) (3.41)

modulo a constant. The biased probability distribution in this case becomes

P biased(λ) ∼ exp

�

− G(λ)

kB(T +ΔT )

�

, (3.42)

which is obviously not completely flat but rather resembles the distribution at a higher

temperature T +ΔT , since the bias potential does not fully cancel the free energy profile.

The choice of the bias factor ΔT must balance mainly two aspects:

Low values of ΔT facilitate quicker convergence of V bias, whereas high values improve the

sampling of the reaction coordinate.

The time evolution and filling of the free energy surface is displayed in Fig. 3.3 for the

case of an arginine side chain adsorbing on a titanium surface (as explained in detail in

Chap. 6). To assess the precision, the convergence of the integrated free energy difference

(according to Eq. 6.1 in Chap. 6) is displayed in (c). In this case the error of is estimated

as 0.01 eV.

3.4.4 Replica Exchange Methods

The presented methods to obtain potentials of mean force for a one- or mulitdimensional

reaction coordinate enhance only the sampling of phase space along this collective vari-

ables. For the remaining 3N − f (f being the dimension of the reaction coordinate)

degrees of freedom, an exhaustive sampling of phase space cannot automatically be as-

sumed. Considering e.g. the adsorption of a medium-sized molecule, such as a peptide on
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Figure 3.4: Section of the trajectories of the four replicas along the solute temperatures

from a metadynamics+REST simulation (a). Distribution of potential energies for solute

temperatures of 300K (black), 350K (red) 400K (green) and 450K (blue) (b). For com-

parison the inset displays the corresponding distributions when the same temperatures

are applied to all degrees of freedom as in conventional RE. The simulations refer to the

RKLPDA peptide on the oxidized titanium surface, cf. chap. 6

a solid substrate, where the center-of-mass distance to the surface represents the reaction

coordinate one can obtain a potential of mean force along this collective variable using one

of the methods described above. However, apart from barriers in this collective variable

which are supposed to be handled by the chosen method of free energy calculation, other

barriers, such as rotational barriers around peptide backbone torsion angles, exist As

these are not directly associated with the reaction coordinate, their sampling is generally

not taken into account by the primary sampling method in a controlled manner which

can, in the worst case, exclude important molecular conformations from the potential of

mean force calculation [133].

In order to overcome such problems, one can associate each degree of freedom, for which

one expects significant barriers, with a reaction coordinate, increasing the dimensionality

of the potential of mean force. Though excess degrees of freedom can be integrated out of

the final free energy profile, not only the computational effort increases dramatically, also

each individual barrier has to be identified separately which renders this method feasible

only for small molecules. An alternative approach which takes care of sufficient sam-

pling in a natural way without a bias potential, is provided by the replica exchange (RE)
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technique [160]. In this approach possible free energy barriers are overcome at elevated

temperatures, increasing the probability of barrier crossing according to the Arrhenius

equation of activated processes P ∼ exp(−ΔG/kBT ), where ΔG denotes the height of

the barrier. As, on the other hand, one is usually interested in the properties at room

temperature, several replicas of the same system are simulated in parallel, each of which is

assigned a certain temperature, spanning the entire range between room temperature and

maximum temperature. From time to time neighboring replicas are allowed to attempt an

exchange of temperatures which causes a wandering of the replicas in temperature space.

Each attempt is accepted or rejected according to a standard Monte Carlo Metropolis

criterion:

P (i↔ j) = exp[−(βi − βj)(Ej − Ei)] (3.43)

Ideally, this leads to each replica diffusing from the bottom to the top temperature, where

barrier crossing is facilitated, and back to room temperature (as displayed in Fig. 3.4 (a)).

In this process the Boltzmann based acceptance criterion ensures a canonical distribution

of configurations at each temperature. The base temperature trajectory can then be

used to calculate various properties, such as free energies. While the replica exchange

method was originally developed to merely enhance sampling of the phase space, it has

been shown that its combination with other primary sampling techniques such as meta-

dynamics can significantly improve the results, e.g. for the case of protein folding [30].

Regarding surface adsorption, a combination of RE with a fixed bias potential along the

reaction coordinate as primary method has been reported [133].

One of the major drawbacks of replica exchange methods is that the potential energy

distribution of neighboring replicas have to overlap sufficiently to ensure a reasonable

acceptance ratio of the exchange attempts. As the relative width of the distributions

decrease with increasing system size, one often has to employ a small spacing of tempera-

tures which makes a large numbers of replicas necessary in order to reach sufficiently high

temperatures for barrier crossing. This increases the computational effort in a dramatic,

sometimes even prohibitive way. Different methods have been devised in order to increase

the computational efficiency of RE simulations. As the difficulties arise mainly from sol-

vent contributions to the potential energy which are usually not relevant compared to

conformational transitions of the solute, different methods have been devised in order to

reduce the influence of the heat capacity of the solvent. The temperature intervals with
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global exchange of replicas (TIGER) method [111], for example provides an empirical ap-

proach to decrease the number of replicas, while maintaining a good acceptance ratio for

the replica exchanges.

Another technique which appears particularly promising, as it resembles a canonical

distribution while avoiding a large number of replicas, is the replica exchange with solute

tempering (REST) method [114]. Here the temperature ladder is only applied to the

solute molecule, whereas the solvent temperature is kept constant. By doing so, the heat

capacity of the system is artificially reduced, causing the potential energy distributions

of neighboring replicas to overlap even for a larger temperature spacing. This means less

replicas have to be included which increases computational efficiency and at the same

time the diffusion from bottom requires less intermediate steps and therefore takes place

much faster. Considering the example of a hexapeptide adsorbed on a surface, the po-

tential energy distributions from conventional and solute tempering (ST) simulations are

compared in Fig.3.4 (b). While the ST distributions exhibit sufficient overlap, the energy

distributions including all degrees of freedom into the tempering do not overlap at all.

As temperature, or more specifically thermal energy, is only defined relative to the po-

tential energy, rescaling of the potential energy is equivalent to rescaling of tempera-

ture. Accordingly, selective tempering is achieved by only rescaling the intramolecular

interactions of the solute, while keeping the total kinetic energy constant. At elevated

temperatures the potential energy surface of the solute appears more shallow, conse-

quently intramolecular barriers appear smaller and can be crossed easier with a proba-

bility P ∼ exp(−γΔE/(kBT ) = exp(−ΔE/(kBT/γ) where γ < 1.0 is the scale factor.

Due the fictitious nature of the solute tempering, the coupling of the solvent, i.e. the

magnitude of its interactions with the solute, is somewhat arbitrary in this framework.

Technical reasons suggest intermediate scaling factors. A factor of
√
λ has appeared par-

ticularly favorable regarding electrostatic interactions [173], i.e. the potential energy of

replica i is

Ei =
T0
Ti
Emm0 +

�

T0
Ti
Ems0 + Ess0 , (3.44)

where m and s denote solute molecule respectively solvent, and the subscript 0 refers

to the base temperature. In contrast to common replica exchange implementations, the

Hamiltonian rather than the temperature is exchanged between the replicas.

Although the Metropolis criterion in principle yields an exact canonical ensemble, one has

to keep in mind that enhanced sampling applies only to the degrees of freedom included
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in the tempering. Barriers involving only solvent molecules, though, cannot be overcome

by this method, which might, in some unfortunate cases, lead to a distribution of states

deviating from the canonical ensemble.

Though promising and computationally feasible, this technique has only been applied

to a small number of examples of molecules in solution so far [33, 85]. In this work we

present for the first time the application of the metadynamics method combined with the

REST technique to calculate adsorption free energies for medium-sized molecules with a

considerable number of internal degrees of freedom.



Chapter 4

The Oxidized Titanium Surface

In this chapter I describe the first principle molecular dynamics (FPMD) simulations of

the oxidation of the bare Ti(0001) surface, which were performed in order to construct

the reference model for the oxidized titanium surface. I analyze the resulting structure,

focusing in particular on the atomic charges. In section 4.2 the development of the classical

force field is addressed, which is then applied in molecular dynamics simulations presented

and discussed in section 4.3.

This chapter has been published in Ref. [149].

4.1 FPMD Modeling of the Oxidation of Ti(0001)

4.1.1 Computational Details

All simulations are performed within the formalism of the spin-polarized Density Func-

tional Theory, using the PW91 exchange correlation GGA functional [137] and the PAW

method [23] to represent the interactions between electrons and core ions, as implemented

in the Lautrec code [183]. The PAW dataset for Ti is generated with 12 explicit valence

electrons, including 3, 2, 2 projectors for the s, p and d angular momentum channels. The

dataset for O includes 6 valence electrons and 2 projectors in each of the s and p channels.

Both the minimization of the electronic states and the molecular dynamics simulations are

performed using the Car-Parrinello (CP) method [34] on the basis of special algorithms

developed to treat metallic systems [180, 159]. The wave functions are expanded in plane

waves up to a kinetic energy cut-off of 540 eV, and the electronic states are occupied

41
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according to a Fermi-Dirac distribution using a smearing width of 0.1 eV. As in previous

simulations of the oxidation of Al [43], Si [44], and TiN [198] surfaces, no spin constraint

is imposed during the dynamics.

The Ti(0001) surface is modeled by a periodically repeated (2
√
3×3) surface supercell

consisting of a slab of five (0001) layers of atoms in the xy plane, separated by a vacuum

region of 11.64 Å in the z direction, corresponding to further five atomic layers. The

surface cell is sampled using the (0.25, 0.25) point of the Brillouin zone. The atoms of

the bottom surface layer, not involved in the oxidation reactions, are kept fixed during

the dynamics. An electrostatic correction to remove the macroscopic dipole along the z

supercell direction is applied to avoid spurious effects during the formation of oxide on

only one side of the surface slab [131]. In all geometry relaxations we ensure that all force

components on all unconstrained atoms are less than 0.05 eV/Å. Convergence of total

energy differences with respect to the chosen cutoff is checked in all cases to be within

0.01 eV.

4.1.2 Oxidation Reactions

We perform FPMD simulations of the consecutive reactions of O2 molecules placed one

at a time above the Ti(0001) surface. Every simulation is concluded with a full relaxation

of the atomic positions before placing a further oxygen molecule above the previously

formed oxide layer and starting a novel simulation. No initial velocity is imposed to the

incoming molecules, and the first nine simulations (up to a coverage of 1.5 ML of O)

are performed within the microcanonical ensemble (without any temperature constraint).

This thus represents 0 K conditions, except that a temperature of the oxygen gas allowing

diffusion of the O2 molecules to within ∼3 Å from the surface is implicitly assumed.

The first eight molecules spontaneously chemisorb to the surface and immediately

dissociate according to the same “hot-atom” mechanism we already observed in the case

of the oxidation of Al,[43] Si [44], TiN [41, 198], and Co/Cr surfaces [197]. For coverages

below 0.5 ML, the O atoms remain adsorbed on top of the surface in hcp or fcc sites.

After adsorption of the third molecule, one O atom in a hcp site spontaneously binds

to the underlying Ti atom of the first subsurface layer and occupies an interstitial position

among the surface Ti atoms (Fig. 4.1 (a)). Further oxidation proceeds while Ti atoms

leave the surface plane and O atoms are incorporated below the surface, with formation

of an oxide network with a thickness of about 4 Å (Fig. 4.1 (b), (c)). At a coverage of
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Figure 4.1: Selected final snapshots of consecutive FPMD simulations of the oxidation of

the Ti(0001) surface, labeled with the correspondent oxygen coverages.

1.5 ML, the ninth O2 molecule is able to chemisorb but not to dissociate spontaneously,

indicating a reactivity decrease of the surface as found in other systems [41, 198], and the

need for thermal activation for further oxide growth (Fig. 4.1 (c)).

In this first oxidation stage, the variation of the work function of the surface Δφ is

found first to decrease slightly up to a minimum value of −0.17 eV (at a coverage of

0.67 ML), consistently with previous calculations [115]. Later Δφ suddenly increases,

reaching a value of +1.25 eV at a coverage of 1 ML of O, and varying only little after

the three subsequent chemisorption/dissociation events (+1.28, +0.90, +1.32 eV). The

abrupt increase of the work function is associated to the extraction off the surface plane

of a Ti atom which remains bound to three O atoms of the surface and one O atom

“on top”. This behavior is in good agreement with early measurements of Δφ performed

during the oxidation of Ti(0001) at low oxygen pressures (10−9−10−7 Torr) and just above

room temperature (100◦C) [22], where Δφ was found to rapidly increase and stabilize at a

value of +1.25 eV. A different behavior was observed in the same work during oxidation at

higher temperatures (400 and 500◦C), where Δφ is initially negative, presents a minimum

of about −0.1 eV and becomes positive only at a later stage, eventually reaching stable

values of about +0.3 eV. At the end of the oxidation process, the authors suggest that

the oxide layer formed presents a composition close to TiO and that undissociated oxygen

molecules remain adsorbed on the oxide structure. These could be removed by stopping

the oxygen flux in the oxidation chamber, as indicated by a decrease of Δφ by about 20%
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Figure 4.2: Computed change of the work function of the Ti(0001) surface after consecu-

tive oxidation reactions as a function of the oxygen coverage.

concomitant with a decrease of the Auger oxygen signal.

These findings are consistent with the results of our further simulated oxidation re-

actions (above 1.5 ML of O), which we perform upon increasing the temperature of the

simulation to a maximum of 800 K to promote oxygen dissociation and rearrangements

of the O and Ti atoms within the oxide structure. Namely, after the thermally activated

dissociation of further three oxygen molecules and the subsequent thermal annealing of

the oxide structure (2 ML of O) at 1100 K for 3 ps, the computed Δφ is −0.28 eV. At

the end of this simulation, the 24 O atoms form bonds to all (and only) the 24 Ti atoms

belonging to the first and second surface layer, consistently with the TiO stoichiometry

suggested in Ref. [22] (Fig. 4.1 (d)). Notably, the surface still presents sites where oxygen

molecules could adsorb, and possibly dissociate spontaneously. In particular, after one ad-

ditional molecule is placed chemisorbed over the oxide structure, it accepts electrons from

the underlying surface, causing Δφ to increase again to +0.47, in qualitative agreement

with the experimental evidence [22].

During typical oxidation experiments we can expect that the diffusion of Ti and O

atoms may lead to thicker oxide layers than those obtained here, due to the severe time-

scale limitation of the FPMD approach. However, the agreement of stoichiometry and

work function values between our simulated structures and the available experimental
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Figure 4.3: Probability distribution of the coordination numbers P (ZT i−O) (a) and

P (ZO−T i) (b) (the value for ZT i−O = 0 corresponding to bulk Ti atoms is omitted for

better visibility). Dependency of the Ti charges qT i(ZT i−O) on the number of O neighbors

(c).

data is encouraging, and indicate that the former may indeed be seen as representative

models for the ultrathin oxide layers which form on Ti(0001) at about room temperature.

4.1.3 Structural and Charge Analysis

In this section we analyze the thin layer oxide structure obtained in the quantum me-

chanical simulations described above. After completion of the oxidation reactions, the

12 titanium atoms of the topmost (0001) surface layer are completely incorporated in

an oxide network. The second layer of Ti atoms retains its hexagonal order, except for

the inclusion of one oxygen atom there within, so that the oxide scale is separated from

the underlying metal by a clearly defined interface. The oxide layer presents a row of 3

exposed twofold coordinated bridging oxygen atoms, a characteristic feature of TiO2 [107]

and oxidized TiN surfaces [198].

Figure 4.3 (a) and (b) show the distribution of the coordination numbers ZT i−O and
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Figure 4.4: Partial radial distribution functions gIJ(r) for the oxidized titanium surface

(black solid lines). The colored lines indicate the bond lengths in the TiO2 crstal struc-

tures rutile (red), anatase (blue), brookite (green), Rocksalt TiO (violet) and in bulk hcp

titanium (orange).

ZO−T i of the oxide O and Ti atoms. These are distributed between values 2 and 6 for

oxygen (compared to ZO−T i = 3 for the TiO2 crystals, ZO−T i = 6 for TiO crystals in

the rocksalt structure and ZO−T i = 4 for Ti2O3 crystals in the corundum structure) and

between 1 and 6 for titanium (ZT i−O = 6 for TiO2, TiO and Ti2O3 crystals). On average,


ZO−T i� = 3.625 revealing a slightly higher coordination of the oxygen atoms compared to

crystalline TiO2. Interestingly, the maximum probability for ZO−T i is found at a four-fold

coordination of oxygen atoms, as in Ti2O3 corundum crystals.

The partial radial distribution functions gij(r) for the 3 different atoms pairs, calcu-

lated taking into account only the 24 Ti atoms of the two topmost (0001) surface layers,

are shown in in Fig. 4.4. For comparison, the nearest neighbors distances in the rutile,

anatase and brookite TiO2 crystal structures, of the TiO rocksalt structure [16] as well

as bulk Ti are indicated by the colored lines. The first neighbor peak of gT i−O presents

a main maximum and a smaller shoulder towards smaller distances, whose positions co-

incide well with the two bond lengths in brookite. The shoulder towards larger bond
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lengths can be instead seen as a TiO-like feature. The positions of the two maxima in

the first double peak of gT i−T i coincides with the shorter bond length in bulk Ti and with

the larger Ti-Ti distance in brookite structure. Moreover, the shorter Ti-Ti distances in

the oxide layer are again roughly corresponding to the short brookite Ti-Ti length. The

distances between oxygen atoms in the oxide layer exhibit a broad distribution, which

does not allow for a reliable comparison with the crystal bond lengths. In general, the

broad distance distributions are indicative of the predominantly amorphous character of

the thin oxide layer, although the features in common with brookite, rather than rutile

or anatase, are intriguing.

