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Abstract 
This thesis documents sedimentary changes in the middle to late Miocene of the Atlantic and Pacific 

Ocean basins. This time interval known as the “carbonate crash interval” (12-9Ma) displays a severe 

perturbation of the carbonate system in the framework of the major Cenozoic cooling accompanied by 

changes in circulation mode, global nutrient shifts, plankton size changes and stratification of the ocean 

basins. These developments led to modern patterns of biogenic sediment distribution and ecological 

niches. The main goal of this work was to investigate control mechanisms on Carbonate-Crash-events 

(CC-events) and to find hints to major discrepancies concerning timing and strength of these events.  

For this purpose carbonate preservation proxies and carbonate budgets were investigated and evaluated in 

the Atlantic at the Ceará Rise in a depth transect (ODP sites 926, 927 and 928). The data show that the 

dissolution occurred in a broad zone between the foraminiferal lysocline at 3300 m depth and the 

carbonate compensation depth (CCD) at about 4000 m water depth. Detailed mass losses of coccoliths and 

foraminifer carbonate were calculated among sites. Dissolution is evident throughout the record however 

preservation seems to increase in correspondence to Northern Component water formation (precursor of 

North Atlantic Deep water). Productivity decreases of calcareous plankton productivity here (centered at 

about 9.5 Ma) seem to be as well a factor controlling CC-events during the late Miocene. Furthermore the 

evaluation of preservation proxies from the coarse calcareous silt fraction (CSmean and CS percent) 

showed that the fragmentation of foraminifera is probably a more suitable indicator of carbonate 

dissolution. CSmean and CSpercent did not reproduce the depth dependant carbonate dissolution, which 

was evident in all other parameters (carbonate content, coarse fraction content, foraminiferal 

fragmentation). The comparison of Ceará Rise coarse fraction records to Caribbean Site 999 showed in 

contrast to earlier results preservation in phase. 

The contrasting results obtained from comparison of Ceará Rise records with the Caribbean led to a 

revision concerning CC-events especially in key locations of the Pacific and Indian Ocean. The 

productivity decreases in the beginning of the CC-can be assigned to a shift from La Niña-like to El Niño-

like conditions, imprinted in the sediments off Baja California and in the Eastern Equatorial Pacific (EEP). 

Own data from the SE – Pacific (ODP Site 1237) in offshore Peru/Chile provided evidence for enhanced 

dissolution starting at about 10.5 to 10.3 Ma.. This trend is possibly indicating the influx of corrosive 

southern sourced waters coupled to better carbonate preservation in the Atlantic. Hence significant basin 

to basin fractionation is evident. The end of the CC is characterized by a change to better preservation at 

the same time in the low latitude Caribbean, the Pacific and the Indian Ocean at about 9.5 Ma at similar 
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water depths (~3000 m). Nannofossil productivity decreases were at least important in the Atlantic in the 

late phase of the CC. 

Restructuring of plankton communities driven by the paleoceanographic revolution during the CC-events 

may have resulted quite often in productivity decreases, which however are confirmed only by few case 

studies. Budgeting of calcareous nannoplankton seems desirable. Especially during carbonate crash events 

bigger nannofossils the discoaster nannoliths comprise an important part of the sediments, in order to 

budget these nannoltihs 3-d models of 11 Neogene discoaster morphologies as well as Sphenolithus

nannoliths based on morphometric measurements were set up and applied in a test studie on samples of 

Ceará Rise ranging from 8.6 to 3.3 Ma to. The significance of carbonate contribution exceeds by far their 

abundance. A rather abrupt abundance decrease of discoaster nannoliths was found in low latitude 

sediments of ODP sites from the Indian Ocean and the equatorial Pacific associated with the “small” 

Reticulofenestra umbilicus- interval (starting at 8.85 Ma). This event is associated with rising MAR in 

these key locations initiating the transition from the “carbonate draught” period of the CC-events to the 

period of the “biogenic bloom”. 
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Kurzfassung 
Diese Arbeit dokumentiert sedimentologische Veränderungen im Übergang vom mittleren zum späten 

Miozän im Atlantic und Pacific. Dieses Zeitintervall, das „ Karbonat – Crash-Intervall“ (12-9 Ma), ist 

gekennzeichnet durch Störungen des Karbonatsystems, begleitet von Änderungen in den 

Zirkulationsmustern, der globalen Nährstoff-Verteilung, Planktongrößen und Schichtung der 

Ozeanbecken im Rahmen des allgemeinen Abkühlungstrends im Känozoikum. Diese Entwicklungen 

führten zu den heutigen Mustern in der Verteilung biogener Sedimente und ökologischer Nischen. Das 

Hauptziel dieser Arbeit war es die Kontrollmechanismen der „Karbonat-Crashs“ (CC) zu untersuchen, 

sowie Hinweise auf Diskrepanzen bezüglich des zeitlichen Auftretens und der Intensität dieser Ereignisse 

zu finden. 

Zu diesem Zweck wurden Karbonat-Erhaltungsproxies und Karbonatbudgets im Atlantik am Ceará Rise 

Tiefentransekt (ODP Bohrungen, 926, 927 und 928) erhoben und evaluiert. Die Daten zeigen, dass 

Karbonatlösung während des miozänen CC in einer breiten Zone zwischen Foraminiferenlysokline bei 

3300 m Wassertiefe und Karbonatkompensationstiefe (CCD) bei ca. 4000 m stattfand. Detaillierte 

Massenverluste von Coccolithen- und Foraminiferenkarbonat zwischen den Bohrungen wurden berechnet. 

Lösung zeigt sich im gesamten Zeitinterval, aber die Erhaltung scheint sich im Gleichtakt mit der Bildung 

von nördlichem Tiefenwasser (Vorläufer von Nordatlantischem Tiefenwasser) zu verbessern. Einbrüche in 

der Produktivität von kalkigem Plankton (bei etwa 9.5 Ma) scheinen ebenfalls ein Einflussfaktor der CC-

Ereignisse im späten Miozän zu sein. Desweiteren zeigte die Evaluierung der Erhaltungsproxies des 

kalkigen Grobsilts (Grobsilt mean und Grobsilt %), dass die Fragmentierung der Foraminiferen 

wahrscheinliche ein geeigneterer Anzeiger für Karbonatlösung ist. Mean und Prozentanteil des Grobsilts 

zeigten keine tiefenabhängige Lösung an, die in allen anderen Parametern offenkundig (Karbonatgehalt, 

Grobfraktionsanteil, Fragmentierung der Foraminiferen) war. Der Vergleich von Sandgehalten der 

Bohrungen vom Ceará Rise (926) und der Karibik (Bohrung 999) ergaben im Gegensatz zu frührern 

Ergebnissen gleichschwingende Lösungsrekords. 

Die widersprüchlichen Ergebnisse aus dem Vergleich von Ceará Rise und der Karibik führten zu einer 

Revision bezüglich der CC-Ereignisse, insbesondere in Schlüsselbohrungen im Pazifik und Indik. Die 

Produktivitätseinbrüche zu Beginn des CC können auf den Wechsel von La-Niña ähnlichen Bedingungen 

zu El Niño ähnlichen Bedingungen, die sich in Sedimenten vor Baja Kalifornien und im ostäquatorialen 

Pazifik abzeichnen, erklärt werden. Eigene Daten aus dem südöstlichen Pazifik, (Bohrung 1237) vor Peru, 

liefern Hinweise auf zunehmende Lösung ab 10,5 bis 10,3 Millionen Jahren. Diese Tendenz ist 
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möglicherweise auf den Zustrom von korrosivem südlichen Tiefenwasser zurückzuführen und ist an einen 

Trend zu besserer Erhaltung im Atlantik gekoppelt. Daher wird erhebliche Becken-zu-Becken-

Fraktionierung angenommen. Das Ende des CC-Intervalls ist gekennzeichnet durch gleichzeitige 

Änderungen zu besserer Erhaltung (bei 9,5 Millionen Jahren) in niederen Breiten in der Karibik, dem 

Pazifik und dem Indischen Ozean und bei ähnlichen Wassertiefen (~3000m). Die Produktionseinbrüche 

des kalkigen Planktons waren mindestens in der späten Phase der CC-Ereignisse im Atlantik von 

Bedeutung. 

Restrukturierungen in der Plankton Gemeinschaft, gesteuert durch die paläozeanographischen 

Umwälzungen während der CC-Ereignisse, resultierten wahrscheinlich oft in Produktivitätseinbrüchen, 

die aber nur in wenigen Fällen belegt sind. Eine Budgetierung des kalkigen Nannoplanktons scheint 

wünschenswert. Insbesondere während der CC-Ereignisse bildeten größere Nannofossilien, die 

sogenannten Discoaster–Nannolithe den größten Teil des Sediments. Um den Anteil dieser Nannofossilien 

einschätzen zu können wurden 11 drei-dimensionale Modelle von Neogenen Discoaster-Nannolithen 

erstellt und an einer Teststudie an Proben vom Ceará Rise von 8,6 bis 3,3 Millionen Jahre zur Karbonat-

Budgetierung angewendet. Die Discoaster-Nannolithe tragen in diesem Intervall nur einen geringen 

Prozentsatz zu den gesamten Nannofossilien bei, ihr Massenbeitrag zum Gesamtkarbonat ist hingegen 

bedeutend. Ein abrupter Häufigkeitsrückgang der Discoaster-Nannolithe wurde in niederen Breiten in 

ODP Bohrungen des West-Pazifiks, der Karibik und des Indischen Ozeans in Verbindung mit dem Beginn 

des Reticulofenestra paracme Intervalls (bei 8.85 Millionen Jahre) festgestellt. Dieses Ereignis steht in 

Verbindung mit zunehmenden Massenakkumulationsraten von Karbonat, die einen Übergang von der 

„Karbonat-Dürre-Periode“ der CC-Ereignisse zu der fruchtbaren Periode des „Biogenic Bloom“ in diesen 

Schlüsselregionen kennzeichnen. 
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1.1 The framework of global cooling in the middle to late Miocene 

Ice and cooling 

Understanding past climates means to understand different heartbeats and pulses of the climate. 

Today our climate is governed by both poles caped with ice. We understand ourselves to live in an 

ice age, which is currently intermitted by a warm phase. The ice caps responded to changes of the 

earth orbital parameters (Imbrie et al., 1993). The leading period in these cycles of waxing and 

waning of ice is the 100kyr cycle, which corresponds to variations in the shape of the path of the 

earth around the sun (eccentricity). From 3 to 1Ma the rhythm of the climate followed the 41kyr 

cycle, which was in accordance with obliquity cycles (axial tilt). Why eccentricity variations, 

which are weaker than other orbital changes (Milankovitch cycles) designated our climate the past 

one million year is not completely understood and many questions arose (e.g. Maslin, 2005). 

Answers to these questions involve complex feedback mechanisms in ice dynamics, precipitation, 

ocean circulation and the carbon cycle.  

During the Middle Miocene a similar border of climate heartbeat was crossed. The middle Miocene 

was a time period of cooling with the establishment of constant ice caps on Antarctica and first 

smaller dimensioned ice shields in Greenland (St John and Krissek, 2002, Zachos et al., 2001) 

leading the way to a change to the bipolar state. The expansion of Antarctic ice shields is 

documented (together with temperature changes) in the �18O record and appears in Miocene 

records as Mi-Events (Miller et al., 1991) which however, can often not be traced in the record and 

then fails as a stratigraphic tool (Anderson and Jansen, 2003; Westerhold et al., 2005), which it is 

for the younger glacial interglacial cycles. 

A major cooling step centered at 13.9 Ma is accompanied by a change from obliquity to 

eccentricity driven �18O variations (Holbourne et al., 2005)., similar to the aforementioned 

Pleistocene revolution. Evidence from Mg/Ca – temperatures points to a higher proportion of ice 

effect in the �18O record (Lear et al., 2003). Explanations involving atmospheric pCO2 as thresholds 

of boundary conditions are unfortunately not corroborated sufficiently by data compilations, 

because proxy records are at low resolution (see Fig. 1.1, Pagani et al. 1999, Pearson and Palmer 

2000). These explanations involve e.g. the silicate weathering and the expansion of C4 plants, 

which due to more effective photosynthesis could have drawn down the atmospheric pCO2 (Cerling 
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et al., 1997). A coupling between climate and pCO2 proxy records might be implicated as long term 

trends of pCO2 show a close correlation (Tripati et al., 2009). 

The ocean is a huge reservoir of CO2 which is 60times bigger than the atmosphere, thus small 

changes in the ocean can account for vast changes in the smaller atmospheric reservoir. (Berger, 

1991). The understanding of past changes is crucial for scenarios in the future and understanding of 

feedback mechanisms. Especially the Cenozoic offers therefore a huge archive of ocean sediments, 

formed in mostly warmer climates than 

today. 

Ocean circulation and Gateway 

configurations  

The establishment of the modern 

pattern of circulation is believed to be 

in the middle to late Miocene. This 

means that the thermohaline circulation 

with a dominant North Atlantic source 

was initiated. This further means that 

the southern sourced carbonate 

corrosive deep waters were replaced 

step by step by fresher deep water from 

the North. The changing circulation is 

the central subject in the interplay of dissolution, preservation and nutrient availability governing 

the carbonate crash interval (12-9 Ma). The most common tracer for these water masses is the ratio 

of stable carbon isotopes (�13C), which can be used as a tracer of the “age” of a deep water (e.g. 

Kroopnick et al., 1985). Freshly formed North Atlantic deep water (NADW) has the most positive 

signature, because it evolves from low nutrient delta �13C surface waters and flows in southward 

direction towards the Southern Ocean. On its way it mixes with southern sourced waters (Antarctic 

Bottom Water -AABW and Antarctic Intermediate Water -AAIW) with a more depleted signature, 

indicating as well higher nutrient concentrations and greater potential to dissolve carbonates. The 

most depleted values can be found in the North Pacific, where water traveled from South to North 

until it takes up some of the remineralized carbon produced in the surface waters.  

Fig. 1.1: Reconstructions of middle to late Miocene 
atmospheric pCO2 (Pagani et al., 1999; Tripati et al., 
2009; Pearson and Palmer, 2000). 
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In order to calculate the Northern Component water (NCW-here used as ancient equivalent to 

NADW) percentage the use of mixing calculations between different basin endmember �13C 

according to Oppo and Fairbanks (1987) is reasonable by assuming that �13C differences developed 

in the same way as today. The gradients among ocean basins became significant at the beginning of 

the CC-events about 12 Ma (see Fig 1.2 - Poore et al., 2006) suggesting no earlier significant deep 

water formation. Complications in the modern analogue assumption involve e.g. deep water 

pathways, especially the closure of the Central American Seaway (CAS) and changing productivity 

patterns, erosion of terrestrial soils and organic matter from shelves (Bickert et al., 2004) which 

could have influenced gradients. 

The closing of the CAS is believed to have had a great impact on deep water formation in the North 

Atlantic. The new gateway configuration would have led to a strengthened western boundary 

current and would enhance temperature and salinity of source waters for deep water formation. A 

convergence of Southern Ocean (Site 1088) and North Atlantic �13C signatures at about 6-6.6 Ma 

(Billups, 2002) was attributed to the establishment of this pattern. Other results based on salinity 

gradients between Pacific and Caribbean place this pattern at 4.6 Ma (Haug and Tiedemann, 1996; 

Haug et al., 2001). One modeling study suggests, however, significant NADW formation in a 

Fig. 1.2: Carbon stable isotope composition of endmembers of deep water in the Atlantic (red), 
Southern Ocean (blue) and Pacific (green) after Poore et al. (2006). 
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setting with an open CAS (Nisancioglu et al., 2003). Heinze and Crowley (1997) investigated the 

sedimentary response for a restricted exchange through the CAS. A shoaling of the lysocline could 

have happened in the North Indian Ocean and in the Eastern Equatorial Pacific (stretching into the 

North Pacific) accommodated by elevated opal sedimentation compared to the control run (Heinze 

and Crowley, 1997). However, sedimentary data contrasts with modeling results. At about the time 

of the final closure (3.2 to 2.7 Ma) of the CAS the carbonate compensation depth was deepening in 

the EEP (Farrell and Prell, 1991) according to carbonate wt.% data. 

The role of the Greenland Scotland Ridge (GSR) which moved vertically due to the activity of the 

mantle plume underneath is assumed to control the spill-over of NCW (Wright et al., 1992; Wright 

and Miller, 1996; Poore et al., 2006). However, recent modeling of the Atlantic circulation showed 

that the �13C pattern might not be influenced by GSR movements (Butzin et al., 2011). Their 

experiments showed furthermore that the formation of deep water might have been located in the 

Labrador Sea which is in accordance with �Nd from the Walvis Ridge depth transect, that suggests 

the onset of deep convection in the Labrador sea as early as 10.6 to 7.3Ma ( Kastanja and Henrich, 

2007; Thomas and Via, 2007) or 12 Ma (Muiños et al., 2008). The development of the emergence 

of the Indonesian Seaway is another example of a process that is difficult to trace in its timing. The 

passage for deep water might have been already restricted in the late Oligocene at about 25 Ma ago 

and closed in the early Miocene (Kuhnt et al., 2004). Consequences of this and further shoaling of 

the passage might have been as severe as the shoaling of the CAS involving heat and moisture 

transport to high latitudes, a permanent El Niño-like state (Molnar and Cane, 2002; Molnar and 

Cane, 2007) as well as the establishment of the West Pacific Warm Pool and equatorial Pacific 

circulation (e.g. Nathan and Leckie, 2009). The application of the ENSO-concept to the Miocene 

climate change is most recently debated in (Von der Heydt and Dijkstra, 2011). 

1.2 Carbonate cycle and budget 

The main questions addressed in this study are concerning the burial and dissolution of calcareous 

shells of plankton as part of the global carbonate system in the time interval of the CC-events. The 

removal of carbonate from the oceans in form of calcite or aragonite in planktonic organisms is an 

efficient way to remove Ca2+ and CO3
2- for longer timescales through burial in sediments. However 



Chapter 1 ~ Introduction 

�

�

�

8 

�

at the same time carbonate is produced there is a net release of CO2 to the surface water and thus 

atmosphere, through equilibria reaction: 

(Eq. 1.1) CO2 + H2O + CO3
2- <=> 2HCO3

-

Thus the uptake of bicarbonate through formation of biogenic carbonate drives the equilibrium to 

the left and carbonate dissolution (release of bicarbonate) drives it to the right. In a simple model 

this carbonate production (P) together with dissolution (D) can be regarded as balancing 

mechanisms to maintain a steady state between burial (B) and input of Ca2+ and CO3
2- ions through 

weathering and via rivers (R) (Broecker and Peng, 1987): B=R 

So if input increases (R) this results in higher productivity balancing in order to produce higher 

burial (B). And the other way round, if input decreases dissolution acts to balance for ions. This 

mechanism is know as “carbonate compensation” and operates on a short (several kyrs) timescale 

as e.g. at glacial/interglacial changes (Archer et al., 2000). Also sea level highstands and the 

flooding of shelves influences the location of carbonate formation and its preservation potential 

(basin-to-shelf fractionation, Berger 1970) as well as the general saturation in carbonate of the 

ocean (Walker et al., 2002). Other mechanisms maybe more important on longer timescales as the 

silicate rock weathering, that provides the ions in order to account for the loss through carbonate 

burial mostly (Caldeira and Berner, 1999). It is a negative feedback mechanism, because the 

weathering is in turn controlled by the temperature and CO2 concentration in the atmosphere and 

stabilizing the climate on scales of hundreds of kyrs to millions of years (Berner and Caldeira, 

1997). The ultimate recycling of carbonate sediments is driven by subduction of oceanic plates and 

decarbonation resulting in CO2 release to the atmosphere. This can be understood as the opposite of 

silicate weathering and is relevant within tectonic timescales (Ridgewell and Zeebe, 2005). Also 

the “shelf to basin fractionation” was considered to influence the location of carbonate deposition. 

