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II  Structure of this thesis

This thesis investigated the two glial cell types oligodendroglial cells and astrocytes. The 

Results subchapter 2.1. contains results obtained on OLN-93 cells. The first manuscript 

describes the iron metabolism of OLN-93 cells (chapter 2.1.1.) that was not submitted so far

for publication. In this chapter, figures and tables are placed at the respective position in the 

text. The Results subchapter 2.1. contains in addition one accepted publication on the 

proliferation of OLN-93 cells (chapter 2.1.2.) and two submitted manuscripts describing the 

consequences of an exposure of OLN-93 cells to iron oxide nanoparticles (chapters 2.1.3. and 

2.1.4.). The Results subchapter 2.2. consists of three accepted publications on the viability 

and iron accumulation of iron oxide nanoparticles-exposed cultured astrocytes. 

Accepted publications are inserted as portable document format. The two submitted 

manuscripts were adapted to the layout of this thesis and the figures, tables and their legends 

were placed directly after the results chapter. Otherwise are the submitted manuscripts shown 

in the present thesis identical to the versions that were submitted for publication.  

For each accepted publication and submitted manuscript in this thesis, the contributions of the 

authors are listed on the first page of the respective chapter.  
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III Summary

Iron is an essential metal for mammalian cells catalyzing redox reactions in various metabolic 

pathways. However, iron can also induce cellular damage due to increased formation of 

reactive oxygen species (ROS). Among the different brain cell types, oligodendrocytes 

produce and maintain the myelin sheaths around neuronal axons whereas brain astrocytes 

participate in a variety of different brain functions such as synaptic signal transduction, 

regulation of metal homeostasis and detoxification of xenobiotics. In brain, these cells may 

encounter iron oxide nanoparticles (Fe-NP), since Fe-NP are extensively investigated for 

biomedical applications.  

This thesis investigated the metabolism of iron and Fe-NP in glial cells. The oligodendroglial

OLN-93 cells express the mRNAs of the protein transferrin, transferrin-receptor and divalent 

metal transporter 1 for iron uptake as well as the iron storage protein ferritin. The proliferation 

of these cells depended on the availability of extracellular iron and can be inhibited by iron 

chelators. Furthermore, OLN-93 cells accumulated substantial amounts of iron from low 

molecular weight iron salts and Fe-NP. The cell viability was not compromised despite of 

high intracellular iron concentrations. Moreover, exposure to Fe-NP hardly affected the 

metabolism of OLN-93 cells. Intracellularly, iron was mobilized from Fe-NP by OLN-93 

cells as demonstrated by the increase in proliferation following iron restriction, by the 

upregulation of ferritin and by the inhibition of Fe-NP-dependent ROS formation by a cell-

membrane-permeable iron chelator. 

Also primary astrocytes took up Fe-NP as shown by increased cellular iron contents and 

electron microscopy. Both OLN-93 cells and astrocytes accumulated iron from Fe-NP in

comparable amounts, showed similar time- and concentration-dependencies of iron 

accumulation and stored iron in ferritin. These observations suggest that the uptake and the 

cellular fate of Fe-NP are similar in OLN-93 cells and astrocytes. 
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IV  Zusammenfassung 

Eisen ist ein essentielles Metall für Säugetierzellen, welches Redoxreaktion in verschiedenen 

Stoffwechselwegen katalysiert. Allerdings kann Eisen auch durch die erhöhte Bildung von 

reaktiven Sauerstoffspezies Zellschädigungen induzieren. Unter den verschiedenen 

Gehirnzelltypen haben Oligodendrozyten die Funktion der Produktion und Aufrechterhaltung 

der Myelinscheiden um die neuronalen Axone, wohingegen Astrocyten an einer Vielzahl von 

Funktion im Gehirn beteiligt sind, wie zum Beispiel an der synaptischen Signalübertragung,

an der Regulation des Metallstoffwechsels und an der Entgiftung von Fremdstoffen. Im 

Gehirn könnten diese Zellen Eisenoxid-Nanopartikeln ausgesetzt sein, da Eisenoxid-

Nanopartikel weitgehend für biomedizinische Anwendungen untersucht werden. 

In dieser Dissertationsarbeit wurde der Metabolismus von Eisen und Eisenoxid-Nanopartikeln 

in glialen Zellen untersucht. The oligodendroglialen OLN-93 Zellen exprimieren die mRNA 

der Proteine Transferrin, des Transferrin-Rezeptors und des divalenten Metall Transporters 1

zur Eisenaufnahme und auch die des Eisenspeicherproteins Ferritin. Die Proliferation dieser 

Zellen war von der Verfügbarkeit von extrazellulärem Eisen abhängig und konnte durch 

Eisenchelatoren inhibiert werden. Desweiteren akkumulierten OLN-93 Zellen substanzielle 

Mengen Eisen aus niedermolekularen Eisensalzen und Eisenoxid-Nanopartikeln. Die 

Zellvitalität wurde ungeachtet der hohen intrazellulären Eisenkonzentrationen nicht 

beeinträchtigt. Darüber hinaus beeinflusste die Exposition mit Eisenoxid-Nanopartikeln kaum 

den Stoffwechsel von OLN-93 Zellen. Intrazellulär wurde Eisen aus Eisenoxid-Nanopartikeln 

von OLN-93 Zellen mobilisiert, was anhand der gesteigerten Proliferation unter 

Eisenmangelbedigungen, der Hochregulierung von Ferritin und der Inhibition der Eisenoxid-

Nanopartikel-abhängigen ROS Bildung durch einen Zellmembran-permeablen Eisenchelator 

gezeigt wurde.  

Auch primäre Astrocyten nahmen Eisenoxid-Nanopartikel auf, welches mittels der 

gesteigerten zellulären Eisengehalte und Elektronenmikroskopie gezeigt wurde. Beide, OLN-

93 Zellen und Astrocyten, akkumulierten Eisen aus Eisenoxid-Nanopartikeln in 

vergleichbaren Mengen, zeigten ähnliche Zeit- und Konzentrationsabhängigkeiten der 

Eisenaufnahme und speicherten Eisen in Ferritin. Diese Beobachtungen lassen darauf 

schließen, dass die Aufnahme und das zelluläre Schicksal von Eisenoxid-Nanopartikeln in 

OLN-93 Zellen und Astrocyten ähnlich sind.
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1. Introduction 

1.1. Glial cells

The central nervous system (CNS) consists of different cell types which act in concert to 

enable the brain to fulfill its function of information processing (Bullock et al. 2005). Brain 

cells are divided into excitable neurons and non-excitable glial cells (Verkhratsky and Butt 

2007). The neurons perform the signal transduction along their axons and for their survival 

and function the presence of glial cells is crucial (Eroglu and Barres 2010, Piaton et al. 2010). 

Interestingly, the glial cell population accounts for more than 90% of all human brain cells 

(Verkhratsky and Butt 2007) and can be further divided into oligodendrocytes (see chapter 

1.1.1.), astrocytes (see chapter 1.1.3.), immune-competent microglial cells (Graeber and Streit 

2010) and some other cell types such as ependymal cells (Verkhratsky and Butt 2007) and 

pericytes (Krueger and Bechmann 2010).  

1.1.1. Oligodendrocytes

Functions and development of oligodendrocytes in the brain

Oligodendrocytes are the myelin-forming cells of the brain. The myelin sheath is an insulating 

layer around the axons of neurons to maximize the conduction velocity of electrical signals 

(Emery 2010, Miron et al. 2011). Two myelin segments are separated from each other by the 

nodes of Ranvier, in which sodium channels are clustered. The propagation of electric signals

from one node to the next strongly increases the conduction velocity of myelinated axons 

(Baumann and Pham-Dinh 2001, McTigue and Tripathi 2008). However, the oligodendroglial 

myelin sheath is not only a passive insulation layer, as oligodendrocytes and neuronal axons 

also interact with each other. For example, factors released from oligodendrocytes support 

axonal survival (Nave 2010) and oligodendrocytes respond to factors derived from axons 

(Nave and Trapp 2008). Moreover, one oligodendrocyte myelinates several axons (Miron et 

al. 2011) and one axon is myelinated by different oligodendrocytes (Baumann and Pham-

Dinh 2001). 

The development of the brain is a chronology of complex processes which are determined and 

influenced by intrinsic and environmental factors (Stiles and Jernigan 2010). Neurons develop 

from neural progenitor cells predominately prenatally, whereas glial progenitor cell 
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proliferation also begins prenatally but extends until adulthood (Stiles and Jernigan 2010). 

Oligodendrocyte precursor cells originate from the subventricular zone and migrate through

the CNS to reach all brain areas and mature into myelin forming cells (Bradl and Lassmann 

2010). Each of the developmental stages of oligodendrocytes is characterized by the 

expression of different marker proteins. Oligodendroglial precursor cells express the 

polysialylated neural cell adhesion molecule (PSA-NCAM) and a splicing variant of the 

proteolipid protein (PLP) gene product DM-20 (Baumann and Pham-Dinh 2001, Bradl and 

Lassmann 2010). The next developmental stage is the oligodendrocyte progenitor cell, which

is characterized by a bipolar morphology and by expression of NG2 proteoglycan, platelet-

derived growth factor �-receptor (PDGFR�) and the ganglioside GD3 (Baumann and Pham-

Dinh 2001, McTigue and Tripathi 2008, Jakovcevski et al. 2009). Cells in this developmental 

stage are able to migrate and proliferate (Baumann and Pham-Dinh 2001, McTigue and 

Tripathi 2008, Jakovcevski et al. 2009). After arrival at their final place in the brain, 

oligodendrocyte progenitor cells develop multiple processes and express a protein that can be 

detected by the antibody O4 (Baumann and Pham-Dinh 2001, Jakovcevski et al. 2009). The 

subsequent developmental stage is the immature oligodendrocyte. These cells express 

galactosylceramides (GalC) and 2´,3´-cyclic nucleotide-3´-phosphohydrolase (CNP) as the 

first myelin specific markers (Baumann and Pham-Dinh 2001, Bradl and Lassmann 2010). 

Finally, mature oligodendrocytes are characterized by the expression of myelin basic protein 

(MBP), myelin-associated glycoprotein (MAG), PLP and myelin/oligodendrocyte 

glycoprotein (MOG; Baumann and Pham-Dinh 2001, Jakovcevski et al. 2009). The above list 

of markers of the oligodendrocyte lineage is not complete and for a detailed overview, the 

reader is referred to more comprehensive reviews (Baumann and Pham-Dinh 2001, 

Jakovcevski et al. 2009, Bradl and Lassmann 2010). 

Structure of myelin and its function for saltatory conduction

The myelin sheath is an extension of the plasma membrane of mature oligodendrocytes, 

which envelopes the neuronal axon in a spiral that appears as electron-dense and electron-

light concentric rings on electron microscopical pictures (Baumann and Pham-Dinh 2001, 

Nave 2010). The dry mass of the myelin sheaths consists of 70% lipids, in which 

glycosphingolipids such as GalC are especially enriched, and 30% proteins, such as MBP, 

PLP, CNP, MAG and MOG (Baumann and Pham-Dinh 2001, Baron and Hoekstra 2010).

The process of myelination itself is partly regulated by the activity of the axon, since the 

blockage of axonal activity, for example by inhibition of action potentials, inhibits also the
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myelination (Bradl and Lassmann 2010). Furthermore, the assembly of the myelin sheath is a 

complex process, since biosynthesis and transport of the myelin proteins to the plasma 

membrane are accomplished by different ways for each of the different proteins (Baron and 

Hoekstra 2010, Bradl and Lassmann 2010). For example, the messenger ribonucleic acid 

(mRNA) of MBP is transported to the plasma membrane, where the protein is synthesized,

whereas the PLP protein is synthesized in the rough endoplasmic reticulum and is transported 

as protein in vesicles to its destination (Baron and Hoekstra 2010, Bradl and Lassmann 2010).

Demyelinating diseases and remyelination

Oligodendrocytes and myelin are very important for brain functioning and the destruction of 

these cells or of the myelin sheaths can cause several diseases, such as leukodystropies (Mar 

and Noetzel 2010, Nave 2010) and multiple sclerosis (MS; Trapp and Nave 2008). 

MS is an immune-mediated, demyelinating disease which causes neurological disabilities in 

young adults starting between 20 and 30 years of age (Compston and Coles 2008, Trapp and 

Nave 2008). Ten years after onset of the disease, 50% of MS patients are unable to perform 

household/employment responsibilities, whereas 25 years after disease onset, the same 

percentage of MS patients is not ambulatory. In addition to these limitations in the daily life, 

the average lifespan of MS patients is reduced by 7 to 8 years (Trapp and Nave 2008). The 

presence of lymphocytes and monocytes is observed in the CNS of MS patients and the 

presence of these cells may cause the observed inflammation of the CNS (Compston and 

Coles 2008, Nave 2010). In addition, transected axons are found in lesions in the brains of 

MS patients and the frequency of axonal transection and the degree of inflammation correlate 

very well (Nave 2010). The inflammation can directly cause damage of demyelinated axons, 

for example by interference with the blood supply or by glutamate-mediated excitotoxicity 

(Nave 2010). Although, the exact mechanism of demyelination is still not clear, the 

inflammatory environment of infiltrating lymphocytes might recruit microglial cells. These 

microglial cells might then become activated and could propagate lethal signals to 

oligodendrocytes and/or myelin (Compston and Coles 2008). It is currently under debate 

whether immune-mediated inflammation or the death of oligodendrocytes is the initiating 

event causing MS (Nakahara et al. 2010).

In addition, the demyelination of axons leads to a number of changes in the axonal 

metabolism, such as alterations of the expression and the position of sodium channels, 

impairment of the protein transport system along the axon and decreased ATP production,
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which together could cause the malfunction of axons in MS patients (Piaton et al. 2010). The 

disease progress of most MS patients is characterized by periods of recurrent and reversible 

neurological disabilities. The recovery phase between relapses is mediated by remyelination 

(Trapp and Nave 2008). Remyelination is a process that restores the myelin sheaths of 

demyelinated axons (Piaton et al. 2010) and re-establishes the saltatory conduction of axons 

(Franklin and Ffrench-Constant 2008). Such as the initial myelination during the development 

of the CNS, the remyelination process also requires the migration of oligodendrocyte 

precursor cells to the respective axons (Franklin and Ffrench-Constant 2008, Bruce et al.

2010, Piaton et al. 2010). This process is achieved by a population of adult oligodendrocyte 

precursor cells in the brain, which upon activation proliferate and migrate to the lesion site, 

where this cell population differentiates and finally remyelinates the axons in a process that is 

similar to the initial myelination (Franklin and Ffrench-Constant 2008, Bruce et al. 2010).

The understanding of the remyelination process is important for potential clinical 

remyelination therapy strategies for treatment of MS patients. The enhancement of 

remyelination as treatment of demyelination has already been tested in animal models of 

demyelinating diseases (Franklin and Ffrench-Constant 2008).

1.1.2. OLN-93 cells as model system for oligodendroglial precursor cells

OLN-93 cells have been introduced as model cell line for oligodendrocytes in 1996 by 

Richter-Landsberg and Heinrich (Richter-Landsberg and Heinrich 1996). These cells have 

been derived from spontaneously transformed primary rat brain glial cell cultures. Their 

ability to proliferate and their expression of markers of oligodendroglial progenitor cells (for 

example NCAM) suggest that OLN-93 cells are in an early developmental stage of the 

oligodendroglial lineage. In addition to NCAM, OLN-93 cells express galactocerebrosides, 

MBP, PLP and MAG, which indicates that these cells are orientated towards a later 

developmental stage. Because OLN-93 cells do not express astroglial cell markers, these cells 

can be used as a model for oligodendrocyte precursor cells (Richter-Landsberg and Heinrich 

1996). Since their first introduction in 1996 (Richter-Landsberg and Heinrich 1996), OLN-93 

cells have been used as model system in various studies. Table 1 lists currently available 

studies on OLN-93 cells and sorts the reports into research areas to give an overview about 

the use of OLN-93 cells in research. So far, OLN-93 cells were mainly used in studies on 

oxidative stress and oligodendroglial differentiation.
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1.1.3. Astrocytes

Astrocytes outnumber neurons by over fivefold and fulfill a variety of different functions in 

the CNS (Kimelberg 2010, Sofroniew and Vinters 2010). During CNS development, the 

blood brain barrier (BBB) formation occurs at the same time as astrocyte differentiation, 

proposing a role of this cell type in the development of the BBB (Lee et al. 2009).

Anatomically, astroglial endfeet envelope the blood vessels in the brain (Attwell et al. 2010), 

suggesting that astrocytes are involved in controlling the local blood flow according to 

regional energy metabolism (Koehler et al. 2009, Attwell et al. 2010, Carmignoto and 

Gómez-Gonzalo 2010). Furthermore, astrocytes have been shown to contribute to the support 

and maintenance of the BBB, for example by tightening tight junctions and influencing the 

expression of transport proteins (Abbott et al. 2006, Lee et al. 2009). Moreover, astrocytes 

participate in synaptogenesis (Fellin 2009, Pfrieger 2010) and astroglial processes also

envelope synapses (Sofroniew and Vinters 2010). By the expression of uptake transporters for 

neurotransmitters near the synapses, astrocytes contribute to the clearance and recycling of 

neurotransmitters (Eulenburg and Gomeza 2010). Also for the normal function of synaptic 

signalling, a tight regulation of ion concentrations in the synaptic environment is crucial 

(Deitmer and Rose 2010). Astrocytes have been shown to participate in the regulation of 

fluid, ion and pH homeostasis of the brain (Obara et al. 2008, Deitmer and Rose 2010). 

Moreover, astrocytes synthesize and release gliotransmitters, which influence neighboring 

cells to promote physiological processes (Parpura and Zorec 2010). 

Metabolic coupling has been described between neurons and astrocytes. For example, 

astrocytes metabolize glucose to lactate, release it and subsequently lactate could be taken up 

and used as energy substrate by neurons (Magistretti 2006, Barros and Deitmer 2010). In 

addition to lactate, astrocytes provide neurons with precursors for the synthesis of the 

antioxidant glutathione (Dringen and Hirrlinger 2003, Banerjee et al. 2008). Metabolic 

cooperation between astrocytes and neurons has also been shown for amino acids (Yudkoff et 

al. 1994, Bixel and Hamprecht 1995, Bixel et al. 1997, Dringen et al. 1998) as well as other 

metabolites (Auestad et al. 1991, Bixel and Hamprecht 1995, Brand et al. 1998, Dringen et al.

1998). Furthermore, astrocytes also play an important role in the metal homeostasis of the 

brain (Tiffany-Castiglioni and Qian 2001, Dringen et al. 2007). In view of this broad diversity 

of astrocyte functions in brain metabolism, they are considered to play a crucial role in brain 

homeostasis.  
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1.2. Iron

1.2.1. Iron, iron-mediated oxidative stress and antioxidative defense mechanisms 

Iron is an important nutrient for mammals, because it plays a crucial role in various metabolic 

processes. In the physiological environment, iron can exist as ferrous (Fe2+) or ferric (Fe3+)
iron and is thus able to facilitate redox reactions (Moos and Morgan 2000). Ferrous iron is 

bound in haemoglobin and enables the transport of oxygen in the red blood cells from lungs to 

other tissues. In this protein, the ferrous iron ion is tightly incorporated into the 

protoporphyrin IX structure and can reversibly bind molecular oxygen (Jensen 2009). To 

catalyze redox reactions, iron is also incorporated in proteins and enzymes participating in 

many different pathways of the cellular metabolism such as the respiratory chain (Babcock 

1999), the tricarboxylic acid cycle (Rouault and Tong 2008) and the cell proliferation (Stubbe 

1998). The final enzyme of the respiratory chain, cytochromoxidase, contains heme-bound 

iron and cytochrome c-bound iron for the reduction of molecular oxygen (O2) to water 

(Babcock 1999). Furthermore, iron is incorporated in the iron-sulfur (Fe-S) clusters which are 

assemblies of iron atoms connected with sulfur atoms, for example [2Fe-2S] or [4Fe-4S]. 

These clusters are part of enzymes, for example of aconitase and succinate dehydrogenase 

(Rouault and Tong 2008) and enable one electron transfer reactions. Another example for the 

important role of iron in the cellular metabolism is its essential function as cofactor of the 

enzyme ribonucleotide reductase, which catalyzes the rate limiting step of deoxyribonucleic 

acid (DNA) synthesis (Stubbe 1998, Stubbe and van der Donk 1998). The mammalian 

ribonucleotide reductase contains a tyrosyl radical adjacent to a diferric cluster in the active 

center (Stubbe and van der Donk 1998). The presence of iron in this enzyme is considered to 

be the reason for the iron dependency of cell proliferation (Thelander et al. 1983, Lederman et 

al. 1984, Brodie et al. 1993, Nyholm et al. 1993, Green et al. 2001).  

The iron uptake in mammals is regulated in a coordinated manner by the hepatic hormone 

hepcidin, whose secretion by hepatocytes depends on the availability of iron (Rouault and 

Cooperman 2006, Knutson 2010). Hepcidin binds to the cellular iron exporter ferroportin of 

the intestinal duodenal epithelial cells and induces internalization and degradation of 

ferroportin. This leads to decreased iron absorption from the diet into the blood (Rouault and 

Cooperman 2006, Knutson 2010). The CNS, the retina and the testis are considered to be the 

only organs of the mammalian body, which are excluded from this control of iron metabolism 
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by hepcidin, because they are protected by barriers (Rouault and Cooperman 2006). However, 

the presence of hepcidin in the brain has been shown and suggests that hepcidin is also 

involved in regulation of the brain iron metabolism (Clardy et al. 2006, Zechel et al. 2006, Du

et al. 2011).

The daily human iron intake is approximately 17.7 mg per adult man and day and 12.7 mg per 

adult woman and day from the diet as heme-bound or non-heme-bound iron in the intestinal 

duodenum (Lieu et al. 2001, Mackenzie and Garrick 2005, Valerio 2007, Knutson 2010). This 

uptake needs to be tightly regulated since both, iron deficiency and iron overload, are 

associated with human diseases such as anaemia and hemochromatosis (O'Neil and Powell 

2005, Zimmermann and Hurrell 2007, Darshan et al. 2010). The negative effects of iron are 

attributed to its ability to catalyze the formation of reactive oxygen species (ROS) by the 

Fenton reaction (reaction 1; Halliwell and Gutteridge 1984, Kehrer 2000). 

Iron-mediated oxidative stress

The normal cellular metabolism generates ROS by various reactions such as autoxidation of 

molecules, as product of enzymatic reactions and especially as by-product of the respiratory 

chain in mitochondria (Kehrer 2000, Halliwell 2006). The term ROS refers to a collective of 

oxygen-containing radicals (for example superoxide (O2
�-) and the hydroxyl radical (OH�))

and non-radicals (for example hydrogen peroxide (H2O2) and organic peroxides (ROOH); 

Halliwell 2006). In the respiratory chain, molecular oxygen is converted to water via a four 

electron reduction, but about 1-4% of the oxygen escapes the respiratory chain in a partially 

reduced state (Jezek and Hlavata 2005, Kell 2009). This incomplete reduction of molecular 

oxygen is the reason for a continuous production of superoxide and hydrogen peroxide in 

cells. Ferrous iron which is not tightly bound in a redox-inactive environment can directly 

react with hydrogen peroxide in the Fenton reaction (reaction 1) and catalyze the formation of 

highly reactive hydroxyl radicals. The ferric iron can be reduced to ferrous iron by superoxide 

(reaction 2) or by other intracellular reducing agents such as ascorbate (Kell 2009), thereby 

regenerating the ferrous iron. The cycling of iron within reaction 1 and 2 is called the iron-

catalyzed Haber-Weiss reaction (reaction 3; Kehrer 2000).

Fenton reaction:    Fe2+ + H2O2 ����3+ + OH- + OH�   (1)

Regeneration of ferrous iron:  Fe3+ + O2
�- ����2+ + O2    (2)

Haber-Weiss reaction:   O2
�- + H2O2 ���2 + OH- + OH�   (3)
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One possible reaction of the hydroxyl radical in cells is its addition to bases or deoxyribose 

sugars of the DNA, forming lesion of the DNA strands (Evans et al. 2004, Halliwell 2006). In 

lipids, the hydroxyl radical can abstract an hydrogen radical from carbon-hydrogen bonds 

forming carbon radicals, which can further react with molecular oxygen, subsequently leading 

to lipid peroxidation. Lipid peroxidation alters membrane properties that can affect the 

cellular metabolism (Valko et al. 2004, Davies 2005, Niki 2009, Adibhatla and Hatcher 

2010). In addition, hydroxyl radicals can oxidize proteins that can subsequently accumulate 

and are considered to contribute to disease development and aging (Chang et al. 2000, Dunlop

et al. 2009). 

The low level of ROS that is continually produced by the normal cellular oxygen metabolism 

is usually captured by cellular antioxidant mechanisms thereby preventing damage to bio-

molecules (Limon-Pacheco and Gonsebatt 2009). However, oxidative stress occurs when the 

level of ROS increases and overwhelms the cellular antioxidant defence mechanisms (Kehrer 

2000, Halliwell and Gutteridge 2007). Under these circumstances, major damage to bio-

molecules can occur and thereby finally cause cell death (Lushchak 2011).

Antioxidative defence mechanisms

The cellular metabolism has developed a variety of antioxidative mechanisms to cope with the 

continuous production of ROS (Halliwell and Gutteridge 2007, Battin and Brumaghim 2009, 

Flora 2009). These include low molecular weight antioxidant molecules, such as glutathione 

(GSH; Dringen 2000), ascorbic acid (Buettner 1993), vitamin E (Buettner 1993), uric acid 

(Limon-Pacheco and Gonsebatt 2009) and melatonin (Gupta et al. 2003, Srinivasan et al.

2005), as well as antioxidant enzymes such as superoxide dismutase (SOD; Fridovich 1995, 

Adam-Vizi 2005), superoxide reductase (Nivière and Fontecave 2004), catalase (Dringen et 

al. 2005, Battin and Brumaghim 2009), glutathione peroxidase (GPx; Dringen et al. 2005, 

Battin and Brumaghim 2009), thioredoxin (Nordberg and Arner 2001) and peroxiredoxin 

(Immenschuh and Baumgart-Vogt 2005, Rhee et al. 2005). These antioxidants and 

antioxidative enzymes act in a coordinated way to protect the cell against damage by ROS 

(Halliwell and Gutteridge 2007, Lushchak 2011). The brain seems to have a disadvantage 

concerning iron-mediated oxidative stress compared to other organs (Dringen 2000, Halliwell 

2006), because it consumes a high amount of oxygen in relation to its weight, has higher iron 

levels, contains a high level of polyunsaturated fatty acids, which are prone to lipid 

peroxidation, has lower specific activities of SOD, catalase and GPx than other organs and 

contains autoxidizable neurotransmitters. Despite these disadvantages, the brain has high 
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amounts of low molecular weight antioxidants, for example ascorbate and GSH, and tightly

regulates its metal homeostasis (Dringen 2000, Halliwell 2006).

Implication of iron in neurodegenerative diseases

The importance of the tight regulation of the iron metabolism and the detoxification of ROS is 

manifested by the association of an imbalance of iron metabolism with many human 

neurodegenerative diseases (Halliwell 2006, Benarroch 2009), iron related disorders (Valerio 

2007, Lee and Beutler 2009) and the observation of increased iron contents in the elderly 

brain (Altamura and Muckenthaler 2009, Stankiewicz and Brass 2009, Crichton et al. 2011), 

which might be associated with age-related diseases (Stankiewicz and Brass 2009). An 

overview about selected neurodegenerative diseases that have been connected with alterations 

of iron metabolism is given in Table 2. The examples, Alzheimer´s disease (AD), Parkinson´s

disease (PD) and MS will be described in more detail in the following paragraphs. 

