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Abstract

We study stability properties of interconnected hybrid systems with application to

large-scale logistics networks.

Hybrid systems are dynamical systems that combine two types of dynamics: con-

tinuous and discrete. Such behaviour occurs in wide range of applications. Logistics

networks are one of such applications, where the continuous dynamics occurs in the pro-

duction and processing of material and the discrete one in the picking up and delivering

of material. Stability of logistics networks characterizes their robustness to the changes

occurring in the network. However, the hybrid dynamics and the large size of the network

lead to complexity of the stability analysis.

In this thesis we show how the behaviour of a logistics networks can be described

by interconnected hybrid systems. Then we recall the small gain conditions used in the

stability analysis of continuous and discrete systems and extend them to establish input-

to-state stability (ISS) of interconnected hybrid systems. We give the mixed small gain

condition in a matrix form Γ ◦ D �≥ id, where the matrix Γ describes the interconnection

structure of the system and the diagonal matrix D takes into account whether ISS con-

dition for a subsystem is formulated in the maximization or the summation sense. The

small gain condition is sufficient for ISS of an interconnected hybrid system and can be

applied to an interconnection of an arbitrary finite number of ISS subsystems. We also

show an application of this condition to particular subclasses of hybrid systems: impul-

sive systems, comparison systems and the systems with stability of only a part of the

state.

Furthermore, we introduce an approach for structure-preserving model reduction for

large-scale logistics networks. This approach supposes to aggregate typical interconnec-

tion patterns (motifs) of the network graph. Such reduction allows to decrease the number

of computations needed to verify the small gain condition.
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Introduction

Hybrid dynamical systems occur in many modern applications due to their ability to deal with a com-

bination of both continuous and discrete types of dynamics in one model. The continuous dynamics

is usually given by an ordinary differential equation with an input:

ẋ = f(x, u), (x, u) ∈ C,

and the discrete dynamics is given by an instantaneous change in the state (jump):

x+ = g(x, u), (x, u) ∈ D.

This system behaves continuously in the points (x, u) ∈ C and jumps in the points (x, u) ∈ D.

Such behaviour occurs, for example, in control systems that combine digital and analog devices, e.g.,

robotics [5], network control systems [159], [110], reset systems [111] or engineering systems [62].

Logistics networks is another type of systems that possesses hybrid dynamics. These networks pro-

duce and move goods from suppliers to customers. In the literature, there are known many approaches

for the modelling of logistics networks. These models differ in their ability to describe different net-

work characteristics, to apply various analysis methods and to achieve desirable performance goals.

Networks, where only continuous flows occur, are described by continuous dynamical systems, see

[69], [41] and [65]. A network with discrete changes is given by a discrete-time model [7], [116],

[113]. A network with random (stochastic) events can be modelled as a stochastic model, see [94]

and [145]. In more general types of logistics networks there are usually continuous changes in pro-

duction, processing or transportation of goods and discrete (discontinuous) changes in picking up and

delivering of goods to other locations. In this case it is natural to describe the dynamics by a hybrid

dynamical system, see [137] and [146].

The analysis of logistics networks can be performed also in different directions: optimization [69],

[113], [137], where the main point is optimal performance of the network; stability, where stable

behaviour under perturbation is desirable [146], [41], [116], [69]; control, where the tools for the

control of the network are developed [113], [137].

However, the real-world logistics networks are large-scale and possess a complex structure. This im-

plies large size and complex structure of their models. Analytical analysis of large-scale models is

rather sophisticated and time-consuming. This motivates the question of reduction of the model size

before its analysis. The best way of reduction is to approximate the model by a smaller one. It means

that the reduced model has to possess similar characteristics as the original one. In mathematical

systems theory there is a theory of model reduction that proposes different methods for reduction of

large-scale systems [4], [123]. These methods are well-developed for linear systems. Their main ad-

vantages are small approximation error, preservation of dynamical properties (stability, observability,

controllability) and numerical efficiency. However, the weak point of their application to logistics

networks is that they, in general, do not preserve the structure of the network. This property is cru-

cial for the analysis of logistics networks, because logistics networks consist of real physical objects
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like production facilities, warehouses, retailers, transportation routes and thus information about them

should not be lost. Furthermore, the dynamics of logistics networks is usually nonlinear. Compared

to linear systems, the theory of model reduction of nonlinear systems is taking only the first steps in

its development and is applied only to particular classes of nonlinear dynamics [10].

We start this thesis by surveying eleven known approaches for modelling of logistics networks in

Chapter 1. These approaches cover four types of dynamics: discrete one in Section 1.2.1, continuous

one in Section 1.2.2, hybrid one in Section 1.2.3 and stochastic one in Section 1.2.4. We present

the main equations of each model that describe the network dynamics and recall the main results

concerning their application to stability analysis and control. We support the survey by a comparison

of main characteristics of the approaches in Table 1.1.

To study stability of a logistics network we consider one of the modelling approaches that proposes to

model logistics networks as an interconnection of n hybrid subsystems. Then the dynamics of logistic

location i is described by a hybrid system{
ẋi = fi(x1, . . . , xn, ui), (x1, . . . , xn, u1, . . . , un) ∈ Ci,
x+

i = gi(x1, . . . , xn, ui), (x1, . . . , xn, u1, . . . , un) ∈ Di

with state xi (e.g. queue of orders or stock level), external input ui (e.g. customer orders or flow of

raw material), continuous changes described by the function fi, discontinuous changes described by

the function gi. The sets Ci, Di define the type of the behaviour of the ith subsystem corresponding

to the given states xi and inputs ui: continuous in case Ci or discontinuous in case Di. Thus, this

modelling approach includes two types of dynamics in one model and allows description of more

general types of logistics networks.

We are concerned with stability of logistics networks, because this property guarantees persistence

of the network to perturbations that occur, for example, in demand, cooperation between logistic

partners or transportation. In particular, we are interested in input-to-state stability (ISS) introduced

for continuous systems in [152] and extended to hybrid systems in [27] . This type of stability assures

boundedness of the overall state x = (xT
1 , . . . , xT

n )T of the system under boundedness of the overall

external input u = (uT
1 , . . . , uT

n )T for all times and state jumps:

|x(t, k)| ≤ max{β(|x0|, t, k), γ(‖u‖(t,k))}.

Here x0 is the initial state, t is the time, k is the number of the interval between the jumps, ‖u‖(t,k) is

the norm of the hybrid input. The function β : R+ × R+ × R+ → R+ increases in the first argument

and tends to zero in the second and the third one. The function γ : R+ → R+ is strictly increasing

and γ(0) = 0.

In the stability analysis of the interconnection of hybrid subsystems we restrict us to the case where

all subsystems has the ISS property, i.e.

|xi(t, k)| ≤ max{βi(|x0
i |, t, k), max

j,j �=i
γij(‖xj‖(t,k)), γ(‖ui‖(t,k))}.

Functions γij : R+ → R+ are strictly increasing, unbounded and γ(0) = 0. Furthermore, γij describes

the influence of the jth subsystem on the ith subsystem and thus it is also called gain function.

Our aim is to use information about the interconnection structure of the network for checking whether

the network is ISS. For continuous and discrete systems a well-established approach is to use the so-

called small gain conditions [82], [54], [126], [50] and [86]. As hybrid systems combine both types

of dynamics, this motivates us to adapt these small gain conditions to hybrid subsystems. The first

attempts were done for an interconnection of two hybrid systems in [96], [110]. In Chapter 2 we
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extend application of the small gain condition to an interconnection of more than two subsystems.

Moreover, we extend this condition to the case where some subsystems has the ISS property with

summations instead of maximizations in the definition of ISS. To this end, we consider the gain

matrix Γ := (γij)n×n that describes the interconnection structure of the network. To guarantee ISS of

the network we impose a sufficient condition, the mixed small gain condition in a matrix form, see

Theorem 2.4.5:

Γ ◦ D �≥ id

where Γ : Rn
+ → Rn

+ is a matrix operator corresponding to the gain matrix Γ, id is the identity

operator and �≥ is the logical neglecting of ≥. The diagonal matrix operator D : Rn
+ → Rn

+ has

id in the ith element of the diagonal in case the ith subsystem has the ISS property in terms of

maximizations and id +α in case the ith subsystem has the ISS property in terms of summations with

some α : R+ → R+ such that α is strictly increasing, unbounded and α(0) = 0. Thus, the mixed

small gain condition impose a condition on the cooperation between logistics locations, given by the

matrix Γ, that guarantees stability of a logistics network.

In Theorem 2.4.13 we apply this small gain condition to construct an ISS-Lyapunov function for the

interconnected hybrid system. This function provides a useful tool for establishing ISS of the hybrid

system. As a corollary, we present the small gain conditions for particular classes of hybrid systems:

for systems where only parts of the states are stable in Corollary 2.4.20, for impulsive systems in

Theorem 2.4.26 and for comparison systems in Theorem 2.4.30.

In the case of a large size of a logistics network, the verification of the small gain condition needs

large amount of computations due to the large size of the corresponding gain matrix Γ. With aim to

reduce the size of Γ, in Chapter 3 we introduce an approach for structure preserving model reduction

of logistics networks. In this approach we consider the matrix Γ as a model of logistics networks

that describes the interconnection structure of the network. To reduce the size of the gain matrix,

we introduce three rules based on certain types of interconnections in the networks, so-called motifs

[103], that allow to pass from the matrix Γ of dimension n to the matrix Γ̃ of dimension l with

l < n. These rules suppose aggregation of the gains of the subsystems that belong to one of the

following motifs: parallel connection, sequential connection and almost disconnected subgraph. In

Theorems 3.2.1, 3.2.5 and 3.2.9 we derive that, if the small gain condition holds for Γ̃ obtained by an

application of one of three aggregation rules, then the small gain condition holds also for Γ. Thus, we

can establish ISS of logistics network of the size n by checking the small gain condition corresponding

to the matrix Γ̃ of dimension l < n, see Corollaries 3.2.2, 3.2.6 and 3.2.10. As the matrix Γ consists

in general of nonlinear gains this approach can be applied to networks with linear dynamics as well

as with nonlinear one. Furthermore, these aggregation rules preserve the main structure of a logistics

network.

Description of a model of a logistics network as an interconnected continuous system considered in

Section 1.2.2 is published in [41], [43] and [44]. A survey on the known modelling approaches for

logistics networks from Chapter 1 is partially published in [141], [146]. The result on the mixed

small gain condition from Chapter 2 for interconnected continuous systems is published in [49], [50].

The small gain results for hybrid and impulsive systems are published in [45], [46], [47] and [48].

Application of the aggregation rules, considered in Chapter 3, to reduce the size of the model of a

logistics network is published in [143], [144]. A result on an investigation of topological properties

of logistics networks is published in [142].
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Chapter 1

Mathematical models of logistics networks

Logistics network, called also production network or supply chain, is a system that moves products

from suppliers to customers [36]. Modern logistics networks vary in their structural and dynami-

cal properties. They may consist of locations geographically distributed all over the world as well

of machines arranged inside one production facility [33]. The main performance indicators of such

networks are stability, minimization of costs and ability to satisfy customer orders. Feature charac-

teristics and dynamics of a logistics network can be modelled either by the simulation models [140]

or by the mathematical models. We are interested in the mathematical models as they allow deep in-

vestigation of network dynamics. In the literature there is a wide choice of modelling approaches that

vary in their properties. To summarize these approaches, there were performed several reviews of the

known models in the literature. In [17], [104] authors consider simulation, game-theoretic, determin-

istic and stochastic models that are mostly static. Models describing the decision process in logistics

networks were investigated in [100] and models that deal with information sharing were reviewed in

[78]. However, the aforementioned papers do not consider the dynamical behaviour of the network.

The dynamical properties of logistics networks were studied in [135]. The authors stress there on the

review of the typical mathematical approaches for the analysis of dynamical effects in logistics net-

works without providing a detailed overview of the known modelling approaches. In this chapter we

are going to fill this gap. To this end, we go through the main modelling approaches known in the lit-

erature and identify their modelling concepts, application areas and features. At the end of the chapter

we provide a comparison table that highlights the main properties of each modelling approach.

1.1 Notation

First, we introduce the notation that will be used throughout the thesis.

1.1.1 Logistics network

The main activities of a logistics network include production, inventory control, storing and pro-

cessing. Thus, the network consists of different objects: suppliers, production facilities, distributors,

retailers, customers, machines at a production facility. We call such objects locations. We denote by

n the number of locations and we number all the locations by i = 1, . . . , n. The decision, a location

takes, on handling the orders relies on a certain policy. By x we understand the state of a location.

Usually, it is the stock level (inventory level) of a location or a work content to be performed. The

variable q denotes a length of queue, e.g., the queue of customer orders at a location or products to

5



Chapter 1. Mathematical models of logistics networks

be processed by a machine. The external input denoted by u, describes usually the flow of customer

orders or the flow of raw material from the external suppliers. The output is denoted by y. A typ-

ical output is consumption. The customer demand is described by the variable d. An example of a

logistics network that illustrates our notation is shown in Figure 1.1.

Production facilities Distribution center Retailers Customers

Location 1

Location 2

Location 3

Location 4

Location 5

Location 6

x1 - stock level of Location 1
u1- input of Location 1

material flow from Location 2 to Location 3

q3 - queue of orders at Location 3

y4 - output of Location 4

Figure 1.1: General description of a logistics network.

The production rate of a production facility is given by a production function f and the maximal
production rate is denoted by α. The number of a production step is denoted by k = 1, 2, . . . and

the product type is denoted by p = 1, 2, . . . . We define by cij the consumption rate of products of

location j by location i and we denote by dij the delivery rate of products of location i to location j .

For usual time we write t. For the time needed to rearrange a location for production of another type

of products we write τ and call this time adaptation time.

Note that this is only a general description of logistics networks and its parameters. Later in Sec-

tion 1.2, where we present different approaches for mathematical modelling of dynamics of logistics

networks, some of these parameters disappear or new ones appear depending on the features of a

specific modelling approach.

Material, information and monetary flows connect locations of a logistics network and create the

structure of the network. The structure of a flow is frequently characterized as linear, convergent,

divergent, or nonlinear, see Figure 1.2. Here, linear denotes a simple chain of locations passed one

after the other, convergent describes flows originating from a large number of locations and ending in

a few end locations, divergent describes the opposite structure in which a few sources feed a larger

number of end locations, while nonlinear in this context simply denotes a more intricate structure

which does not fit into the other categories.

Lack of information between the locations, complexity of the network structure, nonlinearity of dy-

namics and large size of the network can bring the network to instability, e.g. [154], [37], [107] and

[39]. Instability of logistics network means, roughly speaking, unboundedness of the overall state.

6



1.1. Notation

.........

(a) Linear

.........

(b) Convergent

.........

(c) Divergent (d) Nonlinear

Figure 1.2: Structure of the network

Instability results in increasing of costs, in increasing of the number of unsatisfied orders and finally

in the loss of profit. For example, a traffic jam causes the later pick up of the products from the

warehouse. Thus, the amount of stored products increases, that increases the costs due to storing. The

later pick up by-turn causes later delivery of the goods to customers. This decreases the customer

satisfaction and thus implies the decreasing of the customer demand and of the profits of the logistics

network. Thus, stability of the networks is the property of their survivability. This motivates the study

of the network structure and behaviour.

There are many different types of stability. In this thesis our aim is to study input-to-state stability

of logistics networks. In Section 1.1.4 we give a precise definition of input-to-state stability and in

Chapter 2 we provide conditions that guarantee input-to-state stability of logistics networks.

In the following subsections we recall the notions from matrix, graph and control theory. These no-

tions we are going to use to present different modelling approaches of logistics networks in Section 1.2

and to derive stability conditions for logistics networks in Chapter 2.

1.1.2 Vectors and matrices
In the following, we set R+ := [0,∞) and denote the positive orthant by Rn

+ := [0,∞)n. A vector

v ∈ Rn
+ and a matrix M ∈ Rn×n

+ are called nonnegative. The transposition of a vector v ∈ Rn is

denoted by vT and the transposition of a matrix M ∈ Rn×n is denoted by MT . By 〈·, ·〉 we denote the

standard scalar product in Rn.

On Rn we use the partial order [54] induced by the positive orthant given by

x ≥ y ⇐⇒ xi ≥ yi, i = 1, . . . , n,
x > y ⇐⇒ xi > yi, i = 1, . . . , n,

for all x, y ∈ Rn. Furthermore, for all x, y ∈ Rn we write x �≥ y ⇐⇒ ∃ i ∈ {1, . . . , n} : xi < yi ,

i.e., the logical negation of ≥.

For a nonempty index set I ⊂ {1, . . . , n} we denote by |I| the number of elements of I . For a

nonempty index set J ⊂ {1, . . . , n} let PJ denote the projection of Rn
+ onto R|J |

+ . Let RI be the

anti-projection R|I|
+ → Rn

+, defined by

x �→
|I|∑

k=1

xikeik ,

7



Chapter 1. Mathematical models of logistics networks

where {eik}k=1,...,n denotes the standard basis in Rn and I = {i1, . . . , i|I|}.

B is the open unit ball in Rn and B is its closure. The set B ⊂ Rn is relatively closed in the set
χ ⊂ Rn, if B = B ∩ χ.

We denote by | · | some vector norm in Rn. In particular, |v|max = max
i

|vi| means the maximum norm

and |v|1 =
∑n

i=1 |vi| the 1-norm. The spectral radius of a matrix M is denoted by ρ(M). A matrix

M ∈ Rn×n is called reducible, if there exists a permutation matrix P ∈ Rn×n such that

P T M P =

[
A B
0 C

]
,

where the matrices A and C are square. Otherwise, M is said to be irreducible. A matrix M is called

primitive, if there exists a positive integer k ∈ N such that Mk > 0. Note that any primitive matrix

is irreducible. The converse is false, in general. For the following connection between primitive and

irreducible matrices we refer to [20, Theorem 2.1.7].

Lemma 1.1.1. For M ≥ 0 the following are equivalent.

(a) M is irreducible and ρ(M) is greater in magnitude than any other eigenvalue.

(b) M is primitive.

Another useful connection between irreducible and primitive matrices is the following, cf. [20, Corol-

lary 2.2.28].

Lemma 1.1.2. An irreducible matrix is primitive, if its trace is positive.

1.1.3 Graphs

A useful tool to describe networks are graphs. Here, we introduce the notion of graphs from [14] and

show how graphs can be described by matrices. A directed graph with weights consists of a finite

vertex set V and an edge set E, where a directed edge from vertex i to vertex j is an ordered pair

(i, j) ∈ E ⊂ V × V . The weights can be represented by a |V | × |V | weighted adjacency matrix
A, where aij ≥ 0 denotes the weight of the directed edge from vertex i to vertex j. By convention

aij > 0, if and only if (i, j) ∈ E. We will denote a directed graph with weights of this form by

G = (V, E,A). Additionally, we define for each vertex i the set of successors by

S(i) = {j : (i, j) ∈ E}

and the set of predecessors by

P (i) = {j : (j, i) ∈ E}.

A path from vertex i to j is a sequence of distinct vertices starting with i and ending with j such

that there is a directed edge between consecutive vertices. A directed graph is said to be strongly
connected, if for any ordered pair (i, j) of vertices, there is a path which leads from i to j. In terms of

the weighted adjacency matrix this is equivalent to the fact that A is irreducible, [20].

8



1.1. Notation

1.1.4 Notions from control theory
To describe dynamics of a logistics network we need the notions from control theory [89].

We call a continuous function γ : R+ → R+ positive definite, if γ(0) = 0 and γ(s) �= 0 for s �= 0. A

function γ : R+ → R+ is said to be of class K, if it is continuous, strictly increasing and γ(0) = 0.

Function γ ∈ K is of class K∞, if, in addition, it is unbounded. Note that for any α ∈ K∞ its inverse

function α−1 always exists and α−1 ∈ K∞. A function β : R+ ×R+ → R+ is said to be of class KL,

if for each fixed t the function β(·, t) is of class K and, for each fixed s, the function t �→ β(s, t) is

continuous, non-increasing and tends to zero for t → ∞. A function β : R+ × R+ × R+ → R+ is

said to be of class KLL, if for each fixed t ≥ 0 the function β(·, ·, t) ∈ KL and for each fixed r ≥ 0,

β(·, r, ·) ∈ KL. A function f : Rn → Rm is affine, if there exist matrices A1, . . . , An ∈ Rm ×R1 and

a vector b ∈ Rm such that for all x ∈ Rn, f(x) = A1x1 + · · · + Anxn + b.

Mn denotes the n-fold composition of a map M : Rn
+ → Rn

+ denoted by M ◦ . . . ◦M . We denote by

id the identity map. We define the restriction of a function v : R+ → Rm to the interval [s1, s2] by

v[s1, s2](t) =

{
v(t), if t ∈ [s1, s2],
0, otherwise.

The essential supremum norm of a measurable function φ : R+ → Rm is denoted by ‖φ‖∞ :=
ess sup{|φ(s)|, s ∈ R+}. L∞ (or L∞(R+, Rm)) is the set of measurable functions for which this

norm is finite.

The tangent cone to the set C ⊂ Rn at x ∈ C, TC(x), is the set of all v ∈ Rn for which there exist

real numbers αi ↘ 0 and vectors vi → v such that for i = 1, 2, . . . , x + αivi ∈ C, see [63], [125]

and [13].

A function f(x) is locally Lipschitz continuous on a domain (open and connected set) D ⊂ Rn, if

each point of D has a neighborhood D0 such that f satisfies the Lipschitz condition

|f(x) − f(y)| ≤ L0|x − y|

for all points x, y in D0 with some Lipschitz constant L0 than can depend on the point in D0. We

denote the set of such functions by Liploc. Note that locally Lipschitz continuous functions are differ-

entiable almost everywhere by the Rademacher’s theorem. In the points, where such a function is not

differentiable, we use the notion of Clarke’s generalized gradient, see [34], [52]. The set

∂f(x) = conv{ζ ∈ Rn : ∃xk → x, ∃∇f(xk) and∇f(xk) → ζ} (1.1)

is called Clarke’s generalized gradient of f at x ∈ Rn. Note that if f is differential at some point,

then its Clarke generalized gradient coincides with the usual gradient at this point.

1.1.5 Dynamical systems and their stability
Here we briefly introduce four types of dynamical systems and the types of their stability.

Dynamical systems

We distinguish four main types of dynamical systems by the type of their behaviour:

• Continuous dynamical system given by an ordinary differential equation with an input [89]:

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (1.2)

9
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where t is the time, x ∈ Rnx is the state, u ∈ Rnu is the measurable locally essentially bounded

input, f : Rnx+nu → Rnx describes the continuous dynamics and x(t0) is the initial condition

at time t0. We assume that f is continuous and for all r ∈ R+ it is locally Lipschitz continuous

in x and uniformly in u for |u| ≤ r.

• Discrete dynamical system given by a difference equation with an input [89]:

x(k + 1) = g(x(k), u(k)), x(0) = x0, k = 0, 1, 2, . . . , (1.3)

where k is the discrete time, x ∈ Rnx is the state, u ∈ Rnu is the measurable locally essentially

bounded input, g : Rnx+nu → Rnx describes the discrete dynamics and x(0) is the initial

condition. We assume that g is continuous.

• Hybrid dynamical system given as a combination of continuous and discrete dynamical systems

[60], [162]:

ẋ(t) = f(x(t), u(t)), if (x(t), u(t)) ∈ C,
x+(t) = g(x(t), u(t)), if (x(t), u(t)) ∈ D,

x(t0) = x0, (1.4)

where x ∈ Rnx is the state, x+(t) is a state after its "immediate" change at time t ("jump"),

u ∈ Rnu is the measurable locally essentially bounded input, f : Rnx+nu → Rnx describes the

continuous dynamics at points (x, u) ∈ C ⊂ Rnx+nu , g : Rnx+nu → Rnx describes the discrete

dynamics at points (x, u) ∈ D ⊂ Rnx+nu and x0 is the initial condition. A point of the solution

trajectory is denoted by x(t, k) where t is the time and k is the number of the interval between

the jumps, see Section 2 for a detailed description of hybrid systems. Functions f and g are

assumed to be continuous, and set C and D closed.

• Stochastic linear dynamical system given by a stochastic difference equation [19]:

x(k + 1) = Ax(k) + Bu(k) + Ed(k), x(0) = x0, (1.5)

where k is the discrete time, x ∈ Rnx is the state, u ∈ Rnu is the measurable locally essentially

bounded input, d ∈ Rnd is the bounded random value, A ∈ Rnx×nx , B ∈ Rnx×nu and E ∈
Rnx×nd , x(0) is the initial condition.

We consider also subclasses of continuous (1.2) and discrete system (1.3) without inputs, so-called

unforced dynamical systems:

ẋ(t) = f(x(t)), (1.6)

and

x(k + 1) = g(x(k)). (1.7)

Consider system (1.6) with x ∈ Rn. Let S be n − 1 dimensional surface of section, i.e. hypersurface

where all trajectories starting on S flow throught it, not parallel to it. The map P : S → S is called

Poincaré map [157], if is obtained by following trajectories from one intersection with S to the next.

If xk ∈ S denotes the kth intersection, then the Poincaré map is defined by

xk+1 = P (xk). (1.8)

10



1.1. Notation

Stability notions

We consider for continuous systems (1.2) or (1.6) the following types of stability [89], [152]:

Definition 1.1.3 (Stability of continuous dynamical systems). Consider a system of the form (1.6)

• A point x∗ is a fixed (or equilibrium) point for f , if f(x∗) = 0 ;

• A fixed point x∗ is stable, if for each ε > 0 there is a δ > 0 such that whenever |x0 − x∗| < δ
the solution x(t) exists and satisfies |x(t) − x∗| < ε, for all t ≥ 0;

• A fixed point x∗ is attractive, if there is a δ > 0 such that whenever |x0 − x∗| < δ the solution
x(t) of (1.6) exists and lim

t→∞
x(t) = x∗;

• A fixed point x∗ is globally attractive if it is attractive for any δ > 0;

• A fixed point x∗ is asymptotically stable, if it is stable and attractive;

• A fixed point x∗ is unstable, if it is not stable.

Consider a system of the form (1.2):

• System (1.2) is called input-to-state stable (ISS), if there exist functions β ∈ KL and γ ∈
K∞ ∪ {0} such that for all x0 ∈ Rn , u ∈ L∞(R+, Rm)

|x(t)| ≤ max{β(|x0|, t), γ(‖u‖∞)}, t ≥ 0. (1.9)

Remark 1.1.4. By an abuse of notation the abbreviation "ISS" will mean throughout the thesis "input-
to-state stable" or "input-to-state stability" depending on the context.

We consider for a discrete system of the form (1.7) the following types of stability [89], [114].

Definition 1.1.5 (Stability of discrete dynamical systems). Consider a system of the form (1.7):

• A point x∗ is a fixed (or equilibrium) point for g, if x∗ = g(x∗) ;

• A fixed point x∗ is stable, if for each ε > 0 there is a δ > 0 such that whenever |x0 − x∗| < δ,
the solution {xk} of (1.7) exists and satisfies |xk − x∗| < ε, for all k ≥ 1;

• A point x∗ is called a period two point, if x∗ = g2(x∗);

• A fixed point x∗ is attractive, if there is a δ > 0 such that whenever |x0 − x∗| < δ the solution
{xk} of (1.7) exists and lim

k→∞
xk = x∗;

• A fixed point x∗ is asymptotically stable, if it is stable and attractive;

• A fixed point x∗ is unstable, if it is not stable.

Remark 1.1.6. By stability of a dynamical system we will usually understand stability of its equilib-
rium points.

In hybrid systems of the form (1.4) we are interested in input-to-state stability [96]:

11
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Definition 1.1.7 (ISS of hybrid dynamical systems). System (1.4) is called ISS, if there exist functions
β ∈ KLL and γ ∈ K∞ ∪ {0} such that for all initial conditions (x(0, 0), u(0, 0)) ∈ C ∪D , bounded
inputs u ∈ L∞(R+, Rm) and times t ≥ 0 , number of intervals between the jumps k ≥ 0

|x(t, k)| ≤ max{β(|x(0)|, t, k), γ(‖u‖∞)}. (1.10)

In the following section we will review the main known approaches for modelling the dynamics

of logistics networks. Furthermore, we will show the main results concerning their stability and

performance.

1.2 Review of the known modelling approaches

Here we review eleven modelling approaches for logistics networks found in the recent literature.

For convenience, we group them by the type of dynamics they possess. In particular, we distinguish

four groups of models corresponding to four types of dynamics: discrete, continuous, hybrid and

stochastic one.

Investigations of stability properties of logistics networks conducted in Chapter 2 will be based on the

model of logistics network as an interconnected hybrid system from Subsection 1.2.3.

1.2.1 Discrete deterministic systems

Discrete deterministic systems are used to model logistic networks where the considered time changes

discretely.

Modelling of product lines as "bucket brigades"

A product line is a production system that consists of machines and workers. In [21] it was proposed

to treat a product line as a so-called "bucket brigade", where each worker carries an item from machine

to machine and then passes it to the next worker. This idea was further extended in [15], [16], [25], [8]

and [7]. The main problem is to arrange the jobs between the workers, i.e. to assign the points of the

passing of the items, to achieve certain performance aims like self-balancing or maximal throughput.

We introduce this modelling approach relying on [7] and show conditions that guarantee self-balancing.

We consider two workers denoted by A and B. Work content of a job to be performed on an item

is denoted by w. When an item enters a product line w = 0 and then w changes continuously. At

the end w = 1. Each worker works with his own speed. The speed for worker B is assumed to be 1
and the speed of worker A is assumed to be f1 on the interval [0, W ] of the job and f2 on the interval

[W, 1] such that f1 < 1 < f2.

The states at time t are positions of the workers along the product line: xA(t) ∈ [0, 1] for worker A
and xB(t) ∈ [0, 1] for worker B. A new job is every time started by worker B. Worker A finishes the

previous job at some point x0 and then takes over the job from worker B. The portion of the job of

worker B is

xB(t) = t,∀t ≥ 0. (1.11)

If worker A starts after the break point W , then the portion of a job of worker A is

xA(t) = x0 + f2t, (1.12)

12



1.2. Review of the known modelling approaches

and if he starts before the break point

xA(t) =

{
x0 + f1t , t < tW
W + f2(t − tW ) , t ≥ tW ,

(1.13)

where tW = W−x0

f1
is the time it takes worker A to get to W .

Define t̄n as the amount of time that worker A spends to process job n and assume that the time is

reseted whenever a job is finished. Then the new starting point for worker A at a new job n + 1 is

given by

xn+1 = xB(t̄n) =

{
1−xn

f2
, for xn > W,

W
(

1
f1

− 1
f2

)
− xn

f1
+ 1

f2
, for xn ≤ W.

(1.14)

A piecewise linear map given by (1.14) is a Poincaré map as in (1.8).

One of the aims is to obtain a self-balanced or a self-organized product line. Self-balancing and self-

organizing are defined using the notion of a fixed point. In particular, existence of a fixed point xs

for a two worker bucket brigade means that worker B works always from 0 to xs and worker A from

xs to 1. For the map given in (1.14) a fixed point always exists, but may be either stable, periodic

or unstable [7]. The corresponding product line corresponding to a stable fixed point is called self-
balanced, i.e. for every starting point of worker A they eventually end up working the same part of the

product line. If there exists a period-two stable point, then the corresponding product line is called to

be self-organized and handover of the product from the worker B to the worker A occurs alternatingly

at two positions, i.e. at two fixed points.

The type of fixed point can be identified using a value L that is the time that worker A would need to

get through the whole production line:

L :=
W

f1

+
1 − W

f2

. (1.15)

If L > 1, then worker B is faster on average than worker A.

In [7] conditions that establish the type of the fixed point were obtained. We formulate them in the

following theorem.

Theorem 1.2.1. Depending on W , xs and L the fixed point is

• globally stable, if W ≤ xs and worker A is faster on average than worker B (L < 1)

• stable period-two point, if W ≤ xs and worker B is faster on average than worker A (L ≥ 1)

• unstable period-two point, if W > xs and worker A is faster on average than worker B (L < 1)

• unstable, if W > xs and B is faster on average than worker A (L ≥ 1)

This modelling approach allows to describe a production line as a bucket brigade. We have consid-

ered two types of stable production lines: self-balanced and self-organized. Stability condition given

in Theorem 1.2.1 depends on the workers speeds. Though the presented model is simplified by con-

sidering only two workers with constant speeds, it may be further modified and extended to achieve

maximal throughput, by adding more workers, by implying another rules of job sharing like blocking

or by introducing new properties for the workers like learning [8].
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Decentralized supply chains

In decentralized (or autonomous) supply chains information is not shared between all locations and

each supplier determines its order quantities based on the demand and inventory information of previ-

ous time periods, [116], [36], [37] and [118]. Due to this bounded information sharing the Bullwhip

effect may occur. The main question is how to quantify this effect. Here we will show an approach to

quantify this effect based on the model considered in [116].