This concept is based on the hypothesis that during sea level lowstands, deposition might 

preferably take place in the pelagic envorinments, however this was not corroborated by studies 

concerning carbonate budget analysis (Milliman, 1993).  

Studies of the purpose to budget today’s ocean carbonate production resulted in considerable 

descrepanicies. The unresolved questions are pointing to the role of carbonates from shelf 

environments, and state that only the input of rivers can reasonably be estimated. The dissolution 

processes are still hardly understood and still are not much further progressed. It is still counter 

intuitive that carbonate dissolves in a supersatured environment, which is called supralysoclinal 
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dissolution, however the evidence is compelling and arose especially clear from sediment trap data 

and alkalinity considerations (Millimann et al., 1999, Chung et al., 2003). 
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In this thesis a suit of sedimentological carbonate proxies are applied and evaluated. The standard 

procedure of sample preparation is illustrated in Fig 2.1. The goal was to gain data that can be used for 

carbonate budget analysis and carbonate preservation studies. 

The interpretation of preservation proxies regarding circulation hypothesis are based on a modern 

analogue. The deep water formed in the North Atlantic is less corrosive to calcareaous shells of 

plankton than its southern sourced “aged” counterpart and also intermediate waters might show these 

differences. Following this classical assumption these water masses can be traced in a critical depth 

(where these water masses meet) by dissolution proxies based on the visual preservation of calcareous 

plankton remains. 

Carbonate budget calculation means determination of the contribution of the two main calcareous 

plankton groups - coccoliths and shells of foraminifera. The size distributions’ overlap of these groups 

is located in the calcareous silt fraction as described below. Another approach of a budget calculation 

is to calculate the mass of a shape (e.g. coccolith shield) and then infer to the mass it contributes to the 

sample from shapes abundances in a representative split of a sample. 

Carbonate measurements where conducted on bulk samples using a Leco CS infrared combustion 

analyzer. The principal of the measurement is the infrared light absorption through Carbon-monoxides 

stemming from the combustion of the sample. Two sample for each carbonate content were measured. 

The difference between the total carbon (TC) and the total organic carbon (TOC) multiplied by the 

ratio of the molecular weight of carbonate to carbon (8.33) results in the carbonate content of a 

sample. The quality of the measurements is maintained through usage of multiple Carbon standards 

and their calibration.  

2.1 Silt grain size measurements with the Sedigraph – carbonate preservation 

and budget  

A suit of proxies can be derived from the distribution of grain sizes. The choice of method will rely on 

the purpose and grain sizes. For hydrodynamic reconstructions (e.g. paleo flow intensities) e.g. a 

sedigraph might be preferred, because it “translates” from particle’s settling behavior into a size of an 

equivalent sphere with the same hydrodynamic properties and settling velocity as the differently 

shaped real particle. The settling velocity of spheres in a laminar flow is given by an expression of 

Stokes law for low Reynolds numbers (Re<<1): 



�

�

11 

�

(Eq. 2.1) V=settling velocity = 2/9[(Density sphere – Density fluid)(radius sphere)2 g ]/ Viscositysphere

The concentration of the particles of a certain equivalent spherical diameter (ESD) will be measured 

through the attenuation of x-rays in the suspension. Comparing the attenuation at a certain settling 

depths to attenuation of a reference liquid (“clear water” with lowest attenuation) let infer to a mass 

concentration of a certain ESD. The 

statistic features of the cumulative grain 

size distributions were obtained through 

classical  moments-statistics according to 

Krumbein (1936) with own developed 

auxiliary routines using Matlab. 

All silt measurements were prepared by 

removing the clay through repeated 

settling in Atterberg tubes at 2µm ESD 

using this law. However, the “true” 

(maximum) diameters of the remaining 

silt fraction are bigger, because most of 

them are platy shaped coccoliths or clay 

particles, that might have settled not as 

straight as a sphere would have. Therefore 

if clay separation is done properly the 

remaining particles are often bigger than 

3-4µm.  

Several circumstances can hinder an 

appropriate measurement of materials, the 

presence of flocs and clays that build 

water in between their layers and 

magnetic material that sticks to the 

magnetic stirrer of the Sedigraph device, for very high carbonate contents it might be useful to add 

some Calgon solution already for separating clays. The principal of settling diameters brings another 

feature in comparison to optical grain size measurements the Sedigraph overestimates smaller 

particles. A review on methodologic aspects and advice on sample preparation is given by Stein 

(1985) for comparison of different grain size distribution methods as well as accuracy and precision 

Fig. 2.1: Flow chart of sample procedures as applied  in 
this study.
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see Coakley and Syvitski (1991) and for proxy applications and evaluations (McCave et al., 1995; 

Ledbetter, 1984; Frenz et al, 2005; Preiß-Daimler and Henrich, submitted; Weltje and Prins, 2003). 

Most of the pelagic (open ocean-far away from the continent) sediments are composed of some 

terrigenous fractions and biogenic opal and carbonate from foraminifera and coccolithophores. In 

about 95% of the decalcified samples the terrigenous (non-calcareous opal free fraction) silt 

constituted less than 5% of the bulk silt. The terrigenous fraction is concentrated in the clay fraction 

and in the fine silt. Thus it was unfortunately not possible to collect evidence for relative paleoflow 

speed reconstruction based on the terrigenous part of the non-cohesive silt (10-63µm) known as 

sortable silt (McCave et al., 1995). However, this in turn allowed for simplifications regarding 

carbonate budget estimates. Due to the low concentration of terrigenous silt the bulk silt distribution 

can be regarded as a close approximation of the calcareous silt distribution. The silt grain size 

distribution follows in nearly all cases a bimodal distribution with a minimum centered at about 8-

10µm. This border separates the coarse silt that is mainly made of foraminifera and their fragments 

from coccoliths and other nannoliths in the fine silt. The border moves with relative proportions of the 

coarse and fine silt and with the modes of the endmembers. 

Some authors theorized that progressing dissolution and fragmentation of foraminifer will result in a 

fining of coarse silt and relative to fine silt lower contribution of coarse silt. This process might be 

further supported, if coccoliths or other nannoliths are more dissolution resistant with respect to 

foraminifera ( pro: Hay, 1970; Honjo, 1976; contra: Paull et al., 1988; Buitenhaus et al., 1996) The 

proxies used for dissolution are known as CS mean (coarse silt mean ) and CS % (percentage of coarse 

silt fraction) and used in several studies (Gröger et al., 2003; Frenz et al., 2006; Kastanja et al., 2007) 

using the same Sedigraph devices and sample preparation as used during this study. In this study these 

proxies and principals are critically evaluated in Chapter 3.  

2.2 Biometry and mass estimation on nannofossils for carbonate budgets 

The procedure used to prepare samples for SEM investigations follows a protocol of a wet splitting -

filtration technique after Andruleit (1996). About 70 mg of the sample was weighed, brought into a 

buffered suspension, splitted and filtered on a polycarbonate membrane using a vacuum pump. An 

area of about 0.5 cm2 was cut out of the dried filter and sputtered with Au/Pd. Assemblage counts were 

made using a scanning electron microscope (Zeiss DSM 940A) on a known area containing about 500 

specimens. Abundance counts and morphometric meassurements where conducted under 3000times 

magnification.  
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2.3 Age models and accumulation rates 

Age models used can be assigned mostly to the timescale of (Berggren et al., 1995) with small 

differences. Previous work on the Ceará Rise depth transect offers well dated sediments and a high 

resolution age models based on orbital tuning (Shackelton and Hall, 1997). Site 1237 offered a very 

detailed magentostratigraphy in the investigated interval. Site 982 had only few datums and isotopic 

records were not regarded as being helpful in attempts to gain better age control (Andersson and 

Jansen, 2003), therefore mass accumulation rates were not reported for this site. The quality of the age 

model is decisively important for the rating of the accumulation rates, which were calculated as 

follows: 

(Eq. 2.2) MARcomponent=Linear sedimentation rate * dry bulk density*proportion of the component 

The DBDs were deviated from Gamma-Ray Attenuation (GRA) core-logging data, which were 

calibrated by discrete density measurements (ship board gas pycnometer –Method C) by linear 

interpolation at sample depths. The dry bulk densities were calculated according to the equation of 

Curry, Shackleton, Richter et al. (1995) with a water density of 1.035 [g/cm3]:  

(Eq. 2.3) DBD [g/cm3] = (� GRA - � water * � grain)/( � grain - � water). 

2.4 Study areas and regional settings 

The areas of interest were mostly the Atlantic and the Pacific (Fig. 2.2). In the Atlantic four cores were 

investigated. The Ceará Rise depth transect offered a well dated sequence of cores in the Western 

tropical Atlantic in front of the Amazon river. Here the transition zone between NADW and AABW 

could be studied in cores 926, 927 and 928. The Ceará Rise is located at the western edge of the 

subtropical Atlantic gyre in an oligotrophic setting. The Amazon drainage system started to operate 

effectively in the late Miocene after the CC- interval (Hoorn et al., 1991) 

The North Atlantic was investigated at Site 982 at the Rockall Plateau. Surface waters here are part of 

warm the North Atlantic current as part of the Atlantic Meridional Overturning Circulation (AMOC). 

The temperate currents are an important heat source for western Europe and favor the warm regional 

climate. The warm waters pass the Iceland Faroer Ridge and consequently cool and sink to form deep 

waters in the Iceland and Greenland Seas. The relatively shallow Site 982 (1134m water depth and 
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57º31'N, 15º52'W)� was chosen because it is supposed to reflect the evolution of North Atlantic 

Intermediate water by which it is bathed today.�

The South Pacific Site 1237 is located at water depth of 3212 m water depth off Peru (16°0.42´S, 

76°22.69´W) in an upwelling region today, which can be backtracked to some hundred kilometers 

offshore in the late Miocene. The Andean uplift has also influenced the southeast Pacific throughout 

the last 10 Ma and acted probably as an atmospheric barrier forcing winds to blow parallel to the 

coast, favoring even more upwelling. Site 1237 recorded the variability of the Pacific Central Water 

(PCW) and is therefore ideally situated to test some hypothesis concerning deep water flux during CC 

events in a meso- to oligotrophic environment. 

�

Fig. 2.2: Position of study areas within the global conveyor belt (red-surface currents, blue-deep and 

bottom currents-modified after Rahmstorf (2006), source: Wikipedia). 
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2.5 Main objectives of the study 

The main goal of this study was to trace the Miocene Carbonate crash events in its final phase in the 

Atlantic and Pacific by using preservation proxies derived from the silt fraction and coarse fration 

accompanied by mass accumulation rates in order to get insight into carbonate budgets and thus to find 

evidence, whether carbonate dissolution, dilution or productivity contributed to the crash events. 

Furthermore… 

1)…how carbonate dissolution effected the different carbonate contributors  

2)…to apply and test carbonate preservation proxies based on silt grain size measurements 

3)…test hypothesis concerning deep water and surface processes, as:  

• NADW initiation 

• permanent El-Niño-scenario 

• ecologic influences on plankton accumulation 



�

�

16 

�



Chapter 3 ~ The final Carbonate Crash in the Atlantic... 
�

�
17 

�

�������	!	�	���	�����	�����	��	���	�������	���������	�����	��	���	

��������"	������#���	��	�$������	#�����	�%	���������	���
#
������&	

������'�����	���$���	���	������	��	���	�������
����	��	��������
�	

����(���	���
��	

Authors: Inga V. Preiss-Daimler, Rüdiger Henrich  

Status: submitted to Marine Geology 

Abstract 
The Carbonate Crash-events were a widespread phenomenon of carbonate dissolution, dilution and 

productivity changes throughout the main world’s ocean basins in the middle to late Miocene. This 

study provides data of carbonate preservation proxies as silt grain size parameters, sand content, 

fragmentation index and mass accumulation rates in sediments of the equatorial Atlantic Ceará Rise 

depth transect (Site 926, 927 and 928) in the late Miocene from 10.5 to 9.5Ma. A comparison to the 

modern situation reveals that the calcite lysocline was located at depth of Site 928 (~4000 m) and the 

foraminiferal lysocline at depth of Site 927 (~3300 m water depth) with a broad transition zone and a 

trend towards better preservation in the proxy data record. However, silt preservation proxies do not 

entirely reproduce the depth dependant dissolution. A critical evaluation and comparison to former 

studies suggest preferring the classical foraminifer fragmentation index. Preservation proxy trends do 

correspond to North Component Water percentage estimates until 10.2 Ma, afterwards trends are 

conflicting. Preservation trends of Caribbean and Ceará Rise records were in phase in contrast to 

former hypothesis that suggested antithetical preservation during Carbonate Crash-events. 

Furthermore, a detailed comparison of the nannofossil grain sizes shows that a trend towards the finer 

nannofossil carbonate accompanied sedimentation in various environments of the late Miocene 

Atlantic Ocean. 

3.1. Introduction 
The middle to late Miocene transition towards icehouse conditions and its consequences for ocean 

carbonate budgets and preservation.  

The transition from greenhouse to icehouse climate during the middle to late Miocene is in the focus 

of ongoing paleoceanographic discussions. During this period severe perturbations of the carbonate 

system occurred changing the distribution pattern of carbonate in the major ocean basins. The main 

Antarctic ice shields were about to become permanent and a considerable build-up of ice took place in 

the northern hemisphere (Zachos et al., 2001; Fronval and Jansen, 1996). Huge mountain chains rose 

and atmospheric pCO2 reached preindustrial levels (Pagani et al., 1999). In addition, the general 
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Cenozoic cooling tended to increase temperature gradients between high and low latitudes, in turn 

enforcing wind systems as well as oceanic mixing and upwelling.  

Other prominent changes occurred at oceanic gateways. The closure of the Tethys, the emergence of 

the Panamanian Isthmus and Indonesian Gateway are thought to have essentially controlled circulation 

pathways in the middle to late Miocene oceans (Nisancioglu et al., 2003). The rise of the Panamanian 

Isthmus from bathyal to neritic depths as well as the establishment of the Caribbean loop current 

(Eberli, 2000), took place in the middle to late Miocene (Coates et al, 2004; Duque-Caro, 1990), 

influencing the heat transport to northern latitudes. Interestingly, a drastic change of the geochemical 

properties of deep waters is registered during the same period. �13C signatures of deep waters in the 

three major ocean basins in particular are becoming significantly different, indicating the isolation of 

basins. A main feature with regard to this aspect is that variations in sill depth of the Greenland-

Scotland Ridge might have controlled North Component Water (NCW) formation (Poore et al. 2006; 

Wright and Miller, 1996), which should also be reflected by shifts in the carbonate preservation 

patterns in the ocean basins. These changes are manifested in the Miocene Carbonate Crash (CC) 

events that are best characterised by distinct minima in carbonate accumulation with extreme 

developments in the equatorial Pacific and the Caribbean where carbonate accumulation dropped to 

zero (e.g. Lyle et al., 1995; Roth et al. 2000). These events are also recognised in the Ceará Rise 

record where a long-term shoaling of the lysocline took place from 14 Ma to 11.5 Ma (King et al., 

1997). The timing of crash events in the Pacific is from 12 Ma to 9 Ma with the Crash nadir at 10 Ma, 

while in the Caribbean these events can be recognised from 12 to 9 Ma and from 13.8 to 12 Ma as 

precursors. 

The partial coincidence of events suggests a common cause often explained by changing circulation 

patterns. The Caribbean CC events are ascribed to the influx of carbonate corrosive AAIW (or its 

precursor/ancient equivalent) replacing sinking waters in the northern hemisphere in times of re-

established NADW formation (Roth et al., 2000). Another hypothesis postulates the influx of 

corrosive Pacific intermediate waters triggering dissolution in the Caribbean (Newkirk and Martin, 

2009). 

However, carbonate preservation and accumulation pattern in the Atlantic ocean can often not solely 

be explained by changing preservation. This is shown at ODP Site 1085 in the Benguela upwelling 

system, where terrigenous dilution by Orange river sediments and shifts in coccolith production rates 

are the main causes for low carbonate contents in the middle to late Miocene (Krammer et al., 2006; 

Kastanja et al., 2006; Diester-Haas et al., 2004). Investigation of plankton sizes led to the conclusion 

that the middle to late Miocene might take a threshold position in the changing body size of marine 

plankton. During the last about 10 Ma C. leptoporus shows a placolith size decrease (Knappertsbusch, 

2000) and coccoliths of the Reticulofenestra lineages also appear to become smaller (Young, 1990), 

while foraminiferal size in subtropical to temperate climates shows a long-term increase since 11-10 
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Ma (Schmidt et al., 2005). It has been shown that extant coccolithophore lineages follow a long-term 

morphological trend of decreasing size rooted in the Miocene (Aubry, 2007). 

Instead of one explanation for the Carbonate Crash events there are various processes involved 

pointing to local influences. Shifts in carbonate accumulation and preservation were induced by (1) 

reorganisation of deep and intermediate water circulation, (2) climatically induced changes of 

terrigenous supply diluting carbonates, and (3) variations of production rates of the main calcareous 

marine plankton groups, which in turn may be related to evolutionary size trends and the emergence of 

new ecological niches. In order to test and assess the various controls suggested a multi-proxy study 

addressing all these parameters is needed. In this paper we focus on silt and foraminiferal preservation 

patterns and their changes as well as the role of the different carbonate contributors, arranged by size, 

concerning budget estimates. A depth transect at Ceará Rise (ODP sites 926, 927 and 928) and ODP 

Site 982 at the Rockall Plateau was investigated in the time slice 10.5 Ma to 9 Ma covering the nadir 

of Miocene carbonate crash events in the Pacific and the end of Carbonate crash events in the 

Caribbean. Preservation proxies like changes of the content of coarse calcareous silt and its mean will 

be tested in comparison to former studies. Changes in the accumulation of the main carbonate 

contributors, namely foraminifera and coccoliths, will be addressed and compared to results from ODP 

Site 1085. 

3.2. Study areas 
Ceará Rise is an aseismic ridge located 700 km to the north-east of the mouth of the Amazon River, 

below the oligotrophic subtropical West Atlantic gyre (Fig. 3.1 A). Its sediments are composed of 

terrigenous clay supplied by fluvial discharge and carbonate from nannofossils and foraminifers. The 

evolution of today’s Amazon drainage system dates back into the Miocene (Hoorn, 1994). In the 

Pliocene discharge rates approached modern levels testified by significant increase of terrigenous 

accumulation rates at Ceará Rise. Here it is possible to decipher the imprint of the main deepwater 

masses from unique, highly resolved Neogene sedimentary sequences. Particularly, the transition from 

North Atlantic Deep water (NADW) and Antarctic Bottom water (AABW) is well documented along 

the depth transect of ODP sites at Ceará Rise. Today, the calcite lysocline is located at a water depth 

of 4500-4600 m  



Chapter 3 ~ The final Carbonate Crash in the Atlantic... 
�

�
20 

�

Site 982 (57°30.992'N, 15°52.001'W) is located on the Rockall Plateau within a water depth of 1133 m 

(Fig. 3.1 A) and bathed in North Atlantic Intermediate water (NAIW). The Site is supposed to 

document the development of intermediate water circulation in times of Iceland Faroer Ridge 

subsidence to a depth that allows deep water exchange with the North Atlantic. Results from grain size 

analysis of Site 982 are included in Results section 4.2. 