The characteristics of AD are senile plaques containing the extracellularly insoluble amyloid-

� peptide and neurofibrillary tangles of aggregated and hyperphosphorylated microtubule-

associated protein tau (Hardy and Selkoe 2002, Altamura and Muckenthaler 2009, Crews and 

Masliah 2010). Accumulation of iron has been observed in areas of amyloid-� depositions 

and in neurons with tangles, suggesting a possible connection of iron accumulation to the 

occurrence of amyloid-� depositions and of tangles (Altamura and Muckenthaler 2009, 

Benarroch 2009). Furthermore, iron affects the processing of the amyloid precursor protein. 

Low cellular iron levels are associated with an increased activity of furin, an enzyme 

participating in the processing of amyloid precursor protein, which subsequently stimulates 

the processing of amyloid precursor protein by the non-amyloidogenic pathway that precludes 

the deposition of amyloid-��(Zecca et al. 2004, Altamura and Muckenthaler 2009, Benarroch 

2009). In contrast, high cellular iron levels have the opposite effect and increase the 

deposition of amyloid-� (Zecca et al. 2004, Altamura and Muckenthaler 2009, Benarroch 

2009). In addition, AD patients and animal models of this disease are characterized by 

increased levels of oxidative stress in the brain, which might be a result of increased iron 

levels and/or alterations of the antioxidative system (Altamura and Muckenthaler 2009, 

Sultana and Butterfield 2010).
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PD is characterized by a selective loss of dopaminergic neurons of the pars compacta of the 

substantia nigra. Aggregates of �-synuclein (Lewy bodies) have been found in dopaminergic 

neurons in brains of PD patients as well as an elevated iron level (Altamura and Muckenthaler 

2009, Benarroch 2009, Lee and Andersen 2010, Schulz-Schaeffer 2010). Iron can promote the 

formation of these aggregates and application of iron chelators to protect against �-synuclein 

aggregate formation was successful (Avramovich-Tirosh et al. 2008, Altamura and 

Muckenthaler 2009). Additionally, lipid peroxidation has been observed in animal models of 

PD, suggesting an involvement of iron-mediated oxidative stress in this disease (Altamura 

and Muckenthaler 2009). 

MS is a demyelinating disease with axonal degeneration (chapter 1.1.1.; Trapp and Nave 

2008). The brains of MS patients also have decreased levels of low molecular weight 

antioxidants, such as GSH and �-tocopherol. These low levels of antioxidants might be a 

consequence of an elevated ROS production by macrophages and activated microglial cells 

(Sayre et al. 2005). Abnormal deposits of iron in tissue and neurons of MS patients as well as 

elevated levels of ferritin have been found (Levine and Chakrabarty 2004), suggesting an 

important role of iron-mediated oxidative stress in the disease progression (Sayre et al. 2005).

The association of AD, PD and MS with increased iron levels in the affected brain areas

strongly suggests a connection between an altered iron metabolism and these diseases. Further 

studies are necessary to elucidate this relationship in detail and to evaluate whether a 

therapeutical reduction of iron levels is indeed a beneficial treatment for patients (Altamura 

and Muckenthaler 2009).

1.2.2. Iron metabolism of the brain 

The brain has a special position in the mammalian body, because it is separated from the 

systemic blood circulation in the body by the BBB. This barrier protects the brain against a 

variation of the blood plasma composition and against potentially toxic substances, thereby 

controlling the brain microenvironment (Abbott 2002, Abbott et al. 2010). Tight junctions 

between neighboring capillary endothelial cells limit uncontrolled entry of molecules into the 

brain. Only small and lipophilic molecules are able to diffuse through this barrier (Abbott 

2002). The supply of the brain with essential nutrition such as glucose, amino acids and 

monocarboxylic acids is enabled by specific transport mechanisms (Qutub and Hunt 2005, 

Zlokovic 2008). Due to the important functions of iron in the cellular metabolism, brain iron 

metabolism and the transport of this metal into the brain have been extensively studied and 
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are subject of numerous reviews (Yokel 2006, Bressler et al. 2007, Moos et al. 2007, 

Benarroch 2009, Mills et al. 2010, Crichton et al. 2011). An overview about the expression of 

proteins involved in iron uptake and iron metabolism of capillary endothelial cells and 

astrocytes is shown in Figure 1. 

In the blood and cerebrospinal fluid, iron occurs either bound to proteins as protein-bound 

iron or is present as non-protein-bound iron in low molecular weight complexes (Moos et al.

2007). The main carrier protein for iron is transferrin (Tf). Tf is present in blood plasma, 

lymph and cerebrospinal fluid in order to distribute this metal throughout the body (Figure 1; 

Moos and Morgan 2000, Garrick and Garrick 2009, Munoz et al. 2009). In addition to Tf, 

iron efficiently binds to the glycoproteins lactoferrin and melanotransferrin (Moos and 

Morgan 2000), of which lactoferrin is also present in the cerebrospinal fluid (Moos et al.

2007). Reactive microglial cells contain and release lactoferrin which has been suggested to 

be an iron source for dopaminergic neurons (Fillebeen et al. 2001). Moreover, the presence of 

melanotransferrin has been shown in human brain tissue (Rothenberger et al. 1996). The 

contributions of these proteins to the brain iron metabolism remain to be elucidated in more 

detail.

The main iron carrier protein Tf contains two iron binding sites and is also expressed in the 

brain (Bloch et al. 1985, Connor and Menzies 1990, Connor et al. 1990, Benkovic and 

Connor 1993, Moos et al. 2000). During early development, Tf expression increases on both 

the mRNA (Levin et al. 1984) and the protein level (Mollgard et al. 1987). The cellular 

uptake of Tf is mediated by binding of Tf to the transferrin receptor (TfR) and subsequent 

internalization of the Tf/TfR complex by receptor-mediated endocytosis into the cell (Ponka 

and Lok 1999, Lieu et al. 2001, Garrick and Garrick 2009). In endocytotic vesicles ferric iron 

is released from the Tf/TfR complex by a pH shift. The binding of ferric iron to Tf is almost 

irreversible at pH 7.4, but iron is readily released from the Tf/TfR complex by a pH below 6.5

that occurs in endocytotic vesicles (Moos and Morgan 2000, Lieu et al. 2001).

The uptake of iron by brain capillary endothelial cells via the Tf/TfR complex is considered to 

be the main entrance route of iron into the brain as shown in Figure 1 (Benarroch 2009, 

Garrick and Garrick 2009). Brain capillary endothelial cells contain Tf (Connor and Fine 

1986, Mollgard et al. 1988) and so do oligodendrocytes and neurons in vivo (Oh et al. 1986). 

In contrast, expression of Tf has been controversially discussed for astrocytes in vivo (Dwork

et al. 1988, Connor and Menzies 1990, Connor et al. 1990, Benkovic and Connor 1993, Moos

et al. 2000), while microglial cells appear not to contain Tf (Moos et al. 2000).  
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TfR is present in brain capillary endothelial cells, but it is hardly detectable in the brain tissue 

(Jefferies et al. 1984, Hulet et al. 1999a, Hulet et al. 2002). The presence of TfR has been 

discussed for astrocytes, oligodendrocytes and microglial cells (Lin and Connor 1989, Connor 

and Menzies 1995, Kaur and Ling 1995, Moos 1996), but it has not been finally proven in 

vivo. In contrast, presence of TfR has been documented in cultures of neurons, astrocytes and 

oligodendrocytes, suggesting that this receptor takes part in the iron accumulation by cultured 

brain cells (Oh et al. 1986, Qian et al. 1999, Moos et al. 2000, Hoepken et al. 2004, Hoepken 

2005, Ortiz et al. 2005, Salvador 2010). After uptake and iron release, the iron-free Tf/TfR 

complex is shuttled back to the plasma membrane for reutilization (Moos and Morgan 2000, 

Lieu et al. 2001), while ferric iron is reduced and ferrous iron is transported from the 

endocytotic vesicles to the cytosol by the divalent metal transporter 1 (DMT1; Fleming et al.

1997, Gunshin et al. 1997, Fleming et al. 1998, Hentze et al. 2004). So far, no studies are 

available concerning the presence of DMT1 in vesicles of brain cells as shown before for 

other cell types (Gruenheid et al. 1999, Tabuchi et al. 2000). Therefore, it remains to be 

elucidated whether DMT1 is the transporter responsible for the iron export from vesicles in 

brain cells.

Besides the uptake of protein-bound iron, cells are able to internalize non-protein-bound iron 

as ferrous or ferric iron by various transport mechanisms. The uptake of low molecular weight 

iron has been suggested for neurons, astrocytes and oligodendrocytes in the brain (Moos et al.

2007, Salvador 2010) and several studies have shown that the uptake of non-transferrin-bound 

iron by cultured brain cells is possible (Oshiro et al. 1998, Takeda et al. 1998, Bishop et al.

2011). 

The aforementioned DMT1 is a divalent metal transporter, which transports ferrous iron and 

other divalent metal ions out of vesicles (Fleming et al. 1997, Gunshin et al. 1997). In 

addition to this export, DMT1 has been suggested to transport iron across the plasma 

membrane of brain cells (Hentze et al. 2004, Jeong and David 2003). However, the initially 

described expression of this transporter in capillary endothelial cells (Burdo et al. 2001) was 

not confirmed in other studies (Wang et al. 2001, Moos and Morgan 2004). Thus, the 

contribution of DMT1 in the export of iron from endocytotic vesicles in capillary endothelial 

cells remains to be elucidated (Figure 1). Expression of DMT1 has been shown for neurons, 

astrocytes, oligodendrocytes and microglial cells in vivo (Moos et al. 2000, Burdo et al. 2001, 

Wang et al. 2001), although a recent study was unable to confirm the presence of DMT1 in 

oligodendrocytes in the substantia nigra (Song et al. 2007). In addition, DMT1 is expressed 

in cultured astrocytes (Jeong and David 2003) and cultured neurons (Roth et al. 2000, Du et 
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al. 2009), but no reports are available on its expression in cultured oligodendrocytes or 

microglial cells. The location of DMT1 in the plasma membrane of neurons (Roth et al. 2000) 

suggests that it could facilitate the uptake of ferrous iron into these cells, whereas other 

studies did not investigate the subcellular localization of DMT1 in the other brain cell types.

Since iron is present in the extracellular environment predominantly as ferric iron, a reduction 

of iron prior to its DMT1-mediated transport across the plasma membrane would be necessary 

(Gunshin et al. 1997). The ferric reductase duodenal cytochrome b (Dcytb) is expressed by 

cultured astrocytes (Jeong and David 2003, Tulpule et al. 2010) and this enzyme could 

catalyze the reduction of ferric to ferrous iron. In addition, mouse cytochrome b561 and 

mouse and fly stromal cell-derived receptor 2 have been detected in brain slices (Vargas et al.

2003) and the latter also in cultured astrocytes (Tulpule et al. 2010). Both enzymes are 

candidates for catalyzing the reduction of ferric iron (Vargas et al. 2003).

In addition to DMT1, a �3-integrin/mobilferrin transport system has been suggested for low 

molecular weight ferric iron (Conrad et al. 1994, Conrad et al. 2000), but the involvement of 

this transport mechanism in the uptake of ferric iron into brain cells remains to be 

investigated. The uptake of non-protein-bound iron from the extracellular fluid has been 

suggested to occur in the form of low molecular weight iron complexes with citrate, ascorbate 

or ATP (Moos and Morgan 1998, Takeda et al. 1998, Rouault and Cooperman 2006, Moos et 

al. 2007), which are potential molecules for iron chelation (Moos et al. 2007). In Figure 1, 

citrate is shown as one example. Furthermore, citrate, ascorbate and ATP have been shown to 

be released from astrocytes (Figure 1; Sonnewald et al. 1991, Guthrie et al. 1999, Lane and 

Lawen 2009). Citrate release by astrocytes may be mediated by sodium-dependent 

carboxylate transporters (SDCT; Yodoya et al. 2006), ascorbate release has been suggested to 

be mediated by volume-sensitive anion channels or exocytosis of ascorbate-containing 

vesicles (Lane and Lawen 2009) while ATP is released from astrocytes by regulated 

exocytosis from secretory vesicles or lysosomes (Parpura and Zorec 2010).

Intracellular iron metabolism and storage

After uptake into cells, iron can become part of the labile iron pool, which consists of 

chelatable and redox-active iron, or it can be stored in a redox-inactive form in the iron 

storage protein ferritin (Figure 1; Kakhlon and Cabantchik 2002, Petrat et al. 2002, Arosio et 

al. 2009). In iron-restricted conditions, both the cellular iron from the labile iron pool and

from ferritin is used for cellular metabolism (Kakhlon and Cabantchik 2002). Ferritin is an 

almost spherical shell of 24 subunits of light (L) and heavy (H) ferritin protein chains and can 
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hold up to 4000 iron atoms (Arosio et al. 2009). The brain mostly contains H-chain-rich 

ferritin (H-ferritin) which is considered to possess antioxidative properties due to the 

ferroxidase activity of the H-chain (Lawson et al. 1989, Arosio et al. 2009, Snyder and 

Connor 2009). The proportion of L- to H-chains in ferritin depends on the tissue and cell type. 

In contrast to H-ferritin, ferritin rich in L-chains (L-ferritin) is considered to predominantly 

store iron (Arosio et al. 2009). 

The presence of ferritin has been confirmed for neurons, astrocytes, oligodendrocytes and 

microglial cells in vivo (Connor et al. 1990, Benkovic and Connor 1993, Connor et al. 1994, 

Dickinson and Connor 1995, Cheepsunthorn et al. 1998, Moos et al. 2000) and also for 

cultures of these cell types (Qi and Dawson 1994, Regan et al. 2002, Hoepken et al. 2004, 

Hoepken 2005). Although all types of brain cells contain ferritin, the ratios of L- to H-ferritin

differ between them. Microglial cells contain more L-ferritin, whereas neurons and 

oligodendrocytes express more H-ferritin than L-ferritin (Connor and Menzies 1996).  

Mitochondria are important cellular organelles due to their function in different metabolic 

pathways and in iron metabolism (Richardson et al. 2010). The uptake of iron into 

mitochondria is mediated by mitoferrins, the mitochondrial iron transporters (Richardson et 

al. 2010). Recently, the ATP synthase complex has been shown to transport ferrous iron into 

isolated mitochondria (Kim and Song 2010). In addition, mitochondria are also able to store 

iron in mitochondrial ferritin (Santambrogio et al. 2007). However, no reports are available 

on iron exporters in mitochondria. The export of Fe-S clusters from mitochondria has been 

suggested to be mediated by the ABC (ATP-binding cassette) transporter B7. Furthermore,

the heme-binding protein 1 and the ABC transporter B10 are considered as candidates for 

heme export from mitochondria (Anderson and Vulpe 2009, Richardson et al. 2010). 

Although, the presence of mitochondrial ferritin has been shown for brain cells (Santambrogio

et al. 2007), no information is available about the regulation of this protein and potential 

differences in iron metabolism between peripheral mitochondria compared to those in brain. 

Iron export

Ferroportin (metal transport protein 1 or IREG1) is the only known iron exporter (Figure 1; 

Garrick and Garrick 2009). This protein transports ferrous iron (Abboud and Haile 2000, 

Donovan et al. 2000, McKie et al. 2000) and is expressed in the brain tissue (Jiang et al.

2002). For brain capillary endothelial cells, the presence of this transporter was shown (Wu et 

al. 2004), although two other studies did not find ferroportin in capillary endothelial cells 
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(Burdo et al. 2001, Moos and Rosengren Nielsen 2006). Nevertheless, these cells are likely to 

release iron into the brain despite the unclear expression of ferroportin, since they have been 

shown to transport iron into the brain (Figure 1; Moos et al. 2007). Ferroportin expression 

was observed in astrocytes as well as in neurons, oligodendrocytes and microglial cells in vivo

(Burdo et al. 2001, Wu et al. 2004) and in cultured neurons (Song et al. 2010) and cultured

astrocytes (Jeong and David 2003). Since ferroportin transports ferrous iron, it is coupled to 

one of two extracellular ferroxidases ceruloplasmin (Cp) or hephaestin for the immediate 

extracellular oxidation of ferrous iron (Petrak and Vyoral 2005, De Domenico et al. 2008). 

Soluble Cp and its glycosylphosphatidylinositol-anchored form (G-Cp; Figure 1) have been 

shown to be expressed in astrocytes and neurons in vivo (Mollgard et al. 1988, Klomp et al.

1996, Patel and David 1997, Patel et al. 2000, Hwang et al. 2004), and for cultured astrocytes 

(Patel et al. 2000, Hwang et al. 2004). In contrast, both forms of Cp appear to be absent from 

oligodendrocytes and microglial cells (Mollgard et al. 1988). Hephaestin has been shown to 

be expressed in the brain (Qian et al. 2007) by neurons, astrocytes, oligodendrocytes and 

microglial cells (Wang et al. 2007) as well as in cultured neurons (Song et al. 2010) and

cultured brain endothelial cells (Yang et al. 2011a).  

Regulation of the iron metabolism

A tight regulation of the cellular iron metabolism is essential for cells to avoid iron deficiency 

or iron-mediated toxicity by excess of redox-active iron (Rouault 2006, Crichton et al. 2011). 

The regulation of iron metabolism is predominantly mediated by the iron regulatory protein 

(IRP) 1 and IRP2 which monitor the cytosolic iron level and both can regulate the expression 

of proteins, that are involved in iron metabolism (Hentze et al. 2004, Pantopoulos 2004, 

Rouault 2006). A low level of cellular iron facilitates the binding of an IRP to the iron 

responsive element (IRE) of the mRNA of proteins involved in iron metabolism, for example 

the mRNAs of ferritin or TfR. This low cellular iron level and binding of IRP to the ferritin

mRNA inhibits ferritin synthesis (Rouault 2006). Binding of IRP to the mRNA of TfR 

protects the mRNA from degradation by endonucleases. This enhances the synthesis of TfR 

and can subsequently increase the uptake of iron by the Tf/TfR complex (Rouault 2006). 

The involvement of the IRP/IRE system in regulation of the brain iron homeostasis has been 

observed in studies with transgenic mice that are either deficient of both copies of IRP2 

(LaVaute et al. 2001) or deficient of one copy of IRP1 and both copies of IRP2 (Smith et al.

2004). In these animals, neurons and oligodendrocytes in different brain regions had

excessive iron accumulations and the mice suffered from neurodegeneration. These 
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observations suggest that IRP1 and IRP2 are indeed involved in the regulation of the iron 

metabolism in the brain (LaVaute et al. 2001, Smith et al. 2004).

In vivo, the expression of IRP1 and IRP2 have been shown for astrocytes and IRP also

modulates the expression of DMT1, suggesting that IRPs are involved in the regulation of the 

iron metabolism of astrocytes (Huang et al. 2006). Furthermore, neuronal cell cultures from 

IRP1 or IRP2 knockout mice had higher ferritin protein levels, hinting towards the 

involvement of IRPs in the regulation of neuronal iron metabolism (Regan et al. 2008). 

Oligodendrocytes contain IRP1 in vivo and in cell cultures (Leibold et al. 2001), but so far no 

reports are available concerning the regulation of the iron metabolism by the IRP/IRE system 

in microglial cells.

1.2.3. Oligodendrocytes and iron 

In the normal brain, oligodendrocytes appear to have the highest content of iron as shown by 

histochemical iron stainings (Dwork et al. 1988, Connor and Menzies 1990, Benkovic and 

Connor 1993, Connor et al. 1995, Connor and Menzies 1996). This high iron level might be 

related to the myelination process (Todorich et al. 2009). However, the specific iron content 

of cultured oligodendrocytes strongly differs between reports (Thorburne and Juurlink 1996, 

Hoepken 2005). This chapter summarizes the current knowledge on the iron metabolism of 

oligodendrocytes and the expression of proteins of the iron metabolism in these cells (Figure 

2; Table 3).

The iron carrier protein Tf is present in oligodendrocytes in vivo (Bloch et al. 1985, Connor 

and Fine 1986, Connor and Menzies 1990, Connor et al. 1990, Benkovic and Connor 1993, 

Moos et al. 2000) and in cell cultures (Espinosa de los Monteros et al. 1988, Griot and

Vandevelde 1988, Espinosa de los Monteros et al. 1990, Connor et al. 1993, Espinosa de los 

Monteros et al. 1994). Furthermore, Tf is synthesized and stored by oligodendrocytes (Bloch

et al. 1985, De Arriba Zerpa et al. 2000) and the increase in the amount of Tf mRNA after 

birth has been connected to the maturation of oligodendrocytes (Bartlett et al. 1991). Cultured 

oligodendrocytes express the TfR (Espinosa de los Monteros and Foucaud 1987, Hoepken 

2005, Ortiz et al. 2005). In vivo, TfR expression has only been shown for early developmental 

stages and the expression decreases with age (Lin and Connor 1989, Giometto et al. 1990, 

Connor and Menzies 1995). In contrast, two studies were unable to detect TfR in 

oligodendrocytes in the neonatal and adult brain in vivo (Kaur and Ling 1995, Moos 1996). 

Thus, the Tf/TfR complex might be predominantly involved in iron uptake by developing 
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oligodendrocytes (Todorich et al. 2009). Oligodendrocytes express the iron storage protein 

ferritin in vivo (Connor et al. 1990, Benkovic and Connor 1993, Connor et al. 1994, Connor 

and Menzies 1995, Blissman et al. 1996, Cheepsunthorn et al. 1998, Moos et al. 2000, Izawa

et al. 2010) and in cell culture (Griot and Vandevelde 1988, Qi and Dawson 1994, Hoepken 

2005). Although oligodendrocytes are able to express both ferritin chains (Connor et al. 1990, 

Benkovic and Connor 1993, Connor et al. 1994, Connor and Menzies 1995, Blissman et al.

1996, Cheepsunthorn et al. 1998, Moos et al. 2000, Izawa et al. 2010), they contain more H-

ferritin than L-ferritin (Connor and Menzies 1996).

Ferritin upregulation has been shown for conditions of oxidative stress, suggesting that an 

increased iron storage capacity is important for the handling of oxidative stress by 

oligodendrocytes (Connor and Menzies 1996). Furthermore, H-ferritin has recently been

suggested as an alternative extracellular iron source for Tf in oligodendrocytes that may be 

taken up selectively into these cells (Figure 2; Todorich et al. 2009). 

Figure 2: Iron transport and metabolism in oligodendrocytes
in the brain based on the known expression of proteins of the
iron metabolism. Abbreviation: Tim-2, T cell immunoglobulin-
domain and mucin-domain 2. 
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A H-ferritin receptor, that was initially found in white matter tracts (Hulet et al. 1999a, Hulet

et al. 1999b) and later in cultured oligodendrocytes (Hulet et al. 2000, Hulet et al. 2002), has 

been identified as T cell immunoglobulin-domain and mucin-domain 2 (Tim-2; Hulet et al.

1999a, Chen et al. 2005). Blocking of this receptor prevents the binding of H-ferritin to 

oligodendrocytes in culture, confirming that Tim-2 is the receptor for H-ferritin (Figure 2; 

Todorich et al. 2008).  Recently, Todorich et al. demonstrated that H-ferritin is taken up as 

iron source by cultured oligodendroglial cells, supporting cell survival in the absence of Tf 

and stimulating the differentiation process (Todorich et al. 2011). Currently, it is not clear 

whether H-ferritin in the brain might be derived from the blood by crossing the BBB (Fisher

et al. 2007) or whether it is released by microglial cells (Zhang et al. 2006).

While iron uptake from ferritin or Tf has been demonstrated convincingly for 

oligodendrocytes, only little is known about uptake of non-protein-bound iron. The presence 

of DMT1 has been confirmed in one study (Moos et al. 2000), whereas other studies have not 

been able to support this observation (Burdo et al. 2001, Song et al. 2007) for 

oligodendrocytes in vivo (Figure 2). No literature data are available so far concerning the 

expression of DMT1 in cultured oligodendrocytes or the iron accumulation from low 

molecular weight iron sources. Therefore, the exact mechanism of non-protein-bound iron 

uptake by these cells remains to be elucidated.

Oligodendrocytes in vivo express the iron exporter ferroportin (Burdo et al. 2001, Wu et al.

2004, Wang et al. 2007) and the ferroxidase hephaestin (Wang et al. 2007), suggesting that 

the export of ferrous iron and subsequent extracellular oxidation of ferrous iron are mediated 

by ferroportin and hephaestin (Figure 2). Since ceruloplasmin and its G-anchored form have 

not been detected in oligodendrocytes in vivo (Mollgard et al. 1988), these ferroxidases do not 

appear to play a role in oligodendroglial iron metabolism.  

Only a few reports are available about the regulation of oligodendroglial iron metabolism. 

The presence of IRP1 has been confirmed for oligodendrocytes in vivo and in cultured cells

(Leibold et al. 2001), but no literature data are available on the expression of IRP2. Therefore, 

IRP1 might be the protein which regulates the expression of iron metabolism related proteins 

in oligodendrocytes. 

Involvement of iron in myelin metabolism

Iron is an important cofactor for myelination (Connor and Menzies 1996, Ortiz et al. 2004) as 

demonstrated by the observation that the amount of myelin sheaths in iron deficient animals is 
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decreased and their composition is altered (Yu et al. 1986, Kwik-Uribe et al. 2000, Beard et 

al. 2003, Ortiz et al. 2004, Badaracco et al. 2008, Wu et al. 2008). Furthermore, the iron 

uptake of the brain is highest at the time of extensive myelination (Connor and Menzies 

1996). Potential reason for this observation is that the syntheses of myelin proteins and lipids 

require a higher metabolic activity of oligodendrocytes compared to other brain cells (Piñero 

and Connor 2000). This was supported by the observations that oligodendrocytes have a

increased oxygen consumption and ATP production and that oligodendrocytes are enriched 

with enzymes, which are participating in various metabolic pathways that contribute to ATP 

production and fatty acid synthesis (Connor and Menzies 1996, Lange and Que 1998, Piñero 

and Connor 2000, Baumann and Pham-Dinh 2001, McTigue and Tripathi 2008, Todorich et 

al. 2009). 

Vulnerability of oligodendrocytes to iron-mediated oxidative stress

Oligodendrocytes are considered to be more vulnerable to iron-mediated oxidative stress

compared to other types of brain cells due to their high metabolic activity and elevated iron 

content for the myelin synthesis (Connor and Menzies 1996, Piñero and Connor 2000, 

McTigue and Tripathi 2008, Todorich et al. 2009, Bradl and Lassmann 2010). However,

cultured oligodendrocytes have been reported to efficiently dispose of exogenous hydrogen 

peroxide (Hirrlinger et al. 2002, Baud et al. 2004). The view on the antioxidative potential of 

these cells is controversially (Thorburne and Juurlink 1996, Back et al. 1998, Juurlink et al.

1998, Hirrlinger et al. 2002). Therefore, the hypothesis that oligodendrocytes have a greater 

risk to be damaged under conditions of increased oxidative stress and/or increased iron levels 

(McTigue and Tripathi 2008) needs to be reconsidered with respect to their iron and 

antioxidant defence mechanisms.  