Consider a supply chain that consists of n + 1 suppliers connected sequentially, see Figure 1.2a. The

suppliers are denoted by indices i = 1, 2, . . . , n + 1 starting from downstream and i = 0 corresponds

to the final customer. The time is discrete and the time periods are denoted by t = 0, 1, 2, . . .. At the

beginning of every time period t, supplier i checks his inventory level during the period and orders

the needed quantity ui at the end of the period. The inventory level of the ith supplier at the period

t + 1, i.e., the difference between the placed and received orders, is described as follows

xi(t + 1) = xi(t) + ui(t) − ui−1(t), i = 1, 2, . . . . (1.16)

Goods ordered by supplier i arrive after a constant lead time τi. The in-stock inventory level of

supplier i during the period t + 1, i.e., the difference between the received items and received orders,

is given by

yi(t + 1) = yi(t) + ui(t − τi) − ui−1(t), i = 1, 2, . . . . (1.17)

The order quantity ui(t) of supplier i at the end of period t is calculated based on the information about

its inventory levels xi, yi of all previous periods up to t and the order quantities ui−1 of all previous

periods up to t−1. The next step is to focus on the ordering policy, which is based on the information

above. Policies often used in practice are proper, linear and time-invariant (LTI). A policy is called

proper, if the size of the orders received is constant over the time, the supplier inventory tends to a

constant equilibrium value that is independent of the initial conditions and the orders placed tend to

the value of orders received. Further, a policy is called LTI, if ui(t) is a time-dependent linear function

of xi, yi and ui−1. In order to give a simple description of a proper and LTI policy we introduce the

unit shift operator R for the time series and let Rl denote its l-fold application, i.e.

Rlxi(t) := xi(t − l) (1.18)

for all t and for all l = 0, 1, . . .. Then the general expression is

ui(t) = γi + Ai(R)xi(t) + Bi(R)yi(t) + Ci(R)ui−1(t − 1), i = 1, 2, . . . . (1.19)

Here γi is a real number and Ai, Bi and Ci are polynomials with real coefficients

Ai(R) = ai
0 + ai

1R + ai
2R

2 + . . . , (1.20)

Bi(R) = bi
0 + bi

1R + bi
2R

2 + . . . , (1.21)

Ci(R) = ci
0 + ci

1R + ci
2R

2 + . . . . (1.22)

The polynomials Ai and Bi indicate the influence of inventory history on the ordering decisions and

Ci the influence of orders received. The exact choice of these polynomials depends on the application

needs. For such an ordering policy it follows from the definition of the properness that the nominal

equilibrium exists such that order sizes, inventory levels and in-stock inventories stay constant, say

x∞
i , y∞

i and u∞
i .
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1.2. Review of the known modelling approaches

A negative effect occurring in such networks is an instability given by the Bullwhip effect: increasing

of fluctuation of orders in direction from retailers to suppliers due to the changes in the customer

demand [59], [95], [30]. To quantify the Bullwhip effect we consider the error between the current

states and their corresponding equilibrium. That is, we denote

ūi(t) = ui(t) − u∞ = Ai(R)x̄i(t) + Bi(R)ȳi(t) + Ci(R)ūi−1(t − 1), i = 1, 2, . . .
x̄i(t) = xi(t) − x∞ = x̄i(t) + ūi(t) − ūi−1(t), i = 0, 2, . . .
ȳi(t) = yi(t) − y∞ = ȳi(t) + ūi(t − τi) − ūi−1(t), 0 = 1, 2, . . .

(1.23)

and consider the ratio of the order sequences of the most upstream supplier and customer demand.

This reflects the idea of the so-called worst-case RMSE (root mean square errors) amplification factor
[116] that is given by

Wn = sup
u0(·) �=0

[
(
∑∞

t=0 u2
n(t))

1
2

(
∑∞

t=0 u2
0(t))

1
2

]
. (1.24)

This factor allows to state whether supplier n+1 experiences the Bullwhip effect or not. To be precise,

in a supply chain, that is described within the error framework, supplier n + 1 is said to experience
no Bullwhip effect, if Wn ≤ 1, i.e. if the overall fluctuation of orders of the last supplier is less than

or equal the overall fluctuation of the customer demand. In the case of proper LTI supply chains

with n + 1 locations the sufficient condition for the occurrence of the Bullwhip effect is stated in the

following theorem, see [116, Theorem 3].

Theorem 1.2.2. Supplier n + 1 in an LTI supply chain described by (1.23) experiences the Bullwhip
effect if

Wn :=
n∑

i=1

1 + Bi(1)τi − Ci(1)

Ai(1) + Bi(1)
> 0. (1.25)

The following corollary establish the Bullwhip effect if the supply chain is homogeneous, i.e. all the

locations are alike.

Corollary 1.2.3. When the supply chain is homogeneous, the Bullwhip effect exists if

1 + B(1)τ − C(1)

A(1) + B(1)
> 0. (1.26)

Furthermore, there are similar analytical conditions for other policies (e.g. advanced demand infor-

mation) to predict whether the Bullwhip effect will occur or not, see [116], [117], [115].

Though here only the case of sequentially connected suppliers was considered, it is possible to ex-

tend the modelling approach on general network structures, as well as to cover delays in delivery or

uncertainties [118]. Explicitly there is no production processes involved. By production process one

can understand only lead times τi.

Modelling of re-entrant lines as queueing systems

Products considered in this modelling approach pass through several production steps to be finished

[113]. Such networks have nonlinear structure as in Figure 1.2d and are called re-entrant lines. The

topology of the routes is determined by the set mappings. The state of the system is given by the

length of the queues at the machines. The main aim is to arrange the machine processing time for

different product types to achieve the maximal production rate.
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We consider n machines denoted by Ui, i = 1, . . . , n, and p product flows denoted by Pk, k =
1, . . . , p. There are a finite fixed number of routes for each product. During the production cycle

only one item of product type can be processed at a machine. A product flow Pk can be processed

on nk machines denoted by 1, . . . , nk and has sk sequential production steps. The mapping sk(l) :
{1, . . . , nk} �→ {1, . . . , sk} defines the set of numbers of the production steps which can be performed

by the machine l. The family of all mappings from {1, . . . , nk} into the set of all subsets {1, . . . , sk}
is denoted by M sk

nk
.

For two mappings a, b ∈ M sk
nk

by h = a ∪ b we denote such a mapping from M sk
nk

that for any

l ∈ {1, . . . , nk} it holds that h(l) = a(l)∪ b(l). A mapping s ∈ M sk
nk

is a product-stream Pk if for any

l ∈ {1, . . . , nk} it holds that sk(l) �= ∅ and
nk⋃
l=1

sk(l) = {1, 2, . . . , sk}.

By Qkj
il we denote the queue of the items of the product Pk after being processed at the machine Ui

and that are waiting to be processed by the machine Ul, where j is the production step of the product

Pk. The length of the queue Qkj
il at time t is qkj

il (t). The state of the machine Ul described by products

Pk at stage j at time t is given by

qkj
l (t) =

∑
i∈ink(l)

qkj
il (t), (1.27)

where ink(l) is the set of machines from which the products Pk arrive to machine Ul.

Let τ kj
il be the time that machine Ui needs to perform a production step j of a product k produced

for machine Ul, nkj
il be the number of items of product Pk on production step j produced by the

machine Ui for the machine Ul during the processing time τ kj
il , mkj be the batch size required for

the production step j + 1 of Pk, akj
il be the ratio of the time needed for machine Ui for working for

machine Ul over product Pk on production step j. akj
il , nkj

il satisfy the following natural conditions:∑
k,j,l

akj
il ≤ 1, akj

il ≥ 0 for all i, j > 0, i > 0, l,
∑
k,l

ak0
0l ≤ 1 and ak0

0l ≥ 0 for all k, l. Denote also

Nkj
i =

∑
l∈outk(i)

nkj
il where outk(i) is the set of machines to which the products Pk arrive from machine

Ui.

The dynamics of the machine Ul is described by the change of its queue length due to the arriving of

the new items and shipping of the processed items to the next machines:

qkj
l (t) = S

⎧⎨⎩
[ ∑

i∈ink(l)

nkj
il

mkj

[akj
il (t − t0)

τ kj
il

]]
−
∑

i∈outk(l)

[akj+1
li (t − t0)

τ kj+1
li

]
+ qkj

l (t0)

⎫⎬⎭ (1.28)

where S{x} = |x|+x
2

.

The Stinson-Smith Condition [155]

∑
i∈ink(l)

nkj
il akj

il

τ kj
il mkj

−
∑

i∈outk(l)

akj+1
li

τ kj+1
li

= 0 (1.29)

imposed on the dynamics of the machine Ul minimizes its idle time. Moreover, this condition guar-

antees boundedness of its queue qkj
l .

Such a model is used to set an optimization (or quasi-optimization problem) [74] that finds nkj
il , akj

il

under which a production rate is maximal (or quasi-maximal). The quasi-optimization problem is

formulated as a linear programming problem using the Stinson-Smith Condition (1.29). Let n be the

total number of machines, ν be a number of product items considered in the optimization problem
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in [113], âkj
il , n̂kj

il be the solution of the optimization problem, ãkj
il , ñkj

il be the solution of the quasi-

optimization problem, q̂kj
il (t), q̃kj

il (T ) be the states at time T for optimal and quasi-optimal solutions,

and μk be the cost of one item per product pk. Though the Stinson-Smith Condition guarantees the

boundedness of the queues, it allows to obtain only the quasi-maximal production rate. The difference

between production rate of optimal solution
ν∑

i=k

μk · q̂ksk
n+1(T ) and production rate of quasi-optimal

solution
ν∑

k=1

μk · q̃ksk
n+1(T ) is estimated in the following theorem, see [113, Theorem 3.1].

Theorem 1.2.4. For
ν∑

k=1

μk · q̂ksk
n+1(T ) and

ν∑
k=1

μk · q̃ksk
n+1(T ) the inequality

0 ≤
ν∑

k=1

μk·q̂ksk
n+1(T )−

ν∑
k=1

μk·q̃ksk
n+1(T ) ≤

ν∑
k=1

μk

∑
k∈ink(n+1)

(1 + δ(ñksk
kn+1, nksk

)·n
ksk
in+1

nksk

)

holds, where
δ (ñksk

in+1, nksk
) = 1, if ñksk

in+1 �= nksk
,

δ (ñksk
in+1, nksk

) = 0, if ñksk
in+1 = nksk

.

This modelling approach describes re-entrant lines where the products pass through several produc-

tion steps. Furthermore, there may be more than one route for a product. A machine is able to assign

the processing time and the number of items of each product to be be processed in order to achieve

certain performance goals. The Stinson-Smith Condition (1.29) guarantees boundedness of the queue

at the machines. However, this condition restricts the choice of possible decisions of a machine to

get the global optimal performance. Thus, only quasi-optimal solutions can be achieved under this

condition.

1.2.2 Continuous deterministic systems
Here we consider modelling approaches that deal with continuous material flows in the network. Such

a network can be described by ordinary or partial differential equations.

Ordinary differential equation

In this framework we model the whole network by modelling the dynamics of each single location by

an ordinary differential equation with inputs as in (1.2) and by describing the dynamics of the whole

network as a system of ordinary differential equations [42], [41], [43] and [44]. Such equations allow

to study stability properties of the networks using known Lyapunov methods and recently established

small gain conditions.

The dynamics of the ith locations, i = 1, . . . , n, looks as follows

ẋi = f̃i(x1, . . . , xn, ui), xi(0) = x0
i (1.30)

where xi(0) is an initial state and the functions f̃i describe the changes at state xi of location i and need

not to be linear, [141], [42]. For example, the state xi is the number of unsatisfied orders at location

i, fi(xi(t)) = αi

(
1 − e−xi(t)

)
is its actual production rate, where αi is the maximal production rate

[42]. If the state xi is large, then the production rate fi tends to αi and if the state is small, then fi

tends to zero. This means, if there are many orders, the actual production rate is close to the maximum
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production rate and if there are no orders nothing will be produced. The state of a location i influences

the states of the other locations j �= i. The state of a location i is also subject to an external input

ui. This input might be caused by the new orders from the customers of the logistics network. This

allows to model the dependence and interconnections between the locations more precise

ẋi = ui +
∑
j,j �=i

cjifj(xj(t)) − fi(xi(t)), (1.31)

where 0 ≤ cji ≤ 1 is the share of orders of location j at location i,
n∑

i=1

cji = 1.

The state of the whole logistics network is obtained by combining the states of all locations in one

vector, i.e. x = (xT
1 , . . . , xT

n )T . The dynamics of the logistics network is given by

ẋ = f̃(x, u) =

⎛⎝ f̃1(x1, . . . , xn, u1)
. . .

f̃n(x1, . . . , xn, un)

⎞⎠ , x(0) = x0. (1.32)

A well established notion to describe stability of interconnected nonlinear dynamical systems with

inputs is the notion of ISS. In particular, ISS of (1.32) defined by (1.9) occurs when the state x(t) is

bounded by some function of the initial value x(0) and of the overall input u = (uT
1 , . . . , uT

n )T over

the time.

For the individual location i described by (1.31) ISS is defined by

|xi(t)| ≤ max{βi(|x0
i |, t), max

j
{γij(‖xj[0,t]‖∞)}, γi(‖ui‖∞)}, (1.33)

where γij ∈ K∞ are called gains from other locations j [54].

The notion of ISS is one possibility of defining stability. Here the external influences are addressed

explicitly by γi. A further advantage of the ISS notion is that there are stability criteria for intercon-

nected systems based on the gains γij [54], [42]. To illustrate this criteria, all the gains are collected in

a matrix Γ := (γij)n×n. This matrix describes interconnection structure of the network. The operator

Γ : Rn
+ → Rn

+ is defined by

Γ(s) :=

⎛⎜⎝ max{γ1,2(s2), . . . , γ1,n(sn)}
...

max{γn1(s1), . . . , γn,n−1(sn−1)}

⎞⎟⎠ . (1.34)

Inequality Γ(s) �≥ s means that for every s there exists at least one component of the vector Γ(s) such

that (Γ(s))i < si. This inequality is called the small gain condition. A r-cycle in the matrix Γ is a

sequence γi0,i1 , γi1,i2 , . . . , γir−1ir of size r, where i0 = ir. The cycle of size r in Γ is a contraction if

γi0,i1 ◦ γi1,i2 ◦ . . . , ◦γir−1,ir < id. (1.35)

In [126, Corollary 3.3.5] the following small gain theorem was proved that guarantees ISS of the

interconnected system (1.32).

Theorem 1.2.5. Consider system (1.30) and suppose that each subsystem is ISS so that condition
(1.33) holds. If Γ(s) �≥ s for all , s �= 0, or equivalently, if every cycle in Γ is a contraction, then
system (1.32) is ISS from u to x.
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1.2. Review of the known modelling approaches

Thus, this stability condition depends on the interconnection structure of the network given by matrix

Γ. This modelling approach allows for a modularity principle. That is, the ISS concept allows to

establish stability of the network from stability of single locations. Moreover, there are no restrictions

on the interconnection structure.

From the practical point of view, this framework can cope with nonlinear dynamics in every location

of the logistics network. Further, this approach provides a stability criteria to decide whether the

interconnection of stable locations leads to a stable logistics network. The criterion takes the topology

of the logistics network into account. This modelling approach can be further extended to capture

delays in delivery [43]. Input-to-state stability and the small gain condition are discussed in more

detail in Chapter 2.

Damped oscillator models

A modelling approach inspired by physics of interconnected oscillators [158] has been investigated

in [69], [70], [105] and [151]. Here we model logistics networks that adapt their production speeds.

Due to the fact that adaptation needs some time, instability effects like the Bullwhip effect occur.

The model uses an idea of a physical transport problem, where the flows of products are considered.

The model is given by balance equations for the flows of products and by the adaptation of the pro-

duction speeds. There are n logistics locations denoted by i ∈ {1, . . . , n}. Location i delivers dji

products of kind i to other locations and consumes cki products of kind k per production cycle, i.e.

for production of one unit. The production speed fi(t) of a location i is the number of production

cycles per time unit (day, week,...). xi(t) denotes the number of products of kind i available in the

logistics network (inventory). The function yi(t) represents an external flow like consumption, losses

and import of resources

yi(t) = ci,n+1fn+1(t) − di0f0(t). (1.36)

Here fn+1 reflects the customers demand while f0 reflects the inflow of resources. It is assumed that

cij and dij are normalized, such that 0 ≤ cij, dij ≤ 1 and

di0 = 1 −
n∑

j=1

dij ≥ 0, ci,n+1 = 1 −
n∑

j=1

cij ≥ 0. (1.37)

The inventory change of product i is given by the difference of supply and demand

dxi

dt
= f in

i (t) − f out
i (t) =

n∑
j=1

dijfj(t) −
n∑

j=1

cijfj(t) + yi(t), (1.38)

where the first term represents the supply and the second term denotes the demand. Variations of the

consumption rate yi(t) enforce an adaptation of production speeds. This is based on information about

the current inventory of all locations i, the change of inventory xi(t) and the current production speed

fi(t). The adaptations are not instantaneous and require an adaptation time τi for adjustments. In the

following we state an adaption for the case of sequential logistics networks. Let x0
i denote a desired

inventory level, f 0
j (xi,

dxi

dt
) a desired rate, then the delivery rate is adapted to minimize changes in

inventory dxi

dt
according to

dfj

dt
=

1

τi

[
x0

i − xi(t)

Ti

− βi
dxi

dt
+ εi[f

0
j − fi(t)]

]
. (1.39)

19



Chapter 1. Mathematical models of logistics networks

The analysis of the Bullwhip effect is performed by linearizing the model described in (1.38), (1.39)

around the equilibrium point (xi,
dxi

dt
) = (xi, 0) [89]. The size of the Bullwhip effect depends on

the network topology and the adaptation of production rates. Instability condition for the case of a

sequential supply chain, see Figure 1.2a, and feedback (1.39) was shown in [69]:

Theorem 1.2.6. Variations in the consumption rate are magnified under the instability condition:

τi > εiTi(βi + εi/2). (1.40)

This condition implies that the Bullwhip effect occurs, if the adaptation time τi is too large, if there

is no adaptation to some desired production speed (corresponding to εi = 0), or if the production

management reacts too strong to deviations of the actual stock level xi from the desired one x0
i (cor-

responding to small value of Ti).

In the damped oscillator model the dynamics of a logistics network is represented by the flow of

products and by the adaptation of the production rates. The model can be extended to cover transport

delays [151] and to a macroeconomic model with different economic sectors [69]. This approach

contains qualitative models for the analysis of the Bullwhip effect, that may occur in a supply chain.

Multilevel network model

We consider a multilevel network consisted of logistics network, information network and financial

network [108], [107] and [106]. Logistics locations that compose this supply chain compete with

each other. The commodity is homogeneous. Manufactures produce goods and sell them to retailers.

Retailers deliver then goods to consumers at demand markets. The main aim is to achieve stable

behaviour of the material flows between locations and of the prices for the products.

We use the following notation for the logistics locations and delivery sizes: i is the number of a

producer (manufacturer), i = 1, ..., np, j is the number of retailer, j = 1, ..., nr, l is the number of a

consumer, l = 1, ..., nc, y1
ij is a nonnegative size of delivery between producer i and retailer j, y2

jl is a

nonnegative size of delivery between retailer j and consumer l, Y 1 = (y1
ij)i=1,...,np;j=1,...,nr ∈ Rnp×nr

+

is the overall delivery between producers and retailers, Y 2 = (y2
jl)j=1,...,nr;l=1,...,nc ∈ Rnr×nc

+ is the

overall delivery between retailers and consumers, yi is the overall amount of produced goods by

manufacturer i, y = (y1, ..., yi, ..., ynp) ∈ Rnp

+ is the overall amount of produced goods.

The logistics network consists of 3 levels of nodes: manufactures, retailers and consumers. The

nodes are connected by edges describing material flows between manufacturers and retailers (y1
ij),

and retailers and consumers (y2
jl).

To describe the financial network we use the following notation: π1ij is the product price of man-

ufacturer i associated with retailer j, π1i ∈ Rnp

+ is the price of manufacturer i for the product,

π1 = (π11, π12, ..., π1np) ∈ Rnp

+ are the prices of all manufacturers; π2j is the price of retailer j,

π2 = (π21, π22, ..., π2nr) ∈ Rnr
+ are the prices of all retailers; π3l is the true price for the product as

perceived by consumer l, π3 = (π31, π32, ..., π3nc) ∈ Rnc
+ .

Then the financial network consists of the nodes representing the same logistics locations but where

the edges denote the prices for the products.

The information network consists also of the same logistics locations but is now bidirectional and

shows delivery and price information over the time in order to adjust delivery size and prices for

obtaining equilibrium, i.e. constant delivery sizes and prices.

Dynamics of the price π3k is given as follows

π̇3k =

{
dl(π3) −

∑nr

j=1 y2
jl, if π3l > 0,

max{0, dl(π3) −
∑nr

j=1 y2
jl}, if π3l = 0,

(1.41)
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1.2. Review of the known modelling approaches

where dl is a demand function that depends on the price π3l. Thus, the change in the price is the

difference between the demand and the available amount of goods at the consumers. The second

equation in (1.41) guarantees that the price does not become negative.

Dynamics of the price π2l is given by

π̇2j =

{ ∑nc

l=1 y2
jl −
∑np

i=1 y1
ij, if π2j > 0,

max{0,∑nc

l=1 y2
jl −
∑np

i=1 y1
ij}, if π2j = 0.

(1.42)

The change in price is now the difference between the available amount of goods at the manufacturers

and at the retailers.

Dynamics of the delivery size y2
jl is described in the following way

ẏ1
jl =

{
π3l − θjl(Y

2) − π2j, if y2
jl > 0,

max{0, π3l − θjl(Y
2) − π2j}, if y2

jl = 0,
(1.43)

where θjl(Y
2) are the transportation costs. The change in the delivery size is then the difference

between the price the consumers are ready to pay and the transportation costs together with the price

of a retailer. The second equation in (1.43) guarantees that the delivery size is not negative.

Consider production cost function ηi = ηi(Y
1) and transportation cost function θij = θij(y

1
ij). The

overall cost of a manufacturer is the sum of production costs and transportation costs. The price for

the product of the manufacturer is the marginal costs of production and transportation:
∂ηi(Y

1)

∂y1
ij

+

∂θij(y
1
ij)

∂y1
ij

. The costs of the retailer for handling are denoted by θj = θj(
∑np

i=1 y1
ij) = θj(Y

1).

Dynamics of the material flows between the manufacturers and the retailers is given by the difference

between the price of retailer and the marginal costs of the retailer and the manufacturer:

ẏij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π2j −

∂θj(Y
1)

∂y1
ij

− ∂ηi(Y
1)

∂y1
ij

−
∂θij(y

1
ij)

∂y1
ij

, if y1
jl > 0

max{0, π2j −
∂θj(Y

1)

∂y1
ij

− ∂ηi(Y
1)

∂y1
ij

−
∂θij(y

1
ij)

∂y1
ij

}, if y1
jl = 0.

(1.44)

To describe the overall dynamics of the network given in (1.41)-(1.44) we take X = (Y 1, Y 2, π2, π3) ∈

K ≡ Rnpnr+nrnc+nr+nc

+ , F (X) ≡ (Fij, Fjl, Fj, Fl), where Fij ≡
∂ηi(Y

1)

∂yij

+
∂θij(y

1
ij)

∂y1
ij

+
∂θj(Y

1)

∂y1
ij

−π2j;

Fjl ≡ π2j + θjl(Y
2) − π3l; Fj ≡ ∑np

i=1 y1
ij −

∑nc

l=1 y2
jl; and Fl ≡

∑nr

j=1 y2
jl − dl(π3). Then we can

represent the dynamics as the projected dynamical system (PDS) [109]

Ẋ =
∏

K
(X,−F (X)), X(0) = X0 (1.45)

where
∏

K is a projection operator of −F (X) onto K at X and X0 = (Y 10
, Y 20

, π2
0, π3

0) is an initial

condition. Note that this dynamical system has the discontinuous right-hand side as we guarantee in

(1.41)-(1.44) that all the variables are nonnegative. Under assumption that functions ηi are additive

and have bounded second-order derivative, functions θij , θj have bounded second-order derivative

and θjl, θl have bounded first-order derivative there exists a unique solution of (1.45) for any X0 ∈ K.

Dynamical system (1.45) allows to study stability of the given logistics network. The following

theorem establishes condition for stability of the system (1.45), see [108, Theorem 4].
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Theorem 1.2.7. Suppose that the production cost functions ηi are additive, internal production cost
function η1

i , transportation cost functions θij , θj are convex, θjk are monotone increasing and demand
functions dl are monotone decreasing of the demand market prices, then the dynamical system (1.45)

underlying the supply chain is stable.

The given modelling approach allows to study three different levels of operation of a logistics net-

work: logistical, financial and information. An approach was introduced for three types of locations

but can be extended for an arbitrary number of location types and to cover uncertainties like uncer-

taint customer demand [55]. The behaviour of the logistics networks can be described as a projected

dynamical system. The discontinuity of the right-hand side of (1.45) does not allow to apply classical

tools for the stability analysis.

Modelling with partial differential equations

Here we investigate the dynamics of the material flows between locations using partial differential

equations [58] and the conservation law of material flow [6], [64], [65], [71] and [112]. This mod-

elling approach is usually used to pose optimization problems to minimize the queue length or to

maximize the outflow of goods.

In the model introduced in [65] a logistics network is represented as a finite connected graph (V, E)
[68]. Each i ∈ V corresponds to a logistic location and fi is a material flow on it. Locations are

connected to each other at vertices j ∈ E. Each location consist of a processor that has fixed constant

processing time τi, size(length) li and maximal capacity αi. The location is modelled by a finite

interval [ai, bi], where x ∈ [ai, bi] is the processing stage of a material at location i. Its queue qi is

located at x = ai. The density of material ρi(x, t) for location i at time t and stage x ∈ [ai, bi] satisfies

the advection equation (conservation law) with initial conditions ρi,0(x), see [112]:

∂tρi + ∂xfi(ρi) = 0, t ≥ 0, (1.46)

fi(ρi) := min

{
li
τi

ρi, αi

}
, (1.47)

ρi(x, 0) = ρi,0(x) ∈ [ai, bi]. (1.48)

The governing equation for the corresponding queue qi(t) depends on the connections of the vertex.

In the simplest possible case with one incoming and one outgoing link the queue qi buffers possible

demands for the processor i

∂tqi(t) = fi−1(ρi−1(bi−1, t)) − fi(ρi(ai, t)), t > 0, (1.49)

qi(0) = qi,0. (1.50)

The boundary condition for the outgoing location i at x = ai:

fi(ρi(ai, t)) =

{
min {fi−1(ρi−1(bi−1, t)), αi} , qi(t) = 0,
αi , qi(t) > 0.

(1.51)

To define the solution for (1.46)-(1.51), according to [64], we give first the notions of a solution for

a single node without coupling, i.e. for (1.46)-(1.48), and of a solution for the dynamics on an edge

(1.49)-(1.51).

Consider the Cauchy problem:

∂tρ(x, t) + ∂xf(ρ) = 0, ρ(x, 0) = ρ(x). (1.52)
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Definition 1.2.8. A locally bounded and measurable function ρ(x, t) on R×R+ is called an admissible

weak solution to (1.52), if for any non-decreasing function h(ρ) and any smooth non-negative function
φ with compact support in R × R+,

∞∫
0

∞∫
−∞

(I(ρ)φt + F (ρ)φx)dxdt +

∞∫
−∞

I(ρ0)φ(x, 0)dx ≥ 0,

where I(ρ) =
∫ ρ

h(ξ)dξ and F (ρ) =
∫ ρ

h(ξ)df(ξ).

Compact support of a function is the set of points where the function is not zero.

Definition 1.2.9. Let functions ρ1(x, t), ρ2(x, t) in L1([a, b] × R+) be given such that ρj(·, t) has
bounded variation. Let q(t) := q2(t) ≥ 0 be a an absolutely continuous function on [0, T ] for T
sufficiently large and let fj(ρj) := min{μj, ρj}. Then we call (ρ1, ρ2, q) an admissible solution at the

vertex for all times 0 ≤ t ≤ T , if and only if

d

dt
q(t) = f1(ρ1(b−, t)) − f2(ρ2(a+, t)) for almost all t

f2(ρ2(a+, t)) =

{
μ2, q(t) > 0,
min{μ2, f1(ρ1(b−, t))}, q(t) = 0.

L1([a, b]×R+) is the space of functions ρ : [a, b]×R+ → R with
∫

[a,b]×R+

|ρ(s)| < ∞, a+ is the right

limit of a and b− is the left limit of b. Function ρj has bounded variation on [a, b] if the total variation

over all partitions P = {x0, . . . , xnP
} of [a, b] given by sup

P

nP−1∑
k=1

|ρj(xk+1) − ρj(xk)| is bounded.

Solution of the whole network is then defined as follows.

Definition 1.2.10. Let T > 0, values qi,0 ≥ 0, i = 2, . . . , n and functions ρi,0 : [ai, bi] → R in L1

and with bounded variation for all i = 1, . . . , n be given. The supply chain problem then reads with
fi = min{μi, ρi} and ∀i = 1, . . . , n ∀(x, t) ∈ (aj, bj) × (0, T ), ∀i = 2, . . . , n

∂tρi + ∂xfi(ρi) = 0, ρi(x, 0) = ρi,0(x),

∂tqi(t) = fi−1(ρi−1(b−, t)) − fi(ρi(a+, t)).

We call a family ρi : [ai, bi] × [0, T ] of L1 functions with bounded variation and functions qj , abso-
lutely continuous, an admissible solution to the network problem, if for each vertex, (ρj, qj)j is an
admissible solution at the node in the sense of Definition 1.2.9, and if for all i = 2, . . . , n, qi(0) = qi,0

and if for all i, ρi is an admissible weak solution for the processor in the sense of Definition 1.2.8.

Condition for the existence of solution for a network with linear structure, see Figure 1.2a, is given in

the following theorem, see [64, Theorem 3.13].

Theorem 1.2.11. Consider a network of n processors and assume:
(A1) the processors are consecutively labelled, such that processor i − 1 is connected at x = bi−1 to
processor i;
(A2) li/τi = 1 for all i;
(A3) ρi,0(x) ≤ αi for almost all x ∈ [ai, bi] and all i.
Consider the problem (1.47) and (1.52).
Assume that the initial data (ρ1,0)(x), . . . , ρn,0(x)) are the step functions. Then the problem (1.47),
(1.52) has a weak admissible solution constructed by admissible network solutions in the sense of
Definition 1.2.10.
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More general interconnections are considered in [65].

Optimization problems considered in this model include minimization of the queue length or maxi-

mization of outflow of the goods by controlling the production velocity or choosing the route for the

flow [6]. In [40] the Bullwhip effect was studied.

This modelling approach considers dynamics of logistics networks as a continuous flow of goods

between and inside locations. The model covers different properties of logistic locations like process-

ing time, queue length and capacity. It is possible to consider different optimization problems [98].

Extension of the model on multiple products is considered in [9]. The use of numerical methods for

solving optimization problems with PDEs causes long processing time, [65]. But if some restrictions

on the model are introduced, then it is possible to find numerically quasi-optimal solutions.

1.2.3 Hybrid deterministic systems

Shipping of finished products, switching of production rate cause discontinuous changes at the stock

level of locations or in the behaviour of production facilities. Here we will show how such discontin-

uous (hybrid) effects can be described by switched or more generally by hybrid dynamical systems

[162].

Modelling by interconnected hybrid dynamical systems

The modelling and analysis framework using hybrid dynamical systems is similar to continuous dy-

namical systems in (1.32). Again the network is represented as an interconnection of several subsys-

tems that describe logistics locations. However, the dynamics of a subsystem is more general now

and is allowed to be additionally discontinuous (discrete) at some time instants. These discontinuities

arise when there is an immediate change (jump) in the state of a location. This permits, for instance,

a more detailed description of transportation processes. In particular, if the state represents the stock

level, then modelling of discrete shipments of material is possible. Moreover, according to the state

and the demand, a distinction of the kind of shipping can be drawn, e.g. shipping by a truck, a ship or

an airplane.

To model such a hybrid behaviour we use the notion of hybrid dynamical systems from (1.4). We use

the set MCi
⊂ R

∑
i Ni+

∑
i Mi to define condition, when the state xi ∈ χi ⊂ RNi

+ , respectively the stock

level of location i, changes continuously. Here χi describes the values that the state xi can take. We

denote by ui ∈ Ui ⊂ RMi the input of the ith location, where Ui describes the values that the input

can take. Then the dynamics of location i is given by

ẋi = f̃i(x1, . . . , xn, ui), (x, u) ∈ MCi
, (1.53)

where x := (xT
1 , . . . , xT

n )T , u := (uT
1 , . . . , uT

n )T . Here again as in continuous systems in (1.31) and in

[42], [43] and [44], we can choose, for example, function

f̃i(x1, . . . , xn, ui) := ui +
∑
j,j �=i

cjifj(xj(t)) − fi(xi(t)),

where fi(xi(t)) := αi

(
1 − e−xi(t)

)
and αi describes the maximal production rate.

