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Abstract 
 

In the oceanic nitrogen (N) cycle, the sedimentary N2 production accounts for 50-

70 % of global marine N-loss. Coastal regions or continental shelves, where terrestrial 

riverine systems and the oceans intersect, play a role as a significant N-sink in the marine 

N-cycle by regulating the fixed-N flow at the land-sea boundary. Although continental 

shelf sediments cover only 7.5 % of the global marine seafloor, they contribute > 60 % of 

benthic N-loss. The majority of the seafloor on continental shelves worldwide is covered 

by permeable sediments. Advection, instead of diffusion, is the predominant mass 

transport in these permeable sediments. The particle and solute exchanges between water 

column and sediments under advective conditions exceed those under diffusive 

conditions by several orders of magnitude. Advective pore water flows allow oxygen 

penetration to greater depths, expanding the biogeochemical oxic zone in permeable 

sediments. However, so far little is known about N-loss in these sediments, and the 

impacts of advection on N- loss and N-cycling processes in general. The aim of this 

thesis is to investigate the extent and mechanisms of N-loss in the Wadden Sea 

permeable sediments under simulated in situ advective conditions. Spatial and temporal 

N-loss rates were determined in order to assess the significance of the Wadden Sea 

permeable sediments, and furthermore these sediments from this worldwide tidal flat 

system were used as a case study to elucidate the role of permeable sediments in the 

global marine N-loss. Potential links between N-loss and other N-cycling processes such 

as nitrification are further explored, especially under the influence of fluctuating oxic-

anoxic conditions. 

Using a modified core 15N-incubation method with one-pulse perfusion to simulate 

advections, and with simultaneous multiple-sensor measurements, active N-loss via 

denitrification was found to occur under oxic conditions. Such occurrence was further 

corroborated by slurry incubations with 15N-labelled substrates by O2 microsensor 

measurement and on-line measurement using membrane inlet mass spectrometry 

(MIMS). In the overlapped zone of O2 and NOx
- (nitrate and/or nitrite), instantaneous N2 

production was observed under aerobic conditions, while NOx
- was co-respired with O2. 

These combined results show that permeable Wadden Sea sediments are characterized by 

some of the highest denitrification rates (�190 µmol N m-2 h-1) under aerobic conditions 
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(with oxygen concentrations of up to 90 µM) in the marine environment. This is the first 

time that the substantial N-loss in permeable sediments has been attributed to aerobic 

denitrification under oxic-anoxic oscillations driven by advection.  

To examine the significance of N-loss in permeable Wadden Sea sediments over an 

annual cycle, N-loss rates were determined across three seasons. The impacts of 

advection were also evaluated by comparing three incubation methods: (i) intact core 

incubations simulating diffusive transport, (ii) intact core incubations simulating 

advective transport conditions, or (iii) slurry incubations. Nitrogen loss rates under 

simulated advective conditions exceeded those under diffusive conditions by 1-2 orders 

of magnitude, and were comparable to rates determined in slurries. Intensive N loss rates 

(mean 207 ± 30 µmol m-2 h-1) were measured in permeable Wadden Sea sediments with 

little temporal and spatial variation. Furthermore, NOx
- fluxes over a full annual cycle 

were empirically simulated by 2-dimensional model with in situ monitoring data as input 

parameters, including temperatures, bottom current velocities and NOx
- concentrations in 

water column. Combined with actual rate measurements across seasons and sites, the 

annual N-loss in permeable Wadden Sea sediments was estimated to be 745 mmol N m-2 

y-1, which agrees well with previous N budget calculations for the Wadden Sea. These 

results in the case study of the Wadden Sea verify that permeable sediments, accounting 

for up to 68 % of the continental shelves, are an important N-sink in the global marine N-

cycle.  

The expansion of the oxic biogeochemical zone in permeable sediments due to 

advection may favor aerobic processes such as nitrification. Hence, the occurrence of 

nitrification and its interaction with N-loss processes in permeable Wadden Sea 

sediments were evaluated using 15N-isotope paring experiments. Net NOx
- production 

was determined under aerobic conditions in these sediments, verifying the active 

occurrence of nitrification. In addition, the NOx
- produced by nitrification could be 

immediately channeled to N-loss to produce N2. Instead of anammox (at very low rates 

of <2 µmol N m-2 h-1, and <1 % of total N-loss), aerobic denitrification predominated in 

these permeable sediments. Moreover, the coupled nitrification-denitrification was found 

to represent up to 17 % to total N-loss, particularly apparent in surficial (permeable) 

sediments where the influence from advection was the strongest. The rest of total N-loss 

(83 %) might be attributed to NOx
- from the overlying water due to advection. In this 
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study, the contribution of coupled nitrification-denitrification to N-loss may be 

underestimated as O2 limitation could have occurred due to the one-pulse percolation 

method used in incubations. Furthermore, potential gross nitrification rates were 

estimated by calculating the amount of NO3
- produced via ammonium oxidation by the 

consumed O2 during incubations (according to the O2/NO3
- stoichiometry ratio of 

138/16), while conservative gross nitrification rates were obtained by summing the 

directly measured net NOx
- production rate and the portion coupled to denitrification. 

Potential gross nitrification rates indicate that nitrification is a significant in situ NOx
- 

source in these sediments and might play a more important role in coupling with 

denitrification in the summer with depleted NOx
- in overlying water compared to in the 

winter/spring with enriched NOx
- in water column. The potential gross nitrification is 

substantially greater than the conservative gross nitrification, implying that other NOx
--

consuming processes such as dissimilatory nitrate reduction to ammonium (DNRA) or 

assimilation are occurring. This study provides direct and quantitative evidence that 

nitrification plays a key role in linking N-sources and N-sinks in permeable Wadden Sea 

sediments. 
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Kurzfassung 
Im marinen Stickstoffkreislauf ist die benthische Produktion von molekularem 

Stickstoff (N2) für 50-70% des Verlust an biologisch verfügbarem Stickstoff (N-Verlust) 

verantwortlich. Der Kontinentalschelf und insbesondere die Küstenregionen, in denen 

Flusssysteme und Ozeane aufeinandertreffen, spielen wegen ihrer regulatorischen 

Effekte auf die Stickstoffflüsse an der Land-Meer Grenze als Stickstoffsenken eine 

wichtige Rolle. Obwohl Schelf-Sedimente nur 7,5% des gesamten marinen Meeresboden 

bedecken, tragen sie mehr als 60% zum globalen benthischen N-Verlust bei. Weltweit ist 

der überwiegende Teil des Kontinentalschelfs von permeablen Sedimenten bedeckt. In 

diesen Sedimenten ist Advektion statt molekulare Diffusion der dominierende 

Massentransportprozess. So übersteigt der durch Advektion hervorgerufene Austausch 

von partikulären und gelösten Substanzen zwischen Wassersäule und Sedimenten jenen 

durch Diffusion hervorgerufenen um mehrere Größenordungen. Advektive 

Porenwasserflüsse ermöglichen ein Eindringen von Sauerstoff in größere Tiefen des 

Sediments und erweitern somit vertikal die oxische Zone in den Sedimenten. Es ist 

wenig über den N-Verlust in diesen Sedimenten und den Einfluss der Advektion auf den 

Stickstoffverlust und den Stickstoffkreislauf bekannt. Das Ziel dieser Studie ist die 

Untersuchung des Ausmaßes und der Mechanismen des N-Verlusts in permeablen 

Sedimenten des Wattermeeres unter simulierter in situ Advektion. Die zeitliche und 

räumliche Variabilität der N-Verlustraten wurden bestimmt, um deren Rolle in den 

permeablen Wattenmeersedimente abschätzen zu können. Darüberhinaus wurden die 

Sedimente dieses einzigartigen Wattenmeersystems auf die Bedeutung der permeablen 

Sedimente für den globalen Stickstoffverlust hin untersucht. Potentielle Verknüpfungen 

zwischen Stickstoffverlust und anderen Prozessen des Stickstoffkreislaufs, wie z. B. 

Nitrifikation, wurden insbesondere unter dem Aspekt fluktuierender 

Sauerstoffkonzentrationen erforscht.  

Mittels einer modifizierten 15N-Inkuationsmethode von Sedimentkernen, bei der 

die Advektion durch eine „one-pulse“ Durchströmung simuliert wurde, sowie mittels 

gleichzeitiger Mikrosensormessungen verschiedener Parameter, wurde gezeigt das 

Stickstoffverlust durch Denitrifikation auch unter oxischen Bedingungen stattfindet. 

Durch Inkubationen von Sedimentsuspensionen mit 15N-markiertem Substraten, in 

Verbindung mit Sauerstoff-Mikrosensormessungen und Massenspektrometermessungen 
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wurden diese Erkentnisse bestätigt. In einer Zone, in welcher sowohl Sauerstoff als auch 

Nitrat bzw. Nitrit (NOx
-) vorhanden waren, wurde N2-Produktion unter oxischen 

Bedingunen gefunden während NOx
- zusammen mit O2 veratmet wurde. Kombiniert 

zeigen diese Ergebnisse, dass in den permeablen Wattenmeersedimente eine der höchsten 

marinen Denitrifikationsraten (�190 µmol N m-2 h-1) unter aeroben Bedingungen (mit 

Sauerstoffkonzentrationen bis zu 90 µM) gefunden wurden. Zum ersten Mal wurde 

gezeigt, dass aerobe Denitrifikation unter advektionsgetriebenen wechselnden 

Sauerstoffbedingungen verantworlich für den hohen N2-Verlust in permeablen 

Sedimenten ist.  

Um die saisonale Variabilität des N-Verlusts in permeablen 

Wattenmeersedimenten zu untersuchen, wurden N-Verlustraten während drei 

Jahreszeiten bestimmt. Desweiteren wurde der Einfluß der Advektion durch den 

Vergleich von drei 15N-Inkubationsmethoden untersucht: (i) Inkubation mit ganzen 

Kernen unter simuliertem diffusiven Transportbedingungen (ii) Inkubationen mit ganzen 

Kernen unter simulierten advektiven Transportbedingungen und (iii) Inkubationen von 

Sedimentsuspensionen („slurries“). Die unter advektiven Bedingungen gemessenen N-

Verlustraten waren um 1-2 Größenordnungen höher als diejenigen, welche unter 

diffusiven Transportbedingungen gemessen wurden und waren vergleichbar zu den N-

Verlustraten der „slurry“ Inkubationen. Diese hohen N-Verlustraten (durchschnittlich 

207 ± 30 µmol m-2 h-1) in Wattenmeersedimenten zeigten eine sehr geringe zeitliche und 

räumlich Variabilität. Die experimentellen Ergebnisse wurden mit einem 

mathematischen Model verglichen, das den NOx
- Fluss aus der Wassersäule in das 

Sediment berechnet. Eingangsgrößen waren Temperatur, Strömungsgeschwindigkeiten 

und NOx
--Konzentrationen des Bodenwassers, die im zeitlichen Verlauf von einer in situ 

Messstation aufgezeichnet wurden. In Kombination mit den gemessenen Raten wurde 

der jährliche N-Verlust in den permeablen Wattenmeersedimenten auf 745 mmol N m-2 

y-1 geschätzt, was in Übereinstimmung mit vorherigen Berechnungen des 

Stockstoffbudgets für das Wattenmeer ist. Diese Ergebnisse zeigen, dass permeable 

Sedimente eine bedeutende Stickstoffsenke im globalen marinen Stickstoffkreislauf sein 

können.  

Die, aufgrund von Advektion, vergrößerte oxischen Zone in permeablen 

Sedimenten fördert auch aerobe Pozesse wie Nitrifikation. Daher wurden in einer 
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weiteren Studie Nitrifikationraten gemessen und die Verknüpfung von Nitrifikation zu 

den N-Verlustprozessen mit Hilfe von 15N-Inkubationen untersucht. Die netto-NOx
--

Produktion, die in diesen Sedimenten unter aeroben Bedingungen gefunden wurde deutet 

auf signifikante Nitrifikationsraten hin. Die produzierten NOx
--Verbindungen können 

direkt durch N-Verlustprozesse verbraucht und zu Stickstoffgas umgewandelt werden. 

Während Anammox als N-Verlustprozess eine geringe Bedeutung hat (<2 µmol N m-2 h-1, 

und <1 % des gesamten N-Verlusts), ist in den permeablen Sedimenten die aerobe 

Denitrifikation der dominierende Prozess. Weiterhin wurde festgestellt, dass gekoppelte 

Nitrifikation-Denitifikation für bis zu 17% des gesamten N-Verlusts verantworlich ist, 

besonders in den Oberflächensedimenten, wo die Advektion am ausgeprägtesten ist. Der 

übrige Teil des N-Verlusts (83%) wird gespeist von NOx
- aus der Wassersäule, 

eingetragen durch Advektion. Es besteht die Möglichkeit, dass der Beitrag von 

gekoppelter Nitrifikation-Denitifikation zum N-Verlust sogar unterschätzt wurde, da die 

auf den O2 Verbrauch gestützte Berechnung der NOx
- Produktion (basierend auf dem 

O2/NO3
- Stöchometrieverhältnis von 138/16) wesentlich höher waren. Die hohen 

Nitifikationsraten zeigen, dass Nitrifikation eine wichtige NOx
--Quelle in diesen 

Sedimenten darstellt und gekoppelt mit Denitrifikation besonders dann eine 

herausragende Bedeutung hat, wenn niedrige NOx
--Konzentrationen in der Wassersäule 

zu finden sind (z.B. im Sommer). Die über den O2 Verbrauch brechnete Nitrifikation ist 

wesentlich höher als die experimentell gemessene Kopplung von Nitrifikation-

Denitifikation. Es ist deshalb gut möglich, dass weitere NOx
--Verbrauchende Prozesse, 

wie z. B. dissimilatorische Nitratreduktion zu Ammonium (DNRA) oder Assimilation 

stattfinden. Diese Studie liefert direkten und quantitativen Beweis, dass Nitrifikation eine 

Schlüsselrolle in der Kopplung von Stickstoffquellen und –senken in permablen 

Wattenmeersedimenten spielt.  
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Introduction 
 

1 Nitrogen in the marine environment  
In the Ocean, primary production is sustained by the supply of essential nutrients, 

including inorganic carbon (C), nitrogen (N) and phosphorous (P). Of these elements, a 

relatively consistent atomic ratio of 106:16:1 has been found in the phytoplanktonic 

biomass as well as in the release from the phytoplankton-driven organic matter 

remineralization and resultant sea water composition (Redfield et al., 1963). This 

distribution of C:N:P, also known as the ‘Redfield ratio’, is often used as a criterion to 

differentiate between N-limitation and P-limitation in aquatic systems (Falkowski 1997; 

Tyrrell 1999). However, instead of the value 16:1, a lower N:P ratio ([NO3
-] : [PO4

3-] ≤ 

15:1) has been often found in surface seawater (Tyrrell 1999). Therefore, nitrogen is 

considered as the most limiting nutrient in surface waters of large parts of the Ocean 

(Ryther and Dunstan 1971). Hence, the dynamics of the N-cycle controls phytoplankton 

productivity (Falkowski 1997; Tyrrell 1999; Canfield et al. 2005; Elser et al. 2007), and 

links N-cycling to biological CO2-sequestration in the Ocean (Falkowski 1997; Altabet et 

al. 2002; Gruber 2004).  

 

1.1 Nitrogen cycling processes 

Nitrogen in the environment is present in multiple forms, which can be divided into 

two categories: reactive (fixed) N and non-reactive (non-fixed) (Galloway et al. 2003). 

The reactive forms of nitrogen include inorganic nitrogen, such as ammonium, nitrite and 

nitrate. Their combined concentrations in the surface ocean are usually scarce due to 

biological production, with regard to much higher concentrations in the deep sea. 

Dinitrogen ( NN � ) is the most common non-reactive form—a stable molecule with 

triple bonds that require high-energy conversion to ammonia to become bioavailable. 

This so-called “N2-fixation” is the major input of fixed N into the oceans. Once ammonia 

is incorporated by microbes into organic N, it is transformed into other different reactive 

N forms, such as nitrite and nitrate, or remineralized back to ammonium 

(Remineralization). These reactive N forms are assimilated by microbes to form their 

biomass (Assimilation) or are involved in other transformations. Under aerobic or 

suboxic conditions, ammonium is oxidized to nitrate via nitrite (Nitrification), while 
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nitrate and nitrite are reduced through a series of intermediate gaseous nitrogen oxide 

products and ultimately turned into dinitrogen (Denitrification). These major redox 

transformations in the marine N-cycle are strictly mediated by microbes, and have been 

well studied for decades (Figure 1). However, recent studies of the marine nitrogen 

balance indicate that N2-fixation could be largely underestimated. In the meantime, novel 

N-loss pathways and additional coupling processes have been discovered (Brandes et al. 

2007). All these have led to a revision of our understanding of the nitrogen cycle, and of 

nitrogen balance in the present day Ocean (Figure 1).  

 

1.1.1 N2 fixation 

N2-fixation is a process in which the non-reactive N2 gas is converted into 

bioavailable ammonia by either high-temperature abiotic reactions (lighting or Haber-

Bosch) or biologically via specialized N2-fixing microbes. In the oceans, only the latter 

has been observed. N2 fixation produces ammonia, which is assimilated by organisms 

and incorporated into their biomass. Organic forms of N may include particulate organic 

N (PON) and dissolved organic N (DON), which together constitute complex mixture of 

compounds with a wide range of compositions and thus lability (Figure 1). 

For years, it was believed that the non-heterocystous cyanobacterium 

Trichodesmium was the main N2-fixer in the open ocean. However, recent studies have 

revealed diverse bacterial N2-fixing communities in the Atlantic and Pacific Oceans, and 

suggested that the capability for nitrogen fixation is mere widespread throughout the 

water column (Capone 2001; Zehr et al. 1998; 2000). The prevalence of unicellular N2-

fixers, in particular, suggest that biological N2 fixation may contribute twice as much to 

oceanic N2-fixation compared to previous estimates (Montoya et al. 2004), and that the 

abundance of filamentous and bloom forming N2-fixing Trichodesmium spp. may have 

been underestimated (Davis and McGillicuddy 2006). In addition, it has been suggested 

that significant N2 fixation may occur in close proximity to zones of active N-loss in the 

water column (Deutsch et al. 2007) and recent results also indicate the occurrence of N2 

fixation in deep-sea hydrothermal vents (Mehta et al. 2003; Mehta and Baross 2006). 

Therefore, the current estimates for N2 fixation as an oceanic N-input remain 

conservative, and are expected to be greater in reality. 
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1.1.2 Nitrification 

Ammonium (NH4
+) is generally formed from the decomposition of organic matter 

or via dissimilatory nitrate reduction to ammnonium (DNRA). Nitrification is a two/step 

process, in which NH4
+ is oxidized via NO2

- to NO3
- by two distinct groups of primarily 

lithoautotrophic microorganisms. That is, the energy in the oxidative processes is 

harvested for the formation of organic carbon from CO2. The final product, NO3
-, may 

then serve as a source for assimilation by organisms, or as a terminal electron acceptor in 

the denitrification or anammox pathway to produce N2, or be reduced via DNRA (Joye 

 
 
Figure 1: Currently understood nitrogen cycle in the marine environment. The arrows mark the 
transformation processes among all N forms. Marine N2-fixation is the biological conversion of N2 
into ammonia, which is incorporated into organic N forms. Organic N, such as particulate organic N 
(PON) and dissolved organic N (DON), is transformed biologically to release ammonium via 
remineralization. Ammonium, the most reduced natural form of N, is either biologically assimilated or 
oxidized to nitrate via nitrite under oxic/suboxic conditions through nitrification. Nitrate, the most 
oxidized form of N and the most abundant biologically utilizable form, is biologically assimilated or is 
reduced through a series of intermediate gaseous nitrogen oxide products (e.g. NO, N2O) and is 
ultimately turned into N2 gas via denitrification. N loss is also achieved by the N2 production via 
anaerobic ammonium oxidation with nitrate (anammox). In addition, nitrate/nitrite can also be directly 
reduced to ammonium via dissimilatory nitrate reduction to ammonium (DNRA). 
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and Anderson 2008; Thamdrup and Dalsgaard 2008). Nitrification thereby links the 

mineralization of organic N to the potential N-loss through denitrification and anammox 

(Seitzinger, 1990; Sloth et al., 1992; Kuypers et al. 2005; Lam et al. 2007), and connects 

oxidative and reducing pathways in the N cycle (Joye et al., 1995; Zehr and Ward 2002). 

 

1.1.3 Denitrification 

Before the 1990’s, marine N-loss was mainly attributed to heterotrophic 

denitrification, in which nitrate is ultimately turned into N2 gas through a series of 

intermediate gaseous nitrogen oxide products (e.g. NO, N2O) and lost to the atmosphere. 

‘Heterothrophic’ denitrification has been considered the major remineralization process 

in suboxic settings, i.e. organic matter is respired via NO3
- after O2 is depleted. Although 

denitrification is usually considered as an anaerobic process, an aerobic denitrifier, 

Thiosphaera pantotropha, has been firstly isolated from wastewater (Robertson and 

Kuenen, 1983). The potential significance of aerobic denitrification in the natural 

environments, however, is not yet clear. Apart from its use in the respiration of organic 

matter, denitrification can also occur autotrophically, when NO2
- is used as electron 

acceptor for the oxidation of e.g. sulphide, while producing N2. It has recently been 

reported to be important in certain marine anoxic water columns (Hannig et al. 2007; 

Lavik et al. 2009; Jensen et al. 2009).  

Coupled nitrification-denitrification is a term that describes the process via which 

ammonium in the oxic/suboxic zone is oxidized to nitrate, and almost immediately 

denitrified to N2. This coupling relationship is very important in the marine environments, 

especially sediments. This coupling may explain how the N2 flux from the sediments can 

be much greater than that supported by diffusive NO3
- supply alone (e.g., in muddy 

sediments; Devol 1991). 

 

1.1.4 Anammox 

‘Anammox’ stands for the “anaerobic ammonium oxidation with nitrite”. It was first 

discovered in a fluidized bed reactor (Mudler et al. 1995), although its occurrence had 

been hypothesized for suboxic water column back in the 1960’s (Richard, 1965). 

Anammox activities in the marine environment was first reported four decades later in 

the sediments of the Skagerrak using a modified isotope paring technique (IPT) that can 
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distinguish N2 produce from anammox and denitrification (Thamdrup and Dalsgaard 

2002). Anammox activities were later reported also in the marine suboxic water columns 

of Golfo Dulce (Dalsgaard et al. 2003) and the Black Sea (Kuypers et al. 2003). It was, 

however, in the latter study that marine anammox bacteria were first identified in a 

marine natural setting. From subsequent studies, it is clear that anammox is a 

quantitatively important N-sink in the marine systems (Dalsgaard et al. 2003; Engstroem 

et al. 2005; Kuypers et al. 2006). Anammox predominates as the N-loss pathway in 

oxygen minimum zones (OMZ) of Namibia, Eastern Tropical South Pacific (ETSP) and 

the Arabian Sea (Dalsgaard et al. 2003). Anammox has also been found in many 

investigated marine sediments with varied contributions ranging from <1% to 80 % of 

total N2 production. It is considered of little importance in shallow estuarine and coastal 

sediments due to the high carbon remineralization rates therein (Engstroem et al. 2005; 

Thamdrup and Dalsgaard 2008). It has been proposed that in general, the relative 

contribution to N2 production via anammox is negatively correlated with the availability 

of organic substrates (Dalsgaard et al. 2005; Kuypers et al. 2006). N2 production via 

anammox, in the OMZ water columns and benthic environments combined, may account 

for 25-50 % of overall marine N2 production (Dalsgaard et al. 2003; Devol 2003; Hulth 

et al. 2005). Hence, the discovery of anammox has substantially changed our perception 

of the marine N cycle in the last decade.  

 

1.1.5 Dissimilatory nitrate reduction to ammonium (DNRA) 

In recent years, dissimilatory nitrate reduction to ammonium (DNRA) has been 

recognized as an environmentally relevant reaction in marine systems, especially in 

anoxic sediments in the presence of substantial free sulfide (Boon et al. 1986; An et al. 

2002; Gardner et al. 2006). DNRA bypasses N2 production as an N-sink by producing 

ammonium instead, from the reduction of nitrate/nitrite mediated by organisms that can 

be either autotrophic or heterotrophic (Fossing et al. 1995; Thamdrup et al. 1996; 

Jorgensen et al. 1999). This process may enhance ammonium fluxes to the oxic/anoxic 

interface. When coupled with nitrification, it may serve as a ‘short circuit’ in the N cycle 

to preserve fixed N that can support higher production (An et al. 2002; Gardner et al. 

2006). Alternatively, it may lead to N2 production via anammox (Kartal et al. 2007; Lam 

et al. 2009). 
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1.2 The oceanic nitrogen budget 

 

1.2.1 Nitrogen budget in pre-industrial era 

In the pre-industrial era, in the absence of significant anthropogenic inputs, the N 

source in the marine environment was mainly due to pelagic N2 fixation, and the N cycle 

was considered to be in a relatively steady state (Eppley and Peterson 1979). The marine 

nitrogen budget is mainly driven by six terms (Brandes et al. 2007): N2 fixation 

(including benthic and pelagic N2 fixation), riverine inputs and atmospheric deposition as 

N sources, whereas sediment organic burial, and water column and benthic N2 

production (including denitrification and anammox) are the N sinks (Fig 2). In the 

preindustrial era, marine N2 fixation as the major N-source term is conservatively 

estimated to be 125 Tg N yr-1. Other substantial N-sources were. riverine input (41 Tg N 

yr-1) and atmospheric deposition (15-20 Tg N yr-1) (Gruber and Sarmiento 1997; Duce et 

al. 2008). Among these, the total anthropogenic reactive N-input was small, only around 

one tenth of N2 fixation in the ocean ecosystem (Galloway et al. 2003). Hence, the 

marine N-source was essentially influenced by natural N-input rather than anthropogenic 

N. Water column and benthic N2 production were more important sinks than sediment 

burials, although there is a wide variation in estimates for each N-loss term (Gruber and 

Sarmiento 1997).  