1.2.4. Iron metabolism of cultured astrocytes

Astrocytes are considered to play an important role in the brain iron metabolism, because they 

cover the brain capillary epithelial cells with their endfeet and therefore have a strategically 

important localization in the brain (Dringen et al. 2007). The expression of proteins of the 

iron metabolism in astrocytes is described in Figure 1 and the potential function of astrocytes 

in the brain iron metabolism has been reviewed by Dringen et al. (2007).  

The uptake of protein-bound iron by cultured astrocytes has been shown to be mediated by the 

Tf/TfR complex, since astrocytes express the TfR in culture (Qian et al. 1999, Hoepken et al.
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2004). In addition, the binding and uptake of Tf by cultured astrocytes has been demonstrated 

(Swaiman and Machen 1986, Qian et al. 1999, Qian et al. 2000). Furthermore, cultured 

astrocytes are able to accumulate iron from low molecular weight iron sources such as ferric 

chloride, ferric citrate, ferric ammonium citrate and ferric nitrilotriacetate (Swaiman and 

Machen 1985, Oshiro et al. 1998, Takeda et al. 1998, Jeong and David 2003, Hoepken et al.

2004, Lane et al. 2010, Bishop et al. 2011). Concerning the uptake mechanism of iron, a 

DMT1-independent transport of ferrous iron, an ascorbate-dependent ferrous iron uptake and 

an uptake mechanism of ferric iron have recently been suggested for astrocytes (Lane et al.

2010, Tulpule et al. 2010). Furthermore, astrocytes take up hemin by the heme transporter 

heme carrier protein 1 (Dang et al. 2010). 

The iron metabolism of astrocytes appears to be regulated by the IRP/IRE system, since the 

expression of IRP1 and IRP2 has been shown (Irace et al. 2005). Furthermore, an alteration in 

their RNA-binding affinities of IRPs and of the expression of ferritin as response to 

hypoxia/reoxygenation has been shown in cultured astrocytes (Irace et al. 2005). In addition, 

astrocytes respond to hepcidin by a decreased expression of TfR1, DMT1, ferroportin, as well 

as by a reduced uptake of transferrin-bound and non-transferrin-bound iron, and by a lowered 

iron release (Du et al. 2011). 

1.3. Nanoparticles

Nanotechnology covers the range from design to application of systems in the nanometer size, 

which have novel and/or superior characteristics (Soenen and De Cuyper 2010). In the last 

decade, this technology has gained an enormous interest because of the great variety of 

applications, ranging from electronics to health science (Silva 2006, Singh 2010).  

Nanoparticles are defined as particles and engineered materials in the size range of up to 100 

nm in at least two dimensions (Silva 2006, Lewinski et al. 2008). These particles can consist 

of different materials, such as polymers, metals (for example iron, silver or gold), metal 

oxides (for example iron oxide, titanium dioxide or silica dioxide) or carbon (Cho et al. 2010, 

Fadeel and Garcia-Bennett 2010, Singh 2010). In the nanoscale, each of these materials has 

properties which are distinct from the properties of the bulk material. Accordingly, the 

reduction in particle size opens up new fields of application for a given material (Silva 2006, 

Gilmore et al. 2008). For example, semiconductor fluorescent quantum dots are widely used 

for visualization of molecular processes due to their stable fluorescent optical properties 

(Pathak et al. 2006). Carbon nanotubes are stiff, but also flexible and have electrical 
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properties which make them suitable as scaffolds for neuronal outgrowth (Malarkey and 

Parpura 2010). Polymer nanoparticles are widely used to encapsulate drugs for targeted 

delivery to a certain tissue (Gilmore et al. 2008). 

Among these different materials, magnetic iron oxide nanoparticles have attracted much 

attention due to their great variety of applications in magnetic storage media, biosensing, drug 

delivery, hyperthermia, cell labeling and as contrast agents (Gupta and Gupta 2005, Laurent et 

al. 2008, Soenen and De Cuyper 2010). This chapter will focus on the current knowledge 

about magnetic iron oxide nanoparticles.

1.3.1. Magnetic iron oxide nanoparticles

The synthesis of magnetic iron oxide nanoparticles (Fe-NP) can be accomplished by 

numerous methods such as coprecipitation of ferrous and ferric iron salts in basic aqueous 

solution, microemulsions, flow injection synthesis or electrospray synthesis (Laurent et al.

2008). After the synthesis, interactions of the particles with each other can lead to an increase 

of particle size due to aggregation and subsequent precipitation of particles in physiological 

media. To prevent this effect, Fe-NP can be coated with various substances (for example 

small molecules, polymers or proteins) to avoid the aggregation by steric and/or electrostatic 

repulsion (Gupta and Gupta 2005, Laurent et al. 2008). 

Fe-NP are ideal contrast agents for magnetic resonance imaging (MRI) due to their very high 

relaxivity (Arbab et al. 2003, Laurent et al. 2008). The successful application of Fe-NP to 

enhance the contrast in MRI has been shown for brain glioma (Xie et al. 2011), the detection 

of labeled monocytes in an animal model of MS (Engberink et al. 2010), in animal models of 

AD (Beckmann et al. 2011) and for post-stroke neuroinflammation (Jin et al. 2009). 

Furthermore, Fe-NP with various different coatings have been developed for targeted delivery

of anticancer drugs to the CNS and simultaneous visualization by MRI (Veiseh et al. 2009, 

Hadjipanayis et al. 2010, Veiseh et al. 2010, Yang et al. 2011b).

1.3.2. Uptake mechanisms of iron oxide nanoparticles 

In general, nanoparticles are considered to be taken up by endocytotic mechanisms (Hillaireau 

and Couvreur 2009, Zaki and Tirelli 2010), although there are only a few reports on the exact 

mechanisms. Several different endocytotic pathways are known and inhibitors for them are 

available, but the specificity of these inhibitors is limited and a given inhibitor usually blocks 

more than one pathway (Ivanov 2008, Zaki and Tirelli 2010). Literature reports have 
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suggested that different endocytotic pathways are involved together in the uptake of Fe-NP 

into mammalian cells (Kiessling et al. 2009, Xie et al. 2010). For example, caveolae-mediated 

endocytosis and macropinocytosis appear to be involved in Fe-NP uptake in BHK 21 cells 

(Arsianti et al. 2010), while scavenger receptor-mediated endocytosis, clathrin-mediated

endocytosis and macropinocytosis are used for Fe-NP uptake in macrophages (Lunov et al.

2011). Electron microscopical pictures of cells that were exposed to various Fe-NP support 

the hypothesis of an endocytotic uptake process, since the Fe-NP are found within 

intracellular vesicles (Berg et al. 2010, Luciani et al. 2010, Soenen et al. 2011). Furthermore,

the temperature-dependency of uptake processes indicates the presence of active and energy-

dependent processes as shown before for protein-bound and non-protein-bound iron uptake 

(Trinder and Morgan 1998, Qian et al. 2000, Richardson 2001, Arredondo et al. 2008) and the 

uptake of Fe-NP (Kim et al. 2006, Pickard et al. 2010, Soenen et al. 2010).  

1.3.3. Potential toxicity of iron oxide nanoparticles

The use of Fe-NP in clinical applications raises questions concerning potential toxic effects of

the applied Fe-NP. Therefore, nanotoxicology and risk assessment of Fe-NP are increasingly 

studied and the subject of recent reviews (Nel et al. 2006, Singh and Nalwa 2007, Lewinski et 

al. 2008, Fadeel and Garcia-Bennett 2010, Oberdörster 2010). 

The potential toxicity of Fe-NP on various kinds of cells has been investigated with a number 

of different cytotoxicity assays (Lewinski et al. 2008, Kroll et al. 2009, Marquis et al. 2009, 

Soenen and De Cuyper 2009). However, the results of these cytotoxicity assays need to be 

carefully interpreted and appropriate controls are mandatory, since nanoparticles have been 

shown to interfere with some assay components (Kroll et al. 2009, Marquis et al. 2009). 

Furthermore, the results of toxicity assays depend on factors such as physical and chemical 

properties of nanoparticles (Thorek and Tsourkas 2008), assessed time points (Pisanic et al.

2007), concentration of Fe-NP (Pisanic et al. 2007, Thorek and Tsourkas 2008) and the cell 

type tested (Ding et al. 2010, Kunzmann et al. 2011). 

So far, Fe-NP are considered to be non-toxic and biocompatible and dextran-coated Fe-NP 

formulations (Endorem®/Feridex®, Resovist® and Sinerem®) have been approved by the 

United States Food and Drug Administration for clinical application as MRI contrast agents 

(Soenen and De Cuyper 2009).
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1.3.4. Intracellular fate of iron oxide nanoparticles

So far, little is known about the fate of Fe-NP after the application and internalization into 

cells. Three studies have reported that Fe-NP with different coating materials release iron in a 

cell free system, that models the lysosomal environment by acidic pH and the presence of 

citrate (Arbab et al. 2005, Levy et al. 2010, Soenen et al. 2010). These observations raise the 

question of the effects of iron released from Fe-NP on the cells and their metabolism. In cells, 

iron derived from Fe-NP and/or the Fe-NP themselves are stainable by Prussian blue staining 

(Dunning et al. 2004, Soenen et al. 2010). The decrease in iron staining intensity, that has 

been observed over two weeks, demonstrates that at least the stainable cellular iron pool 

disappears with time from cells (Soenen et al. 2010). 

Release of iron from Fe-NP would have physiological consequences, since ferritin and TfR 

expressions are regulated by the concentration of low molecular weight iron (chapter 1.2.2.; 

Rouault 2006). As response to the incubation of cells with Fe-NP, an upregulation of the 

ferritin expression and a transient alteration of the TfR expression have been observed 

(Pawelczyk et al. 2006, Schäfer et al. 2007, Raschzok et al. 2010, Soenen et al. 2010), as well 

as an accelerated cell proliferation (Huang et al. 2009). These reports demonstrate that at least

some iron ions are released intracellularly from Fe-NP. 

1.3.5. Iron oxide nanoparticles cross the blood brain barrier

Fe-NP have been considered for different applications in neuroscience (Cooper and Nadeau 

2009, Suh et al. 2009). For such applications, peripheral administration of Fe-NP requires 

crossing of the Fe-NP through the BBB. Table 4 lists selected studies that have demonstrated 

the presence of Fe-NP in the brain after peripheral administration, supporting the hypothesis 

that Fe-NP are able to cross the BBB. 

1.3.6. Effects of iron oxide nanoparticles on glial cells

Clinical applications of Fe-NP require the exposure of tissue and cells to Fe-NP (Bhaskar et 

al. 2010, Yang 2010). Many studies have investigated the effects of Fe-NP on brain cells in 

culture, but most of the studies deal with the labeling of cells with Fe-NP, for example for 

subsequent transplantation into the brain to support CNS regeneration and remyelination 

processes (Dunning et al. 2004) or for the replacement of dopaminergic neurons in patients 
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with PD (Focke et al. 2008). In this chapter, only the effects of Fe-NP on oligodendroglial 

and astrocyte cultures will be described (Tables 5 and 6). 

The literature about the effects of Fe-NP on oligodendroglial cells is summarized in Table 5.

Taken together, these studies have reported the uptake of Fe-NP into viable oligodendroglial 

cells. This suggests that oligodendroglial cells are able to cope well with the applied Fe-NP. 

Fe-NP-labeled oligodendroglial cells, which were then transplanted into the brains of rats, 

were detectable by MRI and these cells have been reported to remain viable and to be able to 

proliferate and myelinate axons (Bulte et al. 1999, Franklin et al. 1999, Dunning et al. 2004). 

The oligodendroglial cell line OLN-93 has been shown to be able to take up different kinds of 

nanoparticles, including Fe-NP and the involvement of a phagocytotic uptake process was 

suggested. Toxicity was observed for cobalt-doped tungsten carbide nanoparticles and 

attributed to the combination of particles and cobalt ions (Bastian et al. 2009, Busch et al.

2011). Therefore, also this oligodendroglial cell line seems to cope well with Fe-NP.

Some reports are also available that have studied the consequences of an application of Fe-NP 

on astrocytes (Table 6). Fe-NP are taken up by astroglial cells via clathrin-mediated 

endocytosis and via macropinocytosis (Pickard et al. 2010). Only one study reported a 

reduction of astrocyte viability after exposure to Fe-NP (Au et al. 2007). Therefore, cultured 

astrocytes also seem to cope well with the applied Fe-NP.
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1.4. Aim of the thesis

This thesis will investigate the iron metabolism and the effects of Fe-NP on brain glial cells. 

In the first part of the thesis, the iron metabolism of the OLN-93 cell line will be investigated. 

The iron metabolism of these cells will be characterized by investigating the expression of the 

mRNA of proteins involved in iron metabolism, the ability of OLN-93 cells to take up iron 

from low molecular weight iron salts, the influence of an alteration of the cellular iron content 

on cell viability and the synthesis of ferritin. Additionally, the consequences of absence or 

presence of iron on the proliferation of OLN-93 cells will be studied by application of various 

iron sources and/or iron chelators.  

Furthermore, the consequences of Fe-NP on OLN-93 cells will be investigated concerning 

cell morphology, viability, cellular iron content, cellular glutathione content and the ability of 

Fe-NP to generate ROS. In addition, the availability of iron from Fe-NP for the cellular 

metabolism will be examined by making use of the dependency of cell proliferation and 

ferritin synthesis on the presence of low molecular weight iron. 

Finally, the consequences of Fe-NP exposure on the cell viability and iron contents of 

astrocyte-rich primary cultures will be investigated and data obtained for OLN-93 cells and 

astrocyte cultures will be compared in order to identify differences or common mechanisms 

how different types of glial cells deal with Fe-NP.
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2. Results 

2.1. Consequences of an exposure of OLN-93 cells to iron and/or iron 

oxide nanoparticles

2.2. Consequences of an exposure of cultured astrocytes to iron oxide 

nanoparticles
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2.1.1. Iron metabolism of OLN-93 cells

Michaela C. Hohnholt 

2.1.1.1. Abstract

OLN-93 cells are a well established cell culture model for oligodendroglial cells. Here, the 

iron metabolism of OLN-93 cells and the consequences of a treatment of these cells with low 

molecular weight iron and iron oxide nanoparticles (Fe-NP) were investigated. OLN-93 cells, 

which divide once every 22 ± 1 h, had a basal iron content of 29.9 ± 37.7 nmol/mg protein, a 

specific activity of the cellular enzyme lactate dehydrogenase (LDH) of 3.6 ± 1.8 μmol/(min 

× mg protein) and a specific content of the cellular antioxidant glutathione of 56.3 ± 12.7 

nmol/mg protein. RT-PCR analysis revealed the presence of the mRNAs of transferrin, 

transferrin receptor, the divalent metal transporter 1, the heavy and light chains of the iron 

storage protein ferritin and the glycosylphosphatidylinositol-anchored form of the ferroxidase

ceruloplasmin, while the mRNAs of the soluble ceruloplasmin and the iron exporter 

ferroportin were absent. Furthermore, viable OLN-93 cells were able to accumulate iron from 

the low molecular weight iron salt ferric ammonium citrate (FAC) as well as from Fe-NP and

synthesized ferritin after application of FAC or Fe-NP. Taken together, these results show that 

viable OLN-93 cells possess the basic mechanisms for iron accumulation and storage, and are 

able to accumulate iron from Fe-NP.
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2.1.1.2. Introduction

Iron is a very important metal for mammals, since it is involved in functions such as the 

reversible binding of molecular oxygen in red blood cells for its transport from lungs to other 

parts of the body (Jensen 2009) and the catalysis of redox reactions by enzymes of the 

respiratory chain (Babcock 1999). Moreover, iron is essential for ribonuclease reductase, 

which catalyzes the rate-limiting step of the DNA synthesis (Stubbe 1998, Stubbe and van der 

Donk 1998). However, when iron is present in a redox-active form, it can catalyze the 

formation of reactive oxygen species (ROS) by the Fenton reaction (Kell 2009). ROS, like the 

highly reactive hydroxyl radical, can react with proteins, DNA and lipids, subsequently 

leading to cell damage (Halliwell 2006, Kell 2009). As protection against ROS, cells possess 

a number of antioxidative defense mechanisms including low molecular weight antioxidants 

such as glutathione (Dringen 2000, Limon-Pacheco and Gonsebatt 2009) and antioxidant 

enzymes, such as catalase and glutathione peroxidase (Dringen et al. 2005, Battin and 

Brumaghim 2009).

The function of oligodendrocytes in the brain is the synthesis and maintenance of the myelin 

sheaths around neuronal axons for fast conduction velocities (Emery 2010, Miron et al. 2011). 

Myelin sheaths are extensions of the oligodendroglial cell membrane that are wrapped around 

the axons as an insulating layer (Baumann and Pham-Dinh 2001, Nave 2010). 

Oligodendroglial cells contain high amounts of lipids and proteins and are considered to have 

a high metabolic activity to enable the production of the amounts of proteins and lipids 

necessary to form myelin sheaths (Piñero and Connor 2000, Todorich et al. 2009).

Among the cells in the healthy brain, oligodendrocytes appear to contain the highest amounts 

of iron as shown by iron staining of brain slices (Dwork et al. 1988, Connor and Menzies 

1990, Connor and Menzies 1996). This iron has been suggested to be required for their high 

metabolic activity (Piñero and Connor 2000, Todorich et al. 2009). Due to their high iron 

content, the high metabolic activity and the high amounts of lipids, oligodendrocytes are 

considered to be especially vulnerable to oxidative stress (McTigue and Tripathi 2008). In 

contrast to the high iron content of oligodendrocytes in vivo (Dwork et al. 1988, Connor and 

Menzies 1990, Connor and Menzies 1996), the reported levels of iron of this cell type in 

culture differs strongly between the two reports that are available (Thorburne and Juurlink 

1996, Hoepken 2005). Although, cultured oligodendrocytes have been reported to have a high 

capacity to dispose exogenous applied hydrogen peroxide (Hirrlinger et al. 2002, Baud et al.
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2004), little is known about their intracellular content of antioxidants (Thorburne and Juurlink 

1996, Juurlink et al. 1998, Hirrlinger et al. 2002). 

The uptake of iron into oligodendrocytes could be mediated by transferrin (Tf), since these 

cells in culture express this protein (Espinosa de los Monteros et al. 1988, Griot and 

Vandevelde 1988, Espinosa de los Monteros et al. 1990, Connor et al. 1993, Espinosa de los 

Monteros et al. 1994) and its receptor (Espinosa de los Monteros and Foucaud 1987, Ortiz et 

al. 2004, Hoepken 2005). Until now, there are no reports available concerning uptake 

mechanisms for non-protein-bound iron in oligodendrocytes, such as for example the divalent 

metal transporter 1 for ferrous iron (DMT1; Fleming et al. 1997, Gunshin et al. 1997).

Intracellularly, iron can be stored in the iron storage protein ferritin, which is a spherical 

protein consisting of the heavy (FtH) and light (FtL) ferritin chains (Arosio et al. 2009).

Oligodendrocytes express the iron storage protein ferritin (Griot and Vandevelde 1988, Qi and 

Dawson 1994, Hoepken 2005) and the presence of both FtH and FtL has been confirmed on 

the RNA level (Hoepken 2005). The ratio of FtH to FtL is cell type specific and 

oligodendrocytes have been reported to contain ferritin that is rich in FtH (H-ferritin; Connor 

and Menzies 1996). Besides the function of iron storage, extracellular H-ferritin has been 

proposed to be an additional iron source for cultured oligodendrocytes and the expression of 

Tim-2 (T cell immunoglobulin-domain and mucin-domain 2) as receptor for H-ferritin has 

been confirmed (Todorich et al. 2008). In addition, the survival of cultured oligodendrocytes 

in the absence of Tf depends on the presence of H-ferritin and the uptake of iron contained in

H-ferritin (Todorich et al. 2011). 

The expression of the ferrous iron exporter ferroportin (Fpn) and the ferroxidases 

ceruloplasmin (Cp), its glycosylphosphatidylinositol-anchored form (G-Cp) or hephaestin, 

have not been reported so far for oligodendrocytes. Therefore, it remains to be elucidated, 

whether these cells are able to release ferrous iron and oxidize it extracellularly.  

Nanoparticles are defined as particles which are in at least two dimensions smaller than 100 

nm (Lewinski et al. 2008). This small size is the reason for an alteration of the material 

properties in comparison to the bulk material that opens up new application fields for 

nanoparticles (Silva 2006, Soenen and De Cuyper 2010). Among the various materials used, 

iron oxide nanoparticles (Fe-NP) are considered to be especially useful due to their magnetic 

properties that make them suitable for cell labeling and as contrast agent for magnetic 

resonance imaging (MRI; Arbab et al. 2003, Laurent et al. 2008, Soenen and De Cuyper 

2010). Fe-NP have been used for the labeling of oligodendroglial progenitor cells and a 
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successful transplantation of these cells in vivo has been detected by MRI (Bulte et al. 1999, 

Franklin et al. 1999, Bulte et al. 2001, Dunning et al. 2004). However so far, little is known 

about the consequences of an exposure of oligodendroglial cells to Fe-NP.  

OLN-93 cells are a cell culture model for oligodendrocytes and have been introduced by 

Richter-Landsberg and Heinrich in 1996. During their development, oligodendrocytes 

undergo different developmental stages characterized by different marker proteins (Baumann 

and Pham-Dinh 2001, McTigue and Tripathi 2008). Analysis of the protein expression for 

OLN-93 cells revealed that they express proteins that are typical for the developmental stage 

of oligodendroglial precursor cells (Richter-Landsberg and Heinrich 1996) as well as for early 

and later stages of the oligodendroglial lineage, such as the neural cell adhesion molecule and 

the myelin specific marker myelin basic protein, respectively (Richter-Landsberg and 

Heinrich 1996, Buckinx et al. 2009). OLN-93 cells have been used so far as model for 

oligodendroglial cells to study oligodendroglial differentiation processes (Chesik et al. 2010, 

Meng et al. 2010, Smolders et al. 2010), the effects of oxidative stress (Stahnke et al. 2007, 

Brand et al. 2008, Brand et al. 2010), the detoxification of xenobiotics (Thiessen et al. 2010)

and the effects of nanoparticles (Bastian et al. 2009, Busch et al. 2011). However, so far little 

is known about the iron metabolism of OLN-93 cells. These cells contain iron and accumulate

iron from ferrous sulfate (Brand et al. 2008). In addition, the expression of the mRNA of the 

iron transporter DMT1, transferrin receptor (TfR) and ferritin has been shown and the 

presence of the TfR protein has been confirmed (Brand et al. 2008). Therefore, OLN-93 cells 

may be able to take up transferrin-bound and non-transferrin-bound iron.  

The present study investigates basal parameters of OLN-93 cells such as the morphology, the 

activity of the cellular enzyme lactate dehydrogenase (LDH) and the cellular contents of iron 

and of glutathione. Regarding iron metabolism, the expression of the mRNA of various 

proteins involved in iron metabolism was investigated to confirm their absence or presence in 

this cell type. To reveal the consequences of low molecular weight iron and Fe-NP on OLN-

93 cells, the cells were exposed to ferric ammonium citrate (FAC) or Fe-NP. Despite the 

observed high amounts of iron accumulated by OLN-93 cells from these two iron sources 

within 24 h, the cells remained viable most likely due to the observed synthesis of ferritin 

after exposure to FAC or Fe-NP.
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2.1.1.3. Materials and methods 

Materials

Fetal calf serum (FCS), penicillin/streptomycin and trypsin solution were obtained from 

Biochrom (Berlin, Germany). Dulbecco´s modified Eagle´s medium (DMEM) was purchased

from Invitrogen (Karlsruhe, Germany). Deferoxamine, cycloheximide, dihydrorhodamine 

123, 5,5´-dithio-bis(2-nitrobenzoic acid) (DTNB), dimercaptosuccinic acid (DMSA),

neocuproine, sodium ascorbate, Tris, glycine, methanol and the mouse anti-�-tubulin 

antibody were from Sigma (Steinheim, Germany). Bovine serum albumin, NADH and 

NADPH were obtained from Applichem (Darmstadt, Germany). Glutathione reductase and 

glutathione disulfide (GSSG) were purchased from Roche Diagnostics (Mannheim, 

Germany). The goat anti-L-ferritin antibody, horse radish peroxidase-conjugated anti-goat-

IgG and anti-mouse-IgG were from Dianova (Hamburg, Germany). 96-well microtiter plates 

and 5 cm dishes were obtained from Nunc (Roskilde, Denmark), 12-well cell culture plates 

from Greiner Bio-one (Frickenhausen, Germany) and 24-well plates from Starstedt 

(Nümbrecht, Germany). RNeasy® Mini Kit and RevertAidTM H Minus First Strand cDNA 

Synthesis Kit were purchased from Qiagen (Hilden, Germany). DNA loading dye, Taq 

polymerase, the GeneRulerTM 50 bp DNA ladder and the PageRulerTM prestained protein 

ladder 170-10 kDa were purchased from Fermentas (St. Leon-Rot, Germany). The HybondTM-

C Extra membrane, the ECLTM Western Blotting Detection Kit, the ECL AdvanceTM Western 

Blotting Detection Kit and the HyperfilmTM ECL membrane were obtained from GE 

Healthcare (Munich, Germany). All other chemicals of the highest purity available were from 

Fluka (Buchs, Switzerland), Merck (Darmstadt, Germany), Serva (Heidelberg, Germany) or 

Riedel-deHaen (Seelze, Germany).

Synthesis of Fe-NP

The Fe-NP used in this study were kindly provided by Mark Geppert. Synthesis and coating 

of these Fe-NP with dimercaptosuccinic acid (DMSA) were performed as described 

previously (Geppert et al. 2009, Geppert et al. 2011). In the following sections, Fe-NP 

denotes DMSA-coated iron oxide nanoparticles. The concentration of Fe-NP refers to the 

concentration of iron in the Fe-NP, not to the concentration of particles. 
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Cell cultures and experimental incubation

OLN-93 cells were grown in 175 cm2 flasks in culture medium (DMEM with 10% FCS, 1

mM pyruvate, 20 U/mL of penicillin G and 20 μg/mL of streptomycin sulphate) in a Sanyo 

(Osaka, Japan) incubator in a humidified atmosphere with 10% CO2 at 37°C. For seeding the 

cells, approximately 80-90% confluent cell cultures were washed with 25 mL pre-warmed 

(37°C) phosphate-buffered saline (PBS; 10 mM potassium phosphate buffer containing 150 

mM NaCl, pH 7.4) and subsequently incubated with 10 mL 0.01% trypsin in PBS for 5 min at 

37°C. The trypsinization process was stopped by adding 10 mL culture medium and the cell 

suspension was centrifuged at 4°C for 5 min at 400 g. Cells were then resuspended in culture 

medium and the number of cells was counted in a Neubauer cell counting chamber (Brand, 

Wertheim, Germany). After dilution of the cell suspension, 25,000 cells were seeded in wells 

of 12-well plates, 100,000 cells in wells of 24-well plates (glutathione measurement) or 

250,000 cells in 5 cm dishes (mRNA extraction and Western blot analysis). Cell cultures were 

trypsinized at least twice a week. Passage numbers between 33 and 40 were used for 

experiments.

Astrocyte-rich primary cultures were used as positive control for RT-PCR. These cultures 

were prepared from brains of newborn Wistar rats by a method described previously 

(Hamprecht and Löffler 1985). 3,000,000 viable cells were seeded per 5 cm dish in 5 mL 

culture medium. The cultures were kept in a humidified atmosphere with 10% CO2 at 37°C 

and the culture medium was renewed every seventh day. Confluent cultures were used for 

mRNA extraction at a culture age between 14 and 20 days. The cultures were kindly provided 

by the members of the group of Prof. Dr. Ralf Dringen. 