The discontinuous changes in the state occur, if (x, u) ∈ MDi
⊂ R

∑
i Ni+

∑
i Mi . And the jumps in the

state follow the equation

x+
i = g̃i(x1, . . . , xn, ui), (x, u) ∈ MDi

. (1.54)
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Function g̃i describes the discrete changes at location i. For example, think of a truck that arrives

to location i, and delivers or takes material from it. In this case the time needed to load or upload

the truck can be neglected with respect to the time that the location needs to produce one unit of

material or the truck needs to transport material to another location. Furthermore, the change in the

state depends usually on the state of the location and the truck’s capacity. For example, if the capacity

of the truck arriving to location i is denoted by b and if the truck picks up the ready-made material

from location i, then g̃i(x1, . . . , xn, ui) = xi − min{b, xi} and

x+
i = xi − min{b, xi}.

If the truck delivers material to location j, then g̃j(x1, . . . , xn, uj) = xj + min{b, xi} and

x+
j = xj + min{b, xi}.

As we will see in Section 2.1, we can describe the overall behaviour of such logistics network as one

large hybrid system (1.4)

ẋ = f̃(x, u), (x, u) ∈ MC ,
x+ = g̃(x, u), (x, u) ∈ MD,

(1.55)

with χ := χ1 × . . . × χn, U := U1 × . . . × Un, MC := ∩MCi
, MD := ∪MDi

, f :=(fT
1 , . . . , fT

n )T and

g:=(g̃T
1 , . . . , g̃T

n )T , where

g̃i(x, u) :=

{
gi(x, ui), if (x, u) ∈ MDi

,
xi, otherwise .

The properties of such a description of an interconnection of hybrid systems we will discuss in Chap-

ter 2.

The perturbation in external inputs like fluctuation of customer demand may lead to instability of

such network. Thus, the concept of input-to-state stability introduced in (1.10) needs to be applied to

analyse stability of such networks. In this analysis we assume that each individual location i can be

autonomously controlled to achieve input-to-state stability of its dynamics, i.e. according to (1.10):

|xi(t, k)| ≤ max{βi(|x0
i |, t, k), max

j,j �=i
γij(‖xj‖(t,k)), γ(‖ui‖(t,k))}

holds for all times t ≥ 0, number of intervals between the jumps k ≥ 0, inputs from other subsystems

xj and external inputs ui.

However, this property does not in general guarantee that the interconnection of these ISS subsystems

will be ISS, see Example (2.4.16). This may occur due to non-effective cooperation between the lo-

gistic locations. To check, whether the network is nevertheless ISS, we can use similar approach as in

interconnected continuous systems in Section 1.2.2. We consider the gain matrix Γ := (γij)n×n. This

matrix describes the interconnection structure of the network. And we consider the corresponding

matrix operator Γ : Rn
+ → Rn

+. As corollary of Theorem 2.4.5 in Chapter 2, it can be shown that the

following small gain theorem guarantees ISS of the interconnected hybrid system (1.55):

Theorem 1.2.12. Consider interconnected system (1.54). Assume that MDi
= MD, i = 1, . . . , n and

that the set {f(x, u) : u ∈ U ∩ εB} is convex for each x ∈ χ, ε > 0. If all subsystems in (1.53) are
ISS and Γ(s) �≥ s for all s, s �= 0, then the system (1.55) is ISS.

Due to the combination of discrete and continuous dynamics, this modelling approach has more ca-

pabilities in precise description of logistics networks than those based only on continuous or discrete

25



Chapter 1. Mathematical models of logistics networks

dynamical systems introduced in the previous sections. For example, the possibility that the discontin-

uous changes can be taken into account enables to model additional characteristics like transportation

processes. However, the nature of hybrid systems implies more intricated analysis of their dynamics.

In Chapter 2 we will discuss more precisely hybrid systems, their interconnections and show how sta-

bility of them can be established using the small gain condition. Furthermore, we will show how the

Lyapunov technique, that is being effectively exploited in studying stability of continuous systems,

can be applied to establish ISS of hybrid systems.

Switched system

We consider manufacturing networks where the machines switch between processing different types

of products. Such a switching is modelled using logical-differential equations [136], [137] or billiards

[149], [120], [119]. The main problem is to schedule the switching to achieve stable behaviour.

We illustrate this modelling approach by means of logical-differential equations [136]. There are P
part-types denoted by 1, . . . , P and n machines denoted by the set M = {1, . . . , n}. Parts of type

p are processed at the machines μp,1, . . . , μp,np where μp,i ∈ M . The parts may visit the machine

more then once and then μp,i = μp,j . Raw parts of type p arrive to the system at the machine μp,1 at a

constant rate up > 0. Parts of type p to be processed at the ith machine are waiting in the buffer bp,i.

From this buffer the products are processed at a given constant rate αp,i > 0.

The level (state) of the buffer bp,i at time t is denoted by xp,i(t). Part of the type p needs a transporta-

tion time τp,i ≥ 0 to get from the machine i to the machine i + 1. The buffer of the machine l is then

given by Bl := {bp,i : μp,i = l}. To switch from the processing of the part of one type to the part of

another type the machine l needs a set-up time δ0
l > 0.

The dynamics of the system we describe using logical-differential equations . The state of the machine

l is described by a symbolic variable ql(t) that is given as follows

ql(t) :=

{
0, if the machine l does not work at time t,
bp,i, if the machine l works with the buffer bp,i at time t.

(1.56)

The amount of parts of the type p fully processed at time t is denoted by yp(t).
The change of the state of the buffer bp,1 is described as follows

ẋp,1(t) :=

{
up − αμp,1 , if qμp,1(t) = bp,1,
up, if qμp,1(t) �= bp,1.

(1.57)

The change of the state of the buffer bp,i, i = 2, . . . , np is given by

ẋp,i(t) :=

⎧⎪⎪⎨⎪⎪⎩
αμp,i−1

− αμp,i
, if qμp,i

(t) = bp,1 and qμp,i−1
(t − τp,i−1) = bp,i−1,

−αμp,i
, if qμp,i

(t) = bp,1 and qμp,i−1
(t − τp,i−1) �= bp,i−1,

αμp,i−1
, if qμp,i

(t) �= bp,1 and qμp,i−1
(t − τp,i−1) = bp,i−1,

0, if qμp,i
(t) �= bp,1 and qμp,i−1

(t − τp,i−1) �= bp,i−1.

(1.58)

The change in the overall amount of parts of type p (cumulative output) processed by the machine μp,i

is given as follows

ẏp,i(t) :=

{
αμp,i

, if qμp,1(t) = bp,1,
0, if qμp,1(t) �= bp,1.

(1.59)

The rule for machine l for switching from processing parts from buffer b ∈ Bl to buffer b′ ∈ Bl is

given by the set Tl(b → b′) and functions Fl : ([ql(·), xb(·)]|t0) → [δ0
l ,∞). Then the feedback policy
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is given by

if (ql(t) = b) and [ql(·), xb(·)]|t0 ∈ Tl(b → b′) then (1.60)⎛⎝ δl(t) := Fl([ql(·), xb(·)]|t0);
ql(t̂) := 0 ∀t̂ ∈ (t, t + δl(t)];
ql(t + δl(t) + 0) := b′

⎞⎠ . (1.61)

The state of the manufacturing system at time t is then described by vectors q(t) = [q1(t), . . . , qn(t)],
x(t) = {xp,i(t)} and y(t) = {yp,i(t)}.

This model is used for the calculating of stable or optimal scheduling policies by choosing appropriate

arrival rates up and set-up times δl ≥ δ0
l .

Definition 1.2.13. The closed-loop system (1.56)-(1.60) is said to be stable if for any solution
[q(t), x(t)] to the system with initial condition x(0) = x0, y(0) = 0, q(t) = 0 ∀t < 0, the vector
function x(t) is bounded on [0,∞) by a constant L(x0) > 0.

Definition 1.2.14. The closed-loop system (1.56)-(1.60) is said to be regular with the production

levels d1, d2, . . . , dP and the scheduling period T if it is stable and the following condition holds:
For any solution [q(t), x(t)] to the system with initial conditions x(0) = x0, y(0) = 0, q(t) = 0
∀t < 0, the output y(t) satisfies:

lim
j→∞

(yp,i((j + 1)T ) − yp,i(jT )) = dp,∀p, ∀i.

Definition 1.2.15. Assume that d1, d2, . . . , dP are given. The minimal time T0 for which there exist
constants u1, . . . , uP and a feedback policy of the form (1.60) such that the closed-loop system is
regular with the production levels d1, d2, . . . , dP and the scheduling period T0, is called the minimal

scheduling period of the system with the production levels d1, d2, . . . , dP .

The following theorem provides conditions for the regularity of system (1.56)-(1.60) and an estimate

for the minimal scheduling period, see [137, Theorem 3.1].

Theorem 1.2.16. Consider the flexible manufacturing system defined by its production paths
μp,1, . . . , μp,np of the part-types, machine rates αp,i, minimal machine set-up times δ0

l , and transporta-
tion delays τp,i. Let d1, d2, . . . , dP be given. Then, the following statements hold:
(1) The minimal scheduling period T0 of this system with the production levels
d1, d2, . . . , dP is defined by

T0 = max
l=1,...,n

⎡⎣klδ
0
l +

∑
b(p,i)∈Bl

dp

αp,i

⎤⎦ ,

where kl is the number of buffers in Bl.
(2) For any T ≥ T0, the closed-loop system with the part arrival rates up = dp

T
is regular with

the production levels d1, d2, . . . , dP and the scheduling period T if:
the feedback policy is defined by:

if ql(t) = b(b, i) and
(

xp,i(t) = 0 or t − θl[ql(·)|t0] =
dp

αp,i

)
,

then

⎛⎝ δl(t) := δn
l + dp

αp,i
− t + θl[ql(·)|t0]

ql(t̂) := 0 ∀t̂ ∈ (t, t + δl(t)]
ql(t + δl(t) + 0) := next[b(p, i)]

⎞⎠ ,
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where θl[ql(·)|t0](t) := inf{t0 ≤ t : ql(s) = ql(t) ∀s ∈ (t0, t]};

δn
l :=

T − ∑
b(p,i)∈Bl

dp

αp,i

kl

;

and cycling switching order is given by: b1 �→ b2 . . . bkl
. . . b1.

Here next[b] is the buffer that is the next to b in the cycling switching order.

This modelling approach allows to describe manufacturing networks that possess switching between

processing of different types of products. Multiple processing of the product at the same machine is

possible. The model allows to calculate processing policy of the machine to obtain stable or optimal

behaviour. Queues and time delays are covered by the model. Queues are modelled by buffers and

time delays by transportation times. The hybrid nature of the model does not allow to apply methods

from continuous systems during their analysis. Moreover, chaotic effects (’strange’ billiards) may

occur due to the switching [119].

1.2.4 Stochastic models
Here we model logistics networks that experience random effects due to the fluctuation of customer

demand or the changes in the manufacturing processes using the theory of stochastic systems [77],

[12] and [26].

Modelling as a stochastic dynamical system

Stochastic dynamical systems describe behaviour of logistics networks driven by an unknown cus-

tomer demand [94], [161], [56] and [23]. Usually, such models are used to consider optimization

problems under certain assumptions on the unknown demand, e.g. maximum possible value. In [94]

the network is modelled as a stochastic discrete-time controlled dynamical system [19]:

x(t + 1) = f̃(x(t), u(t), d(t)), (1.62)

where x(t) ∈ Rnx denotes the state of the system, u(t) ∈ Rnu the control input and d(t) ∈ Rnd the

uncertain disturbances in customer demand at time t.
The linear map f̃ : Rnx+nu+nd −→ Rnx depends on the structure of the network. The structure is

described by a directed and connected graph G = (V, E), where V := {v1, . . . , vnV
} denotes the

set of vertices and represents the logistics locations. E := {e1, . . . , ens} ⊆ V × V denotes the arcs

and represents the material flows and additional arcs. R := {r1, . . . , rnr} ⊆ V × V represents the

informational flows of orders. If there exists an arc (material flow) from node v to node w in E, then

there exists an arc (information flow) from w to v in R.

In order to obtain a first-order difference equation (1.62), the authors introduce additional artificial

nodes between two nodes in such way that the transportation time between any nodes(real and ar-

tificial) is exactly one time unit, see [94]. Thus an arc ei ∈ E is replaced by a path(chain) of arcs

Ei := {ei1, . . . , eiτei
} and the set of additional nodes is defined by Vi = {σi1, . . . , σiτei

}, where

τei
∈ {1, 2, . . . , } is the transportation time of arc ei. In the same way arcs of the information flows

are replaced by appropriate paths. The new vertex set is Ṽ , the new arc set for material flow is Ẽ and

the new set for the information flow is R̃.

The state x(v)(t) of location v is its inventory level at time t. Its input is u(v)(t) = [u
(v)
E (t), u

(v)
R (t)]T ∈

Rδ̌(v)+δ̌′(v)

, where δ̌(v) is the number of all incoming material flow arcs and δ̌′
(v)

is the number of all

28



1.2. Review of the known modelling approaches

incoming information flow arcs. The input corresponds to the flow on the incoming arcs. Its output is

y(v)(t) = [y
(v)
E (t), y

(v)
R (t)]T ∈ Rδ̂(v)+δ̂′

(v)

and corresponds to the flow on the outgoing arcs at time t.
The dynamics is described then by the map

x(v)(t + 1) = x(v)(t) + εδ̌(v) · u(v)
E (t) − εδ̂(v) · z(v)

E (t), (1.63)

y
(v)
R (t) = z

(v)
R (t), (1.64)

y
(v)
E (t) = z

(v)
E (t), (1.65)

where εk ∈ Rk denotes a row vector of ones. The values z
(v)
E (t) are the goods that node v decides to

ship to its customers and z
(v)
R (t) are the orders that node v decides to place to each of its suppliers.

Thus, the dynamics of the network defined in (1.63) is determined by the change of inventory level

due to arriving of material and due to shipping of goods. The values zE and zR are control variables

for the system.

The nodes vC ∈ V with no outgoing material flow arc are called consumers and form set VC . They

generate the uncertain demand d(vC) and thus are given by

y
(vC)
R (t) = d(vC)(t). (1.66)

The nodes vM ∈ V with no incoming material flows act as sources of infinite supply capacity and

form set VM . They transform incoming orders into outgoing goods:

y
(vM )
S = u

(vM )
R (t). (1.67)

The dynamics of the whole system is derived by connecting the corresponding inputs u(v) and the

outputs y(v). Thus, they are eliminated. Let the nodes vi ∈ Vz := Ṽ \ (VC ∪ VM), wj ∈ Vx :=
V \ (VC ∪ VM) and w′

k ∈ VC be indexed such that 1 ≤ i ≤ |Vz|, 1 ≤ j ≤ |Vx| and 1 ≤ k ≤ |VC |.
Defining x(t) := [x(w1), . . . , x(w|Vx|)]T as the state vector, u(t) := [z1(t), . . . , z|Vz |(t)]

T with zi(t) :=

[[z
(vi)
S ]T [z

(vi)
R (t)]] as the input vector, and d(t) := [[d(w′

1)(t)]T . . . [d
(w′

|VC |)(t)]T ]T as the disturbance

vector gives a first-order difference equation of the form (1.62). As the equations (1.63) are linear,

the dynamics of the entire system can be written as (1.5)

x(t + 1) = Ax(t) + Bu(t) + Ed(t). (1.68)

The model allows to find the optimal control u(t) for the network that guarantees the minimum of

costs and the maximum of demand satisfaction. We consider a discrete optimization problem with the

horizon S ∈ N that looks for the optimal input sequence (u(s))S
s=0 and is described on the step s ∈ N

as

J∗(s)(x(s)) = min
u(s)

J (s)(x(s), u(s)) (1.69)

such that for all d(s) ∈ D the following holds

Fx(s) + Gu(s) ≤ g, (1.70)

Ax(s) + Bu(s) ∈ X (s), (1.71)

where the goal function J∗ is given by

J (s)(x(s), u(s)) := max
d(s)∈D

{|Wx(s)|1 + |Ru(s)|1 + J∗(s)(x(s+1))(Ax(s) + Bu(s) + Ed(s))}. (1.72)
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This goal function minimizes the costs given at the step s by Wx(s), W ∈ Rnx×nx for the state,

Ru(s), R ∈ Rnu×nu for the input and maximizes the satisfaction of the customer demand given by

Ed(s). The disturbance of customer demand is bounded and given on D := {d : Λd ≤ γ} ⊂ Rnd ,

where Λ ∈ Rnγ×nd , γ ∈ Rnγ , nγ ∈ N ∪ {0}. Inequality (1.70) describes the constraint on the state

and the input, where F ∈ Rng×nx , G ∈ Rng×nu , ng ∈ N∪{0}. X is the set of the feasible states given

by X (s) := {x ∈ Rnx : ∀d ∈ D ∃u ∈ Rnu with Fx + Gu ≤ g and Ax + Bu + Ev ∈ X (s+1)}. The

initial state vector is given by x(0) = x(t0) := x(0). The boundary condition is given by J∗S(xS) = 0
and X (S) = {x ∈ Rnx : Fx ≤ g}. The finite time S-step optimal control u∗ : Rnx → Rnd is given by

the first component u(0) for a fixed horizon S and the infinite-time optimal control law is its limit for

S → ∞.

Such discrete optimization problems are usually solved using the dynamic programming [18]. Fur-

thermore, in [19, Theorem 3] it was proved that each dynamic programming step can be solved by a

multi-parametric linear program.

Theorem 1.2.17. The solution u∗ with parametric uncertainties in the B matrix only, is a piecewise
affine function of x(0) ∈ χ0, where χ0 is the set of initial states for which a solution to (1.69)-(1.71)

exists. It can be found by solving a multi-parametric linear program.

This approach takes into account an uncertainty in a customer demand. The model deals with trans-

portation times by adding "delay nodes". Such a transformation allows to consider only networks

with linear dynamics.

Multiclass queueing networks and fluid approximations

Multiclass queueing networks are a well-established modelling approach to capture stochastic events

that influence the discrete material flow of a supply chain [36], [145], [148]. The main problem is to

arrange the production rates and policy to achieve the bounded queue length [147]. Here only a brief

description of a multiclass queueing network is given, for details see [38].

The network consists of n locations that process P different types of products. The dynamics of

the network can be described by the following stochastic processes. The arrival process up(t) de-

scribes the number of external arrivals of type p products in the time period [0, t]. The production

process xp(t) reflects the number of finished products of type p during the first t time units. For con-

venience we assume that each type of product is produced exclusively at one location. The mapping

s : {1, . . . , P} → {1, . . . , j} determines which type is produced at which location and generates the

constituency matrix C, where cjp = 1 if s(p) = j and 0 otherwise.

After being processed, products either change their type according to a given probability or leave the

network. The routing process dl
p(n) denotes the number of type l products among the first n products

that become products of type p. As each location can produce various product types, a policy is

needed that determines in which order the products are processed. Typical examples of such service

disciplines are first-in-first-out (FIFO), priority or processor sharing. The allocation process τp(t)
denotes the total amount of time that location s(p) has devoted on producing type p products. The

initial amount of type p products is qp(0) and the number of type p products at time t is given by the

flow-balance equation

qp(t) = qp(0) + up(t) +
P∑

l=1

dl
p(xl(τl(t))) − xp(τp(t)). (1.73)

To obtain a complete description of the network dynamics further conditions on q and τ that depend

on the service discipline have to be taken into account, see e.g. [31] and [32]. The main question in
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such model is whether the network is stable. A queueing (service) discipline of a multiclass network is

stable, if the underlying Markov process describing the network dynamics is positive Harris recurrent

[38]. When there is no ambiguity in the underlying queueing discipline, we say that a queueing

network is stable, if the queueing discipline under discussion is stable. Roughly speaking (without

explaining of the Harris recurrence), a queueing network is said to be stable, if the total number of

products in the network remains bounded over all time. This can also be interpreted that the long-

run input rate of the network equals the long-run output rate. An approach to analyse the stability

of multiclass queueing networks is to rescale the stochastic processes and to take limits [38]. The

so-called fluid limit model is obtained by replacing the stochastic processes by their rates, i.e.

1
t
αp(t) → ρp,

1
t
xp(t) → μp,

1
t
ul

p(t) → γlk.
(1.74)

and by imposing additional specific conditions on the network parameters and queueing discipline,

see [38] and [39]. The flow-balance equation in the continuous deterministic fluid model takes the

form

qp(t) = qp(0) + ρk(t) +
P∑

l=1

γlpμl(τl(t)) − μpτp(t). (1.75)

Again there are additional conditions on q and τ that are specific to the service discipline, see e.g.

[31], [32]. A fluid limit model is stable, if for all p ∈ {1, . . . , P} there is a time τ > 0 such that for

any qp(·) with
∑
p

qp(0) = 1 it holds that qp(τ + ·) ≡ 0 [38].

In [39, Theorem 1.1] it was shown the following relation between stability of fluid and corresponding

multiclass queueing networks.

Theorem 1.2.18. A queueing discipline is stable, if the corresponding fluid model is stable.

In [39] several results on stability of fluid networks were proved. In particular, the following theorem

establish stability of fluid networks with different disciplines, see [39, Theorems 4.3 and 4.4]

Theorem 1.2.19. The fluid model corresponding to the First-Buffer-First- Served(FBFS) or Last-
Buffer-First-Served(LBFS) discipline is stable.

This modelling approach is suitable, if the supply chain has highly reentrant flows. Further, there

is huge variety of different service disciplines, which can be explicitly modelled in this framework.

So simulations of different scenarios allow the choice of a policy, that is suitable to the requirements.

Moreover, the strength of this approach is that analysis of the influence of stochastic uncertainties (e.g.

production times, transportations etc.) on the stability is possible by purely deterministic criteria. In

[147] the robustness of such networks is investigated using the notion of the stability radii, i.e. the

size of the smallest changes of the network parameters that destabilize the network.

1.3 Comparison of the modelling approaches
In the previous subsections we have reviewed eleven approaches for modelling of logistics networks.

For short overview of the these applicabilities, we have collected the main properties of all the models

in Table 1.1. These properties are classified in this comparison table according to ability to cover dif-

ferent logistics properties of the network, ability to describe production and transportation processes,
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type of behaviour the network possesses, type of equations that describe their dynamics, type of the

analysis and abilities to conduct planning and control. According to Table 1.1, all the approaches vary

in their characteristics, advantages and disadvantages. Thus, the choice of the model that describes

the dynamics of certain logistics network depends on the type of behaviour it possesses, its properties

and application needs.

In the following chapter we will study an approach that proposes to model logistics networks as

interconnected hybrid system (1.55) as we are interested in logistics networks that combine both

continuous and discontinuous dynamics of material flows. In particular, we will show how input-

to-state stability of a hybrid system can be established using the small gain condition and Lyapunov

methods.
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Logistical properties
Micro level x x x x x x x x

Macro level x x x x x x x x

Continuous material flow x x x x x x x x x

Discrete material flow x x x x x

Production process x x x x x x x x x x

Transportation process x x x x x x x x x

Warehouse x x x x x x x x x x

Re-entrant x x x x x x x x x

Network x x x x x x x x x x

Production process
Service disciplines x x x x x x x x

Different production rates x x x x x x x x

Different product types x x x

Transportation process
Routing disciplines x x x x x x x

Restricted capacity x x x

Transportation time x x x x x x

Behaviour
Discrete x x x x

Continuous x x x x x

Hybrid x x x x

Linear x x x x x x x x

Nonlinear x x x x x x

Deterministic x x x x x x x x x x

Stochastic x x x

Type of equation
Discrete x x x x x

Ordinary differential equation x x x x

Partial differential equation x x

Hybrid x x x x

Queue x x

Fluid x x

Analysis
Stability x x x x x x x x x x x

Input-to-state stability x x

Bullwhip effect x x x

Robustness x x x x x x x x x

Planning and control
Stabilizing control x x x

Optimal control x x x x x x

Planning x x x x x x x x x x x

Table 1.1: Classification of the modelling approaches
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Chapter 2

Stability of interconnected hybrid systems

Though a hybrid system of the form (1.55) appears to be a natural way to describe logistics networks,

its analysis is rather sophisticated due to the complex interconnection topology and hybrid effects

(Zeno solution, dwell time) occurring there.

The first notion on hybrid systems was probably given in [163] where a system with some continuous

and some discontinuous states was investigated. The change (transition) in the discrete state occurs,

when the continuous state reaches a predefined transition set. In [1], [156] authors considered hybrid

systems, where again some states are continuous and some discontinuous. But there the dynamics of

discontinuous state was described by the difference equation. In the last decades most of the authors

consider hybrid systems where each state can have both continuous and discontinuous dynamics, see

e.g. [62], [162], [131], [102], [160], [133], [67] and [35].

Starting from [99], many results were obtained in the stability analysis of hybrid systems, see for

example [73], [101], [122]. ISS was first introduced for hybrid systems in [27]. However, ISS of

interconnected systems was first studied for continuous and discrete systems, see [82], [81], [91], [3],

[29], [79], [54], [52] and [126]. The first result of the small gain type was proved for continuous

systems in [82] for a feedback interconnection of two ISS systems. The Lyapunov version of this

result is given in [81]. The small gain condition in [81] states that the composition of the gains from

the subsystems should be less than identity. The second small gain condition in [82] is similar, but it

involves the composition of the gains and of further functions of the form (id + αi). This difference

is due to the use of different definitions of ISS in both papers. Both definitions are equivalent but

the gains enter as a maximum in the first definition, and a sum of the gains is taken in the second

one. These results were generalized for an interconnection of n ≥ 2 systems in [54], [52], [126], [85]

and [86]. In [54] and [52] it was pointed out that the difference between the small gain conditions

remains, i.e., if the gains of different inputs enter as a maximum of gains in the ISS definition or a

sum of them is taken in the definition.

ISS in terms of trajectories for interconnection of two interconnected hybrid systems was firstly stud-

ied using the small gain condition in [96]. In [110] a stability condition of a small gain type was used

for a construction of an ISS-Lyapunov function of a feedback connection of two hybrid systems. An

interconnection of an arbitrary number of sampled-data systems that are a special class of hybrid sys-

tems was considered in [86]. The small gain condition was given there in terms of vector Lyapunov

functions.

In this chapter we show how stability analysis of the system (1.55) can be conducted. In particular,

we give a precise definition of the hybrid system, show how its interconnection can be described and

introduce a more general definition of input-to-state stability for hybrid systems than in (1.10). Such

formulation of ISS, that we will call mixed ISS, allows to consider more general types of intercon-
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nections, where a part of the subsystems is ISS in terms of maximizations and the rest is ISS in terms

of summations. Then we extend the small gain conditions for continuous systems to be applied to

interconnections of an arbitrary finite number of hybrid ISS systems in terms of mixed formulation

of ISS. The obtained mixed small gain condition is based on information about the interconnection

property of the network and as we will see guarantees ISS of an interconnected hybrid system. Fur-

thermore, we show how a Lyapunov technique can be applied to establish ISS of hybrid systems. At

the end of this chapter we apply this small gain condition to establish input-to-state stability of certain

subclasses of hybrid systems.

2.1 Interconnected hybrid systems

As mentioned in the previous chapter, hybrid systems combine both continuous and discontinuous

types of behaviour. The continuous dynamics of the system is usually described by ordinary differen-

tial equations and the discontinuous dynamics by an immediate change ("jump") in the state.

Consider a system that is an interconnection of n hybrid subsystems with states xi ∈ χi ⊂ RNi of the

subsystems and external inputs ui ∈ Ui ⊂ RMi , i = 1, . . . , n. The dynamics of the ith subsystem is

given by

ẋi = fi(x1, . . . , xn, u1, . . . , un), (x1, . . . , xn, u1, . . . , un) ∈ Ci,
x+

i = gi(x1, . . . , xn, u1, . . . , un), (x1, . . . , xn, u1, . . . , un) ∈ Di,
(2.1)

where fi : Ci → RNi , gi : Di → χi and Ci, Di are subsets of χ1 × . . . × χn × U1 × . . . ×
Un. We will consider further a particular case with fi(x1, . . . , xn, u1, . . . , un) = fi(x1, . . . , xn, ui),
gi(x1, . . . , xn, u1, . . . , un) = gi(x1, . . . , xn, ui), i.e. the case where the ith input ui influences only the

ith the subsystem.

Each hybrid subsystem is described by (fi, gi, Ci, Di, χi, Ui). The function fi describes the continuous

dynamics defined on the set Ci, the function gi describes the instantaneous jumps defined on the set

Di. If (x1, . . . , xn, u1, . . . , un) ∈ Ci, then system (2.1) "flows" continuously and the dynamics is

given by the function fi. If (x1, . . . , xn, u1, . . . , un) ∈ Di, then the system jumps instantaneously

according to the function gi. In points in Ci ∩ Di the system may either jump or flow, the letter only

if the flowing keeps (x1, . . . , xn, u1, . . . , un) ∈ Ci. This yields the non-uniqueness of solutions. In

Proposition 2.1.1 we recall the condition that guarantees the existence of solutions of a hybrid system

and in Proposition 2.1.2 we recall the uniqueness condition. However, first we need to define the

notion of the solution of the hybrid system.

Define χ := χ1 × . . . × χn, U := U1 × . . . × Un. Solutions of the hybrid systems are usually

defined on hybrid time domains. Hybrid time domains are defined as follows, cf. [131], [60], [110].

A subset R+ × (N ∪ {0}) is called hybrid time domain denoted by dom, if it is given as a union of

finitely or infinitely many intervals [tk, tk+1] × {k}, where the numbers 0 = t0, t1, . . . form a finite

or infinite, nondecreasing sequence of real numbers. The ”last” interval is allowed to be of the form

[tK , T ) × {K} with T finite or T = +∞. Roughly speaking, the hybrid time domain contains two

types of information: the whole time and the time of the state jumps.

One of the reasons to introduce the hybrid time domains was the ability to study the robustness of

solutions of hybrid systems by comparing the neighbour trajectories. Without taking into account

the jump times of solution trajectories, the measured pointwise distance between trajectories that are

"graphically close" may be arbitrarily large at the points where one solution jumps and the neighbour

one does not. This yields that these trajectories do not converge in terms of pointwise distance [125],

[60]. Thus, the analysis of solution properties like the robustness becomes rather sophisticated. On
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the other hand, the hybrid time domain concept allows to study the convergence of "graphically close"

trajectories using the notion of graphical convergence, e.g., [125], [60] and [63].

The hybrid signal is a function defined on the hybrid time domain. For the ith subsystem the hybrid
input

vi := (xT
1 , . . . , xT

i−1, x
T
i+1, . . . , x

T
n , uT

i )T , (2.2)

consists of the hybrid signals ui : dom ui → Ui ⊂ RMi , xj : dom xj → χj, j �= i such that

ui(·, k), xj(·, k) are Lebesgue measurable and locally essentially bounded for each k. We call xj the

internal input for the subsystem i and ui is called the external input. For a signal ui : dom ui → Ui ⊂
RMi we define its restriction to the interval [(t1, j1), (t2, j2)] ∈ dom ui by

ui[(t1,j1),(t2,j2)](t, k) =

{
ui(t, k), if (t1, j1)≤(t, k)≤(t2, j2),
0, otherwise,

where for the elements of the hybrid time domain we define that (s, l) ≤ (t, k) means s + l ≤ t + k.

For convenience, we denote ui(t,k) := ui[(0,0),(t,k)].

The hybrid arc of the subsystem i is such a hybrid signal xi : dom xi → χi that xi(·, k) is locally

absolutely continuous for each k. Define x := (xT
1 , . . . , xT

n )T ∈ χ ⊂ RN , u := (uT
1 , . . . , uT

n )T ∈ U ⊂
RM , N :=

∑
Ni, M :=

∑
Mi. A hybrid arc and a hybrid input is a solution pair (xi, vi) of the ith

hybrid subsystem (2.1), if

(i) dom xi = dom ui = dom xj, j �= i and (x(0, 0), u(0, 0)) ∈ Ci ∪ Di,
(ii) for all k ∈ N ∪ {0} and almost all (t, k) ∈ dom xi, for (x(t, k), u(t, k)) ∈ Ci, it holds

ẋi(t, k)=fi(x1(t, k), ..., xn(t, k), ui(t, k)), (2.3)

(iii) for all (t, k) ∈ dom xi such that (t, k + 1) ∈ dom xi, for (x(t, k), u(t, k)) ∈ Di it holds

xi(t, k + 1)=gi(x1(t, k), ..., xn(t, k), ui(t, k)). (2.4)

The variable t denotes the time and k is the number of the interval between the jumps.

In the hybrid time domain concept one needs to find a solution xi first and then to determine the

hybrid time domain for it [131]. Hybrid time domains allow also for a description of the so-called

Zeno solutions that are solutions with infinitely many jumps in a finite amount of time, i.e. with

t < ∞ and k → ∞, see [164], [60] and [131].

A solution pair of a hybrid system is maximal, if it cannot be extended. It is complete, if its hybrid

time domain is unbounded. In particular, a complete solution may have the bounded time and the

unbounded number of jumps (in case of Zeno solutions), or the unbounded time and the bounded

number of jumps, or both unbounded. Let Su(x
0) be the set of all maximal solution pairs (x, u) to

(2.5) with x(0, 0) = x0.