 

1.2.2 Nitrogen budget in Anthropocene 

Due to the massive impact of human activities on the environment, the last ~150 

years, have been termed the Anthropocene (Falkowski et al. 2000; Crutzen and 

Rammanathan 2000). Reactive N due to human activities in the early 1990’s increased 

by an order of magnitude relative to 1860 levels with the increased utilization of 

agricultural fertilizers for food production, other industrial production activities and 

fossil fuel combustion (Galloway et al. 2004). These human activities affect N-inputs 

through the input pathways of riverine and ground water and atmospheric deposition, 

respectively. The marine N budget has been substantially altered during the 

Anthropocene (Figure 2) (Vitousek et al. 1997; Codispoti et al. 2001; 2003; Galloway et 

al. 2003). Although N2 fixation remains the most important N source for the present 
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ocean with an estimated N input of 125 Tg N yr-1 (Gruber et al 2004; Codispoti 2007), 

the input of atmospheric fixed N to the ocean has increased four-fold to 67-84 Tg N yr-1 

since 1860, and over two-thirds of which is attributed to human activities (Duce et al. 

2008; Schlesinger 2009). Riverine and groundwater input has also doubled to 80 Tg N yr-

1 due to human activities (Codispoti et al. 2001; Codispoti 2007).  

 

 
These increases in N-inputs result in various environmental problems. The increased 

riverine and groundwater inputs of reactive N result in higher frequencies and intensity 

of eutrophication. This further leads to harmful algal blooms, hypoxia and even the 

episodic accumulation of sulfidic bottom waters in coastal regions (Rabalais 2002; Lavik 

et al. 2009) as well as the expanded oxygen minimum zone (OMZ) (Breitburg et al. 

2009). These changes in the marine environments might influence the N-cycle in the 

present and future Ocean.  

The increasing inputs of anthropogenic fixed-N have influenced the N-removal in 

the marine environments. The N-removal rates in the rivers and coastal regions were 

found to have increased with the increasing riverine anthropogenic N inputs. However, 

the overall efficiency of N removal seemed to have decreased instead (Seitzinger 2008; 

 
 
Figure 2: Marine nitrogen budget in the preindustrial era and Anthropocene. The estimated values 
of N-input and output are in the unit of Tg N yr-1, referred to Gruber and Sarmieto (1997), Gruber 
(2004), Galloway et al. (2004), Codispoti et al. (2001;2007), Duce (2008) and Schlesinger (2009). 
Black numbers are estimates in the preindustrial era, blue numbers are estimates in anthropocene, 
and red numbers are the contribution by human activities. Blue arrows present the nitrogen sources 
(inputs) and red arrows present the nitrogen sinks (outputs). 
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Mulholland et al. 2008). Moreover, with the increase of incomplete denitrification, the 

emission of intermediate gaseous product—N2O, an ozone-depleting greenhouse gas, 

increase correspondingly up to 4-6 Tg N yr-1 from the ocean (Duce et al. 2008; 

Schlesinger 2009).  

The oceanic N cycle has long been assumed to be in a steady state (Eppley and 

Peterson 1979). N* has been used to assess the marine nitrogen balance, which is defined 

as the derivation from the linear relationship between nitrate (N) and phosphate (P) of the 

form 1: 9.2* ���� molkgPrNN PN
nitr � , where PN

nitrr :  is the constant N:P stoichiometric ratio 

during the organic matter remineralization and where 2.9 �mol kg-1 is a constant to bring 

the global mean value to zero (Gruber and Sarmieto 1997). Based on the estimate mainly 

due to N* in the water column, N sources and sinks were considered to be in balance 

(Gruber and Sarmieto 1997, 2002; Gruber 2004). However, extrapolations from direct 

rate measurements showed that total N-loss might be as much as 200 Tg N yr-1 greater 

than total N-gain, such that the oceanic fixed N budget might be unbalanced (Codispoti 

et al. 2001; Codispoti 2007). This discrepancy might be due to an underestimation of N2-

fixation as direct rate determinations of N fixation are constrained to certain groups of 

autotrophs in the photic zone, while it is now becoming apparent that more diverse 

organisms are involved in this process. Alternatively, we might be in a transition state 

from imbalance to balance, or both (Codispoti 2007). Nowadays, the global N-cycle is 

substantially affected by intensive human activities. The N-balance in the present ocean 

remains questionable, requiring the further understanding of marine N-losses and gains. 

 

2 N-loss from marine continental shelf sediments 

 

2.1 Sediments as major nitrogen sinks 

In the oceanic nitrogen cycle, benthic N2 production is considered to be the main N-

sink. Although the rate estimates from oceanic benthic N2 production vary in a wide 

range from 180 to 500 Tg N yr-1 (Middelburg et al. 1996; Brandes and Devol 2002; 

Gruber et al. 2004; Codispoti 2007), all recent studies indicate that it is the major marine 

N sink, accounting for up to 70% of total marine N-loss (Codispoti et al. 2001; Codispoti 

2007; Galloway et al. 2004). Benthic N-loss can be divided into those that occur in the 
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deep sea and in coastal sediments. Although shelf sediments (0-200 m) make up only 

7.5 % of marine sediments globally, N-loss from shelf sediments account for as much as 

170-300 Tg N yr-1 (Devol and Christensen 1993; Devol 1997; Laursen and Seitzinger 

2002), equivalent to > 60 % of the oceanic benthic N loss according to the N budget 

proposed by Codispoti (2007). As a result, the sediments, especially shelf sediments, 

play a significant role in global marine N budget. 

 

2.2 The coastal zone 

The coastal region, as a transition zone between land and ocean, plays an important 

role in the marine N cycle by regulating anthropogenic N inputs to the open ocean 

(Figure 2). The flux of nitrogen from land and atmosphere to the estuaries and the coastal 

ocean has increased substantially in recent decades due to industrial activities (Galloway 

et al. 2002; Howarth et al. 2006). For instance, the riverine N input to the coastal region 

has nearly doubled to 80 Tg N yr-1 since industrialization (Gruber and Sarmiento 1997; 

Gruber 2004; Seitzinger et al. 2005; Boyer et al. 2006). Although the N-removal in 

streams and rivers increases correspondingly, the efficiency of N removal in streams and 

rivers has been found to decrease instead (Seitzinger 2008; Mulholland et al. 2008). So 

far, there is a consensus that the riverine N fluxes will continue to increase in the future 

(Howarth et al. 2002; Seitzinger et al. 2002; Galloway et al. 2004; Green et al. 2004; 

Mulholland et al. 2008). As most riverine nitrogen input is removed by N-loss processes 

in estuarine and continental shelf sediments before ever reaching the coastal ocean 

(Codispoti 2007), it is crucial to have a clear understanding of the N-loss mechanisms in 

coastal regions and thus how they might respond to the increased nitrogen load. 

  

2.3 Role of the permeable sediments in nitrogen loss 

Continent shelves are dominated by coarse-grained sediments, which account for 

50-68 % of continental margin (Emery 1968; Johnson and Baldwin 1986), yet the role of 

sandy permeable sediments in N-loss has been largely ignored. Because coarse-grain 

sediments contain little organic matter, most previous N-loss studies have been focused 

on the more organic-rich muddy or fine-grained shelf sediments under diffusive 

conditions.  
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Sandy permeable sediments differ from muddy sediments, in that material transports 

within are dominated by advection instead of diffusion (Huettel and Gust 1992; Huettel 

1996). Advection leads to high fluxes of organic matter and electron acceptors from the 

water column into the seafloor, and oscillating oxic-anoxic conditions that allow marine 

sands to efficiently filter nutrients and thus facilitate N-removal (Precht et al. 2004; 

Werner et al. 2006). Previous studies on N2 production in permeable sediments employed 

the methods based on diffusion, and the impact of advection on N loss was largely 

neglected (Lohes et al. 1996; Eyre and Ferguson 2002; Vance-Harris and Ingall 2005). 

However, recent laboratory studies using 15N-labeling experiments showed that 

denitrification rates in sandy sediments under simulated advective conditions were 

substantially enhanced relative to those measured under diffusive conditions (Cook et al. 

2006; Rao et al. 2007; 2008). Although these studies suggest that N loss in permeable 

sediments with advective pore water flow is much higher than previously perceived, 

there have been no reported, systematic investigations of N-loss with respect to its 

pathways (e.g. denitrification and anammox) and spatio-temporal in situ rate distribution. 

The role of permeable sediments in marine N-removal remains poorly characterized. 

 

3 Nitrogen loss from the Wadden Sea 

 

3.1 The Wadden Sea 

The Wadden Sea is one of the largest tidal flat systems in the world, covering 500 

km of coastline and encompassing a total area of 14,700 km2. It is located in the 

southeastern part of the North Sea, stretching from Den Helder in the Netherlands in the 

southwest, along the northwestern German coast, to its northern boundary at Skallingen 

north of Esbjerg in Denmark (van Beusekom et al. 2001). A number of major European 

rivers, including the Rhine/Meuse, Ems, Weser and Elbe, flow into the Wadden Sea. The 

catchment areas of these rivers are a combined 231,000 km2 and include areas that are 

highly impacted by industries and agriculture, and are densely populated (>100 million 

inhabitants) (van Beusekom et al. 2001). 

The Wadden Sea is strongly influenced by hydrological dynamics driven by wind 

and tides. In particular, tidal flats are intensively impacted by western winds and semi-

diurnal tides such that they are covered by approximately 1.5-2.5 m of water for 4-6 
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hours during high tides and become exposed for 6-8 hours during low tides. The whole 

ecosystem provides a multitude of transitional zones between land, sea and freshwater. 

Water runoff from land and water masses from the sea are repeatedly mixed and flushed 

with the tides before being taken up by the long shore current to eventually be released to 

the Atlantic Ocean.  

Instead of natural rock formations, sediments prevail in the Wadden Sea. The 

seafloor of the Wadden Sea is dominated by permeable sandy sediments, which is of 

fluvial and glacial origin, redistributed by strong currents and waves. The fine-grained 

sediments, thought to be primarily derived from recent riverine sources, were often found 

fringing the mainland shore and sometimes presenting along the tidal divides. In general, 

sandy tidal flats comprise of 75 %, mixed flats 18 % and mud flats 7 % of the back-

barrier intertidal area. Almost all subtidal and offshore sediments are sandy (Common 

Wadden Sea Secretariat 2008).  

 

3.2 Permeable sediments as a bio-filter 

The characteristics described above allow the Wadden Sea to function as a gigantic 

coastal filter system, facilitated by the permeable sediments therein. Pore-water 

advection is driven mainly by pressure gradients from wave actions and bottom currents 

interacting with surface topography of ripples (Ziebis et al. 1996; Precht and Huettel 

2004b; Franke et al. 2006). Advection causes solute exchange at rates orders of 

magnitude higher than would be the case due to molecular diffusion alone, and this 

allows direct transfer of suspended particles into permeable sediment strata (Precht and 

Huettel 2004a). High primary productivity has been measured recently in these sandy 

sediments (Billerbeck et al. 2007). Primary productivity by microphytobenthos is 

recognized as the main source of organic carbon for benthic life in light-exposed coastal 

sediments (MacIntyre et al. 1996; Underwood and Kromkamp, 1999). Moreover, the 

significant and rapid carbon fluxes from microphytobenthos to other benthic 

microorganisms have been demonstrated by recent studies (Middelburg et al. 2000; Cook 

et al. 2007). The microphytobenthos, often dominated by benthic diatoms, and bacteria, 

are thus typically closely associated in biofilms on the sand grains (Huettel et al. 2003). 

High extracellular enzyme activities and bacterial carbon production rates have been 

reported in the subtidal sandy sediments in the Wadden Sea, suggesting that biological 
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activities are supported by the rapid flux of carbohydrates from microphytobenthic 

primary production (Böer et al. 2008).  

Photosynthetic production drives high mineralization rates, in the forms of settling 

phytodetritus and via photosynthetic products excreted by the microphytobenthos (Goto 

et al. 2001; Rusch et al. 2003). Accordingly, high mineralization rates of organic matter 

and high oxygen consumption rates have recently been found comparable to or even 

higher than rates in fine-grained, organic rich sediments (de Beer et al. 2005; Werner et 

al. 2006; Rusch et al. 2006). Recent studies indicate that this accelerated organic matter 

mineralization is caused by advective transport (Huettel and Rusch 2000; Ehrenhauss et 

al. 2004a; de Beer et al. 2005; Werner et al. 2006) and a stimulation of biogeochemical 

cycling is proportional to the extent of pore-water exchange as well (Ehrenhauss et al. 

2004b; de Beer et al. 2005).  

 

 
 

Inward and outward advective flows of pore-water associated with migrating sandy 

sediment ripples generates vertical oscillations in oxic and anoxic conditions as redox 

 
 
Figure 3: Sand sediments as a bio-filter for maintaining the particles and solutes by filtration. (A) 
The advective transport of particles and inorganic nitrogen fractions in permeable sandy sediments. 
(B) Analogous example of a sand Bio-filter at a wastewater treatment plant (Source: 
http://www.watertiger.net/mainstream/mainstream.htm). 
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zones move horizontally through the surface layer of the seabed. The dynamic redox 

conditions found in permeable marine sediments resemble those found in wastewater 

treatment plants (Gray 1990) (Figure 3). Recent studies of permeable sediments showed 

that the oxic-anoxic oscillation driven by the advective pore water flow corresponded 

with deep O2 penetration, down to 5 cm sediment depth (Franke et al. 2006; Werner et al. 

2006; Jansen et al. 2009). This results in an expansion of the oxic biogeochemical zone 

(BGZ) compared to the diffusive system (Figure 4). Consequently, permeable marine 

sediments of the Wadden Sea are also very active sites of nutrient cycling (Werner et al. 

2006; Billerbeck et al. 2006a; 2006b). NOx
-, as an indicator of the redox state of the 

habitat, has been shown to be present in the zone of 0-5 cm depth due to the flushing 

with bottom water at Hausstarnd in the Wadden Sea sand flat (Böer et al. 2009). 

 

 
 

3.3 The N-budget of the Wadden Sea 

The total estimated annual N input to the Wadden Sea approaches 0.74 to 0.82 Tg N 

y-1 as a combination of different source categories, e.g. hinterland drainages, riverine 

inputs, inputs from the North Sea and atmosphere (van Beusekom et al. 2001). Among 

the N-sources, the riverine input accounts for 83 %. The nitrogen input to the Wadden 

Sea is at present dominated by dissolved inorganic fractions (NO3
-, NO2

- and NH4
+), with 

nitrate and ammonium accounting for the majority of the dissolved inorganic N in sea 

water (van Beusekom et al. 2001). A clear annual cycle in dissolved inorganic N 

 

Figure 4: Oxygen penetration under scenarios of advective pore water flow (A) and diffusive pore 
water flow (B). Circles show the positions of U. lactuca discs, black horizontal lines the sediment 
surface, and the arrows indicate the approximate streamlines of the porewater flow estimated 
according to Shum and Sundby (1996). Source: Franke et al. 2006. 
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concentrations was observed, with low values in summer and autumn, and high values in 

winter and spring (van Beusekom et al. 2001). 

Denitrification is considered a major N sink in the Wadden Sea (van Beusekom and 

de Jonge 1998; Philippart et al. 2000). However, only a few direct measurements have 

been conducted, including studies, in the western Dutch Wadden Sea using the acetylene 

inhibition method (AIM) (Kieskamp et al. 1991) and in the Sylt Rømø Basin with the 

isotope pairing method (Jensen et al. 1996). Reported denitrification rates were up to 55 

mmol m-2 h-1. However, these rates were measured using a method that assumed 

diffusive conditions as occurred in muddy sediments, despite the fact that the Wadden 

Sea is dominated by permeable sediments where mass transfer is predominantly driven 

by advection. As such, the role of permeable sediments in the N-loss from the Wadden 

Sea has largely been ignored. Moreover, the exact dissimilatory pathways responsible for 

N-loss, e.g. denitrification, anammox and nitrification coupled to denitrification, have not 

been investigated in these permeable sediments under near in situ advective conditions.  

 

Objectives of this thesis 

The aim of this thesis is therefore to evaluate the impact of advection on N loss rates 

from the Wadden Sea permeable sediments, and their response to the deeply-penetrating 

oxygen. To simulate advection, a modified method based on intact core incubation 

amended with 15N-labelled substrates was used to determine N-loss rates and the 

responsible pathways. This method involved one-pulse percolation of sediment 

porewater with aerated seawater containing 15N-amendments down to 5 cm-depth (the 

zone generally influenced by advection). In parallel, the response of N-loss processes to 

the concurrence of O2 and NOx
- at advective depths was investigated using multiple 

methods, such as multiple microsensor measurements in intact sediment cores, 

simultaneous determinations of O2 concentrations and N2 productions in sediment 

slurries, and in a simulated aerated flow-through slurry system with online measurement 

by membrane inlet mass spectrometry (MIMS). 

Furthermore, another aim of this study was to estimate the annual in situ N-loss 

from permeable Wadden Sea sediments with spatial and temporal consideration. An 

experimental approach (modified intact core incubation with one-pulse percolation) was 

used to measure the spatial variation of N-loss rates under simulated in situ advective 



 
Introduction 

21 

conditions at different Wadden Sea sand flats. The experimental approaches of intact 

core and slurry incubations were applied to investigate the difference of N loss under 

diffusive and near in situ advective conditions, and to study their seasonal variations. To 

further confirm the reliability of the experimental results on N loss, a model simulation 

of NOx
- availability was developed based on a two-dimensional model considering the 

annual in situ monitoring parameters of in situ sediment topography, temperature, bottom 

current velocities and NOx
- concentrations in the overlying sea water. The empirical 

model results were expected to provide the insight on the potential NOx
- source due to in 

situ advection for the annual substantial N loss measured in the experiments. Therefore, 

the role of permeable sediments in global marine N-loss could be evaluated with the 

experimental investigation combined with the model simulation.  

Apart from the NOx
- influx driven by advection into permeable sediments, 

nitrification is an in situ NOx
- source for the dissimilatory N processes in the sediments. 

However, few studies to date have been performed in permeable sediments to investigate 

coupled nitrification-denitrification by direct rate determinations, and the role of 

nitrification in N-cycling in these sediments. Oxic-anoxic fluctuations due to advective 

porewater flows may favor aerobic nitrification and further coupling to denitrification in 

these sediments. Therefore, another goal of this work is to quantify nitrification and 

coupled nitrification-denitrification based on direct rate determinations under aerobic 

conditions. The role of nitrification in permeable sediments and its influence on N-loss 

and overall nitrogen cycling in these sediments are further evaluated. 

 



 
Introduction 

22 

References 

 

Altabet, M. A., M. J. Higginson, and D. W. Murray. 2002. The effect of millennial-scale 

changes in Arabian Sea denitrification on atmospheric CO2. Nature 415: 159-162 

An, S., and W. S. Gardner. 2002. Dissimilatory nitrate reduction to ammonium (DNRA) 

as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna 

Madre/ Baffin Bay, Texas). Mar. Ecol. Prog. Ser. 237:41–50 

Billerbeck, M., U. Werner, K. Bosselmann, E. Walpersdorf, and M. Huettel. 2006a. 

Nutrient release from an exposed intertidal sand flat. Mar. Ecol-Prog. Ser. 316: 

35-51 

Billerbeck, M., U. Werner, L. Polerecky, E. Walpersdorf, D. de Beer, and M. Huettel. 

2006b. Surficial and deep pore water circulation governs spatial and temporal 

scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol-Prog. Ser. 

326: 61-76 

Boon, P. I., D. J. W. Moriarty, and G. Saffigna. 1986. Nitrate metabolism in sediments 

from seagrass (Zostera capncorni) beds of Moreton bay, Australia. Mar Biol. 

91:269-275 

Boyer, E. W., R. W. Howarth, J. N. Galloway, F. J. Dentener, P. A. Green, and C. J. 

Vörösmarty. 2006. Riverine nitrogen export from the continents to the coasts. 

Global Biogeochem. Cycles 20: GB1S91 

Böer, S. I., S. I. C. Hedtkamp, J. E. E. van Beusekom, J. A. Fuhrman, A. Boetius, and A. 

Ramette. 2009a. Time- and sediment depth-related variations in bacterial 

diversity and community structure in subtidal sands. The ISME Journal 3:780-

791 

Böer, S. I., C. Arnosti, J. E. E. van Beusekom, and A. Boetius. 2009. Temporal variations 

in microbial activities and carbon turnover in subtidal sandy sediments. 

Biogeosciences 6: 1149–1165 

Brandes, J. A., and A. H. Devol. 2002. A global marine-fixed nitrogen isotopic budget: 

Implications for Holocene nitrogen cycling. Global Biogeochem. Cycles 16: 1120 

Brandes, J. A., A. H. Devol, and C. Deutsch. 2007. New developments in the marine 

nitrogen cycle. Chem. Rev. 107: 577-589 



 
Introduction 

23 

Breitburg, D. L., D. W. Hondorp, L. A. Davias, and R. J. Diaz. 2009. Hypoxia, Nitrogen, 

and Fisheries: Integrating Effects Across Local and Global Landscapes. Annu. 

Rev. Mar. Sci. 1: 329–349 

Canfield, D. E., E. Kristensen, and B. Thamdrup. 2005. Aquatic Geomicrobiology. 

Elsevier.  

Capone, D. G. 2001. Marine nitrogen fixation: what's the fuss? Current Opinion in 

Microbiol. 4: 341-348 

Codispoti, L. A., J. A. Brandes, J. P. Christensen, A. H. Devol, S. W. A. Naqvi, H. W. 

Paerl, and T. Yoshinari. 2001. The oceanic fixed nitrogen and nitrous oxide 

budgets: Moving targets as we enter the anthropocene? Sci. Mar. 65: 85-105 

Codispoti, L. A. 2007. An oceanic fixed nitrogen sink exceeding 400 TgNa−1 vs the 

concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences. 4: 233-

253 

Common Wadden Sea Secretariat. 2008. Nomination of the Dutch-German Wadden Sea 

as world heritage site -volume one. pp. 19-30. Wilhelmshaven, Germany 

Cook, P. L. M., F. Wenzhofer, S. Rysgaard, O. S. Galaktionov, F. J. R. Meysman, B. D. 

Eyre, J. Cornwell, M. Huettel, and R. N. Glud. 2006. Quantification of 

denitrification in permeable sediments: Insights from a two-dimensional 

simulation analysis and experimental data. Limnol. Oceanogr-Meth. 4: 294-307 

Cook, P. L. M., B. Veuger, S. I. Böer, and J. J. Middelburg. 2007. Effect of nutrient 

availability on carbon and nitrogen incorporation and flows through benthic algae 

and bacteria in near shore sandy sediment. Aquat. Microb. Ecol. 49: 165-180 

Dalsgaard, T., D. E. Canfield, J. Petersen, B. Thamdrup, and J. Acuña-González. 2003. 

N2 production by the anammox reaction in the anoxic water column of Golfo 

Dulce, Costa Rica. Nature 422: 606-608 

Dalsgaard, T., B. Thamdrup, and D. E. Canfield. 2005. Anaerobic ammonium oxidation 

(anammox) in the marine environment. I : Research in Microbiology. Vol. 156, 

pp. 457-464 

Davis, C. S., and D. J. Mcgillicuddy. 2006. Transatlantic Abundance of the N2-Fixing 

Colonial Cyanobacterium Trichodesmium. Science 312: 1517-1520 

de Beer, D., F. Wenzhofer, T. G. Ferdelman, S. E. Boehme, M. Huettel, J. E. E. van 

Beusekom, M. E. Boettcher, N. Musat, and N. Dubilier. 2005. Transport and 



 
Introduction 

24 

mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, 

Wadden Sea. Limnolo. Oceanogr. 50: 113-127 

Deutsch, C., J. L. Sarmiento, D. M. Sigman, N. Gruber, and J. P. Dunne. 2007. Spatial 

coupling of nitrogen inputs and losses in the ocean. Nature. 445: 163-167 

Devol, A. H. 1991. Direct measurement of nitrogen gas fluxes from continental shelf 

sediments. Nature. 349: 319-321 

Devol, A. H., and J. P. Christensen. 1993. Benthic fluxes and nitrogen cycling in 

sediments of the continental margin of the eastern North Pacific. J Mar. Res. 51: 

345-372 

Devol, A. H., L. A. Codispoti, and J. P. Christensen. 1997. Summer and winter 

denitrification rates in western Arctic shelf sediments. Continental Shelf Res. 17: 

1029-1050 

Devol, A. H. 2003. Solution to a marine mystery. Nature 422: 575-576 

Duce, R. A., J. LaRoche, K. Altieri, K. R. Arrigo, A. R. Baker, D. G. Capone, S. Cornell, 

F. Dentener, J. Galloway, R. S. Ganeshram, R. J. Geider, T. Jickells, M. M. 

Kuypers, R. Langlois, P. S. Liss, S. M. Liu, J. J. Middelburg, C. M. Moore, S. 

Nickovic, A. Oschlies, T. Pedersen, J. Prospero, R. Schlitzer, S. Seitzinger, L. L. 

Sorensen, M. Uematsu, O. Ulloa, M. Voss, B. Ward, and L. Zamora. 2008. 

Impacts of anthropogenic atmospheric nitrogen on the open ocean. Science. 320: 

893-897 

Ehrenhauss, S., U. Witte, S. I. Buhring, and M. Huettel. 2004a. Effect of advective pore 

water transport on distribution and degradation of diatoms in permeable North 

Sea sediments. Mar. Ecol. Prog. Ser. 271: 99-111 

Ehrenhauss, S., U. Witte, S. Jansen, and M. Huettel. 2004b. Decomposition of diatoms 

and nutrient dynamics in permeable North Sea sediments. Continental Shelf Res. 

24: 721-737 

Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, 

J. T. Ngai, E. W. Seabloom, J. B. Shurin, and J. E. Smith. 2007. Global analysis 

of nitrogen and phosphorus limitation of primary producers in freshwater, marine 

and terrestrial ecosystems. Ecol. Letters 10: 1135-1142 

Emery, K. O. 1968. Relict sands on continental shelves of the world. Am. Assoc. Petrol. 