All experiments were performed in culture medium and experimental incubations were started 

16 to 20 hours after seeding. OLN-93 cells were washed with 1 mL (12-well dishes) or with 5 

mL (5 cm dishes) pre-warmed (37°C) culture medium and incubated in 1 mL (12-well dishes) 

or 5 mL (5 cm dishes) culture medium without or with 1 mM of iron as ferric ammonium 

citrate (FAC) or Fe-NP in the absence or in the presence of 1 mM deferoxamine (DFX) or 10 

μM cycloheximide (CHX). The solvent of CHX in the stock solution was ethanol and the 

final ethanol concentration in the culture medium was 1%. For all experiments with CHX, an 

appropriate control containing 1% ethanol was included. None of the data obtained for 1% 

ethanol-treated cells differed compared to the control without ethanol (data not shown). 

The incubations were terminated by washing the cells twice with 1 mL (12-well dishes) or 5 

mL (5 cm dishes) ice-cold PBS. For analysis of protein and iron contents and for Western 
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blots, cells were stored at -20°C until analysis. Determination of cellular and extracellular 

lactate dehydrogenase (LDH) activity, measurement of total glutathione, propidium iodide 

(PI) staining and mRNA extractions were performed immediately after termination of the 

experimental incubations.  

Determination of LDH activity and protein content

The determination of the activity of the cytosolic enzyme LDH was performed as described 

previously (Dringen et al. 1998). After termination of experimental incubations, media and 

cell samples were used for LDH analysis. Cell lysates were obtained by incubation of the cells 

in 1 mL 1% Triton X-100 in culture medium for 30 min at room temperature. For the 

measurement of the LDH activity, 40 μL of media samples or cell lysates were diluted with 

140 μL of LDH buffer (80 mM Tris-HCl buffer containing 200 mM NaCl, pH 7.2) in wells of 

a microtiter plate. The measurement was started by addition of 180 μL of a freshly prepared

reaction mixture in LDH buffer to each well to obtain a final concentration of 1.8 mM sodium 

pyruvate and 0.22 mM NADH in each well. The decrease in absorption per time at 340 nm 

due to the oxidation of NADH was measured by a Sunrise microtiter plate photometer (Tecan, 

Crailsheim, Germany). As a blank, culture medium without and with 1% Triton X-100 was 

used for media and cell samples, respectively, and the decrease in absorption per time of the 

blanks was subtracted from slopes obtained for media and cell samples prior to calculation of 

the cellular LDH activity and the extracellular LDH activity. To analyze the cell viability,

LDH activities were expressed as extracellular LDH activity in percent of the total LDH 

activity (cellular plus extracellular LDH activity).  

The Lowry method (Lowry et al. 1951) was used to quantify the cellular protein content after 

solubilization of the cells in 100 μL (for initial protein content) or 150 μL (for 24 h values)

0.5 M NaOH for 2 h at room temperature on a horizontal shaker (Unimax 1010 Heidolph, 

Schwabach, Germany) in a water-saturated environment. Bovine serum albumin was used as 

standard. 

PI staining

PI staining was performed to test for the membrane permeability according to a previously 

described method (Scheiber et al. 2010). Visualization of cell nuclei was accomplished by 

costaining with the membrane-permeable dye H33342. The cells were washed twice with 1 

mL pre-warmed incubation buffer (IB; 20 mM HEPES, 145 mM NaCl, 1.8 mM CaCl2, 5.4 

mM KCl, 1 mM MgCl2 and 5 mM glucose, pH 7.4) after the experimental incubation and 
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subsequently incubated with 0.5 mL IB containing 5 μM PI and 10 μM H33342 for 15 min at 

37°C. The incubation was terminated by washing the cells three times with 1 mL IB and the 

cells were immediately analyzed for fluorescence using a Nikon (Düsseldorf, Germany) 

TS2000U microscope. In Fig. 1, a positive PI staining of OLN-93 cells permeabilized with 

0.001% Triton X-100 in IB for 30 seconds is shown. 

Iron quantitation

The cellular iron content was quantified using a modification (Geppert et al. 2009) of the 

ferrozine method described previously (Riemer et al. 2004).

Cells treated without or with FAC or Fe-NP were solubilized in 100 μL (for initial iron 

content and for 24 h cell samples without extracellular iron applied) or in 1 mL (for 24 h cell 

samples with 1 mM FAC or Fe-NP in the absence or in the presence of DFX or CHX) of 50 

mM NaOH at room temperature for 2 h in a water-saturated environment. Subsequently, 100 

μL 10 mM HCl was added to the 100 μL NaOH in the wells or to 100 μL aliquots of cell 

lysates of FAC- or Fe-NP-exposed cells. 100 μL freshly prepared iron-releasing reagent (1:1 

mixture of 1.4 M HCl and 4.5% KMnO4 in water) was added to the cell lysates and incubated 

overnight at 60°C in a water-saturated atmosphere. For iron detection, 30 μL of a freshly 

prepared iron-detection reagent (6.5 mM ferrozine, 6.5 mM neocuproine, 2.5 M ammonium 

acetate and 1 M ascorbate) was added to the samples.

Figure 1: Membrane integrity of OLN-93 cells after permeabilization with 
0.001% Triton X-100 in IB for 30 seconds. The phase contrast (A) and the PI 
staining (B) of OLN-93 cells are shown. In addition, the cell nuclei were 
costained with H33342 (C). Representative pictures were taken from cells of 
passage number 37. The scale bar in A applies to all panels and represents 100 
μm. 
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For analysis of the iron content of media samples, 200 μL culture medium that was not 

supplemented with iron was used and 25 μL of media supplemented with 1 mM FAC or Fe-

NP was diluted with 75 μL 50 mM NaOH and 100 μM 10 mM HCl. 200 μL of medium or 

dilutions, respectively, were mixed with 100 μL iron-releasing reagent, incubated overnight at 

60°C and 30 μL of freshly prepared iron-detection reagent was added. 

As iron standards 100 μL of FeCl3 (0-300 μM FeCl3 in 10 mM HCl) were prepared and mixed 

with 100 μL 50 mM NaOH, 100 μL iron-releasing reagent and 30 μL iron-detection reagent. 

The iron-detection reagent was incubated at room temperature for 30 min and the absorbance 

of the ferrozine-iron complex was measured at 540 nm in 280 μL reaction mixtures in wells 

of microtiter plates by a microtiter plate photometer. For determination of the iron contents,

the absorbance of reaction mixtures containing samples was compared to those containing 

iron standards (Fig. 2). 

Glutathione quantification

The content of cellular total glutathione (GSx = amount of GSH plus twice the amount of 

glutathione disulfide (GSSG)) was determined as described previously (Dringen and 

Hamprecht 1996, Dringen et al. 1997) in microtiter plates according to the method that was 

Figure 2: Detection of iron by the colorimetric assay. The concentration-
dependent increase in absorbance of the ferrozine-iron complex at 540 nm after 
application of FeCl3 standards (A: 0 to 300 μM; B:  0 to 25 μM) is shown. The 
correlation coefficients for both concentration ranges are r2= 0.999.
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originally published by Tietze (1969). This assay is based on the reduction of 5,5´-dithio-bis-

(2-nitrobenzoic acid) (DTNB) by GSH to 5-thio-2-nitrobenzoate (TNB). TNB can be detected 

by its absorbance at 405 nm. The specificity of this assay for the detection of reduced and 

oxidized glutathione is accomplished by the addition of glutathione reductase together with its 

cofactor NADPH. The reduction of DTNB oxidizes GSH to GSSG which is then recycled to 

GSH by glutathione reductase resulting in a cyclic assay and an increase in absorption at 405 

nm with time. The rate limiting component under the conditions used is the amount of GSx 

and therefore the increase of absorption per time is proportional to the amount of GSx present 

in the reaction mixture. 

After washing of OLN-93 cells in wells of 24-well plates twice with 1 mL ice-cold PBS, 500 

μL 1% sulfosalicylic acid in H2O was added per well and incubated for 10 min at 4°C. 

Subsequently, supernatants were mixed carefully and centrifuged for 1 min at 12,000 g. 10 μL 

of samples (cell lysates or GSSG standards) were diluted with 90 μL deionized water in wells 

of a 96-well plate and the measurement was started by addition of 100 μL of a reaction 

mixture containing 0.4 mM NADPH and 0.3 mM DTNB in 0.1 M phosphate buffer 

containing 1 mM ethylendiaminetetraacetic acid (pH 7.5). By comparison of the slope of 

samples with GSSG standards (0 to 100 pmol GSSG/10 μL; 100 pmol GSSG/10 μL 

corresponds to 200 pmol GSx/10 μL), the GSx concentrations of samples were calculated.

Reverse transcriptase-polymerase chain reaction (RT-PCR)

The total RNA of OLN-93 cells or astrocyte-rich primary cultures was extracted from 5 cm 

dishes with the RNeasy® Mini Kit according to the manufacturer´s instructions. The

RevertAidTM H Minus First Strand cDNA Synthesis Kit was used to perform the reverse 

transcription according to the manufacturer´s instructions, using 4 μL RNA templates.  

Table 1: Components of the PCR master mix.

Component Final concentration Volume

Taq buffer 1x 2 μL

MgCl2 1.5 mM 1.2 μL

dNTP mix 0.25 mM 0.5 μL

Taq polymerase 0.05 U 0.2 μL

Sterile water - 10.8 μL

Abbreviation: dNTP, deoxynucleotide triphosphate. 
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The amplification product of cDNA synthesized by reverse transcription was amplified by 

polymerase chain reaction (PCR). The PCR was performed in a total volume of 20 μL 

containing 15 μL master mix (Tab. 1), 0.5 μL forward primer, 0.5 μL reverse primer (0.25 

μM final concentration of each primer; sequences according to Tab. 2) and 4 μL of cDNA or 

sterile water as negative control.

Table 2: PCR primers for the amplification of mRNA-derived cDNAs of proteins of the 

iron metabolism. 

Gene product Accession 
number 

Sequence Amplicon 
size (bp) 

H-chain of ferritin RNU58829
  

F: GTCTTGTTATTTTGACCGGG 

R: CGTCAGCTTAGCTCTCATCA

443

L-chain of ferritin NM_022500 F: TGGAGAAGAACCTGAACCAG 

R: CAAAGAGATACTCGCCCAGA

219

Transferrin 
receptor

M58040 
  

F: GCTCGTGGAGACTACTTCCG 

R: GCATTTGCAACTCCCTGAAT

311

Transferrin D38380 F: GGCATCAGACTCCAGCATCA 

R: TACCATCAGGGCACAGCAGC

395

Divalent metal 
transporter 1

NM_013173 F: GTCACCGTCAGTATCCCAAG

R: ATTGGCTTCTCGAACTTCCT

470

Soluble 
ceruloplasmin

NM_012532 F: ATACATACCCCGATCACCCT

R: TTTATTTCTTTCAGCCAGACTTAG

402

G-anchored 
ceruloplasmin

AF202115 F: CTGCCATGTGACTGACCATA

R: CTGAGGGACTGGTCTTGTTG

243

Ferroportin AF394785 F: TGTGTGTGATCTCCGTGTTC

R: GAAATGCAGAAGGTCGAGAA

365

�-Actin V01217 F: GGGTCAGAAGGACTCCTACG 

R: GGTCTCAAACATGATCTGGG

237

The indicated primers were described and previously used for analysis of mRNA isolated 
from astrocyte-rich primary cultures by RT-PCR (Korten 2004, Hoepken 2005). 
Abbreviations: bp, base pairs; F, forward primer sequence; G, gylcosylphosphatidylinositol; 
R, reverse primer sequence. 

The cycling protocol was used as described previously (Hoepken 2005): 2 min at 94°C, 

followed by 35 cycles with 1 min at 94°C, 2 min at 58°C and 1 min at 72°C, followed by a 

final 10 min at 72°C. PCR products were separated on a 2.5% agarose gel in 40 mM 
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Tris/acetate buffer (pH 8.3) containing 1 mM ethylendiaminetetraacetic acid. The gel was 

stained with 1 μg/mL ethidium bromide in deionized water for 10 min and washed twice with 

deionized water for 15 min. Afterwards the gel was analyzed for the presence of cDNA 

amplification fragments with the DeVison G imaging system (Decon, Hohengandern, 

Germany).

Gel electrophoresis and Western blot analysis

For immunoblot analysis, cells incubated on 5 cm dishes were scraped of the dish in 1.4 mL 

PBS. The centrifugation for 1 min at 12,000 g resulted in a cell pellet which was lysed in 

deionized water (400 μL for control cells, 100 μL for cells incubated with DFX or CHX). The 

protein content of each sample was determined in aliquots of 10 μL of each cell lysate. After 

addition of 97.5 μL and 22.5 μL sample buffer (0.312 M Tris-HCl containing 10% sodium 

dodecylsulfate, 50% glycerine and 0.05% bromphenolblue, pH 6.8) to 390 μL and 90 μL cell 

lysates, respectively, the cell lysates were stored frozen at -20°C until further analysis. Protein

separation was performed on a 12.5% polyacrylamide gel under reducing conditions (5 μL 20 

mM dithiothreitol per lane) and electroblotted (Mini Trans-Blot® Electrophoretic Transfer 

Cell, BioRad, Hercules, USA) to a nitrocellulose membrane as previously described 

(Hoepken et al. 2004, Thiessen et al. 2010). Unspecific binding sites were blocked with 5% 

(w/v) milk powder (Heirler Cenovis, Radolfzell, Germany) in Tris-buffered saline (TBS, 10 

mM Tris/HCl, 150 mM NaCl, pH 7.3) with 0.1% (w/v) Tween 20 (TBST) for 30 min. After 

incubation over night at 4°C with goat anti-L-ferritin antibody (1:500) or mouse anti-�-

tubulin antibody (1:5,000) diluted in TBST containing 5% (w/v) milk powder on a roller 

shaker (IDL, Nidderau, Germany), the membrane was washed three times in TBST for 15 min 

and incubated for 1 h with horse radish peroxidase-conjugated anti-goat-IgG (1:10,000) or 

anti-mouse-IgG (1:20,000) diluted in TBST/5% (w/v) milk powder. After washing three times 

for 15 min with TBST, protein bands were visualized by enhanced chemiluminescence using 

an AGFA Curix 60 processor (Berlin, Germany). �-Tubulin was visualized by the ECLTM

Western Blotting Detection Kit (1:1 mixture of solution A and B) and ferritin by the ECL 

AdvanceTM Western Blotting Detection Kit (25 μL of solution A and B, respectively, in 950 

μL TBS).

Presentation of data

The data were obtained in three or more independent experiments on different passages of 

OLN-93 cells. The results are presented as means ± standard deviation. Pictures in figures that 
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show cell morphology and/or cell stainings are from a representative experiment that was 

reproduced at least twice with comparable results. Figures showing Western blot analysis and 

RT-PCR are from one representative experiment which was reproduced at least once with 

comparable results. Significance of differences between two sets of data was analyzed by the 

t-test and significance of differences between groups of data was analyzed by ANOVA 

followed by the Bonferroni post hoc test. p>0.05 was considered as not significant. 
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2.1.1.4. Results

Growth and morphology of OLN-93 cells

To investigate the proliferation of OLN-93 cells, cell density and morphology were monitored 

for up to three days after seeding of the cells in 12-well plates. The first picture, taken 20 h 

after seeding, was defined as 0 h time point (Fig. 3A) and revealed only a low number of cells 

that had a bipolar-shaped morphology with two processes per cell. After one additional day in 

culture, the cell density was increased and the majority of cells had also the bipolar shape 

(Fig. 3B,E arrowhead). In addition, round-shaped cells with a condensed cell body were 

observed with usually two of them sitting next to each other, suggesting that these types of 

Figure 3: Morphology of OLN-93 cells. The 0 h time point was defined as 20 h 
after seeding of OLN-93 cells (passage 36; A). Further pictures were taken after 
24 h (B,E), 48 h (C,F) and 72 h (D). The arrowhead in E shows two cells with
bipolar shaped morphology, whereas the big arrows in E and F point to cells with 
flattened cytosol and the thin arrow in E indicates two cells with condensed cell 
bodies. The scale bar in D applies to all panels and represents 100 μm.



Results – OLN-93 cells

88

cells might be products of cell division (Fig. 3E thin arrow). Some cells were observed which 

covered a bigger surface area of the well and appeared to be flattened with a widespread 

cytosol and a higher number of fine branches (Fig. 3B,E big arrow). The overall cell density 

increased further after 48 h and the cells covered about 70-80% of the bottom surface of a 

well (Fig. 3C,F). The cellular morphology after 48 h was comparable to the morphology seen 

at the 24 h time point, as most of the cells had a bipolar shape and some cells were flattened 

(Fig. 3F big arrow). After 72 h, OLN-93 cells covered almost completely the surface of the

wells and the cells were tightly packed (Fig. 3D). The morphology was similar to the earlier 

time points, but hardly any cells appeared to have a flattened cytosol anymore which might be 

due to the high cell density. To elucidate the growth rate of OLN-93 cells, the doubling time 

was calculated from the increases of the cellular protein content with time (data not shown). 

From an exponentially fitted plot of the increases in cellular protein content with time, the 

doubling time of OLN-93 cells was calculated to be 22 ± 1 h (6 independent experiments 

performed in triplicates). 

Basic parameters of OLN-93 cells

To further characterize OLN-93 cells, their specific iron content, specific LDH activity and 

specific GSx content were determined 20 h after seeding (Tab. 3). The basal iron content of 

OLN-93 cells was 29.9 ± 37.7 nmol/mg protein (Tab. 3). OLN-93 cells contained at these 

experimental conditions a specific LDH activity of 3.6 ± 1.8 μmol/(min × mg protein) and a 

specific GSx content of 56.3 ± 12.7 nmol/mg protein (Tab. 3). RT-PCR analyses were 

performed to demonstrate the presence of mRNA of different proteins involved in the iron 

metabolism in OLN-93 cells.

Table 3: Basic parameters of OLN-93 cells.

Parameter Value Unit n

Iron content 29.9 ± 37.7 (A) nmol/mg protein 49

LDH activity 3.6 ± 1.8 μmol/(min × mg protein) 70

GSx content 56.3 ± 12.7 nmol/mg protein 21

The data represent means ± standard deviation of data obtained from n 
experiments of cells of passages between 33 and 40. (A) In 7 of 49 
experiments, exceptionally high specific iron contents above 60 nmol/mg 
protein were measured without obvious experimental explanations. These 
data caused the high standard deviation. Exclusion of these 7 values 
revealed a specific iron content of 16.0 ± 13.1 nmol/mg protein. 
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The amplification product for �-actin at approximately 240 base pairs (bp) confirmed that the 

transcription and amplification of the extracted mRNA was accomplished successfully (Fig. 4

first lane). Furthermore, signals of the expected sizes for the amplification products of the 

cDNA of Tf, TfR, DMT1, FtH, FtL and G-Cp were observed. In contrast, no amplification 

products were observed of Cp and Fpn. As negative control for all primer pairs used, the 

equivalent volume of cDNA was substituted by deionized water and the absence of any signal 

confirmed that the amplification product was indeed derived from the cDNA samples (data 

not shown). Since the presence of the mRNA of the Fpn protein has been reported for 

astrocytes (Jeong and David 2003, Korten 2004) mRNA was extracted from astrocyte-rich 

primary cultures and the presence of the mRNA of Fpn was successfully observed as positive 

control (data not shown). 

Effects of FAC and Fe-NP on the morphology and viability of OLN-93 cells

To study the consequences of an application of iron either in form of low molecular weight 

iron (FAC) or in form of Fe-NP on OLN-93 cells, the cells were incubated with 1 mM FAC 

or 1 mM Fe-NP for 24 h in culture medium. In the absence of iron (control condition), the 

cellular morphology of control OLN-93 cells was bipolar and most cells had two processes 

Figure 4: RT-PCR of mRNAs of proteins involved in the iron metabolism of 
OLN-93 cells. Selective primers were used to amplify specific DNA fragments
from mRNA-derived cDNA of OLN-93 cell for �-actin (�-A), transferrin (Tf), 
transferrin receptor (TfR), divalent metal transporter 1 (DMT), heavy chain of 
ferritin (FtH), light chain of ferritin (FtL), glycosylphosphatidylinositol-anchored 
ceruloplasmin (GCp), soluble ceruloplasmin (Cp) or ferroportin (Fpn). 
Replacement of cDNA by sterile water did not result in any amplification product 
(data not shown).
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(Fig. 5A). The application of FAC did not lead to any obvious alterations in cell morphology 

compared to control cells (Fig. 5D). In contrast, cultures incubated with Fe-NP tended to have 

more flattened cells with a higher number of fine branches (Fig. 5G). Although, the cell 

density appeared to be lower in cultures exposed to 1 mM Fe-NP (Fig. 5G) compared to FAC-

treated cells and controls, quantification of cellular protein contents as indicator for cell 

numbers after 24 h incubation with FAC or Fe-NP revealed no significant differences in 

comparison to control cells (Fig. 6B). To further investigate the influence of a treatment of 

OLN-93 cells with FAC or Fe-NP on the cell viability, the extracellular enzyme activity of the 

cytosolic enzyme LDH was measured. As shown in Fig. 6A, no significant increase in the 

extracellular LDH activities of OLN-93 cells exposed to FAC or Fe-NP for 24 h was 

observed.  

Figure 5: Morphology of OLN-93 cells (passage 37) after 24 h incubation 
without (control; A-C) or with 1 mM FAC (D-F) or 1 mM Fe-NP (G-I) in absence 
(A,D,G) or presence of 1 mM DFX (B,E,H) or 10 μM CHX (C,F,I). The scale bar 
in I applies to all panels and represents 100 μm.
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This result was confirmed by data obtained from PI staining, as indicator for loss of 

membrane integrity, as no PI-positive cells were observed after incubation without (control) 

or with FAC or Fe-NP (Fig. 7A,G,M). To proof the presence of cells after treatment, the cell 

Figure 6: Extracellular LDH activity (A), cellular protein content (B) and specific 
iron content (C) of OLN-93 cells after 24 h incubation without (control) or with 1 
mM FAC or 1 mM Fe-NP in the absence or the presence of 1 mM DFX or 10 μM 
CHX. The initial cellular protein content and the initial specific iron content were 
16 ± 5 μg/well and 42.6 ± 16.2 nmol/mg protein, respectively. ANOVA followed 
by Bonferroni post hoc test was used for statistical analysis of the significance of 
differences of values compared to control (absence of FAC or Fe-NP) and is 
indicated by ***p<0.001.
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nuclei were stained with H33342. The presence of a comparable amount of cell nuclei after 

incubation without (control) or with FAC or Fe-NP (Fig. 7D,J,P) demonstrated that these 

treatments did not cause detachment of cells from the culture wells.

Figure 7: Membrane integrity of OLN-93 cells (passage 37) after 24 h incubation 
without (control; A-F) or with 1 mM FAC (G-L) or 1 mM Fe-NP (M-R) in the 
absence (none) or presence of 1 mM DFX or 10 μM CHX. To visualize the 
presence of the cells, the cell nuclei were stained with H33342 (D-F,J-L,P-R). The 
scale bar in O applies to all panels and represents 100 μm. 
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Iron accumulation of OLN-93 cells from FAC or Fe-NP

To study the iron accumulation in OLN-93 cells from FAC or Fe-NP, the specific iron 

contents after exposure to these compounds were determined (Fig. 6C). Within 24 h of 

incubation the specific iron content of control OLN-93 cells was lowered from an initial value 

of 42.6 ± 16.2 nmol/mg protein to 14.0 ± 7.1 nmol/mg protein, whereas the cellular iron 

content increased in the presence of FAC to 102 ± 4 nmol/mg and in the presence of Fe-NP to

548 ± 160 nmol/mg protein (Fig. 6C). 

Upregulation of ferritin by OLN-93 cells

OLN-93 cells contain the mRNA of FtL and FtH (Fig. 4). To evaluate the potential of these 

cells to synthesize the iron storage protein ferritin, they were incubated in the absence or in 

the presence of FAC or Fe-NP for 24 h and cells were subsequently analyzed for the presence 

of ferritin (Fig. 8). In control cells incubated without an additional iron source, no ferritin 

signal was observed, indicating that these cells may contain at best a very low level of ferritin 

which is not detectable by the method used. In contrast, after 24 h exposure to 1 mM FAC or 

1 mM Fe-NP, a prominent ferritin signal was observed, confirming that these cells are able to 

upregulate the synthesis of this protein. 

Effects of DFX and CHX on OLN-93 cells

To evaluate the effects of iron chelation and inhibition of protein synthesis on OLN-93 cells, 

these cells were incubated without or with FAC or Fe-NP in the absence or presence of 1 mM 

DFX or 10 μM CHX for 24 h. Compared to control cells, DFX did not affect the cellular 

morphology (Fig. 5B,E,H), the cellular viability (Figs. 6A and 7B,H,N) nor the accumulation 

of iron from either FAC or Fe-NP (Fig. 6C). Also, presence of CHX did neither affect the cell 

morphology (Fig. 5C,F,I) nor caused an increase in extracellular LDH activity (Fig. 6A) 

Figure 8: Western Blot for presence of the iron storage protein ferritin in OLN-93
cells. The cells (passage 35) were incubated for 24 h without (control) or with 1 
mM FAC or 1 mM Fe-NP in the absence (none) or in the presence of 1 mM DFX 
or 10 μM CHX. 30 μg protein were loaded per lane.
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compared to control. Exposure of the cells to DFX and CHX led to hardly any PI-positive 

cells. However, DFX and CHX appeared to inhibit the proliferation of OLN-93 cells as shown 

by the lower cell density (Fig. 5B,C,E,F,H,I) and a lower cellular protein content per well 

(Fig. 6B) compared to the respective control, although the differences were not statistically 

significant after 24 h. Furthermore, DFX and CHX prevented the increases of the ferritin 

protein signal that was observed after treatment of OLN-93 cells with FAC or Fe-NP (Fig. 8).
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2.1.1.5. Discussion

Morphology and basal parameters of OLN-93 cells

OLN-93 cells have been established as cell culture model of oligodendroglial precursor cells 

by Richter-Landsberg and Heinrich in 1996. The morphology of the majority of untreated 

OLN-93 cells observed in the present study corresponds to the reported bipolar shape of these 

cells (Richter-Landsberg and Heinrich 1996, Buckinx et al. 2009) and resembles the 

morphology of oligodendroglial precursor cells (McTigue and Tripathi 2008, Jakovcevski et 

al. 2009). However, a minority of cells showed a second distinct morphology that was 

characterized by a flattened cell body and a higher number of fine processes. OLN-93 cells 

have been reported before to undergo morphological changes such as flattening and 

appearance of many fine processes due to serum deprivation (0.5% FCS for 24 h) and these 

changes have been suggested to resemble more differentiated, immature oligodendrocytes 

(Kameshwar-Rao et al. 1999, Ernst et al. 2004, Buckinx et al. 2009). Although during the 

experimental incubation in the present study the applied FCS concentration was not lowered, 

these morphological changes were observed. Therefore a likely explanation might be a 

decrease in serum components during the incubation time due to uptake by cells that might 

cause this alteration at least of some cells. Since only a minority of cells altered their 

morphology and these morphological changes have been reported to reflect no biochemical or

functional changes (Buckinx et al. 2009), they can be neglected. The morphology of OLN-93

cells that were exposed to Fe-NP changed in a similar manner whereas more cells seemed to 

be affected. Whether this observation is related to an alteration of the composition of the 

incubation medium or might be a consequence of Fe-NP on the cells by a different 

mechanism remains to be elucidated. 