For the existence of solutions we assume that the following basic regularity conditions [28], [63] hold

throughout the thesis:

Assumption (Basic regularity condition).
(i) χi is open, Ui is closed, and Ci, Di ⊂ χ × U are relatively closed in χ × U ;
(ii) fi, gi are continuous.

Their sufficiency for the existence of solutions of a hybrid system of the form (2.1) without internal

and external inputs was proved in [63, Proposition 2.4]:
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Proposition 2.1.1 (Existence of solutions). Assume basic regularity conditions (i)-(ii) hold. If x0
i ∈

Di or the following condition holds:
(VC) x0

i ∈ Ci and for some neighborhood Wi of x0
i , for all x′

i ∈ Wi ∩ Ci, TCi
(x′

i) ∩ fi(x
′
i) �= ∅, then

there exists a solution xi to (2.1) with xi(0, 0) = x0
i and dom xi �= (0, 0).

If (VC) holds for all x0
i ∈ Ci \ Di, then for any maximal solution xi at least one of the following

statements is true:
1) xi is complete;
2) xi eventually leaves every compact subset of χi: for any compact K ⊂ χi, there exists (T, J) ∈
dom xi such that for all (t, j) ∈ dom xi with (T, J) < (t, j), xi(t, j) �∈ K;
3) for some (T, J) ∈ dom xi, (T, J) �= (0, 0), we have xi(T, J) �∈ Ci ∪ Di.
Case 3) above does not occur if additionally
(VD) for all x0

i ∈ Di, gi(x
0
i ) ∈ Ci ∪ Di.

According to definition of tangent cone in Section 1.1.4, condition TCi
(x′

i) ∩ fi(x
′
i) �= ∅ means that

the vector fi(x
′
i) points towards the set Ci. This guarantees that we can construct a solution belonging

to the set Ci.

The following proposition guarantees the uniqueness of a solution of a hybrid system of the form

(2.1) without internal and external inputs and follows from [62, Proposition S5] as a particular case.

Proposition 2.1.2 (Uniqueness of solution). Uniqueness of solutions holds for a hybrid system
(fi, gi, Ci, Di) if and only if the following conditions hold:
1) For each initial point x0

i ∈ Ci ⊂ χi there exists a unique maximal solution zi to the differential
equation żi(t) = fi(zi(t)) satisfying zi(0) = x0

i and zi(t) ∈ Ci;
2) For each initial point x0

i ∈ Ci ∩Di, there are no nontrivial solutions to żi(t) = fi(zi(t)) satisfying
zi(0) = x0

i and zi(t) ∈ Ci.

For further discussions on existence and uniqueness of solutions and their continuous dependence on

initial conditions for hybrid systems we refer to [63], [62] and [97].

Let us now turn to interconnections of hybrid subsystems. We consider interconnections of the form

(2.1) as one large hybrid system

ẋ = f(x, u), (x, u) ∈ C,
x+ = g(x, u), (x, u) ∈ D,

(2.5)

with the state x and the input u defined above. It seems to be natural to define C := ∩Ci, D := ∪Di,

since a jump of any subsystem means a jump for the overall state x, and to define the function f :
C → RN by f := (fT

1 , . . . , fT
n )T and function g : D → χ as g := (g̃T

1 , . . . , g̃T
n )T , where

g̃i(x, u) :=

{
gi(x, ui), if (x, u) ∈ Di,
xi, otherwise .

(2.6)

Note that, in general, we lose some solutions of individual systems by interconnection. Furthermore,

the solutions of (2.5) may have different hybrid time domains than the solutions of the individual sys-

tems (2.1), see [130]. The above choice of C and D was also used in [130] considering interconnec-

tions of two hybrid systems. However, this choice has certain drawbacks, see Remark 2.4.7, see also

Remark 4.3 in [130]. The supremum norm of the hybrid signal u defined on [(0, 0), (t, j)] ∈ dom u is

defined by

‖u‖(t,k):= max

⎧⎪⎨⎪⎩ ess sup
(s,l)∈dom u\Φ(u),

(s,l)≤(t,k)

|u(s, l)|, sup
(s,l)∈Φ(u),
(s,l)≤(t,k)

|u(s, l)|

⎫⎪⎬⎪⎭ ,
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where Φ(u) is the set of all (s, l) ∈ dom u such that (s, l + 1) ∈ dom u. If t + k → ∞, then ‖u‖(t,k)

is denoted by ‖u‖∞. This norm takes the maximum between the essential supremum of an input

function between the jumps and the supremum of a function over the jumps.

One of the most typical examples of the hybrid system is the bouncing ball.

Example 2.1.3. [Bouncing ball with air resistance] Consider a ball with unit mass that falls and
bounces from the floor. We assume that the floor and the ball are elastic, i.e., there is no loss of energy
of the ball during the bounce. However, there is an air resistance given by the coefficient ν ∈ (0, 1).
The dynamics of the ball can be described then as a hybrid system (2.5):

ẋ =

(
x2

−γ − νx2

)
=: f(x, u), (x, u) ∈ C, (2.7)

x+ =

(
x1

−x2

)
=: g(x, u), (x, u) ∈ D, (2.8)

where x1 denotes the vertical position and x2 the velocity of the ball, C := {(x, u) ∈ R2×U : x1 ≥ 0}
and D := {(x, u) ∈ R2 × U : x1 = 0, x2 ≤ 0}, γ is the gravitation force.

For a given initial condition x1(t0) = x1(0) = h > 0 and x2(t0) = x2(0) = 0 the solution can be

written in terms of the hybrid time domain as follows. The hybrid arc until the first jump (continuous

flow between t0 and t1) is given by

x1(t, 0) = −γ
ν
e−νt − γ

ν
t + h + γ

ν
,

x2(t, 0) = −γ
ν
(e−νt − 1),

where t1 the time of the first touch with the ground and is a solution of x1(t, 0) = 0, i.e., −γ
ν
e−νt1 −

γ
ν
t1 + h + γ

ν
= 0. The states after the jump are

x+
1 (t1, 1) = 0,

x+
2 (t1, 1) = γ

ν
(e−νt1 − 1).

The further states after the jump at tj are x+
1 (tj, j) = 0 and x+

2 (tj, j) = −x2(tj, j − 1), j = 1, 2, . . . .

The arcs (between tj and tj+1) are given as solutions of the system of differential equations (2.7) with

initial conditions x1(tj, j) = 0 and x2(tj, j) = −x2(tj, j − 1).
The trajectory of the ball released from the height x0

1 = 3, with the initial velocity x0
2 = 0, the

coefficient of air resistance ν = 0.1, gravity acceleration γ = 9.81 is shown in Figure 2.1. The time

domain of a solution is illustrated in Figure 2.2.

Remark 2.1.4. Hybrid systems are closely related to impulsive systems [67], switched [150] and
sampled-data systems [86]. In impulsive systems discontinuous jumps in the state occur only at given
time sequences. In switched systems a trajectory of the state is continuous but the right-hand side
of a differential equation describing its dynamics changes discontinuously. In sampled-data systems
the right-hand side of a differential equation changes at time instances calculated according to the
systems evolution. Impulsive, switched and sampled-data systems can be represented in a form of a
hybrid system. In particular, to describe impulsive systems we can introduce a variable that describes
the time and the set D that describes the jump times, see Remark 2.4.21. To describe switched systems
or sample-date systems as hybrid systems, a variable that determines the type of continuous dynamics
can be introduced [61]. However, systems of all these types are studied usually separately to stress
on their main features.

For an explicit discussion on hybrid systems, their solutions, stability, control and applications we

recommend tutorials [62], [162] and [35], and the references therein.
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Chapter 2. Stability of interconnected hybrid systems

Figure 2.1: Trajectory of the bouncing ball. Figure 2.2: Time domain of the bouncing

ball.

2.2 Stability notions
Here we introduce different stability notions for hybrid systems and show the relations between them.

Furthermore, we give a more general formulation of input-to-state stability than those used in (1.10).

2.2.1 Input-to-state stability (ISS)
Consider a system of the form (2.5) with bounded inputs u. As these inputs are, in general, not equal

to zero we are interested in a stability notion that takes into account the values of u. Input-to-state

stability is a natural way to define such type of stability [27]:

Definition 2.2.1 (ISS). The system (2.5) is input-to-state stable (ISS), if there exist β ∈ KLL ,γ ∈
K∞ ∪ {0} such that for all initial values x0 all solution pairs (x, u) ∈ Su(x

0) satisfy

|x(t, k)| ≤ max{β(|x0|, t, k), γ(‖u‖(t,k))},∀(t, k) ∈ dom x. (2.9)

Function γ is called ISS nonlinear gain.

In particular, the properties of β and γ imply that an ISS system possesses a stable behaviour, where,

in general, the state at the beginning is bounded by the function β depending on the initial condition

x0, and then by the function γ depending on the maximal value of the input u. The term "gain" here

originally comes from electric networks, where an influence of a circuit on an increase of a signal is

studied.

Remark 2.2.2. Note that the ISS property can be equivalently defined replacing the maximizations in
(2.9) by the sums:

|x(t, k)| ≤ β̄(|x0|, t, k) + γ̄(‖u‖(t,k)), (2.10)

where the comparison functions β̄ ∈ KLL and γ̄ ∈ K∞ ∪ {0} may be different.
The consideration of this equivalent formulation may yield more sharp estimations of stability that im-
plies, for example, more sharp stability conditions for interconnections of hybrid systems, see Exam-
ple 2.3.5. More general formulations of ISS, in terms of the so-called monotone aggregation functions
(MAFs), were considered in [126] for continuous systems.

We also consider the following stability notions from [28]:
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Definition 2.2.3 (0-input pre-stability). The system (2.5) is 0-input pre-stable, if for each ε > 0 there
exists a δ > 0 such that each solution pair (x, 0) ∈ Su(x

0) with |x0| ≤ δ satisfies |x(t, k)| ≤ ε for all
(t, k) ∈ dom x.

Definition 2.2.4 (pre-GS). The system (2.5) is globally pre-stable (pre-GS), if there exist σ, γ̂ ∈ K∞∪
{0} such that for all initial values x0 all solution pairs (x, u) ∈ Su(x

0) satisfy

|x(t, k)| ≤ max{σ(|x0|), γ̂(‖u‖(t,k))},∀(t, k) ∈ dom x. (2.11)

The prefix "pre-" in the definitions above indicates that the maximal solutions of the system (2.5) are

not necessarily complete [131].

Remark 2.2.5. Note that pre-GS follows from ISS by taking σ(|x0|) := β(|x0|, 0, 0) and 0-input
pre-stability follows from pre-GS by considering u ≡ 0.

Definition 2.2.6 (AG). The system (2.5) has the asymptotic gain property (AG), if there exists γ̃ ∈
K∞ ∪ {0} such that for all initial values x0 all solution pairs (x, u) ∈ Su(x

0) are bounded and, if
complete satisfy

lim sup
(t,k)∈dom x,t+k→∞

|x(t, k)| ≤ γ̃(‖u‖∞). (2.12)

Note that in the definition of the AG property we take into account that the time t or the number of

the intervals between the jumps k may be bounded, however the sum of them is not in the case of

complete solutions.

In [28, Theorem 3.1] the following relation between ISS and AG with 0-input pre-stability was proved.

Theorem 2.2.7. Assume that the set {f(x, u) : u ∈ U ∩ εB} is convex ∀ε > 0 and for any x ∈ χ.
Then system (2.1) is ISS if and only if it has the asymptotic gain property and it is 0-input pre-stable.

We now intend to formulate ISS conditions for the subsystems of (2.1), where some conditions are in

the sum formulation as in (2.10) while other are given in the maximum form as in (2.9). Consider the

index set I := {1, . . . , n} partitioned into two subsets IΣ, Imax such that Imax = I \ IΣ.

The ith subsystem (2.1) is ISS, if there exist βi of class KLL, γij , γi ∈ K∞ ∪ {0} such that for all

initial values x0
i each solution pair (xi, vi) ∈ Svi

(x0
i ) with vi from (2.2) satisfies:

|xi(t, k)| ≤ βi(|x0
i |, t, k) +

n∑
j=1,j �=i

γij(‖xj‖(t,k)) + γi(‖u‖(t,k)),∀(t, k) ∈ dom xi, (2.13)

i ∈ IΣ, and

|xi(t, k)| ≤ max{βi(|x0
i |, t, k), max

j,j �=i
γij(‖xj‖(t,k)), γi(‖u‖(t,k))},∀(t, k) ∈ dom xi, (2.14)

i ∈ Imax.

Remark 2.2.8. Note that, without loss of generality, we can assume that IΣ = {1, . . . , p} and Imax =
{p + 1, . . . , n} where p := |IΣ|. This can be always achieved by a permutation of the subsystems in
(2.1).
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Similarly, the ith system of the form (2.1) is pre-GS, if there exist σi, γ̂ij ∈ K∞∪{0}, γ̂i ∈ K∞∪{0}
such that for all initial values x0

i each solution pair (xi, vi) ∈ Svi
(x0

i ) satisfies

|xi(t, k)| ≤ σi(|x0
i |) +

n∑
j=1,j �=i

γ̂ij(‖xj‖(t,k)) + γ̂i(‖u‖(t,k)),∀(t, k) ∈ dom xi, (2.15)

i ∈ IΣ, and

|xi(t, k)| ≤ max{σi(|x0
i |), max

j,j �=i
γ̂ij(‖xj‖(t,k)), γ̂i(‖u‖(t,k))},∀(t, k) ∈ dom xi, (2.16)

i ∈ Imax.

And the ith system of the form (2.1) has the AG property, if there exist γ̃ij ∈ K∞∪{0}, γ̃i ∈ K∞∪{0}
such that for all initial values x0

i each solution pair (xi, vi) ∈ Svi
(x0

i ) is bounded and, if complete

satisfies

lim sup
(t,k)∈dom xi,t+k→∞

|xi(t, k)| ≤
∑
j,j �=i

γ̃ij(‖xj‖∞) + γ̃i(‖u‖∞), (2.17)

i ∈ IΣ, and

lim sup
(t,k)∈dom x,t+k→∞

|xi(t, k)| ≤ max{max
j,j �=i

γ̃ij(‖xj‖∞), γ̃i(‖u‖∞)}, (2.18)

i ∈ Imax.

Remark 2.2.9. Note that using

max
i=1,...,n

{xi} ≤
n∑

i=1

xi ≤ n max
i=1,...,n

{xi} (2.19)

we can always pass to ISS-formulations with maximums or summations only, but with different gains
in general.

2.2.2 ISS in terms of Lyapunov functions
Another notion useful for stability investigations of nonlinear systems is the notion of an ISS-Lyapunov

function. In this section we give a definition of this function and recall the result showing that the exis-

tence of an ISS-Lyapunov function guarantees that the system is ISS. Thus we can use ISS-Lyapunov

functions to check ISS of a hybrid system.

We consider locally Lipschitz continuous functions V : χ → R+ that are differentiable almost every-

where by the Rademacher’s theorem. In points where such a function is not differentiable we use the

notion of Clarke’s generalized gradient from Section 1.1.4.

Definition 2.2.10 (ISS-Lyapunov function). A locally Lipschitz continuous function V : χ→R+ is an
ISS-Lyapunov function for the system (2.5), if
1) there exist functions ψ1, ψ2 ∈ K∞ such that:

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|) for any x ∈ χ; (2.20)

2) there exist a function γ ∈ K, and continuous, positive definite functions α, λ with λ(s) < s for all
s > 0 such that:

V (x) ≥ γ(|u|) ⇒ ∀ζ ∈ ∂V (x) : 〈ζ, f(x, u)〉 ≤ −α(V (x)), (x, u) ∈ C, (2.21)

V (x) ≥ γ(|u|) ⇒ V (g(x, u)) ≤ λ(V (x)), (x, u) ∈ D. (2.22)

Function γ is called ISS-Lyapunov gain corresponding to the input u.
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If V is differentiable at x, then (2.21) can be written as

V (x) ≥ γ(|u|) ⇒ ∇V (x) · f(x, u) ≤ −α(V (x)), (x, u) ∈ C.

Note that this definition is different from the definitions of an ISS-Lyapunov function used in [28],

[46] and [110]. The equivalence between their existence for (2.5) is shown in Propositions 2.2.16 and

2.2.19. We will use such a formulation to show one of the main stability results in Section 2.4.

Remark 2.2.11. Relations between the existence of a smooth ISS-Lyapunov function and the ISS
property for hybrid systems were discussed in [28]: In particular, Proposition 2.7 in [28] shows that
if a hybrid system has an ISS-Lyapunov function, then it is ISS. Example 3.4 in [28] shows that the
converse is in general not true. In Theorem 3.1 [28] it was proved that if the system (2.5) is ISS with
f such that the set {f(x, u) : u ∈ U ∩ εB} is convex ∀ε > 0 and for any x ∈ χ, then it has an
ISS-Lyapunov function.

It turns out that the smoothness of an ISS-Lyapunov function is not necessary to guarantee the ISS

property of the system (2.5) as the following proposition shows.

Proposition 2.2.12. If the system (2.5) has a locally Lipschitz continuous ISS-Lyapunov function, then
it is ISS.

Proof. The proof of Proposition 2.7 in [28] stated with α ∈ K∞ works without change, if α is

continuous and positive definite. As well, this proof can be extended to the nonsmooth V using the

Clarke’s generalized derivative. The assertion of the proposition follows then from this extension and

Proposition 2.2.16.

Remark 2.2.13. If the set C has a nonempty interior, then it is enough to consider the classical
derivative of V at the points of differentiability in (2.21). But for the set C with an empty interior it is
not enough, in general, to use the classical derivative of V , see the following example.

Example 2.2.14. Consider the hybrid system:

ẋ1 = x1,
ẋ2 = 0

for x ∈ C = R × {0}, i.e., line x2 = 0, and

x+
1 = 0,

x+
2 = 0

for x ∈ D = R2.
The solution of this system corresponding to x(0, 0) = (x0

1, 0)T is given by

x1(t, 0) = x0
1e

t,
x2(t, 0) = 0.

As x1(t, 0) is unbounded, the system is not ISS.
Consider now locally Lipschitz continuous function V (x) = |x1| + |x2|. Function V satisfies (2.20)

and (2.22). If we require for an ISS-Lyapunov function that its classical derivative has to satisfy (2.21)

at the points of differentiability only, then function V will satisfy this condition as the set C is of zero
measure. Thus we will obtain a contradiction to our previous conclusion that the system is not ISS.
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Remark 2.2.15. Note that conditions (2.21) and (2.22) on an ISS-Lyapunov function require that the
continuous and discontinuous dynamics of a hybrid system has to be always stable. This requirement
implies some kind of conservativeness. Think of a hybrid system, where the continuous dynamics is
stable and the discontinuous dynamics is unstable, i.e. the jumps increase the magnitude of the state of
the system. Assume also that continuous dynamics stabilizes the system, i.e. the jumps occur so rarely,
that during the time between the jumps the magnitude of the state decreases greater than it increases
during the next jump. In this case, though the system is stable, we cannot apply Proposition 2.2.12
to establish this due to the violation of condition (2.22). The same is in the reverse case, when
the discontinuous dynamics is stable and the continuous dynamics is unstable, but the jumps occur
so often that the system is nevertheless stable. To the best of our knowledge, there are no general
approaches on ISS-Lyapunov functions that can be applied to show input-to-state stability in such
case. However, we are sure that the development of methods that allow establishing of stability of
such systems is of a great application importance. A possible starting point in this research may be
an extension of the known stability results obtained for a certain class of hybrid systems and for a
certain type of stability. In Section 2.4.4 we will discuss impulsive systems that are a subclass of a
hybrid system. In particular, we will recall the dwell-time condition introduced for such a system.
This condition restricts the time intervals between the jumps to guarantee input-to-state stability of
an impulsive system where the flow or the jumps may be unstable. Other stability results, known in
the literature, are obtained in the studying of asymptotic stability of hybrid systems. They are based
on the LaSalle’s invariance principle [132] and the nested Matrosov theorems [134].

Equivalent definitions of an ISS-Lyapunov function

Here we present alternative definitions of an ISS-Lyapunov function used in [28], [46], [110]. We

show that the existence of ISS-Lyapunov functions in terms of these definitions is equivalent to the

existence of an ISS-Lyapunov function in terms of Definition 2.2.10. Consider a function W : χ →
R+, W ∈ Liploc that satisfies the following properties for the system of the form (2.5):

1) There exist functions ψ̄1, ψ̄2 ∈ K∞ such that:

ψ̄1(|x|) ≤ W (x) ≤ ψ̄2(|x|) for any x ∈ χ. (2.23)

2) There exist a function γ̄ ∈ K, a continuous, positive definite function ᾱ1 and a function ᾱ2 ∈ K∞
such that:

|x|≥γ̄(|u|)⇒∀ζ∈∂W (x): 〈ζ, f(x, u)〉≤ − ᾱ1(|x|), (x, u) ∈ C, (2.24)

|x| ≥ γ̄(|u|) ⇒ W (g(x, u)) − W (x)≤− ᾱ2(|x|), (x, u) ∈ D. (2.25)

In [28] the conditions (2.23)-(2.25) with ᾱ1 ∈ K∞ were used to define an ISS-Lyapunov function for

a system of the form (2.5) and it was shown that existence of such a (smooth) function W implies that

a system of the form (2.5) is ISS.

Proposition 2.2.16. A system of the form (2.5) has an ISS-Lyapunov function V satisfying (2.20)-
(2.22) if and only if there exists W ∈ Liploc satisfying (2.23)-(2.25).

For the proof we need two auxiliary lemmas. The following lemma is an extension of [83, Lemma 2.8]

on the case with external inputs.

Lemma 2.2.17. Consider a system of the form (2.5) and assume that function V ∈ Liploc satisfies
(2.23), (2.25) with continuous, positive definite function ᾱ2. Then there exists a smooth K∞ function
ρ such that with W = ρ ◦ V it holds that

|x| ≥ γ̄(|u|) ⇒ W (g(x, u)) − W (x) ≤ −α(|x|), ∀(x, u) ∈ χ × U, (2.26)
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for some α ∈ K∞.

Proof. Assume that |x| ≥ γ̄(|u|). Then, applying [83, Lemma 2.8] we obtain a smooth function

ρ ∈ K∞ and a function W = ρ ◦ V that satisfies (2.26).

Lemma 2.2.18. For any K∞-function α, there is a K∞-function α̂ such that the following holds:

• α̂(s) ≤ α(s), ∀s ≥ 0 and

• id − α̂ ∈ K.

See [84, Lemma B.1] for the proof.

Proof of Proposition 2.2.16
"⇒" Let V satisfy (2.20)-(2.22). Define

γ̄(|u|) := ψ−1
1 ◦ γ(|u|). (2.27)

Let |x| ≥ γ̄(|u|). Then from (2.20), (2.27) it follows V (x) ≥ γ(|u|). Applying (2.22) it follows that

for all (x, u) ∈ D

V (g(x, u)) ≤ λ(V (x)) = V (x) − α̃(x) ⇒ V (g(x, u)) − V (x) ≤ −α̂(|x|), (2.28)

with α̂(r) := min
|s|=r

α̃(s) that is a continuous, positive definite function, where α̃(s) := V (s)−λ(V (s)).

From (2.28) and Lemma 2.2.17 there exist ρ, ᾱ2 ∈ K∞, where ρ is smooth, such that W := ρ ◦ V
satisfies (2.25) with γ̄(|u|) defined in (2.27).

As V (x) satisfies (2.21), then W satisfies (2.24) with ᾱ1 := ρ̃ ·α that is a continuous, positive definite

function, where ρ̃ ∈ ∂ρ(y), y = V (x).
Thus, function W satisfies (2.23)-(2.25) with ψ̄1 := ρ ◦ ψ1, ψ̄2 := ρ ◦ ψ2, γ̄(|u|) := ψ−1

1 ◦ γ(|u|) and

ᾱ1 := ρ̃ · α.

"⇐" Assume now that the function W satisfies (2.23)-(2.25) and define V := W , ψ1 := ψ̄1 and

ψ2 := ψ̄2. Then condition (2.20) is satisfied. Let

γ(|u|) := ψ̄2 ◦ γ̄(|u|). (2.29)

Consider V (x) ≥ γ(|u|). Then from (2.29) and (2.23) it follows |x| ≥ γ̄(|u|). From (2.23) and (2.24)

it holds for all (x, u) ∈ C

∀ζ ∈ ∂W (x) : 〈ζ, f(x, u)〉 ≤ −ᾱ1(|x|) ≤ −ᾱ1 ◦ ψ̄−1
2 (W (x)).

Thus V satisfies (2.21) with α := ᾱ1 ◦ ψ̄−1
2 .

From Lemma 2.2.18 for any ᾱ2 ◦ ψ̄−1
2 ∈ K∞ there exists α̃ ∈ K∞ such that α̃ ≤ ᾱ2 ◦ ψ̄−1

2 and

id − α̃ ∈ K. Applying (2.23) and (2.25) we obtain

W (g(x, u)) ≤ W (x) − ᾱ2(|x|) ≤ W (x) − ᾱ2 ◦ ψ̄−1
2 (W (x))

≤ W (x) − α̃(W (x)) = (id − α̃)(W (x)) = λ(W (x)),

where λ := id − α̃. Hence, function V satisfies (2.20)-(2.22). �

The next proposition shows another way to introduce an ISS-Lyapunov function, used in [46], [110].
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Proposition 2.2.19. System of the form (2.5) has an ISS-Lyapunov function V satisfying (2.20)-(2.22)

if and only if there exists Ṽ ∈ Liploc satisfying (2.20)-(2.21) and

Ṽ (g(x, u)) ≤ max{λ̃(Ṽ (x)), γ̃(|u|)}, (x, u) ∈ D, (2.30)

with γ̃ ∈ K and a continuous, positive definite λ̃, λ̃ < id.

Proof. "⇐" We can always majorize a continuous, positive definite function λ̃ < id from (2.30)

by a function ρ ∈ K∞ such that λ̃(r) < ρ(r) < r, for example, taking ρ(r) := 1
2
(max[0,r] λ̃ + id)(r),

r ≥ 0. Then for (x, u) ∈ D from (2.30) we have

Ṽ (g(x, u)) ≤ max{λ̃(Ṽ (x)), γ̃(|u|)} ≤ max{ρ(Ṽ (x)), γ̃(|u|)}. (2.31)

Define γ := ρ−1 ◦ γ̃ > γ̃ and V := Ṽ . If V (x) ≥ γ(|u|), then ρ(V (x)) ≥ γ̃(|u|) and using (2.31)

V (g(x, u)) = Ṽ (g(x, u)) ≤ max{ρ(Ṽ (x)), γ̃(|u|)} = ρ(Ṽ (x)) = ρ(V (x)).

Thus, function V satisfies the condition (2.22) with λ := ρ < id.

"⇒" From (2.22) for (x, u) ∈ D, if V (x) > γ(|u|), then V (g(x, u)) ≤ λ(V (x)). Consider now

(x, u) ∈ D such that V (x) ≤ γ(|u|) and define the set

A(|u|) := {(x, u) ∈ D : V (x) ≤ γ(|u|)}.

Let us take now

γ̂(|u|) := max
(x,u)∈A(|u|)

V (g(x, u)).

Then V (g(x, u)) ≤ γ̂(|u|) for (x, u) ∈ A(|u|). Note that γ̂(0) = 0 as V (x) ≥ 0 = γ(0).
Furthermore, as the function V is nonnegative and V ∈ Liploc and the function g is continuous,

function γ̂ ∈ Liploc is nonnegative. We can always majorize such function γ̂ by a function γ̌ ∈ K
such that γ̂ ≤ γ̌.

Thus, for (x, u) ∈ D we have obtained that V (g(x, u)) ≤ max{γ̌(|u|), λ(V (x))} and condition (2.30)

is satisfied with Ṽ := V and γ̃ := max{γ̌, γ}.

Now, to establish ISS of the hybrid system (1.55) we can use Proposition 2.2.12, i.e. we need to find

an ISS-Lyapunov function for the system (1.55). Note that the logistics network consists, in general

of many locations. Therefore, the procedure of the looking for an ISS-Lyapunov function may be very

sophisticated. In Section 2.4.2 we will show how this procedure can be facilitated by applying the

small gain condition. To this end we need a description of an ISS-Lyapunov function for individual

location, i.e. for subsystem (2.1).

ISS-Lyapunov functions for hybrid subsystems

Consider a system of the form (2.5) as an interconnection of n hybrid systems with several inputs.

By an appropriate choice of γij, γi ∈ K∞, that depends on the used norms, γ(|vi|) can be written as

a sum or a maximum over γij(|xj|), j �= i and γi(|ui|). If we assume that each subsystem i has a

locally Lipschitz continuous ISS-Lyapunov function Vi, then γij(|xj|) can be estimated from above

and below by γ̃ij(Vj(xj)) and γ̄ij(Vj(xj)) with an appropriate choice of γ̃ij, γ̄ij ∈ K∞. This follows

from (2.20). Thus we obtain the following formulation of the ISS-Lyapunov function Vi for systems
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of the form (2.1):

1) There exist functions ψi1, ψi2 ∈ K∞ such that:

ψi1(|xi|) ≤ Vi(xi) ≤ ψi2(|xi|) for any xi ∈ χi. (2.32)

2) There exist γij, γi ∈ K∞ and continuous, positive definite functions αi, λi, with λi(s) < s for all

s > 0 such that for all (x, u) ∈ Ci

Vi(xi)≥
∑

j,j �=i

γij(Vj(xj))+γi(|u|)⇒∀ζi∈∂Vi(xi): 〈ζi, fi(x, ui)〉≤ − αi(Vi(xi)), (2.33)

i ∈ IΣ,

Vi(xi) ≥ max{max
j,j �=i

{γij(Vj(xj))}, γi(|u|)} ⇒ ∀ζi ∈ ∂Vi(xi) : 〈ζi, fi(x, ui)〉 ≤ −αi(Vi(xi)),

(2.34)

i ∈ Imax, and for all (x, u) ∈ Di

Vi(xi) ≥
∑

j,j �=i

γij(Vj(xj)) + γi(|u|) ⇒ Vi(gi(x, ui)) ≤ λi(Vi(xi)), (2.35)

i ∈ IΣ,
Vi(xi) ≥ max{max

j,j �=i
{γij(Vj(xj))}, γi(|u|)} ⇒ Vi(gi(x, ui)) ≤ λi(Vi(xi)), (2.36)

i ∈ Imax.

Note that γij in (2.33)-(2.36) are equal. This can be always achieved by taking maximums of sepa-

rately obtained γij’s for the continuous and discrete dynamics.

Remark 2.2.20. Function Vi can be defined equivalently by replacing (2.36) with

Vi(gi(x, u)) ≤ max{λi(Vi(xi)), γij(Vj(xj)), γi(|u|)}, (2.37)

for some continuous and positive definite λi < id using Proposition 2.2.19. Certainly, these changes
can lead to different Lyapunov gains.

An ISS-Lyapunov function provides a useful tool for checking ISS of a hybrid system as it does not

require knowledge about the solution of the system. Note, however, that an interconnection of hybrid

systems can be unstable, i.e., not ISS, even if each of its subsystems is ISS. In the following section

we introduce conditions that guarantee stability for interconnections of ISS hybrid systems.

2.3 Gains
To establish ISS of an interconnected hybrid system of the form (2.5) we are going to extend an

approach used for checking stability of interconnected continuous and discrete systems in [54], [52]

and [86] to hybrid systems. This approach utilizes information about the interconnection structure of

the network.

We assume that all subsystems that compose interconnection of the form (2.5) are ISS. We assume

also that ISS estimates (2.13), (2.14) or at least ISS-Lyapunov estimates (2.33)- (2.36) are known for

each subsystem. Function γij occurring in these estimates describes the influence of jth subsystem

on the ith one. We will call this function gain. We collect all the gains in a matrix Γ = (γij)n×n, with

the convention γii ≡ 0, i = 1, . . . , n. Then this matrix describes the mutual influence between the

subsystems of the interconnected hybrid system. We will call this matrix gain matrix and it will be the

basis of our stability analysis. In particular, we will impose the so-called mixed small gain condition

on the corresponding matrix operator that guarantees stability of an interconnected hybrid system.

In this section we will introduce this small gain condition and discuss its properties. Then we will

show how this condition can be applied to check stability of an interconnection.
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2.3.1 Gain operator
We define the gain operator Γ : Rn

+ → Rn
+ by

Γ(s) := (Γ1(s), . . . , Γn(s))T , s ∈ Rn
+, (2.38)

where the functions Γi : Rn
+ → R+ are given by Γi(s) := γi1(s1) + · · · + γin(sn) for i ∈ IΣ and

Γi(s) := max{γi1(s1), . . . , γin(sn)} for i ∈ Imax. In particular, if IΣ = {1, . . . , p} and Imax =
{p + 1, . . . , n} we have

Γ(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ12(s2) + · · · + γ1n(sn)
...