3.3. Methods and Material 
We sampled ODP sites 927 (5°28�N, 44°29�W, 3314 m water depth), 926 (3°43'N, 42°54'W, 3533 m) 

and 928 (5°27'N, 43°45'W, 4011 m) in the interval from 10.5 -9 Ma. Sediments consist of nannofossil 

oozes with clay and variable contributions of foraminifera. Careful inspection of the sedimentary 

sections during sampling campaigns showed that the Miocene sections were occasionally affected by 

sediment instability, comprising contorted bedding, folding and tilting (Curry, Shackleton and Richter 

et al., 1995). These sections as well as some additional sections suspected of slumping at Site 927 

(248.41-257.25 mcd following the original splice) were excluded from further interpretation and 

�

Fig. 3.1: A) Map of surface circulation and locations of cores from this study (Rockall Plateau and 
Ceará Rise) and additional locations (999 and 1085) discussed in the text. The stippled line indicates 
the northernmost position of Antarctic Intermediate Water (AAIW) according to Talley (1999); stars 
indicate locations of deep water formation. B) Ceará Rise water properties calculated from Geosec 
stations 37 and 39 (Bainbridge, 1981) indicating a modern calcite lysocline at 4.6km depth and the 
foraminiferal lysocline indicated by a rapid decrease in whole test foraminifer (WTF (%)) in core top 
samples (Curry and Cullen, 1995) at 4.4km. 
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samples from sites 927 and 926 were merged to form a composite record. Samples of 10cc volume 

were taken every 10ky according to the orbitally tuned age model (Shackleton & Crowhurst, 1997). 

ODP Site 982 (1145 m water depth) was sampled at a resolution of about 30 ky from 9 - 10.5 Ma. 

Sediments are nannofossil oozes partly with clay. Paleodepth estimates suggest that Site 982 was 100-

150 m shallower than today (Andersson and Jansen, 2003). The shipboard age model from Leg 162 

provides the age control (Jansen, 1996). The samples were freeze-dried and split. One portion was 

wet-sieved at 63 µm under weak spray to prevent the unintentional breakage of foraminifers. The 

other part was analysed for total Carbon (TC), and, after the removal of carbonate, for total organic 

Carbon (TOC) by using a LECO CS 200 infrared combustion analyser. Carbonate Content had been 

calculated after:  

(Eq. 3.1) CaCO3  [wt.%] = (TC [wt.%] - TOC [wt.%]) * 8,33 

Calibration was carried out by linear regression of multiple standard measurements. Double 

measurements were taken on extreme values.  

3.3.1 Foraminifer preservation index 
Splits of the sand fraction from 125-500 µm were analyzed for foraminifer preservation by the 

counting of at least 300 particles. Standard literature offers various techniques and methods to count a 

fragmentation index. In order to make the results comparable to various works three categories were 

chosen for the preservation state according to Berger (1975). A whole test (W) does not show any 

signs of fragmentation except attacked surfaces or minor borings. A broken test (B) comprises at least 

half of the specimen and a fragment (F) less than half of the test. An index (WTF) is calculated as 

percent whole tests: 

(Eq. 3.2) WTF (%) = #W + #B / (#W + #B + #F )*100 

3.3.2 Silt grain size distributions  

Bulk silt samples of Ceará Rise sites did not contain more than 5% terrigenous silt, therefore there was 

no possibility to gain proxies for paleoflow speeds as e.g. sortable silt (10-63 µm) from the non-

cohesive carbonate free part of the distribution (McCave and Hall, 2006). The almost pure calcareous 

silt samples offer the opportunity to test silt preservation proxies as the proportion of the coarse silt 

(CS% in the 10-63 µm fraction) and its mean (CSmean). The coarse silt contains juvenile foraminifers 

and foraminifer fragments that are more susceptible to dissolution than coccoliths in the fraction <10 

µm. This is possible because silt grain size distributions show a striking minimum at about 8-10 µm 

separating the size distributions of foraminifer silt and coarse nannofossil silt. Thus reductions in the 

amounts and size of particles in the calcareous CS fraction as shown in previous studies (Gröger et al., 

2003; Frenz et al., 2005; Frenz et al., 2007; Kastanja et al., 2007).  
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In order to extract the silt fraction the fine fraction was transferred to Atterberg settling tubes. 

Subsequently the clay fraction was reduced in the silt fraction by repeated settling (20 to 35 times) in 

Atterberg tubes with at least 19 hours of settling time. NaCO3-solution (0,003 mol/L) was used as 

dispersion agent. The dried weights of sand, silt and clay were summed up and are in the following 

referred to as 100%. Silt grain size distributions were determined by a Micromeritics SediGraph 5100. 

The SediGraph measures size distributions from 2 - 100 µm according to Stokes’ law as Equivalent 

Spherical Diameter (ESD) accurately. Finer grain sizes tend to behave cohesively and settling 

diameters coarser than 100 µm requires increasing Reynolds numbers (Gibbs et al., 1971). 0.1% 

Sodium polyphosphate have been used as a dispersing agent. The statistical parameters were 

calculated according to the method of moments (Krumbein, 1936). Bulk silt samples were washed 

carbonate free by repeated HCl (12.5%) treatment and subsequently washed neutral with deionised 

water. Afterwards they were dried and weighed. Because the bulk silt samples of the study material 

contain on average not more than 5% terrigenous silt we will refer to bulk silt in the following as 

calcareous silt. SediGraph cumulative raw data was interpolated at 0.1 � increments by linear 

interpolation. In a second step, the interpolated cumulative data has been normalised by subtracting 

minima and by dividing resulting cumulative maxima. Afterwards the grain size distributions were 

calculated in the range from 4� - 9� (62.5 µm – 1.95 µm). Nannofossils from randomly chosen silt 

samples of all sites were checked under the Scanning Electron microscope for successful 

disaggregation, diagenetic overgrowth and state of preservation, which shows only minor etchings and 

overgrowth in case of Site 928. 

Fig. 3.2: Results from Ceará Rise Depth transect sites 926/927 (black line/dotted lines) and 928 (grey 
lines) with dissolution proxies from left to right: carbonate content (wt.%), coarse fraction > 63 µm 
(wt.%), whole test foraminifer index (WTF%), coarse calcareous silt mean (CSmean), content of 
coarse calcareous silt (CS wt.%), mass accumulation rates of terrigenous (MARterrigenous) and 
calcareous material (MARcalc). Note the overall trend to better preservation at Ceará Rise records and 
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the offset between both sites in the first three parameters, as well as the missing difference in 
calcareaous silt preservation proxies (CSmean, CS%) among sites.�

3.3.3 Mass accumulation rates and age models  
In order to separate influences of dilution and productivity/dissolution changes mass accumulation 

rates (MAR) provide useful information. The quality of mass accumulation rates strongly depends on 

the quality of the age model. Orbital tuning methods increase the number of tie points of age models 

up to a resolution of a precession cycle (~26 kyr). The basic framework of the tuning is mainly tied to 

biotratigraphy in Miocene sections. Previous work on Site 926 provides high resolution 

biostratigraphy relying on nannofossil datums (Backmann and Raffi, 1997) calibrated by the orbitally 

tuned age model (Shackelton and Hall, 1997). The age models of Site 927 and 928 were subsequently 

established by correlation to Site 926 (King et al., 1997). 

Due to grain size analysis it is possible to divide calcareous MARs (MARcalc) into the following 

calcareous components, going from coarsest to finest: foraminiferal carbonate (calcareous silt from 

10-63 µm plus foraminifers from the sand fraction >63 µm) (MARForaminifera), coarse nannoliths 

(calcareous silt from 2-10 µm) and fine nannoliths ( clay raction <2 µm). The border of 2 µm ESD 

corresponds to grain diameters of 4-5 µm, because of lowered settling velocities of platy-shaped 

grains. 

MAR for calcareous and non-calcareous components (in the following referred as terrigenous owing 

to the lack of opal) are calculated by multiplying with linear sedimentation rate (LSR), dry bulk 

densities (DBD) and the proportion of a component: 

(Eq. 3.3) MAR component [g/cm2/kyr]= LSR [cm/kyr]*DBD [g/cm3]*proportion of component 

The DBDs were deviated from Gamma-Ray Attenuation (GRA) core-logging data, calibrated by 

discrete, density measurements (ship board gas pycnometer) by linear interpolation at sample depths. 

The dry bulk densities (DBD) were calculated according to the equation of Curry, Shackleton, Richter 

et al. (1995) with a water density of 1.035 [g/cm3]: 

(Eq. 3.4) DBD [g/cm3] = (� GRA - � water * � grain)/( � grain - � water). 

In the Results and Discussion we report additional data from ODP Site 1085 (Kastanja et al. 2005) and 

Site 999 (Roth et al., 2000). An orbitally tuned age model is also available for Site 1085 (Westerhold 

et al., 2005), here the biostratigraphy is based on the timescale of Berggren et al. (1995) and assigns 

ages which are slightly older. Site 999 biostratigraphic datums (Kameo and Bralower, 2000) mainly 

base on results from Leg 138 (Raffi and Flores, 1995) (see Tab. 1). Thus calculation of mass 

accumulation rates and comparison of these sites is advantageous due to the high quality age models 

within a common biostratigraphic framework. 
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3.4. Results 
3.4.1 Records of late Miocene sediments from Ceará Rise depth transect 

Carbonate and coarse fraction content 
A first hint at variations in the preservation record is given by carbonate and coarse fraction records. 

Maximum carbonate contents are in the order of 80% and similar at both sites (see Fig. 3.2). However, 

two minima (i.e. carbonate content 40-50%) occurred at Site 928 at 9.96 Ma and 9.9 Ma. In the same 

interval there is a minimum in carbonate content of 60% at Site 926 as well. After 9.9 Ma the 

carbonate content of Site 928 is approaching that of Site 926 until it reaches the same level at 9.7 - 9.6 

Ma. Coarse fraction contents are in the order of 5 - 30% at Site 926 but do not exceed 10% at Site 928, 

indicating significant loss in the sand fraction between sites. 

Carbonate preservation proxy –whole test foraminifers (WTF%) 

The preservation as indicated by the WTF is moderate at Site 926 and poor at Site 928 (Fig. 3.2). The 

WTF is in the range of 20 - 60% (Site 926) with higher fluctuations but it does not exceed 30% at Site 

928. Both records show a trend towards better preservation throughout the investigated interval in 

accordance with an increasing trend in the coarse fraction. 

Carbonate preservation proxies - CSmean and CS% 

CSmean and CS% were used as dissolution proxies in former studies (Gröger et al., 2003; Frenz et al., 

2005; Frenz et al., 2006; Kastanja and Henrich, 2007) and are supposed to show a reverse relation to 

dissolution intensity. The CSmean covers a range of 13-18 µm at both sites. The general trend follows 

the WTF (%) but is in case of Site 926 interrupted by a reverse gradient from 10.05 - 9.8 Ma. The 

CSmean trend is nearly identical with the CS% reaching values between 10% and 25% of the silt 

distribution. The trends of CSmean and CS% values show no significant differences among sites. 

However, the overall rising trend in CSmean still indicates better preservation. 

carbonate contributor MAR 926 MAR 928 MAR-difference % loss (referring to 

926 MARtotal) 
MAR nannoliths 2-10 µm 0.8 0.61 0.19 11.4 
MAR nannoliths < 2 µm 0.26 0.22 0.04 2.4 
MAR foraminifer 0.6 0.17 0.43 25.9 
MAR total carbonate 1.66 1.00 0.66 39.8 

Tab. 3.1: Averaged mass accumulation rates from 926 and 928 over the interval from 9.8-9.6 Ma. The 

mass loss of foraminifera is 39.8% of 926 average MARtotal carbonate, while nannoliths size classes 

account for 11.4% and 2.4% of carbonate-loss, respectively. 
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Accumulation rates at the Ceará Rise depth transect

In order to demonstrate the impact of dissolution on the different carbonate size classes mass 

accumulation rates (MARcalc) were calculated for the different carbonate contributors. Assuming that 

both sites (926 and 928) received the same amount of carbonate and non-carbonate in the time frame 

studied the difference should reflect the amount of dissolution. The total MARcalc of Site 926 has two 

minima centered at 9.95 Ma and 9.6 Ma reaching 1.2 g/cm2/ky and framing a maximum at about 9.7 

Ma with up to 2 g/cm2/ky. The minima are accompanied by moderate to poor preservation (30-55% 

WTF) at 9.95 Ma and 50-65% WTF at 9.6 Ma, respectively. The reduction in MARcalc is evident in the 

MAR of foraminifera and coarse nannofossils, both showing minima at these times, while the fine 

carbonate (<2µm) is relatively stable in low ranges of 0.2 - 0.4 g/cm2/ky. The trend in carbonate 

accumulation does not follow the preservation index at Site 926 in the interval from 9.5 - 9.2 Ma 

(decreasing MARcalc accompanied by increasing preservation). Hence productivity patterns are 

assumed to modulate carbonate accumulation. The MAR of terrigenous material (MARterrigenous) is in 

the order of 0.2 -0.6 g cm2/ky (926 and 928) with minor fluctuations in the record. The terrigenous 

fraction is almost exclusively present in the <2µm ESD fraction. For comparison of MAR between 

sites the interval from 9.6 to about 9.8 Ma seems suitable, because it comprises the nannofossil datums 

of T D. hamatus and T. D. coalitus at both sites. The average carbonate content of Site 926 is 83% 

from 9.8 - 9.6 Ma while at Site 928 the content is 75% on average. The difference in MARcarb reflects 

a loss of about 40% carbonate from which two thirds can be assigned to foraminifer carbonate and one 

third to nannofossil carbonate (Tab. 3.1). The loss from nannofossil carbonate indicates a higher 

susceptibility of coarse nannofossil to dissolution compared to clay sized nannofossil. 

Tab. 3.2: Nannofossil events at sites 926, 999 and 1085. 

  

Nannofossil event Site 926 age (kyr)*1 Site 999 age (kyr)*2 Site 1085 age (kyr)*3

T D. hamatus 9.65 9.36 9.63 
T C. calyculus 9.65 9.36  

B D. hamatus 10.49 10.39 10.70 

B D. brouweri 10.69   

B C. calyculus 10.70 10.70  

T C. miopelagicus 10.94 10.39  

B C. coalitus 10.79 10.71  

T. D. kugleri 11.56 11.50 11.50 

Bc D. kugleri 11.88 11.74  

B D. kugleri 11.91 12.20  

T C. nitescens  12.12  
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3.4.2 Contribution of foraminifer and nannofossil carbonate at Sites 926, 1085 and 982 in the 

late Miocene  

Comparison of studies of different sedimentary and oceanic regimes reveals varying contributions of 

different size classes to the total carbonate. In all cases carbonate from foraminifera has a subordinate 

status (see Fig. 3.3). At Site 926 about half of the carbonate (0.5-1 g/cm2/ky) is accumulating in the 

upper end of nannofossil carbonate besides continuously lower contributions of clay sized nannoliths 

in the order of 0.25 g/cm2/ky and a slightly more fluctuating and rising foraminifer carbonate (0.4 up 

to 0.8 g/cm2/ky).  

Compared to Site 926 the contribution of coarse nannofossil carbonate is in the same order at Site 

1085 but with significantly higher values of clay sized nannofossils ranging from 0.8 up to 3g/cm2/ky 

and lower values of foraminiferal MAR (0.1 - 0.5 g/cm2/kyr). Peak accumulation of total carbonate 

MARcalc at Site 926 occurred at 9.7 Ma while at Site 1085 the maximum is at about 9.8 Ma. The age 

models of 926 (Shackelton and Hall, 1997) and 1085 (Westerhold et al., 2005) base on orbital tuning 

both, however, applied timescales provide slightly different datums (see Tab. 3.2 and Discussion). 

Another observation concerning carbonate accumulation is a rising proportion of fine calcareous 

nannofossil in relation to the coarse coccoliths at Sites 927, 982 and 1085 (see Fig. 3.4). The change in 

this ratio is especially pronounced at Site 1085 where values rapidly double from 1.25 - 2.5 g/cm2/kyr 

at 10.15 Ma preceding the increase in MARcalc accumulation (compare Fig. 3.3).
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3.5. Discussion 
We start with testing the reliability of calcareous silt preservation proxies used in previous studies and 

in this investigation. Then the data from the Ceará Rise depth transect will be assessed and examined 

for its potential of reconstructing the lysocline during the Miocene. Afterwards the preservation 

patterns of Ceará Rise and the Caribbean (Site 999) will be discussed in the context of proposed 

circulation models for the CC-events. Finally, considerations from accumulation rates calculations will 

be used to estimate the influence of changes in carbonate production patterns trends for the different 

sites studied. 

�

Fig. 3.3: Carbonate mass accumulation rates differentiated by grain size at sites 926 - and Site 1085 –
Benguela upwelling (*1data from Kastanja et al. 2006): thin black lines-foraminifer carbonate >10 
µm, grey lines –nannofossil carbonate <2 µm, dashed grey lines-coarse nannofossils 2-10 µm, thick 
black line-total carbonate accumulating. The carbonate accumulation at Site 926 is dominated by 
coarse nannofossils, while at Site 1085 the budget is dominated by clay sized nannoliths. The range 
of the nannofossil event T Discoaster hamatus indicates slightly older ages at Site 1085 compared to 
Site 926.�
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3.5.1 Consideration of dissolution proxies: comparison of fragmentation index and silt grain 

size preservation proxies 

The difference in preservation between sites 926 and 928 of the depth transect is clearly reflected in 

the difference between coarse fraction contents and WTF%. The Miocene records of CSmean and 

CS% lack similarity to WTF% trends and do not appear to reflect preservation differences between 

sites, thus an evaluation of proxy data seems reasonable. Through recounting of WTF% on samples 

from the studies of Gröger et al. (2003) und Frenz et al (2005) we can infer good reproducibility 

among results (r2=0.79) (Fig. 3.5B) which justifies a comparison. Late Miocene values show a bigger 

variability in fragmentation than CS% (10-25%- Fig. 3.5 A). The opposite can be seen in the Pliocene 

record. There the fragmentation is very low and the values of CS% are in the order of 30-60%. As 

already shown MAR loss of foraminifer exceeds mass loss from coccolith carbonate (Tab. 3.2) among 

site 926 and 928 in the Miocene. It has been shown that coccoliths are protected through organic 

coatings (Honjo, 1976) and that they even can be preserved in sediments below CCD level in modern 

settings (Honjo and Erez, 1978). However, there is sufficient MAR loss in the coarse nannofossil 

fraction at Site 928 compared to Site 926. Thus progressing dissolution might feed the CS fraction 

through enrichment of foraminifer fragments and at the same time loss of fragments and coccoliths are 

Fig. 3.5: Comparison of calcareous silt preservation proxies and fragmentation index (WTF%) in 
different time slices from Ceará Rise sites 926 and 927 Miocene (own data - triangles) and Pliocene 
(Frenz et al., 2005-open circles) and Plio-Pleistocene data (Gröger at al., 2003-crosses). CS% (A) and 
CSmean (C) of Pliocene and Miocene time slices do not show a positive correlation to WTF (%). 
However, for Plio- Pleistocene data (Gröger et al., 2003) both proxies seem to indicate dissolution on a 
wider range of values reliably. (B) The WTF (%) was recounted on sample splits from both studies 
(n=32, r2=0,79) indicating good reproducibility among investigators. 
�
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maintaining a balance at a certain stage of dissolution intensity. Also other processes than dissolution 

could influence the CS distribution and proportion, these could be productivity changes or winnowing 

of sediments. The Pliocene record, however, offered an offset in size of CSmean between investigated 

sites 927 and 929 (Frenz et al., 2005) which might be explained by the bigger dissolution difference 

and strengthens the hypothesis that these proxies are suitable on a wider range of dissolution 

intensities.  