The calculated doubling time of OLN-93 cells of about 22 h is higher than the doubling time 

of 16-18 h which has been reported (Richter-Landsberg and Heinrich 1996). Reasons for this 

observation might be the long storage of cells frozen at -80°C, since cryopreservation induces 

certain stress on cells (Grout et al. 1990). Also, different culturing conditions are likely to 

affect the proliferation of OLN-93 cells, as for example naturally occurring variations of 

serum composition caused alterations in the proliferation rate of OLN-93 cells (data not 

shown).  

The specific LDH activity of OLN-93 cells in the present study was 3.6 ± 1.8 μmol/(min × 

mg protein). This value is higher than those reported for rat oligodendrocytes in culture (0.5-
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1.6 μmol/(min × mg protein); Cammer et al. 1982, Cammer and Zimmerman 1983, Minich et 

al. 2003). Since OLN-93 cells are immortalized and actively proliferating cells, the higher 

LDH activity might be due to the higher metabolic activity of proliferating cells compared to 

non-dividing cells (DeBerardinis et al. 2008), as it has been reported for liver and islet cells 

(Rasschaert and Malaisse 1995, Marin-Hernandez et al. 2006).

The total cellular GSx content of OLN-93 cells of 56.3 ± 12.7 nmol/mg protein is identical to 

values recently reported for untreated OLN-93 cells (Thiessen et al. 2010). Literature data on 

cellular GSH contents of cultured oligodendrocytes range between 6 and 33 nmol/mg protein 

(Thorburne and Juurlink 1996, Juurlink et al. 1998, Hirrlinger et al. 2002, Hemdan and 

Almazan 2007, Thiessen et al. 2010). Thus, OLN-93 cells appear to have a higher level of this 

low molecular weight thiol in comparison to cultured oligodendrocytes. This finding as well 

as the higher specific cellular LDH activity supports the hypothesis of a higher metabolic 

activity in the OLN-93 cell line compared to cells that were isolated freshly from tissue. Since 

higher metabolic activity has been suggested to be also connected with increased levels of 

ROS production in oligodendrocytes (McTigue and Tripathi 2008), a higher level of 

antioxidants may support survival of OLN-93 cells. Further investigations of the metabolic 

activity and antioxidant defense systems of OLN-93 cells would be necessary to verify this 

hypothesis. 

Iron content and expression of proteins related to iron metabolism

OLN-93 cells contained a basal iron content of 29.9 ± 37.7 nmol/mg protein. The very high 

standard deviation reflects the unexpected high iron contents (>60 nmol/mg protein) found in 

7 of 49 experiments. No experimental reason explained this variation in iron contents. 

Exclusion of these 7 values revealed a basal iron content of 16.0 ± 13.1 nmol/mg protein 

which corresponds well to the iron content of 15.4 ± 2.6 nmol/mg protein observed for 

cultured oligodendrocytes (Hoepken 2005). OLN-93 cells were found to express the mRNA 

of TfR as well as mRNA of the ferrous iron transporter DMT1, confirming literature data

(Brand et al. 2008). Furthermore, presence of the mRNAs of Tf, FtH and FtL was found, as 

was expected from the known expression of these genes in cultured oligodendrocytes 

(Hoepken 2005). The presence of ferritin mRNA has been reported before for OLN-93 cells

(Brand et al. 2008), although the authors did not discriminate between FtH and FtL. In 

addition, the mRNA of G-Cp was present in OLN-93 cells, while the mRNA of soluble Cp 

was not detected. It remains to be tested whether the method applied here is able to detect the 

presence of mRNA for Cp by using liver tissue (Aldred et al. 1987) or hepatocytes (Zhang et 
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al. 2004) as Cp-expressing positive controls. The Cp protein and G-Cp protein are absent 

from oligodendrocytes in vivo (Mollgard et al. 1988) although the expression of G-Cp mRNA 

in OLN-93 cells has been observed in the present study. However, the presence of the mRNA 

of G-Cp does not prove presence of the respective protein, since also the mRNA of the glial 

fibrillary acidic protein is present in OLN-93 cells, but not the corresponding protein

(Buckinx et al. 2009). OLN-93 cells do not contain the mRNA of the iron exporter Fpn, 

although a signal was observed for mRNA extracted from astrocyte-rich primary cultures 

(data not shown), confirming the presence of Fpn mRNA in astroglial cells (Jeong and David 

2003, Korten 2004). Since the presence of mRNA does not demonstrate the presence of the 

functional protein it would be important to further investigate also the presence of the protein 

DMT1 and G-Cp in OLN-93 cells.

Iron accumulation by OLN-93 cells

The initial decrease in cellular iron content of OLN-93 cells incubated in the absence of 

additional iron within the first 24 h of experimental incubation (from initial 42.6 ± 16.2 

nmol/mg protein to 14.0 ± 7.1 nmol/mg protein at 24 h) is likely to be a consequence of the 

proliferation of the cells. Cells that have recently divided may need a given time to restore 

their specific iron content. Since the expression of TfR was shown to decrease by increasing 

cell density in human lung cancer cells and murine fibroblasts (Wang et al. 2005), a lower 

expression of TfR and therefore a lower iron uptake may be at least partly involved in the 

observed decrease of the specific iron content of OLN-93 cells. Differences in cellular iron 

content of OLN-93 cells that are altered by different incubation times in culture are likely not 

to affect the iron accumulation data obtained in the present study since all incubations were 

started during a short time frame of 16-20 h after seeding of cells. In contrast, this observation 

will become important when experimental incubations would be started at different time 

points after seeding or for pre-incubations for different time frames followed by post-

incubations. 

The low molecular weight iron complex FAC is a good extracellular iron source for brain 

cells (Hoepken et al. 2004, Bishop et al. 2011) and was therefore chosen as extracellular iron 

source for the present study. As OLN-93 cells have the potential to internalize different types 

of nanoparticles (Busch et al. 2011), Fe-NP were used as additional extracellular iron source. 

OLN-93 cells accumulated substantial amounts of iron from both FAC and Fe-NP, 

confirming literature data on iron accumulation of low molecular weight iron (Brand et al.

2008) and uptake of different types of nanoparticles by electron microscopy (Busch et al.
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2011). The accumulation of iron from FAC might have been mediated by Tf, as Tf was 

present during the incubation in serum-containing culture medium (Garrick and Garrick 2009, 

Munoz et al. 2009). Surprisingly, OLN-93 cells accumulated about 5 times more iron from 

exogenous Fe-NP compared to incubation with the iron salt FAC. Oligodendrocytes have 

been reported to accumulated iron by the uptake of ferritin (Todorich et al. 2011), therefore 

the accumulation of the high amount of iron after exposure to Fe-NP suggests that OLN-93

cells might take up Fe-NP by a similar mechanism compared to ferritin. However, the 

colorimetric iron quantification used in the present study cannot discriminate between 

extracellularly bound and internalized iron. To discriminate between these two options, the

temperature-dependency of the iron accumulation would have to be investigated (Trinder and 

Morgan 1998, Qian et al. 2000, Richardson 2001, Kim et al. 2006, Arredondo et al. 2008, 

Soenen et al. 2010, Pickard et al. 2011). This however was not feasible with the conditions 

used here, as the long incubation time of 24 h is very likely to compromise cell viability when 

performed at 4°C, at least in the absence of 10% CO2 since no incubator was available for the 

present study that could be operated at 4°C with an atmosphere containing 10% CO2. At least 

for Fe-NP discrimination between extracellularly bound and internalized Fe-NP could be 

studied by electron microscopy which would indicate Fe-NP as electron dense material (Berg

et al. 2010, Luciani et al. 2010, Busch et al. 2011, Soenen et al. 2011).  

The iron accumulation from FAC or Fe-NP was not influenced by the presence of the iron 

chelator DFX or by the protein biosynthesis inhibitor CHX (Siegel and Sisler 1963). DFX 

may not inhibit iron accumulation from FAC under the incubation conditions used here

although the chelator was present in an equimolar concentration to FAC. Since DFX was 

suggested to be internalized by endocytosis (Keberle 1964, Halliwell and Gutteridge 2007) 

also the DFX-iron complex might be taken up by endocytosis in the high concentration that 

was applied here. It remains to be elucidated whether other iron chelators might inhibit the 

iron accumulation from FAC in the conditions used here. In addition, the absence of any 

alteration of iron accumulation in the presence of CHX shows that the iron accumulation does 

not require protein synthesis within this timeframe.

Cell proliferation and viability

The viability of OLN-93 cells as well as cell proliferation was not compromised by the 

presence of FAC or Fe-NP as was shown by the absences of any increases in extracellular 

LDH activity, the membrane permeability for PI as well as the cell density and cellular 

protein contents. This confirms literature data for OLN-93 cells treated with ferrous sulfate 
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(Brand et al. 2008) or different types of nanoparticles including iron oxide nanoparticles

(Bastian et al. 2009, Busch et al. 2011). 

Proliferation of cells is iron-dependent as it was previously reported for studies applying iron 

chelators (Lederman et al. 1984, Brodie et al. 1993, Cooper et al. 1996, Green et al. 2001), 

because the rate limiting step of DNA synthesis is catalyzed by the iron-containing enzyme 

ribonuclease reductase (Stubbe 1998, Stubbe and van der Donk 1998). The viability of OLN-

93 cells was not compromised by incubation with DFX in the absence or in the presence of 

FAC or Fe-NP as shown by the lack of any increases in the extracellular LDH activity and the 

number of PI-positive cells. The decrease in cell density and cellular protein content in the 

presence of DFX suggests that the proliferation of OLN-93 cells is iron-dependent as 

assumed, although the decrease in cellular protein content did not reach the level of 

significance. In the presence of equimolar concentrations of DFX and FAC, no effect on cell 

proliferation would be expected since the chelator is supposed to be saturated with iron and 

iron from incubation medium should be available for the cells as it is in control conditions 

(absence of DFX and additional iron). In contrast to this hypothesis, in the presence of 

equimolar concentrations of DFX and FAC in the present study, the proliferation of OLN-93

cells was inhibited. A possible explanation might be a variation in the applied DFX 

concentration. A slightly higher DFX concentration compared to FAC would lead to a 

decreased availability of iron in the incubation medium and therefore explain the observed 

decrease in proliferation. Furthermore, the inhibition of proliferation by DFX alone was not 

statistically significant after 24 h incubation suggesting that the timeframe used in the present 

study might be too short to differentiate between the inhibition of proliferation by DFX and 

the absence of this observation in the presence of DFX and FAC. In contrast to the expected 

effect of FAC, Fe-NP are not assumed to overcome the inhibition of proliferation by DFX in 

equimolar concentrations. Under the assumption that iron is released from Fe-NP as observed 

in cell-free experiments within timeframes from days to weeks, no complete dissolution of 

Fe-NP is expected within 24 h (Arbab et al. 2005, Levy et al. 2010, Soenen et al. 2010). 

Therefore, the iron released from Fe-NP would be chelated by the excess of DFX since DFX 

is considered to be taken up by endocytosis (Lloyd et al. 1991) such as nanoparticles (Busch

et al. 2011). Extracellular DFX could chelate the low molecular weight iron present in the 

incubation medium which is subsequently also unavailable for cellular proliferation. 

The protein biosynthesis inhibitor CHX (Siegel and Sisler 1963) was expected to inhibit the 

proliferation of OLN-93 cells since this process requires de novo protein synthesis (Rao 

1980). The cell viability was hardly affected by the coincubation with CHX in the presence of 
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either FAC or Fe-NP since any increases in extracellular LDH activity and no substantial 

increases in PI-positive cells were observed. As expected, the proliferation of OLN-93 cells 

was decreased in the presence of CHX alone or in combination with FAC or Fe-NP 

confirming that CHX indeed inhibits protein synthesis of OLN-93 cells.

Ferritin synthesis of OLN-93 cells

The upregulation of the iron storage protein ferritin was investigated by Western blot, because 

excess of iron is stored in ferritin in a redox-inactive form (Arosio et al. 2009). OLN-93 cells 

contain no detectable level of ferritin under basal culture conditions, but they were able to 

upregulate this protein within 24 h upon application of FAC. This was also observed in 

cultured oligodendrocytes (Qi and Dawson 1994, Qi et al. 1995). In addition to FAC, also the 

presence of Fe-NP induced synthesis of ferritin in OLN-93 cells. For other cell types, the 

alteration of ferritin and TfR protein levels as consequence to an exposure to Fe-NP was 

previously shown (Pawelczyk et al. 2006, Schäfer et al. 2007, Raschzok et al. 2010, Soenen

et al. 2010). Since the synthesis of ferritin depends on the presence of low molecular weight 

iron (Arosio et al. 2009), the observed upregulation of ferritin also demonstrates that iron is 

released from Fe-NP after internalization. This is strongly supported by the observation that 

the upregulation of ferritin by FAC or Fe-NP was prevented by the iron chelator DFX. In 

OLN-93 cells, the release of iron is likely to occur in lysosomes since release of iron from Fe-

NP with different coating materials has been shown in cell free experiments at acidic pH and

in presence of citrate to model the lysosomal environment (Arbab et al. 2005, Levy et al.

2010, Soenen et al. 2010). The protein synthesis inhibitor CHX confirmed that ferritin 

upregulation is mediated by de novo synthesis of this protein as reported before for 

oligodendroglial cells (Qi and Dawson 1994) and astrocytes (Hoepken et al. 2004).
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2.1.1.6. Conclusions

The present study investigated the basal iron metabolism of OLN-93 cells. OLN-93 cells not 

only contain iron but also the mRNA of Tf, TfR and DMT1, indicating that they might be 

able to accumulate Tf-bound iron as well as ferrous iron. Furthermore, these cells efficiently 

accumulated iron from FAC and Fe-NP and, despite of high amounts of accumulated iron, 

OLN-93 cells remained viable. As physiological consequence of the strong iron accumulation, 

upregulation of ferritin was observed which could be prevented by iron chelation and by 

inhibition of protein synthesis. Further studies will be necessary to identify the exact 

mechanisms of uptake of non-Tf-bound iron and of Fe-NP in OLN-93 cells. Also, it has to be 

further investigated whether these cells are able to export iron despite the absence of Fpn. In 

conclusion, OLN-93 cells seem to be suitable for studying the long term consequences of an 

exposure to Fe-NP, since these cells remain viable and are also able to store iron liberated 

from Fe-NP in ferritin.
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Abstract

Magnetic iron oxide nanoparticles (IONP) are considered and used for many neurobiological 

approaches, although little is known so far on the fate of such particles in brain cells. To 

address these questions, we have exposed oligodendroglial OLN-93 cells to 

dimercaptosuccinate-coated IONP. Treatment of the cells strongly increased the specific 

cellular iron content proportional to the concentrations of IONP applied (0 to 1000 μM total 

iron as IONP) up to 300fold, but did not cause any acute cytotoxicity or induce oxidative 

stress. To investigate the potential of OLN-93 cells to liberate iron from the accumulated 

IONP, we have studied the upregulation of the iron storage protein ferritin and the cell 

proliferation as cellular processes that depend on the availability of low molecular weight 

iron. Presence of IONP caused a concentration-dependent increase in the amount of cellular 

ferritin and partially bypassed the inhibition of cell proliferation by the iron chelator 

deferoxamine. These data demonstrate that viable OLN-93 cells efficiently take up IONP and 

that these cells are able to use iron liberated from accumulated IONP for their metabolism.

Keywords: nanoparticles; iron; oligodendrocytes; ferritin; proliferation 
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1 Introduction 

Magnetic iron oxide nanoparticles (IONP) are considered for various neurobiological and 

medical applications [1]. They have been used as contrast agent [2], as carriers for drug 

delivery [3], for cancer treatment by magnetic hyperthermia [4] and for neurotransplantation 

of magnetically labeled oligodendrocyte progenitors [5]. Recently was reported that IONP are 

able to cross the blood brain barrier and to enter the brain [6]. Therefore, the consequences of 

an application of IONP to the body and particularly to the brain are of special interest. IONP 

have the potential to harm cells, since they contain large amounts of iron. Iron-dependent 

formation of reactive oxygen species (ROS) by the Fenton reaction has been considered for 

the surface of nanoparticles [7]. However, such processes are likely to be accelerated, if iron 

is liberated from accumulated IONP, since low molecular weight iron catalyzes efficiently the 

generation of ROS [8, 9]. Such processes are important to be considered in the light of the 

reported high bioavailability of iron in nanosized iron oxide particles [10]. 

Iron is an essential cofactor for enzymes of the respiratory chain as well as for DNA synthesis 

and cell proliferation [11, 12]. Accordingly, removal of iron by application of iron chelators 

inhibits cell proliferation in a process that is bypassed by application of an excess of iron [13, 

14]. In brain, iron-dependent processes appear to be especially important for 

oligodendrocytes, since these cells contain among the different types of brain cells the highest 

amount of iron [15, 16]. Since oligodendrocytes have a highly oxidative energy metabolism, 

these cells are considered as especially vulnerable to excess of iron which increases oxidative 

stress via the Fenton reaction [17, 18]. Thus, sufficient uptake and appropriate storage of iron 

by oligodendroglial cells is crucial to allow iron-dependent reactions while avoiding iron-

catalyzed generation of ROS. 

Oligodendroglial cell lines have been used to investigate the biocompatibility of 

nanoparticles, including IONP [13, 19, 20]. Such cells accumulate citrate-coated IONP and 

magnetodendrimers, but are not acutely damaged by the exposure to such particles [13, 20].

Iron can be released from IONP [21-23] and has the potential to harm cells, predominantly by 

the iron-catalyzed formation of ROS [22, 23]. Alternatively, IONP-derived low molecular 

weight iron can support iron-dependent cellular processes [24] and can also be stored in 

ferritin [25, 26]. For brain cells, no information is currently available on the intracellular 

metabolism of IONP, i.e., whether low molecular iron is liberated from accumulated IONP, is 

stored in ferritin and/or can be used for the cellular metabolism. To address such questions for 

oligodendroglial cells, we have used the oligodendroglial cell line OLN-93 [27] as model 
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system. Here we report that even high concentrations of dimercaptosuccinate (DMSA)-coated 

IONP are not toxic to OLN-93 cells, that these cells efficiently take up IONP and that they 

liberate iron from the accumulated nanoparticles and use it for their metabolism.



Results – OLN-93 cells

132

2 Materials and methods 

2.1 Materials 

Fetal calf serum, penicillin/streptomycin and trypsin solution were purchased from Biochrom 

(Berlin, Germany). Dulbecco´s modified Eagle´s medium was from Invitrogen (Karlsruhe, 

Germany). Deferoxamine (DFX), dihydrorhodamine 123, dimercaptosuccinic acid (DMSA), 

neocuproine, sodium ascorbate, sulfosalicylic acid, Tris, 5,5´-dithio-bis(2-nitrobenzoic acid),  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), nigrosin and the mouse 

anti-�-tubulin antibody were obtained from Sigma (Steinheim, Germany). Bovine serum 

albumin, NADH and NADPH were purchased from Applichem (Darmstadt, Germany). 

Glutathione reductase and glutathione disulfide (GSSG) were purchased from Roche 

Diagnostics (Mannheim, Germany). Glucose was from Serva (Heidelberg, Germany) and 

saccharose and dimethyl sulfoxide (DMSO) from Janssen Chimica (Geel, Belgium). The goat 

anti-L-ferritin antibody, horse radish peroxidase-conjugated anti-goat-IgG and anti-mouse-

IgG were from Dianova (Hamburg, Germany). All other chemicals of the highest purity 

available were from Fluka (Buchs, Switzerland), Merck (Darmstadt, Germany) or Riedel-

deHaen (Seelze, Germany). 96-well microtitre plates and 5 cm dishes were from Nunc 

(Roskilde, Denmark) and 12-well cell culture plates from Greiner Bio-one (Frickenhausen, 

Germany). 

The IONP used in the present report were synthesized, coated with DMSA and characterized 

as described previously [28, 29]. The obtained agglomerates of small IONP (diameter of 5-20 

nm) have a monomodal particle size distribution with an average hydrodynamic diameter of 

around 60 nm. Dispersed in incubation buffer, the DMSA-coated IONP have a zeta-potential 

of -26 ± 3 mV [29]. Excess of unbound coating material was removed by centrifugation and 

redispersion of the particles. Prior to the dilution in culture medium, IONP were filtered with 

a 0.2 μm syringe sterile filter (Sartorius, Goettingen, Germany). The given concentrations of 

DMSA-coated IONP represent the concentrations of total iron contained in the particles 

applied and not the concentrations of particles.  

2.2 Cell cultures and experimental incubation

OLN-93 cells (passage numbers between 32 and 40) were grown as described previously [30].

For experiments, 25,000 cells were seeded in wells of 12-well plates or 250,000 cells in 5 cm 

dishes. 16 to 18 hours after seeding, the cells were washed with 1 mL (12-well dishes) or with 
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5 mL (5 cm dishes) pre-warmed (37°C) culture medium (Dulbecco´s modified Eagle´s 

medium with 10% fetal calf serum, 20 U/mL of penicillin G and 20 μg/mL of streptomycin 

sulphate) and incubated in 1 mL (12-well dishes) or 5 mL (5 cm dishes) culture medium 

without or with DMSA-coated IONP and/or DFX. The incubations were terminated by 

washing the cells twice with 2 mL (12-well dishes) or 5 mL (5 cm dishes) ice-cold phosphate 

buffered saline (PBS; 10 mM potassium phosphate buffer, 150 mM NaCl, pH 7.4). If not 

stated otherwise, experiments were performed on cultures in wells of 12-well dishes.  

2.3 Determination of cell viability

Cell viability was analyzed by determining the extracellular activity of the cytosolic enzyme 

lactate dehydrogenase (LDH) as well as the permeability of the cell membrane for propidium 

iodide or nigrosin. LDH activity in cell lysates and media was determined as described 

previously [31] in 40 μL of samples. Cell lysates were obtained by incubation of the cells in 1 

mL 1% (w/v) Triton X-100 in culture medium for 30 min. Extracellular LDH activity was 

normalized to the total activity of LDH in cells plus medium. In cell lysates, LDH activity 

was not lowered during incubation for up to 48 h at 37°C in the incubator (data not shown). 

The membrane integrity was tested by staining with the membrane-impermeable dye 

propidium iodide (PI) as described previously [32]. After experimental incubations, the cells 

were washed twice with incubation buffer (IB; 20 mM HEPES, 145 mM NaCl, 1.8 mM 

CaCl2, 5.4 mM KCl, 1 mM MgCl2 and 5 mM glucose, pH 7.4) and incubated for further 15 

min with 5 μM PI and 10 μM of the membrane-permeable dye H33342 (to stain all cell 

nuclei) in IB at 37°C. Subsequently the cells were washed three times with PBS and analyzed 

immediately for fluorescence on a Nikon (Düsseldorf, Germany) TS2000U microscope. 

Nigrosin staining of cells was performed according to a previously described method [33].

The cells were washed twice with IB and subsequently incubated with the membrane-

impermeable black dye nigrosin (0.25% w/v) for 5 min at 37°C. Excess of the dye was 

removed by washing three times with IB and the cells were immediately analyzed by 

microscopy. The number of nigrosin-positive cells as percent of the total number of cells was 

evaluated. The number of nigrosin-positive cells per mm2 was counted on phase contrast 

pictures taken at 200fold magnification and covering an area of 0.277 mm2. From each of the 

three experiments performed three wells were analyzed. 
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2.4 Determination of cell proliferation 

Cell proliferation was determined by quantitation of the cellular protein content and the 

cellular LDH activity per well as previously described [13] as well as by counting cell nuclei 

and by quantifying the ability of the cells to reduced MTT. Protein content was determined 

according to the Lowry method [34] using bovine serum albumin as a standard. The activity 

of cellular LDH was determined as described above in cell lysates that were obtained by 

incubation of the cells in 1 mL 1% Triton X-100. The MTT assay was performed as described 

recently [32]. Briefly, after experimental incubations, the cells were washed two times with 1 

mL IB and incubated for 3 h at 37°C in 1 mL IB containing 2 mg/mL MTT. After washing 

twice with 1 mL IB, the cells were lysed in 0.5 mL DMSO for 30 min on a shaker. The 

absorbance at 540 nm was measured in 300 μL of cell lysate in a well of a microtiter plate. 

The number of cell nuclei per mm2 was counted on pictures (taken at 200fold magnification 

and covering an area of 0.277 mm2) obtained from H33342-stained cultures. From each of the 

three experiments performed three wells were analyzed. 

2.5 Iron quantitation and cytochemical Perls´ iron staining 

The iron content of cells before and after treatment with IONP was quantified using a 

modification [28] of the ferrozine method described previously [35]. Intracellular iron was 

visualized by the cytochemical Perls´ staining as described previously [28].  

2.6 ROS staining 

To detect intracellular ROS in OLN-93 cells, rhodamine 123 staining was used by a 

modification of a previously published method [8]. Following the experimental incubations, 

OLN-93 cells were washed twice with IB at 37°C and incubated for 3 h at 37°C in 0.5 mL IB 

containing 5 μg/mL dihydrorhodamine 123 and 10 μM H33342. After washing the cells twice 

with IB, the cells were fixed with 4% (w/v) paraformaldehyde in 0.1 M phosphate buffer (pH 

7.2) at room temperature. Cells were subsequently washed three times with PBS and analyzed 

for fluorescence.

2.7 Glutathione quantification 

Total cellular glutathione (GSx = amount of glutathione (GSH) plus twice the amount of 

GSSG) and GSSG were determined by the colorimetric Tietze assay in microtitre plates as 
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described previously [36]. The GSH content was calculated as difference between the values 

determined for GSx and GSSG.  

2.8 Gel electrophoresis and Western blot

For immunoblot analysis, cells incubated on 5 cm dishes were scraped of the dish in 2 mL 

PBS. After centrifugation (1 min, 12,000 g), the cell pellet was lysed in water and the proteins 

of the lysate were separated on a 12.5% polyacrylamide gel and electroblotted to a 

nitrocellulose membrane as previously described [30]. After incubation over night at 4°C with 

goat anti-L-ferritin antibody (1:500) or mouse anti-�-tubulin antibody (1:5,000) diluted in 

TBST (10 mM Tris/HCl, 150 mM NaCl, 0.1% (w/v) Tween 20, pH 7.3) containing 5% (w/v) 

milk powder, the membrane was washed three times in TBST and incubated for 1 h with 

horse radish peroxidase-conjugated anti-goat-IgG (1:10,000) or anti-mouse-IgG (1:20,000) 

diluted in TBST/5% milk powder. After washing with TBST, protein bands were visualized 

by enhanced chemiluminescence (GE Healthcare, Buckinghamshire, UK).