γk1(s1) + · · · + γkn(sn)
max{γp+1,1(s1), . . . , γp+1,n(sn)}

...

max{γn1(s1), . . . , γn,n−1(sn−1)}

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.39)

2.3.2 Mixed small gain condition
The small gain condition that we are going to use to establish stability of an interconnected hybrid

system of the form (2.5) originates from the corresponding small gain conditions for interconnections

of purely continuous systems, i.e. in case D = ∅, or interconnections of purely discrete systems, i.e.

in case C = ∅. In [54] stability conditions of interconnected continuous systems are provided in terms

of small gain conditions, where the cases IΣ = I = {1, . . . , n}, respectively Imax = I are considered.

In [126], [52] more general formulations of ISS are considered.

First, we recall the small gain conditions for the cases IΣ = I , resp. Imax = I , which imply ISS of

an interconnected continuous system, [54]. If IΣ = I , we need to assume that there exists an operator

D := diagn(id + α), α ∈ K∞ such that

Γ ◦ D(s) �≥ s, ∀s ∈ Rn
+\{0} , (2.40)

and if Imax = I , then the small gain condition

Γ(s) �≥ s, ∀s ∈ Rn
+\{0} (2.41)

is sufficient. The equivalence between the so-called cycle condition and the condition (2.41) was

shown in [126, Lemma 2.3.14]:

Lemma 2.3.1. Let the matrix Γ be given. Then the small gain condition (2.41) is equivalent to the
cycle condition:

γk1k2 ◦ γk2k3 ◦ · · · ◦ γkr−1kr < id, (2.42)

for all (k1, ..., kr) ∈ {1, ..., n}r with k1 = kr.

Since the matrix Γ describes the interconnection structure of a network, these conditions impose some

restriction on interconnection properties. We will see that this restriction guarantees stability of the

network. The intuitive meaning of (2.42) is that a signal going through the network is not amplified.

See also [54] for further interpretations of the small gain conditions (2.40) and (2.41).

In the case that both IΣ and Imax are not empty we can use (2.19) to pass to the situation with IΣ = ∅
or Imax = ∅. But this can lead to more conservative gains. To avoid this conservativeness we are
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going to derive a new small gain condition for the case IΣ �= I �= Imax. As we will see, there are two

essentially equivalent approaches to do this. We can use the weak triangle inequality

a + b ≤ max{(id + η) ◦ a, (id + η−1) ◦ b} , (2.43)

which is valid for all functions a, b, η ∈ K∞ to pass to a pure maximum formulation of ISS. However,

this method involves the right choice of a large number of weights in the weak triangular inequality

which can be a nontrivial problem. Alternatively, tailor-made small gain conditions can be derived.

The expressions in (2.40), (2.41) prompt us to consider the following small gain condition. For a

given α ∈ K∞ let the diagonal operator D : Rn
+ → Rn

+ be defined by

D(s) := (D1(s1), . . . ,Dn(sn))T , s ∈ Rn
+ , (2.44)

where Di(si) := (id + α)(si) for i ∈ IΣ and Di(si) := si for i ∈ Imax. The small gain condition on

the operator Γ corresponding to a partition I = IΣ ∪ Imax is then

∃ α ∈ K∞ : Γ ◦ D(s) �≥ s, ∀s ∈ Rn
+\{0}. (2.45)

We will abbreviate this condition as Γ ◦ D �≥ id and will call it mixed small gain condition.

The following lemmas that describe the properties of α ∈ K∞ were proved in [126].

Lemma 2.3.2. Let α ∈ K∞. Then there exists a function α̃ ∈ K∞ such that (id + α)−1 = id − α̃.

Lemma 2.3.3. For any α ∈ K, there exist functions α1, α2 ∈ K such that

id + α = (id + α1) ◦ (id + α2).

Moreover, if α ∈ K∞, then also αi, i = 1, 2 can be chosen to be of class K∞.

The componentwise application of the last lemma implies the following property of the operator D.

Lemma 2.3.4. Let D be defined as in (2.44) for some α ∈ K∞. Then there exist α1, α2 ∈ K∞, such
that for Di defined as in (2.44) with corresponding αi

D = D1 ◦ D2.

In the following example we highlight the advantage of the new small gain condition (2.45). In order

not to cloud the issue we keep the example as simple as possible.

Example 2.3.5. We consider an interconnection of n = 3 continuous systems, i.e. D = ∅, given by

ẋ1 = − x1 + γ13(|x3|) + γ1(|u|)
ẋ2 = − x2 + max{γ21(|x1|), γ23(|x3|)}
ẋ3 = − x3 + max{γ32(|x2|), γ3(|u|)}

(2.46)

where γij and γi are the given K∞ functions. Using the variation of constants method and the weak
triangle inequality (2.43) we see that the trajectories can be estimated by:

|x1(t, 0)| ≤β1(|x1(0)|, t, 0) + γ13(||x3||(t,0)) + γ1(‖u‖∞),

|x2(t, 0)| ≤max{β2(|x2(0)|, t, 0), (id + η) ◦ γ21(||x1||(t,0)), (id + η) ◦ γ23(||x3||(t,0))},
|x3(t, 0)| ≤max{β3(|x3(0)|, t, 0), (id + η) ◦ γ32(||x2||(t,0)), (id + η) ◦ γ3(‖u‖∞)} ,

(2.47)
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where βi are appropriate KLL functions and η ∈ K∞ is arbitrary. This estimation can be rather
sharp by choosing an appropriate η in the weak triangle inequality (2.43).
This shows that each subsystem is ISS. In this case we have

Γ =

⎛⎝ 0 0 γ13

(id + η) ◦ γ21 0 (id + η) ◦ γ23

0 (id + η) ◦ γ32 0

⎞⎠ .

Then the small gain condition (2.45) requires that there exists an α ∈ K∞ such that⎛⎝ γ13(s3)
max{(id + η) ◦ γ21 ◦ (id + α)(s1), (id + η) ◦ γ23(s3)}

(id + η) ◦ γ32(s2)

⎞⎠ �≥

⎛⎝ s1

s2

s3

⎞⎠ (2.48)

for all s ∈ R3
+\{0}.

If (2.48) holds, then considering sT (r) := (γ13 ◦ (id + η) ◦ γ32(r), r, (id + η) ◦ γ32(r))
T , r > 0 we

obtain that the following two inequalities are satisfied

(id + α) ◦ γ13 ◦ (id + η) ◦ γ32 ◦ (id + η) ◦ γ21(r) < r, (2.49)

(id + η) ◦ γ23 ◦ (id + η) ◦ γ32(r) < r. (2.50)

It can be shown by a contradiction that (2.49) and (2.50) imply (2.48).
Thus, (2.48) is equivalent to (2.49) and (2.50).
Assume that the gains are linear and are given by γ13(r) := γ21(r) := γ23(r) := γ32(r) = 0.9 r,
r ≥ 0. Choosing α(r) = η(r) = 1/10 r we see that the inequalities (2.49) and (2.50) are satisfied.
Thus, by Theorem 2.4.5 we can conclude that the system (2.46) is ISS. In this simple example we also
see that a transformation to the pure maximum case would have been equally simple. A two times
application of the weak triangle inequality for the first row with η = α would have led to the pure
maximization case. In this case the small gain condition may be expressed as a cycle condition (2.42),
which just yields the conditions (2.49) and (2.50).

We would like to note that the application of the small gain condition from [54] will not help us to

prove stability for this example, as can be seen from the following example.

Example 2.3.6. In order to apply the results from [45] we could (e.g., by using (2.19)) obtain esti-
mates of the form

|x1(t, 0)| ≤ β1(|x1(0)|, t, 0) + γ13(||x3||(t,0)) + γ1(‖u‖∞),

|x2(t, 0)| ≤ β2(|x2(0)|, t, 0) + γ21(||x1||(t,0)) + γ23(||x3||(t,0)),
|x3(t, 0)| ≤ β3(|x3(0)|, t, 0) + γ32(||x2||(t,0)) + γ3(‖u‖∞) .

With the gains from the previous example the corresponding gain matrix is

Γ =

⎛⎝ 0 0 0.9
0.9 0 0.9
0 0.9 0

⎞⎠ ,

and in the summation case with linear gains the small gain condition is ρ(Γ) < 1, [54]. In our
example ρ(Γ) > 1.19, so that using this criterion we cannot conclude ISS of the interconnection.
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The previous examples motivate the use of the refined small gain condition for the case of different

ISS characterizations of subsystems.

In particular, it will be shown that a mixed (or pure sum) ISS condition can always be reformulated

as a maximum condition in such a way that the small gain property is preserved.

The following lemma recalls a fact, that was already noted in [126, Lemma 2.2.12].

Lemma 2.3.7. For any α ∈ K∞ the small gain condition D ◦ Γ �≥ id is equivalent to Γ ◦ D �≥ id.

Proof. Note that D is a homeomorphism with inverse

v �→ D−1
α (v) :=

(
D−1

1 (v1), . . . ,D−1
n (vn)

)T
.

By monotonicity of D and D−1 we have D◦Γ(v) �≥ v if and only if Γ(v) �≥ D−1(v). For any w ∈ Rn
+

define v = D(w). Then Γ ◦ D(w) �≥ w. This proves the equivalence.

For convenience let us introduce μ : Rn
+ × Rn

+ → Rn
+ defined by

μ(w, v) := (μ1(w1, v1), . . . , μn(wn, vn))T , w ∈ Rn
+, v ∈ Rn

+, (2.51)

where μi : R2
+ → R+ is such that μi(wi, vi) := wi + vi for i ∈ IΣ and μi(wi, vi) := max{wi, vi}

for i ∈ Imax. The following counterpart of Lemma 13 in [54] provides the main technical step in the

proof of main results.

Lemma 2.3.8. Assume that there exists an α ∈ K∞ such that the operator Γ as defined in (2.38)

satisfies Γ ◦ D �≥ id for a diagonal operator D as defined in (2.44). Then there exists a φ ∈ K∞ such
that for all w, v ∈ Rn

+,
w ≤ μ(Γ(w), v) (2.52)

implies |w| ≤ φ(|v|).

Proof. Without loss of generality we assume IΣ = {1, . . . , p} and Imax = I \ IΣ, see Remark 2.2.8,

and hence Γ is as in (2.39). Fix any v ∈ Rn
+. Note that for v = 0 there is nothing to show, as then

w �= 0 yields an immediate contradiction to the small gain condition. So assume v �= 0.

We first show, that for those w ∈ Rn
+ satisfying (2.52) at least some components of w have to be

bounded. To this end let D̃ : Rn
+ → Rn

+ be defined by

D̃(s) :=
(
s1 + α−1(s1), . . . , sp + α−1(sp), sp+1, . . . , sn

)T
for s ∈ Rn

+ and let s∗ := D̃(v). Assume there exists w = (w1, . . . , wn)T
satisfying (2.52) and such

that wi > s∗i , i = 1, . . . , n. In particular, for i ∈ IΣ we have

s∗i < wi ≤ γi1(w1) + . . . + γin(wn) + vi (2.53)

and hence from the definition of s∗ it follows that

s∗i = vi + α−1(vi) < γi1(w1) + . . . + γin(wn) + vi.

And so vi < α(γi1(w1) + . . . + γin(wn)). From (2.53) it follows

wi ≤ γi1(w1) + . . . + γin(wn) + vi < (id + α) ◦ (γi1(w1) + . . . + γin(wn)). (2.54)
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Similarly, by the construction of w and the definition of s∗ we have for i ∈ Imax

vi = s∗i < wi ≤ max{γi1(w1), . . . , γin(wn), vi} , (2.55)

and hence

wi ≤ max{γi1(w1), . . . , γin(wn)}. (2.56)

From (2.54), (2.56) we get w ≤ D◦Γ(w). By Lemma 2.3.7 this contradicts the assumption Γ◦D �≥ id.

Hence some components of w are bounded by the respective components of s1 := s∗. Iteratively we

will prove that all components of w are bounded.

Fix a w satisfying (2.52). Then w �> s1 and so there exists an index set I1 ⊂ I , possibly depending

on w, such that wi > s1
i , i ∈ I1 and wi ≤ s1

i , for i ∈ Ic
1 = I \ I1. Note that by the first step Ic

1 is

nonempty. We now renumber the coordinates so that

wi > s1
i and wi ≤

n∑
j=1

γij(wj) + vi , i = 1, . . . , p1, (2.57)

wi > s1
i and wi ≤ max{max

j
γij(wj), vi} , i = p1 + 1, . . . , n1, (2.58)

wi ≤ s1
i and wi ≤

n∑
j=1

γij(wj) + vi, , i = n1 + 1, . . . , n1 + p2, (2.59)

wi ≤ s1
i and wi ≤ max{max

j
γij(wj), vi} , i = n1 + p2 + 1, . . . , n , (2.60)

where n1 = |I1|, p1 + p2 = p. Using (2.59), (2.60) in (2.57), (2.58) we get

wi ≤
n1∑

j=1

γij(wj) +
n∑

j=n1+1

γij(s
1
j) + vi, i = 1, . . . , p1, (2.61)

wi ≤ max{ max
j=1,...,n1

γij(wj), max
j=n1+1,...,n

γij(s
1
j), vi}, i = p1 + 1, . . . , n1 . (2.62)

Define v1 ∈ Rn1
+ by

v1
i :=

n∑
j=n1+1

γij(s
1
j) + vi , i = 1, . . . , p1 ,

v1
i := max{ max

j=n1+1,...,n
γij(s

1
j), vi} , i = p1 + 1, . . . , n1.

Now (2.61), (2.62) take the form:

wi ≤
n1∑

j=1

γij(wj) + v1
i , i = 1, . . . , p1, (2.63)

wi ≤ max{ max
j=1,...,n1

γij(wj), v
1
i } , i = p1 + 1, . . . , n1. (2.64)

Let us represent Γ =

(
ΓI1I1 ΓI1Ic

1

ΓIc
1I1 ΓIc

1Ic
1

)
and define the maps ΓI1I1 : Rn1

+ → Rn1
+ , ΓI1Ic

1
: Rn−n1

+ → Rn1
+ ,

ΓIc
1I1 : Rn1

+ → Rn−n1
+ and ΓIc

1Ic
1

: Rn−n1
+ → Rn−n1

+ analogous to Γ. Let

DI1(s) := ((id + α)(s1), ... , (id + α)(sp1), sp1+1, ... , sn1)
T .

From Γ◦D(s) �≥ s for all s �= 0, s ∈ Rn
+ it follows by considering s = (zT , 0)T that ΓI1I1◦DI1(z) �≥ z

for all z �= 0, z ∈ Rn1
+ . Using the same approach as for w ∈ Rn

+ it can be proved that some components

of w1 = (w1, . . . , wn1)
T

are bounded by the respective components of s2 := D̃I1(v
1).
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We proceed inductively, defining

Ij+1 � Ij, Ij+1 := {i ∈ Ij : wi > sj+1
i }, (2.65)

with Ic
j+1 := I \ Ij+1 and

sj+1 := D̃Ij
◦ (μj(ΓIjIc

j
(sj

Ic
j
), vIj

)), (2.66)

where D̃Ij
is defined analogously to D̃. The map ΓIjIc

j
: Rn−nj

+ → Rnj

+ acts analogously to Γ on

vectors of the corresponding dimension, sj
Ic
j

= (sj
i )i∈Ic

j
is the restriction defined Section 1.1.4 and μj

is appropriately defined similar to the definition of μ.

The nesting (2.65), (2.66) will end after at most n − 1 steps: there exists a maximal l ≤ n, such that

I � I1 � . . . � Il �= ∅

and all components of wIl
are bounded by the corresponding

sς := max{s∗, RI1(s
2), . . . , RIl

(sl+1)}

:=

⎛⎜⎝ max{(s∗)1, (RI1(s
2))1, . . . , (RIl

(sl+1))1}
...

max{(s∗)n, (RI1(s
2))n, . . . , (RIl

(sl+1))n}

⎞⎟⎠
where RIj

denotes the anti-projection R|Ij |
+ → Rn

+ defined in Section 1.1.2.

By the definition of μ for all v ∈ Rn
+ it holds

0 ≤ v ≤ μ(Γ, id)(v) := μ(Γ(v), v).

Applying D̃ we have

0 ≤ v ≤ D̃(v) ≤ D̃ ◦ (μ(Γ, id))(v) ≤ · · · ≤ [D̃ ◦ μ(Γ, id)]n(v). (2.67)

From (2.66) and (2.67) for w satisfying (2.52) we have w ≤ sς ≤ [D̃ ◦ μ(Γ, id)]n(v). The term on the

right-hand side does not depend on any particular choice of nesting of the index sets. Hence every w
satisfying (2.52) also satisfies

w ≤ [D̃ ◦ μ(Γ, id)]
n
(|v|max, . . . , |v|max)

T

and taking the maximum-norm on both sides yields |w|max ≤ φ(|v|max) for some function φ of class

K∞. For example, φ can be chosen as

φ(r) := max{([D̃ ◦ μ(Γ, id)]
n
(r, . . . , r))1, . . . , ([D̃ ◦ μ(Γ, id)]

n
(r, . . . , r))n}.

This completes the proof of the lemma.

Remark 2.3.9. Note that if we use inequality w ≤ Γ(w)+v instead of w ≤ μ(Γ(w), v) in Lemma 2.3.8,
then the assertion of lemma does not holds in general, see [126, Example 2.5.3].
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Ω-path

We also introduce the important notion of Ω-paths [52]. This concept is useful for the construction of

Lyapunov functions and will also be instrumental in obtaining a better understanding of the relation

between small gain conditions (2.41) and (2.40).

Definition 2.3.10 (Ω-path). A continuous path σ ∈ Kn
∞ is called an Ω-path with respect to Γ, if

(i) for each i, the function σ−1
i is locally Lipschitz continuous on (0,∞);

(ii) for every compact set K ⊂ (0,∞) there are finite constants 0 < K1 < K2 such that for all
points of differentiability of σ−1

i and i = 1, . . . , n we have

0 < K1 ≤ (σ−1
i )′(r) ≤ K2, ∀r ∈ K; (2.68)

(iii) for all r > 0 it holds that
Γ(σ(r)) < σ(r). (2.69)

By Theorem 2.3.11 the existence of an Ω-path σ follows from the small gain condition (2.41) provided

that an irreducibility condition is satisfied. To define this notion we consider the directed graph

G(V , E) corresponding to Γ with nodes V = {1, . . . , n}. A pair (i, j) ∈ V ×V is an edge in the graph

if γij �= 0. Then, Γ is called irreducible, if the graph is strongly connected, see, e.g., the appendix in

[54] for further discussions on this topic.

We note that if Γ is reducible, then it may be brought into upper block triangular form by a permutation

of the indices

Γ =

⎛⎜⎜⎜⎝
Υ11 Υ12 . . . Υ1d

0 Υ22 . . . Υ2d
...

. . .
...

0 . . . 0 Υdd

⎞⎟⎟⎟⎠ (2.70)

where each block Υjj ∈ (K∞ ∪ {0})dj×dj , j = 1, . . . , d, is either irreducible or 0.

Sufficient conditions for the existence of Ω-paths were proved in [52], [128] for a more general gain

operator Γ. We specify these conditions for our case with mixed operator Γ in the following theorem:

Theorem 2.3.11. Let Γ ∈ (K∞ ∪ {0})n×n be a gain matrix and Γ : Rn
+ → Rn

+ be the corresponding
matrix operator defined as in (2.45). Assume that one of the following assumptions is satisfied
(i) Γ is linear and the spectral radius of Γ is less than one;
(ii) Γ is irreducible and Γ �≥ id;
(iii) Imax = I;
(iv) alternatively assume that Γ is bounded, i.e., Γ ∈ ((K \ K∞) ∪ {0})n×n, and satisfies Γ ≥ 0.
Then there exists an Ω-path σ with respect to Γ. This path can be chosen piecewise linear.

For the proof see [52, Theorem 5.2]. Note that the construction of an Ω-path is not explicit there.

Using the following lemma from [87] we can construct explicitly an Ω-path for the case of (iii) in

Theorem 2.3.11 with a weaker property (2.69), i.e., such that an Ω-path satisfies:

Γ(σ(r)) ≤ σ(r) for all r > 0. (2.71)

Lemma 2.3.12. Let I = Imax. If Γ satisfies (2.41), then for all s ∈ Rn
+ it holds that Γ(s) ≤ Q(s) :=

(Q1(s), . . . , Qn(s))T where

Qi(s) := max{si, (Γ(s))i, . . . , (Γ
n−1(s))i}. (2.72)
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For the proof see [87, Proposition 2.4]. For the construction we need the following lemma that shows

how a K∞-function can be approximated by a smooth function.

Lemma 2.3.13. Consider a function θ ∈ K∞ and a bounded and continuous function δ : R+ → R+

with δ(0) = 0 and δ(r) > 0 for r > 0. Then there exists a function θ̃ ∈ K∞ which is smooth on R+

and satisfies |θ(r) − θ̃(r)| ≤ δ(θ(r)) for all r ≥ 0 and d
dr

θ̃(r) > 0 for all r > 0.

For the proof see [66, Lemma B.2.1].

Proposition 2.3.14. Let Γ ∈ (K∞ ∪ {0})n×n be a gain matrix. Assume that Imax = I and Γ satisfies
(2.41). Then there exists an Ω-path σ with respect to Γ satisfying (i), (ii) in Definition 2.3.10 and
(2.71). This path can be chosen piecewise linear.

Proof. Consider the map Q : Rn
+ → Rn

+ defined by Q(x) := (Q1(x), . . . , Qn(x))T with Qi from

(2.72). From Lemma 2.3.12 the inequality Γ(Q(x)) ≤ Q(x) holds for all x ≥ 0. Fix any positive

vector a > 0 and consider σ(t) := Q(at) ∈ Rn
+. Obviously, Γ(σ(t)) ≤ σ(t) and by the definition of Q

it follows that σi ∈ K∞ for all i = 1, . . . , n. Hence, σ satisfies the condition (2.71). As we can always

estimate functions γij by a smooth function applying Lemma 2.3.13 and as function σ is obtained

through the composition of these functions, the condition (i) for an Ω-path in Definition 2.3.10 is

satisfied. Furthermore, as σ is strictly increasing and locally Lipschitz continuous on (0,∞) function,

its inverse σ−1 is also strictly increasing and locally Lipschitz continuous on (0,∞). Thus (σ−1)′ is

positive and bounded on some set K and condition (ii) in Definition 2.3.10 is also satisfied. Piecewise

linearity of σ follows from [127, Proposition 5.2].

Remark 2.3.15. Note that it will be enough for a construction of an ISS-Lyapunov function for an
interconnected hybrid system to have an Ω-path that satisfies (2.71) instead of (2.69), see Theo-
rem 2.4.11.

The following is an immediate corollary to Theorem 8.11 in [52], where the result is only implicitly

contained.

Corollary 2.3.16. Assume that Γ defined as in (2.38) is irreducible. Then Γ satisfies the small gain
condition if and only if there exists an Ω-path σ for D ◦ Γ.

Proof. The implication that the small gain condition guarantees the existence of an Ω-path is shown

in [52]. For the converse direction assume that an Ω-path exists for D ◦ Γ and that for a certain

s ∈ Rn
+, s �= 0 we have D ◦Γ(s) ≥ s. By continuity and unboundedness of σ we may choose a τ > 0

such that σ(τ) ≥ s and σ(τ) �> s. Then s ≤ D ◦ Γ(s) ≤ D ◦ Γ(σ(τ)) < σ(τ). This contradiction

proves the statement.

2.3.3 From summation to maximization
Now, we use the previous considerations to show that an alternative approach is possible for the

treatment of the mixed ISS formulation, which consists of the transforming of this formulation in a

complete maximum formulation. Using the weak triangle inequality (2.43) iteratively, the conditions

in (2.13) may be transformed into conditions of the form (2.14) with

|xi(t, k)| ≤ βi(|x0
i |, t, k) +

∑
j,j �=i

γij(‖xj‖(t,k)) + γi(‖ui‖(t,k)) (2.73)

≤ max{β̃i(|x0
i |, t, k), max

j,j �=i
{γ̃ij(‖xj‖(t,k))}, γ̃i(‖ui‖(t,k))} (2.74)
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for i ∈ IΣ. To get a general formulation we let j1, . . . , jpi
denote the indices j for which γij �= 0.

Choose auxiliary functions ηi0, . . . , ηipi
∈ K∞ and define χi0 := (id + ηi0) and χil = (id + η−1

i0 ) ◦
. . . ◦ (id + η−1

i(l−1)) ◦ (id + ηil), l = 1, . . . , pi, and χi(pi+1) = (id + η−1
i0 ) ◦ · · · ◦ (id + η−1

ipi
). Choose a

permutation πi : {0, 1, . . . , pi + 1} → {0, 1, . . . , pi + 1} and define

β̃i := χiπi(0) ◦ βi , γ̃ijl
:= χiπi(l) ◦ γijl

, l = 1, . . . , pi, γ̃i := χiπi(pi+1) ◦ γi , (2.75)

and of course γ̃ij ≡ 0, j /∈ {j1, . . . , jp1}. In this manner the inequalities (2.74) are valid and a

maximum ISS formulation is obtained. Performing this for every i ∈ IΣ we obtain an operator

Γ̃ : R+
n → R+

n defined by (
Γ̃1(s), . . . , Γ̃n(s)

)T

, (2.76)

where the functions Γ̃i : Rn
+ → R+ are given by Γ̃i(s) := max{γ̃i1(s1), . . . , γ̃in(sn)} for i ∈ IΣ and

Γ̃i(s) := max{γi1(s1), . . . , γin(sn)} for i ∈ Imax. Here, the γ̃ij’s are given by (2.75), whereas the

γij’s are the original gains.

As it turns out, the permutation is not really necessary and it is sufficient to peel off the summands one

after the other. We will now show that given a gain operator Γ with a mixed or pure sum formulation,

which satisfies the small gain condition D ◦ Γ �≥ id, it is always possible to switch to a maximum

formulation, which also satisfies the corresponding small gain condition Γ̃ �≥ id. In the following

statement pi is to be understood as defined just after (2.74).

Proposition 2.3.17. Consider a gain operator Γ of the form (2.38). Then the following two statements
are equivalent:

(i) the small gain condition (2.45) is satisfied,

(ii) for each i ∈ IΣ there exist ηi,0, . . . , ηi,(pi+1) ∈ K∞, such that the corresponding small gain
operator Γ̃ satisfies the small gain condition (2.41).

Remark 2.3.18. We note that in the case that a system of the form (2.1) satisfies the mixed ISS
condition (2.45) with operator Γ, then the construction in (2.73) shows that the ISS condition is also
satisfied in the maximum sense with the operator Γ̃. On the other hand, the construction in the proof
does not guarantee that, if the ISS condition is satisfied with gains from the operator Γ̃, i.e. in the
maximum formulation, then it will also be satisfied for the original Γ the in mixed formulation. To the
best of our knowledge, there is no sharp estimations, analogous to weak triangle inequality (2.43),
that allow to majorize maximizations by summations and to obtain equivalence between small gain
conditions corresponding to mixed and summation cases.

Proof. “⇒”: We will show the statement under the condition that Γ is irreducible. In the reducible

case we may assume that Γ is in upper block triangular form (2.70). In each of the diagonal blocks

we can perform the transformation described below and the gains in the off-diagonal blocks are of no

importance for the small gain condition.

In the irreducible case we may apply Corollary 2.3.16 to obtain a continuous map σ : [0,∞) → Rn
+,

where σi ∈ K∞ for every component function of σ and so that

D ◦ Γ ◦ σ(τ) < σ(τ) , for all τ > 0. (2.77)

Define the homeomorphism T : Rn
+ → Rn

+, T : s �→ (σ1(s1), . . . , σn(sn)). Then T−1 ◦D◦Γ◦T �≥ id

and we have by (2.77) for e =
∑n

i=1 ei, that

T (τe) = σ(τ) > D ◦ Γ ◦ σ(τ) = D ◦ Γ ◦ T (τe) ,
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so that for all τ > 0
T−1 ◦ D ◦ Γ ◦ T (τe) < τe . (2.78)

We will show that T−1◦Γ̃◦T (τe) < τe for an appropriate choice of the functions ηij . By the converse

direction of Corollary 2.3.16 this shows that T−1 ◦ Γ̃ ◦ T �≥ id and hence Γ̃ �≥ id as desired.

Consider now a row corresponding to i ∈ IΣ and let j1, . . . , jpi
be the indices for which γij �= 0. For

this row (2.78) implies

σ−1
i ◦ (id + α) ◦

(∑
j,j �=i

γij(σj(r))

)
< r , ∀r > 0 , (2.79)

or equivalently

(id + α) ◦
(∑

j,j �=i

γij ◦ σj ◦ σ−1
i

)
◦ σi(r) < σi(r) , ∀r > 0 . (2.80)

This shows that

(id + α) ◦
(∑

j,j �=i

γij ◦ σj ◦ σ−1
i

)
< id , on (0,∞) . (2.81)

Note that this implies that
(

id −∑j,j �=i γij ◦ σj ◦ σ−1
i

)
∈ K∞ because α ∈ K∞. We may therefore

choose γ̂ij > γij ◦ σj ◦ σ−1
i , j = j1, . . . , jpi

in such a manner that

id −
pi∑

l=1

γ̂ijl
∈ K∞ .

Now, define for l = 1, . . . , pi

ηil :=

(
id −

∑
p,p≤l

γ̂ijp

)
◦ γ̂−1

ijl
∈ K∞ .

It is straightforward to check that

(id + ηil) =

(
id −

∑
p,p<l

γ̂ijp

)
◦ γ̂−1

ijl
,

(id + η−1
il ) =

(
id −

∑
p,p<l

γ̂ijp

)
◦
(

id −
∑
p,p≤l

γ̂ijp

)−1

.

With χil := (id + η−1
i1 ) ◦ . . . ◦ (id + η−1

i(l−1)) ◦ (id + ηil) it follows that

χil ◦ γijl
◦ σjl

◦ σ−1
i = (id + η−1

i1 ) ◦ . . . ◦ (id + η−1
i,l−1) ◦ (id + ηil) ◦ γijl

◦ σjl
◦ σ−1

i

= γ̂−1
ijl

◦ γijl
◦ σjl

◦ σ−1
i < id .

This shows that it is possible to choose ηij, i ∈ IΣ such that all the entries in T−1 ◦ Γ̃ ◦ T are smaller

than the identity. This shows the assertion.
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“⇐”: To show the converse direction let the small gain condition (2.41) be satisfied for the operator

Γ̃. Consider i ∈ IΣ.

We consider the following two cases for the permutation π used in (2.75). Define

q := min{π(0), π(pi + 1)}. In the first case {π(0), π(pi + 1)} = {pi, pi + 1}, i.e., π(l) < q,∀ l ∈
{1, . . . , pi}. Alternatively, the second case is ∃l ∈ {1, . . . , pi} : π(l) > q. We define αi ∈ K∞ by

αi :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η−1

iq ◦ ∑
l,π(l)>q

γijl
◦
(∑

j

γij

)−1

, if ∃j ∈ {1, . . . , pi} : π(j) > q ,

ηi,q−1 ◦ γi,jπ−1(q−1)
◦
(∑

j

γij

)−1

, if ∀j ∈ {1, . . . , pi}, π(j) < q .

(2.82)

Consider the ith row of D ◦ Γ and the case ∃j ∈ {1, . . . , pi} : π(j) > q. (Note that for no l ∈
{1, . . . , pi} we have π(l) = q).

(id + αi) ◦
∑
j

γij =
∑
j

γij + αi ◦
∑
j

γij

=
∑
j

γij + η−1
iq ◦ ∑

l,π(l)>q

γijl
◦
(∑

j

γij

)−1

◦∑
j

γij

=
∑
j

γij + η−1
iq ◦ ∑

l,π(l)>q

γijl

=
∑

l,π(l)<q

γijl
+ (id + η−1

iq ) ◦ ∑
l,π(l)>q

γijl
.

(2.83)

Applying the weak triangle inequality (2.43) first to the rightmost sum in the last line of (2.83) and

then to the remaining sum, we obtain∑
l,π(l)<q

γijl
+ (id + η−1

iq ) ◦
∑

l,π(l)>q

γijl
≤

∑
l,π(l)<q−1

γijl
+ max{(id + ηi,q−1) ◦ γi,π−1(q−1),

(id + η−1
i,q−1) ◦ (id + η−1

iq ) ◦ max
l,π(l)>q

{(id + η−1
i,q+1) ◦ . . .

◦(id + η−1
i,π(l)−1) ◦ (id + ηiπ(l)) ◦ γijl

}} ≤ . . .

≤ max
l

{χiπ(l) ◦ γijl
} . (2.84)

The last expression is the defining equation for Γ̃i(s1, . . . , sn) = max
l=1,...,pi

{χiπ(l)◦γijl
(sjl

)}. Thus, from

(2.83), (2.84) we obtain Γ̃i ≥ (D ◦ Γ)i.

Consider now the case ∀l ∈ {1, . . . , pi}, π(l) < q. A similar approach shows that Γ̃i ≥ (D ◦ Γ)i.