A very important aspect of our analysis is the distribution of charges among the

atoms, which will form the basis for the optimization of a classical potential to describe the

Ti/TiOx interface possessing both analytic simplicity and a good degree of transferability.

The Ti atoms of our interface system exhibit a broad range of oxidation states, from

neutral atoms in the bulk metallic region to fully oxidized atoms in the oxide layer. Within

the DFT formalism we calculate atomic charges from the electron density according to the

“atoms-in-molecules” method (cf. Sec. 3.3.1). The resulting Bader charges are reported

in the graph in Fig. 4.5. The atoms in the bulk metallic region (atom numbers 1-36)

remain almost neutral, the subsurface metallic layer (37-48) is slightly positively charged

with values around 0.5 e due to partial electron transfer to the oxygen atoms, and the

charges of Ti atoms within the oxide layer (49-60) increase up to 2.0 e, depending roughly

linearly on the oxygen coordination as shown in Fig. 4.3 (c). All oxygen atoms (number

61-84) are negatively charged with values that vary only little around the average charge

of −1.22 e.

In order to compare the Bader charge distribution with that of a purely classical

picture, we apply the electronegativity equalization method (EEM) of Mortier et al. [129].

Within this formalism the charges are calculated by minimizing the electrostatic energy

under the constraint of charge neutrality. The electrostatic energy of a set of charged

atoms can be written as

Ees(q1, ..., qN) =
�

i

�

χiqi +
1

2
Jiqi

2

�

+
1

2

�

i,j

qiqj
rij
, (4.1)

where rij are the distances between atoms i and j and the parameters χi and Ji are

referred to as the atomic electronegativity and hardness, respectively. The first term of

the equation can be considered the self energy due to partial ionization of the atoms, the
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Figure 4.5: Bader charges qi (black solid line) for each atom of the DFT model of the

oxidized titanium surface along with the classical charges calculated using the electroneg-

ativity equalization method EEM (red dashed line).

second term the electrostatic interaction between different atomic sites. While the deter-

mination of the values for the parameters χi and Ji will be addressed in the next section,

we anticipate here the good agreement between the Bader and EEM charges (shown by

the dashed red line in Fig. 4.5). Although the modulus of the EEM charges is slightly

smaller compared to the Bader charges, the charge distributions differ only by a constant

of proportionality, revealing a good consistency between classical and quantum mechan-

ical charges. This could have been indeed expected for fully oxidized TiO2 allomorphes,

which present a strong ionic character, but was not foreseeable a priori for the thin oxide

layer including variable oxidation states of the Ti species.

4.2 A Classical Force Field for the Ti/TiOx Interface

This section is devoted to the development of a classical force field to model Ti/TiOx in-

terfaces. Our main requirement for the force field is to be able to reproduce the structural

stability of pre-existing structures, e.g. as obtained by quantum mechanical calculations,

during MD runs at room temperature. Moreover, the form of the force field should be

chosen so as to allow for quick and efficient adjustments of its parameters depending on

local chemical variation of the modeled systems, as required in dynamical QM/MM calcu-
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lations (for instance within the LOTF formalism [47]). This poses the problem of keeping

the analytical potential form as simple as possible, while at the same time ensuring a

good degree of transferability of the same form between different environments, such as

between different crystal structures or amorphous oxides, and systems including variable

oxidation states. In particular the variation of the atomic charges in the thin oxide layer

will be a crucial point of our development, as described below.

4.2.1 Definition of the Potential Form

The hcp metallic region underneath the superficial oxide layer can be treated using a

manybody potential suitable for metallic Ti. In this work we use a Finnis-Sinclair po-

tential as proposed by Ackland [2]. Albeit simple, this FS potential is able to reproduce

structural and mechanical properties of bulk Ti in a satisfactory way. In the Ackland

approach, the energy of each metal atom is given by

Emeti =
1

2

�

j

V met(r)fmetc (qi)f
met
c (qj)−

�

ρ̃i (4.2)

where the sum runs over all atom indexes and

ρ̃i =
�

j

ρ(r)fmetc (qi)f
met
c (qj) . (4.3)

The pair potential V met(r) and the density ρ(r) are parametrized using cubic splines:

V met(r) =
�

k

ak(rk − r)3Θ(rk − r) ; (4.4)

ρ(r) =
�

k

Ak(Rk − r)3Θ(Rk − r) , (4.5)

where Θ(x) is the step function. In Eqs. (4.2) and (4.3) we have introduced cut-off

functions

fmetc (q) =















1, q < Qmet −Δ

1− (q −Qmet +Δ)/2Δ, Qmet −Δ < q < Qmet +Δ

0, q > Qmet +Δ

(4.6)

that depend linearly on the atomic charges q. These cut-off functions ensure that the Ti-Ti

FS interaction continuously decreases and is eventually switched off when the charges on

the titanium atoms increase (i.e. by entering in the oxide region of a Ti/TiOx interface).
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As far as the interactions within the oxide layer are concerned, the basis for their

definition is the agreement between quantum mechanical charges and classical charges

obtained by purely electrostatic arguments, as described in the previous Section of this

paper. After replacement of the partial charges of common ionic force fields by these EEM

charges, our finding suggests that Ti oxides, including non-stoichiometric ultrathin oxide

layers, can be well described by using only electrostatic (Coulomb) interactions between

the atoms, together with a short ranged two-body potential:

V oxij (r) =
1

2

�

i �=j

qiqj
r

+
1

2

�

i �=j

V SRij (r) · f oxc (qi, qj) , (4.7)

where r is the distance between atoms i and j and

V SRij (r) = Aij exp(−r/ρij)−
Cij
r6

(4.8)

is a Buckingham potential including dispersion and repulsive interactions. This is the

same potential form that has been used by of Matsui and Akaogi (MA) to model TiO2

polymorphs,[119] except for the cut-off function

f oxc (qi, qj) = 1− fmetc (qi)f
met
c (qj) , (4.9)

if i and j both correspond to Ti atoms, whereas f oxc = 1 otherwise. This factor gradually

switches off the oxide-related Ti-Ti interactions while entering in the metallic region of

the system. Thus, our combined potential (equations 4.2 and 4.7) continuously changes

from the metal region to the oxide layer and reduces to the Ackland potential or the MA

potential form in the case of bulk Ti or bulk TiO2, respectively.

4.2.2 Definition of the Potential Parameters

The original MA parametrization was developed to model bulk TiO2 polymorphs and

includes partial charges qT i = 2.196 and qO = −1.098, the modulus of the latter being

only slightly smaller than the Bader charges on O atoms as computed in the previous

Section. Taking into account the previously highlighted correspondence between quantum

and classical charges, we can adapt the MA parameters to model oxidized Ti surfaces.

Consistency with the original MA parametrization can be ensured by choosing the

atomic parameters χi and Ji in Eq. 4.1 so as to obtain the qT i and qO MA charges

when minimizing the EEM electrostatic energy of the bulk TiO2 rutile structure (see



4.2. A CLASSICAL FORCE FIELD FOR THE TI/TIOX INTERFACE 51

Table 4.1: Values of the atomic electronegativity parameter χi and the atomic hardness

parameter Ji used in the electronegativity equalization method.

Ti O

χI [V] 0.0 8.729

JI [V/e] 12.864 17.197

Table 4.1). With this values of χi and Ji we can now compute the atomic charges for

any arbitrary oxide structure, in particular containing multiple formal Ti valencies. As

already mentioned in section 4.1.3 the EEM charges obtained for the oxidized Ti(0001)

surface show very good proportionality to the corresponding Bader charges (see Fig. 4.5).

Although the EEM parameters are commonly fit to atomic ionization energies rather than

to ionic charges, the fact that the resulting charges are consistent with the Bader charges

of the oxidized surface justifies our way of determining them, and enables us to use the

original MA set of parameters also for the short-term potential ( Eq. 4.8).

We have also tested an alternative parametrization, in which we choose not to include

any dispersion interaction in the Buckingham potential (Cij = 0 for both Ti and O) and

to remove all non-Coulomb Ti-Ti interactions in the oxide (AT i−T i = 0). The remaining

parameters are obtained by a fit to the lattice and elastic constants of bulk rutile, again

keeping the original MA values for qT i and qO. In this case, the value of AT i−O are

significantly higher than in the previous parametrization (see Table 4.2). This leads to

steeper Ti-O repulsion and thus to a sharper potential minimum than in the previous

case, as visible from the corresponding V ox(r) curves for 3 different charges qT i = 2.196,

qT i = 1.5 and qT i = 0.5 (at constant oxygen charge qO = −1.098) (Figure 4.6).

The interactions in the metallic region were again described by the FS-potential of

Ackland, after adjusting the values Qmet and Δ to reproduce the DFT Ti-Ti and Ti-O

bond lengths across the Ti/TiOx interface. As we will see below, with this additional

parametrization the structure of the oxide layer obtained by FPMD is slightly better

reproduced than in the previously described “MA-like” parametrization, and has the

advantage of avoiding the calculation of a number of interactions.
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Table 4.2: The two parameter sets for our Ti-O potential, and the parameter set for the

FS Ti potential.[2] The lattice parameter for titanium was set to a = 2.94 Å. The values

marked with ∗ are the original MA parameters.[119]

Buckingham Potential

“MA-like” parameters Alternative parameters

ÃIJ [eV] ρIJ [Å] CIJ [eV ] ÃIJ [eV ] ρIJ [Å] CIJ [eV ]

Ti-Ti 31120.429 ∗ 0.154 ∗ 5.247 ∗ 0.000 0.000 0.000

O-O 11782.847 ∗ 0.234 ∗ 30.222 ∗ 85.164 0.489 0.000

Ti-O 16957.656 ∗ 0.194 ∗ 12.593 ∗ 7211646.2 0.115 0.000

Charge dependencies

Qmet [e] 0.8 1.45

Δ [e] 0.1 0.25

Finnis-Sinclair Ti Potential

k Ak [eV a
−3 2−3/2] Rk [a 2

1/2] ak [eV a
−3 2−3/2] rk [a 2

1/2]

1 39.795927 1.22 -57.099097 1.22

2 -40.061305 1.05 80.735598 1.20

3 -21.761468 1.12

4 -10.396479 0.95

5 74.515028 0.80

6 35.921024 0.707107

4.3 Classical Simulations with the Novel Potential

4.3.1 Computational Details

All classical Molecular Dynamics simulations are performed using the DL POLY pro-

gram [176]. The conjugate gradient (cg) method is applied for structural relaxation. The

electrostatic interactions are calculated using the smoothed particle mesh ewald (SPME)

method with a precision of 10−6 and a real space cutoff of 6.0 Å. The cutoff of the metal

potential is set to rmet = 5.0717 Å as in [2]. For all other short-ranged forces we use

rcut = 6.0 Å. For simulations at constant temperature and volume the velocity-Verlet in-
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Figure 4.6: Interaction potentials V ox for the 3 atom pairs according to equation 4.7.

Comparison between the two MA-like (solid lines) and our alternative parametrization

(dashed lines). The Ti-O interactions are computed with charges qO = −1.098 and

qT i = 2.196, 1.5 and 1.0 (bottom to top). The O-O and Ti-Ti interactions are computed

with qO = −1.098 and qT i = 2.196.

tegration algorithm is used with a timestep of 1 fs and the initial temperature is controlled

by velocity rescaling. For simulations at constant pressure the Nose-Hoover scheme with

thermostat and barostat relaxation times of 0.5 ps is employed.

For a given initial structure, the EEM charge equilibration is performed via the con-

jugate gradient method until the electrochemical potential µi = ∂E
ES/∂qi of all atoms

converges with deviations of less than 0.1 V from the average value. The fitting of the po-

tential parameters as well as the structural optimization and the calculation of the elastic

properties of the TiO2 crystals are performed using the GULP program package [61].

4.3.2 Transferability of the Classical Potential

Before using the potential described in Section 4.2 to simulate the oxidized titanium sur-

face, we address in this section the transferability of our two parametrizations among

different types of crystalline and amorphous Ti oxides and the rutile (110) surface. Al-
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though we do not intend to use the potential to investigate the crystal properties of perfect

systems, its ability to model various titanium oxide systems in a sufficiently consistent

and reliable way is important.

Crystalline TiO2 phases

For the three crystal structures rutile, anatase and brookite, the structural and elastic

properties after relaxation both with the “MA-like” and the alternative parameter sets

are reported in table 4.3 and compared with the available experimental values. The

transferability of the MA potential to TiO2 polymorphs has already been established in

previous publications [119, 13, 79]. We find here that also the alternative parametrization

leads to a reasonable agreement with the MA parametrization and with the experimental

results.

The Rutile 110 Surface

Since we are ultimately interested in surface simulations, we test here the ability of the

classical potential to describe the rutile (110) surface, which is modeled by a slab consisting

of 6 atomic layers. We first relax the slab at the quantum mechanical level using DFT,

and use the resulting structure as the input to compute the EEM charges on all atoms.

With these charges (which differ on the surface atoms only slightly from the bulk MA-

charges) we then relax again the surface slab using both parametrizations of our classical

potential.

The displacements Δzi = zi
class−ziDFT of each atom in the normal direction to surface

with respect to the reference DFT structure are shown in Fig. 4.7. While the ability of a

modified MA potential to model this surface has already been demonstrated by Bandura

et al. [13], we find that our alternative parametrization leads to even smaller deviations

(less than 0.2 Å) than the original parametrization (up to 0.5 Å). This holds in particular

for the surface atoms (1-6), which are predominantly affected by relaxations with respect

to their bulk positions.

Amorphous TiO2

To construct a model for amorphous TiO2 we randomly place 1000 titanium atoms and

2000 oxygen atoms in an tetragonal box with edges Lx = 40.00 Å, Ly = 40.00 Å and
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Table 4.3: Properties of the different TiO2 polymorphs after structural optimization with

the two parametrization of our potential. The properties of the rutile structure were used

for fitting the parametrization alternative to the ”MA-like” one (see text). The properties

of the amorphous TiO2 are calculated at 300 K.

“MA-like” set Alternative set Experiment

Rutile a[Å] 4.50 4.62 4.594 1

c[Å] 3.01 3.07 2.959 a

B[GPa] 235.9 210.1 211.0 2

C11[GPa] 321.2 281.9 268.0 b

C33[GPa] 443.2 483.0 484.0 b

C12[GPa] 227.8 172.9 175.0 b

C23[GPa] 146.3 141.2 147.0 b

C44[GPa] 122.4 121.9 124.0 b

C66[GPa] 224.7 174.5 190.0 b

Anatase a[Å] 3.77 3.81 3.785 3

c[Å] 9.58 10.03 9.512 c

B[GPa] 166.2 204.4 179.0 c

Brookite a[Å] 9.15 9.33 9.174 4

b[Å] 5.39 5.49 5.449 d

c[Å] 5.15 5.34 5.138 d

B[GPa] 198.8 204.5 -

Amorphous ρ[g/cm3] 4.03 1.93 3.50 5
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Figure 4.7: Relaxation of the rutile 110 surface (6 layers): Displacements Δzi along

the surface normal direction between the DFT structure and the structures minimized

classically with the MA-like (black squares) and our alternative parametrization (red

circles). For symmetry reasons only the displacements of the atoms belonging to the top

3 layers are displayed.

Lz = 21.813 Å, which corresponds to an initial density ρ = 3.80 g/cm3. This system is

annealed first at 5000 K for 100 ps, then for another 100 ps at 1000 K at constant volume.

Afterwards we perform a series of 50 ps NPT simulations with zero pressure at 1000 K,

700 K, 500 K and 300 K. The structural properties are then averaged during a subsequent

100 ps run at 300 K. Additionally we relax the system at vanishing pressure, to obtain

the density at 0 K.

Using the MA-like parameter set we obtain a density ρ of 4.03 g/cm3 at 300 K and

4.07 g/cm3 at 0 K, which lie between the experimental value of about 3.50 g/cm3 measured

for amorphous TiO2 thin films,[123] and the density of 4.23 g/cm3 of crystalline TiO2.

While at zero temperature the alternative parametrization yields still a realistic density

of ρ = 3.41 g/cm3 when starting from a system with an initial density of ρ = 3.80 g/cm3,

the density measured at 300 K decreases dramatically to 1.93 g/cm3. Compared to the

experimental results and to the results obtained with the MA parameters this value is

significantly too low. Remarkably, the average Ti-O bond length is nearly the same

for both potentials, whereas the number of such bonds is significantly smaller for the

alternative parameter set.
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Figure 4.8: Input structure for the classical simulations.