2.9 Presentation of data 

The data shown were obtained in at least three independent experiments on three different 

passages of OLN-93 cells. The results are presented as means ± standard deviation, if not 

stated otherwise. Pictures in figures that show stainings are from representative experiments 

that were reproduced at least twice with comparable results. Significance of differences 

between two sets of data was analyzed by the t-test and significance of differences between 

groups of data was analyzed by ANOVA followed by the Bonferroni post hoc test. p>0.05 

was considered as not significant. 
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3 Results

3.1 Consequences of an exposure to IONP on the viability of OLN-93 cells 

To test for the consequences of a treatment with IONP, OLN-93 cells were incubated in 

serum-containing medium for up to 72 h in the absence or the presence of IONP in 

concentrations of up to 1000 μM total iron. The viability of the cells was not affected by the 

presence of IONP as indicated by the absence of any significant increase in extracellular LDH 

activity (Fig. 1A). This was confirmed by the absence of any significant increase in the 

number of nigrosin-positive (data not shown) or PI-positive cells (Fig. 1B; Fig. 2) after 

exposure of OLN-93 cells for up to 72 h to IONP, while cells treated with Triton X-100 as 

positive control became PI-positive (Fig. 2I,J). Comparison of the total fluorescence intensity 

per picture of H33342-stained cells after incubation without or with IONP or Triton X-100 for 

the three independent experiments performed revealed no significant differences between the 

conditions used (data not shown). 

3.2 Effects of IONP on the proliferation of OLN-93 cells 

The cellular protein content, the MTT reduction capacity, the cellular LDH activity and the 

number of cell nuclei of IONP-treated OLN-93 cells were quantified as indicators of cell 

proliferation. In the absence of IONP, the cells proliferated as indicated by the strong 

increases in protein content per well (Fig. 1C), in the MTT reduction capacity (Fig. 1D), in 

the cellular LDH activity (Fig. 1E) and in the number of cell nuclei (Fig. 1F). Presence of 

IONP in concentrations of up to 1000 μM did not significantly affect these parameters during 

incubations for up to 72 h. However, at least for cells exposed for 48 h or 72 h to 1000 μM 

IONP proliferation appears to be to some extend lowered as demonstrated by around 20% 

lower numbers for all parameters investigated (Fig. 1C-F). However, these alterations did not 

reach the level of significance compared to the values obtained for control cells that had been 

incubated without IONP.

3.3 Increased iron contents of IONP-exposed OLN-93 cells

OLN-93 cells strongly accumulated iron from IONP as shown by a concentration-dependent 

increase in the specific cellular iron contents from 5 ± 5 nmol/mg protein (control cells 

incubated without IONP) to values of 36 ± 9 nmol/mg, 184 ± 37 nmol/mg and 957 ± 179 

nmol/mg protein determined for cells that had been incubated with 100 μM, 300 μM and 
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1000 μM IONP for 24 h. Exposure of cells for 48 h resulted in similar specific cellular iron 

contents (Fig. 3A). The specific cellular iron content increased proportional to the 

concentrations of IONP applied with correlation coefficients of 0.988 (24 h) and 0.993 (48 h). 

The accumulated iron of OLN-93 cells after exposure to IONP for 48 h was visualized by the 

cytochemical Perls´ staining (Fig. 4). While OLN-93 cells that had been incubated without 

IONP did hardly show any Perls´ detectable cellular iron (Fig. 4A), the dark Perls´ staining 

became more intense for cells exposed to increasing concentrations of IONP and was 

predominantly localized around the cell nuclei (Fig. 4B-D). 

3.4 IONP-exposure induces synthesis of the iron storage protein ferritin

To test whether the strong iron accumulation by OLN-93 cells after application of IONP (Fig. 

3A; Fig. 4) is accompanied by the synthesis of the iron storage protein ferritin, the cellular 

ferritin content was investigated by Western blotting after incubation of OLN-93 cells for 48 

h in the absence or presence of IONP. While OLN-93 cells that had been incubated without 

IONP contained hardly any detectable ferritin, the intensity of the ferritin signal was strongly 

increased in a concentration-dependent manner after exposure of the cells to IONP (Fig. 5). 

Densitometric analysis of Western blots from three independent experiments revealed that 

compared to controls (absence of IONP; ferritin signal was 20 ± 4% of the �-tubulin signal) 

the cellular ferritin content was substantially increased in OLN-93 cells that had been exposed 

to IONP in concentrations of 100 μM (2fold), 300 μM (4fold) and 1000 μM (14fold) (Fig. 

5B). This IONP-induced increase in the ferritin signal correlated well (correlation coefficient 

of 0.998) with the respective specific cellular iron content of IONP-treated cells. In addition, 

the upregulation of ferritin after exposure of OLN-93 cells for 48 h to IONP was almost 

completely prevented, if the cells were co-incubated with IONP and the iron chelator DFX 

(Fig. 5).

3.5 Iron from IONP is used by OLN-93 cells to bypass the deferoxamine-induced 

inhibition of proliferation 

Presence of micromolar concentrations of the iron chelator DFX have been reported to inhibit 

the proliferation of OLN-93 cells [13]. To test whether the cellular iron found in IONP-treated 

cells is able to bypass the DFX-mediated inhibition of cell proliferation OLN-93 cells were 

co-incubated for 48 h with DFX and IONP. Neither the incubation of OLN-93 cells with DFX 

or IONP alone nor coincubation with DFX plus IONP in concentrations of up to 1000 μM 

compromized the cell viability as indicated by the absence of any increase in extracellular 
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LDH activity (Fig. 3B). In addition, presence of DFX did not significantly alter the specific 

cellular iron content determined for cells that had been exposed to IONP (Fig. 3A). However, 

compared to the protein content of cultures that were incubated for 48 h with DFX in the 

absence of IONP (33 ± 5 μg/well), the cellular protein content increased significantly to 52 ± 

10 μg/well and 64 ± 13 μg/well for cells co-incubated with DFX plus 300 μM and 1000 μM

IONP, respectively (Fig. 3C). Accordingly, the number of nuclei in cultures that had been 

treated with DFX in the presence of 1000 μM IONP was doubled compared to the respective 

control without IONP (Fig. 3D), demonstrating that cell proliferation occurred in the presence 

of DFX plus IONP.

3.6 Consequences of an IONP-treatment on the cellular GSH content and on radical 

formation 

Oxidation of cellular GSH to GSSG and the accompanied alteration in the ratio of GSSG to 

GSH is considered as indicator for oxidative stress [37]. Therefore, GSH and GSSG levels 

were determined to investigate the potential of IONP to affect the GSH metabolism of OLN-

93 cells. After 48 h incubation without IONP, OLN-93 cells had a specific cellular GSH 

content of around 40 nmol/mg protein and contained hardly any detectable GSSG (Fig. 6). 

Exposure of the cells to IONP in concentrations of up to 1000 μM for 48 h did not alter the 

specific GSH and GSSG contents of OLN-93 cells. The GSSG contents remained for all 

conditions investigated very low accounting for less than 3% of the values observed for GSH 

(Fig. 6).  

Excess of redox active iron catalyzes the formation of ROS by the Fenton reaction [38, 39].

To test whether the high cellular iron content of IONP-treated OLN-93 cells (Fig. 3A) leads to 

an accelerated ROS production, the ROS-mediated oxidation of dihydrorhodamine 123 to the 

fluorescent rhodamine 123 in these cells was investigated. At best some basal signals for 

rhodamine 123 were observed for OLN-93 cells that had been incubated without IONP for 48 

h (Fig. 7B) which were not intensified in cells that had been exposed to IONP in a 

concentration of 300 μM (Fig. 7E). In contrast, exposure of OLN-93 cells to 300 μM ferric 

ammonium citrate (FAC) caused a substantial increase in the production of cellular ROS (Fig. 

7H).  
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Figure 1. Consequences of an incubation of OLN-93 cells with IONP on cell 
viability and cell proliferation. The cells were incubated without (0 μM) or with 
IONP in the indicated concentrations for up to 72 h. At the indicated time points 
the extracellular LDH activity (A) and the number of PI-positive cells (B) were 
determined as indicators for cell viability and the cellular protein content (C), the 
MTT reduction capacity (D), the cellular LDH activity (E) and the number of 
H33342-stained cell nuclei (F) were determined as indicators for proliferation. 
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Figure 2. Plasma membrane integrity. OLN-93 cells were incubated for 48 h 
without (A,B) or with 100 μM (C,D), 300 μM (E,F) or 1000 μM (G,H) IONP. 
Subsequently, the cells were stained with PI to identify cells with compromized 
membrane integrity and with H33342 to visualize the nuclei of all cells present. 
As positive control for permeabilized cell membranes, cells were incubated for 2 
min with 0.1% Triton X-100 prior to incubation with PI (I) and H33342 (J). The 
scale bar in A applies to all panels.
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Figure 3. Presence of IONP bypasses the DFX-induced inhibition of proliferation. 
OLN-93 cells were incubated for 48 h without (none) or with 50 μM DFX in the 
absence (0 μM) or the presence of IONP in the indicated concentrations. 
Determined was the specific cellular iron content (A), the cell viability by 
measuring the extracellular LDH activity (B), the cellular protein content (C) and 
the number of H33342 stained nuclei (D). The initial cellular protein content of 17 
± 3 μg/well is indicated by a dashed line in C. The level of significance of values 
compared to those of the respective controls (absence of IONP) is indicated by 
*p<0.05, **p<0.01 or ***p<0.001. 
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Figure 4. Perls´ staining for iron in OLN-93 cells that had been incubated for 48 h 
without (A) or with 100 μM (B), 300 μM (C) or 1000 μM (D) IONP. The scale 
bar in A applies to all panels. 
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Figure 5. Western blot for the iron storage protein ferritin. OLN-93 cells were 
incubated for 48 h with IONP in the indicated concentrations. 40 μg of cell lysate 
protein were loaded per lane. A: Western blot of samples derived from a 
representative experiment. B: Densitometric analysis of the signal intensity 
normalized on the signal of �-tubulin in the respective sample. The data are 
presented as means ± SD of data from three independent experiments (absence of 
DFX) or as means ± difference to the mean values of data from two independent 
experiments (presence of DFX).
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Figure 6. Specific contents of GSH and GSSG in OLN-93 cells after 48 h 
incubation in the absence (0 μM) or presence of IONP in the indicated 
concentrations. 
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Figure 7. Staining for radicals in OLN-93 cells. The cells were incubated for 48 h 
without additional iron source (A-C), with 300 μM IONP (D-F) or with 300 μM 
FAC (G-I). Shown are phase contrast pictures of the cells (A,D,G), the 
fluorescence of rhodamine 123 (B,E,H) and the H33342-staining of cell nuclei 
(C,F,I). The size bar in B applies to all panels.
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4 Discussion

The present study investigated the consequences of an exposure of OLN-93 cells to DMSA-

coated IONP as well as the fate of the accumulated nanoparticles. IONP in concentrations of 

up to 1000 μM total iron did not compromise cell viability during an incubation of OLN-93 

cells for up to 72 h and showed even in the highest concentration of IONP applied at best a 

mild effect on cell proliferation. The concentrations of IONP applied to OLN-93 cells (1000 

μM IONP corresponds to 55 μg iron/mL) are in the concentration range suggested to be 

useful for in vitro tests [40]. However, these concentrations of IONP are substantially higher 

than those which are likely to be encountered by brain cells in vivo, since only a small 

proportion (around 50 μg/g brain tissue) of peripherally applied IONP (600 μg/g body weight) 

was found in mouse brain after 1 or 3 days [6]. Thus, the resistance of OLN-93 cells against 

toxicity by IONP, even after application of IONP in concentrations that are much higher than 

those expected for brain cells in vivo, suggests that oligodendroglial cells in brain may also 

have the potential to cope well with the IONP they will encounter after peripheral application 

of IONP.  

The observed resistance of oligodendroglial cells against IONP-induced toxicity confirms 

literature data for nanosized iron particles [13, 20], but contrasts the observation that IONP 

are toxic and/or induce oxidative stress in various cell lines [41-43]. However, since IONP-

treated OLN-93 cells did not suffer from a detectable increase in ROS production nor from a 

shift in the GSSG to GSH ratio, persistent oxidative stress appears not to be a consequence of 

the treatment, despite of the 300fold increase in the specific cellular iron content. Reasons for 

the resistance of OLN-93 cells towards acute IONP toxicity and for the absence of accelerated 

ROS-production could be the high antioxidative potential of oligodendroglial cells [44-46] as 

well as differences, compared to other more susceptible cell types, in the pathways involved 

in accumulation of IONP, in the velocity of liberation of iron from cellular IONP, as well as 

in the capacities to store or export IONP-derived iron. Whether the described intrinsic 

peroxidase activity of IONP [24, 47] may also be involved in prevention of a potential iron-

mediated oxidative stress in IONP-treated OLN-93 cells, remains to be elucidated. In 

addition, our observations do not exclude that an initial transient increase in ROS formation 

may have occurred in IONP-treated OLN-93 cells, as very recently described for C17.2 neural 

progenitor cells [48].  

Exposure of OLN-93 cells to 1000 μM DMSA-coated IONP lowered to some extent cell 

proliferation. Although this trend did not reach the level of significance in all experiments 
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performed, it was consistently observed for all proliferation assays applied. IONP have been 

reported to slow the proliferation of human lung alveolar carcinoma epithelial cells, normal 

human lung alveolar epithelial cells, human cervical adenocarcinoma epithelial cells, human 

osteosarcoma cells and mesenchymal stem cells [49, 50], although the proliferation of 

mesenchymal stromal cells was not influenced by IONP [51]. The observed moderate slow 

down of cell proliferation by IONP in OLN-93 cells could be a particle-effect, since neither 

the application of the coating material DMSA (data not shown) nor the presence of large 

amounts of low molecular weight iron [13] affected the proliferation of these cells. Potential 

reasons for a slowed cell proliferation during exposure to nanoparticles could be alterations of 

the cytoskeleton and the associated focal adhesion kinase-mediated signaling pathway which 

is known to diminish proliferation, as recently described for other cell types [52]. 

Incubation of OLN-93 cells with DMSA-coated IONP strongly increased the cellular iron 

content, as previously shown for oligodendroglial cells that had been exposed to citrate-

coated IONP [13] or magnetodendrimers [20]. Under the conditions used, the cellular iron 

content increased proportional to the concentration of IONP applied up to 1000 μM which is 

consistent with results obtained for the uptake of citrate-coated IONP in OLN-93 cells [13]

and astrocytes [53]. This observation does not exclude that a saturable mechanism is involved 

in the IONP uptake by OLN-93 cells, since also for cultured astrocytes DMSA-coated IONP 

had to be applied in concentrations higher than 1000 μM to observe saturation [29].

Interestingly, the specific iron contents observed after incubation of OLN-93 cells with IONP 

did not differ between cells that had been incubated for 24 h or 48 h, suggesting that steady 

state levels of cellular iron are established already within 24 h of incubation. Thus, under the 

conditions used each cell appears to be able to accumulate a given amount of iron which 

depends on the concentration of IONP applied. This view is supported by the linear increase 

in specific iron contents with the concentrations of IONP applied. The strong iron 

accumulation by OLN-93 cells was confirmed by cytochemical Perls´ staining for cellular 

iron. The observed perinuclear iron staining is consistent to literature data for cultured neural 

cells that had been exposed to different types of IONP [13, 53, 54].  

The potential of OLN-93 cells to mobilize low molecular weight iron ions from accumulated 

IONP was investigated by quantifying ferritin contents and cell proliferation, since both 

ferritin synthesis and proliferation depend on the presence of low molecular weight iron [13, 

55]. The strong accumulation of iron observed for IONP-treated OLN-93 cells was 

accompanied by a strong increase of the amount of the cellular iron storage protein ferritin. 

The cellular synthesis of ferritin depends on the incorporation of low molecular weight iron 
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into the iron-sulfur-cluster of the iron responsive protein (IRP), thereby preventing the 

binding of IRP to the iron responsive element in the ferritin mRNA and allowing translation 

of ferritin [55]. Thus, the increase in ferritin expression in OLN-93 cells after IONP exposure 

clearly demonstrates the presence of iron ions that have been liberated from the accumulated 

IONP and were subsequently incorporated into the IRP. An upregulation of ferritin has to our 

knowledge not been reported so far for neural cells, but human mesenchymal stem cells and 

liver cells are known to increase their ferritin contents after treatment with nanosized iron 

oxide [25, 26].  

Exposure of OLN-93 cells to micromolar concentrations of DFX inhibits the proliferation 

without compromising cell viability in a process that is prevented by an excess of low 

molecular weight iron [13]. Likely reason for the DFX-induced inhibition of proliferation is 

the chelation of both low molecular weight iron and transferrin-bound iron from the 

incubation medium thereby making extracellular iron unavailable to support cell proliferation. 

The ability of DFX-treated OLN-93 cells to regain the potential to proliferate in the presence 

of IONP confirms the ability of OLN-93 cells to liberate and make use of iron from IONP. 

Such a process has also been suggested for the promotion of proliferation of human 

mesenchymal stem cells in the presence of IONP [24]. 

The strong iron accumulation from 1000 μM IONP was neither prevented by the presence of 

the iron chelator DFX in a concentration of 50 μM nor in a concentration of 1000 μM (data 

not shown). Since DFX prevents iron accumulation from low molecular weight iron [8, 56]

but not from IONP [28], the strong iron accumulation after exposure of the cells to IONP is 

likely to be mediated by endocytotic particle uptake, as previously suggested [57] and 

recently demonstrated for other types of nanoparticles [19]. The low pH of the lysosomal 

compartment is likely to help mobilizing iron from IONP [21, 22, 24, 58]. From the 

lysosomal/endosomal compartment, ferrous iron could then be transported by the divalent 

metal transporter 1, which is expressed in OLN-93 cells [59], into the cytosol as it is known 

for iron that has entered the cells via transferrin receptor-mediated endocytosis [9], where it 

becomes available for incorporation into proteins and for storage in ferritin.  

The amount of cellular iron correlated well with the level of ferritin in OLN-93 cells exposure 

to IONP, suggesting that the amount of iron liberated from the IONP depends on the amount 

of accumulated IONP. Presence of DFX prevented the IONP-induced upregulation of ferritin 

in OLN-93 cells, demonstrating that DFX had at least partial access to ferric iron that was 

liberated from IONP. DFX as charged molecule can hardly penetrate the cell membrane [60],
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but has been suggested to enter cells by an endocytotic process [61]. Thus, after a co-

incubation, iron may be liberated from IONP in the presence of DFX in the endosomal 

compartment. For each endosomal vesicle, the molar ratio of DFX to the iron liberated from 

IONP as well as the rate of reduction of ferric iron will determine how much ferrous iron is 

available in the DFX-dependent equilibrium between ferric and ferrous iron [62]. Thus, 

although IONP-derived ferric iron will be chelated by DFX, part of it is likely to be reduced 

to ferrous iron that cannot be chelated by DFX [63] and exported by DMT1 into the cytosol 

where it supports proliferation. Since ferritin upregulation takes only place if iron is present in 

excess in the cytosol [55], liberation of iron from IONP in presence of DFX in endosomal 

vesicles is likely to provide sufficient cytosolic ferrous iron to enable at least some 

proliferation, although the majority of IONP-derived ferric iron may be chelated in the 

endosomal compartment.  
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5 Conclusions 

DMSA-coated IONP are efficiently taken up into viable oligodendroglial cells. The 

observation that IONP-derived iron bypasses the DFX-induced inhibition of proliferation 

demonstrates that OLN-93 cells mobilize iron from IONP. However, despite of the large 

amounts of accumulated iron, OLN-93 cells do not show substantial ROS production or an 

alteration in the cellular thiol reduction potential. Most likely, the strong upregulation of 

ferritin allows the cells to safely store only excess of iron liberated from the IONP that is not 

needed for proliferation, thereby preventing ROS formation by iron-mediated Fenton 

chemistry. Our data demonstrate for the first time that neural cells are able to liberate iron 

from accumulated IONP. Such processes have to be considered regarding the fate of magnetic 

IONP that will be applied to brain cells or to the brain for therapeutical or experiential 

reasons.
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Abstract 

Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological 

applications. To investigate the consequences of a treatment of brain cells with such particles, 

we have applied dimercaptosuccinate-coated IONP to oligodendroglial OLN-93 cells. After 

exposure to 4 mM iron applied as IONP, these cells increased their total specific iron content 

within 8 h almost 600fold from 7 to 4200 nmol/mg cellular protein. The strong iron 

accumulation was accompanied by a change in cell morphology, although the cell viability 

was not compromized. IONP treatment caused a concentration-dependent increase in the iron-

dependent formation of reactive oxygen species and a decrease in the specific content of the 

cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free 

culture medium following exposure to IONP-treatment, OLN-93 cells maintained their high 

iron content and replenished their cellular glutathione content. These data demonstrate that 

viable OLN-93 cells have a remarkable potential to deal successfully with the consequences 

of an accumulation of large amounts of iron after exposure to IONP. 

Keywords: GSH; magnetic iron oxide nanoparticles; oligodendrocytes; oxidative stress; 

radicals 

Abbreviations: AA, amino acids; ANOVA, analysis of variance; BSO, buthionine 

sulfoximine; DMEM, Dulbecco´s modified Eagle´s medium; DMSA, dimercaptosuccinate; 

FCS, fetal calf serum; GSH, glutathione; GSSG, glutathione disulfide; GSx, total glutathione; 

IB, incubation buffer; IONP, iron oxide nanoparticles; LDH, lactate dehydrogenase; PBS, 

phosphate buffered saline; Phen, phenanthroline; PI, propidium iodide;  ROS, reactive oxygen 

species
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Introduction

Magnetic iron oxide nanoparticles (IONP) are currently used in neurobiology as contrast 

agent (Weinstein et al. 2010), as carriers for drug delivery (Chertok et al. 2008) and for cancer 

treatment by magnetic hyperthermia (Jordan et al. 2006). IONP have recently been reported to 

cross the blood-brain barrier and to enter the brain (Wang et al. 2010), but little is known on 

the toxicokinetic properties of IONP in the human body (Hagens et al. 2007) and on the safety 

of their application for the brain (Silva 2007; Yang 2010). Iron, which is likely to be released 

from IONP, has the potential to harm cells, since low molecular weight iron catalyzes the 

formation of reactive oxygen species (ROS) by the Fenton reaction (Galaris and Pantopoulos 

2008; Hoepken et al. 2004). Additionally, it was suggested that the formation of ROS can also 

occur on the surface of nanoparticles (Nel et al. 2006). Indeed, several cell types have been 

shown to contain elevated levels of ROS after exposure to IONP (Apopa et al. 2009; Berg et 

al. 2010; Buyukhatipoglu and Clyne 2011; Soenen et al. 2011). This ROS production is likely 

to cause oxidative damage of biomolecules such as nucleic acids, proteins and lipids (Moller 

et al. 2010; Nel et al. 2006), if accelerated ROS generation induced by IONP is not 

compensated by a sufficient cellular antioxidative capacity.

Among the antioxidative molecules in brain cells, the tripeptide glutathione (GSH) appears to 

be especially important (Dringen and Hamprecht 1998; Hirrlinger and Dringen 2010). GSH 

reacts directly with radicals and is substrate of the glutathione peroxidase-dependent 

detoxification of peroxides (Dringen et al. 2005). In both processes GSH becomes oxidized to 

glutathione disulfide (GSSG) which is reduced in cells by glutathione reductase to regenerate 

GSH (Hirrlinger and Dringen 2010). In the brain, oligodendrocytes contain and need high 

amounts of iron (Benkovic and Connor 1993; Connor and Menzies 1996), but are also 

considered as prone to iron-mediated oxidative stress (Bradl and Lassmann 2010; McTigue 

and Tripathi 2008). To prevent oxidative damage, oligodendrocytes appear to be equipped 

with substantial antioxidative capacity. At least in culture, oligodendroglial cells detoxify 

hydrogen peroxides very efficiently and contain substantial amounts of GSH as well as high 

specific activities of the antioxidative enzymes glutathione peroxidase and glutathione 

reductase (Baud et al. 2004; Dringen et al. 2005; Hirrlinger et al. 2002a; Thiessen et al. 2010). 

Oligodendroglial cells are known to accumulate IONP and other types of nanoparticles (Bulte 

et al. 2001; Busch et al. 2011; Hohnholt et al. 2010a). To investigate potential negative effects 

of an exposure of oligodendroglial cells to IONP, we have used the oligodendroglial cell line 

OLN-93 (Richter-Landsberg and Heinrich 1996) as model system. Here we report that the 
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accumulation of large amounts of iron in OLN-93 cells after exposure to dimercaptosuccinate 

(DMSA)-coated IONP is not acutely toxic but leads to changes in cell morphology, to an 

increase in iron-catalyzed cellular ROS production and to a decrease in the specific GSH 

content. 
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Methods

Materials

Fetal calf serum (FCS), penicillin/streptomycin and trypsin solution were obtained from 

Biochrom (Berlin, Germany). Dulbecco´s modified Eagle´s medium (DMEM) was from 

Invitrogen (Karlsruhe, Germany). Neocuproine, sodium ascorbate, Tris, 5,5´-dithio-bis(2-

nitrobenzoic acid), dihydrorhodamine 123, DMSA and sulfosalicylic acid were purchased 

from Sigma (Steinheim, Germany). Bovine serum albumin, nicotinamide adenine 

dinucleotide and nicotinamide adenine dinucleotide phosphate were obtained from Applichem 

(Darmstadt, Germany). Glutathione reductase and GSSG were purchased from Roche 

Diagnostics (Mannheim, Germany). All other chemicals of the highest purity available were 

from Fluka (Buchs, Switzerland), Merck (Darmstadt, Germany) or Riedel-deHaen (Seelze, 

Germany). 96-well microtitre plates were from Nunc (Roskilde, Denmark) and 24-well cell 

culture plates from Sarstedt (Nümbrecht, Germany).

The IONP used in the present report were synthesized (Geppert et al. 2009) and coated with 

DMSA as described previously (Geppert et al. 2011). Dispersed in the incubation buffer used 

here, these DMSA-coated IONP have a monomodal size distribution with an average 

hydrodynamic diameter of 60 nm and a zeta-potential of -26 mV (Geppert et al. 2011). The 

given concentrations of DMSA-coated IONP represent the concentration of total iron 

contained in the particles applied and not the concentration of particles.

Cell cultures and experimental incubation 

OLN-93 cells (passage numbers between 32 and 40) were cultured as described previously in 

culture medium (DMEM, 20 U/mL of penicillin G and 20 μg/mL of streptomycin sulphate) 

with 10% FCS (Hohnholt et al. 2010a; Thiessen et al. 2010). For experiments, 100,000 cells 

were seeded in wells of 24-well plates. 16 h to 18 h after seeding, the cells were washed twice 

with 1 mL pre-warmed (37°C) incubation buffer (IB; 20 mM HEPES, 145 mM NaCl, 1.8 mM 

CaCl2, 5.4 mM KCl, 1 mM MgCl2 and 5 mM glucose, pH 7.4) and incubated in 0.5 mL IB for 

up to 8 h in the presence or absence of DMSA-coated IONP and/or other compounds as 

indicated in the legends of the figures and tables. For recovery experiments, the IONP-

containing IB was removed after 8 h of preincubation, the cells were washed with 1 mL pre-

warmed (37°C) culture medium and incubated further for 16 h in 0.5 mL IONP-free culture 

medium in an incubator containing a humified atmosphere with 10% CO2. All incubations 
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were terminated by washing the cells twice with 1 mL ice-cold phosphate buffered saline 

(PBS; 10 mM potassium phosphate buffer, 150 mM NaCl, pH 7.4). 

Determination of cell viability and protein content 

Cell viability was determined by comparison of the activity of the cytosolic enzyme lactate 

dehydrogenase (LDH) in the medium and in cell lysates as described previously (Dringen et 

al. 1998). The appearance of LDH in the extracellular medium is used as indicator for the loss 

of cell viability due to the complete loss of membrane integrity. The LDH activity of media 

samples was compared to the initial LDH activity of cells that had been lysed with 1% Trition 

X-100 in IB.  