Geo. Bull. 52: 445-464 



 
Introduction 

25 

Eppley, R. W., and B. J. Peterson. 1979. Particulate organic matter flux and planktonic 

new production in the deep ocean. Nature. 282: 677– 680  

Engström, P., T. Dalsgaard, S. Hulth, and R. C. Aller. 2005. Anaerobic ammonium 

oxidation by nitrite (anammox): Implications for N2 production in coastal marine 

sediments.Geochim. Cosmochim. Acta. 69: 2057–2065. 

Eyre, B. D., and A. J. P. Ferguson. 2002. Comparison of carbon production and 

decomposition, benthic nutrient fluxes and denitrification in seagrass, 

phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate 

Australian lagoons. Mar. Ecol. Prog. Ser. 229: 43-59 

Falkowski, P. G. 1997. Evolution of the nitrogen cycle and its influence on the biological 

sequestration of CO2 in the ocean. Nature. 387: 272-275 

Fossing, H., V. A. Gallardo, B. B. Jørgensen, M. Huttel, L. P. Nielsen, and H. Schulz et 

al. 1995. Concentration and transport of nitrate by the mat-forming sulfur 

bacterium Thioploca. Nature. 374: 713–715 

Franke, U., L. Polerecky, E. Precht, and M. Huettel. 2006. Wave tank study of particulate 

organic matter degradation in permeable sediments. Limnol. Oceanogr. 51: 1084-

1096 

Galloway, J. N., E. B. Cowling, S. J. Seitzinger, and R. Socolow. 2002. Reactive 

nitrogen: Too much of a good thing? Ambio. 31: 60–63 

Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. 

Cowling, and B. J. Cosby. 2003. The nitrogen cascade. BioScience. 53:341-356 

Galloway, J. N., and others. 2004. Nitrogen cycles: Past, present, and future. 

Biogeochemistry. 70: 153–226 

Gardner, W. S., M. J. McCarthy, S. An, D. Sobolev, K. S. Sell, and D. Brock. 2006. 

Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) 

support nitrogen dynamics in Texas estuaries. Limnol. Oceanogr. 51: 558–568 

Goto, N., O. Mitamura, and H. Terai. 2001. Bidegradation of photosynthetically 

produced extracellular organic carbon from intertidal benthic algae. J. Exp. Mar. 

Biol. Ecol. 257: 73–86 

Gray, N. F. 1990. Activated sludge: theory and practice. Oxford University Press, Oxford, 

United Kingdom 



 
Introduction 

26 

Green, P. A., and others. 2004. Pre-industrial and contemporary fluxes of nitrogen 

through rivers: A global assessment based on typology. Biogeochemistry. 68: 71– 

105 

Gruber, N., and J. L. Sarmiento. 1997. Global patterns of marine nitrogen fixation and 

denitrification. Global Biogeochem. Cycles. 11: 235–266 

Gruber, N., and J. L. Sarmiento. 2002. Biogeochemical/Physical Interactions in 

Elemental Cycles, in THE SEA: Biological-Physical Interactions in the Oceans, 

edited by A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, John Wiley and 

Sons. Volume 12, pp.337-399 

Gruber, N. 2004. The dynamics of the marine nitrogen cycle and its influence on 

atmospheric CO2 variations, in The Ocean Carbon Cycle and Climate, NATO Sci. 

Ser. IV, vol. 40, edited by M. Follows and T. Oguz, Kluwer Acad., Dordrecht. pp. 

97–148 

Hannig, M., G. Lavik, M. M. M. Kuypers, D. Woebken, W. Martens-Habbena, and K. 

Juergens. 2007 .Shift from denitrification to anammox after inflow events in the 

central Baltic Sea, Limnol. Oceanogr. 52: 1336-1345 

Howarth, R. W., E. W. Boyer, W. J. Pabich, and J. N. Galloway. 2002. Nitrogen use in 

the United States from 1961–2000 and potential future trends. Ambio. 31: 88–96. 

Howarth, R. W., E. W. Boyer, R. Marino, D. Swaney, N. Jaworski, and C. Goodale. 

2006. The influence of climate on average nitrogen export from large watersheds 

in the northeastern United States. Biogeochemistry. 79: 163–186 

Huettel, M., and G. Gust. 1992. Solute Release Mechanisms from Confined Sediment 

Cores in Stirred Benthic Chambers and Flume Flows, Mar. Ecol.Prog. Ser. 82: 

187-197 

Huettel, M., W. Ziebis, and S. Forster. 1996. Flow-induced uptake of particulate matter 

in permeable sediments. Limnol. Oceanogr. 41: 309-322 

Huettel, M., and A. Rusch. 2000. Transport and degradation of phytoplankton in 

permeable sediment. Limnol. Oceanogr. 45: 534-549 

Huettel, M., H. Røy, E. Precht, and S. Ehrenhauss. 2003. Hydrodynamical impact on 

biogeochemical processes in aquatic sediments. Hydrobiologia. 494: 231-236 



 
Introduction 

27 

Hulth, S., R. C. Aller, D. E. Canfield, T. Dalsgaard, P. Engstrom, and F. Gilbert et al. 

2005 Nitrogen removal in marine environments: recent findings and future 

research challenges. Mar. Chem. 94: 125-145 

Jansen, S., E. Walpersdorf, U. Werner, M. Billerbeck, M. Böttcher, and D. de Beer. 2009. 

Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, 

H2S and pH in their surface sediment. Ocean Dynam. 59: 317-332 

Jensen, K. M., M. H. Jensen, and R. P. Cox. 1996. Membrane inlet mass spectrometric 

analysis of N-isotope labelling for aquatic denitrification studies. FEMS Microbio. 

Ecol. 20: 101-109 

Johnson, H. D., and C. T. Baldwin. 1986. Shallow siliciclastic seas. In Reading, HG (Ed.) 

Sedimentary environments and facies (2nd ed.). Blackwell Scientific Publications, 

Oxford, pp. 229-282 

Joye, S. B., and J. T. Hollibaugh. 1995. Influence of Sulfide Inhibition of Nitrification on 

Nitrogen Regeneration in Sediments. Science. 270: 623-625 

Joye, S. B., and I. C. Anderson. 2008. Nitrogen Cycling in Coastal Sediments. Nitrogen 

in the Marine Environment (2nd Edition). Academic Press. pp. 867-915 

Kartal, B., and others. 2007. Anammox bacteria disguised as denitrifiers: nitrate 

reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9: 

635-642 

Kieskamp, W. M., L. Lohse, E. Epping, and W. Helder. 1991. Seasonal variation in 

denitrification rates and nitrous oxide fluxes in intertidial sediments of the 

western Wadden Sea. Mar. Ecol. Prog. Ser. 72: 145-151 

Kuypers, M. M. M., A. O. Sliekers, G. Lavik, M. Schmid, B. B. Jørgensen, J. G. Kuenen, 

J. S. S. Damsté, M. Strous, and M. S.M. Jetten. 2003 Anaerobic ammonium 

oxidation by Anammox bacteria in the Black Sea. Nature 422: 608-611 

Kuypers, M. M. M., G. Lavik, D. Woebken, M. Schmid, B. M. Fuchs, R. Amann, B.B. 

Jorgensen, and S.M. Jetten. 2005. Massive nitrogen loss from the Benguela 

upwelling system through anaerobic ammonium oxidation. PNAS. 102: 6478-

6483  

Kuypers, M. M. M., G. Lavik, and B. Thamdrup. 2006. Anaerobic ammonium oxidation 

in the marine environment, In Past and Present Marine Water Column Anoxia (ed. 

L. N. Neretin), Springer. pp. 311-336 



 
Introduction 

28 

Lam, P., M. M. Jensen, G. Lavik, D. F. McGinnis, B. Müller, C. J. Schubert, R. Amann, 

B. Thamdrup, and M. M. M. Kuypers. 2007. Linking crenarchaeal and bacterial 

nitrification to anammox in the Black Sea. PNAS. 104: 7104-7109 

Lam, P., and M. M. M. Kuypers. 2011. Microbial Nitrogen Cycling Processes in Oxygen 

Minimum Zones. Annu. Rev. Mar. Sci. 3: 317-345 

Laursen, A. E., and S. P. Seitzinger. 2002. The role of denitrification in nitrogen removal 

and carbon mineralization in Mid-Atlantic Bight sediments. Continental Shelf 

Res. 22: 1397-1416 

Lavik, G., T. Stührmann, V. Brüchert, A. van der Plas, V. Mohrholz, P. Lam, M. 

Mußmann, B. M. Fuchs, R. Amann, U. Lass and M. M.M. Kuypers. 2009. 

Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. 

Nature 457:581-584. 

Lohse, L., H. Kloosterhuis, T. Raaphorstwv, and W. Helder. 1996. Denitrification rates 

as measured by the isotope pairing method and by the acetylene inhibition 

technique in continental shelf sediments of the North Sea. Mar. Ecol. Prog. Ser. 

132: 169-179 

MacIntyre, H. L., R. J. Geider, and D. C. Miller. 1996. Microphytobenthos: The 

ecological role of the “secret garden” of unvegetated, shallow-water marine 

habitats. 1. Distribution, abundance and primary production. Estuaries. 19: 186–

201 

Mehta, M. P., D. A. Butterfield, and J. A. Baross. 2003. Phylogenetic Diversity of 

Nitrogenase (nifH) Genes in Deep-Sea and Hydrothermal Vent Environments of 

the Juan de Fuca Ridge. Appl. Environ. Microbiol. 69: 960-970 

Mehta, M. P., and J. A. Baross. 2006. Nitrogen Fixation at 92Â°C by a Hydrothermal 

Vent Archaeon. Science. 314: 1783-1786 

Middelburg, J. J., K. Soetaert, P. M. J. Herman, and C. H. R. Heip. 1996. Marine 

sedimentary denitrification: a model study. Global Biogeochem Cycles. 10: 661-

673. 

Middelburg, J. J., C. Barranguet, H. T. S. Boschker, P. M. T. Herman, T. Moens, and C. 

H. R. Heip. 2000. The fate of intertidal microphytobenthos carbon: An in situ 
13C-labeling study, Limnol. Oceanogr. 46: 1224–1234 



 
Introduction 

29 

Montoya, J. P., C. M. Holl, J. P. Zehr, A. Hansen, T. A. Villareal, and D. G. Capone. 

2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic 

Pacific Ocean. Nature. 430: 1027-1032 

Mulder, A., A. A. van de Graaf, L. A. Robertson, and J. G. Kuenen. 1995. Anaerobic  

ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS 

Microbiol. Ecol. 16: 177–184 

Mulholland, P. J., and others. 2008. Stream denitrification across biomes and its response 

to anthropogenic nitrate loading. Nature. 452: 202–205 

Philippart, C. J. M., E G. C.  Cade´, W. Vanraaphorst, and R. Riegman. 2000. Long-term 

phytoplankton-nutrient interactions in a shallow coastal sea: Algal community 

structure, nutrient budgets, and denitrification potential. Limnol. Oceanogr. 

45:131–144 

Precht, E., and M. Huettel. 2004. Rapid wave-driven advective pore water exchange in a 

permeable coastal sediment. J. Sea Res. 51: 93-107 

Precht, E., U. Franke, L. Polerecky, and M. Huettel. 2004. Oxygen dynamics in 

permeable sediments with wave-driven pore water exchange. Limnol. Oceanogr. 

49: 693-705 

Rao, A. M. F., M. J. McCarthy, W. S. Gardner, and R. A. Jahnke. 2007. Respiration and 

denitrification in permeable continental shelf deposits on the South Atlantic Bight: 

Rates of carbon and nitrogen cycling from sediment column experiments. Cont. 

Shelf Res. 27: 1801-1819 

Rao, A. M. F., M. J. Mccarthy, W. S. Gardner, and R. A. Jahnke. 2008. Respiration and 

denitrification in permeable continental shelf deposits on the South Atlantic Bight: 

N2:Ar and isotope pairing measurements in sediment column experiments. Cont. 

Shelf Res. 28: 602-613 

Redfield, A. C., B. H. Ketchum, and F. A. Richards. 1963. The influence of organisms 

on the composition of sea-water. In M.N. Hill (ed.) The Sea. Vol.2, pp.554. John 

Wiley & Sons, New York. pp. 26-77 

Richards, F. A. 1965. in Chemical Oceanography, Anoxic basins and fjords, eds Riley J. 

P., Skirrow G. (Academic Press, London), 1, pp. 611–645 



 
Introduction 

30 

Robertson, L.A., and J.G. Kuenen. 1983. Thiosphaera pantotropha gen. Nov. sp. Nov., a 

facultatively anaerobic, facultatively autotrophic sulphur bacterium. J. Gen. 

Microbiol. 129: 2847-2855. 

Rusch, A., M. Huettel, C. E. Reimers, G. L. Taghon, and C. M. Fuller. 2003. Activity 

and distribution of bacterial populations in Middle Atlantic Bight shelf sands. 

FEMS Microbiol. Ecol. 44: 89–100 

Rusch, A., M. Huettel, C. Wild, and C. E. Reimers. 2006. Benthic oxygen consumption 

and organic matter turnover in organic-poor, permeable shelf sands. Aquatic 

Geochem. 12: 1–19 

Ryther, J. H., and W. M. Dunstan. 1971. Nitrogen, Phosphorus, and Eutrophication in the 

Coastal Marine Environment. Science. 171: 1008-1013 

Schlesinger, W. 2009. On the fate of anthropogenic nitrogen. PNAS. 106: 203–208 

Seitzinger, S. P. 1990. Denitrification in aquatic sediments. In: N.P. Revsbech and J. 

Sorensen, (editors), Denitrification in soil and sediment. Plenum Press. pp. 301-

322. 

Seitzinger, S. P., and others. 2002. Nitrogen retention in rivers: Model development and 

application to watersheds in the northeastern US. Biogeochemistry. 58: 199–237 

Seitzinger, S. P., J. A. Harrison, E. Dumont, A. H. W. Beusen, and A. F. Bouwman. 2005. 

Sources and delivery of carbon, nitrogen and phosphorous to the coastal zone: An 

overview of global nutrient export from watersheds (NEWS) models and their 

application. Global Biogeochemical Cycles. 19: GB4S01 

Seitzinger, S. P. 2008. Nitrogen cycle: out of reach. Nature. 452: 162-163 

Shum, K. T., and B. Sundby. 1996. Organic matter processing in continental shelf 

sediments–the subtidal pump revisited. Mar. Chem. 53: 81–87. 

Sloth, N. P., L. P. Nielson, and T. H. Blackburn. 1992. Nitrification in sediment cores 

measured with acetylene inhibition. Limnol. Oceanogr. 37: 1108–1112 

Thamdrup, B., D. E. Canfield, T. G. Ferdelman, R. N. Glud, and J. K. Gundersen. 1996. 

A biogeochemical survey of the anoxic basin Golfo Dulce, Costa Rica, Rev. Biol. 

Trop., 44 Suppl. 3: 19–33 

Thamdrup, B., and T. Dalsgaard 2002. Production of N2 through Anaerobic Ammonium 

Oxidation Coupled to Nitrate Reduction in Marine Sediments. Appl. Environ. 

Microbiol. 68: 1312-1318 



 
Introduction 

31 

Thamdrup, B, and T. Dalsgaard. 2008. Nitrogen Cycling in Sediments. John Wiley & 

Sons, Inc. 

Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary 

production. Nature. 400: 525-531 

Underwood, G. J. C., and J. Kromkamp. 1999. Primary production by phytoplankton and 

microphytobenthos in estuaries, in: Advances in Ecological Research, Vol. 29, 

edited by: Nedwell, D. B. and Raffaelli, D., Academic Press Inc, San Diego. pp. 

93–153  

van Beusekom, J. E. E., and V. N. de Jonge. 1998. Retention of phosphorus and nitrogen 

in the Ems estuary. Estuaries. 21: 527-539 

van Beusekom, J. E. E., H. Fock, F. de Jong, S. Diehl-Christiansen, and B. Christiansen. 

2001. Wadden Sea Specific Eutrophication Criteria. Wadden Sea Ecosystem No. 

14. Common Wadden Sea Secretariat. Wilhelmshaven, Germany. 

Vance-Harris, C., and E. Ingall. 2005. Denitrification pathways and rates in the sandy 

sediments of the Georgia continental shelf, USA. Geochem. T. 6: 12-18 

Werner, U., M. Billerbeck, L. Polerecky, U. Franke, and M. Huettel. 2006. Spatial and 

temporal patterns of mineralization rates  and oxygen distribution in a permeable 

intertidal sand flat (Sylt, Germany). Limnol. Oceanogr. 51: 2549-2563 

Zehr, J. P., M. T. Mellon, and S. Zani. 1998. New nitrogen-fixing microorganisms 

detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. 

Appl. Environ. Microbiol. 64: 3444-3450 

Zehr, J. P., E. J. Carpenter, and T. A. L. Villarea. 2000. New perspectives on nitrogen-

fixing microorganisms in tropical and subtropical oceans. Trends in Microbiol. 8: 

68-73 

Zehr, J. P., and B. B. Ward. 2002. Nitrogen Cycling in the Ocean: New Perspectives on 

Processes and Paradigms. Appl. Environ. Microbiol. 68: 1015-1024 

 



 
 

32 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Overview of manuscripts 

33 

Overview of manuscripts 

 

 

Aerobic denitrification in permeable Wadden Sea sediments 

(Chapter 2) 
(Hang Gao, Frank Schreiber, Gavin Collins, Marlene M Jensen, Olivera Svitlica, Joel E 

Kostka, Gaute Lavik, Dirk de Beer, Huai-yang Zhou and Marcel MM Kuypers) 

 
(Published in The ISME Journal, (2010) 4, 417–426; doi:10.1038/ismej.2009.127) 

 

 

 

Intensive and extensive nitrogen loss 

from intertidal permeable sediments of the Wadden Sea 

(Chapter 3) 
(Hang Gao, Maciej Matyka, Bo Liu, Arzhang Khalili, Joel E Kostka, Gavin Collins, 

Stefan Jansen, Moritz Holtappels, Marlene M Jensen, Thomas H Badewien, Melanie 

Beck, Maik Grunwald, Dirk de Beer, Gaute Lavik, and Marcel MM Kuypers) 

 
(Resubmittion to Limnology and Oceanography) 

 

 

 

Nitrification coupled to aerobic denitrification 

in the Wadden Sea intertidal permeable sediments 

(Chapter 4) 
(Hang Gao, Stefan Jansen, Moritz Holtappels, Marlene M Jensen, Gavin Collins, Frank 

Schreiber, Sumei Liu, Joel Kostka, Dirk de Beer, Gaute Lavik, Marcel MM Kuypers) 
(In preparation for Limnology and Oceanography) 

 



 
 

34 

 

 



 
Aerobic denitrification 

35 

Aerobic denitrification in permeable Wadden Sea sediments 

 

 

 
Hang Gao1,2,3, Frank Schreiber1, Gavin Collins1,4, Marlene M Jensen1,5, Olivera Svitlica1, 

Joel E Kostka11,6, Gaute Lavik1, Dirk de Beer1, Huai-yang Zhou2,7 and Marcel MM 

Kuypers1 

 
1Nutrient Group, Max Planck Institute for Marine Microbiology, Bremen, Germany;  

2Guangzhou Institute of Geochemistry, Chinese Academy Sciences, Guangzhou, PR China and  

3Graduate School of Chinese AcademySciences, Beijing, PR China 

4Current address: Department of Microbiology and Environmental Change Institute, National University 

of Ireland, University Road,Galway, Ireland. 

5Current address: Institute of Biology and Nordic Center of Earth Evolution, University of Southern 

Denmark, Campusvej 55, DK-5230 Odense M, Denmark. 

6Current address: Department of Oceanography, Florida State University, Leroy Collins Research Lab, 

Tallahassee, FL, USA. 

7Current address: School of Ocean and Earth Science, Tongji University, Shanghai, PR China. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Aerobic denitrification 

36 

Acknowledgement 
We thank the Captains Ronald Monas, Ole Pfeiler and colleagues Hans Roy, Stefan 

Jansen and Ingrid Dohrmann for their cheerful support on the ship and shipping time; 

Phyllis Lam for her constructive comments; Gabriele Klockgether and Daniela Franzke 

for technical supports. This research was supported by German Academic Exchange 

Center (Deutscher Akademischer Austausch Dienst, DAAD), Max-Planck-Society (MPG) 

and German Research Foundation (DFG). JEK was partially supported by the Hanse-

Wissenschaftskolleg and by grants from the US National Science Foundation (OCE-

0424967 and OCE-0726754). 



 
Aerobic denitrification 

37 

Abstract 
Permeable or sandy sediments cover the majority of the seafloor on continental shelves 

worldwide, but little is known about their role in the coastal nitrogen cycle. We 

investigated the rates and controls of nitrogen loss at a sand flat (Janssand) in the central 

German Wadden Sea using multiple experimental approaches, including the nitrogen 

isotope pairing technique in intact core incubations, slurry incubations, a flow-through 

stirred retention reactor, and microsensor measurements. Results indicate that permeable 

Janssand sediments are characterized by some of the highest potential denitrification 

rates (� 0.19 mmol N m-2 h-1) in the marine environment. Moreover, several lines of 

evidence showed that denitrification occured under oxic conditions. In intact cores, 

microsensor measurements showed that the zones of nitrate/nitrite and O2 consumption 

overlapped. In slurry incubations conducted with 15NO3
- enrichment in gas-impermeable 

bags, denitrification assays revealed that N2 production occurred at initial O2 

concentrations of up to ~90 µM. Initial denitrification rates were not substantially 

affected by O2 in surficial (0-4 cm) sediments, while rates increased by two fold with O2 

depletion in the at 4-6 cm depth interval. In a well mixed, flow-through stirred retention 

reactor, 29N2
 and 30N2 were produced and O2 was consumed simultaneously, as measured 

on-line using membrane inlet mass spectrometry. We hypothesize that the observed high 

denitrification rates in the presence of O2 may result from the adaptation of denitrifying 

bacteria to recurrent tidally-induced redox oscillations in permeable sediments at 

Janssand. 

 

Keywords: aerobic dentrification / nitrogen loss / permeable sediments / simultaneously 

NOx
- and O2 respiration  



 
Aerobic denitrification 

38 

Introduction 
Nitrogen (N) is primarily removed from coastal ecosystems by microbially-

mediated denitrification that occurs on the seafloor (Hulth et al., 2005). Continental shelf 

sediments are important sites of N-removal, which may account for 50-70% of oceanic 

N-loss (Codispoti et al., 2001).  Although the majority of continental margins is covered 

by coarsed-grained relict sediments (Emery, 1968; Johnson and Baldwin, 1986), most 

previous biogeochemical research has focused on muddy or fine-grained sediments. 

Pore-water advection, driven mainly by pressure gradients from wave action and bottom 

currents interacting with surface topography, causes rapid solute exchange and allows 

direct transfer of suspended particles into permeable sediment strata. Recent studies 

indicate that advective transport leads to an acceleration of organic matter mineralization 

and a stimulation of biogeochemical cycling proportional to the extent of pore-water 

exchange (Huettel and Rusch, 2000; de Beer et al., 2005; Werner et al., 2006). Up- and 

downward flow of pore-water associated with migrating sandy sediment ripples 

generates vertical oscillations in oxic and anoxic conditions as redox zones move 

horizontally through the surface layer of the bed. The dynamic redox conditions found in 

permeable marine sediments resemble those found in wastewater treatment plants (Gray, 

1990). In other words, high transport rates of organic matter and electron acceptors from 

the water column into the seafloor and the presence of oscillating oxic / anoxic 

conditions allow marine sands to act as an efficient nutrient filter that may facilitate N 

removal. However, few studies have investigated N-loss by denitrification in coastal 

permeable sediments; of these studies, fewer still have considered the effects of 

advective pore water flows on the rates of denitrification (Cook et al., 2006; Hunter et al., 

2006; Rao et al., 2007; 2008). Further research is needed to determine the rates and 

controls of N-removal from permeable marine sediments. 

The current paradigm is that denitrification is an anaerobic process in marine 

sediments, and oxygen is believed to act as a major control of the process (Brandes et al., 

2007). Denitrification is considered to require completely anoxic conditions due to the 

fact that O2 acts as a competing electron acceptor for NO3
- respiration and key enzymes 

of the denitrification pathways are inhibited by relatively small amounts of O2 (Tiedje et 

al., 1982; Zumft, 1997; Shapleigh, 2006). However, in contrast to the observations made 

in natural environments, a large number of laboratory studies have reported that 
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denitrification occurs under aerobic conditions in pure cultures of bacteria (Robertson 

and Kuenen, 1984; Ronner and Sorensson, 1985; Trevors and Starodub, 1987; Robertson 

et al., 1995). Such findings suggest that denitrification may not always be so effectively 

inhibited by O2. Microbiologists have defined aerobic denitrification as the co-respiration 

or co-metabolism of O2 and NO3
-. Physiological studies show that microorganisms are 

able to use branches of their electron transport chain to direct electron flow 

simultaneously to denitrifying enzymes as well as to O2 (Robertson and Kuenen, 1988; 

Huang and Tseng, 2001; Chen et al., 2003). Although some environmental studies 

suggest that denitrification can occur in the presence of O2 (Carter et al., 1995; Bateman 

and Baggs, 2005; Rao et al., 2007), substantial rates of aerobic denitrification have not 

yet been verified in the natural marine environment. Through a combination of new 

techniques employing stable N isotopes for the direct determination of denitrification 

rates as well as the rapid quantification of aqueous gases over short time scales, the study 

of aerobic denitrification becomes more feasible. 

The main objective of this study was to investigate the impact of O2 dynamics on N-

loss by denitrification in permeable marine sediments of the Wadden Sea. Taking 

advective transport into account, we investigated denitrification rates in permeable 

sediments under near in situ conditions using a variety of experimental approaches. 

Surprisingly, multiple lines of evidence indicated that denitrification was not inhibited in 

the presence of substantial oxygen concentrations but rather the co-respiration of O2 and 

NOx
- occurred. Therefore, we hypothesized that where NOx

- and O2 cooccur, O2 may not 

act as the primary or exclusive control of N2 production in permeable sediment 

environments.  