The Miocene record of preservation patterns of the depth transect shows evidence that WTF% is the 

most feasible proxy in the given range of dissolution intensity, while CSmean and CS% are less 

appropriate in such low concentrations of coarse silt. It could be argued that WTF% is influenced 

through productivity of foraminifer species with different susceptibility to dissolution. The 

investigation of coarse fraction did not give a hint to such argumentation. Therefore, in the following, 

we will concentrate on differences in the WTF% record and coarse fraction content as an indicator of 

preservation. 

3.5.2 The classical Ceará Rise depth transect and reconstruction of the lysocline during the 

Miocene  
The relative strength of circulation of NADW and AABW controls the modern dissolution horizons at 

Ceará Rise, causing a relatively strong gradient for foraminiferal fragmentation beginning at 4.3 km 

(70% WTF) to 4.55 km (<30% WTF) (i.e. foraminiferal lysocline), which is close to the chemical 

lysocline at 4.6 km (Fig. 3.1). Assuming that values of less than 30% WTF indicate the chemical 

lysocline, as inferred from core top samples (see Fig. 3.1), Site 928 could be placed within this 

dissolution horizon or even below in the Miocene. Site 926 shows values that indicate a position 

between foraminiferal and calcite lysocline. Thus dissolution of foraminifera in the Miocene must 

have occurred in a much broader zone with the chemical lysocline located at 4000m water depth, 

elevated by about 600 m and the foraminiferal lysocline at or right below Site 927 (3314 m water 

depth). These findings are in accordance with results of CCD reconstructions placing the Atlantic 

CCD of the late Miocene at about 4000 m (Berger, 1972; Van Andel, 1977; Hsü and Wright, 1985; 

Berger and Wefer, 1996). 
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3.5.3 Carbonate Crash events Productivity and Circulation hypothesis – a comparison to the 

Caribbean 

The investigated periods are situated at the end of the carbonate crash events in the Caribbean. The 

proposed model by Roth et al. (2000) calls the influx of corrosive AAIW (see modern northern 

boundary of AAIW in Fig. 3.1) precursors in response to enhanced Northern Component Water 

(NCW) production responsible for dissolution events in the Caribbean. This causality would induce 

opposite preservation conditions in the Caribbean and at Ceará Rise. This is not supported by 

preservation data from Ceará Rise (see Fig. 6). Comparing the coarse fraction contents, which respond 

to dissolution more directly in comparison to CaCO3 (wt%) or MARcalc, we find a similarity between 

Ceará Rise Site 926 and Caribbean Site 999 coarse fraction trends, suggesting dissolution in phase. 

The coarse fraction records show minima centered at 11.2 Ma and 10.3 Ma and 10.1 Ma. Afterwards 

both records show an increasing trend in general. The rebound of MARcalc at 10.2 - 10 Ma at Site 999 

finds an equivalent increase in MARcalc at 926.  

The coarse fraction records of the Caribbean and Ceará Rise generally coincide to NCW 

reconstructions (see Fig. 3.6). 

�

Fig. 3.6: Compiled data from the Caribbean and Ceara Rise. From left to right: Ceara Rise Site 926 –
MARcalc (black line)1 Caribbean Site 999 –MARcalc (grey line)2,926 -coarse fraction (black line)3; 
NCW (%) estimate (black line4, dashed line5). Sand fraction records of both sites show a similar trend. 
Some features of NCW (%) reconstructions are similar to sand fraction content trends (here interpreted 
as dissolution indicator) until about 10Ma. Data from King et al. (1997)1, Roth et al. (2000)2, 
Shackleton and Crowhurst (1997)3, Wright and Miller (1996)4, Poore et al. (2006)5. Mi-events after 
Turco (2001) with ages updated to timescale of Berggren et al. (1995). 
�
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There is a low in coarse fraction at about 10.4 Ma, a time when also NCW is decreasing, and a 

maximum in coarse fraction is registered at 10.5 Ma when the NCW% estimate is ranging at 50 - 80%. 

The similar trends suggest that during times of NCW production the carbonate preservation increases 

and during times of reduced NCW production the dominance of Southern Component Water (SCW) 

promoted dissolution. Nevertheless, the increasing preservation since 10.1 Ma is not accompanied by 

increasing NCW% estimates. The circulation reconstructions even suggest a decreasing trend in the 

contribution of NCW from the Norwegian Greenland Sea from 10.5 - 9 Ma with a reduced flow, or 

shut-down of flow, of NCW from 9.7 - 8.8 Ma (Wright et al., 1992; Wright and Miller, 1996; Billups, 

2002; Poore et al., 2006). Reconstructions of the relative strength of NCW rely on the difference in 

benthic �13C among ocean basins. Gradients between the Southern ocean and the North Atlantic are 

still small until about 9 Ma. Therefore small changes produce extreme values in NCW% estimates and 

its errors. Thus an increase in NCW% between 10 Ma and 9 Ma would still be possible within error 

estimates. Besides the Norwegian Greenland Sea an alternative source of NCW could have been the 

Labrador Sea. Thomas and Via (2007) found evidence for the onset of deep convection in the 

Labrador Sea by results from neodymium isotopes from the Walvis Ridge depth transect. They argue 

that downwelling started at about 10.6 - 7.3 Ma and that this water mass was denser than today, taking 

the position of modern lower NADW currently formed in the Norwegian Greenland Sea. This would 

have caused increasing preservation as well and would fit the scenario at Ceará Rise. The relative 

strength of the antagonistic water mass to NCW, which is SCW, would possibly be enhanced during 

times of cooling as represented by Mi-events (see Fig. 3.6) recognized as excursions in �18O records of 

the Mediterranean (Turco et al., 2002). Mi5 e.g. is accompanied by decreased NCW and low coarse 

fraction contents, which implies the dominance of corrosive SCW. However, Mi events appear 

problematic as a stratigraphic tool and cannot be correlated among sites (Westerhold et al., 2005; 

Andersson and Jansen, 2003). 

Productivity decreases of coccolithophores were found to be influencing carbonate budgets in the 

Benguela region (Kastanja et al, 2006; Krammer et al., 2006) in the interval from 10.4 - 10.1 Ma and 

9.6 - 9.0 Ma. The interval from 9.7 - 9.5 Ma at Site 926 is also a period of decreasing MARcalc

accompanied by increasing preservation. The record of MAR among site 1085 and 926 is quite similar 

but seems to contain a 100ky difference. This difference is also reflected by the last occurrence datum 

of D. hamatus (see Tab 3.1 and Fig. 3.3). If this date would be synchronous the accumulation patterns 

of site 1085 and 926 would be in phase. Than it could be speculated that during an upwelling situation 

in the Benguela region Ceará Rise might have also profited from higher nutrient concentrations 

advecting northward via the Benguela Current and the South Equatorial Current to the sites (see 

surface currents Fig. 3.1) (Gardner Hays, 1976). This could imply a shift of the subtropical high 

pressure zone (Mix and Morey, 1996). 
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3.5.4 Trends in nannoplankton carbonate sizes and mass accumulation 
Sites 1085, 982 and Site 927 ratios of fine and coarse nannofossils show a subtle trend towards fine 

nannofossils in the investigated interval. These sites display mostly good carbonate preservation. Thus 

we intend to interpret changing ratios of the groups as due to varying contributions. The observed 

changes in size of nannoplankton carbonate could be a result of changes in the assemblages towards 

smaller species or due to changes in size of coccoliths as observed in this interval e. g. in parallel 

decreases of coccolith size in taxa of Calcidiscus (Knappertsbusch, 2000) and Reticulofenestra

(Young, 1990). However, at Site 1085 the comparison of ESD from sedigraph measurements 

(Kastanja et al., 2006) and assemblage counts (Krammer et al., 2006) is possible. Here the dominating 

species of the genus Reticulofenestra, underwent an interesting change in abundance and size patterns. 

At about 10.3-10.2 Ma the accumulation of large species (R. pseudoumbilicus large (>7µm) and 

medium (5-7µm)) declined followed by a period of increasing accumulation of the small species (R. 

minuta and R. haqii, <5µm) from 10.2-10 Ma (Krammer et al., 2006). The assemblage change seems 

to be well reflected by the ratios of fine to coarse nannofossil from grain size measurements of 

Kastanja et al. (2006) (Fig. 3.3). Interestingly, the change in the ratio appears before the dramatic 

increase in MARcalc at Site 1085 (compare Fig. 3.3 and 3.4). This could suggest a time of adaption 

leading to a period of enhanced nannofossil productivity in combination with an upwelling situation. 

3.6. Conclusions 
The investigation of preservation proxies, mass accumulation rates and calcareous grain sizes from the 

investigated Atlantic sites and comparison to sites 999 in the Caribbean and 1085 in the Benguela 

upwelling region led to the following conclusions: 

1. The Ceará Rise depth transect shows a shallow foraminiferal lysocline at about depth of Site 927 

(~3300m) and a calcite lysocline at 4000m according to foraminiferal preservation data in the late 

Miocene. Differences in MARcalc of foraminifera and coccoliths among sites indicate mass losses of 

two thirds in the foraminifer carbonate and one third in the coccoliths with pronounced mass loss in 

the coarse nannofossil fraction.  

2. A classical fragmentation index shows the proposed differences in preservation state while the 

calcareous silt preservation proxies partly failed to reproduce the depth dependant dissolution at the 

transect. 

3. The carbonate accumulation patterns and coarse fraction trends at Ceará Rise and the Caribbean are 

in phase and do correspond to proposed NCW% estimates until 10.1 Ma implicating better 

preservation during enhanced NCW formation. Productivity at least partly influenced changes in the 

MARcalc at Ceará Rise from 9.5 to 9.2 Ma. The carbonate preservation had been increasing in the 

Caribbean and at Ceará Rise since ~10.1 Ma. 
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4. Increasing contribution of fine nannofossil carbonate is evident at sites 927, 982 and 1085 and the 

ratio of fine to coarse nannofossils decreases from south to north among sites. The change in the ratio 

of fine to coarse nannofossil carbonate at Site 1085 can probably be related to a coccolith size change 

in the dominating genus Reticulofenestra, however, remains elusive at the other sites. 
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Abstract 
This paper intends to review and assess the middle to late Miocene Carbonate Crash events (CC-

events) in the low to mid latitudes of the Pacific, Indian, Caribbean and Atlantic Ocean as part of the 

global paleoceanographic reorganisations in the Miocene between 12 and 9 Ma with emphasis on 

preservation records (semi-qualitative estimates on nannofossil and foraminifera, coarse fraction 

records, fragmentation index, benthos/plankton ratios) and their relation to mass accumulation rates. In 

the Eastern Pacific the accumulation changes in carbonate and opal offshore California, off Peru and 

in the Eastern Equatorial Pacific probably reflect an El-Niño-like state of low productivity which 

marks the beginning of the CC-crash (11.5 Ma) followed by decreased preservation and influx of 

corrosive bottom waters (10.3 to 10.1 Ma) at about the same time when carbonate preservation in the 

Atlantic is considerably increasing suggesting basin-to-basin fractionation as the controlling 

factor.The low latitude Indian Ocean, the Pacific and the Caribbean are all characterised by a similar 

timing of preservation increase starting at about 9.6 to 9.4 Ma, while the carbonate accumulation rates 

of these regions show drastic changes with different timing of events. The Atlantic preservation 

pattern shows an earlier increase starting at 11.5 and increasing from 10.1 Ma on. The shallow Indian 

Ocean is characterised by low carbonate accumulation throughout and increasing preservation since 

9.4 Ma (Mascarene plateau). At the same time the preservation in the Caribbean is increasing, 

succeeding the increase in carbonate accumulation at 10 Ma. In contrast to postulated preservation 

anticorellations of the Caribbean and Atlantic records are rather similar. The carbonate preservation in 

the Caribbean was enhanced through North Atlantic deep water formation. The shoaling of the Central 

American Isthmus (CAS) might have helped to enhance preservation after 9.4 Ma. Lowered 

productivity of nannoplankton in the Atlantic (9.4 Ma at Benguela upwelling Site 1085 and Ceará Rise 

Site 926) additionally contributed to low mass accumulation rates during the late CC-interval. 

4.1. Introduction 
The Miocene CC-events include several sharp drops in carbonate concentration and/or accumulation 

occurring in various parts of the oceans, e.g. equatorial Pacific and Indian Ocean (Lyle et al., 1995; 

Farrell et al., 1995; Peterson et al., 1992), the Caribbean Sea (Roth et al., 2000), the equatorial Atlantic 
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(King et al., 1997; Murray and Peterson, 1997), the South Atlantic (Diester-Haass et al., 2004; 

Krammer et al. 2006; Kastanja et al., 2007) and Southern Ocean ( Diester-Haass and Nees, 2004) at 

the middle to late Miocene (12 - 9 Ma). Hence, CC-events obviously are a phenomenon on a global 

scale. However, timing, duration and number of the different drop events are not consistent, and 

possible causes are discussed controversially. Postulations of potential mechanisms include changes in 

deep water circulation, shoaling of the CCD, shifts in shallow to deep carbonate fractionation, 

terrigenous dilution, productivity changes and evolutionary trends and adaptations of the main 

calcareous plankton groups. 

During the middle to late Miocene major reorganisations on land and in the oceans induced prominent 

shifts in the global climate system. This includes important changes of plate tectonic settings, e.g. the 

closure of the Indonesian Seaway (IS) (Lee and Lawer, 1995) and uplift of the Central American 

Seaway (CAS- Marshall, 1988; Collins et al., 1996; Haug and Tiedemann, 1998). The subsidence of 

the Greenland-Scotland Ridge is associated with secular variations in its bathymetry induced by 

variations in temperature and buoyancy of the Iceland mantle plume (Wright and Miller, 1996; Poore 

et al., 2006), opening and widening of the Frame Strait (Thiede and Myhre, 1996), as well as the uplift 

of high mountain ranges, in particular the Himalaya and Tibet Plateau as well as the Andes (Benjamin 

et al., 1987). This, in turn, strongly influenced continental weathering and induced the formation of 

new huge fluvial drainage systems like the Amazon (Hoorn et al., 1995). During the Miocene strong 

changes in high-latitude climates are observed. A gradual warming during the early to middle Miocene 

(24 Ma to 15 Ma) is followed by rapid cooling during the middle Miocene. Contemporaneously the ice 

shield on Antarctica expanded considerably (Warnke et al., 1992; Flower and Kennett, 1994) and the 

first small-dimensioned ice sheets were initiated in the Northern Hemisphere (Larsen et al., 1994; 

Fronval and Jansen, 1996; Thiede et al., 1998). 

The asymmetric cooling resulted in more vigorous trade winds in the southern hemisphere and 

displacement of the Inter Tropical Convergence Zone (ITCZ) to the north (Hovan, 1994; Rea, 1994). 

The global climate cooled stepwise as e.g. recorded in benthic foraminiferal δ18O values. The Mi- 

events (Miller et al., 1987; Zachos et al., 2001; Westerhold et al., 2005) recording increases in ice 

volume and/or deep water cooling, however these are not always traceable among sites (Andersson 

and Jansen, 2005). This was connected with major reorganisations of surface and deep water 

circulation, in particular, the initiation of modern low latitude upwelling systems in the Atlantic 

(Diester-Haass et al., 2004; Krammer et al., 2006; Kastanja et al., 2006) and Pacific (Lyle et al., 2000). 

Wright et al. (1992) and Wright and Miller (1996) place the initiation of North Component Water 

(NCW), a precursor to the modern North Atlantic Deep Water (NADW) and a primary component of 

deep-water convection, in the late early Miocene. More recently, Poore et al. (2006) stated that based 

on composite Atlantic and Pacific and Southern Ocean δ13C benthic foraminifer records there is no 
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evidence of significant NCW overflow over the Greenland-Scotland Ridge before 12 Ma, which is 

consistent with evidence from Cd/Ca ratios (Delaney, 1990). 

The change in circulation mode also induced a shift in nutrient distribution which is e.g. manifested in 

the middle Miocene silica switch which shifts the formation of opal dominated sediments from the 

North Atlantic to the North Pacific between 15 and 10 Ma (Keller and Barron, 1985; Cortese et al. 

2004). The response of planktonic organisms in these changing oceanic environments is poorly 

understood. Schmidt et al. (2006) found a shift in size of mid to low latitude foraminifera assemblages 

through the Cenozoic with extreme development towards bigger sizes in the late Miocene. Also 

coccolithophores are suspected to react to oceanographic revolutions, showing extraordinary size 

trends in the late Miocene (Reticulofenestra, Young et al., 1990; Calcidicus leptoporus, 

Knappertsbusch, 2000). 

Carbonate accumulation patterns are crucial to understand circulation patterns and climate change. 

They are supposed to reflect a balance of productivity and preservation on the sea floor. Global 

budgets should display a steady state of riverine influx and burial rate of CaCO3 (Broecker and Peng, 

1987). Because of the similarity of eustatic sea level changes and fluctuations of the calcite-

compensation depth (CCD - Bramlette,1976) over the path of the Cenozoic, changes in CCD were 

associated with shelf-to-basin fractionation. The underlying assumption is that during high sea level,

carbonate accumulation would preferably take place on shelves rather than the open ocean (Berger, 

1970).In order to trace CCD changes classical work approaches use certain wt%-carbonate values or 

MARCaCO3-values for defining a CCD boundary. Roth et al. (2000) uses the 0.1g/cm2/ky carbonate 

Fig. 4.1. A) CCD reconstructions of the South Atlantic from different authors. B) Compiled CCD 
reconstructions for the mains oceans after Wefer and Berger (1996). 
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flux to reconstruct CCD changes in the deep Pacific throughout the middle to late Miocene CC-events. 

Wefer and Berger (1996) or van Andel (1979) used the 20 wt.%-CaCO3 as the level of the CCD (see 

Fig. 4.1 A). A closer look at preservation proxies might reveal discrepancies between certain value 

CCD reconstructions and their relation to carbonate productivity levels or dissolution intensities. 

Therefore, in this study we want to review the carbonate crash events from ODP cores of low to mid 

latitudes with emphasis on available carbonate preservation proxy data. The review is supplemented 

by own data contribution of material from ODP Site 1237 in the SE-Pacific offshore Peru. 

4.2. Strategies to detect carbonate crash mechanisms: discrimination between 
dilution, productivity and dissolution 
Due to the technical advance of coring deep ocean floor sediments with hydraulic piston corers e.g. 

during legs of the Ocean drilling program (ODP), there is the possibility to investigate a huge archive 

of well dated continuous sedimentary successions spanning the middle to late Miocene. A first look at 

a pelagic carbonate rich sedimentary sequence can give a hint to carbonate variations expressed as 

cyclic gradational variations in sediment color, where darker color bands represent carbonate 

decreases. This method is failing in sediments with very high carbonate contents, where even severe 

dissolution or productivity decreases do not produce low carbonate contents, hence no color bands. A 

strong dilution signal e.g. through a change in the ratio of opal to carbonate sedimentation or 

terrigenous input could then produce low carbonate contents. Besides the observation of carbonate 

contents which can be lowered due to dilution, dissolution, decreased productivity or changing ratio of 

opal/calcite in the rain rate, mass accumulation rates (MAR) give a measure of the component burial 

per surface and time and are calculated as follows:

(Eq. 4.1) MARcomponent (g/cm2 kyr)= p * LSR(cm/kyr) * DBD (g/cm3) 

 p=roportion of the component 

 LSR=linear sedimentation rate  

 DBD=dry bulk density 

In ODP records often GRAPE data (Gamma ray attenuation porosity evaluator) and discrete density 

measurements are used to calculate DBDs. Routinely the MAR are reported for 1 Ma increments 

accounting for low resolution age models. Additionally, values from composite sections have to be 

corrected by a growth factor to account for core expansions and disturbances (e.g. Hagelberg et al. 