4.3.3 Classical MD Simulations of the Oxidized Ti(0001) Sur-

face

Stability of the Reference DFT Structure

In this section we investigate the ability of the developed classical potentials to repro-

duce the structural features of the thin oxide layer formed on Ti(0001) in the FPMD

simulations. As the input structure for the classical simulations we use the final relaxed

DFT model (Fig. 4.1 (d)) repeated twice in each of the x and y directions on the surface

plane. In order to avoid a net dipole moment in the simulation cell, the DFT structure is

symmetrically mirrored with respect to the bottom layer of titanium atoms along the z

direction perpendicular to the surface. The resulting slab consisting of 432 titanium and

192 oxygen atoms is shown in Fig. 4.8.

The edges of the simulation cell are Lx = 17.615Å, Ly = 20.34Å and Lz = 90.00Å.

After computing the EEM charges for the whole system, we first relax its structure with

our novel potential using both parameter sets described earlier, and then perform 200 ps

MD simulations at 300 K. The structures so obtained are analyzed with respect to their

coordination number distributions and radial distribution functions.

After static relaxation, we observe that both potentials do not lead to any major struc-

tural changes. Importantly, the oxygen atoms do not diffuse inside the metallic region,

and the sharp interface between the oxide layer and the metal substrate is conserved. Also

the rows of bridging oxygen atoms on the outer surface side remain stable, although a

small number of Ti-O bonds are broken and new bonds are formed inside the oxide layer.
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Figure 4.9: Distribution P (Z) of coordination numbers ZIJ for Ti (a) after relaxation

and (c) after annealing at 300 K and oxygen, and for O (b) after relaxation and (d)

after annealing at 300 K with respect to the other species. The bars correspond to the

reference DFT model (empty), the MA-like parameterization (stripes) and our alternative

parametrization (dots). The bars corresponding to ZT i−O = 0 are omitted for better

visibility, as they overtop the other ones.

These little structural rearrangements can be investigated by looking at the distribution

of coordination numbers P (Z) of the first neighbors Z for the Ti and O atoms. The

neighbors are counted within spheres of radius Rc = 2.5 Å centered on the atoms and

P (Z) is normalized to the total number of atoms of the respective species.

As shown in Fig. 4.9, the distributions resulting from the two classical parametrizations

deviate only little from those of the DFT structure. In particular, the number of Ti atoms

not bound to oxygen (ZT i = 0, not displayed) and the number of twofold coordinated O

atoms (ZO = 2) do not change, showing that no diffusion of O in the metal or breaking

of the superficial bridging oxygen chains takes place, as mentioned above. Small changes

are limited to atoms with higher coordination, revealing a general tendency of already

oxidized Ti atoms (ZT i = 4 or 5) to become coordinated by 6 O neighbors. In general,
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Figure 4.10: Partial radial distribution functions gIJ(r) for Ti-O (top), Ti-Ti (middle) and

O-O (bottom) pairs: DFT reference model (solid lines), MA-like parametrization (dashed

lines) and our alternative parametrization (dot-dashed lines).

our alternative potential parametrization produces a slightly better agreement with the

DFT structure than the original “MA-like” one.

The partial radial distribution functions gij(r) are shown in Fig. 4.10. Although little

variations are present for all three kinds of atom pairs the distribution functions of the

classical models agree well with the ones of the DFT structure. We only note that for the

MA parameter set, the Ti-O distance distribution within the first neighbour shell reveals

two peaks with a distance of about 0.15 Å to each other, whereas for the alternative

parametrization the width of the peak is slightly reduced. For both classical models

the shoulder towards smaller distances r, which contains mainly bonds between bridging

oxygen and titanium atoms is not reproduced (a shortcoming which could in principle be

corrected by adjusting the Buckingham parameters specifically for this particular atom

pair, at the expense of simplicity and generality of the potential). The number of Ti-O

bonds present in the oxide network can be calculated via integration of the first peak of

gT i−O(r) (using a cutoff distance Rc = 2.5 Å as for the P (Z) distributions). While in

the unit cell of the original DFT model (including 24 oxygen atoms) 87 Ti-O bonds are
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present, 95 bonds are obtained after relaxation with the MA-like parameter set, and 90

bonds with the alternative parametrization.

The stability of the oxide structure is now investigated during MD simulations at

room temperature. The MA-like parameter set leads to notable changes with respect

to the relaxed configuration, particularly regarding the row of bridging oxygen atoms,

which becomes partially incorporated into the oxide layer leaving a rather flat surface.

These changes are visible from the P (Z) functions computed before and after annealing

(Fig. 4.9). A much better behavior is obtained using the alternative parameter set, for

which the relaxed structure remains stable over the timescale of our simulations. However,

if the simulation temperature is increased, dramatic changes of the oxide network topol-

ogy take place, becoming visible after about 600 K. This reveals that our new potential

parametrization is only applicable to room-temperature simulations.

Classical Generation of Thin-Layer Structures

In this Section we aim to produce superficial thin-layer oxide structures on Ti(0001) purely

classically, using our developed potential in a predictive way. We first start with producing

a system of bulk amorphous TiO2 containing 96 titanium atoms and 192 oxygen atoms

as described in Section 4.3.2. For this simulations we only use the MA-like parameter

set, since the alternative parametrization failed to produce realistic amorphous TiO2

structures. The edge lengths of the simulation box are chosen to be Lx = 17.615 Å and

Ly = 20.34 Å in order to match the titanium surface cell. The box length in z-direction

is set to Lz = 9.35170Å in order to maintain the experimental density of 3.80 g/cm3 as

measured in Ref. [79] The equilibrated structure is placed between the two free surfaces

of a 7-layer Ti(0001) slab to create a Ti/TiO2/Ti sandwich model. To equilibrate the

Ti/TiO2 interfaces we first anneal the model at 1000 K for 100 ps using MA charges in

the oxide layer and no charges on the Ti atoms of the slab. The system is subsequently

gradually cooled in two 100 ps MD runs at 700 K and 300 K, and fully relaxed. We finally

compute new EEM charges for the whole model and relax the system again.

A thin superficial oxide layer is now obtained by cleaving the system in the central

region of the amorphous TiO2 slab, leaving 48 Ti atoms and 96 O atoms on each side of

the titanium surface. The box length along the surface normal is increased to Lz = 90.0 Å

inserting a vacuum gap between the newly created oxide surfaces. The cleaving of the

oxide layer leaves a number of oddly coordinated atoms on the surface, in particular
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Figure 4.11: Left: Final structure of the oxidized titanium surface generated purely clas-

sically using the MA-parametrization. Right: Properties of this structure (dotted bars

and dashed line) compared to the reference DFT model (empty bars and solid line). Dis-

tribution P (Z) of the coordination numbers of titanium (a) and oxygen (b) atoms, radial

distribution function gT i−O(r) between titanium and oxygen atoms (c).

onefold coordinated O atoms that are not present in the quantum mechanical reference

model. However, after an initial relaxation using the previously computed bulk EEM

charges followed by two further iterations of EEM charge calculation and relaxation, all

dangling bonds are healed. We now perform a final MD run annealing the system at 300

K for 250 ps, during which the topology of the oxide network remains stable, and fully

relax the atomic positions.

The atomic composition and the size of the model obtained in this way (shown in

Fig. 4.11) are identical to those of the previously investigated model, constructed directly

from the DFT reference structure. The surface features 26 exposed bridging oxygen atoms

compared to 24 present in the DFT reference model, and a sharp interface between oxide

layer and metallic region. A total of 715 Ti-O bonds are present in the oxide network,

corresponding to 89.4 bonds referred to the supercell used in the DFT simulations. This

value is in very good agreement with the original DFT value (87 bonds) and the two
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classically relaxed structures described earlier (92 and 90 bonds, see Section 4.3.3). We

find some deviations of the Ti-O partial radial distribution function and of the distribution

of coordination numbers (Fig. 4.9) from the DFT reference, which are more pronounced

than in the systems analyzed in Section 4.3.3. In particular, a marked preference for

5-fold, rather than 4-fold coordination of both Ti and O atoms is found.

4.4 Summary and Discussion

In the present chapter we have performed a series of DFT Molecular Dynamics simula-

tions of the oxidation of the titanium (0001) surface up to an oxygen coverage of 2 ML.

Out findings regarding saturation of the oxygen uptake, work function analysis and stoi-

chiometry are in good agreement with experimental results.

The final structure is amorphous and is separated from the metallic region by a rather

sharp interface, also as a consequence of inhibited diffusion processes within the time-

scale accessible by our technique. The distributions of the bond-lengths and coordination

numbers reveal features of TiO, TiO2 and Ti2O3 crystals. Interestingly, the Bader charges

variation within the obtained model can be reproduced classically with remarkable pre-

cision (within a proportionality factor), after calculation of charges by minimizing the

electrostatic energy.

As presented in Section 4.2, the Ti/TiOx interface can be modeled by combining a

Finnis-Sinclair potential for the metal substrate with a potential form previously used by

Matsui and Akaogi to describe TiO2 allotropes [119].

Two parameter sets for the short-range contributions of the oxide force field are pro-

posed and tested with respect to their transferability and their ability to keep the refer-

ence model stable upon relaxation and annealing at room temperature. Considering in

particular the oxidized titanium surface, both parameter sets reproduce well the DFT ref-

erence model after static relaxation at 0 K. However, in dynamic simulations the MA-like

parametrization fails to preserve the rows of twofold coordinated bridging oxygen atoms.

The reason why the alternative parameter set is particularly well suited to reproduce

structures minimized at the DFT level, whereas it fails when applied to arbitrary oxide

systems at higher temperature, is due to the shape of the Ti-O potential (see Fig. 4.6). The

steep increase at small atomic distances leads, on the one hand, to rather sharp potential

minima which maintain the stability of pre-optimized systems. On the other hand, this
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causes a pronounced anharmonicity of the potential, which is likely to cause breaking of

Ti-O bonds upon annealing and is responsible for an unphysically large thermal expansion

of amorphous TiO2.

Due to its better transferability to amorphous titanium oxide, the MA-like parametriza-

tion allowed us to create a model for an oxidized Ti surface in a purely classical way (see

Section 4.3.3). Although the structural details of such model deviate quantitatively from

the one obtained by DFT, overall the two models do not present severe differences. An

advantage of this method might be the possibility of creating large models for surface

structures which include e.g. steps and long-scale roughness and could be used instead of

periodic replicas of the DFT supercell.

We note that during all structure relaxations and MD simulations we keep the EEM

charges fixed to their values computed for the initial structure. However, since changes

of the atomic coordination may take place during long MD runs, this method of dealing

with the charges is not self-consistent. Another possibility would be to re-calculate the

charges at every MD step (or at least with a certain frequency during the atomic motion).

However, all our attempts of performing such self-consistent calculations did not lead

to satisfactory results. In particular, small changes in the structure that emerge upon

applying the classical potential cause further deviations of the charges, which in return

lead to more pronounced structural rearrangements. This initiates a diverging loop and

eventually leads to physically unrealistic situations. For instance, self-consistent charge

updates during classical optimization of our DFT model resulted in O atoms migrating

deeper and deeper into the metallic region and the creation of a Ti-terminated structure

bearing no resemblance to the original model.

Although the results of our test are to be considered only as preliminary, we find

that self-consistent charge transfer methods [162, 175, 69] in general tend to favor high

coordination numbers of O atoms due to the large gain in electrostatic energy. This is not

a problem for crystals or crystal-like structures, in which the coordination numbers are

imposed by the regular arrangement of the atoms preventing structural changes during

relaxation, but it becomes an evident deficiency in the case of heterogeneous systems with

a broad distribution of coordination numbers, such as superficial ultrathin oxide layers.

Therefore, we conclude that these systems can be reliably modeled by using fixed

charges, although this limits the predictive power of the potential and its ability to account

for structural changes due to chemical reactions at the surface.
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Finally, our point-charged based model not only preserves consistency with the original

MA force field, but is also fully compatible with common force fields used to simulate

liquid water and biological molecules as I will proceed to show in the next chapter.



Chapter 5

The Interface with Water

In this chapter I describe FPMD simulations of the interfaces between bulk water and

both TiO2 and the oxidized Ti(0001) surface. These calculations are used as a reference

model for the construction of our potential in Sec. 5.2. In particular, I focus on an

analysis of the charges of surface atoms and on how to achieve consistency with generic

biomolecular force fields. I then proceed to derive appropriate non-bonded interactions

and optimal parameters from DFT calculations of the PES of water and ammonia on the

TiO2 surface. In Sec. 5.2.5 I compare the classical model to DFT results of small organic

molecules adsorbed on the dry oxidized surface. Subsequently, classical simulations of wet

systems are presented and discussed in comparison to experimental results in Sec. 5.3.

Finally, the adsorption behavior of the RGD-peptide on the oxidized titanium surface is

investigated in Sec. 5.4.

This chapter has been published in Ref. [150].

5.1 FPMD Simulations of Water Adsorption

In order to obtain accurate model systems of the interfaces between oxidized titanium

and bulk water we perform extended FPMD simulations based on DFT, comparing the

water adsorption behavior on a rutile(110) surface with that on an ultrathin oxide film

grown on Ti(0001). The computational details involved in these calculation have been

described in Sec. 4.1.1.

65
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5.1.1 Water Adsorption on Rutile TiO2(110)

The dominant adsorption mode of water on the rutile TiO2(110) crystal surface has been

the subject of controversial discussions for decades. Theoretical studies have reported

contradicting energetic orders for either molecular, mixed or dissociative adsorption at

low water coverage (≤1 monolayer) [113, 104, 15]. Regarding experimental results, spon-

taneous dissociation of water molecules on the perfect rutile (110) surface is generally

considered to be unlikely, whereas it is facilitated at surface defect sites [53, 77, 190].

Recently, the change of free energy, rather than of potential energy, upon water adsorp-

tion was calculated in DFT MD simulations, yielding a positive value of +0.6 eV for the

dissociation of bulk water on the perfect rutile 110 surface [37], which corroborates the

experimental finding. Here we consider a 4-layer-slab of a 1×3 surface unit cell including

24 titanium and 48 oxygen atoms in contact with 21 water molecules. The dimensions of

our supercell are 6.56×8.95×40.0 Å3. By means of both dynamical simulations and static

total energy calculations, we find that molecular adsorption at the fivefold-coordinated

titanium atoms (Ti5f) is the preferred way of interaction on the perfect TiO2 rutile sur-

face, in agreement with the Car-Parrinello MD studies of ref. [104]. In particular, when

starting from an initially dissociated configuration with one of the protons bound to the

neighbor bridging oxygen atoms, proton transfer and recombination of the water molecule

eventually occurs within a few hundreds fs of dynamics. Direct Ti–O bond formation be-

tween water and the surface takes place exclusively at Ti5f atoms with a coverage close

to 100%. Namely, all three equivalent Ti5f sites of our surface cell remain occupied by

an adsorbed molecule for more than 90% of the time during the FPMD simulations at

∼350 K.

5.1.2 Water Adsorption on Oxidized Ti(0001)

Starting from the dry oxidized Ti surface, as described in chapter 4, we fill the vacuum

gap with 28 pre-equilibrated water molecules and saturate the reactivity of the bottom

surface of the slab with 12 hydrogen atoms in hcp positions, thus preventing spurious

reactions between the water and the metallic slab. An FPMD simulation lasting 5 ps is

carried out in the NVE ensemble, after initial thermalization of the system by velocity

rescaling to a temperature of 350 K. During the dynamics, we observe adsorption, but not

dissociation, of water molecules at exposed undercoordinated Ti atoms, similarly as on
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Figure 5.1: DFT model for the dry oxidized titanium surface (a) and snapshot of the

interface between the surface and water from FPMD simulations (b).

the rutile TiO2(110) surface. In the case of the thin oxide film, the preferred adsorption

sites are the Ti atoms which are bound to the twofold-coordinated bridging oxygen atoms

(which we will from now on refer to as TiB and OB, respectively). Once adsorbed, most

of the molecules remain stably bound throughout the simulation. Only one molecule

temporarily binds to a titanium atom located in the valley between the rows of bridging

oxygen, and later desorbs leaving the site free. In summary, a total of 4 water molecules

stably adsorb on the surface during our FPMD trajectory, occupying 3 of the 4 TiB

adsorption sites, one of which accommodates two water molecules at the same time (Fig.

5.1 (b)). We calculate the desorption energies of these four water molecules from the total

energy differences between the fully minimized water-decorated surface (in the absence

of other free water molecules) and the same system upon removal of the adsorbed water

molecules, once at a time, plus the total energy of the removed isolated water molecules in

the same supercell. We obtain values of 0.53, 0.48, 0.91, and 0.44 eV. By comparison, for

the desorption energy of a single water molecule from the fully hydrated 3×1 TiO2(110)

surface we find 0.83 eV.

In a further simulation, in which we started from a defective surface by removing

one of the OB atoms, the adsorption of a water molecules takes place in a dissociative

manner. One proton is transferred to a nearby bridging oxygen atom leaving a hydroxyl

group adsorbed at the undercoordinated titanium atom. The corresponding calculated

desorption energy value upon recombination of the dissociated molecule in the gas phase

is 1.9 eV. Our computed values of desorption energy from the different sites agree fairly
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well with the values measured experimentally for the desorption of water from a ∼100 nm

thick oxide layer on Ti [106]. Namely, two main desorption peaks at 0.53 and 0.75 eV were

identified and assigned to desorption of molecularly adsorbed water on different surface

sites, while a third peak at 1.2 eV was assigned to associative desorption from previously

dissociated water molecules.