Following the same steps as in the first case we obtain

(id + αi) ◦
∑

j

γij =
∑

j

γij + ηi,q−1 ◦ γi,jπ−1(q−1)

=
∑

l,π(l)<q−1

γijl
+ (id + ηi,q−1) ◦ γi,jπ−1(q−1)

≤
∑

l,π(l)<q−2

γijl
+ max{(id + ηi,q−2) ◦ γijπ−1(q−2)

, (2.85)

(id + η−1
i,q−2) ◦ (id + ηi,(q−1)) ◦ γi,jπ−1(q−1)

}
≤ . . . ≤ max

l
{χiπ(l) ◦ γijl

} .
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Again from (2.85), Γ̃i ≥ (D ◦ Γ)i.

Taking α = min αi ∈ K∞ it holds that Γ̃ ≥ D ◦ Γ. Thus if Γ̃ �≥ id, then D ◦ Γ �≥ id.

2.4 Stability conditions
Now, we are going to use the small gain condition (2.45) to establish stability of an interconnection of

hybrid systems. In particular, applying Lemma 2.3.8 we obtain that under the condition (2.45) ISS of

a system of the form (2.5) follows. Furthermore, in Theorem 2.4.13 we illustrate a construction of an

ISS-Lyapunov function of a system of the form (2.5) under the condition (2.45). Finally, we establish

ISS of particular subclasses of hybrid systems under the mixed small gain condition.

2.4.1 Small gain theorems in terms of trajectories
To prove the stability results we follow similar steps as in the case of continuous systems [54], [126].

We first show that an interconnection of hybrid systems has the AG-property and is pre-GS using the

result of Lemma 2.3.8. The following small gain theorems extend the results of [96], [126] and [54]

to the case of an arbitrary number of interconnected hybrid subsystems.

Theorem 2.4.1. Assume that all subsystems in (2.1) are pre-GS and a gain matrix is given by Γ =
(γ̂ij)n×n with γ̂ij as in (2.15) and (2.16). If there exists a function α ∈ K∞ such that Γ satisfies (2.45),
then the system (2.5) is pre-GS.

Proof. Let us take the supremum on both sides of (2.16) and (2.15) over (τ, l) ≤ (t, k). For i ∈ I∑
we have

‖xi(t,k)‖(τ̄ ,l̄)
≤ σi(|x0|) +

∑
j,j �=i

γ̂ij(‖xj(t,k)‖(τ̄ ,l̄)
) + γ̂i(‖u‖(τ̄ ,l̄)), (2.86)

and for i ∈ Imax it follows

‖xi(t,k)‖(τ̄ ,l̄)
≤ max{σi(|x0|), max

j,j �=i
γ̂ij(‖xj(t,k)‖(τ̄ ,l̄)

), γ̂i(‖u‖(τ̄ ,l̄))}, (2.87)

where (τ̄ , l̄) := max
(τ,l)∈dom xi

(τ, l). Let us denote w :=
(
‖x1(t,k)‖(τ̄ ,l̄)

, . . . , ‖xn(t,k)‖(τ̄ ,l̄)

)T

,

v :=

⎛⎜⎝ μ1(σ1(|x0|), γ̂1(‖u‖(τ̄ ,l̄)))
...

μn(σn(|x0|), γ̂n(‖u‖(τ̄ ,l̄)))

⎞⎟⎠ = μ(σ(|x0|), γ̂(‖u‖(τ̄ ,l̄))) ,

where we use notations μ and μi defined in (2.51), and denote σ := (σ1, . . . , σn)T , γ̂ := (γ̂1, . . . , γ̂n)T .

From (2.86), (2.87) we obtain w ≤ μ(Γ(w), v). Then, by Lemma 2.3.8 there exists a function φ ∈ K∞
such that

|(‖x1(t,k)‖(τ̄ ,l̄)
, . . . , ‖xn(t,k)‖(τ̄ ,l̄)

)T | ≤ φ(|μ(σ(|x0|), γ̂(‖u‖(τ̄ ,l̄)))|)
≤ φ(2|σ(|x0|)|) + φ(2|γ̂(‖u‖(τ̄ ,l̄))|)

(2.88)

for all (t, k) ∈ dom x. Hence, for every initial condition and essentially bounded input u the solution

of the system (2.5) exists and is bounded, since the right-hand side of (2.88) does not depend on t, k.

The estimate for pre-GS in terms of summations is then given by (2.88).
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As we check in Theorem 2.4.1 small gain condition (2.45) only, it seems that the theorem also holds

if all σi in (2.16) and (2.15) are given as summands or arguments of maximization with respect to the

rest of gains, i.e. in the case

|xi(t, k)| ≤ σi(|x0
i |) +

n∑
j=1,j �=i

γ̂ij(‖xj‖(t,k)) + γ̂i(‖u‖(t,k)),∀(t, k) ∈ dom xi,

i ∈ IΣ, and

|xi(t, k)| ≤ σi(|x0
i |) + max{max

j,j �=i
γ̂ij(‖xj‖(t,k)), γ̂i(‖u‖(t,k))},∀(t, k) ∈ dom xi,

or

|xi(t, k)| ≤ max{σi(|x0
i |),

n∑
j=1,j �=i

γ̂ij(‖xj‖(t,k)) + γ̂i(‖u‖(t,k))},∀(t, k) ∈ dom xi,

i ∈ IΣ, and

|xi(t, k)| ≤ max{σi(|x0
i |), max

j,j �=i
γ̂ij(‖xj‖(t,k)), γ̂i(‖u‖(t,k))},∀(t, k) ∈ dom xi,

However, in this case we cannot apply Lemma 2.3.8 to obtain GS-estimation (2.88), see Remark 2.3.9.

Thus this question is still open.

Lemma 2.4.2. Let s : R+ → Rn
+ defined on the time domain dom s be continuous between the jumps

and bounded. Then

lim sup
(t,k)∈dom s, t+k→∞

s(t, k) = lim sup
t+k→∞

‖s[(t/2,[k/2]), lim
τ+j→∞

(τ,j)]‖∞.

Proof. The proof goes along the lines of the proof of a similar result for continuous systems in

Lemma 3.2 in [54], but instead of the time t we consider the points (t, k) of the time domain.

Let lim sup
(t,k)∈dom s, t+k→∞

s(t, k) = a ∈ Rn
+ and lim sup

t+k→∞
‖s[(t/2,[k/2]), lim

τ+j→∞
(τ,j)]‖∞ = b ∈ Rn

+.

Note that we have

s(t, k) ≤ ‖s[(t/2,[k/2]), lim
τ+j→∞

(τ,j)]‖

for all t, k ≥ 0. Thus we obtain that a ≤ b by taking lim sup on both sides.

It remains to show that a ≥ b. For all ε ∈ Rn
+, ε > 0 there exist Ta, Tb ≥ 0 such that

∀ t + k ≥ Ta : supt+k≥Ta
s(t, k) ≤ a + ε, (2.89)

∀ t + k ≥ Tb : supt+k≥Tb
‖s[(t/2,[k/2]), lim

τ+j→∞
(τ,j)]‖ ≤ b + ε. (2.90)

If s(t̃, j̃) ≤ a + ε for all t̃ + j̃ ≥ t + k, then ‖s[(t̃/2,[k̃/2]), lim
τ+j→∞

(τ,j)]‖ ≤ a + ε for t̃ + j̃ ≥ 2(t + k + 1).

Thus we obtain a ≥ b.

In the following small gain theorems we require additionally that all the subsystems have the same

jump set Di = D. According to (2.6), this additional condition implies that the subsystems can

jump only simultaneously. This means, in particular, that the gains γ̃ii = 0 (resp. γii = 0) for all

i ∈ {1 . . . , n}. In Remark 2.4.7 and Example 2.4.8 we explain the necessity of this requirement.
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Theorem 2.4.3. Assume that Di = D, i = 1, . . . , n and that each subsystem of (2.1) has the AG
property and that solutions of the system (2.5) exist, are bounded and some of them are complete. Let
the gain matrix Γ be given by Γ = (γ̃ij)n×n with γ̃ij from (2.17) and (2.18). If there exists a function
α ∈ K∞ such that Γ satisfies (2.45), then system (2.5) satisfies the AG property.

If there is no complete solution of (2.5), then the system (2.5) is AG by definition.

Proof. Let (τ, l) be an arbitrary initial point of the time domain. From the definition of the AG

property we have that any solution of (2.1) satisfies for i ∈ I∑
lim sup

(t,k)∈dom xi,t+k→∞
|xi(t, k)| ≤

∑
j,j �=i

γ̃ij(‖xj[(τ,l), lim
τ̄+l̄→∞

(τ̄ ,l̄)]‖∞) + γ̃i(‖u‖∞) (2.91)

and for i ∈ Imax it follows

lim sup
(t,k)∈dom xi,t+k→∞

|xi(t, k)| ≤ max{max
j,j �=i

γ̃ij(‖xj[(τ,l), lim
τ̄+l̄→∞

(τ̄ ,l̄)]‖∞), γ̃i(‖u‖∞)}. (2.92)

Then, from Lemma 3.6 in [28] it follows for i ∈ I∑ that

lim sup
(t,k)∈dom xi,t+k→∞

|xi(t, k)| ≤
∑
j,j �=i

γ̃ij(lim sup
τ+l→∞

‖xj[(τ,l), lim
τ̄+l̄→∞

(τ̄ ,l̄)]‖∞) + γ̃i(‖u‖∞) (2.93)

and for i ∈ Imax

lim sup
(t,k)∈dom xi,t+k→∞

|xi(t, k)| ≤ max{max
j,j �=i

γ̃ij(lim sup
τ+l→∞

‖xj[(τ,l), lim
τ̄+l̄→∞

(τ̄ ,l̄)]‖∞), γ̃i(‖u‖∞)}. (2.94)

Since all solutions of (2.1) are bounded and continuous between the jumps, the following holds by

Lemma 2.4.2:

lim sup
(t,k)∈dom xi,

t+k→∞

|xi(t, k)| = lim sup
τ+l→∞

(‖xi[(τ,l), lim
τ̄+l̄→∞

(τ̄ ,l̄)]‖∞)=:li(xi).

By this property from (2.93) for i ∈ I∑ it follows

li(xi) ≤
∑
j,j �=i

γ̃ij(lj(xj)) + γ̃i(‖u‖∞)

and for i ∈ Imax from (2.94) it follows

li(xi) ≤ max{max
j,j �=i

γ̃ij(lj(xj)), γ̃i(‖u‖∞)}.

Using Lemma 2.3.8 for Γ = (γ̃ij)n×n, wi := li(xi) and vi := γ̃i(‖u‖∞) we conclude

lim sup
(t,k)∈dom x,t+k→∞

|x(t, k)| ≤ φ(|(γ̃1(‖u‖∞), . . . , γ̃n(‖u‖∞))T |) (2.95)

for some φ of class K∞, which is the desired AG property.

Remark 2.4.4. Boundedness of solutions of (2.5) is essential, otherwise the assertion is not true, see
Example 14 in [54].
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The following theorem extends a result in [96]. In particular, in Theorem 1 in [96] it was shown that

an interconnection of two hybrid systems that are ISS in terms of maximizations is ISS under the

small gain condition (2.41). Here, we show that the same holds in terms of mixed formulation of ISS

under the small gain condition (2.45) for an arbitrary finite number of hybrid systems.

Theorem 2.4.5. Consider an interconnected system of the form (2.5). Assume that Di = D, i =
1, . . . , n and that the set {f(x, u) : u ∈ U ∩ εB} is convex for each x ∈ χ, ε > 0. If all the subsystems
(2.1) are ISS and there exists a function α ∈ K∞ such that a corresponding gain matrix Γ satisfies
Γ ◦ D(s) �≥ s, ∀s ∈ Rn

+\{0}, then the system (2.5) is ISS.

Proof. The proof follows the same steps as the proof of a similar theorem for continuous systems in

[54, Theorem 4.4].

By Remark 2.2.5 and Theorem 2.2.7, since each subsystem is ISS, they are pre-GS with gains γ̂ij ≤
γij and have the AG property with gains γ̃ij ≤ γij . By Theorem 2.4.1 the whole interconnection (2.5)

is pre-GS and thus all solutions are bounded.

Then Theorem 2.4.3 implies that the system (2.5) has the AG property. From global pre-stability of

(2.5) 0-input pre-stability follows, see Remark 2.2.5.

ISS of (2.5) follows then by Theorem 2.2.7.

Remark 2.4.6. In comparison to Theorem 1 in [96], we require additionally the convexity of f(x, u)
in Theorem 2.4.5. This is due to the fact that we use in our proof that ISS is equivalent to 0-input pre-
stability and the AG property. To the best of our knowledge this property holds under the convexity
assumption on f(x, u), see [28, Thereom 3.1].

Remark 2.4.7. If we drop the requirements Di = D in Theorem 2.4.3 and Theorem 2.4.5 the assertion
is not true, because otherwise it may happen for some (x, u) ∈ Ci that (x, u) /∈ C. According to our
definition of the interconnection (2.5) this allows for a situation that in one of the solutions one
subsystem undergoes infinitely many jumps and the subsystem i is "frozen". This implies that β never
tends to zero though k tends to infinity, see the following example.

Example 2.4.8. Consider an interconnection of two hybrid systems Σ1 and Σ2:

Σ1 :

{
ẋ1 = −x1 + 1

2
x2 =: f1(x1, x2), (x1, x2) ∈ C1 = {(s1, s2) ∈ R2 : s1 ≥ 1},

x+
1 = 1

2
x1 =: g1(x1, x2), (x1, x2) ∈ D1 = {(s1, s2) ∈ R2 : s1 ≤ 1}, (2.96)

Σ2 :

{
ẋ2 = −x2 + 1

2
x1 =: f2(x1, x2), (x1, x2) ∈ C2 = {(s1, s2) ∈ R2 : s2 ≥ 1},

x+
2 = 1

2
x2 =: g2(x1, x2), (x1, x2) ∈ D2 = {(s1, s2) ∈ R2 : s2 ≤ 1}. (2.97)

It can be easily shown that Σ1 and Σ2 have the AG-property with γ12 = γ21 = 1
2
id. Let us now

describe their interconnection Σ as in (2.5):

Σ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (f1, f2)
T , x ∈ C = C1 ∩ C2 = {(s1, s2) ∈ R2 : s1, s2 ≥ 1},

x+ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
x1
1
2
x2

)
, x1 > 1, x2 ≤ 1,(

1
2
x1

x2

)
, x1 ≤ 1, x2 > 1,(

1
2
x1

1
2
x2

)
, x1 ≤ 1, x2 ≤ 1.

(2.98)

The cycle condition (2.42) corresponding to the small gain condition (2.45) is satisfied: γ12 ◦ γ21 =
1
4
id < id. Now, if we take initial conditions x0

1 > x0
2 > 1, then the trajectories of x1 and x2 are at the

62



2.4. Stability conditions

Figure 2.3: Trajectories of the subsystems Σ1 and Σ2.

beginning continuous, see Figure 2.3 for x0
1 = 5, x0

2 = 3. At some time instant t∗, the trajectory of x2

reaches D2, i.e. x2 ≤ 1 and subsystem Σ2 begins to jump infinitely many times according to (2.98),
i.e., x+

1 (t∗, l) = x+
1 (t∗, 0) and x+

2 = (t∗, l) = 1
2
x+

2 (t∗, l−1) for l ≥ 1. Thus, with the number of jumps
l tending to infinity, the trajectory of x2 stays in D2 and tends to zero, and trajectory of x1 stays in
C and is constant. Thus, the overall trajectory x = (x1, x2)

T does not have the AG property. Note,
however, that it is pre-GS.

Now, according to Theorem 2.4.5, to establish input-to-state stability of the logistics network de-

scribed as in (1.55) we need first to verify whether all logistics locations are ISS and to find their ISS

estimates (2.13)-(2.14). Then, if their cooperation structure given by the matrix Γ satisfies the mixed

small gain condition Γ ◦ D(s) �≥ s, ∀s ∈ Rn
+\{0}, then the logistics network is ISS.

From the practical point of view, it is easier to find first an ISS-Lyapunov function for the individual

location. To establish ISS of the whole network in this case one needs a similar small gain theorem in

terms of ISS-Lyapunov function. In the following section we prove such a theorem.

2.4.2 Construction of ISS-Lyapunov functions for interconnected hybrid sys-
tems

In this section we show how an ISS-Lyapunov function for an interconnected system of the form (2.5)

can be constructed using the small gain condition (2.45). This allows to apply Proposition 2.2.12 to

deduce ISS of (2.5).

First, we recall some known auxiliary results. The following lemma shows a property of the Clarke’s

gradient in the case of maximization.

Lemma 2.4.9. Let qi be Lipschitz in some neighbourhood of x, and q(x) := max
1≤i≤n

qi(x). Then

q is Lipschitz in this neighbourhood, with ∂q(x) ⊂ conv
{⋃

i∈I(x) ∂qi(x)
}

, where I(x) := {i ∈
{1, 2 . . . , n} : qi(x) = q(x)}.

For the proof see [34, p.83] and references therein.

Lemma 2.4.10. [The chain rule] Let Q1 : X → Rn be Lipschitz near x, Q2 : Rn → R be Lipschitz
near Q1(x). Then the function Q := Q2 ◦ Q1 is Lipschitz near x, and the following holds:

∂Q(x) ⊂ conv{∂ 〈ω, Q1(x)〉 (x) : ω ∈ ∂Q2(Q1(x))}
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Chapter 2. Stability of interconnected hybrid systems

where conv signifies the closed convex hull.

For the proof see [34, Theorem 2.5].

Now, consider the matrix Γ obtained from the matrix Γ by adding external gains γi as the last column

and let the map Γ : Rn+1
+ → Rn

+ be defined by:

Γ(s, r) := {Γ1(s, r), . . . , Γn(s, r)} (2.99)

for s ∈ Rn
+ and r ∈ R+, where Γi : Rn+1

+ → R+ is given by Γi(s, r) := γi1(s1)+ · · ·+γin(sn)+γi(r)
for i ∈ IΣ and by Γi(s, r) := max{γi1(s1), . . . , γin(sn), γi(r)} for i ∈ IΣ.

The following theorem establishes ISS of an interconnected hybrid system of the form (2.5) under the

existence of an Ω-path with respect to Γ and shows a construction of an ISS-Lyapunov function.

Theorem 2.4.11. Consider a system of the form (2.5) that is an interconnection of subsystems (2.1).
Assume that Di = D, i = 1, . . . , n and that each subsystem i of (2.1) has an ISS-Lyapunov function
Vi with corresponding ISS-Lyapunov gains γij, γi, i, j = 1, . . . , n as in (2.33)-(2.36). Let Γ be defined
as in (2.99). Assume that there exists an Ω-path σ with respect to Γ and a function φ ∈ K∞ such that

Γ(σ(r), φ(r)) ≤ σ(r), ∀r > 0. (2.100)

Then the system (2.5) is ISS and an ISS-Lyapunov function is given by

V (x) := max
i=1,...,n

σ−1
i (Vi(xi)). (2.101)

Proof. We apply the properties of an Ω-path to show that the function V constructed in (2.101) satis-

fies (2.20)-(2.22).

Without loss of generality, the gains γij can be assumed to be smooth on R+, see Lemma 2.3.13.

Define ψ1(|x|) := mini=1,...,n σ−1
i (ψi1(L1|x|)) and ψ2(|x|) := maxi=1,...,n σ−1

i (ψi2(L2|x|)) for some

suitable positive constants L1, L2 that depend on the the norm | · |. For example if | · | denotes the

maximum norm, then one can take L1 = L2 = 1. By this choice the condition (2.20) is satisfied.

Define the gain of the whole system by

γ(|u|) := max
j

{φ−1(γj(|u|))}. (2.102)

Consider any x �= 0, since the case x = 0 is obvious. Define by

Î := {i ∈ {1, . . . , n} : V (x) = σ−1
i (Vi(xi)) ≥ max

j,j �=i
σ−1

j (Vj(xj))} (2.103)

the set of indices i for which the maximum in (2.101) is attained.

Note that xi �= 0 for i ∈ Î . Fix i ∈ Î . If V (x) ≥ γ(|u|), then by (2.102) it holds φ(V (x)) ≥ γi(|u|)
and from (2.100), (2.103) we have for i ∈ Imax

Vi(xi) = σi(V (x)) ≥ max{max
j,j �=i

γij(σj(V (x))), φ(V (x))}
≥ max{max

j,j �=i
γij(Vj(xj)), γi(|u|)}

and for i ∈ I∑
Vi(xi) = σi(V (x)) ≥ ∑

j,j �=i

γij(σj(V (x))) + φ(V (x))

≥ ∑
j,j �=i

γij(Vj(xj)) + γi(|u|).
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To show (2.21) assume (x, u) ∈ C. As V is obtained through maximization (2.101), by Lemma 2.4.9

we have that

∂V (x) ⊂ conv

⎧⎨⎩⋃
i∈Î

∂[σ−1
i ◦ Vi ◦ Pi](x)

⎫⎬⎭ , (2.104)

where Pi(x) = xi. Thus, we can use the properties of σi and Vi to estimate 〈ζ, f(x, u)〉, ζ ∈ ∂V . In

particular, by the chain rule for Lipschitz continuous functions in Lemma 2.4.10, we have

∂(σ−1
i ◦ Vi)(xi)⊂{cζi:c ∈ ∂σ−1

i (y), y=Vi(xi), ζi ∈ ∂Vi(xi)}, (2.105)

where c is bounded away from zero due to (2.68). Applying (2.34) we obtain for all ζi ∈ ∂Vi(xi) that

〈ζi, fi(x, u)〉 ≤ −αi(Vi(xi)). (2.106)

To get an estimate on the right-hand side of (2.106) independent on i, define for ρ > 0, α̃i(ρ) :=
cρ,iαi(ρ) > 0, where the constant cρ,i := K1 with K1 corresponding to the set K := {xi ∈ χi : ρ/2 ≤
|xi| ≤ 2ρ} given by (2.68). And define α̂(r) := min{α̃i(Vi(xi))| |x| = r, V (x) = σ−1

i (Vi(xi))} > 0
for r > 0. Thus, using (2.105), (2.106) for all ζ ∈ ∂[σ−1

i ◦ Vi](xi) we obtain

〈ζ, fi(x, u)〉 ≤ −α̂(|x|). (2.107)

The same argument can be applied for all i ∈ Î . Note that xi �= 0 for i ∈ Î . Let us now return to ζ ∈
∂V (x). From (2.104) for any ζ ∈ ∂V (x) we have that ζ =

∑
i∈Î

δiciζi for suitable δi ≥ 0,
∑

i∈Î δi = 1,

and with ζi ∈ ∂(Vi ◦ Pi)(x) and ci ∈ ∂σ−1
i (Vi(xi)). Using (2.107) and that ci > 0 due to (2.68), it

follows that

〈ζ, f(x, u)〉 =
∑
i∈Î

δi 〈ciζi, f(x, u)〉 =
∑
i∈Î

δi 〈ciPi(ζi), fi(x, u)〉

≤ −
∑
i∈Î

δiα̂(|x|) ≤ −α̂(|x|) ≤ −α̂ ◦ ψ−1
2 ◦ V (x).

Thus condition (2.21) is satisfied with α := α̂ ◦ ψ−1
2 .

To show (2.22) assume that (x, u) ∈ D now. Define

λ(t) = max
i

{σ−1
i ◦ λi ◦ σi(t)} (2.108)

for all t > 0. Note that σ−1
i ◦ λi ◦ σi(t) < σ−1

i ◦ σi(t) = t for all t > 0 as λi(t) < t. Thus λ(t) < t for

all t > 0. Let us show that such λ satisfies (2.22). The condition (2.36) for an ISS-Lyapunov function

of subsystem i implies for (x, u) ∈ Di

V (g(x, u)) = max
i

σ−1
i ◦ Vi(gi(x, u)) ≤ max

i
σ−1

i ◦ λi(Vi(xi))

= max
i

σ−1
i ◦ λi ◦ σi ◦ σ−1

i (Vi(xi)) = λ ◦ max
i

σ−1
i (Vi(xi)) = λ(V (x)).

(2.109)

Thus (2.22) is also satisfied and hence V is an ISS-Lyapunov function of the interconnected system

(2.5).

In the following theorem we show how for an irreducible Γ and a corresponding Ω-path a function

φ ∈ K∞ can be constructed such that condition (2.100) is satisfied and thus the system is ISS.
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Theorem 2.4.12. Assume that Di = D, i = 1, . . . , n and that each subsystem of (2.1) has an ISS-
Lyapunov function Vi and the corresponding gain matrix is given by (2.99). If Γ is irreducible and
if there exists α ∈ K∞ as in (2.44) such that Γ ◦ D(s) �≥ s for all s �= 0, s ≥ 0 is satisfied, then
the whole system (2.5) is ISS and an ISS-Lyapunov function is given by V (x) = max

i=1,...,n
σ−1

i (Vi(xi)),

where σ ∈ Kn
∞ is an arbitrary Ω-path with respect to D ◦ Γ.

Proof. Recall that by Lemma 2.3.7 from Γ ◦ D �≥ id it follows D ◦ Γ �≥ id. Furthermore, from the

irreducibility of Γ it follows the irreducibility of D ◦ Γ. Then by (ii) of Theorem 2.3.11 there exists

an Ω-path σ. From the structure of D it follows that

σi > (id + α) ◦ Γi(σ), i ∈ IΣ,
σi > Γi(σ), i ∈ Imax.

The irreducibility of Γ ensures that Γ(σ) is unbounded in all components. Let φ ∈ K∞ be such that

for all r ≥ 0 the inequality

α(Γi(σ(r))) ≥ max
i=1,...,n

γi(φ(r)) (2.110)

holds for i ∈ IΣ and

Γi(σ(r)) ≥ max
i=1,...,n

γi(φ(r)) (2.111)

for i ∈ Imax. Note that such φ always exists and can be chosen as follows. For any γi ∈ K we choose

γ̃i ∈ K∞ such that γ̃i ≥ γi. Then φ can be taken as

φ(r) :=
1

2
min{ min

i∈IΣ,j∈I
γ̃−1

j (α(Γi(σ(r)))), min
i∈Imax,j∈I

γ̃−1
j (Γi(σ(r)))}.

Note that φ is a K∞ function since the minimum over K∞ functions is again of class K∞. Then, using

(2.110), we have for all r > 0, i ∈ IΣ that

σi(r) > Di ◦ Γi(σ(r)) = Γi(σ(r)) + α(Γi(σ(r)))

≥ Γi(σ(r)) + γi(φ(r)) = Γi(σ(r), φ(r))

and, using (2.111), for all r > 0, i ∈ Imax

σi(r) > Di ◦ Γi(σ(r)) = Γi(σ(r)) ≥ max{Γi(σ(r)), γi(φ(r))} = Γi(σ(r), φ(r)).

Thus σ(r) > Γ(σ(r), φ(r)) and the assertion follows from Theorem 2.4.11.

The irreducibility assumption on Γ means, in particular, that the graph representing the interconnec-

tion structure of the whole system is strongly connected. To treat the reducible case we consider

an approach using the irreducible components of Γ. Recall that if a matrix is reducible, it can be

transformed to an upper block triangular form via a permutation of the indices.

Theorem 2.4.13. Assume that Di = D, i = 1, . . . , n and that each subsystem of (2.1) has an ISS-
Lyapunov function Vi and the corresponding gain matrix is given by (2.99). If there exists a function
α ∈ K∞ as in (2.44) such that Γ◦D(s) �≥ s for all s �= 0, s ≥ 0 is satisfied, then the whole system (2.5)

is ISS. Moreover, there exist an Ω-path σ, a function φ ∈ K∞ satisfying Γ(σ(r), φ(r)) < σ(r),∀ r > 0
and an ISS-Lyapunov function for the whole system (2.5) is given by

V (x) = max
i=1,...,n

σ−1
i (Vi(xi)).
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Proof. Again, by Lemma 2.3.7 we have that D ◦ Γ(s) �≥ s for all s �= 0, s ≥ 0 holds. After a

renumbering of the subsystems we can assume that Γ is of the form (2.70). Let D be the corresponding

diagonal operator that contains id or id + α on the diagonal depending on the new enumeration of the

subsystems. Let the state x be partitioned into zi ∈ Rdi where di is the size of the ith diagonal block

Υii, i = 1, . . . , d. Consider the subsystems Σj of the whole system (2.5) with the states

zj := (xT
qj+1, x

T
qj+2, . . . , x

T
qj+1

)T ,

where qj =
∑j−1

l=1 dl, with the convention that q1 = 0. So the subsystems Σj correspond exactly to the

strongly connected components of the interconnection graph. Note that each Υjj, j = 1, . . . , d satis-

fies the small gain condition of the form Υjj ◦ Dj �≥ id, where Dj : Rdj → Rdj is the corresponding

part of D.

For each Σj with the gain operator Υjj, j = 1, . . . , d and external inputs zj+1,. . . ,zd, u, Theo-

rem 2.4.12 implies that there is an ISS Lyapunov function

Wj(zj) = max
i=qj+1,...,qj+1

σ̂−1
i (Vi(xi)) (2.112)

for Σj , where (σ̂qj+1, . . . , σ̂qj+1
)T is an arbitrary Ω-path with respect to Υjj ◦ Dj . We will show by

induction over the number of blocks that an ISS-Lyapunov function for the whole system (2.5) of the

form V (x) = max
i=1,...,n

σ−1
i (Vi(xi)) exists, for an appropriate σ.

For one irreducible block there is nothing to show. Assume that for the system corresponding to

the first l − 1 blocks an ISS-Lyapunov function exists and is given by Ṽl−1 = max
i=1,...,ql

σ−1
i (Vi(xi)).

Consider now the first l blocks with the state (z̃l−1, zl), where z̃l−1 := (z1, . . . , zl−1)
T . Then we have

the implication for (x, u) ∈ C

Ṽl−1(z̃l−1) ≥ γ̃l−1,l(Wl(zl)) + γ̃l−1,u(‖u‖) ⇒
∀z̃l−1 ∈ ∂Ṽl−1(z̃l−1) : 〈ζl−1, fl−1(z̃l−1, zl, u)〉 ≤ −α̃l−1(Vl−1(z̃l−1))

and for (x, u) ∈ D

Ṽl−1(z̃l−1) ≥ γ̃l−1,l(Wk(zl)) + γ̃l−1,u(‖u‖) ⇒
Ṽl−1(gl−1(z̃l−1, zl, u)) ≤ λ̃l−1(Vl−1(z̃l−1)),

where γ̃l−1,l, γ̃l−1,u are the corresponding gains, f̃l−1, g̃l−1, α̃l−1, λ̃l−1 are the right hand side and

dissipation rate of the first l − 1 blocks.

The gain matrix corresponding to the block l has the form

Γl =

(
0 γ̃l−1,l γ̃l−1,u

0 0 γl,u

)
.

For Γl by [52, Lemma 6.1] there exists an Ω-path σ̃l = (σ̃l
1, σ̃

l
2)

T ∈ K2
∞ and φ ∈ K∞ such that

Γl(σ̃
l, φ) < σ̃l holds. Applying Theorem 2.4.11, an ISS-Lyapunov function for the whole system

exists and is given by

Ṽl = max{(σ̃l
1)

−1(Ṽl−1), (σ̃
l
2)

−1(Wl)}.
A simple inductive argument shows that the final Lyapunov function is of the form

V (x) = max
l=1,...,d

(σ−1
l (Wl(zl)) with W defined in (2.112), where for l = 1, . . . , d − 1 we have (setting

σ0
2 = id)

σ−1
l =

(
σ̃d−1

1

)−1 ◦ · · · ◦
(
σ̃l

1

)−1 ◦
(
σ̃l−1

2

)−1
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and σd = σ̃d−1
2 . This completes the proof.

Remark 2.4.14. In the case D = ∅ we obtain the results from [50],[52], [51] and [53] as particular
cases.

These theorems provide a constructive method to derive Lyapunov functions for interconnected hybrid

systems. In the following example we illustrate the construction of such Lyapunov functions.

Example 2.4.15. We consider three interconnected hybrid systems:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = −x1 + max

{
x2
2+2x2

6x2+8
,

x2
3+x3

8x3+4

}
+ u1 =: f1(x1, x2, x3, u1),

ẋ2 = −x2 + max
{

2x2
1+x1

8x1+5
,

x2
3+5x3

3x3+11

}
+ u2 =: f2(x1, x2, x3, u2),

ẋ3 = −x3 + max
{

x2
1+x1

5x1+3
,

x2
2+3x2

4x2+7

}
+ u3 =: f3(x1, x2, x3, u3),

(2.113)

for (x1, x2, x3, u1, u2, u3)
T∈Ci=C=

{
(s1, s2, s3, w1, w2, w3)

T∈R3
+×U :s1≥1

2
max{s2, s3}

}
and⎧⎪⎪⎪⎨⎪⎪⎪⎩

x+
1 = 1

4
x1+

1
8
max{x2, x3} =: g1(x1, x2, x3),

x+
2 = 1

4
x2 =: g2(x1, x2, x3),

x+
3 = 1

4
x3 =: g3(x1, x2, x3),

(2.114)

for (x1, x2, x3, u1, u2, u3)
T∈Di=D=

{
(s1, s2, s3, w1, w2, w3)

T∈R3
+×U :s1≤1

2
max{s2, s3}

}
.