1992). 

MARs can help to find an answer whether the observed change is due to dilution or 

productivity/dissolution changes. The quality of this data is depending on the quality of the age model 

and the ablated sedimentation rates. The highest resolution is gained by orbitally tuned age models. 
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This method interprets the sediment composition as sedimentary response to orbital cycles and is 

based on high resolution data of density, color and magnetic susceptibility or geochemical 

measurements in the framework of classical magneto- and biostratigraphy. However, sedimentation 

rates might be handled with care if there are special burial circumstances involved as e.g. the rapid 

sedimentation of diatom mats which are laminated sediments that can form thick and spatial 

widespread deposits (Kemp et al., 1995). These sediments are rather interpreted as results of complex 

surface water processes than deep water dissolution phases. Additionally, redepositional events like 

e.g. turbidites and slumps or phases of no deposition (hiatus) disturb the premise of slow and steady 

pelagic sedimentation, supposed to form an even veneer on the ocean floor topography. Under 

discussion is also the process of sediment focusing and lateral advection. Attempts to correct for this 

are e.g. the correction of MAR by 230Th normalisation (Bacon, 1984; Francois, 2004) or assuming a 

constant rain rate from extra-terrestrial 3He (Marcantonio et al., 1996; Kienast et al., 2007). 

However, MARs are the key data to observe CC-events. If decreasing accumulation rates of carbonate 

(MARcalc) are accompanied by e.g. steady and low terrigenous accumulation dilution can be excluded 

as a main factor. What remains then is the question, whether MARcalc minima are due to lowered 

productivity or dissolution. Depending on the (paleo-) water depth of the observation one will make a 

first hypothesis based on the fact that at greater depth calcite will be dissolved more easily and at 

shallower depth productivity will be the most important factor. Lowered carbonate supply tends to 

increase the possibility of dissolution as well and will be balanced by a rising CCD. However, 

especially under high productivity conditions dissolution above the lysocline contributes significantly 

to overall dissolution (Archer, 1991). Here the rain ratio of organic carbon to CaCO3 is an indicator for 

high productivity. Elevated proportions of organic carbon are often associated with high rates of opal 

accumulating (Treguer et al., 1995). The accumulation of opal in the form of diatom frustules might 

favour the preservation of carbonates. No evidence for enhanced dissolution of foraminifera was 

observed within diatom mats (Pearce et al., 1995) which might be attributed to the fast settling 

velocities and/or the strong meshwork that suppresses benthic activity. The release of silica in pore 

waters might as well act against carbonate dissolution (Wise, 1977). A higher proportion of benthic 

organisms can also point to higher productivity of surface waters, but might be an evidence of 

dissolution as well (e.g. Dittert et al., 1999; Diester-Haass et al., 2002). In many cases it is reasonable 

to investigate multiple proxies as e.g sand content and the classical planktonic foraminiferal 

fragmentation: 

(Eq. 4.2) fragmentation % = #fragments /(# whole tests + # fragments) * 100 

investigated on splits of the sand fraction (Peterson and Prell, 1985, Conan et al., 2002). The validity 

of these methods is restricted to dissolution above the CCD. Nannofossil based dissolution indices 

might help to find clues for dissolution intensities, despite the high potential of ecological control on 
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Fig. 4.2: Locations of ODP sites of CC-events reviewed. New data from Site 1237 in the SE- Pacific. 

abundance patterns. The application of these preservation proxies might be even better under strong 

dissolution conditions and for application to closely spaced intersite comparison e.g. at a depth 

transect (Gibbs et al., 2004). The absence of foraminifera or a strongly reduced taphonomic 

assemblage in dissolved sediments often inhibits the investigation and/or interpretation of stable 

isotopes on benthos and plantktonic faunas which are standard proxies for circulation, productivity and 

climate, however here also the less well understood nannofossils might fill the gap in reflection of 

surface water processes in future research. 

The investigations of MARcalc at depth transects is especially meaningful in CCD reconstructions 

because site to site differences reveal the loss of carbonate from one site to another and other 

processes influencing carbonate MARcalc besides dissolution. In case of Walvis Ridge depth transect 

e.g. winnowing, reworking and down-slope re-suspension seem to alter wt% of carbonate even in that 

way to produce reversed gradients (Zachos et al., 2004). Accordingly higher carbonate contents are 

found in the deeper site in comparison to shallower ones. Another example for a depressed carbonate 

depth gradient is the Ontong Java plateau (Berger et al., 1993).  

For the following comparison we have chosen several cores from low to mid latitudes of the world’s 

main ocean representing key locations of the CC-events (see Tab. 4.1 and Fig. 4.2). The MAR were 

recalculated following the above described method. Carbonate and coarse fraction data from ODP Site 

1237 in the SE-Pacific represents the only new data on the middle to late Miocene. Component 

analysis on these samples was applied to representative splits of the > 63µm fraction with at least 300 

particles counted. The fragmentation index here is the ratio of whole tests (shells comprising at least 

half of a whole planktonic foraminifera test) divided by the sum of whole tests and fragments. 

The colour bars in the figures represent preservation data of planktonic foraminifera from the Site 

reports in the Initial reports of the ODP volumes. 

The framework of comparison of different data sets and calculations of MARcalc is given by the age 

model.  
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4.3 Age control 
The comparison of the cores from the eastern Pacific (Leg 138, Leg 202), Atlantic Leg 154 and Leg 

1085 and the Caribbean Leg 165 is advantageous because they are based on the same biostratigraphy 

using bioevents dated by Flores and Raffi (1995) from Leg 138. Age control of Leg 138 records is 

provided by biostratigraphy over the whole record, astronomical tuning of GRAPE density down to 10 

Ma and magnetostratigraphy in the interval younger than 13.25 Ma (Shackleton et al., 1995). The 

astronomical tuning of Ceará Rise Site 926 based on correlation of magnetic susceptibility maxima to 

northern hemisphere insolation minima. The orbital solution of records and was compared to high 

resolution biostratigraphy from 5 to 14 Ma (Backmann and Raffi, 1997). Age models from Indian 

Ocean Leg 115 were updated to the common standard of Berggren et al. (1995) timescale. An updated 

age model was also used for Site 806 from the Ontong Java Plateau (Nathan and Leckie, 2009). Age 

models of the eastern Pacific Site 1010 along Baja California (Forniaciari, 2000) and Site 1241 in the 

EEP did not provide magnetostratigraphic control, however displayed the low latitude standard 

zonation of calcareous nannofossil. At Site 1237 off Peru magnetostratigraphy could be applied giving 

excellent age control with all chrons and subchrons according to GPTS between 8.4 Ma and 12.4 Ma 

(Chron 4r and Chron 5Ar, Cande and Kent, 1995). This scale is in good accordance with calcareous 

nannofossil datums. 



Chapter 4 ~ The Carbonate Crash - A critical review... 
�

�
41�

�

Region ODP-
Site 

Depth Data sourceX –(^nannofossil preservation, 
*foraminifer preservation,’coarse fraction) 

Data source –(°CaCO3-
MAR/*Opal.-MAR) 

Age model/biostratigraphy – source 
(*updated to Berggren et al. 1995) 

East Pacific      
equatorial. 844 3415 ^ Farrell et al. (1995)1;“ Vincent & Tourmarkine 

(1995)2
°* Farrell et al. (1995)1 Shackleton et al. (1995); Raffi &Flores 

(1995) 
equatorial. 846 3296 “ “ “ 
equatorial. 850 3786 “ “ “ 
equatorial. 1241 2027 *Mix et al. (2003)3 °* Mix et al. (2003)3 inc. non- Mix et al. (2003) 
California 1010 3464 *Lyle et al. (1997)4 °Lyle et al. (2003)5,*Janecek 

6
Fornaciari (2000) 

Peru 1237 3212 *’This study °This study Mix et al.. ( 2003) 
West Pacific      

806 2521 *Nathan & Leckie (2009)7 °Berger et al. (1991)8 Nathan & Leckie (2009) 
Atlantic      
equatorial. 926 3598 Preiß-Daimler & Henrich - subm.;’ Shackleton & 

Crowhurst (1997)10
Preiß-Daimler & Henrich- subm.; 
°King et al.. (1997)11

Shackleton & Crowhurst (1997);Backmann 
&Raffi (1997) 

Benguela 
upwelling 

1085 1713 Benthos/Plankton –ratio Diester-Haass et al. 
(2004)12

°Kastanja et al. (2006)13 Westerhold et al. (2005) 

Caribbean      
 999 2828 ‘Roth et al.. (2000)13, ^Kameo &Sato (2000)14���

Nd(t)-Newkirk and Martin (2009)15
°Roth et al.. (2000)13 Kameo & Bralower (2000) 

 998 3180 “ “ “ 
Indian Ocean      
Mascarene 707 1541 - °Backmann et al. (1988)17 Rio et al. (1990) 
Mascarene 709 3038 ‘Vincent & Toumarkine (1990)16 “ “ 
Mascarene 710 3812 “ “ “ 
      
Tab. 4.1: List of locations, core data sources and age model sources.



Chapter 4 ~ The Carbonate Crash – a critical review... 
�

�
42�

�

4.4 The Carbonate Crash events: Timing and mechanisms 
In the following chapter compiled data of MAR as well as preservation proxies during the CC-interval, 

used methods and theories about trigger mechanisms will be summarized for each ocean basin. 

Existing theories concerning the CC-events in the deep (>3000m water depth) EEP from Leg 138 will 

be complemented by regional examples in order to relate NE and SE Pacific records to a picture of the 

entire Eastern Pacific. Results from Leg 202 deliver insight into intermediate water processes in the 

EEP (Site 1241) and own results of a deep water record off Peru (Site 1237) reflect processes in the 

SE Pacific. Additionally, sedimentary processes from the upwelling region along the California 

margin (Leg 167- Site 1010) provide valuable information about paleoceanography in the NE Pacific. 

Especially proxy data from the Caribbean (Sites 998,999) as a key area of the CC-events will be 

critically reviewed and reinterpreted. The Atlantic is represented by western equatorial Ceará Rise 

(Site 926) and Benguela upwelling (Site 1085). Sites of the depth transect of the Mascarene plateau 

(707,709,710) stand here exemplarily for the low latitude Indian Ocean. 

The emphasis in our reviewing observations is on the available estimates of preservation of calcareous 

fossils along with MAR of the main biogenic components (opal and carbonate). The data and sources 

are listed in Tab. 4.1 (numbers in Figs. 4.3 to 4.7 refer to Tab. 4.1). 

4.4.1 The Pacific carbonate crash events 
The modern equatorial Pacific surface productivity is characterised by an asymmetry between the east 

and the west. The Western Pacific Warm water pool (WPWP) forms a stable water mass with a deep 

thermocline well recorded in isotopes and foraminiferal fauna (Ravelo et al., 2006). Here carbonate 

accumulation is moderate while in the East Equatorial Pacific (EEP) accumulation of carbonates is 

influenced by upwelling intensity and an asymmetric lysocline, which is generally shallow in the east 

and a deep lysocline east of the East Pacific Ridge (EPR). Upwelling waters in the EEP are sourced 

from the Equatorial Undercurrent (EUC), which has its orign in the west Pacific and combines waters 

of both hemispheres (e.g. Dugdale et al., 2002; Goodmann et al., 2006). The eastern boundary currents 

(Humboldt and California current) form the prerequisite for coastal upwelling along the western 

boundaries of the two Americas. Oceanic productivity is furthermore distinctly influenced by the 

ENSO phenomenon (El Niño -Southern Oscillation). A strong El Niño event leads to the breakdown 

of plankton productivity of upwelling regions in the eastern Pacific. These modern patterns might have 

their roots in the Miocene influenced through gateway configurations. The emergence of the 

Indonesian seaway (IS) blocks the westward flow of warm waters to the Indian Ocean and allows 

warm waters to pile up to form the WPWP. More generally speaking the strength of circulation is 

driven be the trade winds and boundary currents along the continents, a slackening of these currents 

would tend to reduce the amount of upwelling waters and result in a deeper thermocline in the EP. 

Thus the questions concerning the Miocene carbonate accumulation in the equatorial Pacific are: Can 
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we find the oceanographic patterns compared to today’s features? How relevant are these surface 

processes in comparison to deep water circulation changes? 

The Eastern Equatorial Pacific 

One of the first studies reporting unusually low carbonate contents during the Late Miocene (i.e. 

between 9.6 and 9.2 Ma) is by Vincent (1981) on the section of DSDP Site 310 on the Hess Rise and 

in the northern central Pacific. ODP Leg 138 recovered excellent cores from the EEP. Changes in 

MARcalc first followed a stepwise decline in various sites of the EEP from 11.2 to 9.5 Ma, with 

pronounced changes in the Guatemala basin (see Fig. 4.3 Site 844) and Peru basin (Fig. 4.3 Site 846) 

east of the EPR. This interval is as well characterized by shifts in dominance of carbonate vs. opal in 

sediments indicating changing surface water ecology as well as deep circulation. At 9.5 Ma MARcalc

dropped to zero reaching the carbonate crash nadir at 9.5 Ma. Evidence from nannofossil preservation 

(Farrell et al., 1995) and MARcalc point to a rapid rise of the local CCD of about 800 m to water depth 

of about 3400-3200 m at 10 Ma (Lyle et al 1995). After this brief dissolution event the carbonate 

accumulation did not recover but the preservation as indicated by nannofossil and foraminifer 

preservation did from 8.9 Ma on (Farrell et al., 1995). West of the EPR in the Central Pacific basin the 

MARcalc also shows minima centered at 9.5 Ma. Here changes are less clear influenced through 

dissolution indicated by better nannofossil preservation and no obvious change to higher 

opal/carbonate ratios like in the Guatemala basin. 

Another characteristic feature of sediments is the occurrence of laminated diatom mat deposits in the 

near equator sites (sites 849-851) of the Central Pacific basin at the beginning and at the end of the CC 

(see Fig. 4.3 as indicated by stars). These sediments probably were formed as rapid fallouts of 

equatorial frontal zones developed during La Niña-like events (Kemp et al., 1995). The compact 

structure of diatom mats furthermore prohibited bioturbation and thus laminae appear well preserved. 

However the diatom abundance was reduced during the crash nadir and radiolaria dominated the opal 

instead. 

Lyle et al. (1995) concluded that the restriction of carbonate saturated deep water flow from the 

Atlantic to the Pacific through the emerging CAS would trigger the dissolution in the EEP. As an 

alternative scenario deep water formation in the North Atlantic would result in basin to basin 

fractionation, and displacement of corrosive SCW towards the Pacific in turn triggering enhanced 

dissolution in the deep EEP. However the comparing of timing of these events did not lead to a 

consistent picture (Farrell et al., 1995) concerning NADW production. 
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Fig. 4.3: The phases 
of the Eastern Pacific 
CC-events can be 
roughly divided into 
three phases. First a 
drop in carbonate 
accumulation at 11.5 
to 10.8 Ma. 
Afterwards opal and 
carbonate 
accumulate in 
alternating phases 
(“swings”) and the 
deep water signal of 
dissolution sets in at 
about 10.3 to 10.Ma. 
For data reference 
see Tab. 4.1.�
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The West equatorial Pacific (Site 806) 

The restriction of the flow of waters through the IS and the CAS is believed to have had a major 

impact on the circulation system and thus the distribution of temperature and nutrients in surface and 

near surface waters in the Pacific. The development of the West Pacific Warm Pool (WPWP), the 

Equatorial Countercurrent system and alternating hydrographic features similar to modern El Niño and 

La Niña patterns are placed within the middle to late Miocene (Kennett et al., 1985; Kemp, 1995; Li et 

al., 2006; Nathan and Leckie, 2009; Jiang et al., 2007). These models stress the productivity 

component in the highly dynamic equatorial system and represent an accomplishment to the models 

solely based on circulation-dissolution explanations. 

Li et al. (2006) place the establishment of the WPWP in the South China Sea at 10 Ma as evidenced 

by increased abundance of mixed layer foraminifera and the decline of deeper living foraminifera i.e. 

the extinction of Globoquadrina dehiscens. Similar results in the equatorial region place the initiation 

of the WPWP at 8 Ma (Kennett et al., 1985). 

Nathan and Leckie (2009) found evidence for the development of a Proto-WPWP at 11.6 to 9.6 Ma 

based on foraminifer faunal analyses and stable isotope gradients of mixed layer and thermocline 

species at Site 806 (2520 m water depth) on the Ontong Java Plateau (see Fig. 4.4).  

Thus the establishment of a modern like circulation pattern influenced by the closure of the IS and the 

arising possibility of piling up warm waters in the west Pacific could have occurred that early. The 

authors state that the equatorial undercurrent would have been strengthened by the evolution of a 

WPWP like today bringing nutrient enriched subsurface waters to the EEP. If the carbonate crash 

events in the EEP were related to the emergence of this circulation pattern one would find El Niño 

condition during a weak WPWP and better stratification in the west pacific surface waters. Due to 

their model the dissolution of carbonates through corrosive deep waters during the carbonate crash 

event was delayed in the early phase (at about 11.5 Ma) through high productivity in a La Niña like 

phase in the EEP, which would explain the offset in CC-events between the Caribbean and Pacific. 

With regard to this hypothesis and a change from La Niña to El Niño conditions at about 10 to 9 Ma 

the question arises if these shifts are imprinted in the productivity along eastern boundary currents in 

other regions of the Eastern Pacific as found during modern El Niño events (e.g. Chavez et al., 2002; 

Takesue et al., 2004). In the following these questions will be addressed to cores from the California 

upwelling and from the SE Pacific. 

The California upwelling (Site 1010) 

The California upwelling system was investigated during Leg 167. Sediments of Site 1010 (offshore) 

and 1021 (coastal upwelling) recorded a major drop in opal contents starting at 11.5 Ma while at the 

same time MARcalc dropped (Lyle et al., 2000). Despite the probable beginning of NADW circulation 

which would have enhanced silica availability in general in the Pacific, certain intervals favoured 
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offshore and others coastal sedimentation of opal. The coastal to offshore opal fractionation was 

enhanced through low temperature gradients among latitudes damping the strength of the California 

current accompanied by a deep nutricline (Cortese et al., 2004). According to this mechanism, the time 

interval from 12-11.5 Ma can be interpreted in terms of increased strength in current intensity 

favouring offshore opal sedimentation, while a slackening of the currents occurred from 11.5 to 10 Ma 

inducing coastal fractionation. This trend is associated with a general decreasing trend in opal 

concentration reaching its minimum at 10 Ma at both sites (shown for Site 1010, see Fig. 4.3). 

Interestingly, here as well laminated diatom rich sediments appear in similar intervals in comparison 

to the EEP (see Fig. 4.3). The preservation of planktonic foraminifera is poor except an interval below 

148 mbsf (approximately 11.5 Ma), where they appear well preserved within diatom rich sediments 

and species composition indicates an upwelling sequence (Lyle et al., 1997). The enhanced 

preservation of foraminifera is probably a result of rapid burial through particle loading. These results 

strengthen the hypothesis of a general decreasing productivity trend as it can be associated with an El 

Niño phase influencing both opal and MARcalc at Site 1010 at the same time when carbonate 

accumulation dropped in the EEP. 