These results suggest that our model, although based on a system of very limited size,

may indeed be representative of realistic Ti/TiOx/Water interfaces. We thus use it as

a basis for constructing a classical potential which would enable us to simulate larger

systems for longer time than achievable with a full quantum mechanical formalism. To

this end, we rely on the fact that our oxidized surface, in the absence of obvious defects

such as the oxygen vacancy that we arbitrarily created, showed little reactivity when

exposed to liquid water. Therefore, we can assume that the physical/chemical behavior

at the interface between oxidized Ti and the outer environment may be well captured by

a simple potential based on non-bonded interactions, as described in the next section.

5.2 A Classical Potential for Ti/TiOx/Water Inter-

faces

5.2.1 Computational Details

Apart from some modifications, as described in the following, we have employed the same

basic simulation setup as described in Sec. 4.3.1. Due to the inclusion of Lennard-Jones

potentials the cutoff for the short-ranged interactions has been increased. If not stated

otherwise, a value of 12.0 Å is used. Dynamic simulations at finite temperature are

performed in a NVT ensemble using the Berendsen thermostat [19] with a relaxation

time of 0.5 ps and an integration timestep of 1 fs. The resulting surface areas of the

oxidized Ti supercells comprise 17.62×20.34 Å2 for the 2×2 surface and 35.23×40.68 Å2

for the 4×4 surface. The central plane of titanium atoms is fixed to provide a constant

reference coordinate frame. Before adding any adsorbate molecules, the dry surface is

relaxed classically. The surface-water interface is prepared by filling the vacuum gap with

pre-equilibrated water molecules. After relaxing and thermalizing the system, the height

of the simulation cell is initially adjusted to obtain a 1 atm pressure along the surface

normal.
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Figure 5.2: Charges of the dry oxidized titanium surface: Original EEM charges (dashed

line), scaled EEM charges (solid line) and the ESP charges of the exposed surface atoms

(diamonds).

5.2.2 Rescaling of the Point Charges for Surface/Adsorbate In-

teractions

In our potential, the point charges qi employed in the electrostatic interactions within the

oxide are determined using the electronegativity equalization method (EEM) of Mortier et

al. [129]. Their values within the thin oxide film (dashed line in Fig. 5.2) are proportional

to atomic Bader charges[12] computed at the DFT level, and are consistent with the

parametrization of the short-ranged interactions. However, as explained in Sec. 3.3.1

these charges are not guaranteed to reproduce well the electrostatic interactions between

the oxide layer and molecular species above the surface. Indeed, most common force

fields for water or biomolecules, including the widely used TIP3P water model [89] or the

AMBER [45] biomolecular force field, are based on electrostatic potential (ESP/RESP)

derived charges (cf. Sec 3.3.1). We thus compute ESP charges for the exposed OB

and TiB atoms (for atoms buried in the surface, the ESP charge value have little or

no significance). As shown in 5.2, the obtained ESP charges are sightly lower than the

EEM charges. Therefore, to compute the Coulomb electrostatic energy between molecular

adsorbates and the oxidized surface, we rescale all surface point charges by a factor of

0.77, as determined ad hoc to match the EEM and ESP charges on the exposed surface

bridging oxygen atoms (solid line in 5.2). Only to calculate the interactions between
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the Ti and O atoms within the surface, we retain the original EEM charges in order to

preserve the potential parametrization of Chap. 4 .

5.2.3 Interactions with Oxygen-containing Molecules

The finding of Sec. 5.1 that water adsorption on the defect-free oxidized Ti surface takes

place without dissociation allows us to model the water/surface interactions by employing

only electrostatic and non-bonded short-ranged forces. In this way, we can easily combine

the potential described in the previous section with established biomolecular force fields

in order to perform simulations of biomolecular adsorption on oxidized Ti, which is the

ultimate goal of our work. We describe the interactions of the surface with adsorbates,

in particular with water molecules, by a Lennard-Jones (LJ) and Coulomb non-bonded

potential, as e.g. in the AMBER force field:

VIJ(r) = εIJ
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r
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r
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+
qIqJ
r
, (5.1)

The parameters εIJ and σIJ for each pair IJ of interacting species can be obtained using

the combination rules εIJ =
√
εIεJ and σIJ = (σI + σJ) [45]. The atomic parameters

εI and σI for water and biological molecules can be taken from the AMBER [45] or the

generalized AMBER force field (GAFF) [186], which leaves only the 4 LJ parameters for

the titanium and oxygen atoms of the surface to be determined. Differently from previous

approaches (e.g. refs. [13, 155]), we determine these parameters from a fit of the energy

landscape of water desorbing from a rutile TiO2(110) crystal surface, rather than from

optimization of the structural properties of adsorbed water molecules.

As a reference, we compute the potential energy surface (PES) of one water molecule

placed at different heights above the fully hydrated 3×1 rutile (110) surface cell by means

of DFT, as displayed in the inset of 5.3. Starting from a fully minimized configuration, one

of the water molecules is displaced vertically along the surface normal and total energy

calculations are performed at each separation, keeping all atomic positions fixed. The

resulting PES is shown in 5.3 (black solid line), yielding an potential minimum of -1.1 eV.

This is deeper than the desorption energy computed in Sec. 5.1 (0.83 eV) because of the

lack of atomic relaxation.

For exactly the same atomic configurations, we now compute total energies using our

classical potential, optimizing the LJ parameters for the surface atoms by a least squares

fit to the DFT PES using the GULP package [61]. Both the DFT and the classical energy
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Figure 5.3: Potential energy surface (PES) of a water molecule at various separations

from the TiO2 rutile 110 surface: DFT (black diamonds) and classical calculations (red

circles). The structure is displayed in the inset.

values are rigidly shifted to obtain a value of 0.0 eV for a water-surface separation of

8 Å. In these calculations, the point charges on the rutile atoms are computed from the

EEM charges scaled by the same factor of 0.77 determined for the oxidized Ti surface (see

previous section). Notably, the resulting charges are nearly identical to the ESP charges

computed for the crystal surface (e.g. the average charge values of the bridging oxygen

atoms are 0.67 electrons in both cases).

As shown in 5.3, the agreement between the DFT and classical PES is excellent for the

optimal LJ parameter set listed in 5.1. We note that in our approach the used Lennard-

Jones potential must not be seen as a physical representation of dispersion interactions,

but only as an arbitrary way of mapping the true surface-water interactions by means of

Coulomb and short-range terms. In fact, weak dispersion interactions are not properly

accounted for, and generally underestimated [134], in the DFT total energy calculations.

However, the deep minimum of the potential well on the polar oxide surface suggests

that electrostatic attraction by far exceeds the dispersion forces, which can be thus safely

neglected.

Using these interaction parameters, the water molecules are relaxed classically to com-

pare the adsorbed geometry on the crystal surface to the corresponding DFT structure.

Upon full atomic relaxation, at the classical level, the calculated desorption energies of a

single water molecule from the hydrated surface is 0.81 eV, which is in very good agree-
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Table 5.1: Lennard-Jones parameters of the surface atoms.

Lennard-Jones-Parameters

εI [eV] σI [Å]

Ti 0.01455 0.7827

O 0.01983 1.6154

Ti-N 9-6 potential

εT i−N [eV] 0.140155

σT i−N [Å] 2.30769

ment with the DFT value of 0.83 eV. We will indeed show later in this chapter that these

parameters lead to computed values of the work of hydration of Ti oxide surfaces in good

agreement with experiments, thus justifying the approximations taken in our approach.

The distances between fivefold titanium and water oxygen, water hydrogen and bridging

oxygen, as well as between hydrogen and oxygen of 2 neighbor water molecules are re-

ported in 5.2. We notice small differences between the DFT and the classical structure,

in particular the hydrogen bridges are longer in the classical model. However, we consider

these differences as acceptable for our purposes and we refrain from correcting them ad hoc

by introducing bending potentials [13, 155], as they would prevent the desorption of the

bound water molecules from the surface, or their replacement by other water molecules.

These are events that we often observed in long FPMD simulations, and that we would

like to reproduce also in classical simulations.

Table 5.2: Interatomic distances of the DFT and the classical model after relaxation of

the water molecules on the rutile 110 surface.

DFT Classical

Ti5-OW [Å] 2.34 2.24

HW-OB [Å] 1.81 2.09

HW-OW [Å] 2.14 2.17

Another feature which should be captured by the potential is the correct adsorption

energy of a second water layer, as discussed in Ref. [155] . To check this issue, we place
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Figure 5.4: PES of an ammonia molecule at various separations from the TiO2 rutile

110 surface: DFT (black diamonds) compared to classical calculations with original (blue

triangles) and modified parameters (red circles). The structure is displayed in the inset.

an additional water molecule over the crystal surface terminated by 3 adsorbed water

molecules, with the H atoms pointing towards the surface OB atoms. For this system we

calculate the DFT and the classical PES as described above, obtaining adsorption energy

minima of −0.14 eV and −0.12 eV for the DFT and the classical potential, respectively.

5.2.4 Interactions with Nitrogen-containing Molecules

Obviously not all molecules of interest bind to the surface via oxygen atoms, as in the case

of water. It is thus necessary to check the transferability of the surface LJ parameters

to the case of molecules adsorbing via different atoms, in particular nitrogen given its

abundance in protein and other biomolecules. For this purpose we compute the adsorption

of ammonia on the hydrated TiO2(110) surface, as the simplest possible reference case.

PES calculations are performed in the same way as described above, replacing only one of

the water molecules by ammonia, while retaining the other two water molecules adsorbed

on the surface. For the classical description of the NH3 molecule, we use the Lennard-

Jones parameters taken from the generalized AMBER force field. Since the AMBER force

field does not specify partial charges for ammonia, we assign to the atoms ESP charges

of -0.84 and +0.28, obtained by the same method as described in Sec. 5.2.2. Comparing

the DFT and classical PES (5.4), it appears that the position of the energy minimum
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determining the equilibrium bond-length is slightly shifted towards larger distances and

especially the depth of the potential minimum is too shallow in the classical case. Notably,

even trying a further optimization of the LJ parameter of the surface Ti and O atom did

not lead to satisfactory results. Depending on the particular circumstances, this deviation

from the quantum mechanical behavior can either be accepted as a limit of the parameter

transferability, or a modification of the potential form must be introduced. In order to

ensure a tight consistency with the DFT results, we chose to introduce an ad hoc 9-6-

potential to model the interactions between N and Ti atoms:

VT i−N(r) =
εT i−N
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r
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The parameters εT i−N and σT i−N are determined by fitting to the DFT PES, the resulting

values given in 5.1. With this potential form, the DFT adsorption energy profile can be

now very well reproduced (5.4).

5.2.5 Adsorption of Organic Molecules on the Dry Oxidized Ti

Surface

In this section, we check whether the force field parameters determined in the previous sec-

tion taking the TiO2(110) surface as a reference are transferable to the case of adsorption

of small organic molecules on the oxidized Ti surface. To this aim, the PES of methanol

(CH3OH), formic acid (HCOOH) and methylamine (CH3NH2) above the dry oxidized ti-

tanium surface are calculated both by means of full-level DFT and of our newly developed

classical potential. For the reasons mentioned in Sec. 5.2.4 and for the sake of consistency,

for all molecules we computed ESP charges with our DFT code. These are found to differ

by less than 0.05 e from the corresponding point charges of the AMBER force field, when

available. The LJ parameters of all atomic pairs are obtained by the standard combina-

tion rules, as described above. For each of the molecules, the minimum-energy adsorption

geometry is obtained by FPMD simulations followed by careful relaxation. Taking the

resulting structures as the input models, the molecules are displaced along the directions

of the bond connecting them to the surface, and total energy calculations are performed

without atomic relaxation. The relaxed adsorbed configurations are shown in 5.5.

In the case of formic acid, we found that the molecule could adsorb either in a molecu-

lar or in a dissociated form, depending on the initial orientation of the carboxyl hydrogen.
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Figure 5.5: PES of methanol (CH3OH), methylamine (CH3NH2) and formic acid

(HCOOH) on the dry oxidized titanium surface: DFT (black diamonds) vs. classical

energies (red circles). For CH3NH2 the results for unchanged (blue triangles) and mod-

ified (red circles) Ti-N interactions are displayed. For clarity the PES for CH3NH2 and

CH3OH are shifted vertically by 1.0 respectively 2.0 eV.

Since the dissociation reactions cannot be taken into account using our simple force field,

we focus here on the molecularly adsorbed configuration. The OH group of methanol

was found to bind to two titanium atoms, therefore the molecule was displaced vertically

above the surface. Methylamine adsorbs with the N atom of the amine group bound to a

TiB atom of the surface.

For methanol, the PES obtained with our classical potential agrees very well with the en-

ergies calculated with DFT (5.5), in the case of formic acid the classical energies slightly

overestimate the DFT values by about 0.1 eV. For methylamine, we find excellent agree-

ment between the two PES when including the modified 9-6 Ti-N interaction potential,

whereas using the standard 12-6 LJ potential for Ti-N results in considerably lower ad-

sorption energy, although the equilibrium bond-length is correctly reproduced.

5.3 Adsorption Behavior of Wet Systems

In the previous section, we have constructed a classical force-field potential which is

able to reproduce the adsorption energy of small molecules both on crystalline TiO2

surfaces and on the thin oxide film grown on Ti(0001). Here, we apply our potential
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to investigate the behavior of interfaces between oxidized Ti and liquid water or fully

solvated organic molecules. In particular, we take into account two representative cases

for which quantitative experimental results are available, namely the heat of immersion

of titanium oxide and the adsorption of single tyrosine molecules on oxidized Ti.

5.3.1 Heat of Immersion of TiOx Surfaces

The heat of immersion of a surface, ΔHimm, is defined as the energy gained upon placing

the dry surface in contact with liquid water. In contrast to the case of e.g. the oxidized

silicon surface, where water molecules are stably chemisorbed in a dissociative manner,

mostly molecular adsorption and physisorption of water takes place on titanium oxide

surfaces, as already mentioned in Sec. 5.1. As found in TPD experiments, the desorption

temperature of these molecules is around or even below room temperature [77, 106, 128].

Therefore, the amount of surface water molecules which remain bound to the surface upon

drying cannot be unambiguously identified, as this significantly depends on the conditions

of preparation, in particular on the drying temperature [128]. Correspondingly, as ΔHimm

depends on the number of molecules already bound to the surface prior to immersion in

liquid water, scattered values between 0.2 and 0.6 J/m2 have been reported for TiO2

crystals [68, 128, 51]. A linear decrease of ΔHimm with an increasing amount on initially

adsorbed water on the TiO2 rutile and anatase surfaces has been obtained in Ref. [128].

Also in that study, however, the measured values scatter by as much as 0.3 J/m2 for

different investigated samples at the same initial water coverage, which makes possible

only a rough comparison with theoretical investigations.

Here we start our study considering the interface between bulk water and a 6 layer

slab model of the rutile TiO2(110) surface including a 6×12 surface unit cell comprising an

area of 35.23×40.68 Å2. Similar to the findings from our FPMD simulations, in classical

MD runs at 300 K we observe water molecules binding preferentially to Ti5f atoms, where

they remain stably adsorbed for large part of the simulations. The heat of immersion can

be calculated by subtracting from the average potential energy of the wet surface EW the

average potential energy of the corresponding dry surface ED and the potential energy

of bulk water containing the remaining number of water molecules, EB [39]. Starting

from a 200 ps trajectory of the whole system with Ntot water molecules, these molecules

are sorted with decreasing probability of being bound to the surface. The bulk water

molecules are removed leaving only a certain number Nads of molecules (according to
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Figure 5.6: Heat of immersion for the TiO2 rutile 110 surface (black diamonds) and the

oxidized Ti surface (red circles) as a function of the water content. The straight lines are

linear fits to the data.

their adsorption probability) on the surface. For these dry surfaces, simulation runs of

200 ps at a temperature of 300 K are performed to obtain the corresponding ED average

potential energies. From these values and the corresponding potential energy of bulk

water containing Ntot −Nads water molecules, we calculate the heat of immersion as

ΔHimm(Nads) = [ED(Nads) + EB(Ntot −Nads)− EW (Ntot)] /(2 ∗ ASurf ) , (5.3)

where ASurf is the surface area of only one side of the slab. The potential energies of the

bulk water systems are calculated by first adjusting the height of each water cell in a 200

ps NPT run to obtain a pressure of 1 atm, followed by another 200 ps NVT simulation,

in which the average energies were computed. A total number of 1188 water molecules is

included as the liquid phase, and ‘dry’ surface systems with 24, 36, 64, 88, 120 and 144

pre-adsorbed water molecules are investigated. For Nads = 144, all fivefold coordinated

Ti of the rutile 110 surface atoms are occupied by water molecules.

The resulting dependence of ΔHimm of the number of pre-adsorbed water molecules

is shown in 5.6. In agreement with the findings of Ref. [128] , a perfectly linear decrease

is obtained, and also the absolute values compare well with those available in the lit-

erature (between 200 and 600 mJ/m2, see above). The slope of the linear regression is

0.25 eV/H2O, which represents the desorption energy per molecule from the surface into

bulk water. If we neglect the hydration of adsorbed molecules, the same quantity can be
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calculated by adding the heat of vaporization of water (−0.45 eV for TIP3P water[89])

to the desorption energy into the gas phase (∼ 0.8 eV, see above), obtaining 0.35 eV. A

comparison of these two numbers gives an estimate of about −0.1 eV for the hydration

energy of adsorbed molecules on the surface.