Permeability of cell membranes was also investigated by incubation of the cells with the 

membrane-impermeable dye propidium iodide (PI) and co-staining of all cell nuclei with the 

membrane-permeable dye H33342 as described previously (Scheiber et al. 2010). Briefly, the 

cells were washed twice with 1 mL IB and subsequently incubated for 15 min in IB 

containing 5 μM PI and 10 μM H33342. After washing three times with 1 mL PBS at room 

temperature, cells were immediately analyzed for fluorescence using a Nikon (Düsseldorf, 

Germany) TS2000U microscope. PI-positive nuclei indentify cells that have permeabilized 

membranes. 

The content of cellular protein per well was determined according to the Lowry method 

(Lowry et al. 1951) using bovine serum albumin as a standard.  

Quantification of iron and glutathione 

The cellular iron content was quantified using a modification (Geppert et al. 2009) of the 

ferrozine-based colorimetric assay described previously (Riemer et al. 2004). The contents of 

cellular and extracellular total glutathione (GSx = amount of GSH plus twice the amount of 

GSSG) and GSSG were determined by the colorimetric Tietze assay with Ellman´s reagent in 

microtitre plates as described previously (Dringen and Hamprecht 1996; Dringen et al. 1997).  

Staining for intracellular ROS 

To detect intracellular ROS in OLN-93 cells, rhodamine 123 staining was performed by a 

modification of a previously published method (Hoepken et al. 2004). The non-fluorescent 

dihydrorhodamin 123 is oxidized by intracellular ROS to the fluorescent rhodamine 123. 

After a given experimental incubation, OLN-93 cells were washed twice with 1 mL IB and 
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incubated for 60 min at 37°C with 0.5 mL IB containing 5 μg/mL dihydrorhodamine 123 and 

10 μM H33342. After washing twice with IB, the cells were fixed with 4% (w/v) 

paraformaldehyde in 0.1 M potassium phosphate buffer (pH 7.2) at room temperature. After 

washing the cells three times with PBS, they were analyzed for fluorescence.

Presentation of data 

The results are presented as means ± standard deviation of at least three experiments 

performed on three different passages of OLN-93 cells. Figures that show cell morphology 

and/or cell stainings are derived from a representative experiment that was reproduced at least 

twice with comparable results. Significance of differences between two sets of data was 

analyzed by the t-test and significance of differences between groups of data was analyzed by 

analysis of variance (ANOVA) followed by the Bonferroni post hoc test. p>0.05 was 

considered as not significant. 



Results – OLN-93 cells

167

Results

Iron accumulation from IONP by OLN-93 cells

To test for the consequences of a treatment with IONP, OLN-93 cells were exposed for up to 

8 h to IONP in various concentrations. Quantification of the cellular iron content revealed that 

the initial specific cellular iron content (7 ± 1 nmol/mg protein) remained unaltered, if the 

cells were incubated without IONP (Fig 1a). In contrast, exposure of cells to IONP caused a 

rapid and concentration-dependent increase of cellular iron levels. While the specific iron 

content of cells treated with 0.25 mM IONP increased almost linearly for up to 4 h and then 

remained almost constant at around 1000 nmol/mg protein, the cellular iron contents 

increased rapidly within 1 h after exposure to 1 mM and 4 mM IONP and increased slower 

within further 7 h to values of around 3000 nmol/mg protein and 4200 nmol/mg protein, 

respectively (Fig 1a). 

Consequences of IONP treatment on cell viability and morphology 

Despite of the high cellular iron contents of IONP-treated OLN-93 cells (Fig 1a), the cell 

viability appears not to be acutely compromized under these conditions as indicated by the 

absence of any significant increases in the extracellular activity of the cytosolic enzyme LDH 

(Fig 1b). This view was supported by PI staining that identifies cells with permeabilized 

membranes. Cultures incubated without or with 0.25 mM IONP hardly contained any PI-

positive cells (Fig 2a,e), despite of the presence of a large number of cells that was 

demonstrated by H33342 staining (Fig 2b,f). The number of PI-positive cells was also very 

low in cultures exposed for 8 h to 1 mM IONP (Fig 2i) and increased at best slightly for 

cultures that had been treated with 4 mM IONP (Fig 2m).  

Exposure of OLN-93 cells to IONP had severe consequences on the morphology of the cells. 

After 8 h incubation without IONP the cells had the typical bipolar shape of immature 

oligodendrocytes (Buckinx et al. 2009; Richter-Landsberg and Heinrich 1996) with elongated 

processes (Fig 3a). This morphology was not altered during incubation with 0.25 mM IONP 

(Fig 3c). In contrast, after incubation for 8 h in the presence of 1 mM or 4 mM IONP most 

cells had lost the initial bipolar shape and many cells contained bright intracellular vesicles 

(Fig 3e,g). The number and size of these vesicles were higher in cultures exposed to 4 mM 

IONP (Fig 3g) than in those treated with 1 mM IONP (Fig 3e).  
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Effects of IONP on the glutathione metabolism of OLN-93 cells

GSH is an important antioxidant that is present in millimolar concentrations in the cytosol of 

cells (Hirrlinger and Dringen 2010). To test whether exposure to IONP affects the GSH 

metabolism of OLN-93 cells, the cellular GSx content of IONP-treated cells was determined. 

In the absence of IONP, the specific GSx content was lowered during the first 2 h of 

incubation to 70% of the initial value, while additional incubation for up to 8 h decreased the 

specific GSx content at best slightly further to 60% of the initial content (Fig 1c). Exposure of 

OLN-93 cells to 0.25 mM IONP did not affect this alteration in the cellular GSx content, 

while incubation of OLN-93 cells with IONP in concentrations of 1 mM or 4 mM 

significantly lowered the specific cellular GSx contents compared to controls, reaching after 8 

h of incubation 42% and 32% of the initial values, respectively (Fig 1c, Tab 1). The decline in 

the cellular GSx contents during incubation without or with IONP was not accompanied by 

any significant increase in the cellular level of GSSG (Tab 1), which remained for all 

conditions investigated below 8% of the respective GSx content. In addition, the loss of 

cellular GSx was not accompanied by any increase in the extracellular contents of GSx or 

GSSG (Tab 1). In contrast, compared to controls, the amounts of GSx determined in the 

media after 8 h of incubation were significantly lowered in a concentration-dependent manner

by the presence of IONP (Tab 1). 

To elucidate whether inactivation of GSH synthesis is involved in the observed loss of 

cellular GSx, OLN-93 cells were incubated with the GSH synthesis inhibitor buthionine 

sulfoximine (BSO) in the presence or the absence of the amino acids glutamate, cystine and 

glycine and/or 4 mM IONP (Fig 4). Presence of BSO during the incubation significantly 

lowered the cellular GSx content of cells that were treated without IONP (from 61% to 32% 

of the initial values) or with 4 mM IONP (from 33% to 8% of the initial values). In contrast, 

presence of amino acids maintained the cellular GSx content at the initial level during 

incubation in the absence or presence of IONP, while application of BSO completely 

prevented the preserving effect of amino acids on the cellular GSx content (Fig 4).  

ROS production after exposure of OLN-93 cells to IONP 

OLN-93 cells accumulated very high amounts of iron during exposure to IONP (Fig 1a). To 

test whether the accumulated iron is redox active, we investigated whether iron-mediated 

ROS production occurs in IONP-treated cells. In control cells that had been incubated for 8 h 

in the absence of IONP at best little ROS production was observed as indicated by the weak 
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rhodamine 123 staining (Fig 5b). Exposure of OLN-93 cells to 0.25 mM IONP did not 

increase this level of ROS production (Fig 5d), while many rhodamine 123-positive cells were 

present in cultures that had been exposed to 1 mM or 4 mM IONP (Fig 5f,h). In contrast to a 

treatment with IONP, a lowering of the cellular GSH content of OLN-93 cells by BSO did not 

cause any increase in the number of ROS-positive cells (data not shown). 

Effects of iron chelators on the ROS production and on the GSH content of IONP-treated 

OLN-93 cells

To test whether the observed ROS formation in IONP-treated OLN-93 cells was an iron-

dependent process, cells were coincubated with 4 mM IONP plus the membrane-permeable 

ferrous iron chelator 1,10-phenanthroline (Richardson and Baker 1994) or its non-chelating 

structural isomer 4,7-phenanthroline. Neither 1,10-phenathroline nor its isomer compromized 

cell viability as indicated by the absence of any significant increases in the extracellular LDH 

activity (Tab 2). Coincubation of OLN-93 cells with IONP plus 1,10-phenanthroline almost 

completely prevented the formation of ROS in IONP-treated cells (Fig 5j), while the non-

chelating isomer 4,7-phenanthroline was unable to prevent ROS formation (Fig 5l). In 

contrast, presence of 1,10-phenanthroline (or its non-chelating isomer) did not prevent the 

other consequences of a treatment of OLN-93 cells with 4 mM IONP, such as the alteration in 

morphology (Fig 5i,k), the appearance of intracellular vesicles (Fig 5i,k) or the decline in the 

specific cellular GSx content (Tab 2). 

Investigation of delayed consequences of an IONP treatment on OLN-93 cells 

Treatment of OLN-93 cells with IONP caused an alteration of cell morphology, a strong 

accumulation of iron by the cells and a decline in cellular GSx (Figs 1 and 3). To test whether 

these consequences of a treatment of OLN-93 cells with IONP are maintained or reversible, 

the extracellular IONP were removed after a 8 h exposure and the cells were subsequently 

incubated in culture medium for further 16 h (recovery phase). The altered morphology of

cells observed after incubation with 1 mM or 4 mM IONP (Fig 3e,g) remained during the 

recovery phase and the initial bipolar shape was not reestablished (Fig 3f,h), but the large 

bright intracellular vesicles that were observed after 8 h exposure to 4 mM IONP (Fig 3g) 

were hardly detectable anymore after 16 h recovery (Fig 3h). During the 16 h recovery phase, 

no increases in the extracellular LDH activity were observed for IONP-treated OLN-93 cells 

(data not shown), although the number of PI-positive cells was increased at least for cultures 

that had been exposed to 4 mM IONP (Fig 2o). In contrast, no increase in the number of PI-
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positive cells was observed for cells after 16 h recovery following the treatment with 0.25 

mM or 1 mM IONP (Fig 2g,k). The iron content of OLN-93 cells that had been pre-incubated 

for 8 h with IONP in various concentrations, was not lowered during the 16 h recovery phase 

(Fig 6a), while the cells had fully restored their initial cellular GSx content under these 

conditions (Fig 6b). 
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Fig 1 Effects of an IONP treatment of OLN-93 cells on the cellular iron content 
(a), the extracellular LDH activity (b) and the cellular GSx content (c). The cells 
were incubated without (0 mM) or with 0.25 mM, 1 mM or 4 mM IONP for up to 
8 hours. The 100% GSx content corresponds to 47.0 ± 6.5 nmol/mg protein. The 
levels of significance of differences to controls (0 mM IONP) are indicated by 
*p<0.05, **p<0.01 and ***p<0.001. 
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Fig 2 Membrane integrity of OLN-93 cells after exposure to IONP. The cells were 
stained with PI to identify cells with compromized membrane integrity and with 
H33342 to visualize the cell nuclei of all cells present. The cells were incubated 
for 8 h without (a-d) or with 0.25 mM (e-h), 1 mM (i-l) or 4 mM (m-p) IONP. 
Some cultures were directly analyzed (8 h incubation), while others were 
subsequently incubated for additional 16 h (recovery) in culture medium without 
IONP (16 h recovery). The size bar in (a) applies to all panels. 
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Fig 3 Cell morphology of OLN-93 cells after exposure to IONP. The cells were 
incubated for 8 h without (a,b) or with 0.25 mM (c,d), 1 mM (e,f) or 4 mM (g,h) 
IONP. Some cultures were directly analyzed for their morphology (8 h incubation; 
a,c,e,g), while others were subsequently incubated for additional 16 h in culture 
medium without IONP (16 h recovery; b,d,f,h). The size bar in (a) applies to all 
panels.
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Fig 4 Effects of IONP, BSO and amino acids on the GSx content of OLN-93 
cells. The cells were incubated for 8 h without (control) or with 4 mM IONP in 
the absence or the presence of BSO (0.1 mM) and/or amino acids (AA; 1 mM 
glutamate, 1 mM glycine and 0.1 mM cystine). The initial cellular GSx and 
protein contents were 52.5 ± 1.9 nmol/mg protein and 73 ± 24 μg/well, 
respectively. The levels of significance between cells that had been treated 
without and with IONP are indicated by #p<0.05 and ##p<0.01. 
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Fig 5 Rhodamine 123 staining for ROS in OLN-93 cells. The cells were incubated 
for 8 h without (a,b) or with 0.25 mM (c,d), 1 mM (e,f) or 4 mM IONP (g,h). 
Alternatively, cells were coincubated with 4 mM IONP plus either 100 μM 1,10-
phenanthroline (1,10-Phen) (i,j) or 100 μM 4,7-phenanthroline (4,7-Phen) (k,l). 
The size bar in (b) applies to all panels. 
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Fig 6 Effects of a recovery phase on the specific cellular iron (a) and GSx (b) 
contents of IONP-treated OLN-93 cells. The cells were incubated for 8 h with 
IONP in the indicated concentrations. Some cultures were directly analyzed after 
8 h of incubation (white bars), while others were subsequently incubated for 
additional 16 h (recovery) in culture medium without IONP (black bars). The 
100% GSx content corresponds to 57.6 ± 3.4 nmol/mg protein. The significance 
of differences between the values obtained for cells after exposure for 8 h to IONP 
and for cells after the 16 h recovery phase are indicated by ##p<0.01 and 
###p<0.001. 
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Tab 1 Cellular and extracellular GSx and GSSG contents of OLN-93 cells before and 
after exposure to IONP for 8 h.  

OLN-93 cells were incubated for 8 h in the absence or the presence of IONP in the 
indicated concentrations. The levels of significance of differences compared to the control 
values (0 mM IONP) are indicated with **p<0.01 and ***p<0.001. (n.d., not detectable). 

0 h 8 h incubation with IONP 

(initial) 0 mM 0.25 mM 1 mM 4 mM

Cells

GSx

(nmol/mg) 47.0 ± 6.5*** 31.5 ± 5.6 31.0 ± 5.4 20.5 ± 3.6** 16.3 ± 2.3** 

(nmol/well) 2.8 ± 0.5*** 1.9 ± 0.3 1.8 ± 0.4 1.2 ± 0.2** 1.0 ± 0.2*** 

GSSG

(nmol GSx/mg) 1.69 ± 0.28 0.86 ± 0.56 1.14 ± 0.24 0.88 ± 1.20 1.19 ± 0.05 

(nmol GSx/well) 0.01 ± 0.01 0.05 ± 0.04 0.07 ± 0.01 0.06 ± 0.08 0.07 ± 0.01 

Media

GSx

(nmol/well) n.d. 0.5 ± 0.1 0.3 ± 0.1*** 0.2 ± 0.1*** n.d.

GSSG

(nmol GSx/well) n.d. n.d. n.d. n.d. n.d.
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Tab 2 Effects of phenanthrolines on the viability and the GSx content of 
IONP-treated OLN-93 cells.

Compound  Extracellular LDH activity

(% initial cellular LDH activity)

Cellular GSx content

(nmol/mg protein)

None (1% DMSO) 0.1 ± 0.2 16.5 ± 1.1 

1,10-phenanthroline 0.5 ± 0.9 16.3 ± 1.5 

4,7-phenanthroline 0.7 ± 1.2 20.6 ± 0.8 

OLN-93 cells were incubated with 4 mM IONP for 8 h in the absence (none) or in 
the presence of the iron chelator 1,10-phenanthroline or its non-chelating 
structural isomer 4,7-phenanthroline. DMSO was used as solvent for the
phenanthrolines in a final concentration of 1%. The initial cellular GSx and 
protein contents were 52.6 ± 5.8 nmol/mg protein and 58 ± 9 μg/well, 
respectively. The values obtained for phenanthroline-treated cells did not differ 
significantly from those of control cells (none). 
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Discussion

OLN-93 cells efficiently accumulated iron after exposure to DMSA-coated IONP, confirming 

the reported potential of oligodendroglial cells to accumulate nanosized iron oxide particles 

such as citrate-coated IONP (Hohnholt et al. 2010a), magnetite nanoparticles (Busch et al. 

2011) or magnetodendrimers (Bulte et al. 2001). The amount of iron accumulated by the cells 

during exposure to IONP were not lowered during a 16 h recovery phase in IONP-free 

medium, demonstrating that OLN-93 cells under the conditions used do not release IONP or 

IONP-derived iron. Despite of the very strong increase in the specific cellular iron content, 

the exposure of OLN-93 cells to IONP was not acutely toxic and did also not severely 

compromize cell viability during a subsequent recovery phase in IONP-free medium, 

demonstrating that these cells are remarkably resistant towards a potential toxicity of IONP. 

This resistance may be a general property of glial cells, since also cultured brain astrocytes 

are not acutely damaged by high concentrations of IONP (Ding et al. 2010; Geppert et al. 

2009; Geppert et al. 2011; Hohnholt et al. 2010b; Pickard and Chari 2010). Nevertheless, 

accumulation of IONP caused severe alterations in cell morphology, lowered the cellular GSH 

content and accelerated the generation of ROS in OLN-93 cells. 

The bipolar morphology of OLN-93 cells (Buckinx et al. 2009; Richter-Landsberg and 

Heinrich 1996) with elongated processes disappeared after exposure to millimolar 

concentrations of IONP and large bright vesicles appeared in the cytosol of IONP-treated 

cells. This may be a consequence of endocytotic uptake of the nanoparticles into the cells 

(Busch et al. 2011) and subsequent fusion of smaller vesicles with each other to larger 

vesicles as previously shown by the increased appearance of Lysotracker red dye-stained 

vesicles for A549 human lung epithelial cells after exposure to IONP in combination with 

carbon black nanoparticles (Berg et al. 2010). Also an alteration of the cytoskeleton, as 

recently described for primary human endothelial cells after exposure to IONP (Soenen et al. 

2010), could be involved in the observed alteration in cell morphology of IONP-treated OLN-

93 cells. However, during a 16 h recovery, the vesicles observed in IONP-treated OLN-93 

cells disappeared, suggesting that at least the observed vesicle formation is a reversible 

process.

Incubation of OLN-93 cells in amino acid-free medium without IONP caused a moderate loss 

in the cellular GSx level that was accelerated by IONP in millimolar concentrations. Under all 

these conditions the contribution of GSSG to the GSx values determined remained very low. 

Thus, loss of cellular GSx reflects exclusively loss of cellular GSH. The low rate of GSH 
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export observed for control OLN-93 cells is similar to values observed for secondary 

oligodendrocyte cultures (Hirrlinger et al. 2002b), while the accelerated loss of cellular GSH 

from OLN-93 cells in presence of IONP is consistent with GSH loss reported for a human 

lung fibroblast cell line after treatment with hematite (Radu et al. 2010).  

The disappearance of cellular GSH during incubation of OLN-93 cells without or with IONP 

was completely prevented by the presence of amino acids that provide the cellular substrates 

for GSH synthesis. This demonstrates that presence of IONP, in contrast to the GSH synthesis 

inhibitor BSO, does not inhibit GSH synthesis in OLN-93 cells and that the observed loss of 

cellular GSH was fully compensated by GSH synthesis in the presence of amino acid 

precursors. 

Presence of IONP lowered also the amount of detectable GSH in the medium. Since the 

DMSA-coating of the IONP used contain disulfide bridges (Fauconnier et al. 1997; Valois et 

al. 2010), the formation of mixed disulfides between the DMSA-coat and GSH could 

contribute to the observed loss of detectable GSH from the medium. Indeed, results from 

preliminary cell-independent experiments demonstrate that GSH but not GSSG can react with 

DMSA-coated IONP (data not shown), suggesting that at least the lowered amounts of 

extracellular GSH found in the presence of IONP could be a consequence of a reaction 

between the coat of the nanoparticles and GSH. Whether such a reaction may also contribute 

to the observed cellular loss of GSH from IONP-treated OLN-93 cells remains to be 

elucidated.

Iron-mediated oxidative stress has to be considered as potential negative consequence of a 

treatment of cells with IONP (Nel et al. 2006). Indeed, as recently reported for other cell types 

(Apopa et al. 2009; Buyukhatipoglu and Clyne 2011; Soenen et al. 2011), also IONP-exposed 

OLN-93 cells showed accelerated formation of ROS as demonstrated by the concentration-

dependent increase in the staining intensity for rhodamine 123. This ROS-formation depends 

on the presence of low molecular weight iron, since it was almost completely prevented by 

the ferrous iron chelator 1,10-phenanthroline, but was not affected by its non-chelating 

structural isomer. The inhibition of ROS formation by 1,10-phenanthroline demonstrates that 

OLN-93 cells are able to generate chelatable low molecular weight iron from IONP. 

Detection of increased ROS formation can be a consequence of accelerated ROS production 

and/or of a decreased antioxidative defense. Since the amounts of detectable ROS were not 

lowered in IONP-treated OLN-93 cells that maintained the GSH level in the presence of 

amino acids (data not shown), a lowered antioxidative defense in cells partially deprived of 
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GSH appears not to accelerate ROS production. Despite of the detection of ROS in IONP-

treated OLN-93 cells, the cells appear not to suffer from a severe oxidative stress. At least the 

viability of the cells was not acutely compromized in IONP-treated cells and the GSSG levels 

remained very low and were not increased as expected for cells that do not suffer from 

oxidative stress (Hirrlinger and Dringen 2010; Lewinski et al. 2008). 

In summary, the accumulation of large amounts of iron in IONP-treated OLN-93 cells is not 

acutely toxic but leads to changes in cell morphology, to an increase in iron-catalyzed cellular 

ROS production and to a decrease in the specific cellular GSH content. Most of the effects 

observed for IONP-treated cells disappeared during a recovery phase. Thus, OLN-93 cell 

appear to cope quite well with even a 600fold increased cellular iron content, if the iron had 

been applied as IONP. These observations demonstrate that DMSA-coated IONP are even in 

high concentrations biocompatible with oligodendroglial cells, suggesting that also 

oligodendroglial cells in brain have the potential to deal with IONP that are applied for 

neurobiological and medical reasons.  
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2.2. Consequences of an exposure of cultured astrocytes to 
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2.2.2. Publication 5

Geppert M, Hohnholt M, Gaetjen L, Grunwald I, 

Bäumer M, Dringen R 

(2009)

Accumulation of iron oxide nanoparticles by cultured brain astrocytes.

J Biomed Nanotechnol 5:285-293

Contribution of Michaela C. Hohnholt: 

� Performance of the Perls´ staining and preparation of Fig. 5. 

� Coordination of sample preparation for electron microscopy of cell samples. 

Mark Geppert synthesized the iron oxide nanoparticles and obtained the data shown in Figs. 

1-4, Fig. 6 and Table 1. 

Linda Gaetjen performed the sample preparation and staining of cell samples for electron 

microscopy (Fig. 4). 
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2.2.3. Publication 6

Geppert M, Hohnholt MC, Thiel K, Nürnberger S, Grunwald I, Rezwan K, 

Dringen R 

(2011) 

Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by 

cultured brain astrocytes. 

Nanotechnology 22:145101-145111

Contribution of Michaela C. Hohnholt: 

� Performance of the Perls´ staining and of Fig. 4. 

� Coordination of sample preparation for electron microscopy of cell samples. 

Mark Geppert synthesized the iron oxide nanoparticles and obtained the data shown in Figs. 

2, 3, 5, 6 and Table 1. 

Karsten Thiel performed electron microscopy and energy dispersive x-ray analysis of iron 

oxide nanoparticles (Fig. 1). 

Sylvia Nürnberger performed the sample preparation for electron microscopy and designed

Figs. 5 and 6. 
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3. Discussion 

Iron is an important trace metal for mammals due to its involvement in essential processes 

such as the transport of oxygen (Jensen 2009) and the catalysis of redox reactions (Babcock 

1999, Rouault and Tong 2008). However, since ferrous iron is redox active and can catalyze 

the formation of ROS (Halliwell and Gutteridge 2007, Kell 2009), iron metabolism has to be 

tightly regulated on the cellular level. In addition to physiological iron sources, the 

consequences of an exposure to Fe-NP have to be considered for the brain, since Fe-NP have 

a promising potential for neurological applications such as magnetic resonance imaging of the 

brain and drug delivery to the brain (Laurent et al. 2008, Weinstein et al. 2010, Yang 2010). 

Therefore, the knowledge about uptake and fate of Fe-NP in brain cells is important for 

further neurobiological applications in order to allow successful treatment but to avoid toxic 

consequences (Nel et al. 2006, Lewinski et al. 2008, Oberdörster 2010). 

In the brain, oligodendrocytes form and maintain the myelin sheaths around axons of neurons 

(chapter 1.1.1.; Miron et al. 2011). To fulfill these functions, oligodendrocytes are considered 

to have a high metabolic activity (Piñero and Connor 2000) and hence an increased need for 

iron, since this metal is essential for a number of metabolic pathways which are involved in 

myelin production (Connor and Menzies 1996, McTigue and Tripathi 2008). In contrast to 

oligodendrocytes, brain astrocytes have important functions in brain metabolism and 

homeostasis (Kimelberg 2010, Sofroniew and Vinters 2010). Due to the localization of 

astrocytes in the brain and the coverage of the brain capillaries by astrocytic endfeet, 

astrocytes have been suggested to be especially important for the GSH-mediated 

detoxification of xenobiotics (Dringen 2000, Ballatori et al. 2009) and for distribution of 

metals in the brain (Tiffany-Castiglioni and Qian 2001, Dringen et al. 2007).

In this thesis the metabolism of iron and Fe-NP in brain cells was investigated, using the 

oligodendroglial OLN-93 cell line and astrocyte-rich primary cultures as model systems for 

oligodendrocytes and astrocytes, respectively. The consequences of an exposure to low 

molecular weight iron and Fe-NP were studied for OLN-93 cells. In addition, the expression 

of proteins involved in iron metabolism was investigated to gain knowledge on the potential 

of OLN-93 cells to take up, store and export iron. Furthermore, the consequences of Fe-NP 

exposure on cell viability and iron contents of astrocyte-rich primary cultures were examined.
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3.1. Iron metabolism of OLN-93 cells

In this thesis new information on the expression of the mRNAs of proteins involved in iron 

metabolism, on accumulation of iron from low molecular weight iron salts and on the 

consequences of iron accumulation on cell viability and ferritin upregulation were obtained 

for OLN-93 cells. Figure 1 gives an overview about the current knowledge on the iron 

metabolism in OLN-93 cells, and includes the results obtained in this thesis. OLN-93 cells 

possess basal mechanisms for the uptake of protein-bound and non-protein-bound iron 

(chapters 2.1.1. and 2.1.2.). Although the transporters involved in the iron accumulation 

remain to be elucidated, iron uptake from low molecular weight iron in serum-containing 

incubation medium is very likely mediated by the Tf/TfR system since OLN-93 express the 

mRNAs of Tf (chapter 2.1.1.) and TfR (chapter 2.1.1.; Brand et al. 2008). Tf is present in

serum and is able to bind ferric iron from iron salts due to its very high iron binding affinity 

(Moos and Morgan 2000, Munoz et al. 2009). Extracellularly applied ferrous iron from 

ferrous ammonium sulfate and FeCl2 is quickly oxidized to ferric iron in the physiological 

medium (Schröder et al. 2003, Tulpule et al. 2010) and might therefore also be taken up after 

binding of ferric iron to Tf. Intracellularly, iron is released from Tf in the lysosomes and can 

become part of the labile iron pool for cellular metabolism (Figure 1; Moos and Morgan 

2000). In addition to Tf, the metal-binding protein albumin is present in serum (Kasvosve and 

Delanghe 2002) and can bind excess of iron. Whether albumin-bound iron is taken up by 

OLN-93 cells remains to be elucidated.