Fig. 4.4: Data after Nathan 
and Leckie (2009) showing 
the Ontong-Java plateau Site 
806. Oxygen stable isotope 
records of deep dwelling 
foraminifera (DTH), a 
foraminifera record from the 
upper thermocline level 
(UTH) and a mixed layer 
record (ML). The 
convergence of DTH and 
UTH representatives is 
interpreted as the first 
occurrence of a stable 
WPWP. The planktonic 
foraminifera preservation is 
preferably good, with lower 
values at about 10.5 to 9.5 
Ma. 
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The intermediate EEP (Site 1241) and the South East Pacific (Site 1237) 

Leg 202 offers two sites to test some hypothesis concerning the influence of deep and surface water 

processes during the CC-events in the EP. Site 1241 is positioned at 2040 m water depth above the 

lysocline on the Coccos Ridge in the EEP and displays the shallowest sedimentary record in 

comparison to the deep sites of Leg 138 (all deeper than 3000m water depth). The calcareous 

microfossil tests show evidence of strong dissolution during the oldest part of recovered sediments 

(the period from 11-10 Ma), when opal and TOC concentrations were relatively high as well as 

MARcalc (see Fig. 4.3). After 10 Ma tests of foraminifera and nannofossil show moderate preservation 

associated with increasing carbonate content but a drop in MARcalc as the site moves away from the 

high productivity equatorial belt. The strong dissolution event ends here at the time when the rapid 

drop in MARcalc occurs in the Guatemala and Peru basin. Here the preservation of foraminifera is not 

supported by the sedimentation of diatom rich layers like in Site 1010. In this shallower site there 

might have been a higher probability of organic matter to arrive the sea floor building a benthic fluff 

layer in which dissolution of foraminifera might be accelerated in comparison to deeper sites (de 

Villiers, 2005). In the deeper sites of the EP therefore the presence of diatoms might simply enhance 

the preservation probability by rapid settling of aggregates and particle clusters, which also in their 

extreme form of diatom mats hinder bioturbation and support rapid burial as positive factors in 

preservation of calcareous shells.  

Thus dissolution at Site 1241 was likely the result of organic matter degradation; however after 10 Ma 

the MARcalc record shows a minimum at about 9.5 Ma contemporaneous with the nadir of EEP CC-

events, suggesting a general low in carbonate productivity followed by an increase afterwards.  

Site 1237 (Naszca Ridge, 3212 m water depth) is bathed by Antarctic-Circumpolar–Deep water and 

was moving more or less along the latitude during the last 10 Ma coming closer to the modern high 

productivity belt of the Peru/Chile upwelling (Mix et al., 2003). The MARcalc record experienced a 

first drop at about 11 Ma and stayed low until it recovers from 10.2 to 9.8 Ma, followed by a second 

slight decrease. The preservation of planktonic foraminifera was preferably good until 10.3 Ma, and 

then a decreasing trend in the WTF together with enrichment of non-calcareous coarse fraction 

components (e.g. sponge spicules, radiolarians, ash) points to intensification of dissolution. Thus 

according to findings at Site 1237 the decreasing MARcalc might be assigned to generally lowered 

productivity until 10.3 Ma. Because during this period decreasing MARcalc are not clearly 

accompanied by decreased carbonate preservation. These findings support the hypothesis of 

productivity decreases in the early phase of the Miocene CC-events and point to intensification of 

deep water corrosiveness increasing at about 10.3 to 10 Ma.  
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Fig. 4.5: Caribbean records show that the preservation is increasing after 9.5 Ma. However, this development is in conflict with already enhanced MAR. 
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4.4.2. The Caribbean 
The Caribbean basin is characterised by influx of carbonate corrosive waters entering the Caribbean as 

a mixture of mainly AAIW and upper NADW (e.g. de Menocal et al., 1992; Haug and Tiedemann, 

1998). The loop current is an important part in the global thermohaline circulation as surface waters 

gain salinity through evaporation, which is believed to have enhanced deep water formation in the 

North Atlantic (e.g. Haug et al., 2001). 

Roth et al. (2000) modified the alternative model of Lyle et al. (1995) calling the influx of corrosive 

SCW responsible for dissolution in the equatorial Pacific. The tectonic situation in the Caribbean 

(emergence of the CAS and opening of intrabasinal seaways like the Pedro Channel) could have 

allowed for a strengthening of the Caribbean Current and establishment of the loop current. Based 

upon the observation of different coccolith assemblages present on either side of the CAS during an 

interval from 10.7 to 9.4 Ma, the Pacific-Atlantic connection might have been weakened (Kameo and 

Sato, 2000). At the same time the establishment of surface water connection among sites 999 and 998 

and the possible initiation of the loop current was postulated based on similar assemblages. 

According to Roth et al. (2000) the changing circulation at the middle to late Miocene transition is 

well recorded in the contrasting carbonate preservation pattern observed in the Caribbean basins, the 

EEP, and the western equatorial Atlantic. Roth et al. (2000) suggested in analogy to the theory of 

glacial/interglacial preservation cycles (Haddad and Droxler, 1996) that North Atlantic Intermediate 

Water (NAIW) flowed over shallow to intermediate depth sills on the Atlantic side of the Caribbean 

Basin during times of enhanced carbonate preservation (i.e. comparably to glacial circulation in the 

Quaternary), while corrosive southern sourced intermediate water (ancient equivalent to AAIW) 

overflowed the sills during intervals of carbonate dissolution (i.e. comparably to interglacial 

circulation in the Quaternary). This would furthermore induce that during times of enhanced NCW 

formation the preservation becomes worse in the Caribbean (corrosive intermediate SCW), better in 

the deep Atlantic (NCW replacing SCW) and also worse in the EEP (displacement of SCW towards 

this region). This configuration was based on the correlation between carbonate MAR minima 

(compare Fig. 5 to 6 for NCW reconstructions) and periods of more intense Northern Component 

Water (NCW) production (Wright and Miller, 1996) and associated with a closed deep water exchange 

between the Atlantic and the Pacific.  

Recent studies by Newkirk and Martin (2009) comparing carbonate mass accumulation rate patterns 

and new evidence from Nd isotopes from fossil fish teeth and debris at Sites 998 and 999 in the 

Caribbean and Sites 846 and 1241 in the eastern equatorial Pacific support the assumption that waters 

sourced from the Pacific dominated flow into the Caribbean during the Miocene Caribbean CC-events. 

A gradual decrease in carbonate MARcalc s and an associated increase in εNd values at Site 999 prior to 

the Caribbean crash (Fig. 4.5) provide evidence for the introduction of a more corrosive Pacific 

intermediate water mass into the Caribbean as the CAS shoaled to critical depths for west to east flow. 
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During the Caribbean carbonate crash (12–9 Ma), highly variable εNd values and MARcalc record 

pulses of corrosive Pacific waters that filled the deep Caribbean. These pulses of Pacific through-flow 

correlate well with NCW production, suggesting that NCW production could occur with an open CAS 

and that flow patterns in the Caribbean region are linked to global circulation patterns. After the 

Caribbean carbonate crash, εNd values gradually shifted to less radiogenic values, indicating a 

reduction in the amount of Pacific water flowing into the Caribbean coincident with the shoaling of the 

Isthmus of Panama. 

The comparison of preservation records (sand fraction) with carbonate accumulation of sites 999 and 

998 suggests that the carbonate preservation is persistently worse, while the MARcalc already 

recovered at 10 Ma. The sand fraction contents of Site 999 and 998 remains low until 9.4 Ma. This 

trend is in accordance with lower values of benthic delta 13C at both sites and εNd trends from Site 998 

indicating phases of dominance of corrosive waters from probably Pacific origin and a trend to better 

preservation afterwards. 

Another interesting pattern is the high abundance of discoaster nannoliths during the carbonate crash 

at sites 998 and 999 (Kameo and Sato, 2000). Originally interpreted as an ecologic signal they could 

also display enrichment because of dissolution (Gibbs et al., 2004). Then they would be another 

preservation proxy pointing to the CC-end at 9.4 Ma. This would have the consequence that the 

establishment of the loop current cannot be inferred from assemblages. The meaning of such high 

abundances as an ecologic signal might point alternatively to an interval of low plankton productivity 

(Chepstow-Lusty et al., 1991; Flores et al., 1995).

The complete closure of the Isthmus might not necessarily be a precondition to enhance carbonate 

preservation in the deep Caribbean basin. The comparison (Preiß-Daimler and Henrich, submitted) of 

the carbonate mass accumulation and preservation patterns of the Caribbean sites and those of the 

western equatorial Atlantic (i.e. Ceará Rise) (Fig. 4.4) reveals that the anti-correlation postulated by 

Roth et al. (2000) for these two contrasting regions is not evident from the records (see Fig. 4.5). 

Instead the records of Site 999 and 926 seem to be in phase, however much worse carbonate 

preservation was prevailing at Site 999 compared to the deeper Site 926 indicating the presence of 

more corrosive bottom waters. The similar phase trends in the preservation records might suggest that 

the NADW formation did not trigger a return flow and influx of corrosive waters but seem to 

weaken/replace/dilute the flux of corrosive waters into the Caribbean. Modelling results showed that 

NCW formation is possible with an open CAS (Nisancioglu, 2003). However, NCW% estimates and 

preservation records from the Caribbean and Ceará Rise differ in this important interval as discussed 

in the next section. A simulation for a restricted exchange through the CAS predicts a drastic shoaling 

of the lysocline in the EEP (Heinze and Crowley, 1997). However, at about the time of final closure (3 

Ma) of the CAS the carbonate compensation depth was deepening in the EEP rather than shoaling 

(Farrell and Prell, 1991) according to sedimentary data. 
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4.4.3. The Atlantic 

The middle to late Miocene Atlantic is characterised by the fade of opal (Cortese et al., 2004) and the 

onset of significant deep water formation in the North as well as initiated upwelling off Southwest 

Africa (Siesser, 1980). 

Krammer et al. (2006) and Kastanja et al. (2006) studying the Miocene records of ODP Sites 1085 and 

1087 on the continental margin off Namibia found severe reductions in carbonate contents and 

carbonate accumulation rates. These were related rather to reduction of coccolith productivity than 

caused by dissolution. Kastanja et al. (2006) showed that a first major drop in CaCO3 concentration 

between 10.4 Ma and 10.1 Ma was related mainly to changes in calcareous nannoplankton production, 

while another drop between 9.6 Ma and 9 Ma is thought to have been triggered by a combination of 

production changes of calcareous nannoplankton and dilution, the latter, presumably occurring in 

response to high shelf supply in this region during global lowering of sea level (Diester-Haass et al. 

2004, Kastanja et al. 2006 -Fig.4.7). Benthic plankton ratios at Site 1085 are increasing from about 9.4 

Ma which is attributed to enhanced dissolution due to supply from the shelf (Diester-Haass et al 2004) 

and possibly aridification with first major dust supply at 9.6 Ma (Roters and Henrich, 2010). 

Miocene South Atlantic sediment on the Walvis Ridge displays short-term dissolution events that were 

closely related to variations in NCW circulation in the deep circulation loop of the South Atlantic 

(Kastanja and Henrich, 2007). Kastanja and Henrich (2007) registered overall good to moderate 

preservation in the Miocene sections evidencing persistent NCW supply to this southern location. 

However some decreases of preservation at, 11.6, and 10.4 Ma were found to coincide with Miocene 

glacial events (Mi-events), suggesting a increase of SCW influence during these intervals, which 

occurred as a response to the intensification of Antarctic ice sheet development. At 10.4 Ma a change 

to overall better preservation points to a weakening of SCW that occurred as a response to the 

strengthening of NCW. 

The western equatorial Atlantic (Ceará Rise, ODP Leg 154) sedimentation patterns are as well 

influenced by increasing preservation and distinct lows in carbonate accumulation occurring at 11.8 to 

11 Ma and 10.4 to 10.1 Ma at Site 926 (King et al., 1997, Preiß-Daimler and Henrich, submitted) 

accompanied by low sand fraction contents (Shackelton and Crowhurst, 1997). The comparison of this 

record with Caribbean Site 999 shows similarity in MARcalc and sand fraction suggesting dissolution 

and/or productivity pattern in phase (Preiß-Daimler and Henrich, 2011, submitted for publication). 

The general trend in preservation based on interpretation of sand fraction contents shows increasing 

preservation from 11.5 Ma on. The preservation minima are associated with Mi events 5 and 6 

suggesting a causal relation to influx of corrosive SCW acting as the dominant deep water source 

during pulsed cooling. The relation to NCW% estimates by Miller and Wright (1996) and Poore et al. 

(2006) shows that the preservation record is roughly in phase until 10.1 Ma when the increasing 

preservation is not reflected in increasing NCW %. The interpretation of carbon isotopes are the basis 
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of NCW % estimates through mixing calculations (Oppo and Fairbanks, 1987). The estimates might 

be confused by the overall low productivity during this time interval (EP, Peterson et al., 1992; Mix et 

al., 2003), which might prevent formation of reliable benthic d13C gradients among ocean basins. 

Furthermore a recent modeling study suggests that the carbon isotope pattern in the Atlantic is not 

related to the variations in sill depth of the Greenland Scotland Ridge, questioning a major tectonic 

influence on circulation patterns (Butzin et al., 2011). 
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Fig. 4.6: The Atlantic shows in general a preservation pattern in accordance with NCW formation, but the decreasing NCW % estimate (centered at about 
9.25 Ma) is not accompanied by a decreasing but increasing preservation in the deep Atlantic. Site 1085 preservation is decreasing at about 9.5 Ma – 
showing a different preservation pattern to the deep Atlantic, but possibly both sites suffered from productivity decreases of calcareous nannoplankton (in 
these phases preservation increases and MAR decreased (Preiß-Daimler and Henrich, submitted). 
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4.4.4. The Indian Ocean 
The modern Indian Ocean can be divided into a northern high productivity region (Arabian Sea and 

the pelagic ocean north of 10°N), which is influenced by the monsoonal gyre system and the lower 

productive region of the subtropical gyre to the south. The Indian Ocean was drilled through early 

ODP Legs 115, 117, 121 and 122 and recovered cores mostly shallower 2500 m water depth with the 

exception of Leg 115 which offers a depth transect. Peterson et al (1992) noted that despite the 

completely different regional settings the carbonate sedimentation and gradients among sites were low 

during most of the Miocene followed by a marked step in the late Miocene accompanied by 

reappearing opal components in the sediment.  

Fig. 4.7: The Indian 
Ocean, represented by 
the Mascarene Plateau 
ODP sites 707, 709 and 
710. The carbonate crash 
interval is characterized 
by very low carbonate 
MAR and low MAR 
gradients among different 
depths. The opal 
reappears in form of 
radiolaria at about 10 
Ma. Coarse fraction 
contents point to better 
preservation from about 
9.4 Ma on. 
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The initiation or intensification of the monsoon in connection to the uplift of the Himalaya and 

Tibetian Plateau as a major cause of pronounced oceanic productivity has been rejected (e.g. Gupta et 

al., 2004) as well as the hypothesis of Tethyan outflow water dominating at intermediate depth during 

the middle to late Miocene (Woodruff et al., 1989; Smart et al., 2007). The overall similarity suggests 

a global pattern assigned to sea level fluctuations and shelf-basin fractionation rather than a regional 

influence like the monsoon (Peterson et al., 1992). The increase in accumulation was named biogenic 

bloom and reported as well in the Pacific and Atlantic with different timing (Dickens and Owen 1999, 

Diester-Haass et al.2004). In the Indian Ocean it was accompanied by reappearing opal components 

and benthic foraminifera indicative of high productivity (Smart et al., 2007; Gupta et al., 2004) in the 

sediment as indicator for high productivity. However, the shift in depth gradients in the Late Miocene 

implies changes in circulation as well (Peterson et al., 1992). Unfortunately winnowing gives a strong 

imprint in shallow sediments (Site 707) causing foraminiferal sand contributions of about 50%. In 

comparison to Site 707 the deeper Site 710 (3812 m) shows about the same MARcalc in accordance 

with aforementioned overall reduced gradients along the depth transect from 12 to 9.4 Ma right above 

the LO datum of D. hamatus. 

The age model of Site 710 bases on magenetostratigraphy which resulted e. g. in a much earlier 

placement of the FO datum of D. hamatus than usual. However the reduced depth gradient might be 

because of redepositional events in the deeper records but is not purely an artefact of the age model 

differences and evident among the other sites as described by Peterson et al. (1992). In the deep sites 

the comparison of sand fraction contents leads to interesting results: At sites 710 and 709 the records 

of coarse fraction suggest a change to better preservation at 9.5 Ma as well as the abundance and 

preservation data on planktonic foraminifera (Vincent and Tourmarkine, 1990). The winnowed coarse 

fraction record of 707 is not shown but despite high coarse fraction contents the preservation of 

Fig. 4.8: With the CC 
the pattern of deep 
preservation changed 
in all ocean basins. The 
CCD rises in the EP 
and deepened probably 
first in the deep 
Atlantic, afterwards in 
the Caribbean and 
Indian Ocean. There is 
no clue to sea level, as 
a first order control on 
CC-events. 
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foraminifera here is changing from moderate to good (Backmann et al., 1988). The reappearance of 

opal in form of radiolaria date back to 9.7 at Site 707 and to 10.3 Ma at Site 709. 

The proportion of the sand fraction might be controlled by other processes besides dissolution. A size 

change in foraminifera became evident from 10 Ma on (Schmidt et al., 2006). This trend in low 

latitudes could have had an effect in the records shown. Winnowing could enhance the coarse fraction 

or dilution by finer grain sizes (nannofossils, terrigenous fraction) could decrease the coarse fraction. 

However the investigation of multiple proxies or the observation of increasing sand fraction along 

with better preservation and higher abundance of planktonic foraminifera might confirm the 

interpretation as dissolution index. 

4.5 Conclusions and outlook 
In conclusion, the middle to late Miocene carbonate crash events mark a period of major perturbations 

in the marine carbonate system, which obviously were associated with several steps in reorganisation 

of global deep and intermediate water circulation affecting various parts of the global ocean basins 

differently in time and space. A review and comparison of the eastern equatorial records seem to 

strengthen the hypothesis of alternating El Niño/La Niña – like states, that influenced both opal and 

carbonate accumulation in the EEP, on the California margin, and off Peru. The emergence of IS 

probably allowed for the development of a temporary WPWP during a La Niña-like state associated 

with the sedimentation of diatom mats. The alternating productivity in opaline and calcareous plankton 

were the main cause rather than dissolution at least in the early phase of the carbonate crash events. 

The deep water corrosiveness in the Pacific was pronounced at 10.5 to 9.4 Ma and losing influence 

afterwards. The shallow water record of Site 1241 in the EEP showed severe supralysoclinal 

dissolution through phases of high productivity. 

 In the deep Atlantic the preservation change can be recognized at 10.5 to 10.1 Ma already. Thus 10.5 

Ma might be the starting point of prolonged basin to basin fractionation through onset of deep 

convection in the North Atlantic.  

Sand fraction contents and preservation of planktonic foraminifera from the deeper Caribbean and the 

Indian Ocean and Pacific show an increase at 9.3 to 9.5 Ma, which we interpret as the first widespread 

signal of better preservation indicating a lysocline turning point possibly related to CCD deepening 

(Fig. 4.8). The Caribbean CC-events end at the same time based on reinterpreted coarse fraction 

contents, �13C signal and Neodymium isotope evidence as well as nannofossil indicators independent 

from the step to higher carbonate accumulation at 10 Ma, which was as well recognized at Ceará Rise. 