We note that our value of 0.25 eV only takes into account molecular adsorption, while

dissociative adsorption events on defective crystal sites such as steps or edges are expected

to be associated with larger energy values (of the order of 1.2 to 1.9 eV, see Sec. 5.1).

This may explain the significantly larger value of 0.82 eV/H2O reported in Ref. [128] for

the case of rutile powder samples.

The heat of immersion calculated for the oxidized surface displays a slightly different

behavior. In this case, we include 1520 water molecules in the liquid phase in contact

with the 4×4 repetition of the DFT surface model, and performed ‘dry’ simulations for

Nads = 32, 48, 56, 64, 72 and 88. First of all, the obtained values are considerably lower

than those for the crystal surface, as they range from about 260 to 380 mJ/m2. They are

closer to the value of 260 mJ/m2 which has been reported for small TiO2 nanoparticles [68].

Moreover, although a tendency of the heat of immersion to decrease upon increasing the

pre-adsorbed water content can be identified, the values are scattered and no clearly

linear dependence is observed. This must be attributed to the fact that, in contrast to

the perfect rutile surface, not all adsorption sites are equivalent on the oxidized surface,

as indicated also by the scattered values of the static DFT adsorption energies on this

surface (cf. Sec. 5.1). The scattering could possibly be reduced by changing the order

of removing the water molecules and thus averaging over the different adsorption sites.

However, sampling of a large number of permutations would increase the computer time

exceedingly, and lies beyond the scope of this work. Interestingly, fitting a linear function

to the obtained values yields a to a very similar slope compared to the crystal surface.

5.3.2 Desorption Force of Tyrosine

As a further validation of the force field, we calculate the maximum detachment force of

single tyrosine residues from the oxidized titanium surface. This has been measured by

AFM force-spectroscopy experiments leading to a value of 97± 28 pN [108]. In our simu-

lations, to exclude contributions from the backbone adsorbing to the surface we consider

a reduced molecule consisting of a phenol ring bound to a methyl group. The intramolec-

ular interactions as well as the LJ parameters and partial charges of the molecule are
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taken from the AMBER force field, the charge value of the methyl carbon was adjusted

to obtain a neutral molecule. After equilibration we then carry out a 39 ns classical MD

run of the molecule on the oxidized surface at 300K, recording one snapshot every 500

ps. 78 of these snapshots were taken as independent starting configurations in subsequent

umbrella-sampling runs. Such a large number of simulations yields reliable statistics for

the force distribution, however, as a drawback, only the small 2× 2 repetition of the

DFT surface model could be used, to keep the computational cost reasonable. Due to

the smaller cell size the cutoff radius for non-bonded interactions and for the real-space

contribution of the electrostatic interactions had to be reduced to 8.0 Å.

Using a harmonic umbrella potential in the z direction normal to the surface applied

to the carbon atom of the methyl group

Vumbr(zc) =
1

2
kumbr(zc − zumbr)2 , (5.4)

with kumbr = 0.2 eV/Å2 and zumbr = 16.0 Å (compared to z � 12 Å for the exposed

bridging oxygen atoms of the surface), the molecule was initially constrained to be close

to the surface in a 300.0 ps simulation. In this representation, the z = 0.0 value refers to

the central plane of titanium atoms, which are kept fixed. A steered molecular dynamics

simulation (SMD) [88, 82] was then performed to mimic the experimental AFM setup,

applying a time-dependent umbrella potential

Vsmd(zc, t) =
1

2
ksmd(zc − z0(t))2 . (5.5)

By choosing z0(t) = zC(t = 0) + vsmd · t the molecule is pulled off the surface at con-

stant velocity. We set vsmd = 0.5 m/s and ksmd = 0.1 eV/Å2. The instant pulling force

F (z0) = ksmd(zc−z0) is recorded as a function of the pulling height z0 every 5 fs. In order

to eliminate large fluctuations, running averages of the force values over blocks comprising

z0 ranges of 0.025 Å are taken into account. In this way the short-time fluctuations are

found to decrease considerably, whereas the actual force-displacement-curve, which varies

on a larger timescale, is not affected significantly.

A representative example of a force-displacement-curve is shown in 5.7. Initially the ad-

hesion force increases roughly linearly until eventually a sudden decrease is visible, which

reflects the detachment of the molecule from the surface. We calculate the peak forces

for a total number of 73 simulations, their distribution is displayed in a histogram in 5.7.

In five cases no clear force peak could be identified, indicating that the molecule was not
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Figure 5.7: SMD simulations of tyrosine on the oxidized surface. Left : Example for a

force-displacement-curve F (z0). Right : Histogram of the maximum desorption forces and

gaussian fit to the distribution (red line).

adsorbed at the beginning of the simulations (more precisely, we did not consider peaks

smaller than 60 pN, which correspond to the fluctuations of the pulling force acting on a

free, solvated molecule dragged through bulk water). These simulations were discarded

and not considered in the histogram. Considering the trajectories of the individual simu-

lations, we note that the adhesion to the surface is in general mediated by hydrogen bonds

between the hydroxyl group of the phenol ring and surface oxygen atoms, as assumed in

ref. [108]. Moreover, in some cases the hydroxyl oxygen is observed to bind temporarily

to one TiB atom after displacement of an adsorbed water molecule, leading to the values

on the shoulder towards larger forces in the distribution. In summary, our computed

forces range from 70 to 200 pN. A gaussian distribution fit to the values yields an average

force of 108 pN and a width of 31 pN. Within this variance the average force value agrees

well with the experimental results of ref. [108] (97± 28 pN). Therefore, we feel that our

interaction potential can be reliably applied to investigate new systems, for which the

experimental understanding is still incomplete, as performed in a representative case in

the next section.
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5.4 Adsorption of RGD Peptides on the Oxidized Ti

Surface

Finally, as a first application of the developed force field, we present simulations of the

arginine-glycine-aspartic acid (RGD) peptide sequence adsorbing on Ti. This sequence

is present in proteins building the extracellular matrix, such as fibronectin and collagen,

where it acts as an integrin binding site and plays an important role in the process of

cell adhesion [144]. Since such peptides are used to functionalize the surfaces of metal

implants to enhance bone cell adhesion [193, 141], an interesting aspect is their direct

adsorption behavior as this competes to binding to integrins. Despite its importance,

only few simulation studies are devoted to the investigation of the adsorption of RGD-

sequences on solid state surfaces, particularly on crystalline titanium oxide [112, 157, 192].

Here we perform umbrella sampling simulations to obtain force-displacement profiles

from which the potential of mean force (PMF) and the free energy of adsorption can

be calculated. In order to avoid charged end groups, the molecule is terminated with

NME (CH3NH-) and ACE (-COCH3) sequences, yielding a NME-ASP-GLY-ARG-ACE

peptide. The peptide is completely modeled using the AMBER force field, including its

partial charges. For similar reasons as stated in Sec. 5.3.2 we consider a 2×2 surface area

and use a cutoff radius of 8.0 Å. After pre-equilibrating and adjusting the cell height, the

system is annealed at 450 K for 200 ps (keeping the surface atoms fixed) to overcome

possible adsorption barriers to the surface, followed by another annealing at 300 K for

300 ps. The resulting configuration, which is shown in 5.8 (c), is used as initial model for

our free energy calculations.

The RGD molecule binds to the surface via the arginine side chain, which is able to

penetrate the first layer of water molecules in the valley between two rows of bridging

oxygen atoms. The interaction with the surface is mediated both via hydrogen bonds

between the guanidinium group and surface oxygen atoms and via electrostatic interac-

tions between nitrogen and titanium atoms. The ASP side chain is also oriented towards

the surface, with the carboxyl oxygen atoms forming hydrogen bonds with the ARG side

chain and with surface water molecules.

In the umbrella sampling simulations, as the reaction coordinate we chose the z-

position zCα of the alpha carbon of the central glycine residue, with a zero offset cor-

responding to the position of the central plane of the surface slab (as described in Sec.
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Figure 5.8: Desorption of the RGD-containing peptide from the oxidized Ti surface: Force

profile (a), free energy profile obtained by WHAM (solid line) and TI (dashed line), and

snapshot of the initial adsorbed configuration (c). For clarity, only the first layer of water

molecules is displayed. The arrow marks the glycine alpha-carbon atom.

5.3.2). The reaction coordinate is then increased stepwise from 16.0 to 29.0 Å and re-

strained to a total of 14 windows with 1.0 Å width by a harmonic potential (see Eq. 5.4)

with a force constant kumbr = 0.2 eV/Å2. For each window a simulation run of 1.2 ns

is performed, where the first 200 ps are discarded from the force analysis. The reaction

coordinate and the z-component of the force acting on it are recorded every 5 fs.

To calculate the free energy profile A(z) we employ two conceptually different meth-

ods, namely (i) the weighted histogram analysis method (WHAM)[101], evaluating the

probability using the code of Grossfield [67], and (ii) the potential of mean force (PMF)

as obtained by thermodynamic integration (TI) of the average force[49, 178]

G(z) =

� z

zmax


F (z�)�dz� . (5.6)

The unbiased force is obtained by performing the average over all umbrella windows and
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correcting the value by the respective umbrella force:


F (z)� =
Numbr
�

i=1

ni(z)[
F ibiased(z)�+ (d V iumbr(z)/dz)]

ntot(z)
, (5.7)

where the i indicates the respective umbrella window, ni(z) gives the number of appear-

ances of a reaction coordinate value of z from umbrella window i and ntot(z) =
�

i ni(z)

yields the total number of counts for the value z. The forces, the probability and the

corresponding free energy profile are collected in bins of 0.1 Å width.

The unbiased force profile F (z) is displayed in 5.8 (a). When increasing the z0-value

of the umbrella center, first the sidechain of the ASP residue is detached from the surface

due to its shorter length compared to ARG. Finally the guanidinium group of the ARG

residue desorbs producing a force peak of about -215 pN at a z-value of 24.5 Å in the

force profile. The free energy profiles calculated with the two methods are shown in 5.8

(b). Importantly, we note that the two curves agree almost perfectly with each other,

giving a strong hint that the force calculations and the reaction coordinate sampling have

reached convergence. In the free energy profile we observe a minimum depth of 0.32 eV.

In analogy to Ref. [133] the free energy of adsorption ΔGads can be calculated as

ΔGads = −kBT ln
cads
cbulk

, (5.8)

where

cads =
1

z0 − zmin

� z0

zmin

exp(−βG(z))dz , cbulk =
1

zmax − z0

� zmax

z0

exp(−βG(z))dz , (5.9)

and z0 defines the border between adsorbed and desorbed region. Applied to the PMF

displayed in Fig. 5.8, a value of ΔGads = −0.26 eV is obtained. Experimental values for

the binding free energy between RGD-containing peptides and integrin proteins in the

absence of a surface are found to be in the range of 0.16 eV [109], whereas simulations

of such a situation yield a binding free energy of 0.13 eV [38]. Hence, when a titanium

surface is functionalized using RGD-containing peptides, a situation might arise where

adsorption on the surface is in competition with the desired process of binding to integrin

molecules. From a comparison of the respective free energy values we can conclude that

the adsorption of RGD on the oxidized titanium surface is considerably stronger and might

thus limit the functionality of the sequence. Therefore, immobilization via appropriate

spacers, such as specific binding peptides [95] where direct adsorption of RGD at the

titanium surface is less likely, should be preferred over non-specific surface adsorption to

enhance cell adhesion via binding to integrin.
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Figure 5.9: The charged oxidized titanium surface with hydroxyl groups and protonated

bridging oxygen atoms.

5.5 Development of a Charged Surface Model

Having established its general reliability, in the following we will show how the surface

model can be augmented towards a more realistic description.

Titanium surfaces with a superficial oxide layer generally exhibit isoelectric points be-

tween 5.0 and 6.0 [26, 99, 121], implying that both negatively and positively charged

surface terminations exist . Even if our FMPD simulations of water on the oxidized tita-

nium surface showed only molecular adsorption, one would ultimately expect dissociation

of water molecules for two reasons: First, as known from the literature [190, 104] and

from our FPMD simulations (cf. Sec. 5.1), spontaneous dissociation is favored in the

presence of surface defects such as oxygen vacancies, which one must always assume to be

present on experimental substrates. Second, the dissociation of adsorbed water molecules

is an equilibrium reaction, which is accompanied by a free energy change of about +0.6

eV [37]. To encounter such an event in a few ps of FPMD simulations is thus highly

unlikely, whereas on experimentally accessible time scales one would ultimately expect an

equilibrium of molecular and deprotonated water molecules as well as protonated bridging

oxygen atoms.

Based on these considerations we have decided to include charged surface sites to our

model employing a scheme similar to the one proposed by Predota et al. [139] for the

charged rutile surface: A certain fraction of the adsorbed water molecules is deprotonated

and protons are added to some of the bridging oxygen atoms. As the isoelectric point

is in the acidic range, an overall excess of negatively charged sites must be maintained,
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the exact ratio between TiOH− and Ti2OH+ groups is chosen to be 16:5, which leads

to a surface charge of -0.123 C/m2 close to the experimental value of -0.13 C/m2 [165].

The resulting surface model is displayed in Fig. 5.9 In agreement with DFT ESP charge

calculations, the charges of the dissociated water molecules are taken to be identical to

the charge values of the TIP3P water model. As this procedure yields only a charge

magnitude of ±0.417 e for a positive respectively negative group, the difference to the ac-

tual protonation/deprotonation charge of ±1.0 e has to be accounted for in a reasonable

way. DFT calculations show virtually no difference in the Bader charges as well as in

the ESP charges of the exposed surface atoms between the neutral surface and surfaces

with TiOH− or Ti2OH+ terminations, which implies that the charge is rather delocal-

ized, probably due to metallic titanium region below the thin oxide layer. We therefore

distribute the excess charge of [N(Ti2OH+) − N(TiOH−)] × 0.5823 e equally among all

atoms belonging to the oxide layer.

Regarding the Lennard-Jones coefficients for hydroxyl oxygen and hydrogen atoms we use

the same values as given in the TIP3P water model. Assuming the hydroxyl groups to be

chemisorbed at the surface, we model the bond between the hydroxyl oxygen atom and

the connected titanium by a harmonic potential. In order to reproduce the DFT geometry

a bending potential is introduced, whose parameters are adapted from Ref. [139].

5.6 Summary and Discussion

In this chapter, we have presented an extension of the classical force field developed

in Chap. 4 to model the interactions between natively oxidized titanium surfaces and

liquid water as well as solvated biomolecules. The interactions across the solid/liquid

interfaces comprise Coulomb forces between ESP point charges and a Lennard-Jones

potential, whose coefficients for the surface atoms have been determined by fitting the

classical PES of a water molecule at various separations from the TiO2 rutile 110 surface

to the corresponding DFT energies. In this way, the potential is fully consistent with

commonly used biomolecular force-fields. We have demonstrated that the interactions

with generic organic molecules can be reliably obtained by applying standard combination

rules to the generalized AMBER force field (GAFF). In particular, the obtained potential

is fully transferable to the case of molecules containing O, C, and H atoms adsorbed on

thin oxide layers grown on metallic Ti, for which the adsorption PES calculated with
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full DFT and with our classical potential is excellent. However, if the direct surface-

molecule interactions involve nitrogen atoms, quantitative agreement between the DFT

and classical PES could be achieved only after introducing an additional 9-6 potential to

model the Ti-N interactions. After adjusting the respective potential parameters, using

an NH3 molecule adsorbed on the partially wet rutile surface as a reference, excellent

transferability to the case of the natively oxidized surface has been found.

As mentioned before, the major approximation intrinsic in our potential parametriza-

tion is the use of standard DFT calculations to determine the reference surface/molecule

interactions, which do not properly take into account dispersion forces. In our specific

case however, where highly polar surfaces are considered, the electrostatic contributions

far exceed weak forces of the Van der Waals type, resulting in adsorption energies of the

order of 0.8 eV per water molecule. Indeed, with our potential parametrization we obtain

a fairly good agreement between the absolute values of the computed and measured heat

of immersion of TiO2 crystals, as well as of the maximum adhesion force of single tyrosine

molecules to Ti surfaces.

In fact, a potential as simple as the one presented here (based on purely electrostatic

and Lennard-Jones interaction) is expected to be accurate only under the assumption that

no bond breaking or forming events take place, except the direct binding of O or N atoms of

organic molecules to Ti atoms of the surface, for which the potential has been parametrized

ad hoc. Under this assumption, the transferability of our potential to the case of generic

organic molecules on the oxidized titanium surface is surprisingly good, and allows us

for the first time to investigate the atomistic mechanisms of biomolecular adsorption at

titanium/water interfaces. Finally, charged surface terminations have been introduced,

to account for the experimental surface charge and isoelectric point of titanium.