As an alternative to protein-bound iron, iron could be taken up by a transporter for low 

molecular weight iron. The uptake of ferric iron (chapter 2.1.1.) could be mediated by a

trivalent cation-specific transport mechanism or the �3-integrin/mobilferrin pathway (Attieh et 

al. 1999, Conrad et al. 2000). Ferric iron could also be reduced by extracellular reductases 

that have been reported to be expressed at least in astrocytes (Jeong and David 2003, Dringen

et al. 2007, Tulpule et al. 2010), and subsequently be taken up as ferrous iron by DMT1 as 

this transporter is also expressed by OLN-93 cells (chapter 2.1.1.; Brand et al. 2008). 

In addition to protein-bound iron and low molecular weight iron, OLN-93 cells are also able 

to accumulate iron from Fe-NP (chapter 2.1.). Fe-NP are very likely to be taken up by OLN-

93 cells into lysosomes as this has been reported previously for other types of nanoparticles 

(Busch et al. 2011). Since release of iron from Fe-NP has been suggested to take place in the 
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lysosomes (Arbab et al. 2005, Huang et al. 2009, Levy et al. 2010, Soenen et al. 2010a), iron 

mobilization from Fe-NP in OLN-93 cells is likely to take place in these organelles.

Figure 1: Iron metabolism of OLN-93 cells. The presence of mRNA of proteins 
involved in iron metabolism is considered as indicator for the presence of the 
respective protein (red: knowledge confirmed in the present thesis; black: 
knowledge from the current literature; blue: presence of proteins or pathways 
assumed). Abbreviations: DMT1, divalent metal transporter 1; FAC, ferric 
ammonium citrate; FAS, ferric ammonium sulfate, Fe-NP, iron oxide 
nanoparticles; G-Cp, glycosylphosphatidylinositol-anchored ceruloplasmin; ROS, 
reactive oxygen species; Tf, transferrin; TfR, transferrin receptor; ?,
transporter/transport mechanism has not yet been shown for OLN-93 cells.

The uptake of Fe-NP by oligodendroglial cells might be mediated by a similar mechanism as 

the uptake of ferritin by these cells (Todorich et al. 2009, Todorich et al. 2011). Ferritin is 

composed of an iron oxide core surrounded by protein chains (Arosio et al. 2009). Similarly, 
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Fe-NP are likely to be coated by serum proteins in serum-containing medium, suggesting that

protein-coated Fe-NP resemble ferritin for OLN-93 cells.

It is currently not clear, whether OLN-93 cells are able to export iron. Although the presence 

of the iron exporter ferroportin in oligodendrocytes in vivo has been shown (Burdo et al.

2001, Wu et al. 2004, Wang et al. 2007), the mRNA of ferroportin has not been detected in 

OLN-93 cells in the present thesis (chapter 2.1.1.). Nevertheless, preliminary experiments 

suggest that OLN-93 cells are able to release iron after preloading with FAC (data not 

shown), but whether this is a transporter-mediated export has to be further investigated. 

Moreover, OLN-93 cells have the mRNA of the ferroxidase G-Cp (chapter 2.1.1.), although

oligodendrocytes in vivo express neither soluble Cp nor G-Cp (Mollgard et al. 1988). The 

activity of this ferroxidase is crucial for iron export by ferroportin, at least for astrocytes 

(Jeong and David 2003). Therefore, the function of the G-Cp protein in the absence of 

ferroportin in OLN-93 cells remains to be elucidated. 

The present thesis describes for the first time the iron-dependency of OLN-93 cell 

proliferation. As shown in detail in chapter 2.1.2., the iron content of standard culture medium 

with 10% FCS offers a sufficient amount of iron, since the proliferation of OLN-93 cells was 

not accelerated by supplementation with additional iron. Therefore, the Tf-mediated pathway 

of iron uptake appears to be sufficient for optimal proliferation of these cells. Although the 

culture medium contains enough iron for proliferation, this process depends on the 

extracellular availability of iron. The decrease of available iron by iron chelators inhibits the 

proliferation of OLN-93 cells in a time- and concentration-dependent manner as demonstrated 

by the absence of any increase in cell density, cellular protein content and also the cellular 

LDH activity in the presence of the iron chelator DFX (chapter 2.1.2.). The inhibition of cell 

proliferation by the iron chelator was bypassed by an excess of extracellularly applied iron

(chapter 2.1.2.), demonstrating that the DFX-mediated inhibition of proliferation was indeed 

an iron-dependent effect. Interestingly, the inhibition of proliferation was also partially 

prevented by coincubation with Fe-NP (chapter 2.1.3.) suggesting that OLN-93 cells are able 

to mobilize iron from Fe-NP to support proliferation. 

3.2. Iron accumulation from different iron sources in OLN-93 cells

The ability of OLN-93 cells to accumulate iron from different low molecular weight iron salts 

and from Fe-NP was shown for the first time in the present thesis (chapter 2.1.). Table 1 

compares the cellular iron contents of OLN-93 cells after exposure to FAC and Fe-NP. Within 
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48 h, these cells accumulated 3 to 4 times more iron after exposure to 300 μM citrate- or 

DMSA-coated Fe-NP as compared to a treatment with 300 μM iron as FAC (Table 1). Iron 

accumulation from Fe-NP is most likely due to the uptake of intact particles, since OLN-93 

cells have been shown to take up nanoparticles (Busch et al. 2011) and the iron chelator DFX 

does not prevent the uptake of Fe-NP (chapters 2.1.1. to 2.1.3.). As a consequence of the high 

number of iron atoms contained in one particle of Fe-NP, the iron content of OLN-93 cells 

exposed to Fe-NP is likely to increase strongly, even if the number of individual uptake 

processes is much lower for Fe-NP than for low molecular weight iron complexes or Tf-

bound iron. Higher iron accumulation from Fe-NP than from FAC was also found for 

astrocytes (chapter 2.2.1.) and was correlated with the intracellular presence of Fe-NP in these 

cells by electron microscopy (chapter 2.2.).

Table 1: Iron content of OLN-93 cells after exposure to FAC or Fe-NP. 

Iron source Iron content 

(nmol/mg protein)

Significance of  
differences

Data from chapter

FAC 54 ± 9 2.1.2.

Citrate-coated Fe-NP 159 ± 34 ** 2.1.2.

DMSA-coated Fe-NP 212 ± 30 *** 2.1.3.

The cellular iron contents of OLN-93 cells were determined after 48 h exposure to 
300 μM iron in form of the indicated iron sources in serum-containing incubation 
medium. Statistical analysis of significance of differences of data to those of the 
FAC-treated cells were analyzed by ANOVA followed by Bonferroni post hoc test 
(**p<0.01 and ***p<0.001).   

The accumulation of iron in the presence of serum from 300 μM citrate- and DMSA-coated 

Fe-NP by OLN-93 cells did not differ significantly between the two different coatings (Table 

1). Differences in the uptake of iron from Fe-NP due to different coatings have been reported 

(Villanueva et al. 2009, Soenen et al. 2010b). However, serum proteins that bind to the 

surface of Fe-NP (Mu et al. 2009, Nel et al. 2009, Wiogo et al. 2011) are able to mask these 

coating-dependent differences in the iron uptake from Fe-NP (Chen et al. 2009). Both, citrate 

and DMSA contain negatively charged carboxylate groups at physiological pH which form a 

negatively charged coating as shown at least for DMSA-coated Fe-NP in the absence of 

serum by a negative zeta-potential (chapter 2.2.3.). Thus, citrate- and DMSA-coated Fe-NP 

are likely to have a similar surface charge in the physiological medium which will interact 
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with medium components and with the cell surface. Investigation of the hydrodynamic 

particle diameter of DMSA-coated Fe-NP revealed a two-fold increase of the particle 

diameter in the presence of serum compared to the absence of serum in incubation buffer 

(Mark Geppert, personal communication). This observation suggests that medium or serum 

components interact with the coating of Fe-NP or the surface of Fe-NP. Cations present in the 

culture medium may electrostatically attach to the negatively charged coating of Fe-NP 

thereby forming a positively charged layer. To this layer of cations, proteins could 

subsequently bind, for example albumin which is negatively charged at physiological pH as 

shown for bovine serum albumin at a pH of 7 (Rezwan et al. 2004). Therefore, electrostatic 

interactions of medium components and proteins with the surface of Fe-NP could result in a 

very similar surface for Fe-NP with different coatings in the physiological medium.  

The iron accumulation from Fe-NP by OLN-93 cells was also studied in the absence and

presence of serum (chapters 2.1.2. and 2.1.3.). During an exposure to 1000 μM DMSA-coated 

Fe-NP  in the absence of serum about three times higher iron levels were accumulated by the 

cells (8 h; 2829 ± 517 nmol/mg protein; chapter 2.1.4.) compared to an incubation in the 

presence of serum (48 h; 957 ± 179 nmol/mg protein; chapter 2.1.3.). This indicates that the 

presence of serum does indeed strongly influence the accumulation of Fe-NP as also observed 

for the accumulation of Fe-NP by astrocytes (Mark Geppert, personal communication) and 

human cervix carcinoma cells (Petri-Fink and Hofmann 2007) and of polystyrene 

nanoparticles by macrophages (Lunov et al. 2011). 

The iron accumulation by astrocytes was also investigated in serum-free incubation medium. 

Astrocytes accumulated almost identical amounts of iron from citrate- and DMSA-coated Fe-

NP with about 1000 nmol/mg protein from 500 μM Fe-NP and about 2000 nmol/mg protein 

from 1000 μM Fe-NP after exposure for 6 h in serum-free incubation medium (chapters 2.2.1. 

and 2.2.3.). Moreover, the iron accumulation rates of astrocytes were also in a comparable 

range (chapters 2.2.1. and 2.2.3.). Thus, the small molecules used to coat Fe-NP seem to have 

only a minor influence on the amounts of iron accumulated under the conditions used in this 

thesis.

3.3. Mobilization of iron from iron oxide nanoparticles by OLN-93 

cells  

The present thesis describes for the first time the consequences of an exposure of OLN-93 

cells to Fe-NP. Table 2 lists various parameters that were investigated after exposure of OLN-
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93 cells to DMSA-coated Fe-NP in incubation buffer (IB) or incubation medium containing 

serum (DMEM with 10% FCS). In both incubation conditions, OLN-93 cells accumulated 

substantial amounts of iron, whereas no increase in ROS was observed and the cell viability 

was not compromised after exposure to 300 μM Fe-NP in DMEM with 10% FCS or 250 μM 

Fe-NP in IB (Table 2). Effects on the other parameters investigated, such as protein content 

and cellular GSH content differed between these incubation conditions, suggesting that the 

observed effects depend on the incubation conditions. For example, medium components such 

as amino acids alter the metabolism of OLN-93 cells. In the absence of amino acids in 

incubation buffer the cellular GSH content of control OLN-93 cells decreased within 8 h of 

incubation (chapter 2.1.4.), whereas the cellular GSH content remains constant in culture 

medium containing amino acids for up to 48 h (data not shown). Furthermore, in a 16 h

recovery incubation in the presence of amino acids OLN-93 cells restored the lowered cellular 

GSH content caused by an incubation in the absence of amino acids (chapter 2.1.4.).  

Table 2: Consequences of DMSA-coated Fe-NP on OLN-93 cells.

Parameter 
investigated

DMEM + 10% FCS

(300 μM; 48 h) 

IB

(250 μM; 8 h) 

IB

(4000 μM; 8 h) 

Iron content + 210 fold + 170 fold + 260 fold

Ferritin content + 4 fold n.i. n.i.

Protein content - 11% ± 0# ± 0#

Number of nuclei - 9% n.i. n.i.

Extracellular LDH ± 0 ± 0 ± 0

PI-positive cells ± 0 ± 0 �

MTT reduction - 16% n.i. n.i.

ROS ± 0 ± 0 �

GSH content - 8% - 37% - 37%

Data from chapter 2.1.3. 2.1.4. 2.1.4.

n.i., not investigated; ± 0, parameter not altered; #, data not shown in chapter; �	�
number of positive cells increased. 

Although different consequences of Fe-NP on OLN-93 cell metabolism were observed, all 

effects were minor such as the decreased MTT reduction capacity (chapter 2.1.3.) or 

reversible such as the decrease in cellular GSH content of cells exposed to Fe-NP in 

incubation buffer (chapter 2.1.4.). Fe-NP have been reported to affect cellular signaling 
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pathways (Soenen et al. 2010b) and microtubule-remodeling (Apopa et al. 2009). Such 

processes might account for the observed alteration of cellular morphology of these cells 

(chapters 2.1.3. and 2.1.4.), but do not seem to strongly influence the parameters investigated 

for Fe-NP-treated OLN-93 cells. Therefore, OLN-93 cells seem to be remarkably resistant 

against potential negative consequences of Fe-NP. This supports literature data for 

oligodendrocyte progenitor cells labeled with Fe-NP which were transplanted into the brain of 

experimental animals. These cells survived, migrated and were detected by MRI after several 

weeks (Bulte et al. 2001).

Iron that has been taken up by OLN-93 cells is used for cellular metabolism as shown by three 

different approaches: the increase of OLN-93 cell proliferation following iron restriction

(chapter 2.1.3.), the upregulation of ferritin (chapter 2.1.3.) and the inhibition of Fe-NP-

dependent ROS formation by the iron chelator 1,10-phenanthroline (chapter 2.1.4.). The 

proliferation of OLN-93 cells depends on the availability of iron and can be inhibited by iron 

chelators such as DFX (chapter 2.1.2.). This chelator makes the extracellular iron unavailable 

for cell proliferation, since it is likely to chelate transferrin-bound iron and low molecular 

weight iron in the medium. The iron chelator-inhibited proliferation of OLN-93 cells was 

partially bypassed by the presence of Fe-NP, demonstrating that OLN-93 cells are able to use 

iron derived from these Fe-NP for the proliferation. The release of iron from Fe-NP is further 

supported by the observed protein synthesis-dependent upregulation of the iron storage 

protein ferritin, because the ferritin synthesis is induced by increased availability of low 

molecular weight iron in the cytosol (Arosio et al. 2009). 

Fe-NP uptake is very likely mediated by an endocytotic uptake of the particles as was recently 

demonstrated for other types of nanoparticles (Busch et al. 2011). The low pH of the 

lysosomal compartment has been suggested to help mobilizing ferric iron from Fe-NP 

(Weissleder et al. 1995, Arbab et al. 2005, Huang et al. 2009, Levy et al. 2010, Soenen et al.

2010a) that might be subsequently reduced to ferrous iron in the lysosomal compartment

(Levy et al. 2010) for example by a reductase as suggested for reticulocytes (Garrick and 

Garrick 2009) or by ascorbate that might be present in this compartment. Ferrous iron could 

then be transported from the lysosomal/endosomal compartment into the cytosol by DMT1, 

which is expressed by OLN-93 cells (chapter 2.1.1.; Brand et al. 2008), as it is known for the 

Tf/TfR-mediated uptake of iron (Figure 1; Moos and Morgan 2000). Finally, after reaching 

the cytosol, iron is available for incorporation into proteins for the cellular metabolism, 

proliferation and also for the storage in ferritin. 
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The increased staining for ROS after exposure of OLN-93 cells to 4000 μM Fe-NP for 8 h 

(chapter 2.1.4.) serves as a further evidence for the iron mobilization from Fe-NP. Since this 

increase in ROS generation was completely prevented by the iron chelator 1,10-

phenanthroline, but not by the non-chelating structural isomer 4,7-phenanthroline, it is very 

likely mediated by low molecular weight iron derived from the Fe-NP, further supporting the 

view that OLN-93 cells are able to mobilize iron from Fe-NP.

3.4. Comparison of the consequences of a treatment with iron oxide 

nanoparticles on OLN-93 cells and astrocytes

In this thesis, the two glial cell types oligodendrocytes and astrocytes have been investigated 

with respect to their ability to accumulate iron from Fe-NP. Interestingly, OLN-93 cells and 

astrocyte-rich primary cultures accumulated similar amounts of 2829 ± 517 nmol/mg protein 

(chapter 2.1.4.) and 2151 ± 198 nmol/mg protein iron (chapter 2.2.3.) from 1000 μM DMSA-

coated Fe-NP after exposure for 6 h under identical incubation conditions, respectively. This 

contradicts literature data that different cell types accumulated different amounts of Fe-NP 

(Mailänder and Landfester 2009, Soenen et al. 2010a). However, the uptake of comparable 

amounts of polystyrene nanoparticles has also been reported for primary human macrophages 

and a human leukemia cell line in the absence of serum (Lunov et al. 2011). Furthermore, the 

accumulation of iron from DMSA-coated Fe-NP was not saturable for OLN-93 cells (chapter 

2.1.4.) and also not for astrocytes in concentrations of up to 1 mM iron (chapter 2.2.3.). Thus, 

these two glial cell types seem to accumulate iron from Fe-NP in a very similar manner, 

suggesting that the mechanisms involved in uptake of Fe-NP might be identical for 

oligodendrocytes and astrocytes.  

Also in other aspects, OLN-93 cells and astrocytes reacted quite similar to an exposure with 

Fe-NP. 1) Increased formation of ROS was observed after exposure to 4000 μM DMSA-

coated Fe-NP in serum-free incubation buffer within 8 h for OLN-93 cells (chapter 2.1.4.) and 

in a preliminary experiment within 4 h for astrocytes (data not shown). 2) The upregulation of 

the iron storage protein ferritin was observed for OLN-93 cells (chapter 2.1.1.) and astrocytes 

(data not shown) after exposure to 1000 μM Fe-NP for 4 h and subsequently 20 h in the 

absence of Fe-NP. 3) The viability of OLN-93 cells and astrocytes was not compromised 

within 6 h of incubation with 4000 and 1000 μM DMSA-coated Fe-NP, respectively, in

serum-free incubation buffer (chapters 2.1.4. and 2.2.3.). 
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An increased formation of ROS has also been reported for differently coated Fe-NP 

(Buyukhatipoglu and Clyne 2011, Soenen et al. 2011) and might occur on the surface of Fe-

NP (Nel et al. 2006) or due to low molecular weight iron released from these Fe-NP. The 

increase in ROS formation in OLN-93 cells and in astrocytes is likely to be mediated by low 

molecular weight iron released from Fe-NP, since the iron chelator 1,10-phenanthroline 

prevented the increase in ROS formation in OLN-93 cells as discussed above (chapter 2.1.4.).

In astrocytes, low molecular weight iron has been shown to induce a transient iron-dependent 

increase in ROS after exposure to FAC which decreases when the iron storage protein ferritin 

is upregulated (Hoepken et al. 2004), since this protein stores iron in a redox-inactive form

(Arosio et al. 2009). The upregulation of ferritin in OLN-93 cells and astrocytes supports the 

suggested release of iron from Fe-NP because the upregulation of this protein depends on the 

presence of low molecular weight iron in the cytosol (Arosio et al. 2009) as discussed before 

(chapter 2.1.3.). Since the viability of OLN-93 cells and astrocytes was not compromised after 

exposure to Fe-NP under the conditions used, both cell types seem to be able to cope with the 

observed increased ROS formation very well. Already, a low level of ferritin present in OLN-

93 cells and astrocytes at the onset of an incubation with Fe-NP may be sufficient to store 

some iron released from Fe-NP within a short time frame before ferritin synthesis is started. 

Storage in ferritin of at least part of the iron released from Fe-NP is likely to prevent the 

accumulation of high amounts of intracellular redox-active iron and extensive ROS formation 

that could induce severe cellular damage. In summary, the comparison of OLN-93 cells and 

primary astrocyte-rich cultures regarding the consequences of Fe-NP exposure suggests that 

these two glial cell types accumulate Fe-NP, liberate iron from Fe-NP and store Fe-NP-

derived iron by similar mechanisms.

3.5. Future perspectives

The uptake of iron from low molecular iron salts and the intracellular ferritin upregulation by 

iron in proliferating OLN-93 cells has been examined in detail in this thesis, but the involved 

transporters have not been identified so far. Further studies should therefore investigate the 

mechanisms responsible for iron uptake by OLN-93 cells and identify the iron transporters

involved. The ability of OLN-93 cells to take up Tf-bound iron could be studied by 

application of commercially available Tf in serum-free medium. Preloading of Tf with iron in 

presence of FAC or other iron salts should reveal whether iron from FAC is taken up by the 

Tf/TfR system as shown before for astrocytes (Qian et al. 2000). Iron accumulation studies 

with low molecular weight iron sources in absence of serum should address the involvement 
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of an iron transporter such as DMT1. Since the iron transport of DMT1 is coupled to a 

cotransport of protons (Gunshin et al. 1997), an alteration of the pH of the incubation buffer 

would alter the amount of DMT1-transported iron as reported before for astrocytes (Tulpule et 

al. 2010). Final proof for the involvement of an iron transporter in iron uptake by OLN-93 

cells should be obtained by gene silencing techniques, as reported before for DMT1-mediated 

iron uptake into renal cells (Abouhamed et al. 2007).

Ferroportin mRNA was not observed for OLN-93 cells, although the presence of ferroportin 

has been reported for oligodendrocytes in vivo (Burdo et al. 2001, Wu et al. 2004, Wang et al.

2007). To elucidate the ability of OLN-93 cells to export iron, the cells should be preloaded

with low molecular weight iron. Iron export by the cells during the subsequent main 

incubation would be demonstrated by a decrease in cellular iron content and a matching

increase in the extracellular iron content as shown before for hepatocytes (Chua et al. 2006).

Iron accumulation from Fe-NP by OLN-93 cells has been shown by quantification of cell-

associated iron and by Perls´ iron staining (chapters 2.1.1. to 2.1.3.). Although these two 

methods strongly suggest, that OLN-93 cells have taken up intact Fe-NP, final proof of the 

intracellular presence of Fe-NP in OLN-93 cells should be obtained by electron microscopy, 

as shown before for Fe-NP-treated astrocytes (chapter 2.2.) and for OLN-93 cells that have 

taken up other types of nanoparticles (Busch et al. 2011). Since endocytotic processes are 

involved in the uptake of different kinds of nanoparticles by OLN-93 cells (Busch et al.

2011), endocytosis inhibitors should be applied to further characterize the endocytotic 

pathways involved in the uptake of the Fe-NP used here. As discussed in chapter 2.1.1., 

protein-coated Fe-NP might resemble the uptake of ferritin as a physiological iron source by 

oligodendrocytes (Todorich et al. 2009, Todorich et al. 2011). A comparison of the iron 

accumulation from serum protein-coated Fe-NP with the iron accumulation from

commercially available ferritin could reveal whether OLN-93 cells take up similar amounts of 

iron from these two iron sources and whether these cells used similar pathways for the uptake 

of both types of particles. 

Mobilization of iron from Fe-NP in OLN-93 cells was shown by inhibition of proliferation by

iron restriction (chapter 2.1.3.), by the upregulation of ferritin (chapter 2.1.3.) and by the 

inhibition of the Fe-NP-dependent ROS formation by an iron chelator (Chapter 2.1.4.). 

Despite of the high amounts of accumulated iron no severe negative consequences of an 

exposure of OLN-93 cells to Fe-NP were observed. Therefore, the rate of iron liberated from 

Fe-NP in cells should be investigated in further detail. Differently coated Fe-NP release iron 
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with different velocities in a cell-free system and also the rate of cellular degradation of Fe-

NP depends on the type of Fe-NP investigated (Soenen et al. 2010a). Thus, for OLN-93 cells 

that have accumulated large amounts of Fe-NP, the complete degradation of these Fe-NP may 

take quite some time. In addition potential negative consequences of this process may not be 

observable in the time frame investigated here. To address such questions, the presence of low 

molecular weight iron derived from internalized Fe-NP should be visualized and quantified by 

fluorescence indicators such as Phen GreenTM or calcein which alter their fluorescence 

depending on the concentration of low molecular weight iron (Kakhlon and Cabantchik 2002, 

Petrat et al. 2002). In this context, the fluorescence-dye-labeled Fe-NP should be used to 

colocalize the Fe-NP with the low molecular weight iron fluorescence indicators. 

Internalized Fe-NP and other types of nanoparticles have been shown to be localized in 

vesicular structures (chapters 2.2.1 and 2.2.3.; Busch et al. 2011) which are considered to be 

part of the lysosomal compartment where iron release is facilitated by a low pH (Arbab et al.

2005, Huang et al. 2009, Soenen et al. 2010a). Staining of the lysosomes, for example by 

uptake of fluorescent transferrin (Soenen et al. 2010a) or by dyes that accumulate in 

lysosomes (Berg et al. 2010, Busch et al. 2011) should reveal whether these particles are 

indeed taken up into the lysosomal compartment in cells that have been exposed to 

fluorescence-dye-labeled Fe-NP.

Fe-NP are considered for various applications in neuroscience (Silva 2007, Yang 2010). 

Therefore, the consequences of an exposure to brain cells in vivo are of particular importance. 

OLN-93 cells are a cell line that has been derived from primary glial cultures (Richter-

Landsberg and Heinrich 1996). Thus, the results obtained about the consequences of Fe-NP 

exposed to OLN-93 cells should be confirmed for oligodendroglial-rich secondary cultures, 

since these cells are more comparable to the in vivo situation. Oligodendroglial-rich secondary

cultures were established during the work on this thesis by Anette Thiessen and myself 

according to a published method (Hirrlinger et al. 2002) and were successfully used to study 

the consequences of fumaric acid esters on oligodendroglial cells (Thiessen et al. 2010). Key 

results on the accumulation of Fe-NP and on consequences of such treatments on cell viability 

and on cellular metabolism of OLN-93 cells should be verified on such cultures.  

The toxicity and fate of Fe-NP in vivo is of importance for medical applications of Fe-NP 

(Yang 2010, Kunzmann et al. 2011). Although Fe-NP have been reported to cross the BBB 

and to enter the brain (Wang et al. 2010) no information is available concerning the uptake 

and distribution of Fe-NP among the different cell types in brain. Astrocytes might be the first 
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cells of the brain to come in contact with Fe-NP, when the BBB remains intact, especially as 

these cells efficiently accumulate Fe-NP in culture (chapter 2.2.; Au et al. 2007, Pickard et al.

2010) and since these cells have been discussed as sink for metal ions (Tiffany-Castiglioni 

and Qian 2001, Dringen et al. 2007). Microglial cells, the immune-competent cells of the 

brain (Graeber and Streit 2010), have also been reported to take up Fe-NP (Pickard and Chari 

2010). Therefore, these cells might accumulate substantial amounts of Fe-NP when these 

particles cross the BBB and pass astrocytes. Therefore, uptake of Fe-NP by different brain 

cell types in brain slices and in vivo should be investigated. An ideal tool for these 

investigations would be again fluorescence-dye-labeled Fe-NP as mentioned above, since the 

fluorescence signal could be correlated to immunohistochemical stainings of cell type specific 

markers to identify the cell types that have taken up the Fe-NP in brain slices. This would 

improve the understanding of consequences of a treatment of the brain with Fe-NP for 

medical diagnostics or disease treatment.
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