The similarity of coarse fraction records and mass accumulation records of Ceará Rise and the 

Caribbean, with however worse preservation in the Caribbean leads to the conclusion that the 

influence of corrosive Pacific sourced waters in the Caribbean was dampened by NCW formation and 
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not enhanced as previously assumed. The shoaling of the CAS might have contributed at 9.4 Ma to the 

Atlantic type preservation pattern in the Caribbean. 

Phases of reduced calcareous nannoplankton productivity were evident at least in the Atlantic 

(Benguela upwelling site 1085) and Pacific and were probably related to reorganizations of the upper 

water column and surface circulation changes. 

While the mass of carbonate in all studies is constituted by coccoliths and other nannoliths, the use of 

the better known foraminifera dominates the scientific output. However, changes in fine fraction stable 

isotopes in the Atlantic, Caribbean and Pacific show drastic decreases from 11.5Ma to 10.5 Ma (Mutti, 

2000; Shackelton and Hall,1995; Shackleton and Hall, 1997) that are still hardly understood and 

interpretations are contrasting. Understanding these patterns and the further development of high 

resolution age models would help to find better insight into the CC-events regarding the timing and 

budget considerations. 
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Abstract 
Mass estimates for extinct Neogene Discoaster nannoflora and Sphenolithus from samples of the 

equatorial Atlantic (Ceará Rise ODP Site 927) ranging from 8.6 to 3.25 Ma are presented in this paper. 

Based on morphometric measurements on 9 Discoaster groups models were established and their 

volumes transferred into mass estimates. Our suggestion for using mass estimates of disoaster 

nannoliths is to use a shape factors similar to application of extant coccolith flora in sediment traps or 

cores. The mass estimates for discoaster carbonate range from 10 to 40 % of the total nannofossil 

carbonate with a decreasing trend in the investigated interval. The general trend in discoaster shape in 

Late Miocene to Pliocene sediments shows a tendency to lower calcification preceding the well known 

Pliocene development prior to final extinction of Discoaster. A comparison of total nannofossil 

carbonate from calculation with size corrected abundance data to grain size measurement reveals 

underestimation by the first method ranging from 10 -20 wt.%.

5.1. Introduction 
Estimates for coccolith masses are established for some species and groups of nannofossils deduced 

from morphometric measurements. The first approaches to infer to the mass were to measure the 

surface multiplied by a value of thickness and density of a coccolith (Honjo,1976; Samtleben and 

Bickert, 1990, Knappertsbusch and Brummer, 1995, Beaufort and Heussner, 1999). Subsequently, a 

more sophisticated volume of rotation approach was applied by Young and Ziveri (2000) for coccolith 

forms with rotational symmetry. These mass estimates were applied to sediment trap data and 

sediment cores to convert count data to carbonate flux estimates. This work intends to fill the gap for 

estimating nannolith carbonate budgets by presenting an approach for discoasters, which contribute 

significantly to pelagic Neogene sediments. Discoaster nannoliths have a dazzling appearance under 

the microscope, however they often remain unstudied because of their uncertain position within 

calcareous nannoplankton. Regarding their abundance, size and worldwide distribution it is reasonable 

to give them a place next to coccoliths as cell cover of marine phytoplankton (Bown, 1976). 

Specimens of Discoaster exist in the sedimentary record since approximately 60 Ma and became 

extinct at the end of the Pliocene (Bukry, 1971). It has been noted that there is a secular trend in 

Discoaster morphology, with progressive evolution from massive skeletal elements to more delicate 

forms, with a parallel reduction in ray number (Bramlette & Riedel, 1954; Bukry, 1971). The 
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discoaster nannoliths are relatively dissolution resistant and therefore used as a dissolution proxy 

(Ramsay et al., 1972; Flores et al., 1995; Gibbs et al., 2004a). The size variations of the early massive 

Discoaster multiradiatus across the Paleocene/Eocene-Thermal maximum had been attributed to 

temperature changes, rather than being a diagenetic artifact (Tremolada et al., 2008). The ecology of 

Discoaster has been traditionally attributed mostly to warm oligotrophic low latitude surface waters 

(Haq & Lohmann, 1976), supported by geochemical evidence (Minoletti et al., 2001). However, some 

variance could not be explained by temperature changes but was probably modified through 

productivity controls or abiotic factors (Chepstow-Lusty et al., 1991, Gibbs et al. 2004b). 

Changing size phenomena are not only documented in morphometric studies but in integrating 

granulometric size measurements with laser, coulter or sedigraph devices, measuring either directly 

size, volume or equivalent spherical diameters according to sinking velocities of sediment grains. A 

shift to bigger coccolith volumes measured with a Coulter counter in the North Atlantic at sediments 

from the beginning of the 20th century, was attributed to a shift in calcification response to rising 

atmospheric CO2 levels rather than assemblage changes or primary productivity variations (Halloran, 

2008). However, integrating methods cannot discriminate between species directly. This work presents 

3D models based on morphometric measurements on SEM images from sediments of western 

equatorial Atlantic ODP Site 927. The Ceará Rise record offers a well dated continuous sedimentary 

succession to test our results in a time slice from 8.6 to 3.25 Ma. This interval includes significant size 

changes in coccoliths as the low latitude Reticulofenestra-event and variations in C. leptoporus as well 

as the more general major Pliocene coccolith turnover (Aubry, 2007), which is regarded as a precursor 

of the subsequent Pleistocene morphologic strategy in nannofossil lineages favoring small sizes e.g. 

leading to the successive disappearance of Discoasters at the end of the Pliocene (e.g. Chapman & 

Chepstow-Lusty, 1997). 

5.2. Location  
The Ceará Rise (CR) is an aseismic ridge located 700 km to the north-east of the mouth of the 

Amazon River, below the oligotrophic subtropical West Atlantic gyre (Fig. 5.1). Its sediments are 

composed of terrigenous clay supplied by fluvial discharge and carbonates from nannofossils and 

foraminifers. ODP Site 927 sediments are composed of 70 to 80 % Carbonate, from which 60 to 90 % 

is constituted of coccoliths and other nannoliths. Site 927 is located at water depth of 3300m well 

above the lysocline. 

5.3. Methods and Material 
13 samples from ODP Site 927 were taken in an interval from 8.60 to 3.25 Ma. Bulk sediments were 

split into one portion for carbonate measurements and scanning electron microscope (SEM) sample 

preparation and the other portion was wet-sieved at 63µm. Bulk samples were analyzed for total 
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Carbon (TC), and after removal of carbonate for total organic Carbon (TOC) using a LECO infrared 

combustion analyzer. Carbonate contents were calculated after:  

(Eq. 5.1) CaCO3 [wt.%] = (TC [wt.%] - TOC [wt.%]) * 8,33 

For SEM samples approximately 70mg of bulk sediments were disaggregated in Ammonia buffered 

water and treated for 3 seconds in an ultrasonic bath. Samples were splitted using a wet splitter and 

final splits were filtered on 

polycarbonate membranes (for 

method details see Andruleit, 1996). 

Filters were dried and cut to an area of 

ca 0.5cm2 and affixed to SEM stubs, 

and given a gold palladium coating 

prior to analysis.  

Additionally, on six samples grain 

size measurements on the silt fraction 

(2-63µm) were conducted using a 

Sedigraph 5100 (sample procedure 

according to Frenz et al., 2005) after 

removal of clay (<2µm) through 

repeated settling (up to 30 times) in 

Atterberg tubes. The Sedigraph 

assigns settling diameters (Equivalent 

spherical diameter - ESD) to the 

grains and overrates small particles, especially where they are formed platy in comparison to other 

methods (e.g. Laser particle sizer). This means that the ESD is smaller than the measured diameter 

from SEM images. It has been shown from accurately performed settling procedures removing the 

clay at 2µm ESD that the remaining calcareous placoliths show minimum diameters of about 4-5µm 

on SEM images.  

Morphometry data were taken from a mixture of all 13 Ceará Rise (in the Results Chapter delineated 

as ‘CRmix’) bulk samples with the preparation technique described above. Images were taken at 

magnification of 1000 – 5000 times. For the morphometric measurements, the modeling and the 

calculation of 3D-geometric parameters a suite of open source software was applied: 

For Image analysis and morphometric measurements ImageJ (http://rsbweb.nih.gov/ij/) was used. 3D 

modeling and editing was carried out with Blender (www.blender.org/) and for model simplification 

and geometric calculations Meshlab was used (http://meshlab.sourceforge.net/). 

Fig. 5.1: Location of the study area, ODP Site 927 
in the Western Equatorial Atlantic at the 
southwestern edge of the South Atlantic subtropical 
gyre system.�
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5.4. Results 

The goal of the modeling is to relate a linear dimension (e.g. ray length-r1) which can be easily 

obtained from microscopic analysis to a volume, which can then be transferred to mass. The volume 

(V) will be represented by the cube of this measure and a shape factor ks: 

(Eq. 5.2) V=ks*r1
3

This approach of calculating size-independent shape factors (ks) for different species has previously 

been used for determination of coccolith mass with rotational symmetry (Young and Ziveri, 1990). 

The work path from SEM images to mass estimates of the models was carried out in two steps: 

1. Morphometric measurements on SEM images using ImageJ and basic grouping of Discoasters. 

Establishing statistic relationships between ray length and surface area within groups. 

2. 3 D modeling on established groups based on morphometric data with the open source software 

Blender and subsequent volume calculation using Meshlab geometric filters.  

5.4.1 Groups and Morphometry of discoasters from SEM images 
Using the SEM for species recognition introduces some differences to the procedure at the light 

microscope. With the SEM it is possible to investigate the ultra structure and to draw exact outlines of 

specimens, but it is not possible to observe both sides of the same specimen, which is possible with 

variable focusing at the light microscope. However, the following species offered enough features 

making a taxonomic assignment possible from either distal or proximal views. However, the 

occurrence of morphological groups despite close relation to species concepts do not contain strict 

stratigraphic information. 

The most abundant recognized Discoaster taxa within the studied interval were divided into 9 

categories, including 5 polyspecific groups and 4 monospecific groups as follows: 

Polyspecific groups: 

 1. Discoaster-variabilis-group: Six rayed D. variabilis, D.  challengeri, D. loeblichi and 

more massive forms like D deflandrei. Bifurcation of ray tips are always evident and distal and 

proximal bosses are common but weak and large bosses typical for D. bolli or D. petaliformis were 

very rarely observed. Some specimens of this group are similar to D.surculus, however these contain 

solely bifurcations while D. surculus shows three ray tip extensions. 

2. Discoaster-bellus-group: Five rayed discoasters with straight shaped rays and almost 

undifferentiated central area. 

 3. Discoaster-brouweri-group: Six rayed discoasters with plane central area and deflected rays 

and a distal knob. D. brouweri, D. braruudi, D altus  

4. Discoaster-pentaradiatus-group: Five rayed D. prepentaradiatus intergrading with  

More delicate D. pentaradiatus showing V-shaped bifurcations. 
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 6. Discoaster-quinqueramus-group: Five rayed Discoaster quinqueramus

 almost monospecific due to absence D. bergenii and D. berggrenii in CR-Mix. 

Monospecific groups: 

 4. Discoaster-surculus-group

 5. Discoaster-hamatus-group

 8. Discoaster-calcaris-group 

 9. Discoaster-exilis-group 

Additionally models of D. bergenii and D. bergrenni were constructed changing the ray length of D. 

quinqueramus to 0.8 and 1.5 times the central area radius, respectively. Also a model for Sphenolithus

was created. Some Discoaster specimens occasionally observed were 3-5rayed or asymmetric variants 

of D. brouweri, D. pentaradiatus, D variabilis and D. calcaris. These are not explicitly included in the 

groups but might be estimated from them. 

After sorting morphological groups, image analysis was carried out on size calibrated SEM images. 

The following parameters (see Fig. 5.2) were measured on each ray: Ray length (r1), area (A), central 

area width (r3), half ray width (d1) and if present also 

the base of the ray tip extension (r2) (D. hamatus

group, D. surculus group, D. variabilis group, D. 

calcaris group, D. pentaradiatus group). The base of 

the ray tip extension was defined differently for D. 

hamatus and D. calcaris (see Fig. 5.2 B) compared to 

the other groups (see Fig. 5.2 A). The ray thickness 

(d2) could be determined in some rare cross-sectional 

debris of single rays or in upright positioned 

specimens; the thickness was then measured at half of 

the ray length. Area calculations required thresholded 

images delineating the borders of the particle outline. 

Some low contrast images of the SEM prevent an 

automatic confining of outlines, thus this has been 

done by redrawing outlines.  

5.4.2. Obtaining statistic relationships from distal and proximal views of specimens 
We theorized that the area (A) as two dimensional parameter would represent the closest relationship 

to the volume, thus the area was fitted to all other linear parameters with linear regression (see Fig. 

5.2) (except thickness –d2- see section 5.3) assuming that the underlying relationship generally is: 

(Eq.3) A=ka*(parameter)2, with ka being a constant shape factor for each parameter. 

Fig. 5.2: A) Parameters measured on 
each ray in plane view and 
crossectional view: r1-ray length, A-
area, r2_ ray tip base, r3-central area 
radius, d1-half ray width, d2-half ray 
thickness. B) Definition of the ray tip 
base in specimen of D. hamatus and D. 
calcaris. 
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If the shape is scale invariant then the value of the exponent will be 2. The factor ka is a first hint to the 

degree of calcification. Increasing ka points to heavy calcification independent from size. However, 

getting size data might reduce errors in mass estimates especially for the highly calcified forms like 

discoaster nannoliths (see discussion). The ablated k-values and coefficients of determination are 

reported in Tab. 5.1. 

Group n r1-A d1-A r2-A r3-A 

  k r2 k r2 k r2 k r2

D. bellus 51 0.19 0.93 3.27 0.25   3.16 0.70 

D. brouweri 54 0.14 0.71 4.76 0.10   1.62 0.44 

D. calcaris 48 0.11 0.57 7.33 -1.51 0.15 -0.36 2.83 0.29 

D. exilis 32 0.13 0.79 8.60 -0.07 0.27 0.57 2.61 0.57 

D. hamatus 58 0.13 0.73 5.56 0.39 0.19 0.72 4.54 0.71 

D. pentaradiatus 55 0.11 0.68 7.29 -1.09 0.19 -0.45 3.26 0.75 

D. quinqueramus 47 0.13 0.62 7.71 0.20   2.28 0.66 

D. surculus 50 0.18 0.68 5.79 -0.54 0.41 -0.17 2.27 0.28 

D. variabilis 44 0.26 0.80 5.06 0.08 0.56 0.44 2.84 0.14 

Tab. 5.1: Statistic relations in discoaster specimens of 'CR-mix' sample 

5.4.3. Cross sectional views and thickness of specimens 

Having established the fit relation between the surface and 

surface parallel measures, the third dimension was added to 

the model. Unfortunately, it is not possible to measure the 

thickness, the area and the other parameters on the same 

specimen from SEM pictures. Thus we had to find broken 

rays or upright oriented Discoaster for cross-sectional views. 

These pictures gave thickness (d2) and ray length (r1) for 

which the underlying relationship is supposed to be:  

(Eq. 4) r1=d2*c (with c being a constant between 0 and 1).  

Estimates for this relationship are based on low numbers of measurements as reported in Tab. 5.2. 

Group n r1-d2 

  c 

D. bellus 9 0.266 

D. brouweri 11 0.199 

D. calcaris 4 0.149 

D. exilis 7 0.161 

D. hamatus 6 0.182 

D. pentaradiatus 12 0.104 

D. quinqueramus 6 0.168 

D. surculus 14 0.257 

D. variabilis 30 0.235 

Tab. 5.1: relation of thickness and 

ray length 
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5.4.4 From morphometric measures to model 

For merging the knowledge of morphometry to a 3-D model we choose the area for the model as being 

the mean of the surfaces measured. From this mean area subsequently all other parameters (r1, r2, r3, 

d1, d2) were calculated for the model measures according to fit statistics reported in tables 1 and 2. 

Models were edited as polygonal objects in Blender (see Plate 1). The model volumes were calculated 

with Meshlab using the inbuilt algorithm based on finite element method. The length of one branch 

was than related to Volume, thus it is represented by the cube of the length (r1) and a factor similar to 

that of Young and Ziveri (2000), which we now report as shape factors ks:   

 (Eq. 5.5) Vmodel=r13*ks. 

5.4.5. Assemblage counts and estimation of Ceará Rise Site 927 nannofossil mass distribution  

In the following we applied our ks estimates and ks values from the literature (Beaufort & Heussner, 

1999; Young and Ziveri, 2000 see Tab. 5.3) for carbonate budgeting purpose to assemblage counts on 

13 samples of Ceará Rise Site 927. In order to avoid errors, size corrections were introduced. During 

assemblage counting size assignments were already made for Reticulofenestra (see Tab. 5.3) and 

Calcidiscus leptoporus for further size correction about 30 specimens were measured (nannolith size, 

that is placolith diameter, spine length or discoaster ray length). This mean size is calculated as mean 

volume following the suggestion of Young and Ziveri (2000), in order to avoid underestimation due to 

deviations from normally distributed sizes.  

The bulk number of specimens throughout the record is dominated by the smallest specimens like 

Reticulofenestra spp., Floriphaera profunda and Umbilicosphaera spp., however, some parts of the 

record, especially the older half contains up to 15 % discoaster nannoliths (see Fig. 5.3 A). The 

nannofossil content comprises about 10-30% of the total sediment and can preferably be regarded as a 

minimum content (see discussion). The mass is dominated by discoaster nannoliths contribution that 

sums up to 11-42 wt. % of the total nannofossil carbonate and accounts for 2-11 wt% of the total 

sediment. Discoaster nannoliths show a decreasing trend over the interval in both abundance and mass. 

Together with Discoaster, Reticulofenestra, Helicosphaera and Calcidiscus form already 70-80% of 

the total nannofossil carbonate. Most mass within Discoaster carbonate is contributed by the D. 

variabilis-group, D.brouweri-group, D. quinqueramus-group, D. pentaradiatus and D-surculus –group.  
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Species ks mass this study Mean mass (ks Source of ks

  range (pg) mean (pg)  

D. pentaradiatus 0.04 15-221 63.3 - this study 
D. exilis 0.05 7-21 16.5 - this study 
D. calcaris 0.08 34-155 80.7 - this study 
D. quinqueramus 0.09 4-363 44 - this study 
D. hamatus 0.1 23-48 35.2 - this study 
D. brouweri 0.13 7-343 58 - this study 
D. surculus 0.16 55-562 219.5 - this study 
D. bellus 0.18 57-178 116.5 - this study 
D. variabilis 0.22 20-548 113.1 - this study 
D. berggrenii 0.24 32-94 55 - this study 
D. bergenii 0.54 18-46 33.4 - this study 
Sphenolithus sp. 0.05 2-28 10.6 - this study 
C. leptoporus big 0.08 104-289 146 164.2 Beaufort & Heussner (1999) 
C. leptoporus med 0.08 25-115 52 74.1 Young and Ziveri (2000) 
C. leptoporus small 0.09 7-20 10 22.6 Beaufort & Heussner (1999)
C. pelagicus 0.06 86-210 67 99.5 Young and Ziveri (2000) 
Gephyrocapsa. sp. (small) 0.05 0.2-5 1.1  estimate – this study 
R. minuta (open <3µm) 0.05 0.4-4 2.1 - estimate – this study
R. minutula/haquii (open 0.05 4-17 7.4 - estimate – this study 
R. productella (closed 0.05 - 8.64 - estimate – this study 
R. perplexa (closed 0.06 - 20.3 - estimate – this study 
R. pseudoumbilicus (open 0.06 20-65 32.62 - estimate – this study 
F. profunda 0.03 0.3-6 1.82 1.3 Young and Ziveri (2000) 
H. carteri 0.06 83-353 190.7 135.0 Average Y&Z (2000) and 

    B & H (1999) 
Helicosphaera spp. 0.06 40-131 96.8  like H. carteri 
P. lacunosa 0.04 1.8-13 4.8  estimate – this study 
Pontosphaera spp. 0.05 133-168 150.1 65.9 P. discopora B & H (1999) 
Syracosphaera spp. 0.03 16-196 96 13.5 Young and Ziveri (2000) 
Rhabdosphaera spp. 0.025 5-87 47 67.5 Young and Ziveri (2000) 
Oolithotus spp. 0.0 8-88 28.1 96.8 Young and Ziveri (2000) 
U. jafari (sibogae) 0.0 2-9 4.5 18.6 Young and Ziveri (2000) 
U. rotula (foliosa) 0.0 9-62 19.9 35.0 Young and Ziveri (2000) 

     
     
     

Tab. 5.4: ks estimates and sources used in this study, mass ranges and means. 
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Fig. 5.3: Nannofossil assemblage data of Site 927 from 8.6 to 3.25 Ma. A) Cumulative counts on 
nannofossil B) Cumulative mass of the assemblage C) Cumulative discoaster mass and mean ks of 
Discoaster (dashed line) see explanation in discussion 5.1.�
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5.5. Discussion 
In the first part the results of the application of ks-values to Ceará Rise Site 927 sediments and possible 

implications will be discussed. Followed by considerations, regarding errors in the group concept, 

described exemplarily for Discoaster-pentaradiatus-group and possible errors in the basic data of the 

modeling approach. Afterwards the nannofossil carbonate budget will be evaluated with respect to 

grain size based budget estimates. However, it might be stressed here, that the main uncertainty in 

mass estimates is up to the choice of size. 