Chapter 6

Surface Recognition of Peptides

The specific recognition of materials surfaces by small peptide sequences has become a

widely investigated, interdisciplinary research topic with fields of application ranging

from nanoelectronics to medicine and pharmacology [148, 152]. However, a rationaliza-

tion of the binding driving forces in terms of clear structure-function relationships is

missing, as the atomistic details of material surfaces in a wet environment are hard to

elucidate both experimentally and theoretically [52]. Even for the case of well-established

peptide-material couples such as the titanium-binding motif minTBP-1, consisting of the

amino acid sequence RKLPDA, the mechanisms of interactions remain speculative and

based purely on electrostatic arguments [146, 76, 75]. Biological recognition, however, is

based on a complex interplay of interactions that provide optimal host-guest matching

via steric exclusions, hydrophobic/hydrophilic patterns, directional hydrogen bonding,

solvent structuring, as well as electrostatics. In fact, a recent molecular dynamics study

has pointed out that not only direct surface-molecule interactions, but indirect, solvent-

mediated effects govern the adsorption behavior of the RKLPDA peptide on the neutral

TiO2(110) rutile surface [154].

Useful insights in the dependence of the adhesion strength on the single residues com-

posing the minTBP-1-peptide have been obtained by means of atomic force microscopy

(AFM), quartz crystal microbalance (QCM) and, in a single study limited to crystalline

rutile, molecular dynamics (MD) techniques [146, 76, 75]. The adhesion strength, as mea-

sured for instance with AFM force spectroscopy, has been found to be strongly decreased

upon mutation for alanine, especially of the positively charged R and K residues and of

the cyclic P residue, as well as on changing of the residue positions within the sequence

87
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Figure 6.1: Experimental results for the adhesion of the minTBP-1-peptide RKLPDA.

Ferritin complex modified with RKLPDA-peptides ((a), circles, taken from Ref. [76]).

AFM adhesion force histograms of ferritin with and without minTBP-1 on Ti and Si, mea-

sured in the presence of TWEEN20 surfactant ((b), taken from Ref. [195]). Average AFM

adhesion forces of ferritin modified with different mutations of the minTBP-1-peptide on

Ti and Si ((c), taken from Ref. [75]). Adsorption model proposed by Hayashi et al. based

on experimental results ((d), taken from Ref. [75]).

(cf. Fig. 6.1). Since the same peptide binds also, but less strongly to silicon, the latter

surface has often been used as a comparison, as subtle differences in the binding under

different conditions may help elucidate the origin of its specific binding mechanism to

Ti [75]. This is the subject of our investigations, which go beyond idealized, crystalline

surfaces and make use, instead, of realistic surface models of the natively oxidized Ti and

Si surfaces in contact with liquid water.

6.0.1 Surface Models and Computational Details

To this end, we use the structural and interaction model for the natively oxidized titanium

surface, as described in chapters 4 and 5. In detail, a negatively charged surface with a

charge density of -0.123 C/m2 has been employed, where the ratio of negatively charged
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TiOH− groups to positive protonated bridging oxygen is set to 16:5 (cf. Sec. 5.5). For

the RKLPDA simulations the titanium surface covers an area of 35.23×40.68 Å2. For the

truncated amino acid side chains studied in Sec. 6.2.6 a smaller model with an area of

26.42×30.51 Å2 is employed.

The oxidized silicon surface is modeled based on the structure and the force field pro-

posed by Cole et al. [39]. To compare the results to the charged oxidized titanium surface

at the same level, we introduce charged surface terminations. In contrast to titanium,

on the neutral surface only hydroxyl groups are present, which originate from sponta-

neously dissociated water molecules [39]. The isoelectric point of silicon surfaces is found

to be lower than 3.0 [121, 84], allowing almost exclusively negative surface terminations,

which, in this case, are deprotonated silanol groups (SiO−). One out of four hydroxyl

groups is deprotonated, yielding a surface charge of -0.136 C/m2 similar to experimental

values [164]. The DFT ESP charges of this surface reveal that the negative charge is,

in contrast to the titanium surface, rather localized around the deprotonated hydroxyl

group. Based on the DFT results the charges of the oxygen, the connected Si atom, the

next shell of oxygen atoms and the second shell of Si are changed with respect to the

original model to obtain a total charge of -1.0 e per negative group.

The surface area comprises 43.49×43.49 Å2 for the entire peptide and 32.61×32.61 Å2 for

the truncated side chains.

The RKLPDA peptide is described by the AMBER force field [45]. Its termini are capped

by ACE (i.e CH3CO-) respectively NME (i.e. -NHCH3) residues to avoid charged end

groups that are not present in the experimentally studied molecules [76, 75].

All simulations are carried out using the program package LAMMPS [138]. To increase

the computational efficiency, the surface atoms except for hydroxyl groups and hydrogens

attached to bridging oxygen atoms are frozen. All bonds including hydrogen atoms are

constrained to their equilibrium values. Electrostatic interactions are calculated by the

pppm method with a precision of 10−5. A 12.0 Å cutoff for the non-bonded interactions

and for the real-space contribution of the electrostatics has been chosen. The production

simulations are performed in an NVT ensemble using a Nosé-Hoover thermostat [81] with

a timestep of 2.0 fs at a temperature of 300 K. As it is generally almost impossible to cal-

culate the pressure tensor in simulations involving polar substrates with fixed atoms, the

height of the simulation cell is initially adjusted to maintain the standard water density

in a volume element far away from the surface.
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6.1 Free Energy of Adsorption

Before discussing the adhesion mechanisms in detail, we first focus on quantifying the

adsorption of the peptide in general. When considering equilibrium adsorption the free

energy change ΔGads is the central observable. The dissociation constant Kd = K
−1

ads for

the titanium-binding peptide (TBP) RKLPDAPGMHTW, which contains the titanium-

binding motif (minTBP-1) RKLPDA, has been determined experimentally using light

extinction measurements in the supernatant phase [146]. In detail, a value of Kd =

13.2 ± 4.0 µmol/l has been measured on titanium which yields, according to Eq. 2.2, a

free energy value of ΔGads = −0.394 eV. Compared to minTBP-1, the TBP features an

excess sequence of amino acids which has been shown to have little effect on the adsorption

at titanium substrates, though [147]. Hence, we assume the free energy of adsorption for

the RKLPDA-hexapeptide to be close to this value.

In order to compare our simulation model to these experiments and to establish a

reliable method to calculate ΔGads for such medium-sized molecules, we perform different

free energy calculations for the RKLPDA peptide on the oxidized titanium surface.

As the experimental free energy difference is commonly associated with an equilib-

rium of adsorption and desorption, it is important to take both processes into account

when ΔGads is calculated from MD simulations. In this regard, metadynamics (cf. Sec.

3.4.3) provides a conceptually superior approach compared to thermodynamic integration

or umbrella sampling, in particular when investigating heterogeneous surfaces. As this

technique introduces a bias potential to compensate the true free energy profile, the mo-

tion of the reaction coordinate ultimately becomes diffusive and an equilibrium between

adsorption and desorption can be observed at room temperature even on the simulation

timescale of some tens of nanoseconds. Moreover, in order to achieve sufficient sampling

of the complete phase space of the peptide, we perform another set of metadynamics

simulations in which we additionally apply the replica exchange method with solute tem-

pering (REST) as described in section 3.4.4. In detail, the simulations are performed in

the well-tempered ensemble with a bias factor of 10.0. Gaussian hills with a height of 0.02

eV and a width of 0.1 Å are deposited every 0.5 ps. In the REST simulations four replicas

at solute temperatures of 300, 350, 400, and 450 K are employed and exchanges between
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Figure 6.2: Evolution of the bias potential from the metadynamics (a) and the metady-

namics+REST (b, base replica) simulation. Trajectories of the reaction coordinate zCOM

from the metadynamics (c) and the metadynamics+REST (d, base replica).

replicas are attempted every picosecond. The results presented in the following comprise

simulations over 270 ns for metadynamics alone and 120 ns for metadynamics+REST.

The time evolution of the bias potential for both metadynamics and metadynam-

ics+REST (300 K replica) are displayed in Fig. 6.2, along with the corresponding tra-

jectories of the reaction coordinate. While the reaction coordinate for metadynamics

alone samples about 4 transitions between adsorbed state and solution, the metadynam-

ics+REST simulation exhibits a discontinuous center of mass trajectory with enhanced

sampling of the reaction coordinate range. As far as the exchange of the replicas is con-

cerned, we find that all of them are able to access the entire temperature range, even on

the time scale of few nanoseconds (as displayed in Fig. 3.4).

The final free energy profiles are displayed in Fig. 6.3. From the entire profile, we can

compute a net free energy of adsorption ΔGads as [133]

ΔGads = −kBT ln
cads
cbulk

, (6.1)
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Figure 6.3: (a) Free energy profile of the titanium-binding motif RKLPDA on Ti obtained

by metadynamics (black) and metadynamics+REST (red). (b) Free energy profiles of each

REST solute temperature: 300 K (black), 350 K (red), 400 K (green), and 450 K (blue).

Flat (c) and upright (d) adsorbed geometries from metadynamics+REST simulations.

where

cads =
1

z0 − zmin

� z0

zmin

exp(−βG(z))dz , cbulk =
1

zmax − z0

� zmax

z0

exp(−βG(z))dz , (6.2)

and z0 defines the border between adsorbed region and bulk solution. The integrated

value of the adsorption free energy for metadynamics alone is ΔGads = −0.34 eV whereas

for metadynamics+REST a value of ΔGads = −0.40 eV is obtained. After the first 50 ns

we find that for metadynamics+REST ΔGads varies only little with increasing simulation

time. We estimate the error by the amplitude of the oscillations around the final value

as 0.04 eV. For metadynamics alone it appears more difficult to achieve convergence even

after more than 250 ns of simulation time. Though ΔGads does not change significantly

during the final 50 ns, a further systematic change cannot be excluded, given the small

number of transitions between adsorbed state and bulk solution. Consequently the error

must be assumed to be considerably larger compared to the metadynamics+REST value.

Importantly, both values are in overall consistency with the experimental free energy

of adsorption of the TBP molecule. While ΔGads obtained from metadynamics alone

underestimates the experimental value, the free energy difference obtained from metady-

namics+REST indeed shows excellent agreement.

Although the free energy profiles obtained for the high temperature replicas (Fig. 6.3
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(b)) do not have a physical meaning due to the artificial implementation of the solute

tempering, they are important from a technical point of view. When considering e.g.

the profile associated with the 400 K replicas, we already find an almost completely flat

free energy landscape. This means that the molecule hardly encounters any significant

barrier upon desorption. Thus, in addition to enhanced sampling of internal degrees of

freedom of the peptide, the replica exchange method apparently improves sampling along

the reaction coordinate, visible in the center-of-mass-trajectory in Fig. 6.2.

In the adsorbed configurations of the peptide taken from the metadynamics+REST

simulations the arginine side chain is always in close contact with the surface. The im-

portance of this residue for the adhesion to the surface has been reported experimentally

in Refs. [147, 146, 75]. In general we observe two main adsorbed geometries:

The states with their center of mass close to the surface are associated with conformations

where R, K, and D side chains are attached to the surface (Fig. 6.3 (c)). These contacts

enforce a flat, tightly bound geometry, even allowing the formation of hydrogen bonds

between backbone amine groups and the exposed surface oxygen atoms. While the exact

adsorption mechanism of R and K will be discussed in detail in Sec. 6.2.5, we mention

here that the carboxylate group of D can approach the surface either via hydrogen bonds

with surface hydrogen atoms or via an adsorbed sodium ion.

In addition, we encounter geometries with the carboxylate group of D pointing towards

solution (Fig. 6.3 (d)). In this case the molecule assumes a more vertical adsorption

conformation where the contact is established merely by the positively charged end group

of R, in most cases accompanied by K. Comparing the free energy profiles obtained with

and without solute tempering, we find considerable differences particularly in the range of

small reaction coordinate values. The solute tempering simulations reveal a pronounced

minimum which does not emerge to this extent in metadynamics alone, as also reflected in

the smaller ΔGads value. Such reaction coordinate values correspond to tightly adsorbed

conformations (Fig. 6.3 (c)). The increased population of these states upon solute tem-

pering suggests that they require intramolecular barriers to be overcome. This finding is

corroborated by equilibrium simulations which reveal such adsorbed geometries only after

a period of annealing at 450 K. In metadynamics alone such conformations are less likely

to be encountered, stressing the importance of additional sampling methods.

In all cases the desorption of the peptide crucially involves the detachment of R.
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6.2 Adhesion forces on Ti and Si

6.2.1 Initial configurations

To compare our simulations of the RKLPDA peptide on titanium and silicon to the AFM

experiments of Ref. [76, 75] and in order to investigate the detachment processes on an

individual basis rather than as an averaged quantity, we perform SMD simulations as

described in Sec. 5.3.2 to compute adhesion forces. One of the major challenges when

comparing to such experiments is to gather a representative statistical sampling. There-

fore, special attention is paid to the generation of independent adsorption configurations

which is carried out according to the following scheme. First, the peptide is annealed

in solution for 0.7 ns with random initial velocities at 450 K in a langevin thermostat,

followed by 0.8 ns of annealing at 300 K. The resulting system of solvent and peptide is

shifted along the z-direction under periodic boundary conditions until the peptide resides

at the bottom of the cell. The entire block is then placed in the vacuum gap between

the two oxidized surfaces of the titanium or the silicon slab. After a short relaxation the

cell height is slowly adjusted to maintain the correct water density in the bulk region

during a 200 ps run. Finally, we anneal the whole system once more at 450 K for 0.7

ns to overcome possible barriers followed by another equilibration at 300 K for 1 ns. A

total number of 29 different starting configurations for titanium and 26 configurations for

silicon are considered.

On titanium we find that RKLPDA can adsorb with the side chains of the charged R,

K and D residues, in line with the adsorption model proposed by Hayashi et al. [76, 75]

(cf. Fig 6.1 (d)) and with simulation results on the neutral TiO2 rutile surface [154].

Apart from one case, all initial conformations feature the guanidinium group of R ad-

sorbed on the surface, accompanied by either the positively charged K end group or the

negative carboxylate group of D. Some initial geometries even reveal the simultaneous

adsorption of all three residues (cf. Fig. 6.5). This behavior corresponds to the findings

of our extensive metadynamics+REST simulations, indicating that the protocol for the

generation of initial conformations indeed samples the phase space well.

On the oxidized silicon surface we find a similar situation, clearly favoring the adsorption

via the R residue, which remains close to the surface, in most cases accompanied by the K

side chain. However, in contrast to titanium, D is rarely found in proximity of the silicon

surface.
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Figure 6.4: Force-displacement curves for the R endgroup on Ti obtained with pulling

velocities of 5.0 (black), 0.5 (red), 0.05 (green), and 0.01 (blue) m/s. The peak force in

dependence of the negative logarithm of the velocity is displayed in the inset.

6.2.2 AFM force histograms

To compute the adsorption forces on the two surfaces and compare our results to the

AFM force spectroscopy experiments of Refs. [76, 75], we perform a series of steered

molecular dynamics simulations (SMD) [88] as described in Chap. 5. For each adsorbed

configuration, the molecule is pulled off the surface using a time-dependent harmonic

potential

Vsmd(zc, t) =
1

2
ksmd(zc − z0(t))2 , (6.3)

where the z-coordinate zC of the carbon atom of the NME cap at the C-terminal end of

the peptide is tethered to an anchor z0(t) = zC(t = 0) + vsmd · t moving with constant

velocity. Each simulation is carried out until the molecule completely desorbs from the

surface (up to 7 ns in each case), with parameters ksmd = 0.5 eV/Å
2
and vsmd = 0.5 m/s.

Running averages over blocks comprising z-values of 0.05 Å are performed on the force-

displacement curves, which appeared to remove high-frequency oscillations, while leaving

the overall shape of the curve unaffected.

The pulling velocities feasible in SMD simulations are typically several orders of mag-

nitude larger than the experimental ones. Before discussing the results obtained for the

entire peptide, we assess the influence of the pulling velocity on the adhesion forces, con-

sidering the case of the CNHCH3(NH2)2
+ molecule as a model for the arginine end group
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Figure 6.5: Histogram of the SMD force peaks and typical force-displacement curves

(displayed in the inset) on titanium (red) and on silicon (blue).

(cf. Sec. 6.2.6). From the same initial adsorbed geometry on titanium, we perform several

SMD simulations, pulling the molecule with velocities of 5.0, 0.5, 0.05, and 0.01 m/s off

the surface. The resulting force-displacement curves are displayed in Fig. 6.4. While the

F-D-curve corresponding to the largest velocity apparently overshoots the adhesion force,

the remaining curves yield similar characteristics and values in the same range. Beyond

the sharp drop from 5.0 to 0.5 m/s, the peak values decrease only slightly upon further

reduction of the speed. We therefore choose to use a velocity of 0.5 m/s for our produc-

tion simulations. Given that the resolution of the adhesion force histogram is as large as

50 pN, this setting yields reasonable peak force values, while allowing to include a large

number of different initial geometries, which is equally important for a realistic quantifi-

cation. Notwithstanding, one has to bear in mind the velocity issue when comparing the

simulation results to AFM experiments.

In Fig. 6.5 representative force-displacement curves for the RKLPDA peptide on

the oxidized titanium and silicon surface are displayed. The force-displacement curves

typically exhibit an initial increase of the force which in some cases features several smaller

subpeaks, until a maximum force peak is reached, after which the force decays rapidly.