 

Materials and Methods 
Site description 

The Janssand sand flat (13 km2) is in the back barrier area of Spiekeroog Island in 

the German Wadden Sea. The western edge of the flat faces the 17 m-deep, tidal channel 

separating the barrier islands Spiekeroog and Langeroog. The entire Janssand flat is 

inundated with ~2 m of seawater for 6-8 h during each semi-diurnal tidal cycle, 

becoming exposed to air for 6-8 h during low tide, depending on the tidal range. 
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The central region of Janssand comprises the main area of the sand flat and is 

termed the upper flat due to the sloping margin downwards to the low water line. The 

upper flat is itself almost level and the physical appearance is homogeneous, consisting 

mainly of well-sorted silica sand with a mean grain size of 176 �m (Billerbeck et al., 

2006a). The mean permeability of 7.2 – 9.5 × 10-12 m2 (upper 15 cm of sediment; 

(Billerbeck et al., 2006a) permits advective pore water flows (Huettel and Gust, 1992). 

Detailed descriptions of the Janssand flat are available in Billerbeck et al. (2006a; 2006b), 

Røy et al. (2008) and Jansen et al. (2009). 

The sampling site (53°44.11'N, 7°41.95'E) is situated on the northeastern margin of 

the upper flat, about 80 m upslope from the mean low water line. Flat-bottom ships, the 

Spes Mea and Doris von Ochtum, were used to investigate the site in March 2007 and 

April 2008, respectively. All sediment core and seawater sampling was conducted at the 

upper Janssand tidal flat in March, 2007, unless otherwise indicated.  

 

Dissolved inorganic nitrogen (DIN) in sediment pore water 

Rhizon samplers (Seeberg-Elverfeldt et al., 2005) were utilized to extract pore water 

directly from sediment cores on the deck of the ship. Cores were sampled by pushing 

Plexiglas core liners (I.D., 9.5 cm) with side ports into the sediment, and Rhizons were 

then inserted horizontally into the ports at 1 cm intervals to 10 cm depth. Site seawater 

was also collected during low tide and filtered through a 0.2 um syringe filter. All 

samples were immediately frozen onboard ship at -20 °C for later analysis. Dissolved 

ammonium (NH4
+) concentrations were determined using a flow injection analyzer (Hall 

and Aller, 1992). Nitrate + nitrite (NOx
-) was determined by chemiluminescence after 

reduction to NO with acidic vanadium(II) chloride (Braman and Hendrix, 1989). 

 

Intact core incubations 

Denitrification rates were determined by the isotope pairing technique (Nielsen, 

1992) in intact core incubations modified according to De Beer et al. (2005) to simulate 

in situ pore water advection in the permeable sediments. A set of 15 sediment cores were 

collected in parallel to obtain 15 cm of sediment and 15 cm of overlying water each from 

a 1-m2 area using Plexiglas push-cores (I.D., 3.5 cm; height, 28 cm). Seawater was also 

collected in parallel from the site. Water overlying the sediment was removed and 
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replaced with 15NO3
--amended site seawater (final concentration of 50 �M). Rubber 

bottom stoppers were fitted with valves to allow for pore water perfusion over the upper 

5 cm depth, and each core was percolated by 20 ml 15NO3
--amended aerated seawater at 

the perfusion speed of 12 ml/min.  Cores were immediately sealed without any 

headspace by rubber stoppers after percolation, incubated at in situ temperature (8-10°C) 

and were destructively sampled in triplicate at regular intervals between 0 and 6 hours. 

The overlying water of all cores was mixed continuously at approximately 60 rpm during 

the incubations by externally-driven magnetic stirring bars. Cores were sacrificed in 

reverse order of percolation. Briefly, 1 ml of zinc chloride (50% w/v) ZnCl2 was added to 

the sediment surface. The cores were resealed with no headspace prior to mixing by 

inversion. After allowing the sediment particles to settle, an aliquot of water was 

removed from each core and transferred to a 12 ml Exetainer TM (Labco, UK) pre-filled 

with 200 �l saturated HgCl2 for 29N2 and 30N2 determinations. The concentrations of 

excess 29N2 and 30N2 were calculated from 29N2:28N2 and 30N2:28N2 ratios of He-

equilibrated headspace in Exetainers determined by gas chromatography-isotope ratio 

mass spectrometry (GC-IRMS; VG Optima). Denitrification rates were calculated based 

on the linear production of excess 29N2 and 30N2 according to Nielsen (1992).  

Another set of intact core incubations was conducted to provide direct evidence for 

the co-respiration of O2 and NOx
- using multiple microsensors. An O2 microsensor and a 

NOx
- biosensor were simultaneously applied to freshly sampled sediment cores. 

Advective transport in sediments cores was simulated by percolation as described above.  

Oxygen microsensors were constructed as described previously (Revsbech, 1989). 

A 2-point calibration method for the O2 sensor was performed using the signal in 

saturated overlying site seawater and anoxic sediments, and the O2 solubility was 

corrected for the ambient water temperature (18 °C) and salinity (32 ‰) using the 

spreadsheet supplied by Unisense (www.unisense.dk). The NOx biosensor was 

constructed, according to Larsen et al. (1997), with a tip diameter of 100 µm and was 

calibrated in seawater with additions of increasing amounts of NO3
- to confirm linearity 

of the response (0-500 µM). For the calculation of pore water concentrations, the slope 

and offset were corrected for NO3
- concentrations in the overlying water determined as 

described above. 
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For simultaneous measurements of vertical concentration profiles, the O2 and NOx 

sensors were mounted on a 3-axis micromanipulator (MM 33; Märzhäuser, Wetzlar, 

Germany). The vertical axis was motorized for µ-positioning and controlled by µ-

Profiler software described in Polerecky et al. (2005). The microsensor tips were aligned 

carefully to the same horizontal axis. The even sediment topography allowed alignment 

of both sensor profiles to the sediment surface with a precision of 1 mm, using the initial 

decrease of O2 in the diffuse boundary layer. Microsensor measurements were made at 

0.5 cm and 1 cm below the sediment surface during each percolation. Data were recorded 

over a time series to determine rates of potential O2 uptake and NOx
- consumption under 

oxic and anoxic conditions. 

 

Slurry incubations in gas-tight bags 

The depth-specific response of denitrification to O2 was initially examined in bag 

incubations using the 15N tracer isotope pairing technique according to Thamdrup and 

Dalsgaard (2002). Sediments were sampled using Plexiglas push-cores (I.D., 9.5 cm; 

height, 60 cm) and sectioned into 2-cm depth intervals to a depth of 6 cm. Afterward, 

sediment and air-saturated, site seawater were mixed at a ratio of 1:1 in the gas-tight bag 

while expelling all air bubbles. The slurries were amended with 15NO3
- to a final 

concentration of 200 �M, and the bags were incubated at in situ temperature (same as for 

intact core incubations). During the incubation, the bags were periodically shaken to 

ensure that the labeled N species were homogenously distributed. Sub-samples of the 

interstitial water were withdrawn from the bags at regular intervals and preserved in 6 ml 

Exetainer TM vials (Labco, UK) pre-filled with 100 �l saturated HgCl2. An initial 

subsample was taken immediately after the addition of the tracer and at regular intervals 

to 16 hours. 

The aqueous O2 concentration of the subsamples was determined using an O2 

microelectrode (MPI, Bremen) as described above. The 6 ml Exetainer vials were opened 

only briefly during the measurement, and were afterwards stored with no headspace for 

further analysis of dissolved N2 by GC-IRMS as described above. 

 

Flow-through stirred retention reactor (FTSRR) incubation experiment 
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To provide further corroboration for the co-respiration of O2 and NO3
- in a sediment 

slurry, aqueous gases (O2 and N2) were directly determined in line by membrane inlet 

mass spectrometry (MIMS; GAM200, IPI) in a FTSRR system. Surface sediments (0-3 

cm) and site seawater were collected from the upper flat in April 2008, and stored at 4°C 

during transport to the laboratory. Sediments and site seawater were mixed at a ratio of 

1:3 in the gas-tight FTSRR without headspace. The slurry was vigorously mixed at 200 

rpm by a magnetic stir bar, and the incubation was carried out in the dark at room 

temperature. The FTSRR system consisted of a sealed cylinder chamber (Plexiglas, inner 

diameter 9 cm, height 6cm) fitted with three ports for the input and output of water. The 

effluent pumped through a filter by one port from the chamber was injected directly into 

the membrane inlet using a peristaltic pump with the pumping speed of 0.5 ml/min. Gas-

tight syringes connected to the chamber by the other two ports, each filled with 50 ml of 

air-saturated site sea water, provided replacement water during pumping. 

Simultaneous online measurements of mass 28 (14N14N), 29 (14N15N), 30 (15N15N), 

40 (Ar), 31 (15NO), 32 (O2), 44 (14+14N2O/CO2), 45 (14N15NO) and 46 (15N15NO) were 

obtained by MIMS. A standard calibration curve was constructed, based on 

measurements obtained under both air-saturated and anoxic conditions using a two-point 

calibration for each. The slurry in the incubator was amended with 15NO3
- to a final 

concentration of ~150 �M. Mass abundance signals were recorded by MIMS at one 

second time intervals and the flow-through samples were collected in 2-ml vials and 

stored at -20°C for DIN analysis as described above (2.2). 

 

Results 
 

DIN and O2 penetration in permeable sediments  

Zones of O2 penetration and NOx
- depletion largely overlapped in the upper 2 to 3 

cm of tidal flat sediments. During the winter-spring, NOx
- concentrations with a mean 

value of ~67 µM were observed in the overlying seawater, while NH4
+ concentrations 

were comparably 10 times lower (� 7 µM) (Fig. 1A). In surficial sediments, pore water 

NOx
- decreased rapidly with depth to ~40 µM at 1 cm depth, and a minimum 

concentration was observed below 3 cm depth. Concomitantly, pore water NH4
+ 

increased to ~70 µM from the surface to 3 cm depth and remained consistently high (70-



 
Aerobic denitrification 

44 

105 µM) below that depth (Fig. 1A). In situ O2 measurements in the upper flat from 

March 2006, showed that, O2 penetrated to ~3 cm during tidal inundation (Fig. 1B) and 

O2 penetration depths of up to 5 cm were observed at other locations on Janssand tidal 

flat (Billerbeck et al., 2006b; Jansen et al., 2009). The decrease in NOx
- was equivalent to 

approximately half of the observed increase of NH4
+ with depth (Figure 1A).  

 

 
 

Denitrification potential in intact cores and gas-tight bag incubations  

Following with the overlap in O2 penetration and NOx depletion, we observed the 

immediate and rapid production of 15N-labeled N2 in both incubations amended with 
15NO3

- throughout the first 4 hours of incubation under oxic conditions (Fig. 2). Our 

study of the intact core incubations was motivated by a previous study of O2 

consumption using the same pore water percolation method that observed substantial O2 

was present during the first 1-2 hours of intact core incubations in March (Polerecky et 

al., 2005; Billerbeck et al., 2006b). In the present study, 29N2 and 30N2 were produced 

linearly (r2 29N2 = 0.93 and r2 30N2 = 0.91, respectively) without any lag during the first 2 

 
 
Figure 1: Distribution of dissolved inorganic nitrogen species [NH4

+ and NOx
- (NO3

- + NO2
-)] and O2 

penetration in sediments from the upper flat at Janssand. (A) NOx
- (closed circles) and NH4

+ (open circles) 

concentration profiles in permeable sediments in March 2007 during exposure. The daily mean values of 

NOx
- and NH4

+ concentrations in overlying seawater are depicted as closed and open squares, respectively. 

(B) O2 penetration depth during a tidal cycle measured by two oxygen sensors in March 2006 (modified 

from Jansen et al., 2009). 
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hours of incubation in the presence of O2 (Fig 2A). In bag incubation experiments 

conducted in parallel, high potential denitrification rates were observed in sediment 

slurries from the 0-2 cm, 2-4 cm and 4-6 cm depth intervals in which initial O2 

concentrations of ~95, 30 and 35 µM were observed, respectively. Higher 29N2 and 30N2 

production rates were observed in incubations from the 0 to 4 cm depth intervals where 

higher NOx
- concentrations are observed in sediment pore waters (Fig. 1A, Fig. 2B - D). 

No significant change in the denitrification rates was observed in the incubations under 

oxic conditions (during the first 4 h) in comparison to anoxic conditions (during the last 

12 h) (Table 1). In the incubation from the deepest depth interval (4-6 cm) where NOx
- 

was depleted, the lowest denitrification rates were observed while O2 depleted earliest 

(~2 h) (Table 1). Moreover at 4 to 6 cm depth, the rate under anoxic conditions was 2.3 

times higher as that under oxic conditions (Fig. 2D and Table 1). When extrapolated over 

the 0-5 cm depth interval, potential denitrification rates measured in percolated intact 

cores and bag incubations were in the same range (Table 1). 

 

Microelectrode and biosensor measurements 

Similar to the observations in the bag incubations, time series measurements by 

microsensors upon percolation of air-saturated and NO3
--rich sea water showed that NOx

- 

and O2 were consumed simultaneously at 0.5 to 1 cm depth in intact sediment cores (Fig. 

3; Table 1). O2 and NOx
- - rich seawater was transported downward into the sediment by 

percolation, which increased concentrations at 0.5 cm to ~240 µM O2 and 50 µM NOx
-, 

and at 1 cm to ~230 µmol l-1 O2 and 40 µM NOx
-. Under those high initial O2 

concentrations, a slight accumulation of 3-6 µM NOx
- was detected after 2-3 min, 

followed by a substantial linear decrease in NOx
- over the next 0.5 to 1.0 hour of 

incubation in the presence of O2. NOx
- was consumed at a higher rate at 1 cm than at 0.5 

cm under oxic conditions (Table 1). After O2 was completely consumed, the NOx
- 

reduction rate increased slightly at 0.5 cm depth, however, NOx
- consumption rates 

showed no significant difference under oxic and anoxic conditions at 1 cm depth (Table 

1), which corresponded to the results observed in the bag incubations with sediments 

from 0-4 cm depth. 
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Figure 2: 15N-labeled N2 production and oxygen consumption in whole-core and bag incubations. (A) 
29N2 (black circles) and 30N2 (open circles) production from 15NO3 amendments in percolated whole-core 

incubations. O2 consumption and 15N-labeled N2 production versus time in 15NO3
- - amended, oxic, gas-

tight bag incubations with sediment from (B) 0-2 cm, (C) 2-4 cm and (D) 4-6 cm depth intervals. 
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Aerobic denitrification in a FTSRR 

To provide further evidence for the simultaneous consumption of NOx
- and O2 in 

permeable sediments, an incubation was conducted in a stirred retention reactor, in which 

the slurry was vigorously and continuously mixed. Under constant mixing, substantial 
30N2 production was again observed by real-time MIMS measurements in the presence of 

32 µM O2 (Fig. 4). 15NO3
- was amended to the continuously stirred chamber 20 minutes 

after the start of the incubation in the presence of 128 µM O2.  Online MIMS analyses 

indicated that after an initial lag period of 1.1 hours, significant 30N2 production occurred 

in the presence of 40 µM O2. Concomitantly, O2 consumption slowed below that 

concentration. Simultaneously, there was a slight accumulation of NOx
- (data not shown) 

during 30N2 production. However, during that period, 29N2 production was not concurrent 

with 30N2 production and the increase of NOx
-.  In contrast, 29N2 began to accumulate 

 
 
Figure 3: Time series of O2 (grey) and NOx

- (black) concentrations in an intact sediment core after 

percolation (indicated by arrows) with air-saturated overlying seawater containing ~60 µM NOx
-. O2 

and NOx
- microsensor tips were adjusted on a horizontal axis and measurements were carried out 

simultaneously. The first percolation treatment started at 0 h when sensors were positioned at 0.5 cm 

depth. The sensors were moved from 0.5 cm to 1 cm after 0.9 h and the second percolation began at 

1.1 h when sensors were positioned at 1 cm depth. 
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only when NOx
- decreased at 1.5 hours of incubation in parallel with a 7-fold higher rate 

of 30N2 production (Fig. 4).  

 

 

 
 
Figure 4: 15N-labeled N2 production and oxygen concentration versus time during the incubation of 

permeable sediments in the flow-through stirred retention reactor (FTSRR).  Sediments were sampled 

from the 0-3 cm depth interval of the upper flat during April 2008. 29N2, 30N2 and O2 concentrations are 

depicted as open circles, black squares and open triangles, respectively. 
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Table 1. Summary of denitrification rates measured in all incubations 

Measurement Investigated depth Denitrification / NOx – consumption (mmol N m-3
sediment h-1) 

(cm) Oxic Anoxic 

Intact core incubation 
5 4.60 ± 0.46 

Integrated to 5 0.23 ± 0.02* 

Intact core by multi – 
microsensors 

0.5 15.5 ± 0.04 21.9 ± 0.05 

1 22.0 ± 0.04 21.5 ± 0.04 

Slurry incubation 

0 – 2 6.40 ± 0.37 10.57 ± 3.20 

2 – 4 8.27 ± 0.32 9.63 ± 1.15 

4 – 6 2.72 ± 0.16 6.28 ± 0.84 

Extrapolated to 5   0.32 ± 0.01*  0.47 ± 0.07* 

Constant mixing, flow-through 
retention reactor incubation 

0 - 3            6.23 ± 0.07 

Extrapolated to 3            0.187 ± 0.002* 
 
The mean porosity of sediments in upper flat is 35% (Billerbeck et al., 2006b) 
* the unit is mmol N m-2

sediment h-1  
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Discussion 
In permeable marine sediments of the Wadden Sea, zones of NOx

- and O2 

penetration often overlap to several centimeters depth due to pore water advection (Fig 1) 

(Werner et al., 2006; Billerbeck et al., 2006a; 2006b; Jansen et al., 2009). Further, 

previous O2 percolation experiments that incorporated pore water advection, showed that 

during the spring season when NOx
- is at high concentration in the overlying seawater, 

O2 persisted in the bulk pore water over the first 1 to 2 hours of incubation in intact cores 

of Wadden Sea sediments (Polerecky et al., 2005; Billerbeck et al., 2006b). From these 

observations, it could be inferred that where NOx
- and O2 cooccur, O2 may not act as the 

primary or exclusive control of N2 production in permeable sediment environments. To 

test this assumption, we investigated N-loss by denitrification in relation to O2 dynamics. 

Several lines of independent evidence collected with multiple experimental approaches 

under near in situ conditions showed that denitrification occurs in the presence of oxygen. 

We observed the immediate and rapid consumption of NOx
- under air saturated pore 

water in the intact core, and the directly determined production of 15N-labeled N2 in the 

presence of up to 90 µM O2 in slurry incubations. Further, the rapid production of 

labeled N2 was not diminished in a vigorously stirred, flow-through retention reactor. 

Thus, our results strongly suggest that aerobic denitrification makes a substantial 

contribution to N-loss in permeable marine sediments. 

The rates and mechanisms of N-removal in permeable marine sediments remain in 

question. Few studies have quantified N2 production in coastal permeable sediments, and 

the rate measurements in this small but growing database vary widely, ranging from 0.1 

to 3 mmol m-2 d-1 (Laursen and Seitzinger, 2002; Vance-Harris and Ingall, 2005; Cook et 

al., 2006; Rao et al., 2007; 2008). However, researchers have now become aware of the 

fact that in experiments where pore water advection is absent or impeded, a realistic 

determination of diagenetic processes is not achieved (Jahnke et al., 2000; Cook et al., 

2006). At present, at least two mechanisms have been proposed to explain denitrification 

in the presence of oxygen: 1) co-respiration of NOx
- and O2 (Bateman and Baggs, 2005), 

and 2) closely coupled nitrification-denitrification in microenvironments isolated from 

bulk sediment pore water (Rao et al., 2007). Bateman and Baggs (2005) provided one of 

the few observations of the contribution of aerobic denitrifying bacteria to denitrification 

potential in the environment. Using a combined stable isotope and acetylene inhibition 
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approach, they were able to distinguish the relative contribution of nitrification and 

denitrification to N2O production in arable soil. The results suggested that aerobic 

denitrification occurred at 20% water-filled pore space.  

Although biogeochemical evidence exists for denitrification in the presence of 

oxygen in the marine environment (Hulth et al., 2005; Hunter et al., 2006; Brandes et al., 

2007; Rao et al., 2007), significant rates of aerobic denitrification have not been verified 

until now. New techniques such as NOx biosensors and stable N isotope tracers applied 

in conjunction with MIMS allowed for the further confirmation of aerobic denitrification. 

Rao et al. (2007; 2008) incorporated the effects of pore water advection, and in 

corroboration with our results, observed high rates of N2 production in flow-through 

columns of oxic permeable sediments. In oligotrophic continental shelf sediments of the 

South Atlantic Bight, Rao et al. (2007) observed that pore water nitrate was only above 

detection in the oxic zone. Nitrogen released as N2 accounted from 80 to 100 % of 

remineralized N, and the C:N ratio of regeneration supported the interpretation of N2 

produced by denitrification. In the Rao et al. study, the addition of 15N-nitrate caused 

only a small and gradual rise in 29N2 and 30N2 production in sediment columns over up to 

12 days of incubation. Only columns with anoxic outflow showed substantial 29N2 or 
30N2 production. Thus, Rao et al. (2007) concluded that their evidence for aerobic 

denitrification was equivocal, and N2 production more likely occurred from coupled 

nitrification-denitrification in microenvironments. 

In the present study, we observed the rapid and immediate production of 15N-

labelled N2 in the presence of O2 under a variety of experimental conditions. Oxygen and 

NOx
- dynamics were directly determined in real time under well mixed conditions in 

sediment slurries and intact core incubations. Microsensor measurements showed that 

NOx
- and O2 consumption occurred simultaneously in intact cores (Fig. 3). Further direct 

evidence for the co-respiration of O2 and NOx
- was provided using 15N tracer 

experiments in slurries which were constructed with sediments from different depths. 

Successive incubation experiments showed the reliability and uniformity of aerobic 

denitrification rates, despite the fact that the experimental setup differed (including the 

amount of sediments, volume of associated water, and starting concentration of labeled 

nitrate; Supplementary Table 1). Although the concentrations of 29N2 and 30N2 in the 

associated water varied, the denitrification rates normalized to sediment volume were in 
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the same range, with the exception of the higher rate measured by the microsensor, 

which incorporated NO3
- assimilation as well as denitrification (Table 1). Under the 

experimental conditions used, 29N2 could be attributed to coupled nitrification-

denitrification or anammox in the slurry (Thamdrup and Dalsgaard, 2002). In contrast, 
30N2 would only be produced by complete denitrification. Anammox was shown to 

comprise only a small percentage of N2 production in parallel slurry experiments 

conducted in gas-tight bags (Gao et al., in preparation). Therefore, we conclude that the 
15N-labeled N2 production is mainly contributed by denitrification, and the occurrence in 

the presence of O2 provided evidence for aerobic denitrification.  

At each depth examined in slurry incubation, the potential denitrification rate under 

aerobic conditions was similar to that measured under anaerobic conditions. Moreover, 

the maximum denitrification rate was not observed in the deepest depth interval with the 

lowest initial O2 concentration, but rather in the surface 0 to 4 cm depth. This suggests 

that the overlapping NOx
- concentration may act together with O2 to control the 

denitrification rate. On the Janssand tidal flat during winter/spring, rapid denitrification is 

likely to be supported by the constant supply of NOx
- advected from the overlying 

seawater (Gao et al., in preparation). In short, O2 dynamics did not strongly affect N-loss 

by denitrification in the presence of abundant NOx
-, but rather denitrification co-existed 

with O2 respiration in permeable Wadden Sea sediments affected by advection. 

In order to further exclude the possibility of anoxic microniches forming in our 

sediment incubations, we conducted an experiment in a vigorously mixed FTSRR. The 

initial production of 30N2 in the presence of 40 µM O2 (Fig. 4) provided evidence for the 

process of aerobic denitrification. The concomitantly suppressed O2 consumption may 

indicate that nitrate acts as a competitive electron acceptor to facultatively aerobic 

denitrifying bacteria. Whereas at lower O2 concentrations later in the incubation (where 

an increased ratio of unlabeled NO3
- was observed), the production of 29N2 indicated 

denitrification coupled to nitrification. Due to the variability in the mass abundance 

signals, we cannot exclude the possibility that some 29N2 was also produced in the early 

stages of the FTSRR incubation.  Thus, we observed the mechanism for rapid 

denitrification under oxic conditions depended on two pathways- aerobic denitrification 

and dentrification coupled to nitrification.  
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During the FTSRR incubation, the bulk porewater was vigorously flushed by 

aerated seawater and the labeled isotope ratio was kept constant.  Thus, the possibility 

that denitrification occurred in anoxic microzones can be completely excluded. In 

corroboration with our results, previous studies on the formation of anoxic microzones in 

particles and aggregates showed that the respiration capacity is simply not sufficient to 

create anoxia under high ambient O2 concentration, and anoxic microzones more likely 

form at around 10 % of air saturation (under ~ 25 µM O2 in the bulk phase; (Schramm et 

al., 1999; Ploug, 2001). In our study, at O2 concentrations of ~20 % air saturation and 

above, the establishment of anoxic microzones would be unlikely. Given the larger grain 

sizes present in marine sands, O2 transport is enhanced by advection / interstitial fluid 

flow, which produces less steep O2 gradients at the sediment-water interface and within 

particles / aggregates compared with those that develop under pure diffusion conditions 

(Ploug, 2001). The abovementioned experiments were conducted in a vertical flow 

system under non-turbulent uniform flow conditions. Thus, for the coarse-grained 

sediments in our well-mixed retention reactor experiments where the sediment slurry is 

exposed to turbulent aerated flow, anoxic microzones would not form. Therefore, we 

conclude that substantial N-loss occurs by aerobic denitrification in the permeable 

Wadden sediments.  