Consider functions Vi(xi) = |xi|, i = 1, 2, 3 as ISS-Lyapunov function candidates for the subsystems.
With ψi1(|xi|) = 1

2
|xi| and ψi2(|xi|) = 2|xi| the condition (2.32) is satisfied.

Consider (x1, x2, x3, u1, u2, u3)
T ∈ C.

Taking γc
12(r) :=

r(r + 2)

(3r + 4)(1 − ε1)
, γc

13(r) :=
r(r + 1)

(4r + 2)(1 − ε1)
, γ21(r) :=

2r(2r + 1)

(8r + 5)(1−ε2)
,

γ23(r) :=
2r(r + 5)

(3r + 11)(1 − ε2)
,γ31(r) :=

2r(r + 1)

(5r + 3)(1 − ε3)
, γ32(r) :=

2r(r + 3)

(4r+7)(1 − ε3)
,

γ1(|u|) :=
2

(1 − ε1)
|u|, γ2(|u|) :=

2

(1 − ε2)
|u|, γ3(|u|) :=

2

(1 − ε3)
|u|, ε1 ∈

(
0, 1

2

)
, ε2 ∈

(
0, 1

11

)
,

ε3 ∈
(
0, 1

7

)
one can easily check that the condition (2.34) is satisfied with αi(|xi|) = εixi, i = 1, . . . , 3.

Consider now (x1, x2, x3, u1, u2, u3)
T ∈ Di.

With γd
12(r) :=

1

2(3 − 4ε1)
r, γd

13(r) :=
1

2(3 − 4ε1)
r, the condition (2.36) is satisfied for i = 1 with

λ1 = 1
2
. And for any (x, u) ∈ D it holds that

V2(g2(x1, x2, x3)) = V2

(
1
4
x2

)
= 1

4
|x2| =: λ2(V2(x2)),

V3(g3(x1, x2, x3)) = V3

(
1
4
x3

)
= 1

4
|x3| =: λ3(V3(x3)).

Thus each subsystem is ISS and V1, V2, V3 are ISS-Lyapunov functions for the corresponding sub-
systems with I = Imax. To verify the stability of their interconnection we apply Theorem 2.4.13
with D = diag(id, id, id)T and Proposition 2.2.12. To this end define xT = (x1, x2, x3)

T ∈ R3,
uT = (u1, u2, u3)

T , f = (f1, f2, f3)
T , g = (g1, g2, g3)

T . Then the whole system is of the form (2.5).
Denote γ12 := max{γc

12, γ
d
12}, γ13 := max{γc

13, γ
d
13}. Then the gain matrix Γ is given by

Γ =

⎛⎝ 0 γ12 γ13

γ21 0 γ23

γ31 γ32 0

⎞⎠ .
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Figure 2.4: Trajectory of the whole system

when the small gain condition is satisfied.
Figure 2.5: Trajectory of the whole system

when the small gain condition is not satisfied

It can be easily checked for all the gains that γij < id holds, hence

Γ(s) < s (2.115)

for all s �= 0. It follows then that the small gain condition D◦Γ(s) = Γ(s) �≥ s is satisfied. Moreover
it follows that σ can be taken as σ := (id, id, id)T for construction of an ISS-Lyapunov function of the
interconnection (2.113), (2.114) according to (2.101):

V (x) = max{V1(x1), V2(x2), V3(x3)} = max{x1, x2, x3}.

Thus, by Theorem 2.4.13 and Proposition 2.2.12 the interconnection is ISS. The trajectory of the whole
system corresponding to the initial condition x(0) = (9; 3; 1)T , input u(t) = (0.5(1+sin t); |2cos(t+
2)|; cos2 t)T is shown in Figure 2.4. We see that the trajectory approaches a bounded domain around
the origin. However due the disturbances given by u it never reaches the origin and even do not
approaches it arbitrary close.

The next example shows that if the small gain condition is not fulfilled, the system may possess an

unstable behaviour.

Example 2.4.16. Consider the interconnection of three hybrid systems with the same g, C and D as
in the previous example, but with slight changes of the coefficients of the first subsystem describing
continuous behaviour ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1= − x1 + max
{

7x2
2+2x2

2x2+1
,

2x2
3+3x3

5x3+4

}
+ u1

ẋ2= − x2 + max
{

2x2
1+x1

8x1+5
,

x2
3+5x3

3x3+11

}
+ u2

ẋ3= − x3 + max
{

x2
1+x1

5x1+3
,

x2
2+3x2

4x2+7

}
+ u3

(2.116)

(x, u) ∈ C.
Using the same approach as in the previous example it can be checked that all subsystems are still
ISS in terms of maximizations, i.e. I = Imax. The gains γd

12(r), γd
13,γ23, γ31, γ1, γ2, γ3 are the same

as in the example before and the gains γc
12(r) :=

2r(7r + 2)

(2r + 1)(1 − ε1)
, γc

13(r) :=
2r(r + 3)

(5r + 4)(1 − ε2)
,
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γ12(r) := max{γc
12(r), γ

d
12(r)}, γ13(r) := max{γc

13(r), γ
d
13(r)}, ε1 ∈ (0, 1), ε2 ∈

(
0, 1

11

)
, ε3 ∈

(
0, 1

7

)
.

Let us check the small gain condition Γ(s) �≥ s, s �= 0. Note that unlike the previous example not all
γij’s are less than identity, in particular for r ≥ 0, γ12(r) ≥ r. Thus (2.115) does not hold for the first
component of the inequality and we cannot use this property to prove the small gain condition. But
we can use the fact that Γ(s) �≥ s is equivalent to the cycle condition (2.42). However, for r ≥ 0

γc
12 ◦ γ21(r) =

4r(2r + 1)(14r(2r + 1) + 2(8r + 5)(1 − ε2))

(8r + 5)(1 − ε2)(4r(2r + 1) + (8r + 5)(1 − ε2))(1 − ε1)

=
224r4 + (224 + 128(1 − ε2))r

3 + (56 + 144(1 − ε2))r
2 + 40(1 − ε2)r

(64r3 + (72 + 64(1 − ε2))r2 + (20 + 40(1 − ε2))r + 25(1 − ε2)) (1 − ε1)(1 − ε2)
≥ r.

Hence, the cycle condition is also violated and consequently the small gain condition is not satisfied.
Figure 2.5 shows the trajectory of this interconnection corresponding to the initial condition x(0) =
(9; 3; 1)T , input u(t) = (0.5(1 + sin t); |2cos(t + 2)|; cos2 t)T . We see that the trajectory grows
unboundedly.

In the following sections we show an application of the small gain condition (2.45) for establishing

stability of certain subclasses of hybrid systems.

2.4.3 Systems with stability of only a part of the state

In some applications one is interested in stability of only a part of the state. For example, one can use

variables that describe time, counters or logical variables that never tend to zero and from a practical

point of view there is no need in their stability, see [110], [131]. For such systems the definition of

ISS and conditions (2.32) and (2.20) for ISS-Lyapunov functions have to be modified. Furthermore,

we can adapt small gain theorem to study ISS of interconnection of such systems.

Assume that the system (2.1) can be represented as follows:

ẋs
i = f s

i (xs, ui)
ẋt

i = f t
i (x

s, xt, ui)
, (x, u) ∈ Ci

xs
i
+ = gs

i (x
s, ui)

xt
i
+

= gt
i(x

s, xt, ui)
, (x, u) ∈ Di

(2.117)

with xs
i ∈ χs

i ⊂ RNs
i , xt

i ∈ χt
i ⊂ RNt

i , xs = (xs
1
T , . . . , xs

n
T )T ∈ χs ⊂ RNs

, χs = χs
1 × . . . × χs

n,

N s =
∑

N s
i , xt = (xt

1
T
, . . . , xt

n
T
)T ∈ χt ⊂ RNt

, χt = χt
1×. . .×χt

n, N t =
∑

N t
i , x = (xsT , xtT )T ∈

χ ⊂ RN , χ = χs × χt, N = N s + N t, ui ∈ Ui ⊂ RMi , u = (uT
1 , . . . , uT

n )T ∈ U ⊂ RM ,

U = U1 × . . . × Un, M =
∑

Mi. Here xs
i is the part of the state xi, in stability of which we are

interested. The interconnection of these subsystems can be represented as:

ẋs = f s(xs, u)
ẋt = f t(xs, xt, u)

, (x, u) ∈ C

xs+ = gs(xs, u)

xt+ = gt(xs, xt, u)
, (x, u) ∈ D

(2.118)

where f s, f t, gs, gt, C and D are constructed analogous to (2.5).

We define ISS of such a system by a slight abuse of notation as in [28, 110]:
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Definition 2.4.17. The system (2.118) is ISS, if there exist β of class KLL, γ ∈ K∞ ∪ {0} such that
for all initial values x0 each solution pair (x, u) ∈ Su(x0) satisfies

|xs(t, k)| ≤ max{β(|xs
0|, t, k), γ(‖u‖(t,k))},∀(t, k) ∈ dom x. (2.119)

In the definition of an ISS-Lyapunov function we modify (2.20) only.

Definition 2.4.18. A locally Lipschitz continuous function V : χ→R+ is an ISS-Lyapunov function
for the system (2.118) if
1) There exist functions ψ1, ψ2 ∈ K∞ such that:

ψ1(|xs|) ≤ V (x) ≤ ψ2(|xs|) for any x ∈ χ. (2.120)

2) Conditions (2.21) and (2.22) are satisfied.

Thus, this definition is focused on the state xs that has to be stable.

System of the form (2.118) allows to model and then to investigate logistics networks, where some

of the parameters are not stable. For example, one can model logistics networks with switching

production rates, where the switching is determined by a logical variable. In this case we are not

interested in stability of this variable, but rather in stability of the variables describing the "physical"

states, that we denote by xs.

For such a definition of ISS there was shown a similar connection between an ISS-Lyapunov function

and ISS in [28].

Remark 2.4.19. From Proposition 2.7 in [28] it follows that if there exists an ISS-Lyapunov function
satisfying (2.120), (2.21) and (2.22), then the system (2.118) is ISS.

In case of (2.117) an ISS-Lyapunov function Vi satisfies:

1) There exist functions ψi1, ψi2 ∈ K∞ such that:

ψi1(|xs
i |) ≤ Vi(xi) ≤ ψi2(|xs

i |). (2.121)

2) Conditions (2.33)-(2.36) are satisfied.

Now, if we assume that the system of the form (2.118) is an interconnection of n hybrid ISS subsys-

tems, then we can show the following small gain result.

Corollary 2.4.20. Consider a system of the form (2.118) that is an interconnection of subsystems
(2.117). Assume that Di = D, i = 1, . . . , n and that each subsystem i of (2.117) has an ISS-Lyapunov
function Vi that satisfy (2.121) and (2.33)-(2.36) with the corresponding ISS-Lyapunov gains γij , γi.
Let Γ be defined as in (2.99). If there exists α ∈ K∞ as in (2.44) such that D ◦ Γ(s) �≥ s for all
s �= 0, s ≥ 0 is satisfied, then the hybrid system (2.118) has an ISS-Lyapunov function satisfying
(2.120), (2.21) and (2.22). Furthermore, an ISS-Lyapunov function for the whole system of the form
(2.118) can be constructed as in (2.101).

Proof. The proof goes along the lines of the proof of Theorem 2.4.13 with

ψ1(|xs|) := mini=1,...,n σ−1
i (ψi1(L1|xs|)) and ψ2(|xs|) := maxi=1,...,n σ−1

i (ψi2(L2|xs|)) in case of the

maximum norm used.
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2.4.4 Impulsive dynamical systems

Impulsive systems are such hybrid systems that jump only at given time instances and between these

time instances they change continuously. We consider an interconnection of n impulsive subsystems

with inputs

ẋi(t) = fi(x1(t), . . . , xn(t), ui(t)), t �= tik̃ ,

x+
i (t) = gi(x1(t), . . . , xn(t), ui(t)), t = tik̃ ,

(2.122)

k̃ ∈ N, i = 1, . . . , n, where xi(t) ∈ RNi is the state of the ith subsystem; ui(t) ∈ RMi is a locally

bounded, Lebesgue-measurable input and xj(t) ∈ RNj , j �= i can be interpreted as internal inputs

of the ith subsystem. Given a sequence {tik̃} and a pair of times s, t satisfying t0 ≤ s < t, Ni(t, s)
denotes the number of impulsive times tik̃ in the semi-open interval (s, t] of the ith subsystem.

We assume that functions fi, gi are from RN1 × . . .×RNn ×RMi → RNi and fi are locally Lipschitz

continuous. All signals (xi and inputs ui, i = 1, . . . , n) are assumed to be right-continuous and to

have left limits at all times.

We define N := N1+ . . .+Nn, M := M1+ . . .+Mn, x := (xT
1 , . . . , xT

n )T , u := (uT
1 , . . . , uT

n )T , f :=

(fT
1 , . . . , fT

n )T and the impulsive time sequence of the whole system {tk} :=
{

t|t = tik̃ , k̃ ∈ N
}

, k ∈
N.

It may happen that at an impulsive time tik̃ there is a jump of the ith subsystem but not of the jth

subsystem, j ∈ {1, ..., n}, j �= i, for example. This circumstance may lead to a conservative con-

dition for stability of the whole system, obtained from the exponential Lyapunov functions of the

subsystems. Therefore, we define Ik := {i|tk = tik̃}, which is the set of impulsive times of the ith

subsystem and the whole system; Ik := {i|tk �= tik̃}, which is the set of impulsive times of the whole

system, but not of the ith subsystem; and we denote N (t, s) as the number of impulsive times in the

semi-open interval (s, t] for the whole system.

Then we define g := (g̃T
1 , . . . , g̃T

n )T , where

g̃i(x, ui) :=

{
gi(x, ui), i ∈ Ik,
xi, i ∈ Ik.

With these definitions the interconnected system (2.122) can be described as a system of the form

ẋ(t) = f(x(t), u(t)), t �= tk, k ∈ N,

x+(t) = g(x(t), u(t)), t = tk, k ∈ N.
(2.123)

Impulsive systems allow to consider time scheduling problems in logistics networks, i.e. the arrange-

ment of the impulsive times to achieve certain performance aims. For example, one can look for the

delivery times for certain locations that guarantee stable behaviour of the network.

Remark 2.4.21. Note that we can describe a system of the form (2.123) as a hybrid system in the
general form (2.5) by adding the time variable τ , the flow set C = {(x, τ) : τ �= tk, k ∈ N}, the jump
set D = {(x, τ) : τ = tk, k ∈ N} and equations that describe the dynamics of τ :

τ̇ = 1, (x, τ) ∈ C,

τ+ = τ, (x, τ) ∈ D.
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Stability notions

We use the following notion of ISS adapted to impulsive systems in [72] as follows:

Definition 2.4.22. Assume that a sequence {tk} is given. We call a system of the form (2.123) ISS, if
there exist functions β ∈ KL, γ ∈ K∞ such that for every initial condition x(0) and every input u the
corresponding solution to (2.123) exists globally and satisfies

|x(t)| ≤ max{β(|x(0)|, t), γ(‖u‖[0,t])}, ∀t ≥ 0. (2.124)

The impulsive system (2.123) is uniformly ISS over a given class S of admissible sequences of impul-
sive times, if (2.124) holds for every sequence in S with functions β and γ that are independent of the
choice of the sequence.

Here the supremum norm of an input u on the interval [0, t] is defined by

‖u‖[0,t] := max

{
ess sup
s∈[0,t]

|u(s)|, sup
tk∈[0,t]

|u(tk)|
}

.

For subsystems ISS can be formulated as follows:

Assume that a sequence {tik̃} is given. The ith subsystem of (2.123) is ISS, if there exist βi ∈ KL,

γij, γi ∈ K∞ ∪ {0} such that for every initial condition xi(0) and every input ui the corresponding

solution to (2.122) exists globally and satisfies for all t ≥ 0

|xi(t)| ≤ max{βi(|xi(0)|, t), max
j,j �=i

γij(‖xj‖[0,t]), γi(‖u‖[0,t])} (2.125)

for i ∈ Imax, and

|xi(t)| ≤ βi(|xi(0)|, t) +
∑
j,j �=i

γij(‖xj‖[0,t]) + γi(‖u‖[0,t]) (2.126)

for i ∈ I∑ .

The impulsive system (2.122) is uniformly ISS over a given class S of admissible sequences of im-

pulsive times, if (2.125), (2.125) hold for every sequence in S with functions βi and γi, γij that are

independent of the choice of the sequence.

For the stability analysis of impulsive systems we use exponential Lyapunov functions, see [72]. Here,

we assume that these functions are locally Lipschitz continuous.

Definition 2.4.23. We say that a function V : RN → R+ is an exponential ISS-Lyapunov function for
(2.123) with rate coefficients c, d ∈ R if V is locally Lipschitz, positive definite, radially unbounded,
and the following holds:

V (x) ≥ γ(|u|) ⇒ ∇V (x) · f(x, u) ≤ −cV (x) for almost all x, all u, (2.127)

V (x) ≥ γ(|u|) ⇒ V (g(x, u)) ≤ e−dV (x) for all x, u, (2.128)

where γ is some function from K∞.

Condition (2.127) states, that if c is positive then the function V decreases. On the other hand, if

c < 0 then the function V can increase. Condition (2.128) states, that if d is positive, then the jump

(impulse) decreases the magnitude of V . On the other hand, if d < 0, then the jump (impulse) can

increase the magnitude of V .

Without loss of generality we use the same function γ in (2.127) and (2.128). Choosing γc ∈ K∞ in

(2.127) and γd ∈ K∞ in (2.128) and taking the maximum of these two functions, we get γ.
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Remark 2.4.24. Note that in [72] the conditions (2.127) and (2.128) are in dissipative form. By
Proposition 2.6 in [28] the conditions in dissipative form are equivalent to the conditions in implica-
tion form, used in Definition 2.4.23, but the coefficients c, d may be different.

In [72] the following theorem was proved, which establishes stability of a single impulsive system.

Theorem 2.4.25. Let V be an exponential ISS-Lyapunov function for (2.123) with rate coefficients
c, d ∈ R with d �= 0. For arbitrary constants μ, λ > 0, let S[μ, λ] denote the class of impulsive time
sequences {tk} satisfying

−dN (t, s) − (c − λ)(t − s) ≤ μ, ∀t ≥ s ≥ 0. (2.129)

Then the system (2.123) is uniformly ISS over S[μ, λ].

The condition (2.129) is called average dwell-time conditon. If d = 0, then the jumps do not desta-

bilize the system and the whole system will be ISS, if the corresponding continuous dynamics is ISS.

This case was investigated in more detail in [72, Section 6], [153, Theorem 1].

Note that the condition (2.129) imposed on the intervals between the jumps guarantees stability of

the impulsive system even if the continuous or discontinuous behaviour is unstable. For example,

if the continuous behaviour is unstable, which means c < 0, then this condition assumes that the

discontinuous behaviour has to stabilize the system (d > 0) and the jumps have to occur often enough.

Conversely, if the discontinuous behaviour is unstable (d < 0) and the continuous behaviour is stable

(c > 0), then the jumps have to occur rarely, which stabilizes the system.

Similarly, we define Lyapunov functions for subsystems:

Assume that for each subsystem of the interconnected system (2.122) there is a given function Vi :
RNi → R+, which is continuous, proper, positive definite and locally Lipschitz continuous on

RNi\{0}. For i = 1, . . . , n the function Vi is called an exponential ISS-Lyapunov function for the ith
subsystem of (2.122) with rate coefficients ci, di ∈ R, if

Vi(xi)≥max{max
j,j �=i

γij(Vj(xj)), γi(|ui|)}⇒∇Vi(xi)·fi(x, ui)≤− ciVi(xi) for almost all x, all ui and

(2.130)

Vi(xi)≥max{max
j,j �=i

γij(Vj(xj)), γi(|ui|)}⇒Vi(gi(x, ui))≤e−diVi(xi) for all x, ui, (2.131)

for i ∈ Imax, and

Vi(xi) ≥
∑
j,j �=i

γij(Vj(xj)) + γi(|ui|) ⇒ ∇Vi(xi) · fi(x, ui) ≤ −ciVi(xi) f.a.a. x, all ui and (2.132)

Vi(xi) ≥
∑
j,j �=i

γij(Vj(xj)) + γi(|ui|) ⇒ Vi(gi(x, ui)) ≤ e−diVi(xi) for all x, ui, (2.133)

for i ∈ I∑ , where γij , γi are some functions from K∞ .

Small gain theorems

In this section we show how an exponential ISS-Lyapunov function for an interconnected impul-

sive system can be constructed under the small gain condition (2.45) and the dwell-time condition

(2.129). Note that not for all interconnections with nonlinear gains γij one can construct the expo-

nential Lyapunov function for the whole system, even if the small-gain condition is satisfied. Thus

we will consider the case with linear gains γij . By slight abuse of notation we denote γij(r) = γijr,

where γij ≥ 0 and r > 0. Furthermore, as in Section 2.4.1 we assume that all subsystems jump

simultaneously, i.e. Ik = {1 . . . , n}, Ik = ∅.
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Theorem 2.4.26. Consider system (2.123) with Ik = {1 . . . , n}, Ik = ∅. Assume that each subsystem
of (2.122) has an exponential ISS-Lyapunov function Vi with corresponding linear ISS-Lyapunov
gains γij and rate coefficients ci, di, di �= 0. Define c := min

i
ci and d := min

i
di. For arbitrary

constants μ, λ > 0, let S[μ, λ] denote the class of impulsive time sequences {tk} of the whole system.
If the following holds
i) S[μ, λ] satisfies the condition (2.129),
ii) Γ = (γij)n×n satisfies the small gain condition (2.45),
then the impulsive system (2.123) is uniformly ISS over S[μ, λ] and the exponential ISS-Lyapunov
function is given by

V (x) := max
i

{ 1
si

Vi(xi)}, (2.134)

where s = (s1, . . . , sn)T is a linear Ω-path with Γ(s) < s.

Proof. From Theorem 2.3.11 there exists a linear Ω-path (vector) s ∈ Rn, s > 0, with Γ(s) < s, see

also proof of [52, Theorem 5.2]. Let us define V (x) := maxi{ 1
si

Vi(xi)} and show that this function

is an exponential ISS-Lyapunov function for the system (2.123).

Define γ(r) := maxi
1
si

γi(r), r > 0.

Consider x �= 0, as the case x = 0 is obvious. Define Î := {i ∈ {1, . . . , n} : 1
si

Vi(xi) >

maxj �=i
1
sj

Vj(xj)}.

Note that xi �= 0 for i ∈ Î . Fix i ∈ Î . Assume V (x) ≥ γ(|u|). Then

Vi(xi) = siV (x) ≥ max{max
j,j �=i

γijsjV (x), siγ(|u|)} ≥ max{max
j,j �=i

γijVj(xj), γi(|u|)},

and for i ∈ I∑

Vi(xi) = siV (x) ≥
n∑

j=1

γijsjV (x) + siγ(|u|) ≥
n∑

j=1

γijsjVj(xj) + γi(|u|).

Then from (2.130), (2.132) we obtain for almost all x

V̇ (x) = 1
si
∇Vi(xi) · fi(x, ui) ≤ − 1

si
ciVi(xi) = −ciV (x).

By the definition of c := mini ci the function V satisfies (2.127).

As d := mini di, it holds

V (g(x, u))= max
j

{ 1
sj

Vj(gj(x1, . . . , xn, uj))}≤max
j

{ 1
sj

e−djVj(xj)}≤e−d max
j

{ 1
sj

Vj(xj)}=e−dV (x),

i.e., V satisfies condition (2.128).

All conditions of Definition 2.4.23 are satisfied and thus V is the exponential ISS-Lyapunov function

of the system (2.123). By assumption i) there exist μ, λ > 0 such that −dN (t, s) − c(t − s) ≤
μ − λ(t − s), ∀t ≥ s ≥ 0. Thus, applying Theorem 2.4.25 the overall system is uniformly ISS over

S[μ, λ].

Remark 2.4.27. Note that in the case of nonlinear gains γij , if the small-gain condition holds, then
we can construct non-exponential Lyapunov functions for the whole system as in Section 2.4.2. In
this case the results from [72] cannot be applied and one has to develop more general conditions that
guarantee ISS of the system.
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2.4.5 Comparison systems
Consider an interconnected system of the form (2.5). Assume that Di = D, i = 1, . . . , n and that the

set {f(x, u) : u ∈ U ∩ εB} is convex for each x ∈ χ, ε > 0. Assume also that all the subsystems (2.1)

are ISS.

Consider the following interconnected discrete subsystems:

si(l + 1) = γi1(s1(l)) + . . . + γin(sn(l)) + vi(l) (2.135)

for i ∈ I∑ and

si(l + 1) = max{γi1(s1(l)), . . . , γin(sn(l)), vi(l)} (2.136)

for i ∈ Imax, where si ∈ R, vi ∈ Wi ⊂ R, γij ∈ K∞ are from (2.13), (2.14), l ∈ R+.

Their interconnection can be written as:

s(l + 1) = μ(Γ(s(l)), u(l)), (2.137)

where μ is defined in (2.51), Γ is taken from (2.38) and v(l) ∈ Rn
+.

Using the definition of ISS for discrete systems in [84] we can formulate ISS of the system of the

form (2.137) as follows:

Definition 2.4.28. The system (2.137) is ISS from v to s if and only if ∃β ∈ KL, γ ∈ K∞ such that
for every s(0) ∈ Rn

+, {v(l)}∞l=1 ⊂ Rn
+, and every l ≥ 0

|s(l + 1)| ≤ μ

(
(β(|s(l)|), l), γ(sup

l≥0
|v(l)|)

)
. (2.138)

For Imax = I and I∑ = I it was shown in [128] that (2.137) is ISS if and only if (2.41) resp. (2.40)

hold. Thus, ISS of the hybrid system (2.5) can be established from ISS of the corresponding discrete

system (2.137). This property can be extended to the case of Imax, I∑ �= ∅.

First, we need to combine Theorem 5.10 from [128] and Proposition 2.3.17 in [126] to adapt them to

the case of the mixed gains.

Theorem 2.4.29. Let Γ be defined as in (2.38) and (2.39). Assume that there exists α ∈ K∞ such that
for D defined as in (2.44) the operator D ◦ Γ satisfies (2.45). Then there exists D̃ defined as in (2.44)

with α̃ ∈ K∞, and σ : R+ → Rn
+, σ : Kn

∞, such that Γ ◦ D̃(σ(r)) < σ(r) for all r > 0. Moreover, σ
can be chosen to be piecewise linear on (0,∞).

Proof. The proof follows the same steps as the proofs of Theorem 5.10 in [128] for components

i ∈ I∑ of σ and of Proposition 2.3.17 in [126] for i ∈ Imax using Lemma 2.3.4.

Now, we can show ISS of the systems of the form (2.137) under the small gain condition (2.45).

Theorem 2.4.30. System (2.137) is ISS from v to s if and only if (2.45) holds.

Proof. The proof follows exactly the same steps as the proof of Theorem IV.1 in [128].

"⇒": If (2.137) is ISS, then the origin is globally attractive with respect to autonomous dynamics.

From Proposition 4.1 in [127] it follows that Γ(s) �≥ s for all s �= 0. By assumption there exists

γ ∈ K∞ such that for any s(0) ∈ Rn
+ and any input signal v we have

lim sup
l→∞

|s(l)|1 ≤ γ(|v|1), (2.139)
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where the equivalence of norms on Rn was used. Define D as in (2.44) with α(r) := 1
2n

γ−1(r) ∈ K∞.

Fix r > 0 and consider the set Sr = {s ∈ Rn
+ : |s|1 =

∑
i

si = r}. By construction, for s ∈ Sr we

have

D(s) ≤ s + vr, (2.140)

where

vri
:=

{
1
2n

γ−1(r), i ∈ I∑ ,
0, i ∈ Imax.

Observe that |vr|1 ≤ 1
2
γ−1(r), or equivalently, r ≥ γ(2|vr|) > γ(|vr|1). Now (2.139) implies that

Γ(s + vr) �≥ s, for all s ∈ Sr. (2.141)

To prove this, assume the opposite. Then there exists s∗ ∈ Sr such that Γ(s∗ + vr) ≥ s∗. Consider the

trajectory φ of the dynamical system w(l+1) = Γ(w(l)+v(l)) with initial value w(0) = s∗ and input

v(l) ≡ vr. Assuming w(0) ≥ s∗ we show inductively for l ≥ 0 that w(l + 1) = Γ(w(l) + v(l)) ≥
Γ(s∗ + vr) ≥ s∗. Since |s∗|1 = r > γ(|vr|1) we have a contradiction to (2.139). Thus (2.141) holds.

Consider again an arbitrary s ∈ Sr. By (2.141) there exists an index i ∈ {1, . . . , n} such that

si > (Γ(s + vr))i ≥ (Γ ◦ D(s))i, where the inequality (2.140) was used. This implies

Γ ◦ D(s) �≥ s, for all s ∈ Sr.

Since r > 0 was chosen arbitrary and ∪r>0Sr = Rn
+ \ {0}, the claim follows.

"⇐":

From Theorem 2.4.29 there exist σi ∈ K∞ and α̃ ∈ K∞ such that with σ(r) = (σ1(r), . . . , σn(r))T , r ∈
[0,∞), and D̃ as in (2.44) with corresponding α̃

D̃ ◦ Γ(σ(r)) < σ(r), for all r > 0. (2.142)

By Lemma 2.3.8 there exists K∞ function φ such that

w ≤ μ(Γ(w), v) ⇒ |w| ≤ φ(|v|). (2.143)

Let us show that bounded inputs yield bounded trajectories. To this end assume that v(l) ≤ v ∈ Rn
+

for all l ≥ 0. For any such v and arbitrary s(0) ∈ Rn
+ by (2.142) there exists an r > 0 such that

σ(r) ≥ s(0) and ρ(σ(r)) ≥ v, where ρ : Rn
+ → Rn

+, ρi := α̃ for i ∈ I∑ , ρi := id for i ∈ Imax. Now

assume that

s(l) ≤ D ◦ σ(r), ∀l ≥ 0.

This is obviously true for l = 0. For l + 1 we compute

s(l + 1) = μ(Γ(s(l)), v(l))

≤ μ(Γ ◦ D(σ(r)), v)

≤ μ(σ(r), ρ(σ(r)))

= D ◦ σ(r),

where (2.142) and Lemma 2.3.7 were used. Thus, by induction it follows that the trajectory s(·) is

bounded.
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Now, for a fixed initial condition s(0) and an input bounded by v(·) ≤ v let

s∗ := s∗(s(0), v)
:= sup

l≥0
s(l)

≤ sup
l≥0

{s(0), μ(Γ(s(l)), v(l))}
≤ max{s(0), μ(Γ(s∗), v)}
≤ μ(s(0), Γ(s∗), v),

where (2.135) and (2.136) were used. By Lemma 2.3.8 we have |s∗| ≤ φ(|μ(s(0), v)|) ≤ μ(φ ◦
η1(|s(0)|), φ ◦ η2(|v|)), where the weak triangle inequality (2.43) was used and η1,i := (id + η),
η2,i := (id + η−1) with arbitrary η ∈ K∞, η1,i := id for i ∈ I∑ , η2,i := id for i ∈ Imax. Thus the GS

property of (2.137) is obtained.

For the AG property we obtain

s
 := lim sup
l→∞

s(l) = lim sup
l→∞

μ(Γ(s(l)), v(l)) ≤ μ(Γ(s
), v).

By the weak triangle inequality (2.43) it follows that s
 ≤ φ(|v|). This is the AG property. Then the

system (2.137) is ISS by Theorem 2 in [84], where AG is named K-asymptotic gain and GS is named

UBIBS.
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Chapter 3

Model reduction approach for large-scale
networks

Verification of the small gain condition Γ ◦ D(s) �≥ s in (2.45) requires large amount of analytical

computations in the case of the large size of logistics network. This procedure can be facilitated by

reducing the size of the system (2.5), by applying a numerical method to verify (2.45) or applying a

method that reduces the size of the gain matrix Γ used in condition (2.45).

Model reduction of linear large-scale systems is already a well-developed area. The most efficient

approaches are balancing and moment matching (Krylov subspace methods), see [4]. In balancing

methods state variables that are hard to control/observe are eliminated from the model. An approxi-

mation norm is usually given in terms of H∞- or H2-norms. In moment matching methods a function

that matches certain moment of the Laurent series expansion is being looked for. These methods are

computationally efficient in comparison with balancing methods, however provide no approximation

error bounds. Usually, one uses a combination of both methods where first the large size is reduced

by the moment matching methods and then the balancing method is applied.