The peak force of each SMD run has been evaluated and the results are displayed in a

histogram in Fig. 6.5. The forces range from 250 pN to 650 pN for the Ti surface and
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Figure 6.6: Snapshots from a typical SMD simulation of the minTBP-1-peptide on tita-

nium. The charged end groups are displayed as ball-stick models, the large sphere marks

the carbon atom to which the spring is attached.

from 150 pN to 500 pN for Si. Average detachment forces are obtained by fitting the

histograms with a Gaussian function which yields values of 445± 79 pN on titanium and

291 ± 96 pN on silicon. These force values are about a factor 3 smaller than the AFM

experiments of Refs. [76, 75]. This is most probably due to the fact that the experiments

were performed with a RKLPDA-modified ferritin protein (cf. Fig. 6.1), meaning that

the measured forces likely contain contributions from more than one peptide and from the

ferritin itself. We note, however, that the experimental force distribution measured on

Ti in the presence of TWEEN20 surfactant [76, 195], introduced to reduce hydrophobic

protein-surface interactions and obtain values representative of a single RKLPDA peptide,

agrees remarkably well with our simulation results (the measured average force on Ti is

0.5 ± 0.16 pN, cf. Fig. 6.1)). Moreover, most importantly, the ratio between the average

forces on Ti and on Si obtained in our simulations is about 1.5:1, which is in excellent

agreement with the experimental ratio of about 1.6 obtained experimentally in pure water



98 CHAPTER 6. SURFACE RECOGNITION OF PEPTIDES

Figure 6.7: Trajectories of the central C atom of the R end group (blue) and of the N

atom of K (red) along with the corresponding SMD forces (black) on titanium (top) and

silicon (bottom) and the respective water density profile (green). Additionally, on Ti the

carboxylate C of the D residue is displayed (brown).

[75].

6.2.3 Analysis of SMD

This agreement encourages us to carefully analyze the trajectories of the SMD simulations

in order to elucidate the mechanisms underlying this specific adhesion. Irrespective of the

initial conditions, on titanium the R side chain remains in proximity of the surface, in

most cases accompanied by K, until the onset of detachment. In general, the maximum

force peaks in all SMD simulations are associated with the detachment of either the R or

the K side chain, whereas detachment of the D residue causes merely a smaller pre-peak

of about 250 pN (see Fig. 6.7 and the corresponding snapshots in Fig. 6.6). In part,

this is due to the fact that K and R are naturally the last residues to be pulled off the

surface when the harmonic spring is attached to the alanine C-terminal of the peptide,

consistently with the AFM experimental setup. Yet, the minor detachment force of D

indicates that the adhesion of this residue is not as pronounced as it is for the positively

charged ones.

A similar situation is observed on the oxidized Si surface: A typical example is shown

in 6.7, where the desorption of the peptide takes place via detachment of the R side
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chain. Equivalently, we have found several events with K involved in the main desorption

process. Compared to titanium the force peaks often emerge less distinctly.

6.2.4 Water structures on the two surfaces

The similar desorption behavior on Ti and Si argues against a significant influence of the

chemical nature of the adsorbed residues on the different adhesion forces. As proposed

by Hayashi et al. [76, 75], the D residue indeed exhibits a distinguished behavior, as

it can bind to titanium, but hardly to silicon. This difference apparently influences the

equilibrium adsorption of the peptide, as discussed in the context of adsorption free energy

in Sec. 6.1. The stronger adhesion forces on Ti, though, reveal no direct correlation with

this particular role of aspartic acid, as they are produced exclusively by the detachment of

R and K. Instead, the major differences between Ti and Si seem to arise from the specific

interactions of the R and K side chains with the markedly different structures of the water

solvent at the solid/liquid interfaces, and thus from the degree of surface hydrophilicity.

The density profiles of water oxygen atoms along the normal direction to the Ti and

Si surfaces are displayed in Fig. 6.8, revealing the expected, pronounced ordering of the

water molecules in both cases. On titanium, however, the density within the first layer is

much larger, the layer width is smaller and even the second layer still emerges distinctly,

being comparable to the first main peak on silicon. This evident structuring is intriguing

giving that, compared to the commonly used, almost ideally flat model systems, both

surface models exhibit considerable topological roughness and chemical heterogeneity.

In fact, a laterally resolved analysis of the water structure reveals that on the oxidized

Ti surface the density maxima appear as localized spots, whereas on Si they assume a

rather contiguous form. In addition, particularly the Si surface presents outspread areas

of reduced water density, which can be associated with local hydrophobic sites, similar

to simulation results on various silica and quartz surfaces [35, 132]. Interestingly, the

adsorption geometry of the peptide is directly influenced by the local density changes in

the water structure, resulting in subtle differences in the adsorption configurations of the

R and K side chains on Ti or Si, as shown in Fig. 6.8: On Si the aliphatic parts of the side

chains spread almost flat within regions of low water density, while the charged moieties

occupy large-density positions. On Ti the side chains adsorb in an upright manner,

suggesting a stronger hydrophilic character of the surface. In particular, localized water

density maxima, facilitated by the topological features of the oxidized surface, apparently



100 CHAPTER 6. SURFACE RECOGNITION OF PEPTIDES

Figure 6.8: (a) Density profile of water oxygen on Ti (blue) and on Si (red). (b) The

free energy profiles of a spherical hydrophobic solute on Ti (blue) and on Si (red). (c,d)

Adsorbed peptide on Ti respectively Si with a map of the unperturbed water density

(displayed within a vertical plane, which includes the R and K end groups).

act as adsorption “hot spots”, capturing the polar arginine end group in a stable way

during the SMD simulations until detachment.

Instead of measuring the contact angle, which is impeded by the surface charge and

the counterions, a quantitative assessment of the hydrophilic character of the two surfaces

is performed by calculating the local compressibility of a spherical hydrophobic solute of

radius 2.5 Å. Its interactions with all other atoms are modeled by a WCA potential [187],

following the method introduced in Ref. [62, 1] 1. As displayed in the inset of Fig. 6.8, the

computed adsorption free energy profile is positive in both cases, indicating hydrophilic

surfaces. The stepwise increase of the free energy profile bears the signature of the water

1The PMF of the hydrophobic WCA solute is calculated by performing an equilibrium simulation

without bias potential for 20 ns. The free energy is evaluated using the probability ratio method, G(λ) =

−kBT lnP (λ), which we have found to yield equivalent results compared to other approaches involving

a bias potential.
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layers, which successively have to be penetrated upon approaching the surface. The height

of each step is larger on Ti compared to Si, suggesting a more stable water structure and

hence a stronger hydrophilic character.

6.2.5 Different forces from different water structures

Considering in detail the z-trajectory (Fig. 6.7) of the guanidinium group of R and the

ammonium group of K on the Ti surface, we find that the latter preferentially resides

within the first or the second water layer, where it forms hydrogen bonds with surface

hydroxyl groups, adsorbed water molecules and bridging oxygen atoms. The former al-

ways accommodates reproducibly in a tilted position within the first water layer above the

valley between two rows of bridging oxygen atoms (cf. Figs. 6.6 and 6.8). In this position

it can interact directly with the surface atoms underneath and, at the same time, form a

network of hydrogen bonds with both the molecules of the surrounding water layer and

the adsorbed water and hydroxyl groups. Moreover, it is confined laterally by the rows

of bridging oxygen atoms, thus acting as an anchor for the whole molecule. Upon pulling

the molecule off the surface, the guanidinium group retains its conformation and sustains

the pulling force until it suddenly snaps out of the water layer into a new metastable

position with one of its amine groups still in the first water layer and the other one in the

second layer. The anchoring of R within the first layer of adsorbed water is a significant

difference of the natively oxidized Ti to the TiO2 rutile 110 surface, where the first layer

of water is built by molecules tightly bound to the fivefold coordinated titanium atoms

and can hardly be entered by other adsorbates [127].

On the Si surface both the R and the K side chains reside within the first water layer,

seeking proximity of a deprotonated hydroxyl group to establish hydrogen bonds. Di-

rect interaction with surface bridging oxygen atoms is rarely observed, and the adsorbed

residues still form a large part of their hydrogen bonds with surrounding water molecules.

Due to the lesser extent of structuring within the first solvent layer, when the peptide is

pulled off the surface the force increases up to a less pronounced maximum peak and does

not drop sharply afterwards, indicating a softer desorption transition compared to the Ti

surface (see Fig. 6.7).
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Figure 6.9: Left : Free energy profiles for truncated arginine (black), lysine (red), and

aspartic acid (green) side chains on titanium (a) and silicon (b). The respective water

density profiles (in arbitrary units) are depicted by the dashed blue lines. Right : Full (solid

lines) and dry (dashed lines) equilibrium forces acting on the arginine (c) respectively

the lysine (d) side chains on titanium (black) and silicon (red).

6.2.6 Adsorption of the end groups

In order to study in a more quantitative way the implications of the specific interfacial

solvent structure on the driving force of peptide adsorption, we compute the free energy

adsorption profiles for isolated R, K, and D side chains, modelled by a CNHCH3(NH2)2
+,

a CH3NH3
+, and a CH3COO− molecule, respectively. As in Sec. 6.1 we employ the meta-

dynamics approach 2. The evolution of the bias potential and the associated trajectory

of the reaction coordinate is shown in Fig. 3.3.

The resulting free energy profiles are presented in Fig. 6.9.

On Si, the acetate molecule reveals a local minimum in proximity of the surface.

This is separated by a free energy barrier from bulk solution, explaining the absence of

D adsorption in our simulations of the peptide. On Ti, no significant barrier is found

for this molecule, allowing spontaneous adsorption, however, the free energy minimum

appears to be rather shallow. For the other molecules the adsorption takes place without a

2We choose the z-coordinates of the central C atom in R, the N atom in K, and C atom in D as reaction

coordinate. We deposit Gaussian hills with 0.02 eV height and 0.1 Å width every 0.4 ps. Convergence is

achieved by employing the well-tempered ensemble with a bias factor of 5.0
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considerable free energy barrier. As the detachment forces arise merely from the positively

charged residues, we will concentrate our investigations on these species in the following.

Using Eq. 6.1, the strongest adsorption free energy is computed for arginine at the Ti

surface, amounting to -0.305 eV compared to -0.151 eV on silicon. On both substrates

lysine binds weaker, with ΔGads values of -0.092 eV on Ti and -0.066 eV on Si. From the

convergence of ΔGads with simulation time (cf. Fig. 3.3) we estimate the error of all of

these value as 0.01 eV.

We note that the adsorption behavior of the side chains observed in the simulations of

the whole peptide is recovered from these profiles. On Ti, arginine has a stable adsorbed

conformation in the first water layer with metastable states between both layers and

inside the second layer, whereas lysine has the most stable location within the second

layer, with local minima in the first layer accessible upon overcoming a small free energy

barrier. On Si, the most favorable position of both residues is within the first, broad water

layer. Remarkably, the methyl-ammonium molecule which we used as an analogue for the

lysine residue, can approach the silicon surface both via the polar ammonium end and the

nonpolar methyl group, in line with simulation results for methanol on quartz surfaces

[132]. This indicates once more the presence of hydrophobic and hydrophilic regions in

close vicinity to each other which has significant implications on the adsorption behavior.

The overall shape of the free energy profiles reflects well the water density structure, with

the density maxima coinciding with the free energy minima and with the more or less

sharp structure of the water peaks corresponding with more or less pronounced slopes

of the free energy wells. In particular, as the adhesion forces are determined by the free

energy slope, higher forces are expected for the Ti surface, in agreement with the results

of the SMD simulations presented above (see Fig. 6.5).

A careful analysis of the metadynamics simulations allows us now to asses the influence

of the water structure on the surface adhesion. For each molecule and surface, we can

compute force profiles F (z) along the adsorption trajectories taking into account either

all interactions (“wet” forces) or only direct molecule-surface interactions (“dry” forces) 3

(Fig. 6.9). The most evident result from this analysis is that the dry forces are much

larger and much longer-ranged than the wet forces, due to the absence of electrostatic

3The dry forces were obtained from the metadynamics snapshots by removing the water molecules

and calculating the forces on the molecule. As the system is no longer charge-neutral, the ewald sum is

replaced by a coulomb sum which is cut off at a distance of 20 Å.
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screening by the orientational and structural ordering of the water molecules above the

surface and by the counterions. Remarkable is the inversion of the interaction strength,

i.e. the dry adsorption forces are larger on the silicon surface. Instead, the wet forces on

titanium clearly exceed the corresponding values on silicon consistently with the results of

our SMD simulations of the whole RKLPDA peptide. Importantly, the peaks of the force

profile not only can be assigned to the transitions between metastable states in the free

energy profile, but also correspond to the peaks of the water density profile. In particular,

we find multiple distinct force peaks for adsorption at the Ti/water interface, and only

a single broad force peak for adsorption at the Si/water interface. In contrast, the dry

forces lack a clear structure, again suggesting that adhesion forces are largely mediated by

the water structure at the interface, which is thus at the origin of the stronger interactions

with the Ti surface.

6.3 Summary and Discussion

In summary, our results provide a clear rationalization of the origin of the specific ti-

tanium recognition by the RKLPDA peptide. Consistently with the results of alanine

substitution experiments [75] the R residue is mainly responsible for the stable anchoring

of the peptide to the surface. In addition, we have found attachment of the positively

charged K and the negatively charged D residues to facilitate equilibrium adsorption on

Ti. In this context the presence of D on the surface generally causes a flat, tightly bound

conformation, while the molecule assumes rather a vertical geometry when only the posi-

tive residues are attached. In both equilibrium and non-equilibrium SMD simulations the

main barrier towards bulk solution is constituted by the detachment of R.

Employing metadynamics combined with additional sampling by the replica exchange

with solute tempering (REST) technique, we have obtained an adsorption free energy of

ΔGads = 0.4± 0.04 eV which agrees well with the experimental result determined for the

similar titanium-binding-peptide (TBP) on titanium. The extension of metadynamics by

the REST method indeed seemed to enhance phase space sampling considerably, as it

facilitated the occurrence of the tightly bound conformations and accelerated the con-

vergence of ΔGads considerably. The approximation of REST compared to conventional

replica exchange is based on the concept that the tempering comprises only the solute’s

degrees of freedom and in part the interactions with its surrounding molecules, neglecting
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most of the solvent’s degrees of freedom. The implications of this approximation, partic-

ularly with respect to possible systematic errors could unfortunately not be investigated

in detail, due to the lack of reference simulations with conventional RE. However, the

excellent agreement with the experimental adsorption free energy is encouraging. Fur-

thermore, given the fact that the REST method allowed simulation times larger than

100 ns for a solute temperature range between 300 and 450 K with reasonable exchange

among all replicas, a situation which is outside the current possibilities of conventional

RE simulations, the advantages of this method seem compelling. In fact, our free energy

simulations show that such long times are crucial for the convergence of reliable adsorp-

tion free energies for medium-sized molecules.

In quantitative agreement with AFM force spectroscopy measurements, we have computed

in extensive SMD simulations an average detachment force on Ti 1.5 times higher than

on Si. On both substrates our simulations have revealed that only R and K contribute

significantly to the maximum adhesion forces. This finding contradicts the experimen-

tal hypothesis that the electrostatically-driven selectivity of the surface towards specific

residues is the reason for the different adhesion forces. Instead, by means of accurate cal-

culations of adsorption free energy profiles, we have found a striking correlation between

the adhesion forces and the nanoscale features of the water structuring at the solid/liquid

interfaces. In fact, the interfacial water structuring has been found in previous studies to

govern, for instance, the adhesion between silicon wafers [39] or the adsorption mode of a

collagen fragment on hydrophobic surfaces [40]. A novel, yet crucial finding of this study

is that the local solvent density variations near a heterogeneous, rough surface are sensed

by the side chains of a peptide in a way that bear many features characteristic of the

specific recognition in biomolecular aggregates. Our simulation highlight the importance

not only of direct surface-molecule interactions at the anchoring points, but also of an

alternation between hydrophilic and hydrophobic residues to optimize the matching with

the solvent density oscillations. In this picture, electrostatic interactions still play an

important role in driving the approach of charged residues towards surfaces with opposite

charge density, but are, at least in this case, of secondary importance as far as adhesion

forces are concerned.
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Chapter 7

Contact Forces between Nanoparticles

In order to show that the range of possible applications of the force field model is not

limited to biomaterials, I present in this chapter an example which is more related to

the field of nano engineering. Agglomerates of nanoparticles are promising materials that

can be used as catalysts, sensor films, or in hybrid materials. Titania particles in partic-

ular can be used as superhydrohilic surfaces, in photocatalysis, for water splitting, solar

cells, and antibacterial agents [172, 196, 86]. Using flame spray pyrolysis, the chemical

composition and also the general properties of the primary particles can be tailored in a

controlled way by introducing dopant atoms, such as iron in the case of titanium oxide

particles [171].

The contact forces between the aggregates of nanoparticles are a crucial aspect in this

field, as they govern the mechanical properties of the aggregates. Cohesion forces within

films of agglomerates can be investigated in AFM experiments, when the tip is repeatedly

immersed into the nanoparticle agglomerate and retracted, gathering at the tip an increas-

ing amount of aggregates, as shown in Fig. 7.1. These experiments however yield merely

a superposition of force peaks, from which individual contributions and mechanisms can

hardly be isolated. The average peak force that has been measured for aggregates of

10 nm sized primary particles is 3 nN [145].