Denitrification has long been considered as an anoxic biogeochemical process in 

marine and aquatic environments, and oxygen has been shown to inhibit denitrifying 

enzyme activity (Tiedje et al., 1982; Hulth et al., 2005; Brandes et al., 2007). However, a 

phylogenetically and physiologically diverse group of microorganisms has been shown 

to denitrify in the presence of oxygen in laboratory studies (Zehr and Ward, 2002; 

Hayatsu et al., 2008). Bacteria capable of aerobic nitrate respiration were cultured in 

abundance from freshwater soils and sediments (Carter et al., 1995).  Aerobic denitrifiers 

were further isolated from a variety of managed and natural ecosystems (Patureau et al., 

2000). Thus, the influence of oxygen on nitrate respiration activity appears to vary 

between microorganisms, with some strains able to respire nitrate at or above air 

saturation (Lloyd et al., 1987; Hayatsu et al., 2008). Microbiological studies have gone 

so far as to suggest that the capacity for denitrification under aerobic conditions is the 

rule rather than the exception amongst ecologically important denitrifying microbial 

communities (Lloyd et al., 1987). 
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Previous studies indicate that the diversity, as well as the metabolic activity, of 

bacterial communities is high in permeable sediment environments, likely due to 

increased transport of growth substrates and the removal of metabolites by advective 

exchange with the overlying water column (Hunter et al., 2006; Mills et al., 2008; Boer 

et al., 2009). Denitrification in the marine environment is believed to be mediated by a 

group of facultative anaerobes that display a wide range in phylogenetic affiliation and 

metabolic capabilities (Zehr and Ward, 2002). In pristine ecosystems, nitrate 

concentrations are typically too low to select for large populations of denitrifying 

organisms, and denitrifiers are thought to rely on aerobic heterotrophy in conjunction 

with their denitrification capacity (Tiedje, 1988). In permeable marine sediments, up- 

and downwelling of pore water associated with sandy sediment ripples generates redox 

oscillations that may promote the microbially-mediated oxidation and reduction of N 

species.  

Although the consensus is that low or no O2 is required for the initiation of 

denitrification, most information on the O2 level at which denitrification starts comes 

from pure cultures.  Denitrification has been observed in the laboratory at O2 

concentrations approaching air saturation (Zehr and Ward, 2002), but previous 

environmental studies are equivocal with regard to the impact of O2 dynamics on 

denitrification.  Large differences are observed in the expression and regulation of 

denitrification genes between species studied in pure culture (Shapleigh, 2006). The 

expression of denitification genes was shown to require O2 in some cases, and the 

presence of denitrification intermediates may impact the denitrification rate in the 

presence of O2. A possible explanation is that the accumulation of intermediates slows 

O2 respiration, particularly at low O2 levels, thereby slowing down the aerobic-anaerobic 

transition and allowing the expression of O2-requiring denitrification genes (Bergaust et 

al., 2008). 

We hypothesize that the co-respiration of nitrate and O2 represents an adaptation of 

denitrifiers to recurrent tidally-induced redox oscillations in permeable sediments of the 

Wadden Sea. Some evidence from pure cultures of denitrifying bacteria supports this 

hypothesis. For example, when the selective pressure of environmental redox changes 

was removed, the aerobic denitrification ability of Paracoccus denitrificans decayed 

(Dalsgaard et al., 1995; Robertson et al., 1995). Further, Bergaust et al. (2008) proposed 
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that denitrifiers adapt to recurrent oscillations in oxygen concentrations through a 

protection mechanism, which consists of the coordinated expression and activity of the 

denitrification enzymes for survival during the rapid transition from oxic to anoxic 

conditions. A “bottle neck effect” was also proposed, whereby nitrifying and denitrifying 

bacteria react to oxygen and nitrate in the environment by coordinating their respective 

activities. Schmidt et al. (2003) observed that the onset of the aerobic denitrification did 

not depend on oxygen sensitivity of the corresponding enzymes, but rather on regulation 

of redox-sensing factors at the transcriptional level. Our biogeochemical evidence 

corroborates microbiological studies to indicate a clear need to elucidate the significance 

and the controls of aerobic denitrification in permeable marine sediments. 

In contrast to the paradigm that denitrification is an exclusively anaerobic process, 

our experiments point to aerobic denitrification and indicate that O2 may not act as a 

primary or exclusive control of N2 production in permeable marine sediments. We 

propose that the availability of NOx
- as well as O2 limit the denitrification rate at depths 

of marine sands that are impacted by pore water advection. We can only speculate on the 

mechanism of aerobic denitrification at this time. Co-metabolism would imply that both 

NOx
- and O2 are used simultaneously as electron acceptor in a single organism. 

Alternatively, separated denitrifying and oxygen respiring populations may be active 

within the community. In the first case one would expect a competition for electrons 

within the electron transport chain, thus an enhanced denitrification upon oxygen 

depletion. In the second case, denitrification would be uncoupled entirely from the 

presence of oxygen, as denitrification is not kinetically inhibited by oxygen, nor can 

oxygen compete for electrons. In the FTSRR, we observed a pronounced effect of 

oxygen on denitrification rate whereas in other incubations less of an effect was found, 

indicating that both mechanisms may be present. Further research is needed to elucidate 

the true mechanisms of aerobic denitrification in permeable marine sediments. 
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Supplementary information: 

Supplementary Table 1. Summary of the experimental conditions in the incubations. 
 
  

Experiment Sampling date Depth (cm) Tracer additions (µM) 

Intact whole core 

incubation 
Mar 17 2007 0 – 5 

15NO3
-  (final concentration: 50µM) 

(15NH4
+/14NO3

- +ATU*) (final 

concentration: 50, 50, 86µM) 

Intact core by multi – 

microsensors 
Mar 22 2007 

0.5 
NO3

- in site sea water (~ 60µM) 
1 

Slurry incubation Mar 22 2007 

0 – 2 

2 – 4 

4 – 6 

15NO3
-  (final concentration: 200µM) 

(15NH4
+/14NO3

- +ATU*) (final 

concentration: 200, 200, 86µM) 

Constant mixing, flow-

through retention reactor 

incubation 

April 28 2008 0 – 3 15NO3
- (final concentration: 147µM) 
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Abstract 

Nitrogen (N) loss rates were determined in permeable sediments of the Wadden Sea 

using a combination of stable N isotope incubation experiments and model simulation 

approaches during three seasons. Three different incubation methods that employed the 

isotope pairing technique (IPT) were used: intact core incubations simulating either 1) 

diffusive or 2) advective transport conditions and 3) slurry incubations. N-loss rates from 

core incubations under simulated advective transport conditions exceeded those rates 

measured under diffusive transport conditions by 1-2 orders of magnitude, but were 

comparable to those observed in slurry incubations. N-loss rates generally showed little 

seasonal and spatial variation (207 ± 30 µmol m-2 h-1) in autumn 2006 and spring and 

summer 2007. Utilizing an extensive time series of nutrient concentrations and current 

velocities obtained from a continuous monitoring station, Nitrate and nitrite (i.e. NOx
-) 

flux into the sediment was modeled over a full annual cycle. Fluxes were sufficient to 

support the experimentally derived N-loss rates. Combining the measured rates with the 

modeled results, an annual N-removal rate of 745 	 109 mmol N m-2 yr-1 was estimated 

for permeable sediments of the Wadden Sea. This rate agrees well with previous N-loss 

estimates for the Wadden Sea based on N-budget calculations. Permeable sediments, 

accounting for 58-70% of the continental shelf area, are an important N-sink and their 

contribution to the global N-loss budget should be re-evaluated. 

 

 

Keywords: nitrogen, permeable sediments, N-loss, denitrification, pore water advection 

Running head: Nitrogen loss in the Wadden Sea permeable sediments
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Introduction 

Continental margin sediments represent a major sink of fixed nitrogen (N) in the 

oceanic N cycle (Gruber 2008; Thamdrup and Dalsgaard 2008). Benthic N2 production in 

shelf sediments, derived from denitrification and anammox processes, accounts for 50-

70% of fixed oceanic sedimentary N-loss in current budgets (Codispoti et al. 2001; 

Gruber et al. 2004; Codispoti 2007). Although the majority (58-70%) of continental 

margins is covered by coarse-grained relict sediments (Emery 1968; Johnson and 

Baldwin 1986), most previous biogeochemical research has focused on muddy or fine-

grained shelf sediments, and the role of sandy sediments in N-loss has been largely 

ignored. 

The seafloor of the Wadden Sea, one of the largest tidal systems in the world, is 

dominated by permeable or sandy sediments. Recent studies showed that porewater 

advection dominates chemical exchange at the sediment-water interface of the sandy 

seafloor, with advective transport exceeding the rate of molecular diffusion by several 

orders of magnitude (Precht and Huettel 2004; and references therein). Pressure gradients 

driven by waves and currents interact with sediment topography (Huettel and Gust 1992; 

Ziebis et al. 1996; Precht and Huettel 2003), and pump solutes and particles from the 

overlying water into the sediment (Rusch and Huettel 2000; Reimers et al. 2004; Werner 

et al. 2006). Advective transport leads to an acceleration of organic matter mineralization 

and a stimulation of biogeochemical cycling proportional to the extent of porewater 

exchange (Precht et al. 2004; de Beer et al. 2005; Franke et al. 2006). The high transport 

rates of organic matter and electron acceptors from the water column into the seafloor 

allow marine sands to act as an efficient filter for organic matter that may also facilitate N 

removal by denitrification. However, few studies have investigated N-loss by 

denitrification in coastal permeable sediments (Lohes et al. 1996; Eyre and Ferguson 

2002; Vance-Harris and Ingall 2005); and of these studies, few have incorporated 

advective transport processes. 

Recent laboratory studies using 15N-labeling experiments showed that 

denitrification rates in marine sands under simulated advective conditions are 

substantially enhanced relative to diffusive conditions (Cook et al. 2006; Rao et al. 2007, 

2008; Gihring et al. 2010). Furthermore, rapid rates of denitrification (
 50 �mol m–2 h–1) 
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were measured under oxic conditions in permeable sediments affected by advection (Rao 

et al. 2007, 2008; Gao et al. 2010). These studies suggest that N-loss in permeable 

sediments with advective pore water flow is much higher than previously perceived. 

However, temporally and spatially resolved sedimentary N2-production rates as well as 

estimates for the benthic NOx porewater flux have so far been missing. 

In this study, we use a combination of 15N-labeling experiments and a flux model 

based on annual monitoring data of NOx concentrations and bottom current velocities to 

determine N-loss from permeable sediments of the worlds largest tidal system, the 

Wadden Sea. The consistency of measured N-loss rates at different sites and during 

different seasons allows extrapolating the results to the entire Wadden Sea area. This 

study provides to our knowledge the first regional estimates of N-loss from permeable 

sediments based on experimental data. Our results are comparable with N-loss estimates 

for the Wadden Sea based on N budget calculations. 

 

Methods  

Study sites—The Wadden Sea, located in the southeastern part of the North Sea, 

stretches from Den Helder in the Netherlands in the southwest, past the great river 

estuaries of Germany, to its northern boundary at Skallingen north of Esbjerg in Denmark. 

The Wadden Sea covers 500 km of coastline, and encompasses a total area of about 

14,700 km2 (Fig. 1a). One third of it is mainly composed of intertidal flats, and 

approximately 93% of the seafloor is covered by coarse, sandy or mixed sediments 

(Common Wadden Sea Secretariat 2008).  

Janssand is a typical intertidal sand flat in the central Wadden Sea that has been 

intensively studied as a hotspot of biogeochemical cycling (Al-Raei et al. 2009; Jansen et 

al. 2009). The Janssand flat, located in the back barrier area of Spiekeroog Island in the 

German Wadden Sea (Fig. 1b), consists mainly of well-sorted sands with a mean grain 

size of 176 �m, porosities of 35% to 40% , and permeabilities ranging from 0.5 to 9.5 × 

10-12 m2 (Billerbeck et al. 2006). The western edge of the flat faces a 17 m-deep tidal 

channel separating the barrier islands Spiekeroog and Langeoog. The entire Janssand flat 

is inundated with ~ 2 m of seawater for 4-6 h during each semi-diurnal tidal cycle and 

exposed to air for 6-8 h during low tide. Along the sloping margin from the central flat 
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region to the low water line, two representative sites were visited for detailed 

investigations of N-loss processes using slurry incubations and intact core incubations 

simulating either diffusive or advective transport conditions (Table 1). An ‘upper flat’ 

site (UF) is located approximately 80 m upslope, and a ‘middle flat’ site (MF) lies in 

between the low water line and UF (Fig. 1c). UF was chosen as a proxy for the central 

region, composed mainly of sandy sediments. The central tidal flat exhibits little to no 

incline, and its physical appearance is homogeneous. MF is along the edge of the tidal 

flat and in general entirely exposed during low tide. These two sites were investigated 

using the flat-bottom ships Spes Mea in October 2006 and Doris von Ochtum in March 

and August 2007.  

 

To address the spatial variation of N-loss processes throughout the Wadden Sea, 

we investigated additional five intertidal sand flats between the island Ameland (The 

Netherlands) and the island Spiekeroog (Germany) in October 2006 (Fig. 1a, Table 1). At 

all sites, sampling was conducted in the central region of the respective flats, and N-loss 

 
Figure 1: (a) Intertidal sand flats sampled in 2006 along a transect in the East Frisian Wadden Sea. 

Stations labeled from 1 to 6 are Engelsmanplaat, Simonszand, Horsbornzand, Kopersand, Hohes Riff 

and Janssand, respectively. (b) Location of Janssand (arrow), the primary sand flat studied. (c) The 

topography and the sampling sites ‘middle flat’ (MF) and ‘upper flat’ (UF) at Janssand. The average 

water level at low tide (low water line) is used as reference point for the height. 
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rates were investigated using intact core incubation simulating advective transport 

conditions (see below).  

Physical and chemical analysis—Time series measurements were performed at a 

station nearby the Janssand flat in the tidal inlet between the Islands Spiekeroog and 

Langeoog (Table 1). In situ temperature was determined from October 2006 to October 

2007 using a temperature sensor (Pt100) mounted at the time series station. For validation, 

conductivity, temperature, and depth (CTD)-measurements were conducted at regular 

intervals (Reuter et al. 2009). Bottom water current velocities were measured using an in 

situ acoustic doppler current profiler (ADCP, 1200 KHz, workhorse sentinal, Teledyne 

RD Instruments) in July 2009 and April 2010. In July 2009, current velocities were 

monitored by a downward looking ADCP mounted on a boat nearby the central Janssand. 

Flow velocities were measured from 80 cm above the sediment surface with a vertical 

resolution of 25 cm every 5 seconds for each ping. The same instrument was mounted 

upward looking on a bottom metal frame at the central Janssand flat over four tidal cycles 

in April 2010. For the upward deployments, the ADCP was mounted 9 cm above the sea 

floor and measured with a vertical resolution of 10 cm and a measuring interval of 10 sec 

for 60 pings.  

In parallel, real-time monitoring of NOx
- concentration of near surface water was 

conducted with an in situ automated nutrient analyzer (Systea, �Mac1000, Grunwald et al. 

2010) at the time series station. Concentrations of dissolved NO3
- and NO2

- were 

determined hourly after automated filtration using a loop-flow reactor and loop-flow 

analysis technology combined with conventional photometry (Grunwald et al. 2007). The 

detection limit for NOx
- is approximately 0.2 µmol L-1 (Grunwald et al. 2010). For this 

study, a time series of NOx
- data from October 2006 to October 2007 was used. 

NOx
- samples were also taken in parallel to the incubation experiments. At the 

sites and time periods when cores were collected for rate measurements, seawater was 

collected during low tide and filtered through a 0.2 µm syringe filter. Seawater was 

sampled before and after amendment with N isotope tracer. Porewater sampling was 

performed in sediments during exposure, using a Rhizon method modified from Seeberg-

Elverfeldt et al. (2005). A metal plate with holes at 1-1.4 cm intervals down to 15 cm was 

pushed into sediments. Rhizon samplers were inserted into the undisturbed sediments and 
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Table 1. Summary of measurements at different study sites and seasons 

Sampling 
season 

Sampling  
sites 

Measurements 

DIN (NO2
-, NO3

-) O2 Current velocity 
Intact core incubations Slurry incubations 

tracer method tracer 

Oct 2006 

Engelsmanplaat 

Site sea water 

and 

Seawater amendment with 
tracer 

  

15NO3
- percolation 

  

Simonszand     

Horsbornzand     

Kopersand     

Hohes Riff     

Janssand upper flat  
from current velocity 

data in Billerbeck et al. 
(2006) 

15NO3
- percolation  

Janssand middle flat O2 
microsensor 

15NO3
- percolation  

and diffusion  

Mar 2007 

Janssand upper flat Site sea water 

and 

Seawater amended with 
tracer 

O2 
microsensor 

ADCP measurement 

in Apr 2010 
15NO3

- percolation  
and diffusion 

15NO3
- with aerated 

seawater 
Janssand middle flat 

Aug 2007 

Janssand upper flat Site sea water 

and 

Seawater amended with 
tracer 

O2 
microsensor 

ADCP measurement in 
Jul 2009 

15NO3
- percolation  

and diffusion 

15NO3
- with aerated 

seawater 

 Janssand middle flat 
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mounted through the holes on the metal plate with only the sampling ports protruding 

from the sediments. In situ pore water samples were directly extracted from these ports 

with sterile hypodermic syringes. All nutrient samples were frozen at -20 °C immediately 

after sampling. NOx
- was determined by chemiluminescence after reduction to NO with 

acidic vanadium(II) chloride (Braman and Hendrix, 1989). 
15N labeling experiments— To investigate the N-loss in permeable sediments of 

the Wadden Sea, the isotope pairing technique (IPT) (Hauck et al. 1958) has been applied 

in slurry incubations as well as in intact core incubations, simulating either diffusive or 

advective flow conditions.  

The diffusive approach follows the protocol described by Nielsen (1992). For 

each experiment, 15 sediment cores were collected with Plexiglas push-cores (inner 

diameter (i.d.), 3.5 cm; height, 28 cm). The water overlying the 10 cm thick sediment 

cores was replaced with site sea water amended with 15NO3
-- to a final concentration of 

50 �mol L-1. The labeling percentages ranged from 41 to 99 %. The cores were 

immediately sealed without any headspace by rubber stoppers and pre-incubated for 2 h 

at in situ temperature. The overlying water was continuously mixed by externally driven 

magnetic stirring bars at approximately 60 revolutions per minute (rpm) during the 

incubations. After pre-incubation, triplicate cores were destructively sampled at regular 

intervals (0 h, 1 h, 2 h, 4 h and 6 h). Before sampling, 1 mL of zinc chloride (ZnCl2) 

(50% w:v) was added to the sediment surface by opening each core lid stopper. The cores 

were immediately resealed without any headspace and mixed by inversion. After 

allowing sediment particles to settle, an aliquot of water for N2 gas analysis was removed 

from each core and transferred to a 12 mL Exetainer TM (Labco), pre-filled with 200 �L 

saturated HgCl2. The advective approach is described by Gao et al. (2010) and de Beer et 

al. (2005). In detail, fifteen sediment cores were collected in parallel to those used for the 

diffusive approach. The overlying water in each core was replaced with aerated site sea 

water amended with 15NO3
-- to a final concentration of 50 �mol L-1 (labeling percentages 

as described above). Rubber bottom and top stoppers of the cores were equipped with 

valves to allow the percolation of the overlying water through the sediment column. De 

Beer et al. (2005) used this method to continuously percolate water through the sediment 

column. In this study, the percolation was performed only once at the beginning of the 
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experiment. Each core was rapidly percolated from top to bottom with 20 mL labeled 

seawater, thus exchanging the porewater of the upper 5 cm of the sediment. The 

percolation of all 15 intact cores was performed within 25 min at an average flow of 12 

mL min-1. Cores were immediately sealed without any headspace by rubber stoppers after 

percolation, incubated at in situ temperature (~13°C in October 2006, ~9°C in March 

2007 and ~20°C in August 2007) and were destructively sampled in triplicate at regular 

intervals between 0 and 6 hours (0 h, 1 h, 2 h, 3 h, and 4 h in summer and 0 h, 1 h, 2 h, 4 

h, and 6 h in winter). The overlying water of all cores was mixed continuously at 

approximately 60 rpm during the incubations by externally-driven magnetic stirring bars. 

Cores were sacrificed in reverse order of percolation. Subsamples for rate determination 

were obtained in the same way as described in the diffusive approach.  

Slurry incubations were performed at the Janssand sites as described by Gao et al. 

(2010) and N2 productions were examined in gas impermeable bags using 15N tracer 

isotope pairing technique according to Thamdrup and Dalsgaard (2002). Sediments were 

sampled using Plexiglas push-cores (i.d., 9.5 cm; height, 60 cm). The sediment core was 

sectioned into 2 cm depth intervals to a depth of 6 cm. The sectioned sediment was 

transferred into gas-tight bags and mixed with air-saturated seawater from the study site 

at a volume ratio of 1:1.4. After removing the entire gas phase, the bags were sealed and 
15NO3

- was injected through the rubber stopper into the bags to a final concentration of 

200 �mol L-1 (labeling percentages ranged from ~70% to ~99%). Bags were mixed well 

and incubated at in situ temperature. During the incubation, the bags were periodically 

shaken to ensure a homogenous distribution of labeled N2. Subsamples of the interstitial 

water were collected from the bags immediately before and after the addition of the tracer 

and at regular time intervals up to 16 hours. The withdrawn subsamples were preserved 

in 6 mL Exetainer TM vials (Labco) without any headspace, each of which was pre-filled 

with 100 �L saturated HgCl2. 

Oxygen concentrations in slurry subsample were measured as described by Gao et 

al. (2010). Oxygen concentrations were measured directly after subsampling from the 

bags using oxygen microsensors. The sample vials were uncapped and a calibrated O2 

microsensor was inserted into the bottom of each vial for ~10 seconds until the sensor 
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signal stabilized. Sample vials were recapped immediately to avoid significant gas 

exchange.  
15N-N2 measurements and rate calculations— A 1 mL Helium headspace was 

introduced to each sample vial. The isotope ratios of dinitrogen gas (29N2/28N2 and 
30N2/28N2) in the headspace were determined by gas chromatography-isotope ratio mass 

spectrometry (GC-IRMS; VG Optima) by direct injection of the sample headspace. 

Concentrations of 30N2 and 29N2 were calculated from the excess relative to air according 

to Holtappels et al. (2011). Incubations without a significant linear trend in concentration 

over time (p > 0.05) were discarded. For further calculations we do not consider N-loss 

via anammox since 29N2 production in slurry incubations with added 15NH4
+, 14NO3

- and 

allylthiourea (ATU) was insignificant (data not shown here). It can be assumed that 

denitrification is the sole N-loss process.  

For intact core incubations using either the diffusive or advective approach, 

denitrification of 14NO3
- and 15NO3

- (D14 and D15) is calculated from the production of 
29N2 (p29N2) and 30N2 (p30N2) over the first 4 (March) and 2 (August) hours according to 

Nielsen (1992): 

2
30

2
29

15 2 NpNpD ���     (1) 

� �  � 2
30

2
29

2
30

2
29

14 22/ NpNpNpNpD �����   (2) 

We have strong arguments to assume that the advective NOx
- transport from bottom 

waters into the first centimeters of the permeable sediment is not limiting denitrification 

under in situ conditions (see discussion below). We therefore did not distinguish between 

D14 and D15 in the whole core incubations. Thus, total N-loss via denitrification (Dtot) is 

calculated as 

1514 DDDtot ��     (3) 

In slurry incubations, total N-loss via denitrification (Dtot) is calculated from the 

production of 30N2 over the first 4 hours according to Thamdrup and Dalsgaard (2002): 
2

2
30 )/(2

3
15NOtot FNpD ��     (4) 

where 
3

15NOF is the labeling percentage of nitrate. 
3

15NOF  is derived directly from the 

known amount of added 15NO3
- and the measured concentration of 14NO3

- in the added 

seawater: 
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The initial labeling percentage (
3

15NOF ) may differ from the labeling percentage at a later 

time point (
3

15' NOF ) if the production of 14NOx
- via nitrification dilutes the initial labeling 

percentage. Assuming that denitrification is the only N-loss process and that random 

isotope pairing of 14NOx
- and 15NOx

- leads to binomially distributed N2 species 28N2, 29N2 

and 30N2 (Hauck 1958, Nielsen 1992), 
3

15' NOF  can be calculated from the production of 

29N2 and 30N2 according to 

)2//(2'` 2
30

2
29

3
15 �� NpNpF NO

    (6) 

Here, Dtot in slurry incubations (Eq. 4) was determined using 
3

15' NOF  instead of 
3

15NOF  

with p29N2 and p30N2 calculated over the first 4 hours. It should be mentioned that Dtot 

derived from combining Eqs. 4+6 is essentially equal to Dtot derived from combining Eqs. 

1-3.  

In the absence of anammox 
3

15' NOF represents the actual labeling percentage of the 

denitrified NOx
- pool during the incubation. A decrease of 

3
15' NOF  from the initial 

3
15NOF  

indicates that the 15N-labeling percentage was lowered during the incubation, most 

probably by the oxidation of 14NH4
+ to 14NOx (nitrification). If and to what extend the 

presence of oxygen and any nitrification activity violates the steady state assumption of 

the IPT method is discussed below. 

Model of NOx influx—Tidal flats in the Wadden Sea are dominated by highly 

permeable sandy sediments with rippled topography. Two dominant forces - waves and 

tidal currents - interacting with bottom topography, generate pressure gradients that drive 

the exchange of pore water with the overlying water. To simplify the model, only the 

force of tidal currents was incorporated. Due to the higher permeability, advective 

transport in sandy sediments exceeds the diffusive transport in the muddy sediments by 

orders of magnitude (Precht and Huettel et al. 2004). Based on a 2-dimensional single 

ripple model for permeable sediments presented by Huettel et al. (1996), a multiply 

rippled porous domain was constructed (Fig. 2a).  
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According to the topography of surface sediments at Janssand, the height of the 

ripple (Hy) was set to 2 cm, while the horizontal extent of a single ripple is divided into 

four equal lengths of Hx=3.46 cm (Fig. 2b). The permeability and porosity of the 

sediment was obtained in measurements as k=10-12 m2 and φ=0.39, respectively. The inlet 

velocity (U0) was taken in the range from 5 × 10-3 to 5 × 10-2 m s-1. The fluid flow 

calculation in and above the sediment is based on the lattice Boltzmann method (LBM). 