On the contrary, the methods for the reduction of nonlinear systems are still in the development. As of

today, there exist many different approaches that provide first steps in the direction of the reduction of

nonlinear systems. However, these approaches are applied only to certain subclasses of nonlinear sys-

tems. The most known methods are an extension of the balancing and moment matching methods to

nonlinear systems, proper orthogonal decomposition, singular perturbations theory, trajectory piece-

wise linear approach, Volterra methods and the theory of global attractors. The balancing methods

[138], [93] are applied to input-affine continuous-time nonlinear systems, and the moment match-

ing to single-input single-output systems [10] and bilinear systems [24]. In the proper orthogonal

decomposition (POD) [75], [11], [76] the original system is projected onto a subspace of a smaller

dimension using the known set of data (snapshots). POD methods are usually applied to models de-

scribing physical systems. Singular perturbations theory [22], [90] is used for the systems, where

parameters evolve in different time scales ("slow" and "fast" parameters). This approach assumes

aggregation of the variables evolving in the fast time scale. The trajectory piecewise linear approach

[124] is mostly applied to input-affine systems. The system is linearized several times along a tra-

jectory and the final model is constructed as a weighted sum of all local linearized reduced systems.

In Volterra methods [121] the reduction is performed by taking into account the first several terms of

the Polynomial expansion of a nonlinear function. In the theory of global attractors [88] one searches

for a slow-manifold, inertial manifold or center manifold, on which a restricted dynamical system

represents the "interesting" behaviour of the dynamical system.

Note that, if these methods will be directly applied to a logistics network, then information about the
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real physical objects of logistics network and of its structure will be, in general, lost. Therefore, a

reduction method that preserves the main structure of the network is needed.

Structure preserving model reduction was studied in [139], [92], [129]. However, it is also applied

only for particular classes of systems.

Another possibility to decrease the number of analytical computations in verifying the small gain

condition (2.45) is an application of numerical methods. A first attempt to perform this was done in

[126] by adapting the algorithm of Eaves [57]. There is considered a local version of ISS.

On the other hand, to the best of our knowledge, there exist no approaches on the reduction of the

size of the gain matrix Γ in the small gain condition (2.45). In this chapter we make the first attempt

in this direction. To this end, we consider the gain operator Γ used in the small gain condition as the

gain model of the network that describes the interconnection between the subsystems of the network.

This model consists of the subsystems and their relations, given by the gains γij that are collected in

the gain matrix Γ. By the model reduction we understand reduction of the gain model, i.e. transition

from the gain matrix Γ of size n to the matrix Γ̃ of size l < n.

To obtain the matrix Γ̃ we propose to aggregate the subsystems and the gains γij between the sub-

systems that belong to certain interconnection patterns. Aggregation of these patterns keeps the main

structure of the mutual influences between the subsystems in the network, i.e. between locations of

the logistics network. Thus the properties of the aggregated and the original models should be simi-

lar. This prompts us that ISS of the large-scale logistics network can be established by checking the

aggregated small gain condition corresponding to the gain matrix Γ̃.

In this chapter we introduce three aggregation rules for the reduction of the gain model. These rules

are based on three interconnection patterns: sequentially connected nodes, nodes connected in parallel

and almost disconnected subgraphs. We establish that fulfillment of the reduced small gain condition

implies ISS of the large network. Furthermore, we show how an ISS-Lyapunov function for the large

network can be constructed using Ω-path corresponding to the reduced small gain condition.

3.1 Gain model
Consider an interconnected hybrid system of the form (2.5). Without loss of generality, assume, for

convenience, that all its subsystems are ISS in terms of maximizations with gains γij collected in the

gain matrix Γ, i.e. I = Imax. Note that we can always pass from the summation formulation to the

maximization one applying Proposition 2.3.17. Then, to establish ISS of the interconnection we can

use Theorem 2.4.5, i.e. we need to verify the small gain condition (2.41):

Γ(s) �≥ s,∀s ∈ Rn
+ \ {0},

with

Γ(s) :=

⎛⎜⎝ max{γ12(s2), . . . , γ1n(sn)}
...

max{γn1(s1), . . . , γn,n−1(sn−1)}

⎞⎟⎠ . (3.1)

Recall also that by Lemma 2.3.1 the small gain condition (2.41) is equivalent to the cycle condition

(2.42):

γk1k2 ◦ γk2k3 ◦ · · · ◦ γkr−1kr < id,

for all (k1, ..., kr) ∈ {1, ..., n}r with k1 = kr. The largest possible number of cycles to be checked in

this condition can be calculated as
∑n

k=2

(
n
k

)
k!, where

(
n
k

)
is the binomial coefficient.
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3.2. Aggregation rules

To reduce the size of the gain matrix in the small gain condition (2.41) we model the structure of the

logistics network described in (2.5) as a directed graph with weights G = (V, E, Γ). The vertex set

V = {1, . . . , n} corresponds to the subsystems of the network, the edge set E to the interconnection

between subsystems, i.e.

eij =

{
1, if γij �≡ 0,
0, otherwise.

(3.2)

The weight of the edge eij from vertex i to j is given by γji and describes the influence of subsystem

i on subsystem j. All the weights are collected in the gain matrix Γ. Note that the matrix Γ is not

static, i.e. the weights are in general nonlinear functions. Such model we call gain model of the

interconnected system (2.5).

3.2 Aggregation rules

In our model reduction approach we propose to reduce the size of the gain matrix Γ in the small

gain condition (2.41). In particular, we transform the graph G = (V, E, Γ) by introducing aggre-

gation rules for vertices for typical subgraphs occurring in the network. Such subgraphs we will

call motifs [103]. By aggregation of the vertices we understand the construction of a smaller graph

G̃ = (Ṽ , Ẽ, Γ̃) in which the vertices may represent nonempty subsets of vertices in the original graph

G = (V, E, Γ). We single out the following motifs: parallel connections, sequential connections of

vertices and almost disconnected subgraphs. These reduction rules are inspired by the properties of

motifs in [2].

3.2.1 Aggregation of sequentially connected nodes

The vertices of the set VJ = {v1, ..., vl} are called sequentially connected, see Figure 3.1, if there

exist vertices v, v′ ∈ V \ VJ such that

P (vi) =

{
v i = 1,

vi−1 i = 2, ..., l

and

S(vi) =

{
vi+1 i = 1, ..., l − 1,

v′ i = l.

The predecessor set P and successor set S were defined in Section 1.1.3.

vvv v1v1v1 ......... vlvlvl v′v′v′γv1,v γv′,vl

Figure 3.1: Sequential connection of vertices v1, . . . , vl.

81



Chapter 3. Model reduction approach for large-scale networks

The corresponding gain matrix is given by

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 0 0 . . . 0 0 . . . . . .

. . . 0 γv1,v 0 . . . 0 0 0 . . .

. . . 0 0 γv2,v1 . . . 0 0 0 . . .

. . .
...

...
...

. . .
...

...
... . . .

. . . 0 0 0 . . . γvl,vl−1
0 0 . . .

. . . . . . . . . 0 . . . 0 γv′,vl
. . . . . .

. . . . . . 0 0 . . . 0 0 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.3)

The cycle condition (2.42) for the cycles that include nodes from {v1, . . . , vl} looks as follows:

. . . ◦ γv′,vl
◦ . . . ◦ γv2,v1 ◦ γv1,v . . . < id. (3.4)

Aggregation of gains

To obtain a graph of a smaller size we aggregate the nodes v1, . . . , vl with the node v. We denote the

new vertex by J . A cut-out of the new reduced graph is shown in Figure 3.2. So, we consider the

reduced graph G̃ = (Ṽ , Ẽ, Γ̃), where the vertices are given by

Ṽ = (V \ (VJ ∪ {v})) ∪ J (3.5)

and the edges are given by

Ẽ = E \ ({(v, w), (w, v′), (w1, w2) : w, w1, w2 ∈ VJ} ∪ (v, v′))

∪ {(J, v′) ∪ (u, J) : (u, v) ∈ E}. (3.6)

The corresponding weighted adjacency matrix Γ̃ of the dimension n−l can be obtained from Γ, where

the rows and columns corresponding to the vertices v, v1, . . . , vl are replaced by a row and a column

corresponding to the new vertex J . The weights are then given by

γ̃v′,J := max{γv′,vl
◦ · · · ◦ γv2,v1 ◦ γv1,v, γv′,v}, (3.7)

γ̃J,v′ := γv,v′ , γ̃J,j := γv,j, γ̃j,J := γj,J , j ∈ V \ (VJ ∪ {v, v′}). (3.8)

JJJ v′v′v′
γ̃v′,J

Figure 3.2: Vertices v1, . . . , vl, v
′ are aggregated.

Other gains stay the same, i.e.

γ̃ij := γij, i, j �= J. (3.9)

The small gain condition (2.41) corresponding to the reduced gain matrix Γ̃ has the following prop-

erties.
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3.2. Aggregation rules

Theorem 3.2.1. Consider a gain matrix Γ as in (3.3). If condition (2.41) holds for the matrix Γ̃ with
gains defined in (3.7)-(3.9), then it holds also for the matrix Γ.
Assume that there were p cycles that include one of the nodes vi from VJ . If γv′,v �= 0, then the
number of cycles to be checked in the cycle condition (2.42) corresponding to the reduced matrix Γ̃ is
decreased by p after the aggregation, otherwise it stays the same.

Proof. Let condition (2.41) for the gains defined in (3.7)-(3.9) hold. Then the cycle condition (2.42)

corresponding to these gains holds. In particular, for the cycles containing the gain γ̃v′,J the following

inequality holds:

. . . ◦ γ̃v′,J ◦ . . . < id. (3.10)

From the definition of the gain γ̃v′,J in (3.7) condition (3.4) holds. Condition (2.42) on other cycles

corresponding to Γ is satisfied straightforwardly. Thus, the matrix Γ satisfies (2.41).

If γv′,J = 0, then, as the cycle containing one of the nodes {v1, . . . , vl} contains necessarily all

other nodes from {v1, . . . , vl}, the number of cycles to be checked in the cycle condition is the same.

Otherwise, these cycles will "coincide" with the cycles that include gain γv′,v. Thus, the overall

number of the cycles will decrease by p.

Thus, to show that a system of the form (2.5) is ISS, it is enough to verify the small gain condition

Γ̃(s) �≥ s corresponding to the reduced gain matrix Γ̃.

Corollary 3.2.2. Consider interconnected system (2.5) and assume that the set {f(x, u) : u ∈ U∩εB}
is convex for each x ∈ χ, ε > 0. Assume also that Di = D, i = 1, . . . , n and that all the subsystems
in (2.1) are ISS with gains as in (2.14). If condition (2.41) holds for the gains defined in (3.7)-(3.9),
then the system (2.5) is ISS.

Proof. The assertion follows from Theorem 3.2.1 and Theorem 2.4.5.

Construction of an Ω-path

To construct an ISS-Lyapunov function of the interconnected system (2.5), we can apply Theo-

rem 2.4.11. However, for this purpose we need to have an Ω-path σ satisfying (2.71), i.e.

Γ(σ) ≤ σ.

It appears, that if an Ω-path corresponding to the reduced gain matrix Γ̃ is known, we can calculate

an Ω-path for the large gain matrix Γ.

Proposition 3.2.3. Consider a gain matrix Γ and the corresponding reduced gain matrix Γ̃ with
gains defined in (3.7)-(3.9). Let an Ω-path σ̃ for Γ̃ satisfying (2.71) be given. Then an Ω-path σ̄ for
the matrix Γ can be constructed as

σ̄w :=

{
γvi,vi−1

◦ γvi−1,vi−2
◦ · · · ◦ γv2,v1 ◦ γv1,v ◦ σ̃J , if w = vi, i ∈ {1, . . . , l},

σ̃w, otherwise .
(3.11)

Proof. We assume that an Ω-path σ̃ for the small gain matrix Γ̃ is known. In particular, by (2.71)

Γ̃(σ̃) ≤ σ̃ holds. Let us check whether Ω-path σ̄ defined in (3.11) is an Ω-path for the large gain

matrix Γ. To this end we need to check (2.71) for σ̄.
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Chapter 3. Model reduction approach for large-scale networks

For the components Γ(σ̄)w, w �∈ {v1, . . . , vl, v
′} the inequality (2.71) holds straightforwardly. Con-

sider now Γ(σ̄)w, w = vi, i ∈ {1, . . . , l}. Applying (3.7)-(3.9) and (3.11) we obtain:

Γ(σ̄)vi
= γvi,vi−1

◦ σ̄vi−1
= γvi,vi−1

◦ γvi−1,vi−2
◦ σ̄vi−2

= · · · = γvi,vi−1
◦ · · · ◦ γv1,v ◦ σ̃J

= σ̄vi
;

Γ(σ̄)v′ = max{γv′,1(σ̄1), . . . , γv′,vl
(σ̄vl

), . . . , γv′,n(σ̄n)}
= max{γ̃v′,1(σ̃1), . . . , γv′,vl

◦ · · · ◦ γv1,v ◦ σ̃J︸ ︷︷ ︸
γ̃v′,J◦σ̃J

, . . . , γ̃v′,n(σ̃n)}

= max{γ̃v′,1(σ̃1), . . . , γ̃v′,J ◦ σ̃J , . . . , γ̃v′,n(σ̃n)

≤ σ̃v′ = σ̄v′ .

Thus Γ(σ̄) ≤ σ̄ and σ̄ is an Ω-path corresponding to the large gain matrix Γ.

The proposition above implies the following result concerning the construction of an ISS-Lyapunov

function.

Corollary 3.2.4. Consider a system of the form (2.5) that is interconnection of subsystems (2.1).
Assume that Di = D, i = 1, . . . , n and that each subsystem i of (2.1) has an ISS-Lyapunov function
Vi with the corresponding ISS-Lyapunov gains γij, γi, i, j = 1, . . . , n as in (2.34), (2.36). Let Γ be
defined as in (2.99) with Imax = {1, . . . , n}. Assume that there exist an Ω-path σ̃ with respect to Γ̃
defined by (3.7)-(3.9) and a function φ ∈ K∞ given by (2.100). Then the system (2.5) is ISS and an
ISS-Lyapunov function is given by (2.101) with σ from (3.11).

Proof. The assertion follows from Theorem 2.4.11 and Proposition 3.2.3.

3.2.2 Aggregation of nodes connected in parallel

Parallel connections are characterized by the vertices having the same predecessor and successor sets

consisting of a single vertex. Let the vertices VJ := {v1, . . . , vl} ⊂ V be connected in parallel, i.e.

every vertex has only one ingoing and one outgoing edge and the ingoing edges originate from one

vertex v ∈ V and also the outgoing edges end in solely one vertex v′ ∈ V , see Figure 3.3. To be

precise, VJ = {i ∈ V : P (i) = v, S(i) = v′}.

vvv

v1v1v1 vlvlvl

v′v′v′

...

γv1,v γvl,v

γv′,v1 γv′,vl

Figure 3.3: Parallel connection of vertices v1, . . . , vl.
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3.2. Aggregation rules

The corresponding gain matrix is given by

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 0 . . . 0 0 . . . . . .

. . . 0 0 . . . 0 γv1,v 0 . . .

. . .
...

...
. . .

...
...

... . . .
. . . 0 0 . . . 0 γvl,v 0 . . .
. . . 0 γv′,v1 . . . γv′,vl

. . . . . . . . .
. . . . . . 0 . . . 0 0 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.12)

The cycle condition (2.42) for the cycles that include nodes from {v1, . . . , vl} looks as follows:

. . . ◦ γv′,vi
◦ γvi,v ◦ . . . < id. (3.13)

Aggregation of gains

Based on this structure a possibility to attain a graph of a smaller size is to aggregate the vertices

connected in parallel to a single vertex and to leave the structure of the remaining graph as it is. We

denote the new vertex by J . A cut-out of the new reduced graph is shown in Figure 3.4.

JJJ

v′v′v′

γ̃v′,J

Figure 3.4: Aggregation of vertices v1, . . . , vl, v.

So, we consider the reduced graph G̃ = (Ṽ , Ẽ, Γ̃), where the vertices are given by

Ṽ = (V \ (VJ ∪ {v})) ∪ J (3.14)

and the edges are given by

Ẽ = E \ ({(v, w), (w, v′) : w ∈ VJ} ∪ (v, v′)) ∪ (J, v′) ∪ {(u, J) : (u, v) ∈ E}. (3.15)

The corresponding weighted adjacency matrix Γ̃ of the dimension n−l can be obtained from Γ, where

the rows and columns corresponding to the vertices v, v1, . . . , vl are replaced by a row and column

corresponding to the new vertex J . The weights are then given by

γ̃v′,J := max{γv′,v1 ◦ γv1,v, . . . , γv′,vl
◦ γvl,v, γv′,v}, (3.16)

γ̃J,v′ := γv,v′ , γ̃J,j := γv,j, γ̃j,J := γj,J , j ∈ V \ (VJ ∪ {v, v′}). (3.17)

Other gains stay the same, i.e.

γ̃ij := γij, i, j �= J. (3.18)

The small gain condition (2.41) corresponding to the reduced gain matrix Γ̃ has the following prop-

erties.
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Chapter 3. Model reduction approach for large-scale networks

Theorem 3.2.5. Consider a gain matrix Γ as in (3.12). If condition (2.41) holds for the matrix Γ̃ with
gains defined in (3.16)-(3.18), then it holds also for the matrix Γ.
Furthermore, if there were p cycles that include node vi, then the number of cycles to be checked in
the cycle condition (2.42) corresponding to the reduced matrix Γ̃ is decreased by p(l − 1 − δv′,v),
where δv′,v := 1, if γv′,v �= 0 and δv′,v := 0 otherwise.

Proof. Let condition (2.41) for the gains defined in (3.16)-(3.18) hold. Then the cycle condition (2.42)

for these gains holds. In particular, for the cycles containing the gain γ̃v′,J the following inequality

holds:

. . . ◦ γ̃v′,J ◦ . . . < id. (3.19)

From the definition of the gain γ̃v′,J in (3.16), condition (3.13) holds. Condition (2.42) on the other

cycles is satisfied straightforwardly. Thus Γ satisfies (2.41).

If there were p cycles that include node vi in the large graph, then the number of the cycles that include

a node from {v1, . . . , vl} is p · l. If γv′,v �= 0, then the number of cycles with nodes {v1, . . . , vl} and

gain γv′,v is p · (l+1). After the aggregation of the gains these cycles will "coincide", thus the number

of the cycles to be checked in the small gain condition (2.41) is decreased by p(l − 1 − δv′,v).

Again, to show that a system of the form (2.5) is ISS, it is enough to verify the small gain condition

corresponding to the reduced gain matrix.

Corollary 3.2.6. Consider interconnected system (2.5) and assume that the set {f(x, u) : u ∈ U∩εB}
is convex for each x ∈ χ, ε > 0. Assume also that Di = D, i = 1, . . . , n and that all subsystems in
(2.1) are ISS with gains as in (2.14). If condition (2.41) holds for the gains defined in (3.16)-(3.18),
then the system (2.5) is ISS.

Proof. The assertion follows from Theorem 3.2.5 and Theorem 2.4.5.

Construction of an Ω-path

Again we can calculate an Ω-path for a large gain matrix having an Ω-path corresponding for the

reduced one.

Proposition 3.2.7. Consider a gain matrix Γ and the corresponding reduced gain matrix Γ̃ with gains
defined in (3.16)-(3.18). Let an Ω-path σ̃ for Γ̃ satisfying (2.71) be given. Then an Ω-path σ̄ for the
matrix Γ can be constructed as

σ̄w :=

{
γw,v ◦ σ̃J , if w ∈ {v1, . . . , vl},
σ̃w, otherwise .

(3.20)

Proof. We assume that an Ω-path σ̃ for the small gain matrix σ̃ is known. In particular, by (2.71)

Γ̃(σ̃) ≤ σ̃ holds. Let us check whether an Ω-path σ̄ defined in (3.20) is an Ω-path for the large matrix

Γ. To this end we need to check (2.71).

For the components Γ(σ̄)w, w �∈ {v1, . . . , vl, v
′} the inequality (2.71) holds straightforwardly. Con-

sider now Γ(σ̄)w, w ∈ {v1, . . . , vl}. Applying (3.16)-(3.18) and (3.20) we obtain:

Γ(σ̄)w = γw,v ◦ σ̄v = σ̃w;

Γ(σ̄)v′ = max{γv′,1(σ̄1), . . . , γv′,v1(σ̄v1), . . . , γv′,v1(σ̄vl
), . . . , γv′,n(σ̄n)}

= max{γ̃v′,1(σ̃1), . . . , γv′,v1◦γv1,v◦σ̃J , . . . , γv′,vl
◦γvl,v◦σ̃J︸ ︷︷ ︸

γ̃v′,J◦σ̃J

, . . . , γ̃v′,n(σ̃n)}

= max{γ̃v′,1(σ̃1), . . . , γ̃v′,J ◦ σ̃J , . . . , γ̃v′,n(σ̃n)

≤ σ̃v′ = σ̄v′ .
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Thus Γ(σ̄) ≤ σ̄ and σ̄ is an Ω-path corresponding to the large gain matrix Γ.

Corollary 3.2.8. Consider a system of the form (2.5) that is an interconnection of the subsystems
(2.1). Assume that Di = D, i = 1, . . . , n and that each subsystem i of (2.1) has an ISS Lyapunov
function Vi with corresponding ISS-Lyapunov gains γij, γi, i, j = 1, . . . , n as in (2.34), (2.36). Let Γ
be defined as in (2.99) with Imax = {1, . . . , n}. Assume that there exists an Ω-path σ̃ with respect to
Γ̃ defined by (3.16)-(3.18) and a function φ ∈ K∞ given by (2.100). Then the system (2.5) is ISS and
an ISS-Lyapunov function is given by (2.101) with σ from (3.20).

Proof. The assertion follows from Theorem 2.4.11 and Proposition 3.2.7.

3.2.3 Aggregation of almost disconnected subgraphs

A further structure in the network, that suggests itself to a reduction is given by subgraphs which

are connected to the remainder of the network through just a single vertex. So, we consider a set of

vertices VJ = {v1, ..., vl} and a distinguished vertex v∗ ∈ V \ VJ such that any path from vi, i =
1, . . . , l to the remainder of the vertices in V \ VJ , and any path from V \ VJ to VJ necessarily

passes through the vertex v∗. If we assume that the whole graph is strongly connected, this implies in

particular, that the subgraph induced by VJ ∪ {v∗} is by itself strongly connected.

In Figure 3.5 an example graph is shown, where the vertices VJ = {v1, . . . , vl} are connected with

the rest of the graph only through the vertex v∗.

v1v1v1

v2v2v2

v3v3v3

v∗v∗v∗

Figure 3.5: The subgraph consisting of the vertices VJ = {v1, v2, v3} is almost disconnected from the

graph.

The cycles in (2.42) that include nodes only from {v1, . . . , vl, v
∗} look as follows:

γk1,k2 ◦ γk2,k3 ◦ · · · ◦ γkr−1,kr < id, (3.21)

for all (k1, ..., kr) ∈ {v1, ..., vl, v
∗}r with k1 = kr.

Aggregation of gains

To reduce the network size we aggregate the vertices of the subgraph VJ with vertex v∗ and do not

change the remainder of the graph. We denote the new vertex by J . For the example in Figure 3.5 the
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reduced graph is shown in Figure 3.6. So we consider the reduced graph G̃ = (Ṽ , Ẽ, Ã), where the

vertices are given by

Ṽ = (V \ (VJ ∪ {v∗})) ∪ J (3.22)

and the edges are given by

Ẽ = E \ {(w1, w2), (v
∗, w1), (w1, v

∗) : w1, w2 ∈ VJ}
∪ {(J, u) : u ∈ Ṽ , (v∗, u) ∈ E}

∪ {(u, J) : u ∈ Ṽ , (u, v∗) ∈ E}. (3.23)

v∗v∗v∗

JJJ

Figure 3.6: Subgraph VJ and node v∗ are merged to vertex J .

The corresponding weighted adjacency matrix Γ̃ of the dimension n − l + 1 can be obtained from

Γ, where the rows and columns corresponding to the vertices v1, . . . , vl are replaced by a row and

column corresponding to new vertex J . The weights are then given by

γ̃J,v∗ := max
(k1,...,kr)∈{v1,...,vl,v∗}r,k1=kr

{γk1,k2 ◦ γk2,k3 ◦ · · · ◦ γkr−1,kr}, (3.24)

γ̃v∗,J = id. (3.25)

Other gains stay the same, i.e.

γ̃ij := γij, i, j �= J. (3.26)

Theorem 3.2.9. Consider a gain matrix Γ. If condition (2.41) holds for the gain matrix Γ̃ with gains
defined in (3.24)-(3.26), then it holds also for the matrix Γ.
If there were p cycles that include nodes only from VJ ∪{v∗}, then the number of cycles to be checked
in the cycle condition (2.42) corresponding to the reduced matrix Γ̃ is decreased by p − 1.

Proof. Let condition (2.41) for the gains defined in (3.24)-(3.26) hold. Then the cycle condition (2.42)

for these gains holds. In particular, for the cycles containing γ̃v∗,J , γ̃J,v∗ the following inequality holds:

γ̃v∗,J ◦ γ̃J,v∗ < id. (3.27)

From the definition of the gains γ̃J,v∗ and γ̃v∗,J in (3.24) and (3.25), condition (2.41) for the large

matrix Γ holds. Conditions on the other cycles in (2.42) are satisfied straightforwardly.

As instead of p cycles with nodes only from VJ ∪ {v∗} we consider only one cycle γ̃v∗,J ◦ γ̃J,v∗ , the

number of cycles corresponding to the small gain matrix Γ̃ is decreased by p − 1.

Corollary 3.2.10. Consider interconnected system (2.5) and assume that the set {f(x, u) : u ∈
U ∩ εB} is convex for each x ∈ χ, ε > 0. Assume also that Di = D, i = 1, . . . , n and that all
subsystems in (2.1) are ISS with gains as in (2.14). If condition (2.41) holds for the gains defined in
(3.24)-(3.26), then the system (2.5) is ISS.

Proof. The assertion follows from Theorem 3.2.9 and Theorem 2.4.5.
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Construction of an Ω-path

Again, we can calculate an Ω-path for a large gain matrix having an Ω-path corresponding for a

reduced one.

Proposition 3.2.11. Consider a gain matrix Γ and the corresponding reduced gain matrix Γ̃ with
gains defined in (3.24)-(3.26). Let an Ω-path σ̃ for Γ̃ satisfying (2.71) be given. Then there exists an
Ω-path σ̄ for the matrix Γ.

Proof. Using definitions of the gains γ̃v∗,J and γ̃J,v∗ in (3.24)-(3.26) we obtain that all the cycles of

the large network satisfy the cycle condition (2.42). Thus, we can construct an Ω-path for a large

system using Proposition 2.3.14.

Corollary 3.2.12. Consider a system of the form (2.5) that is an interconnection of the subsystems
(2.1). Assume that Di = D, i = 1, . . . , n and that each subsystem i of (2.1) has an ISS-Lyapunov
function Vi with the corresponding ISS-Lyapunov gains γij, γi, i, j = 1, . . . , n as in (2.34), (2.36). Let
Γ be defined as in (2.99) with Imax = {1, . . . , n}. Assume that there exists Ω-path σ̃ with respect to Γ̃
defined by (3.24)-(3.26) and a function φ ∈ K∞ given by (2.100). Then the system (2.5) is ISS and an
ISS-Lyapunov function is given by (2.101).

Proof. The assertion follows from Theorem 2.4.11 and Proposition 3.2.11.

3.2.4 Notes on application of the aggregation rules
The aggregation rules described in the previous subsections preserve the main structure of a logistics

network. Furthermore, in the case that there exist several motifs in one network, these rules can be

applied step-by-step to reduce the size of the gain matrix Γ. The sequence of the application of these

rules may be arbitrary or depend on some additional information about the network topology. For

example, this sequence may depend on information about the most influential nodes of the network,

see [144, Algorithm 1].

We restrict us on the maximum formulation of ISS. However, this reduction approach can be extended

to more general formulations by applying, for example, Proposition 2.3.17.

The "quality" of the reduction is evaluated by the verifying, whether fulfillment of the small gain

condition corresponding to the reduced gain matrix implies fulfillment of the small gain condition

corresponding to the original gain matrix, and by comparing the number of cycles to be checked in

the corresponding small gain conditions.
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Chapter 4
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Conclusion
The existing approaches to model logistics networks vary in their capabilities to describe network

dynamics and in applicability to study network performance. In Chapter 1 we have reviewed eleven

different approaches to model dynamics of logistics networks with application to stability analysis.

Each approach possesses one of the four types of dynamics: discrete, continuous, stochastic or hybrid

one. Comparison of the characteristics of these approaches is provided in Table 1.1.

Interconnected hybrid system of the form (1.55) provides a flexibility in the modelling of logistics

networks due to its ability to model continuous and discrete processes occurring in the network. In

the framework of this model, the state of the network is denoted by the variable x and the external

inputs by the variable u. The continuous dynamics is described by the function f(x, u) and the

discrete one by the function g(x, u). The set C determines when the state of the network changes

continuously and the set D when the state of the network changes discretely. Complexity of the

cooperation structure of logistics networks, perturbation of external inputs, nonlinearity of dynamics

can lead to instability of the behaviour of logistics networks. The notion of input-to-state stability

(ISS) allows to describe stability of dynamical systems with external inputs. Furthermore, there

exists already a well-established method to study ISS of interconnected systems with only continuous

or only discrete dynamics. This method is based on the so-called small gain condition that serves as

a sufficient condition for ISS of an interconnection.

In Chapter 2 we have extended application of this condition to hybrid systems. Furthermore, we have

extended this condition to the case when some of the subsystems are ISS in terms of the maximization

formulation and other in terms of summations. Such mixed formulation can lead to more sharp

stability conditions, see Examples 2.3.5 and 2.3.6. To guarantee ISS of interconnected hybrid system

we require in Theorem 2.4.5 ISS of all its subsystems and that the condition Γ ◦ D �≥ id holds, where

the gain matrix Γ describes the interconnection structure of the system and the diagonal operator D
has id on the ith component of the diagonal if the ith system is ISS in terms of maximizations and

id + α if the ith system is ISS in terms of summations. As well as in continuous or discrete systems,

ISS-Lyapunov functions provide a useful tool to establish ISS of hybrid systems. By imposing the

same small gain condition Γ ◦ D �≥ id we have provided in Theorem 2.4.13 a construction of the

ISS-Lyapunov function for the interconnection. This function is given by a scaling of ISS-Lyapunov

functions for subsystems. Furthermore, we have presented application of this small gain condition

to certain subclasses of hybrid systems: impulsive systems, comparison systems and systems with

stability of only a part of the state. These subclasses of hybrid systems allow to model specific types

of logistics networks.
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In order to verify the small gain condition in the case of the large size of a logistics network, we have

presented a method of the reduction of the size of the gain matrix Γ in Chapter 3. In this method we

consider the interconnection structure of the network as a weighted graph where the nodes describe

the subsystems and the weights describe the gains between the subsystems. Reduction of the gain

matrix is performed by an aggregation of the gains of the gain matrix that correspond to certain

interconnection motifs of the graph: sequentially connected nodes, nodes connected in parallel and

almost disconnected subgraphs. We have established that ISS of a large-scale interconnected system

can be concluded by the verifying the small gain condition corresponding to the reduced matrix Γ̃,

see Corollaries 3.2.2, 3.2.6 and 3.2.10.

Outlook
Flexibility of interconnected hybrid systems in modelling of complex dynamical behaviour enables

further extension and investigation of the dynamics and performance of logistics networks like con-

sidering of random effects, modelling of different production and service policies by adjusting the

functions f , g and the sets C and D, and like imposing of control problems. Furthermore, the ob-

tained stability results can be applied in other types of networks with hybrid dynamics like telecom-

munication, artificial neural or biological ones.

To stabilize a network with hybrid dynamics, methods for feedback control can be developed using

the small gain condition and by extending the results from continuous systems, e.g. [80].

A restriction in the application of an ISS-Lyapunov function mentioned in Remark 2.2.15 suggests the

development of more sharp Lyapunov-like functions and of stability conditions to be able to establish

stability of hybrid systems with unstable continuous or discrete dynamics. We suppose to start by

considering some subclasses of hybrid systems or particular types of stability.

The convexity assumption on the function f in Theorem 2.4.5 is needed to use the equivalence be-

tween the asymptotic gain property and 0-input pre-stability in the proof of Theorem 2.4.5 from [28,

Theorem 3.1]. We suppose that in some cases we can omit this assumption. To get rid of this restric-

tion one needs either to revise the proof of Theorem 2.4.5 or to prove the equivalence between the

asymptotic gain property and 0-input pre-stability without the convexity assumption. Furthermore,

we suggest that the requirement Di = D in the small gain theorems, see Theorem 2.4.5 for example,

can be weakened for some particular cases of interconnections.

In Chapter 3 we have performed only initial steps in the development of a model reduction approach

for large-scale networks with nonlinear dynamics. The next steps could be: extension of the aggre-

gation rules to other types of motifs, introduction and estimation of the error measure that compares

the reduced and the original models, and the development of a numerical algorithm that performs this

reduction. Further improvement of the approach may be performed by the adapting of the ranking

technique used in [142], [143] and [144] to identify the most influential logistic locations.
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