5.5.1 Ecologic implications and the significance of Discoaster carbonate contribution in low 

latitudes of the late Miocene to Pliocene 

The time interval chosen for the application of new shape factors is part of the subtle cooling period, 

accompanying the beginning of early bipolar glaciation and situated right before the successive 

disappearance of discoaster (at about 3-2Ma), which is recorded in well known stratigraphic events 

and decreasing ray numbers, which means decreasing degree of calcification in discoaster nannoliths. 

Due to carbonate budget results, discoaster contribute significant amounts of nannofossil carbonate in 

the order of 10-40 %, which can be related to relative abundance counts as low as 2-15%. The low 

resolution of the data prevents explicit interpretation, however, some general statements and 

considerations can be made. Abundance and mass estimates show a long term decrease. A change in 

shape is accompanying this trend with respect to a mean ks-discoaster, which was calculated according to 

the proportion of morphological groups:   

(Eq 5.6) mean ks-discoaster= �ksgroup*proportiongroup.  

The trend (Fig. 5.3 C) is caused by the progressive dominance of more slender nannoliths, recorded as 

increasing abundance of D. pentaradiatus and D. brouweri at the expense of D. varabilis and D. 

surculus. A study of the late Miocene incipient Benguela upwelling (ODP Site 1085) shows, that 

contributions of discoaster and sphenoltihus are half that of Ceará Rise during peaks of occurrence 

(Krammer et al., 2005). Despite low numbers the contribution to the carbonate might be estimated 

with 5-20 percent and rises preferably during times of low total nannofossil carbonate accumulation at 

that site supporting the argument of productivity controls similar to Site 662 off North Africa 

(Chepstow-Lusty et al., 1991). Nannofossil abundance data from Pliocene sediments of the equatorial 

Pacific (ODP sites 852 and 849) shows similar fluxes of discoaster in the upwelling and convergence 

zone, but higher relative contributions in the more oligotrophic site suggesting as well control by 

dilution rather than nutrient availability (Flores et al., 1995). Furthermore the discoaster abundance 

pattern show a direct imprint of orbital cyclicity in the deeper Site 926 between 4 to 3.5 Ma besides F. 

profunda and Sphenolithus sp. (Gibbs et al., 2004b), while other contributors lack obvious response to 

fluctuations of orbital parameters (Gibbs et al., 2004b). This might emphasize the suitability of extinct 
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Fig. 5.4:Abundance data of Discoaster spp. from other low latitude locations. From left to right: ODP 
Site 846 in the EEP (Data from Kameo and Sato 2000, Nannofossil datums according to Raffi and 
Flores, 1995) and ODP Site 999 in the Caribbean (Data from Kameo and Sato, Nannofossil datums 
according to Kameo and Bralower, 2000). ODP Site 806 in the WEP (Data and position of 
Nannofossil datums from Takayama, 1992). Note the similar timing of strong reductions in the 
Discoaster abundance record associated with the B. paracme of R. pseudoumbilicus. 

nannofossils as paleoenvironmental indicators, reacting to abiotic forcing with pronounced sensibility 

throughout a phase of subtle changes. 

A comparison of abundance data from low latitudes shows the fade of discoaster nannoliths in the 

Caribbean, the Eastern Equatorial Pacifc (EEP) and Western Equatorial Pacific (WEP) at about the 

same time as in the record of Ceará Rise associated with the paracme interval of R. pseudoumbilicus in 

the late Miocene ( beginning at 8.85 Ma – see Fig. 5.4). A similar pattern is shown by low resolution 

data of Rio et al. (1990) from ODP Site 707 in the Indian Ocean. The abundance of discoasters is 

decreasing here from about 40% in the late Miocene to 20 % and lower at about the time of first 

occurrence of D. berggrenii, indicating the top of nannofossil zone CN8 in the early Pliocene. 

Following the argumentation that dissolution is a minor factor in the data and that productivity control 

through species, that are able to thrive, suppress the abundance of discoaster nannoliths, the late 

Miocene to early Pliocene might represent a “threshold interval” in success of ecolologic strategies in 

the low latitude plankton community as assumed earlier (Aubry, 2007). The interval immediately 

following the decrease in abundance of discoaster is known as the “biogenic bloom” and found in the 

low latitudes of the Indian and Pacific Ocean and was associated with high levels of carbonate mass 
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accumulation rates and reorganization of nutrient cycling (Dickens & Owen, 1999). However, there 

has been evidence that carbonate productivity rises as well far away from typical upwelling regions in 

the Atlantic, and this was attributed mainly to increasing fluxes of nannofossil carbonate (Diester-

Haass et al., 2005). Regarding the timing of changes the reorganization of calcareous plankton 

communities might have been a prerequisite for the biogenic bloom. This speculation, however, needs 

further confirmation. 

The importance of discoaster nannoliths for Neogene carbonate budgets in low to mid latitudes cannot 

be dismissed. The sudden abundance reduction of this dissolution resistant form is worth further 

investigation. It might even draw severe consequences for Carbonate compensation depth 

reconstructions in the view of dissolution kinetics. 

5.5.2 Error sources in mass estimates 

Group concept and possible errors in model setup 

The hypothesis behind volume and mass estimates is, that the form is scale invariant. However, our 

mixed sample includes about 6 million years of Discoaster evolution, that certainly underwent 

changes in genotypes and phenotypic expression and  morphometric groups contain more than one 

species. Thus some of the observed data variance 

can probably be assigned to the group concept, 

allowing for some differences in the morphology. 

An example for this is given by the D. 

pentaradiatus group, containing specimens of D. 

prepentaradiatus, which are a more robust 

precursor of the occasionally delicate shape of D. 

pentaradiatus (see Plate 1 – right side of first row). 

Here our ks estimate does underrate the smaller but 

more massive shape of D. prepentaradiatus and 

overrate D. pentaradiatus values (see Fig. 5). The 

interspecific allometry (change in size relations 

between the two closely related pentaradiate forms) 

can lead here for example to a 38 % 

underestimation of D. prepentaradiatus and a 19 % 

overestimation of D. pentaradiatus. In the given 

example the underestimation and overestimation 

balance each other resulting in a very small absolute error. Some parts of the variance in the other data 

might be explained by similar less obvious changes regarding allometric tendencies.  

Fig. 5: The assignment of one shape factor to 
specimens of the delicate D. pentaradiatus 
and compact D. prepentaradiatus. results in 
over- and underestimation, respectively.�
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Evolutionary trends in the pentaradiate lineages of D. berggrenii and D. quinqueramus were 

investigated at Site 926 throughout the Late Miocene (Raffi et al., 1998), leaving the question, whether 

D bellus or D. berggrenii is the ancestor of D. quinqueramus. Anyway, here as well morphology 

follows the same concept as in D. prepentaradiatus-D. pentaradiatus and showed the transition 

between a heavily calcified form towards less calcification. Following these observations, the 

consequence in application of shape factors is, that a fixed shape factor leads to overestimations of 

discoaster masses towards the younger ages. However, again this will hardly exceed the importance of 

size for mass estimates. 

Other errors can be induced by minor diagenetic 

overgrowth, slight dissolution or slight tilting of 

specimens with respect to the observation plane as well 

as undetected breakage of parts. Following the latter 

more delicate forms (lower ks) could be more 

influenced by this form of error. This might be 

assumed with suspicion by the fact, that the r2 follows a 

loose positive correlation with ks values (see Tab. 5.1). 

It has been shown in an experimental setup, that during diagenesis D. brouweri first showed etching of 

the central area and slight thickening of rays leading further to carbonate overgrowth preceding from 

the inner to the outer (Adelseck et al., 1973). This was observed as well for all the other discoaster 

morphologies, and in measurements of discoaster in ‘CR mix’ for model setup, we avoided obvious 

secondary overgrowth. An example of diagenitic overprint in accordance with these observations 

shows beginning overgrowth (Fig. 5.6 A) and (Fig. 5.6 B) and at a late stage crystal faces with 

constant interfacial angles, covering specimens of D. 

variabilis. 

Underestimation in mass estimates – a comparison to 

nannofossil carbonate estimate from granulometry 

If we assume, that the splitting of the samples was accurate, 

we should have distributed a certain mass of the sample on 

the filter that represents the bulk sample. However, one 

foraminiferal test can even exceed the weight of the fraction 

used for investigations, thus the sand fraction will not be 

represented by the sample. If we further on assume, that the 

fine fraction smaller 63µm is distributed evenly on the filter 

we will find juvenile foraminfera and fragments from the silt 

fraction in the samples. In order to estimate this foraminiferal 

carbonate we applied bulk silt measurements on six samples, 

Fig. 5.6: A) Beginning 
diagenetic over- 
growth on specimen of 
D. variabilis. B) Late 
stage of over-growth 
on D.variabilis with 
complete calcitic 
veneer (sample ‘CR-
mix’). 

�

Fig. 5.7: Sedigraph 
measurements on silt 
distributions of six samples, 
showing characteristic polymodal 
distributions, which can roughly 
be divided into nannofossil and 
foraminifera and fragments at 
about 8µm.
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using a Sedigraph 5100 (sample procedure as described in Frenz et al. 2005 – see Fig. 5.5). It has been 

shown from grain size measurements, that the calcareous silt fraction of open ocean pelagic sediments 

often shows an almost bimodal distribution, from which the coarser part is constituted of foraminifera 

and their fragments, divided by a minimum from coccoliths and other nannoliths from the fine silt and 

clay fraction. This minimum ranges depending on the technique and sample features from about 8 to 

10 µm (see Fig. 5.7). 

According to own results (Preiß-Daimler & Henrich, submitted) and Frenz et al. (2006) the terrigenous 

fraction (owing to the lack of opal) in the Miocene and Pliocene samples of Site 927 can almost 

exclusively be assigned to the fine silt and clay fraction with low proportions of terrigenous silt  

0.8-2% in the Pliocene coarse silt and a tendency to lower values in the  

Miocene. For simplicity we therefore allocate the terrigenous fraction to the fine silt <8µm (equivalent 

spherical diameter-ESD) and clay fraction <2µm (ESD). According to this, the nannofossil carbonate 

(NC) fraction <63µm is  

(Eq. 5.7) NC (wt.%)=(fine fraction < 63µm (g) – coarse silt (g) – terrigenous fraction (g))/(fine 

fraction (g))*100 

The results (see Tab. 5.4) suggest a constantly higher proportion of NC due to grain size 

measurements than the carbonate mass estimates from assemblage counts. The difference between 

results is even bigger for the older samples. The most obvious explanation for the constantly lower 

values is given by the occurrence of aggregates and broken nannofossils on the filters, which cannot 

be totally avoided and are not part of the budget estimate. Another suggestion is that the fraction on 

the filters could be represented by a smaller size fraction than <63µm which would raise the 

terrigenous proportion relatively. However, it has been shown from sediment trap data that flux 

estimates results in underestimations compared to the fraction <32µm CaCO3 wt.% as well (Boerse et 

al., 2000). A cause for the rising difference in NC estimates with age might be due to underestimation 

Sample NC - SEM method NC -<63µm Sedigraph 

No. 927- (wt.%) (wt.%) 

C  15-2   125.5 cm 14.7 24.0 
A  19-5   29 cm 18.3 31.0 
B  21-3   32 cm 15.0 33.2 
B  22-5   12 cm 21.5 32.8 
B  23-5   26 cm 22.5 44.3 
C  23-5   93.5 cm 17.5 36.6 

Tab. 5.4 Comparison of nannofossil carbonate content (NC) by two methods. 
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of discoaster carbonate, because of conventional counting technique (see e.g. Okada (1992) for 

recommendation of countings in different size classes) or aforementioned error sources. 

5. 6. Conclusions 

1. Shape factors of discoaster models range from 0.04 up to 0.54. 

2. The size corrected estimate of carbonate mass from discoaster nannoliths comprises about 10 to 

40 wt.% of the total calculated nannofossil carbonate and is the most important group in terms of 

mass followed by the carbonate contribution of the most abundant genus Reticulofenestra. 

3. The abundances and mass estimates of discoaster contribution follow a decreasing trend from 8.6 

to 3.25 Ma, associated with a general trend to more slender forms, dominating the discoaster 

assemblage. The trend in decreasing abundance of discoaster nannoliths was as well observed in 

low latitudes of the Caribbean, Indian and Pacific Ocean, and is associated with the small 

Reticulofenestra interval. 

4. Compared to nannofossil content estimates from granulometric measurements (sedigraph) the 

nannofossil content calculated with shape factors is constantly lower and might be referred to as a 

minimum content. 
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Appendix: 

Taxonomic list:  

Following the decriptions of Perch-Nielsen (1985) and References theirin 

Discoaster bellus (Bukry and Percival, 1971) 

Discoaster bergenii (Knuttel, Russell and Firth, 1989) 

Discoaster berggrenii (Bukry, 1971)  

Discoaster brouweri (Tan, 1927)  

Discoaster braarudii (Bukry, 1971)
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Discoaster bollii (Martini and Bramlette, 1963) 

Discoaster calcaris (Gartner, 1967)

Discoaster challengeri (Bramlette and Riedel, 1954) 

Discoaster deflandrei (Bramlette and Riedel, 1954) 

Discoaster hamatus (Martini and Bramlette, 1963) 

Discoaster loeblichii (Bramlette and Riedel, 1954) 

Discoaster pentaradiatus (Tan, 1927)  

Discoaster petaliformis (Moshkovitz and Ehrlich, 1980) 

Discoaster prepentaradiatus (Bukry and Percival, 1971)  

Discoaster quinqueramus (Gartner, 1969) 

Discoaster surculus (Martini and Bramlette, 1963) 

Discoaster variabilis (Martini and Bramlette, 1963)
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The Ceará Rise depth transect offered insight into the late Miocene dissolution state of the western 

equatorial Atlantic, which is quite different from today’s. The rather sharp boundary of NADW and 

AABW today, which accounts for the sharp dissolution gradients in the mixing zone, is not evident in 

Miocene records. Here a broad zone of dissolution is governing the depth transect above the carbonate 

compensation depth (CCD) at about 4000 m water depth. However the preservation proxy records 

indicate decreasing influence of carbonate dissolution over the interval, which has been attributed to 

initiating deep water formation in the North Atlantic. The use of calcareous silt as a preservation proxy 

might be most useful in application to modern surface sediments avoiding evolutionary trends in 

plankton size, diagenetic overprints and productivity changes that could influence the calcareous silt 

size distributions of a time interval.  

Future research might give hints to dissolution intensities and the amount of carbonate dissolved. 

Especially the transition from lysoclinal (weak) dissolution to heavy dissolution close to the CCD 

could be investigated by comparing and combining dissolution proxies of varying sensitivity, e.g. 

nannofossil based dissolution indices at heavier dissolution stages and foraminifer based proxies for 

less severe carbonate dissolution. Carbonate budget calculations at a depth transect with detailed mass 

loss calculations could than complement the dissolution indices and relate them to a certain amount 

carbonate dissolved. Therefore excellent age models have to available. 

The overall lowered carbonate accumulation in the period from 12-9 Ma surely has multiple causes, 

but all investigated sediments below 3000m water depth show signs of dissolution. 

Atlantic and Caribbean preservation records were in phase, rather than showing antithetic patterns. 

Due to our model the Caribbean sediments were likely dissolved by a Pacific sourced water mass 

entering the Caribbean. The comparison of NCW% estimates with the preservation record suggests 

furthermore better preservation during NCW formation, thus it can be assumed that the waters 

entering the Caribbean were diluted through NCW. 

However, the comparison of low latitude preservation proxies leads to the conclusion that in the 

Pacific, the Caribbean and the Indian Ocean basins the preservation is increasing simultaneously since 

about 9.5 Ma. The preservation proxies and the mass accumulation rates of carbonate are clearly out of 

phase in the Caribbean and partly in the Atlantic suggesting that productivity changes are controlling 

accumulation rates. However productivity decreases are hard to trace but might be responsible for the 

discrepancies among the NCW% reconstructions and dissolution proxies, by weakening �13C 

gradients. Future research should address these discrepancies. 

During the CC-events mainly coccoliths and other nannoliths constitute the carbonate sediments. 

Especially discoaster nannoltihs form an important part. Thus these nannoliths are the only surface 

water representatives in sediments barren of foraminifera. As also pointed out in this thesis the 

discoaster are a dissolution index but also an indicator of low productivity conditions. Their 
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contribution seem to be dominating during the CC Crash events in the Caribbean, but is decreasing in 

the late Miocene simultaneously in the Indian, Caribbean and Pacific Ocean. Their ecologic 

preferences and geochemical fingerprints shall be understood better in the future in order to gain 

understanding of surface water processes. As fine fraction stable isotope signals during CC-events 

showed drastic decreases in low latitude sites (Mutti, 2000; Shackelton and Hall,1995; Shackleton and 

Hall, 1997). The key to the interpretation might be given by combined analyses of foraminifera and 

coccolith/nannolith assemblages as well as a carbonate budget of these contributors in combination 

with stable isotope measurements. These data sets would allow to track changes in ecologic 

developments in surface waters (surface water stratification) and to unmix the combined geochemical 

signals (fine fraction stable isotopes). 

Own data from foraminifera assemblage counts points to a drastic change in faunal assemblage at Site 

926 from a mixed layer species domination to a thermocline species dominated assemblage (Preiß-

Daimler et al., unpublished data, according to the concept of Chaisson and Ravelo (1997) expanded 

into the Miocene) which might point to profound surface water stratification changes. 

A central issue in the perspective of future research will be the development and prosecution of an 

orbitally tuned time scales in the Cenozoic. This is the foundation of all comparisons, correlations and 

estimations of mass accumulations. These efforts are invaluable and shall be applied to the ODP and 

DSDP cores in order to use an archive already established. 

In conclusion the application of carbonate budget calculations along with dissolution and productivity 

proxies is indispensable in the interpretation of dissolution phases like the CC-events.
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