Moreover, the velocity and pressure field were calculated from an extended Darcy 

equation (Guo and Zhao 2002).  

For the computation of the velocity and pressure field, the hydrodynamics of 

percolation is characterized by the Reynolds number Re, here defined by the equation: 
1

0Re ���� �HyU      (7) 

 
Figure 2: (a) Schematic of the multiple ripples domain. The domain was composed of three ripples, and 

the slope of each ripple is assumed to be 30 degrees. The center points of three triangular ripples were 

located at ¼L, ½L and ¾L beginning from the left. The vertical position of the interface line at the flat 

part was at ¼H. The inlet velocity was assumed to follow a uniform distribution U0. (b) One ripple 

component. The dashed line represents the interface line. Hy is the height and 4Hx are the length of 

each ripple. 
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The symbol ν in Eq. 7 denotes the kinematic viscosity of the seawater, which is a 

function of temperature T (in °C). The relationship between ν and T can be expressed by 

the following equation (Kampmeyer 1952; Perry and Green 1984): 

435.05.235.1 )047.0( ��� �� T�     (8) 

where ν has the unit of 10-6 m2 s-1. Revealed from the computation results, the flow shows 

an unsteady nature when Re is more than 100 (U0 
 5 × 10-3 m s-1). Therefore, an 

averaging procedure for velocity fields was performed over approximately 107 time steps, 

equivalent to one hour. The convergence criterion is the time-independent average inward 

flow velocity (Uin), which was defined as a sum of velocity components normal to the 

interface line. In order to avoid overestimation of the flux due to high velocities close to 

the interface line, Uin was calculated a few lattice nodes below the interface (dashed line 

in Fig. 2). Calculations were carried out for a range of Reynolds numbers, Re=100, 200, 

400, 600 and 1000 with the corresponding U0 = 0.5, 1, 2, 3, 5 × 10-2 m s-1. For a given 

range of parameters it was found that Uin can be expressed as an exponential function of 

the Reynolds number using the equation: 
b

in aU Re��      (9) 

The fitting procedure gave a=2.57×10-10 [m h-1] and b=2.62 [-] and a similar equation 

was also reported to confirm our modeled results (Cardenas and Wilson 2007). This 

relation was used to extrapolate Uin to higher Reynolds numbers in order to cover the full 

range of current velocities measured at Janssand.  

Assuming advective transport from the water column into the sediment (Uin) and 

a constant NOx
- concentration in the overlying water (CN), the inward advective NOx

- 

flux (FN) across the water-sediment interface is expressed by: 

NinN CUF ��      (10) 

 

Results 

NOx porewater profiles—Representative results of NOx
- concentrations in the 

porewater during the first 1-2 hours of exposure are shown in figure 3a and 3b. In 

October 2006, NOx
- concentrations in the porewater decrease from 7 µmol L-1 at the 

surface to 1 µmol L-1 at 3.5 cm depth (Fig. 3a). In March 2007, NOx
- concentrations 
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decrease from 42 µmol L-1 at the surface to 5 µmol L-1 at 5.8 cm depth (Fig. 3a). The 

dynamic change of NOx
- concentration over time is exemplified by consecutive 

porewater measurements (Fig. 3b). Because porewater is stagnant during times of 

exposure, the NOx supply from the bottom water ceased and NOx consuming processes 

cause the rapid decrease of NOx
- concentrations during the first 80 minutes of exposure. 

NOx
- consumption calculated from these porewater profiles was 1.2 mmol N m-2 h-1. 

 
N-loss from sediment core and slurry incubations—Constant production of 29N2 

and 30N2 over the first 4 hours was observed in core incubations under simulated diffusive 

as well as advective transport conditions (representative results shown in Fig. 4a+b). 

Under diffusive transport conditions, the observed total N-loss rates (Dtot) ranged from 

below detection to 19 ± 7 µmol N m-2 h-1. Under simulated advective transport conditions, 

N-loss rates were consistently 1-2 orders of magnitude higher (169 - 238 µmol N m-2 h-1) 

(Table 2). In slurry incubations, oxygen was present during the first 4-6 hours in March 

and during the first 1-2 hours in August (representative results shown in Fig. 4 c+d). 

Despite the initial presence of O2, a constant production of 29N2 and 30N2 was observed 

 
Figure 3: (a) NOx

- concentrations in the porewater during the first hour of exposure in October 2006 

and March 2007. (b) Consecutive NOx
- porewater measurements during the first 1.5 hours of exposure 

in March 2007. The measurements in March 2007 shown in panel (a) and (b) were made at different 

days. The measurement site is Janssand, middle flat.  
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during all seasons, consistent with the previous findings of Gao et al. (2010). N-loss rates 

obtained from slurry incubations ranged between 144 and 303 µmol N m-2 h-1 when 

integrated over the upper 5 cm depth, and largely agreed with rates measured in 

percolated sediment cores (Table 2). 

 
Spatial and temporal variability of benthic N-loss—The temporal and spatial 

variability of N-loss rates measured either in slurries or percolated cores was minor. In 

March 2007, the N-loss rates in percolated cores were slightly higher at the upper flat in 

comparison to the middle flat (230 and 169 �mol N m-2 h-1, respectively), while in 

August 2007 the N-loss rates were not significantly different between the same sampling 

sites (188 and 209 �mol N m-2 h-1, respectively). In March and August 2007, N-loss rates 

obtained from slurry incubation were comparable to those obtained from percolated cores 

and showed similar deviations between the sampling sites (Table 2). In general, N-loss 

rates between the upper and middle flat in the 3 field campaigns were consistent (on 

 
Figure 4: 29N2 and 30N2 concentration over time in intact core incubations simulating diffusive 

conditions (a) and advective conditions (b) in March 2007. Labeled N2 and oxygen concentration over 

time in slurry incubations of the upper sediment (0-2cm) in March 2007 (c) and August 2007 (d). Note 

that 29N2 in panel d was multiplied by 15 to fit the same scale. 
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average ~ 200 µmol N m-2 h-1) with the exception of the N-loss rate measured in the 

middle flat in October 2006, which was 5-fold increased. However, at the same time the 

N-loss rate at the upper flat was 238 �mol N m-2 h-1, which was again similar to rates 

measured in March and August 2007 (Table 2). 

 

 
In October 2006, N-loss rates were investigated at six stations along a transect 

through the East Frisian Wadden Sea. The rates were similar to those measured at 

Table 2. N-loss rates determined from intact core and slurry incubations at Janssand. 

Sampling 

season 

Sampling 

sites 

N-loss rates (µmol m-2 h-1) 	 standard error 

intact core incubation 

diffusion 

intact core incubation 

percolation (down to 5 cm) 

slurry incubation 

(integrated to 5 cm) 

Oct 2006 
upper flat ----- 238.4 	 41.8 ----- 

middle flat 9.5  	 0.4 1056.2 	 162.6 ----- 

Mar 2007 
upper flat 4.7 	 0.7 230.0 	 24.0 303.4  	 10.2 

middle flat not detectable 168.9 	 13.7 144.2  	 11.8 

Aug 2007 
upper flat 18.9 	 7.1 188.5 	 43.7 179.3  	 7.0 

middle flat 8.6  	 1.3 209.2 	 28.9 262.1  	 24.5 

 

Table 3.  N-loss rates determined at sand flats along a transect in the East Frisian Wadden Sea. 

Sampling 
season Site No. Site name Latitude / Longitude 

N-loss rates (µmol N m-2 h-1) 

	 standard error 

Oct 2006 

1 Engelsmanplaat 53°26.2'N, 06°04.4'E 175.9 	 57.4 

2 Simonszand 53°30.3'N, 06°25.3'E 185.1 	 14.2 

3 Horsbornzand 53°29.17'N, 06°39.46'E 236.9 	 8.4 

4 Kopersand 53°34'N, 07°01'E 288.6 	 51.0 

5 Hohes Riff 53°41.5'N, 07°12.7'E 255.6 	 101.1 

6 Janssand 53°44.11'N, 7°41.95'E 238.4 	 41.8 
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Janssand ranging from 176 to 289 �mol N m-2 h-1 (Table 3). The rates at the eastern 

stations (Sta. 3-6) were slightly increased compared to western stations (Sta. 1 and 2) (Fig. 

1a). However, the variation along the 100 km transect was small. In summary, at the 

transect sites and during the three sampling campaigns at Janssand (Tables 2 and 3), 

N-loss rates in percolated cores varied by less than a factor of 2 (with the exception of the 

high rate at the middle flat in October 2006). 

Modeled NOx
- fluxes from overlying water into permeable sediments—Current 

velocities at 10-50 cm above the sediment were measured in July 2009 and April 2010. 

The velocities presented in Figure 5 were measured in April 2010 and averaged over 4 

complete inundation periods (about 4 hours of a full tidal cycle). During the rising tide, 

an initial current velocity of 41.5 cm s-1 was measured, which decreased to a minimum of 

7.6 cm s-1 at high tide. At falling water level, the current velocity increased to a 

maximum of 36 cm s-1 and, thereafter, decreased to 25 cm s-1 during the last hour of 

inundation. Current velocities during the individual inundation periods were consistent 

and comparable to current velocity measurements in July 2009. In general, current 

velocities in the Wadden Sea are governed by tidal forces and wind, and show little 

seasonal variation with the exception of storm events (Badewien et al. 2009; Bartholomä 

et al. 2009). Hence, the averaged values presented in Fig. 5 were used as U0 to calculate 

the inward flow velocities into the sediment (Uin) from Eqs. 7-9. 

In general, NOx
- concentrations in the water column nearby Janssand exhibited a 

strong seasonal variability. NOx
- concentrations ranging from below 1 to up to 110 µmol 

L-1 were measured by Grunwald et al. (2010) between January 2006 and December 2008. 

For the model, NOx
- concentrations measured between October 2006 and October 2007 

were applied. Concentrations were negatively correlated with temperature, but positively 

correlated with the loading of dissolved inorganic nitrogen estimated previously from 

riverine input (Van Beusekom and de Jonge 1998; Grunwald et al. 2010). In winter 2006 

and early spring 2007, daily averaged NOx
- concentrations in the water column increased 

to maximum values of 40 µmol L-1. During early summer, the NOx
- concentrations 

declined rapidly to values of around 1 µmol L-1. NOx
- concentration then gradually 

increased to 5-10 µmol L-1 in the late summer and autumn. 
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Measured NOx
- concentrations (CN) and modeled inward flow velocites (Uin) were 

used to calculate the NOx
- flux (FN) over a full inundation period according to Eq. 10. An 

example of modeled NOx
- fluxes in March 2007 is shown in Figure 5. There, the mean 

NOx
- concentration and temperature were 32 µmol L-1 and 7.3°C, respectively, and 

therefore, the simulated NOx
- flux is responding to the current velocity only (see Eqs. 7-

10). The estimated NOx
- flux into the sediments was 700 µmol m-2 h-1 at low velocities 

and increased to 4.3 × 104 µmol m-2 h-1 at maximum velocities. The NOx
- flux averaged 

over the full inundation period was 1.5 × 104 	 3.0 × 103 µmol m-2 h-1 (Fig. 5).  

 
Over the seasonal cycle, modeled NOx

- flux is a function of the available NOx
- 

concentration in the overlying water (Fig. 6b). For example, increased NOx
- concentration 

of 48.0 µmol L-1 in March 2007 with the temperature of 7.6°C caused the modeled NOx
- 

flux to increase to 2.3 × 104 µmol m-2 h-1. In contrast, although the temperature increased 

 
 
Figure 5: An example of modeled NOx

- flux as a function of bottom flow velocity during inundation. 

The velocities in this plot (grey triangles) represent average values measured over 4 tidal cycles in April 

2010. Modeled NOx
- fluxes (black dots) were obtained from Eq. 10 using average NOx

- concentrations 

(32.7 µmol L-1) and temperatures (7.3°C) of the bottom water in March. The average NOx
- flux (dashed 

line) was calculated from the modeled NOx
- flux over one inundation period. 
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by a factor of more than 2 in October 2006 and August 2007, decreased NOx
- 

concentrations of ~ 0.7 µmol L-1 led to modeled NOx
- fluxes decrease to ~ 700 µmol m-2 

h-1. Over the experimentally investigated seasons, modeled NOx
- fluxes into permeable 

sediments were at least 2 times higher than the measured denitrification rates (Fig. 6, 

Table 2).  

 

 
Discussion 

 
Figure 6. N-loss rates and NOx

- fluxes determined from October 2006 to October 2007. (a) N-loss rates 

measured at the upper flat at Janssand using different incubation methods. (b) Modeled NOx
- fluxes 

derived from ambient NOx
- concentrations, which were measured at the time series station over the 

same time period. In place of missing data from April to July in 2007, the data from the same time 

period in 2006 (black dots) and in 2009 (gray dots) were shown in the figure. The average NOx
- 

concentrations from April to July of both years were used to model the mean NOx
- fluxes (black line) 

over the annual cycle. Note the different scales in panels a and b. 
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N-loss from diffusive core incubations—In several previous studies, denitrification 

in permeable sediments was investigated by simulating diffusive transport conditions. 

Denitrification rates measured in these studies varied widely up to 133 µmol N m-2 h-1 

(Table 4). In this study, N-loss rates obtained from intact cores under diffusive transport 

conditions (<19 µmol N m-2 h-1, Table 2) were in the range of previously reported rates 

from the Wadden Sea permeable sediments (1-42 µmol N m-2 h-1, Table 4). In contrast, 

N-loss rates obtained from intact cores under advective transport conditions (on average 

~ 200 µmol N m-2 h-1) were 1-2 orders of magnitude higher than those measured under 

diffusive flow conditions at the same sampling sites (Table 2). The increased N-loss 

under advective conditions was consistent with findings from permeable sediments in the 

South Atlantic Bight, where diffusive core incubations (Vance-Harris and Ingall 2005) 

and advective core incubations (Rao et al. 2007) from the same site deviated by 1-2 

orders of magnitude. In this study, rates from percolated core incubations substantially 

exceed most denitrification rates reported from the northern coastal muddy sediments in 

Europe (Table 4) but agree well with the previous studies that observed enhanced N-loss 

rates due to advective transport in permeable sediments (Cook et al. 2006; Rao et al. 2007; 

Gihring et al. 2010).  

N-loss from slurries and percolated core incubations—O2 dynamics in permeable 

Wadden Sea sediments are largely influenced by advective porewater flow driven by 

waves and bottom water currents over uneven topography. Variable pressure gradients, 

caused by ripple migration, waves and variable currents, and the presence and absence of 

bottom water currents during times of inundation and exposure directly affect the 

porewater flow and thus the availability of oxygen and nitrate in the sediment. During 

inundation, advective porewater flow causes deep penetration of O2 (~5 cm) (Werner et 

al. 2006; Billerbeck et al. 2006; Jansen et al., 2009), thus enlarging the oxic and suboxic 

biogeochemical zone and enhancing the remineralization rate of organic matter (de Beer 

et al. 2005; Franke et al. 2006). The oscillation between deep and shallow O2 penetration 

depths during times of inundation and exposure may also favor the overlap of oxic and 

anoxic processes. Indeed, Gao et al. (2010) and Rao et al. (2007) reported substantial 

denitrification rates occurring in aerobic permeable surface sediments.  
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Furthermore, the advective porewater flow causes the deep penetration of NOx
- into 

the sediment. Porewater profiles show that NOx
- is still available at sediment depths of up 

to 6 cm (Fig. 3a). When the influx of NOx
- ceases during exposure, consecutive 

porewater measurements show a rapid decrease of NOx
- concentrations (Fig. 3b) 

indicating high NOx
- consumption. NOx

- consumption calculated from these porewater 

profiles was 6-fold higher (1.2 mmol N m-2 h-1) compared to the average N-loss measured 

in slurry and percolated core incubations (0.2 mmol N m-2 h-1). This suggests that the 

results from slurry and percolated core incubations may even underestimate the in situ N-

loss under natural conditions. 

The dynamic nature of porewater advection complicates the investigation of 

N-cycling in permeable sediments. Experiments used in this study, i.e. the incubation of 

slurries and percolated cores, aim to mimic a period of inundation when oxygenated and 

nitrate-containing bottom water is injected into the sediment, followed by a period of 

exposure during which porewater is stagnant and O2 is consumed until anaerobic 

conditions prevail. Under the initial oxic condition, it can be expected that nitrification 

constantly adds 14NOx
- to the NOx

- pool resulting in the decrease of 30N2 relative to 29N2 

production over time. This would violate the steady state assumption behind the IPT 

method. However, during the first 4 hours of slurry and percolated core incubations no 

change of 30N2 and 29N2 production was observed (Fig. 4). In percolated core incubations 

this can be explained by the fact that the initial oxygen was rapidly consumed within the 

first 30 to 60 minutes of the incubation, i.e. between subsampling at 0 h and 1 h (see Gao 

et al. 2010, Fig.3). Hence, a change of the NOx
- labeling percentage can be expected only 

in the first hour of the incubation. Thereafter, steady state conditions can be assumed. 

Likewise, steady state conditions are assumed in the slurry incubations in August 2007, 

when O2 was consumed within the first 90 minutes (Fig. 4d). Finally, the oxygen 

consumption in the first hour of the incubation resulted in only minor changes of the 

labeling percentages. The decrease of 
3

15' NOF  (Eq. 6) relative to 
3

15NOF  (Eq. 5) was on 

average below 5% in the percolated core incubations and below 3% in the slurry 

incubations in August 2007.  

In percolated core incubation, microbial cell densities remain unaffected, while cell 

densities in slurry incubations are diluted and, assuming constant cell specific respiration 
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rates, the change from oxic to anoxic condition may last longer. This was the case in 

March 2007, when oxic conditions in slurry incubations lasted for up to 6 hours (Fig. 4c). 

Nevertheless, N2 production was constant within this period, because most of the initial 

oxygen (starting concentration ~300µmol L-1) was consumed before the first subsampling, 

which resulted in a decrease of the initial labeling percentage (
3

15' NOF  compared to 
3

15NOF ) 

of 15% on average. Thereafter, the contribution of nitrification to the 14NO3
- pool was 

most likely insignificant. The potential error was estimated by calculating the amount of 

nitrified 14NO3
- from the O2 consumed during the incubation (between 90 and 30 µmol L-

1) assuming an O2/NO3
- ratio of 138/16 (Jahnke et al. 1982). The maximum potential 

decrease in labeling percentage was 3.3% resulting in an increase of Dtot (Eq. 3) of less 

than 7%. In summary, we assume the NOx
- pool to be in steady state in slurry and 

percolated core incubations - despite the initial dynamic oxygen regime.  

NOx
- availability under in situ conditions—Low N-loss rates measured under 

diffusive transport conditions are likely limited by NOx
- availability. As diffusive 

transport conditions are not realistic in permeable surface sediments (Huettel et al. 1996, 

1998, 2003), this limitation was overcome in core incubations where 15NO3
- enriched 

bottom water was percolated through the sediment. In percolated core incubations as well 

as in slurry incubations N-substrate was available throughout the incubation and therefore 

denitrification rates were not N-limited and may be considered as potential rates. 

However, we provide the following arguments suggesting that in situ denitrification rates 

are not N-limited in the first centimeters of permeable sediments.  

At the same study site, repeated observations of deep O2 penetration of several 

centimeters indicate significant advective transport of bottom water into the sediment 

(Werner et al. 2006; Billerbeck et al. 2006; Jansen et al., 2009). This advective transport 

stimulated oxygen consumption rates to increase 1-2 orders of magnitude (de Beer et al. 

2005) – similar to the observed increase of denitrification in this study. In addition, NOx
- 

is detected in porewaters down to depths of 6 cm and more (Fig. 3, see also Gao et al. 

2010). The NOx
- profiles were consistent with the modeled NOx

- fluxes, which were 

sufficient during most of the year to support the measured N-loss rates. The modeled 

NOx
- fluxes give conservative estimates since NOx

- flux due to wave motion and 

bioirrigation and the NOx
- contribution from nitrification was not considered. 
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Furthermore, in all rate measurements we observed the immediate start of a constant 

production of labeled N2 (Fig. 4). Any adaptation to changing N-substrate availability, on 

either cell or community level, would have resulted in an initial lag phase of the N2 

production.  

We also assume that the denitrifying community is well adapted to variable NOx
- 

concentrations. First of all, the measured N-loss rates were similar in all slurry and 

percolated core incubations although the background nitrate concentrations differed by 

more than 80 µmol L-1. Further evidence comes from experiments, in which Gao et al. 

(2010) used microsensors to measure NOx
- consumption in a sediment core after 

percolation of bottom water. They observed a decrease of NOx from 60 µmol L-1 down to 

submicromolar concentrations without significant change of rates suggesting that 

denitrification activity is not affected by low NOx
- concentrations, such as those 

measured in the bottom water during summer. In summary, we suggest that N-loss rates 

from percolated core incubations provide reasonable estimates for in situ denitrification 

rates, while diffusive core incubations are inadequate because advective porewater 

transport is not considered. 

Consistency of temporal and spatial N loss—N-loss rates obtained from advective 

core incubations were very similar at different sampling sites and throughout the different 

sampling periods (168 to 288 µmol m-2 h-1, Table 2), although the background NOx
- 

concentrations and the modeled NOx
- influxes were highly variable. Modeled NOx

- 

influxes varied from 1.9 × 103 to 2.2 × 104 µmol m-2 h-1 and significantly exceeded the 

demands for sustaining the measured denitrification rates. On average, modeled NOx
- 

fluxes were 30 times higher compared to the measured rates. This suggests that N-loss 

rates in the upper 5 cm of the sediment were not limited by NOx
- supply during most of 

the year.  

The factors responsible for the consistent N-loss rates in the permeable sediments 

of the Wadden Sea remain speculative. The input or availability of organic carbon as a 

substrate for heterotrophic denitrification could potentially have limited the N-loss rates 

as has been shown in previous studies (Trimmer and Nicholls 2009). However, one 

would expect organic carbon concentration to be variable rather than uniform during the 

different sampling seasons. Alternatively, the consistent N-loss rate could depend on the 
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capacity of permeable sediment to host a microbial community. Compared to 

impermeable sediments with higher porosity and diffusive porewater transport, 

microorganisms in permeable sediments can colonize only the surface of the sand grains, 

since the pore space is exchanged with the pore water flow, which leads to fewer 

microorganisms per cm-3. 

Annual N loss from permeable Wadden Sea sediments—Based on the constant 

N-loss rates during the different sampling periods and at the various sampling sites 

(Table 2 and 4) we estimated the annual N-loss from permeable Wadden Sea sediments. 

The inundation periods of the studied intertidal sediments were 8-12 hours per day (i.e., 

4-6 hours per cycle) with a mean of 10 hours per day (Table 5a). Since no substantial 

difference was observed between N-loss rates from percolated core and slurry 

incubations (Table 2), we used an average areal N-loss of 207 µmol N m-2 h-1 derived 

from percolated core incubations. Integrating these rates over the annual cycle, we 

assumed the areal N-loss to take place whenever the modeled NOx
- fluxes were sufficient, 

i.e. higher than the measured rates. This was the case for 360 days of the year. For the 

remaining 5 days, modeled NOx
- fluxes were lower than the experimentally derived 

N-loss and therefore rates during these days were conservatively set to zero. In summary, 

the annual N-loss per m2 from the intertidal sand flats of the Wadden Sea is 745 	 109 

mmol N m-2 yr-1 (Table 5a), which is comparable to the mean annual N-loss rate of ~600 

mmol N m-2 yr-1 estimated previously for the entire seafloor area of the Wadden Sea (Van 

Beusekom et al. 2008).  

One third of the Wadden Sea area (~4700 km2) is composed of sandy intertidal 

sediments (Common Wadden Sea Secretariat 2008). Based on our annual N-loss rate and 

the intertidal area, the annual N-removal from intertidal flats of the Wadden Sea is 

calculated to be 46 	 7 × 106 kg N yr-1 (Table 5b). Furthermore, the subtidal flat areas 

(3700 km2) and offshore areas (4900 km2) are to a large extent covered by coarse 

permeable sediments (Common Wadden Sea Secretariat 2008), in which comparable 

advective porewater transport and oxygen penetration depths were observed (Janssen 

2004). We conservatively estimated that 80 % of the subtidal Wadden Sea area is covered 

by permeable sediments. From the observed consistency of N-loss in the intertidal zones 

of Wadden Sea sediments, a similar N-loss of 207 µmol N m-2 h-1 was assumed for the 
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subtidal zones. Given that the subtidal zone is continuously inundated, the annual N-loss 

per m2 in subtidal and offshore areas is estimated to be 1788 	 263 mmol N m-2 yr-1 

(Table 5b). Integrating over all intertidal and subtidal areas, the annual N-loss from 

permeable sediments of the entire Wadden Sea adds up to 218 	 32 × 106 kg N yr-1 

(Table 5b), which exceeds the previously reported estimate of ~112 × 106 kg N yr-1 (van 

Beusekom et al. 2008), and accounts for ~30% of the total annual N-input into the 

Wadden Sea (745 to 820 × 106 kg N yr-1, van Beusekom et al. 2001). These results 

underline the importance of the sandy Wadden Sea seafloor as a major sink for riverine 

nitrogen loads that enter the German Bight. 

Conclusions—Permeable sediments allow the advection of pore water, which 

accelerates the influx of NOx
- from the bottom water. Modeled NOx

- fluxes in this study 

suggest that even at times when NOx
- concentrations in the bottom water are rather low 

the fluxes remain sufficiently high to support the experimentally measured rates of 

denitrification. Permeable sediments are wide spread in coastal areas and account for up 

to 70% of the shelf sediments (Johnson and Baldwin 1986). However, the mean annual 

N-loss from shelf sediments is currently estimated to be ~146 mmol N m-2 yr-1 (Galloway 

et al. 2004), which is only a fifth of the areal rates measured in this study. Therefore, the 

contribution of permeable sediments to the N-loss from shelf sediments should be re-

evaluated, and the high potential of permeable sediments to regulate the flow of nitrogen 

at the land/sea boundary should be further investigated.  