One of the central quantities of interest is the interaction force between single primary

particles. Contact forces and free energies can generally be obtained in molecular dy-

namics simulations, as reported for generic Lennard-Jones clusters [140]. Moreover, some

MD studies have been published for TiO2 nanoparticles, investigating the aggregation [5]

and the sintering [96] of crystalline and amorphous nanoparticles. The underlying parti-
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Figure 7.1: (a) Histogram of AFM force peaks obtained by repeated contact between tip

and TiO2 nanoparticle film [145]. (b) SEM picture of the tip covered with nanoparticle

agglomerates after several contacts with the film [145]. (c) The two nanoparticle models

with water coverages of 2 monolayers (top) and 1 ML (bottom). The investigated (110)

and the (100) facets are marked with lines.

cle models feature dry surfaces without any physisorbed or chemisorbed water molecules

which might be representative for very high temperatures. At room temperature and un-

der atmospheric conditions however, one must always assume a certain amount of water

molecules decorating the surface [128] which have significant effects on the interactions

among the nanoparticles. In order to understand the distribution of the AFM force peaks,

I perform simulations of the forces between two TiO2 particles at different separations.

In line with the general agenda of this dissertation, I use a realistic model of a rutile

nanoparticle with different water coverages, corresponding to ambient conditions at dif-

ferent humidities.
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7.1 Contact Forces between TiO2 Nanoparticles

Microscopic analysis has revealed that the nanoparticles generated by flame spray pyrol-

ysis possess a spherical shape. As even small amounts of iron have been found to favor

rutile crystal structures [171], the nanoparticle model is generated by carving a sphere

out of a rutile block, while preserving a TiO2 stoichiometry. To keep the computational

cost at a reasonable level, we have chosen to start with a diameter of d = 4 nm which is

smaller than the primary particles of the common aggregates (d � 10 nm), yet still in the

range that can technically be produced. After generation, the dry particle is annealed at

800 K for 500 ps to facilitate structural reconstructions at the cutting edges, in particular

healing the one-fold coordinated oxygen atoms. For the reasons discussed in Chap. 4

we use the force field of Matsui and Akaogi [119] with its original charge values at this

stage. After a structural minimization, the charges are recalculated according to the EEM

method. Subsequently the crystal is relaxed once more, now applying the EEM charges

which represent the different oxidation states at the surface in a more accurate way.

From this point we keep the atomic structure of the nanoparticle fixed. The resulting

particle is immersed into bulk water, using the force field described in Chap. 5 includ-

ing the rescaled charges. After equilibration, the particle is found to be decorated with

a layer of water molecules which adsorb at the undercoordinated surface Ti atoms. As

the surface features a considerable number of defects which are known to facilitate water

dissociation, we devise an ad hoc scheme to introduce such effects. In doing so, we focus

on critically undercoordinated Ti atoms, i.e. atoms with less than five oxygen neighbors

which we have found in our FPMD simulations to be particularly reactive (cf. Sec. 5.1).

Water molecules adsorbed at these sites are identified and one proton is transferred to the

nearest surface bridging oxygen atom. This way the overall charge of the particle remains

neutral, avoiding additional technical challenges due to a charged surface at this stage

which will be subject to future work.

Having relaxed and equilibrated the water and hydroxyl groups, two models with different

water coverages are created. On the one hand, only the molecules that are directly bound

to titanium are retained at the surface. On the other hand, all molecules beyond the

first and the second water layer are removed and a coverage of 2 ML is obtained which

corresponds to conditions of increased humidity. The final models are shown in Fig. 7.1.

To simulate particle contacts, two identical replicas of each nanoparticle model are con-
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Figure 7.2: Force-distance curves between TiO2 nanoparticles for different water cover-

ages. High humidity (a) and dry conditions (b, c), where (b) displays particles approach-

ing each other via their (110) surfaces and (c) refers to the (100) surfaces oriented towards

each other.

sidered. In spite of its spherical construction the particle exhibits several facets which can

be associated with the different crystal surfaces. To begin with, we have chosen to let the

(110) surfaces face each other. Additionally, in order to assess the influence of the surface

type we have considered the contact between the (100) surfaces for the particle with only

one monolayer of water. Starting from a remote configuration, the particles are slowly

approached by imposing a constant velocity to the otherwise fixed crystals, whereas the

water and hydroxyl groups are allowed to move freely. At certain separations snapshots

are taken to use them as initial configurations for the force calculations. These are car-

ried out at fixed center of mass distances, while the total force acting on each crystal is

averaged. Each simulation lasts for 2.5 ns, the first 500 ps are discarded. As expected ac-

cording to Newton’s third law, the forces on the two particles exhibit nearly same modulus

but different signs, so that the average mutual force is calculated as Fav = 1/2(F1 − F2).

The resulting force-distance curves for all three cases are shown in Fig. 7.2. Appar-

ently, the particles with low water coverage reveal a considerably higher maximum force of
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Figure 7.3: PMF obtained from the FD curves: 2 ML (black), 1 ML (110) (red), and 1

ML (10) (green).

about 6 nN, respectively 5 nN for the (100) facets, whereas for the particle with high cov-

erage the forces only reach values of about 2 nN. On the contrary, while at low coverages

the forces decay rapidly with increasing particle separation, the particles with 2 ML of

water interact even at larger distances. This is reflected when considering the potentials

of mean force (PMF), obtained by integrating the force-distance curves according to Eqs.

3.33 and 3.34, as shown in Fig.7.3. Remarkably, free energy minima for 2 ML and 1 ML

possess nearly the same values of about 6 eV. Again, for the (100) surface a slightly lower

value for the free energy minimum is found. The lower forces and free energies associated

with this surface are most probably due to the smaller surface area that is involved in the

contact.

To analyze the origin of the forces, each value is decomposed into the contributions

arising from interactions between only the oxide crystal cores and from the interactions

mediated by the water molecules. At small separations the total force-distance curves

reveal pronounced oscillations, i.e. force maxima and minima which can be assigned

clearly to the water mediated interactions. The oscillatory behavior arises from the in-

teraction and interference of the water layers above the (110) respectively (100) facets.

For the nanoparticles bearing 2 ML of water, we observe another type of interactions at

intermediate separations. Beyond the oscillatory behavior a plateau with nearly constant

force values is reached, stretching over 0.5 nanometers. The attractive interactions in

this region are predominantly caused by capillary forces, accompanied by the formation
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of a water neck between the nanoparticle surfaces (cf. Fig. 7.2). This behavior requires

mobile water molecules which participate in the neck formation, hence, it hardly takes

place at low coverages. The forces between the oxide crystal cores reveal large attrac-

tive contributions at very small separations, however, due to the steric repulsion of the

water terminations, these regions are not accessible. In the accessible range oxide-oxide-

iteractions play a minor role. Moreover, they decay quickly as the particles do not bear

any net charge which involves only short-ranged, higher-order multipole moments.

In total, for both water coverages the resulting maximum force peaks agree quite well

with the order of magnitude of the average experimental values, although the simulated

particles are considerably smaller. This agreement might indicate that the AFM force

peaks actually reflect the breaking of single nanoparticle contacts. For comparison, we

have calculated the contact forces between two naked nanoparticles, i.e. without any ad-

sorbed water molecules. In these simulations all atoms are allowed to move. The maxium

force which occurs when the atoms of both surfaces directly interact with each other,

reaches a value of about 50 nN. This is one order of magnitude larger than the forces

obtained for the water covered particles and, importantly, than the force values measured

in AFM experiments. Hence, the water termination of the nanoparticles must be assigned

a crucial role in conveying the interparticle forces.

Similar observations have been reported in Ref. [39] for the cohesion forces between two

oxidized silicon surfaces in the context of hydrophilic wafer bonding. These simulations

reveal a pronounced dependence on the water coverage, in agreement with our results the

maximum force has been obtained for a low water coverage.
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Conclusions and Perspectives

8.1 Summary of the Results

In this thesis I have developed a structural and interaction model for the interface be-

tween the natively oxidized titanium (0001) surface and a physiological environment

which allows to study atomistic adsorption processes of biological molecules in a realistic

way. Beyond the commonly used perfect crystal surfaces, the present approach includes

topological and chemical heterogeneities, such as ridges formed by arrays of bridging oxy-

gen atoms, different oxidation states of the titanium atoms and both charged and neutral

surface terminations. The resulting model has been applied to investigate the specific

adhesion of the titanium-binding motif (minTBP-1) RKLPDA onto the titanium surface.

Moreover, I have studied the cohesion between TiO2 nanoparticles with varying water

coverage.

To obtain a structural model for the oxidized Ti surface, first-principles molecular

dynamics simulations of the oxidation reactions of the metal surface were performed with

subsequently introduced oxygen molecules, up to an oxygen coverage of 2 ML. In agree-

ment with experimental data the oxidation reaction proceeded spontaneously up to a

certain coverage where a saturation of of O2 dissociation was found which, after all, could

be overcome by annealing the substrate. The final structure featured an amorphous oxide

network, with a stoichiometric composition corresponding to TiO, distinctly separated

from the metallic phase, where the original hcp order of the Ti atoms was retained. Im-

portantly, the spectrum of Ti oxidation states, as revealed by the Bader charges, could
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be retrieved in a consistent way by charges obtained with the classical electronegativity-

equalization method (EEM). This agreement provided the basic link to the development

of a classical force field. The classical parametrization enabled to simulate the oxidized

surface in room temperature MD simulations, preserving its structural details. Further-

more, a protocol to produce an artificial, large scale model of an oxidized titanium surface,

whose properties are very similar compared to the DFT reference model, could be devised.

To model the interactions with adsorbates, in particular water, the potential was based

on a picture where these molecules adsorb without dissociation, in agreement with FMPD

simulations. Including only electrostatic and Lennard-Jones contributions, and rescaling

the surface charges in an appropriate way, the interaction potential was designed to be

fully compatible with the AMBER force field for the simulation of biological molecules.

Indeed, although the adjustment was carried out for water adsorption on the crystalline

TiO2 rutile surface, the potential appeared to be transferable not only to the oxidized

surface but also among various organic adsorbate molecules. The only exception in the

transferability was revealed for the nitrogen-titanum interactions which to had be adjusted

separately. The final force field was able to reproduce both DFT adsorption energies and

experimental observables, such as the heat of immersion and the AFM detachment force

of tyrosine molecules.

Having established its reliability, I investigated the potential of mean force of the RGD

peptide upon adsorption on the oxidized titanium surface. The simulations gave rise to

a free energy change upon adsorption that was considerably larger than the binding free

energy of RDG to integrin receptors.

In the next step, I introduced charged surface terminations to account for the experimen-

tal surface charge density and IEP values. The charged surface was employed to simulate

the adhesion behavior of the titanium-binding-motif RKLPDA. Remarkably, the simula-

tions were able to reproduce both macroscopic (ΔGads) and microscopic (AFM forces)

experimental observables in excellent quantitative agreement. Moreover, I have estab-

lished the combination of metadynamics and replica exchange with solute tempering as

a reliable, yet computationally feasible technique to obtain adsorption free energies for

medium-sized molecules.

A careful analysis of the SMD trajectories allowed me to associate the adhesion forces with

the underlying microscopic mechanisms on titanium and on silicon substrates. While on
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titanium the aspartic acid residue could be assigned a significant role in the equilibrium

adsorption structure, the adhesion forces were predominantly mediated by the positively

charged arginine and lysine side chains on both surfaces. Considering the isolated free

energy profiles of both relevant amino acid side chains, I have found clear indication that

primarily the difference in the water structure above the surface produces the strong

adhesion to titanium. In this context spatially restricted, local water density maxima, fa-

cilitated by the topological features of the oxidized surface, appeared to act as adsorption

“hot spots”, capturing the polar end groups, whereas regions of reduced water density

accommodated hydrophobic parts of the peptide.

Finally, the force field was applied to calculate the cohesion forces between two TiO2

rutile nanoparticles at different water coverage. The resulting peak forces were found to be

in good consistency with experimental AFM force peaks obtained in films of nanoparticle

agglomerates. For the lower water coverage the cohesion forces appeared to be consider-

ably larger, with only little dependence on the orientation of the involved crystal facets,

whereas the potential of mean force revealed very similar minimum values in all cases.

Although the results are still subject to ongoing work, they suggest that the force peaks

measured experimentally might indeed correspond to single particle contacts, mediated

by the adsorbed water layer.

8.2 Perspectives

Since the force field for the interactions of the oxidized titanium surface in a wet or phys-

iological environment gave reliable and promising results, it can be applied to investigate

different kinds of systems.

The field of specific-binding-peptides still provides a variety of open questions regard-

ing the origin of surface recognition which crucially requires accurate force fields and

advanced sampling methods to compare to the experimental findings and ultimately to

design novel molecules and surfaces. In particular the notion that the molecule primarily

recognizes patterns in the water structure above the surface, might be extended into a

generalized explanation for specific adsorption behavior. In the end, it may provide a

basis for a rational design of material-binding peptide sequences, complementing “brute
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Figure 8.1: Simulation snapshot of the WWCNDGR peptide adsorbed on the oxidized

silicon surface. The violet isosurface corresponding visualizes high water density regions

(ρ ≥ 1.4 g/cm3). The binding tryptophan (W) residues are marked.

force” bioinformatics and combinatorial biochemistry approaches with atomic-scale de-

tails hardly accessible by experimental techniques. The models and methods applied and

developed in this thesis set a good starting point for this challenge.

As an outlook, Fig. 8.1 displays the adsorbed geometry of the WWCNDGR peptide on

the oxidized silicon surface which has been found in experiments to bind well to silica sub-

strates [158]. Our preliminary simulations indicate that adsorption takes place primarily

via tryptophan (W) and arginine (R). The interplay of the hydrophobic W and hydrophilic

R residues with the regions of low, respectively high water density, as displayed by the

isosurface, becomes clearly visible.

Apart from the adsorption of peptides, another field of application might be the in-

vestigation of enzyme-functionalized surfaces. Functionalization with entire, yet small

proteins, such as lysozyme, is a promising approach to achieve e.g. anti-bacterial effects

[143, 177]. Preliminary simulations have been carried out to study the adsorption of

lysozyme on titanium as shown in Fig. 8.2. Interestingly, the molecule anchors via the

same arginine residue, as found e.g. on silica [100], in a way which is similar to the

minTBP-1 peptide. Though it is still unfeasible to obtain reliable adsorption free energy

values for such a large molecule, yet, it might be possible to asses whether it retains its

functionality even after adsorption. This important aspect could in principle be investi-

gated by calculating the free energy of binding of polysaccharidic molecules to the reactive
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Figure 8.2: Lysozyme protein adsorbed on the oxidized titanium surface after 20 ns of

equilibration.

site, before and after adsorption.

Beyond the particular case of the titanium surface the general scheme of potential

development has appeared to be very robust and it has been successfully transferred to

different substrates, e.g. to study the adsorption of glutathione disulfide (GSSG) on alu-

mina surfaces [54]. For the future it appears promising to utilize this approach in order

to create interaction potentials for other realistic oxidized surfaces, such as Al [44], TiN

[198] and CoCr [197] for which atomistic models have recently been obtained in this group,

thus taking the next step towards a more accurate description of biomaterials surfaces

and interfaces.

When employing classical force field models, such as the one developed in this thesis, one

has to be aware that chemical reactions are outside the scope of applicability, unless the

model has been explicitly parametrized to account for such effects. In the present work

this has been included with respect to the adsorption of oxygen or nitrogen containing

molecules at undercoordinated Ti atoms. Apart from these situations, further expected

reactions, e.g. de-/protonation events, can only be taken into account in a rigid, ad hoc

way, by manually performing the reactions. However, this method is somewhat artificial

and not very flexible. A better way to include chemical details is to use hybrid QM/MM

schemes, combining empirical force fields and quantum mechanics in the same simulation

[21]. The Learn-on-the-fly (LOTF) method [47, 21] has emerged as particularly promis-
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ing for interface simulations, as it augments the classical Hamiltonian by an auxiliary set

of springs to reproduce the quantum mechanical forces in the QM zone. This requires

flexible force fields which can easily be adapted, for instance to changes in the structure

of the surface. The interaction model developed in this thesis in principle fulfills this

specification, as it does not impose any fixed topology within the oxide network and it

automatically switches between metal substrate and oxide layer. Changes in the coor-

dination can easily be taken into account by recalculating the EEM charges which we

have found to be in very good consistency with DFT. Although various issues yet have

to be solved regarding the application of the LOTF technique to solid/liquid interfaces

in general, the simulation of the oxidized titanium surface within a QM/MM approach

provides a challenging, but nevertheless promising task for the near future.
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[23] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50(24):17953–17979,

Dec 1994.

[24] E. M. Boczko and C. L. Brooks, III. Constant-temperature free energy surfaces for

physical and chemical processes. J. Chem. Phys., 97:4509–4513, 1993.

[25] M. Born and J. R. Oppenheimer. Zur quantentheorie der molekeln. Ann. Phys.,

84:457–484, 1927.
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