Intensive and extensive nitrogen loss 

 89 

Table 4. Denitrification rates reported for coastal marine environments 

Location Sediment type Method Denitrification rate 
(µmol N m-2 h-1) Reference 

Texel, Wadden Sea sand acetylene block method 0.9 - 42 Kieskamp et al. 1991 

Southern North Sea 
fine sand acetylene block method 5.8 - 8.9 Lohes et al. 1996 

fine sand 15N2 isotope paring method 8.9 - 11.9 Lohes et al. 1996; Devol 1991; Laursen and Seitzinger 2002 

Svalbard fine sand N2-flux 33.6 Devol et al. 1997 

Mid-Atlantic Bight sand N2-flux 68.8 Laursen and Seitzinger 2002 

Washington state shelf sand N2-flux 133.3 Devol1991 

North Sea sand and mud NO3
- consumption model 28.6 Billen 1978 

Baltic Sea 
sand and mud Geochemical model 93.4 Shaffer and Ronner 1984 

sand and mud 15N2 isotope paring method 0.5 – 4.5; 13.4 – 28.7 Deutsch et al. 2010 

Northern Baltic Proper 
Gulf of Finland mud 15N2 isotope paring method 

0 – 12.5  

3 – 26.8 
Tuominen et al. 1998 

Aarhus Bay silt 15N2 isotope paring method 12.2 - 20.8 Nielsen and Glud 1996 
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Table 5. Annual N-loss determined for the sandy seafloor of the Wadden Sea. 

a)  Intertidal sand flats. 

 

N-loss rate Inundation time 
N-loss rate integrated over 

inundation time and year 
Annual N-loss rate 

(µmol N m-2 h-1) hours per day days per year (mmol N m-2 per 3600 h) (mmol N m-2 yr-1) 

Experimental average 207.0 	 30.4 10 360 745.2 	 109.4 
745.2 	 109.4 

Modeled NOx
- flux � 207.0 	 30.4 10 5 ------- 

 

b) Other areas where sands dominate the seafloor. 

Geomorphological region 

of the Wadden Sea 

Area Percentage of sandy permeable sediments Annual N loss rate N loss estimate 

(km2) (%) (mmol m-2 yr-1) (� 106 kg N yr-1) 

Intertidal flats 4700 93 745.2 	 109.4 45.6 	 6.7 

Subtidal flats and gullies 3700 80 (almost all) 1788.5 	 262.6 74.1 	 10.9 

Offshore area 4900 80 (almost all) 1788.5 	 262.6 98.2  	 14.4 
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Abstract 
In permeable sediments, expansion of the oxic surface layer due to advection may 

favor nitrification and aerobic denitrification. However, little is known to date about the 

actual occurrence of and interactions between these N-cycling processes in permeable 

sediments. In this study, nitrification and its coupling to N-loss processes (including 

anammox and denitrification) in permeable Wadden Sea sediments were quantified using 

various 15N-isotope-paring experiments. Experiments were conducted in March and 

August 2007, when NOx
- (NO3

- and NO2
-) was enriched and depleted, respectively, in the 

overlying water column. The active occurrence of nitrification was verified by observed 

net 15NOx
- production. Interestingly, such produced NOx

- appeared to be quickly 

consumed by other dissimilatory processes. Aerobic denitrification was the dominant N-

loss process observed in these sediments. Although anammox did occur, it was at very 

low rates (<2 µmol N m-2 h-1, <1 % of total N loss) and could explain only a small 

portion of the NOx
- consumed. Nitrification coupled to aerobic denitrification was found 

to attribute to as much as 17 % of total N-loss especially in surficial permeable sediments 

which are most strongly influenced by advection. The rest of total N-loss (83 %) was 

attributed to NOx
- from the overlying water due to advection. In fact, the coupling rate 

may be underestimated as O2 limitation could have occurred due to the one-pulse 

percolation method used in incubations. The estimated potential gross nitrification rates 

indicate that nitrification is a significant in situ NOx
- source in these sediments and might 

play a more important role in coupling with denitrification in the summer with depleted 

NOx
- in overlying water compared to in the winter/spring with enriched NOx

- in water 

column. The estimated potential gross nitrification is substantially greater than the 

measured conservative gross nitrification (the sum of net nitrification and the portion 

coupled to denitrification), implying that other NOx
--consuming processes such as 

dissimilatory nitrate reduction to ammonium (DNRA) or assimilation are occurring. 

Hence, results from this study provide direct and quantitative evidence that nitrification 

plays a key role in linking N-sources and N-sinks in permeable Wadden Sea sediments.
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Introduction 
Denitrification, the reduction of NO3

- or NO2
- to N2O or N2, represent an important 

sink of fixed nitrogen (N) in coastal marine environments (Joye and Anderson 2008), 

where the anammox process (NH4
++NO2

-� N2+H2O) seems to be of less importance 

(Dalsgaards et al. 2005). In most marine sediments, denitrification is mainly limited by 

the availability of NOx
- (NO2

- +NO3
-) (Canfield et al. 1993; Brandes and Devol 1995). 

The supply of NOx
- is primarily derived from two sources: the overlying water column 

and nitrification in oxic surface sediments. The former source depends on the 

concentration of seawater NOx
-, whereas the latter depends on the depth of oxygen 

penetration as an electron acceptor in the stepwise oxidation of ammonium to nitrite and 

nitrite to nitrate. These two steps in nitrification are performed by different groups of 

microorganisms (Lam and Kuypers 2010). Thus, nitrification, the main oxidative process 

in the N cycle, links mineralization of organic nitrogen to N loss via denitrification and 

anammox in the marine system (Jenkins and Kemp 1984; Rysgaard et al. 1993; Lam et al. 

2007). 

Under diffusive conditions, a thick layer of oxic surface sediments favors 

nitrification over ammonium loss across the sediment-water interface, and promotes 

denitrification coupled to nitrification rather than its reliance on NOx
- from the overlying 

water (Nielsen et al. 1990; Jenkins and Kemp 1984; Seitzinger 1990). The significance of 

nitrification as an essential source of NOx
- for denitrification in coastal fine-grained 

sediments under diffusive conditions, has been recognized for decades (Herbert 1999 and 

thereins; Ward 2008 and references thereins). However, although the majority (up to 

68 %) of the continental shelves worldwide is covered by permeable, coarse-grained 

sediments (Emery 1969; Johnson and Baldwin, 1986), few studies have been done to 

investigate the role of nitrification in N cycling in permeable sediments, where advective 

transports, driven by tides and winds, predominate. 

In contrast to diffusive transport in fine-grained sediments, the high permeability 

of sandy sediments promotes pore water flow and advective exchange of materials across 

the sediment-water interface (Huettel et al. 1998; 2003). Recent studies showed that O2 

penetrated down to ~5 cm in permeable sediments during inundation (Franke et al. 2006; 

Werner et al. 2006; Billerbeck et al. 2006; Jansen et al. 2009), leading to an enhanced 

thickness of the oxic sediment layer. Other studies have further shown an increase in N 
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loss via denitrification caused by advection, relative to those previous reported under 

diffusive conditions in permeable sediments (Cook et al. 2006; Rao et al. 2007; 2008; 

Gihring et al. 2010; Gao et al. submitted). Moreover,  a tight coupling between 

nitrification and denitrification was reported in both the Gulf of Mexico and South 

Atlantic Bight sands (Rao et al. 2007; 2008; Gihring et al. 2010) based on isotope pairing 

in core incubations (Nielsen 1992). In the Wadden Sea, in situ monitoring efforts have 

shown clear tidal trend of water column NOx
- enrichment appearing during low tide 

(Grunwald et al., 2010), suggesting that there might be a efflux of NOx
- due to 

nitrification from sediments under advective pore water flows. In addition, an initial 

rapid net NOx
- accumulation was observed in these permeable sediments under fully 

aerobic conditions, using simultaneous sensor measurements of O2 and NOx in intact 

cores during percolation experiments. The subsequent consumption of this accumulated 

NOx
- indicated a tight coupling between nitrification and denitrification (Gao et al. 2010). 

Thus, there have been no direct quantitative assessments on nitrification and coupled 

nitrification-denitrification under simulated advective conditions with respect to O2 in 

these permeable sediments.  

In this study, we investigated nitrification and its importance as a NOx
- source for 

N-loss processes in permeable Wadden Sea sediments, using 15N-stable-isotope-paring 

experiments in slurry incubations. Furthermore, variation in activities of these microbial 

processes with depth was examined according to O2 penetration. During expeditions in 

March and August 2007, our results examined: (1) The net NOx
- produced by 

nitrification in sediments and the potential efflux of NOx
- from the sediments, and (2) the 

role of coupled nitrification-denitrification in oxic surface layer of permeable Wadden 

Sea sediments, with anammox playing a negligible role.  

 

Materials and methods 
Study site description 

Sampling and onboard incubations were carried out during two field expeditions in 

March and August 2007 on the Janssand intertidal sand flats in the German Wadden Sea 

(Fig. 1A). Janssand is located in the back-barrier area of Spiekeroog island, which 

belongs to the island chain separating the intertidal area from the open North Sea (Fig. 

1B). The intertidal sand flat covers an area of 11 km2 and is characterized by semi-
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diurnal tides with tidal ranges of 1.5-2 m. During ebb tide, sediments of the sand flat are 

gradually exposed to air.  

 

 
The sediments at Janssand are composed of well-sorted, fine quartz sands with a 

mean grain size of 176 µm and a permeability in the upper 15 cm of 7.2 x 10-12 m2 

(Billerbeck et al. 2006). The oxygen penetration depth ranges from 0.5-2 cm during 

exposure (low tide) to up to 5 cm during inundation (high tide) (de Beer et al. 2005; 

Billerbeck et al. 2006; Jansen et al. 2009).  

Nitrate concentrations (NOx
- = NO3

- + NO2
-) in the water column at Janssand are 

seasonally variable because of the seasonality of phytoplankton blooms. Water column 

NOx
- ranges from <1 �M in summer to ~60 �M in winter. Correspondingly, the 

advective influx of NOx
- into the permeable sediments, estimated by a porewater flux 

model (Gao et al. submitted), varied from 700 µmol m-2 h-1 in summer to 2.3×104 µmol 

m-2 h-1 in winter.  

Recent studies have shown that the sediment biogeochemistry at Janssand, with 

respect to oxygen consumption, organic matter mineralization and N removal, is 

representative for Wadden Sea intertidal sand flats (de Beer et al. 2005; Røy et al. 2008; 

Gao et al. in Rev.). Hence, Janssand has been chosen for detailed studies of the role of 

nitrification in permeable sediment (Fig. 1B). 

 

 

 

 
 
Fig. 1 A The location of Janssand sand flat in the Wadden Sea. B The investigated area at Janssand. 
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Sampling procedure  

In situ pore water sampling was performed in sediments during exposure, using a 

Rhizon method modified from Seeberg-Elverfeldt et al. (2005). A metal plate with holes 

at 1-1.4 cm intervals down to 15 cm was pushed into sediments. Rhizon samplers were 

inserted into the undisturbed sediments and mounted through the holes on the metal plate 

with only the sampling ports protruding from the sediments. Pore water samples for 

dissolved inorganic nitrogen (DIN) were directly extracted from these ports with sterile 

hypodermic syringes. 

Sediments for slurry incubations were sampled with push cores (inner diameter 9.5 

cm). The upper 6 cm of each sediment core were sliced in 2-cm-thick interval. Parallel 

sections were pooled (142 cm3 from each depth interval), homogenized and used for 

slurry incubations. Sea water used for incubations was collected during low tide and 

filtered through a 0.2 µm sterile filter. Subsamples were taken for dissolved inorganic 

nitrogen (DIN) measurements.  

 
15N labeling incubations  

The sediment slurries were amended with 15N labeled substrates and incubated in 

gas-tight bags (Thamdrup and Dalsgaard, 2002) to examine net nitrification, coupled 

nitrification to N-loss processes using 3 different treatments (Table 1). In treatment 1, 

samples were amended with NH4
+ + 14NOX

- for the assessment of nitrification and its 

coupling to anammox and denitrification. In treatment 2, a nitrification inhibitor 

(allylthiourea, ATU) was further added with 15NH4
++ 14NO3

- to exclude the contribution 

from nitrification. Finally, total N-loss via anammox, denitrification and coupled 

nitrification-denitrification combined was examined in treatment 3 (15NO3
-). In all three 

treatments, nitrate/nitrite and ammonium were respectively amended to a final 

concentration of 200µmol L-1, while allylthiourea (ATU) was added to a final 

concentration of 86 µmol L-1 to inhibit ammonium oxidation (Jensen et al. 2007). 

Complete details of the incubation procedures are described in Gao et al. (2010). In brief, 

all the slurry incubations were performed in the dark at in situ temperature with 200 mL 

amended air-saturated seawater to simulate the initial oxic conditions driven by 

advection. Samples for nutrient measurements were taken before and after substrate 

addition to determine the final 15N-enrichment. Slurries were well mixed after the 
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amendment of 15N-labeled substrates and incubated for 30 mins to ensure in in situ 

temperature conditions during incubations. Subsamples were taken from the well-mixed 

slurries after that 30-min inicubation with the sampling time marked as 0, 1, 2, 4, 6, 8, 16 

and 24 hours, and preserved in 6 ml Exetainer TM vials (Labco, U.K.) pre-filled with 100 

�l of saturated HgCl2.  

 

 
 
15N-N2 measurements 

A 1 mL helium (He) headspace was introduced to each sample vial. The isotope 

ratio of dinitrogen gas (28N2, 29N2 and 30N2) in the headspace was determined by gas 

chromatography-isotope ratio mass spectrometry (GC-IRMS; VG Optima) by direct 

injection of the sample headspace. Concentrations of 30N2 and 29N2 were determined 

from the excess relative to air. Incubations without a significant linear trend in 

concentration with time (p > 0.05) were discarded. 

 

DIN measurements 

All DIN samples from seawater, porewater and subsamples from incubations were 

kept frozen at -20 °C immediately after sampling and until further analysis. Dissolved 

ammonium (NH4
+) concentrations were determined using a flow injection analyzer (Hall 

Table 1: Slurry incubation treatments and investigated N cycling processes.  
 

Treatment Added N-substrates and inhibitors Investigated process Equation 

1 
15NH4

+ + 14NO3
- (in March) 

 
15NH4

+ + 14NO2
- (in August) 

net nitrification 
+ 

anammox 
+ 

nitrification-denitrification  

Eq. 2 
 

Eq. 4 
 

Eq. 12 

2 15NH4
+ + 14NO3

- + ATU anammox Eq. 4 

3 15NO3
- 

anammox 
+ 

denitrification  
+ 

nitrification-denitrification  

Eq. 4 
 

Eq. 9 
 

Eq. 14 
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and Aller, 1992). Nitrate + nitrite (NOx
-) was determined by chemiluminescence after 

reduction to NO with acidic vanadium (II) chloride (Braman and Hendrix, 1989). 

 

Oxygen determinations 

In situ dissolved oxygen concentrations was measured at high-resolution depth 

intervals with autonomous profiling microsensors as described in Glud et al. (1999) and 

Wenzhöfer et al. (2000). The Clark-type oxygen microelectrodes had a tip diameter of 

2 µm and a response time of less than 5 s (t90). In March 2006, the profiler was placed 

on the flat during low tide with the microsensors initially positioned 1 to 2 cm above the 

sediment surface. Profiles were measured over at least one tidal cycle to a sediment depth 

of 6 cm at intervals of 1 mm. Repeated profiles were measured every 20 to 60 min. 

Using oxygen microsensors, O2 concentration was measured in every slurry 

subsample shortly after subsampling from the bags and before introducing the headspace. 

The sample vials were uncapped, a calibrated O2 microsensor was inserted into the 

bottom of each vial for ~10 seconds until the sensor signal stabilized. Sample vials were 

recapped immediately to avoid significant gas exchange (Jensen et al, 2007; Gao et al. 

2010). Oxygen consumption rates at all depth intervals were calculated in the first 2 or 4 

time points of incubations when O2 were measurable and linearly consumed. The mean 

rate for each depth interval was obtained by averaging over all measured rates in those 

three paralleled slurry incubations. 

 

Rate determinations 

Net NOX production  

In treatment 1 (added 15NH4
+ and 14NO3

-), the net production of NOx
- via 

nitrification was determined from the accumulation of 15NOx
- in the Exetainers. After 

15N-N2 production had been measured in these Exetainers, all N2 gas was removed by 

purging with He. Subsequently, NOx
- in the subsamples was converted into N2 gas by 

reduction with spongy cadmium and then sulfamic acid according to Fuessel et al. 

(submitted). The isotope composition of thus generated 15N-N2 was analyzed as 

described above (in section of 15N-N2 measurements). The production of 15NOx
- was 

then calculated according to the converted 29N2 and 30N2 production: 

2
30

2
2915 2 NNNOX ���      (1) 
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The production of 15NOx
- ( XNOp15 ) in March was calculated from the increase of 

15NOX concentration over the first 2 hours (0-2 cm depth) and 4 hours (2-4 cm and 4-

6 cm depth). In August, 15NOX was already decreasing after the first 30 mins (see results 

below). Therefore, in summer, the actual incubating time zero (T0’) is when 15N-labelled 

substrates were immediately added, 30 mins ahead of the marked T0 sampling time-0h. 

XNOp15  was calculated from the increase of 15NOX concentration between the actual 

incubating time zero (T0’) and the first marked T0 subsampling (i.e. 30 min). 

Considering the labeling percentage, the net nitrification rate ( netN ) is calculated by: 

4
15/15

NHXX
net FNOppNON ��     (2) 

where 
4

15 NHF is the 15N-mole fraction of ammonium calculated from the added 15NH4
+ 

and the measured 14NH4
+ in the initial seawater and porewater samples: 

� ��� �� 4
15

4
14

4
15 /

4
15 NHNHNHF NH

     (3) 

Anammox 

In treatment 2 (added 15NH4
+, 14NO3

- and ATU), the N2 production via anammox 

(A) was calculated over the first 4 hours (linear production phrase) under aerobic 

conditions according to:  

4
15/2

29
NHFNpA �       (4) 

where 
4

15 NHF is calculated in the same way according to equation (3). 

 

Denitrification 

In treatment 3 (added 15NO3
-), the 29N2 production via denitrification was derived 

by correcting the production of 29N2 ( 2
29Np ) with the 29N2 production via anammox 

subtracted: 

3
152

29
)(2

29
NODen FANpNp ���     (5) 

Here it has been assumed that anammox rates in treatment 2 and 3 are similar. 
3

15 NOF is 

the 15N-mole fraction of nitrate calculated from the added 15NO3
- and the measured 

14NO3
- in the initial seawater and porewater samples: 

� ��� �� 3
14

3
15

3
15 /

3
15 NONONOF NO      (6) 
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The denitrification rates of 15NOX (D15) and 14NOX (D14) are calculated over the first 4 

hours under aerobic conditions from the corrected 29N2 production and the 30N2 

production according to Nielsen (1992): 

2
30

)(2
29

15 2 NpNpD Den ���      (7) 

� �  � 2
30

)(2
29

2
30

)(2
29

14 22/ NpNpNpNpD DenDen �����    (8) 

Accordingly, the total denitrification rate (Dtot) is calculated as  

1514 DDDtot ��      (9) 

Coupled nitrification-denitrification 

In treatment 1 (added 15NH4
+ and 14NO3

-), the production of 29N2 ( 2
29Np ) over the 

first 4 hours under aerobic conditions has to be corrected for the 29N2 production via 

anammox to derive the 29N2 production via denitrification: 

4
152

29
)(2

29
NHDen FANpNp ���     (10) 

with the assumption that anammox rates in treatment 1 and 2 are similar. 

Since all 15NOX that is denitrified derived from the nitrification of 15NH4
+ under 

aerobic conditions (in the first 4 hours), D15 represents the coupled nitrification-

denitrification of 15NOX: 

2
30

)(2
29

15 2 NpNpD Den ���      (11) 

To calculate the total coupled nitrification-denitrification rate ( nit
treatD )1_( ), the labeling 

percentage of 15NH4
+ has to be considered: 

4
15/15)1_( NH

nit
treat FDD �     (12) 

In treatment 3, the 14NOX originates either from the added seawater or from 

nitrification. To distinguish between the two sources that fuel the denitrification of 
14NOX (D14), the denitrification of 14NOX from the added seawater is calculated 

according to Nielsen (1992): 

)1/(
3

15
3

151514 NONO
w FFDD ���     (13) 

Whereas, the denitrification of 14NOX coupled to nitrification is calculated from: 

1414)3_(
wnit

treat DDD ��     (14) 
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In this treatment nitrification did not produce any 15NOX. Therefore, )3_(treat
nitD is 

essentially the rate of coupled nitrification-denitrification. 

Conservative gross nitrification 

Conservative gross nitrification under aerobic conditions in treatment 1 and 3 was 

calculated by adding netN  to nit
treatD )1_(  and )3_(treat

nitD , respectively.  

nit
treat

net
treat DNN )1_()1_( ��      (15) 

)3_()3_( treat
nitnet

treat DNN ��      (16) 

Areal rates 

To calculate areal rates, the volumetric rates were vertically integrated from 0 to 5 cm. 

This depth interval was chosen, because during inundation a O2 penetration depth of ~5 

cm was measured at the same study site (Billerbeck et al. 2006; Jansen et al. 2009), 

indicating that at least the upper 5 cm of the sediment were affected by advective 

porewater transport. 

 

Results 

In situ DIN and O2 concentrations  

O2 penetration depth varied from 2 to 4 cm over the tidal cycle (Fig. 2A). During 

ebb tide (1h before exposure), O2 was measurable down to 4 cm, whereas the O2 

penetration depth decreased to 2 cm at low tide (4hrs after exposure) when advective 

pore water flow ceased (Fig. 2A). 

At 2.5 hour after exposure, NOx
- (i.e. NO3

- + NO2
-) and NH4

+ were detected 

throughout the entire sampling depth (0-10 cm). NOx
- concentrations increased from 5 

�M at 1 cm depth to a maximum of 10 �M at 3 cm depth (Fig. 2A). At 4 cm, the 

concentration decreased down to 4 �M and stayed constant towards deeper depths. A 

local minimum of NH4
+ concentration (7 �M) was correlated with the maximum of NOx

- 

concentration at 3.5 cm depth. Above and below this depth, NH4
+ concentrations were 

around 16 �M, and from there decreased towards deeper depths and towards the 

sediment surface. 
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Oxygen consumption rates in the sediments 

 

The average oxygen consumption rate showed similar variation with depth in March 

and August 2007 (Fig. 3). Rates were comparable at 0-2 and 4-6cm depth intervals in 

March (~35 mmol m-3 sediments h-1) and in August (~120 mmol m-3 sediments h-1). Lower 

rates were determined at 2-4 cm depth interval, 25 mmol m-3 sediments h-1 in March and 90 

mmol m-3 sediments h-1 in August. Oxygen consumption rates showed seasonal variation. 

Rates in August (100-120 mmol m-3 sediments h-1) exceeded those in March (20-35 mmol 

m-3 sediments h-1) by factors of 3-5 (Fig 3 and Table 3). The areal O2 consumption rate 

integrated to 5 cm was 3 times higher in August (5-6 mmol m-2 sediments h-1) than that in 

winter (1-2 mmol m-2 sediments h-1).  

 

 

Fig. 2 In situ O2, NOx
- and NH4

+ concentrations in the pore water of permeable sediments at 
Janssand flat in March 2007. (A) O2 dynamics over exposure. Data were obtained from ebb tide 
(1 hour before exposure) to low tide (4 hours after exposure). Black triangles, white triangles 
and white dots are O2 concentrations respectively at 1 hour before exposure, 2.5 hours and 4 
hours after exposure. (B) NOx

- and NH4
+ concentrations at 2.5 hours after exposure. Black dots 

and white squares are respectively NOx
- and NH4

+ concentrations. 
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Net NO x

- production  

In treatment 1 (added 15NH4
+, 14NOx

-), net production of 15NOx
- was determined 

under aerobic conditions thus verifying nitrification activity (Fig. 4). In March, 15NOx
- 

produced via nitrification accumulation was observed in the first 2-4 hours of the 

incubation, while O2 decreased down to 15-50 µM (Fig. 4 A, B and C). The maximum of 

produced 15NOx
- was 592 µmol m-3sediment in the upper layer (0-2 cm) and increased to 

the highest concentration of 2200 µmol m-3sediment in the deep layer (4-6 cm). Net NOx
- 

nitrification rates ( netN , see equation 2) were comparable (190 and 180 µmol N m-3 

sediment h-1) at the depth intervals of 0-2 and 2-4 cm and the rate in the deep layer (4-6 cm) 

was 2-fold higher (350 µmol N m-3 sediment h-1). The vertically integrated rate to 5 cm was 

11µmol N m-2 h-1 (Table 2).  

In August, the 15NOx
- pool was assumed to have peaked between the actual starting 

time point of incubation and the time point of the first subsampling (i.e. 30 mins), 

because 15NOx
- produced via nitrification start to decrease from this time onwards in 

spite of O2 concentrations at 70-130 µM (Fig. 4 D, E and F). The maxima of 15NOx
- 

concentrations at time point of the first subsampling were one-tenth to one-third of those 

in March. Similar to the March sampling, however, lower max NOx
- concentrations (47 

 
Fig. 3 Oxygen consumption rates (OCRs) in average in permeable sediments in 2007. Black and grey 
bars respectively present the OCRs data March and August. 
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µmol m-3 
sediment) were observed in the upper layer and the highest concentrations (615 

µmol m-3 
sediment) was measured in the deep layer. Correspondingly, net nitrification ( netN , 

see equation 2) increased from 30 to1200 µmol N m-3 sediment h-1 towards the deeper depth. 

The vertical integrated net nitrification rate (0-5 cm) was 28 µmol N m-2 h-1, and 

exceeded the rate measured in March by a factor of ~3 (Table 2). The reduction in net 
15NOx

- accumulation with time observed in both seasons, clearly indicated the occurrence 

of NOx
- consuming processes in the same samples. 

 

 
 

Fig. 4 O2 concentrations (black triangles), 29N2 (black dots) and 30N2 productions (white dots) as well as 
net 15NOx

- productions (white diamonds) in incubations adding 15NH4
+ and 14NO3

- (4NO2
-). Panels A, B 

and C presented the incubations in March at the depth intervals of 0-2, 2-4 and 4-6 cm, respectively. 
While panels D, E and F presented the incubations in August at the depth intervals of 0-2, 2-4 and 4-6 
cm, respectively. Due to the first sampling after 30 mins of the incubation, the incubated time zero (0h) 
is not the real zero point for these reactions. 
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Anammox 

The 29N2 production in treatment 2 (added 15NH4
+, 14NO3

- and ATU) is due to mere 

anammox since the aerobic oxidation of 15NH4
+ is inhibited by ATU. In general, 

production rates were low or even below the detection limit (Fig. 5). When detected, 29N2 

concentrations increased linearly over time. Anammox rates calculated from equation 4 

were below 51 µmol N m-3 sediment h-1 in March as well as in August (Table 2). After the 

complete consumption of O2 at 2-4 hour in March and 1 hour in summer, no significant 

increase in 29N2 production due to anammox was observed. Anammox rates were less 

than 1% of total denitrification rates (see below) at all the depth intervals (Table 2). 

 

 
 

Denitrification 

In treatment 3 (added 15NO3
-), the concentrations of 29N2 and 30N2 increased from 

the very beginning of the incubation experiments, even though O2 was initially present in 

high concentrations (Fig. 6). In March, the production of 29N2 and 30N2 was constant in 

the first 4 hours of the incubation. Thereafter the production increased between hour 4 

and 8, and decreased again between hours 8 and 16. In August, O2 was consumed within 

the first 2-4 hours. The productions of 29N2 and 30N2 were generally constant in the first 8 

hours of the incubation. Thereafter the production gradually decreased between hours 8 

and 24. For further calculations (equations 5-9), the production of 29N2 and 30N2 over the 

first 4 hours under oxic conditions was used.  

 

Fig. 5 O2 concentration (black triangles) and 29N2 production (black dots) in slurry incubations with 
treatment 1 (15NH4

+,14NO3
- and ATU). Panels A and B presented the data at depth interval of 0-2 cm in 

March and August 2007.  
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Total denitrification (Dtot) varied between 2200 and 7100 µmol N m-3 sediment h-1 

(Table 2). In March as well as in August, maximum denitrification was measured in the 

2-4 cm depth interval (7100 and 5200 µmol N m -3 sediment h-1, respectively), whereas the 

lowest rates were found at 4-6 cm depth (2200 and 2600 µmol N m-3 sediment h-1, 

respectively). Integrated rates were higher in March (270 µmol N m-2 h-1) compared to 

those measured in August (190 µmol N m-2 h-1).  

 

 

 
 
Fig. 6 O2 concentrations (black triangles), 29N2 (black dots) and 30N2 productions (white dots) versus time 
in slurry incubations with 15NO3

- (treatment 2). Panel A, B and C present incubations at the depth intervals 
of 0-2, 2-4 and 4-6 cm, respectively, in March 2007. Panels D, E and F present incubations at the depth 
intervals of 0-2, 2-4 and 4-6 cm, respectively, in August 2007. Panel A, B and C were presented by Gao et 
al. (2010) 
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Coupled nitrification-denitrification 

In treatment 1 (added 15NH4
+, 14NOx

-), the production of 29N2 and 30N2 was 

constant over the first 6-8 hours in March, whereas no production of labeled N2 was 

detected in August (Fig. 4). In March, denitrified 15 NOx
- was found predominantly in the 

29N2 fraction, whereas the contribution of 30N2 to D15 (equation 11) was less than 20%. 

Rates of coupled nitrification-denitrification ( nit
treatD )1_( , see equation 12) varied from 330 

µmol N m-3 sediment h-1 in the upper layer to 14 µmol N m-3 sediment h-1 in the deep layer 

(Table 2). 

 In treatment 3 (added 15NO3
-), the calculated rates of coupled nitrification-

denitrification ( )3_(treat
nitD , see equation 14) varied between 350 and 860 

µmol N m-3 sediment h-1 in March and between 90 and 140 µmol N m-3 sediment h-1 in August 

(Table 2). )3_(treat
nitD  decreased from highest rates in the upper layer (0-2 cm) to lowest 

rates in the deep layer (4-6 cm). Vertically integrated to 5 cm, )3_(treat
nitD was 34 

µmol N m-2 h-1, which is 3 times higher than the coupled nitrification-denitrification rates 

measured in treatment 1 ( nit
treatD )1_( ). The contribution of coupled nitrification-

denitrification to the total denitrification (C1) was greater in March (10-17%) than in 

August (2-5%) (Table 2). 

 

Conservative gross nitrification 

In March 2007, the conservative gross nitrification rates, combining net NO3
- 

production and coupled nitrification-denitrification, )1_(treatN  and )3_(treatN  (equations 15-

16) decreased from the upper layer (0-2 cm) (1050 and 520 µmol m-3 
sediment h-1, 

respectively) towards the deep layer (4-6 cm) (700 and 360 µmol m-3 
sediment h-1, 

respectively) (Fig. 7 and Table 2). )3_(treatN  was twice as high as )1_(treatN  at all the depth 

intervals. 

In contrast with the observations in March, )3_(treatN  increased towards the deep 

layer in August (Table 2). The lowest rates (180 µmol m-3 
sediment h-1) were measured in 

the upper layer, whereas the highest rates (1260 µmol m-3 
sediment h-1) were found in the 



 
Nitrification coupled to aerobic denitrification 

 117 

deep layer. The integrated rate of )3_(treatN  in March (45 µmol m-3 sediments h-1) was slightly 

higher than that in August (34µmol m-3 sediments h-1) (Table 2). 

 

 
 

 
 
Figure 7 Total nitrification rates 

)3_(treatN  (black squares with error bars) in incubations with 15NO3
- 

and 
)1_(treatN  (grey squares with error bars) in incubations with 15NH4

++14NO3
-/14NO2

- in 
permeable sediments in March 2007. Black, light and dark grey bars respectively represent 
coupled nitrification-denitrification nit

treatD )3_( , nit
treatD )1_( and net nitrification ( netN ). 
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Discussion 

O2 dynamics in permeable Wadden Sea sediments are largely influenced by 

advective pore water flows driven by tides and winds. During inundation, advective pore 

water flow leads to maximum O2 penetration down to ~ 5 cm (Franke et al. 2006; Werner 

et al. 2006; Billerbeck et al. 2006; Jansen et al., 2009), thus extending the oxic 

biogeochemical zone and enhancing the remineralization of organic matter (de Beer et al. 

2005; Werner et al. 2006). The oscillation between deep and shallow O2 penetration 

depths during times of inundation and exposure (Fig 2) may also favor the overlap of 

oxidative and reductive processes such as nitrification and aerobic denitrification. Indeed, 

Substantial denitrification rates was found to occur in aerobic surface sediments of the 

Wadden Sea, while NOx
- was rapid but transient accumulated and was almost consumed 

under saturated O2 conditions (Gao et al. 2010). Therefore, it indicated that NOx
-, 

produced in situ via nitrification might be involved in the N dissimilatory processes

denitrification and anammox.  

 

Net NOx
- production direct proof of nitrification 

In this study, the net NOx
- production observed provide direct evidence of in situ 

nitrification as examined under in situ conditions and simulated oxic conditions in 

incubations (Fig.2 and 4). Accumulation of net NOx
- was found within the O2 penetration 

depth in the pore water during exposure (Fig. 2). NOx
- accumulation could be attributed 

to ongoing nitrification during exposure or it originates from nitrification during the last 

pulse of advection, just before exposure. Net NOx
- production was also determined under 

oxic conditions in slurry incubations wirh (Fig. 4). In treatment 1 (15NH4
++14NO3

-), NOx
- 

accumulated under aerobic conditions over the first 2-4 hours in March, and as fast as 

within 30 minutes of incubation in August (Fig. 4). Considering that the upper 4-5 cm of 

the sediment is oxygenated during inundation, it is reasonable to calculate the net NOx
- 

production as net nitrification rates in the first hours when oxygen was still available. In 

summary, the porewater profiles and the net NOx
- productions parallel support the active 

occurrence of nitrification in these sediments at the study site and that nitrification is an 

important in situ source of NOx
-. Nevertheless, both in March and August, the decreases 

in net 15NOx
- accumulation with time were observed in the treatment 1 (15NH4

++14NO3
-)l, 
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implying NOx
- loss by concurrent dissimilatory processes, such as anammox or 

denitrification.  

 

N-loss processes anammox and denitrification 

Anammox or denitrification was individually investigated in slurry incubations 

with treatment 2 (15NH4
++14NO3

-+ATU) and 3 (15NO3
-) (Fig. 5 and 6) The dynamic 

nature of porewater advection complicates the investigation of N-cycling in permeable 

sediments. The experimental design used in this study aims to mimic a period of 

inundation when oxygenated bottom water is injected into the sediment, followed by a 

period of exposure and stagnant porewater during which O2 is consumed until anaerobic 

conditions prevail.  

The incubated sediment slurries were amended with 200µM of N-substrate and, 

therefore, processes were not N-limited. Because N limitation under in situ conditions 

cannot be fully excluded, the rates measured in the sediment slurries may have to be 

considered as potential rates. However, NOx
- and NH4

+ concentrations in the porewater 

profiles (Fig. 2) suggest that in situ nitrification, denitrification and anammox were not 

N-limited. This is supported by the immediate start of the production of labeled N2 right 

from the time point of first subsampling (0h) (Fig. 5+6), since any adaptation to the 

increased N-substrate availability, on either cell or community level, would have resulted 

in an initial lag phase of the N2 production. 

 The results of 29N2 productions in treatment 2 (Fig.5) showed the contribution of 

potential anammox to the total N-loss was less than 1% (Table 2), in March as well in 

August. These rates were determined in the presence of oxygen concentrations (>20�M) 

that usually inhibit anammox (Jensen et al. 2007). Alternatively, the production of 29N2 

under oxic conditions in treatment 2 can be attributed to coupled nitrification-

denitrification with crenarchaea as nitrifiers, since crenarchaea tolerate higher 

concentration of allylthiourea than bacteria (Martens-Habbena et al. 2010) and may not 

have been fully inhibited. Hence, in our incubations, anammox could have been 

overestimated. In summary, although recent studies have reported the importance of 

anammox in marine sediments as another N loss pathway (Thamdrup and Dalsgaard et al. 

2002; Engsroem et al. 2005; Kuypers et al. 2006), N-loss due to anammox is negligible 

in these shallow permeable sediments of the Wadden Sea. 
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In treatment 3, the total 15N-N2 (29N2+30N2) showed that substantial denitrification 

occurred under aerobic conditions in the surficial sediments (Fig. 6). One recent results 

showed that areal rates integrated to 5 cm (190-270 µmol m-2 sediments h-1) from slurry 

incubations in March and August were comparable to rates determined from intact core 

incubations at the same study site (Gao et al. submitted). The measured denitrification 

rates are, however, 10-20 fold higher than rates determined from muddy sediments in 

Aarhus Bay (Nielsen and Glud 1996), Gulf of Finland and Northern Baltic Proper 

(Tuominen et al. 1998) and Baltic Sea (Deutsch et al., 2010), in which the diffusive 

transport of N-substrates probably limited denitrification. Gao et al. (in Rev.) calculated 

that the mere influx of NOx from the bottom waters driven by advection is sufficient to 

these high rates during most of the year.  

 

Coupled nitrification to denitrification 

 The calculation of coupled nitrification-denitrification rates from treatment 3  

( nit
treatD )3_( ) is based on the fact that the 15N-mole fraction (FNO3

-) of the initial NO3
- pool 

differs from that calculated from the 29N2 and 30N2 production (assuming binomial 

distribution of 28N2, 29N2 and 30N2). The underlying assumption is that both the first step 

of denitrification (i.e. NO3
- reduction to NO2

-) and the first step of nitrification (i.e. NH4
+ 

oxidation to NO2
-) fuel an extracellular NO2

- pool that is the source for all consecutive 

steps of denitrification. If nitrification in treatment 2 is absent, the 15N % of the NO3
- 

pool remains the same in the NO2
- pool and, thus, agrees with the label percentage 

calculated from 29N2 and 30N2 production. Any nitrification would dilute the 15N % in the 

NO2
- pool resulting in ratios of 30N2 to 29N2 production that are below those expected 

from the initial FNO3
-.  

If denitrifiers are present that perform all denitrifying steps without releasing the 

intermediate NO2
- to the ambient pool, two different pools (NO3

- and NO2
-) with 

different 15N % have to be considered when calculating denitrification from the 

production of 29N2 and 30N2. This leads to a set of equations with too many unknowns to 

fully determine the respective rates. Nevertheless, assuming denitrification via the 

extracellular nitrite pool only, results in rather conservative rate estimates, because any 

additional denitrification from the heavily labeled nitrate pool would have to be 
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compensated by increased denitrification rates from the less labeled nitrite pool in order 

to produce the observed production of 29N2 and 30N2.  

Apart from the calculated coupled nitrification-denitrification rates )3_(treat
nitD , due 

to the negligible contribution of anammox in the N-loss, the observed 29N2 as well as 
30N2 productions in the treatment 1 (15NH4

++14NO3
-) is the direct proof of couple 

nitrification to denitrification presented by nit
treatD )1_( . Coupled nitrification-denitrification 

rates ( nit
treatD )1_( ) were only 30% of those measured in treatment 3 ( )3_(treat

nitD ) in March 

(Table 2), and were most likely underestimates the true rates, because the labeling 

percentage in equation 12 was calculated based on the initial 14NH4
+ concentrations, not 

accounting for the 14NH4
+ released from organic matter mineralization during the 

experiment. In August nit
treatD )1_(  was not detected at all. In March 14NO3

- was added, 

whereas 14NO2
- was added in August. Assuming that the extracellular NO2

- pool is the 

source for all consecutive steps of denitrification, the 15 NO2
- produced from 15NH4

+ via 

nitrification was most probably too much diluted by the addition of 200µM 14NO2
- and 

thus could not be detected as 29N2 and 30N2. 

Although absolute values of nit
treatD )1_(  and nit

treatD )3_( were different, they showed 

similar trends of decreasing sediment depth (Fig. 4 and Table 2), indicating that 

nitrification-denitrification was tightly coupled in the upper 4 cm of sediments that are 

periodically oxygenated. In addition, the seasonal variation of nit
treatD )3_( suggests that 

coupled nitrification-denitrification relies on O2 availability and is favored by the 

expanded oxic surface layer driven by advection in these permeable sediments. Seasonal 

variations of coupling rates are negatively correlated with the O2 consumption rates (Fig. 

7 and Table 2). If oxygen is consumed more rapidly, as observed in the August 

experiments, oxygen is available for a shorter time period and nitrification becomes 

oxygen limited. Since all incubations were performed with a one-pulse addition of 

aerated bottom water instead of a continuous flushing, which can be assumed under in 

situ conditions, nit
treatD )3_( in August was probably underestimated.  

The seasonal variation of coupling rates and NOx
- in water column was suggested 

to be positively correlated. Bottom water NOx
- (~60 �M) and the modeled pore water 

NOx
- influx (2.3×104 �mol m-2 h-1) in March were one order of magnitude higher than 
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those in August (Gao et al. in Rev.), higher coupling rates nit
treatD )3_( (680-850 �mol m-3 

sediment h-1) and nit
treatD )1_(  (210-320 �mol m-3 sediment h-1) were found in March as well 

(Table 2). It suggested that denitrification is more tightly coupled to nitrification rather 

than overlying water NOx
-, in the expanded oxic surface layer driven by advection in 

these permeable sediments. Coupled nitrification-denitrification could probably be 

stimulated by the influx of oxic water into the sediment. nit
treatD )3_( in August was 

underestimated due to the O2 limitation in the slurry incubations. Therefore, the 

combined data in this study seem to coupled nitrification-denitrification is a significant 

NOx source for N-loss processes in permeable sediments, especially in summer. 

 

Implications of nitrification  

Direct observation on NOx
- accumulation in presence of O2 in the pore water 

profile combined with rate determinations on the conservative gross nitrification 

( )1_(treatN  and )3_(treatN ) confirmed that substantial nitrification occurred in the surficial 

permeable sediments during the whole semi-diurnal tidal cycle (Fig.2 +7). The rates, 

)1_(treatN  and )3_(treatN , integrated to 5 cm (22-45 �mol m-2 sediments h-1) (Table 2) are in the 

range of previous reported nitrification rates in sediments (10 �mol -18 mmol m-2 sediments 

h-1) (Henriksen and Kemp 1988; Gilbert et al. 2003; Mortimer et al. 2004; Ward 2008). 

Since nitrification is also an important sink for oxygen in marine environments by 

consuming O2 to oxidize NH4
+ to NOx

-, the gross nitrification rate could be estimated 

from the aerobic respiration according to the classic Redfield stoichiometry (Redfield et 

al. 1963):  

(CH2O)x(NH3)y(H3PO4) + (x+2y)O2  xCO2 + yHNO3 + (x+y)H2O  

When x=106 and y=16, in this formulation, oxygen consumption should be inversely 

related to NO3
- production with a slope of 138/16 = 8.6. In fully oxygenated sediments 

(i.e., carbon loading is not sufficient to exhaust the available oxygen), such relationships 

are often found (Grundmanis and Murray 1982; Jahnke et al. 1982). The permeable 

sediments of the Wadden Sea are fully aerated with deep O2 penetration depth down to 5 

cm (Billerbeck et al. 2006; Jansen et al. 2009) under the advection conditions during 

inundation or down to 2-4 cm even during exposure (Fig. 2). Moreover, the ratio of 
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POC:PON in seawater is 7:1(Billerbeck et al. 2006), which is consistent with the 

Redfield ratio of C:N (106:16). Therefore, it is reasonable to present their potential gross 

nitrification by the stoichiometry between the NO3
- production and oxygen consumption. 

Although the estimated gross nitrification rates ( nitG / 'nitG ) are 4-7 times higher than the 

conservative gross nitrification ( )1_(treatN / )3_(treatN ) (Table 2 +3), the range of rates (0.15-

0.7 mmol m-2 sediments h-1) are comparable with previously reported nitrification rates in 

sediments (10 �mol -18 mmol m-2 sediments h-1) (Henriksen and Kemp 1988; Gilbert et al., 

2003; Mortimer et al., 2004; Ward 2008). nitG  showed the seasonal variation and the 

integrated rate was 
3 times higher in August (0.6-0.7 mmol m-2 sediments h-1) than in 

March (0.15-0.2 mmol m-2 sediments h-1). It suggests that nitrification is an important NOx
- 

source to support for denitrification in NOx
--depleted season when there is only low NOx

- 

influx from bottom sea water, although no direct proof on coupling rates of nit
treatD )1_(  was 

obtained in August. It was due to the dilution of immediate nitrification implied by net 

NOx
- production within 30 mins of incubation before the first subsampling. Regardless, 

the substantial potential gross nitrification based on OCRs strongly suggested that 

nitrification plays an important role as being a significant NOx
- source in the Wadden Sea 

sediment system, especially in the summer when ambient NOx
- availability is low.  

The differences between the potential gross nitrification and the conservative gross 

nitrification ( nitG / 'nitG  and )1_(treatN / )3_(treatN ) were in a wide range from 0.1 mmol m-2 

sediments h-1 in March to 0.5 mmol m-2 sediments h-1 in August (Table 2 and Table 3). This 

difference suggested that other process such as dissimilatory nitrate reduction to 

ammonium (DNRA) or assimilation might occur in these sediments. 

 Altogether, our results showed that nitrification is an important NOx source in 

permeable Wadden Sea sediments, especially for N-loss through aerobic denitrification. 

Tightly coupled nitrification-denitrification observed in surficial sediments (in the upper 

2 or 4 cm) suggests that the coupling is stimulated by O2 availabilty and favored by the 

expanded oxic layer under advection. Net NOx
- productions via nitrification determined 

in these sediments might further imply these sediments as a potential source for the 

efflux of NOx
- into water column driven by the advective pore water flow. Our results 

supported the hypotheses that the sufficient NOx
- availability for intensive denitrification 



 
Nitrification coupled to aerobic denitrification 

 124 

in permeable Wadden Sea sediments is ascribed to nitrification as well as bottom water 

NOx
- influx, and the former might play a more important role in N loss especially in the 

summer when the ambient seawater NOx
- availability is low. Therefore, our results 

showed that nitrification in these permeable sediments when directly coupled to 

denitrification plays a significant role in the marine N-removal by providing a start 

circuit from reduced N to N-loss. 
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Table 2 Rates of anammox, denitrification, coupled nitrification-denitrification, and nitrification measured in treatment 1, 2, and 3. 

Expedition  Depth A  
nit

treatD )3_(  
nit
treatD )1_(  netN  )3_(treatN  )1_(treatN  totD  C1 C2 

 cm µmol N m-3 sediment h-1 % 

Mar 2007  0-2 51 	 8 855 	 58 323 	 29 192 	 106 1047	 164 518 	 135 5190 	 121 16.5 81.7 

  2-4 25 	 5 685 	 26 212 	 29 183 	 71 868 	 97 390 	 100 7082 	 270 9.7 78.9 

  4-6 3 	 1 346 	 26 15 	 2 350 	 90 696 	 100 364 	 92 2234 	 206 15.5 49.7 

 Areal rates (0-5) 2 	 0.1* 34.2 	 1.9* 10.8	 1.2* 11.0 	 4.4* 45.3 	 6.2* 21.8 	 3.5* 267.8 	 9.9* 12.8 75.5 

            

Aug 2007  0-2 No sig. 143 	 10 ---- 34 177 	 10 ---- 3201 	 302 4.5 80.7 

  2-4 9 	 4 110 	 4 ---- 799 909 	 4 ---- 5184 	 205 2.1 12.1 

  4-6 17 	 5 92 	 6 ---- 1172 1264 	 6 ---- 2634 	 190 3.5 7.3 

 Areal rates (0-5) 0.3 	 0.1* 6.0 	 0.3* ---- 28.4* 34.4	 0.3* ---- 194.0	 12.0 3.1 17.4 

* in the unit of µmol m-2 h-1 
---- No significant 
C1 –the contribution of the coupled nitrification-denitrification to the total denitrification ( totD ) ( nit

treatD )3_( / totD ) 

C2 - the coupling efficiency of nitrification-denitrification (
nit

treatD )3_( / )3_(treatN ) 
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Table 3 The potential gross nitrificaiton rates based on the aerobic organic matter mineralization in incubations in March and 

August 2007 

Expedition Depth OCR OCR’  Gnit Gnit’ 

 cm mmol m-3 sediment h-1  mmol m-3 sediment h-1 

March 

2007 

0-2 30.8 	 4.7 36.8 	 10.4  3.6 	 0.5 4.3 	 1.2 

2-4 35.0 	 9.7 11.6 	 0.9  4.0 	 1.1 1.3 	 0.1 

4-6 25.2 	 6.8 31.4 	 4.3  2.9 	 0.8 3.6 	 0.5 

 Integrated 0-5cm 1.57 	 0.36* 1.28 	 0.27*  0.18 	 0.04 * 0.15 	 0.03 * 

August 

2007 

0-2 106.3 128.6  12.3 14.9 

2-4 97.1 86.6  11.2 10.0 

4-6 116.8 131.2  13.5 15.2 

Integrated 0-5cm 5.24* 5.62*  0.60 * 0.65 * 

* in µmol m-2 h-1 
OCR and OCR’ represented the oxygen consumption rates in incubations with 15NH4

+/14NO3
- and 15NO3

-, respectively. 
Gnit and Gnit’ represented the estimated gross nitrification from OCRs in incubations with 15NH4

+/14NO3
- and 15NO3

-, respectively. 
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Conclusions and outlook 
 

This thesis focuses on the importance and regulation of nitrogen (N) loss in the 

Wadden Sea permeable sediments under advective conditions and the general importance 

of permeable sediments for the removal of N in marine environments. As the oxygen 

penetration and solute transports into permeable sediments are both enhanced by 

advection, the study mainly addresses the following questions: 1) How does oxygen 

influence the activity of N-loss processes in the oxic layers of the sediment impacted by 

pore water advection? 2) Are there spatial and seasonal variations in nitrogen loss from 

these permeable sediments and what is the annual N-loss rate? 3) How do other N-cycling 

processes such as nitrification interact with N-loss processes, and what are the 

implications on total N-loss? 

To answer the first question, multiple experimental approaches under simulated in 

situ conditions were applied to investigate N-loss by denitrification in relation to O2 

dynamics. Substantial denitrification rates of 0.19-0.32 mmol N m-2 h-1 were found even 

in the presence of nearly 90 µM O2 using the modified intact core incubation with one-

pulse percolation and well–mixed slurry incubations. Furthermore, co-respiration of NOx
- 

and O2 was demonstrated by simultaneous measurements using a NOx biosensor and O2 

microsensor, respectively. The existence of anoxic microniches was excluded by the 

vigorously-mixed sediment slurry incubation in a flow-through stirred retention reactor, 

providing further evidence for aerobic denitrification independent from coupled 

nitrification. The consistent results from various approaches showed that O2 may not act 

as the primary or exclusive control of N2 production in permeable sediments, especially in 

the upper 4 cm where O2 and NOx
- co-occurred. The ecological significance of the co-

respiration of NOx
- and O2 in permeable sediments of the Wadden Sea was proposed as a 

selective environmental adaptation of denitrifiers to recurrent tidally induced redox 

oscillations.  

To understand the role of permeable sediments in the oceanic N-budget, N-loss rates 

were determined in permeable sediments of the Wadden Sea on spatial and seasonal 

scales using a combination of stable N isotopes and model simulation approaches. Three 

different incubation methods that employed the isotope pairing technique (IPT) were used: 

Intact core incubations simulating either (i) diffusive or (ii) advective transport conditions 
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and (iii) slurry incubations. Advective transport of pore water in the sediment increased 

total N loss rates by factors of 1-2 orders of magnitude compared to diffusion. These 

permeable sediments are generally characterized by substantial N-loss rates (on average 

0.2 mmol N m-2
sediment h-1) over spatial and temporal scales. It was hypothesized to be due 

to sufficient NOx
- availability driven by advection. A 2-D empirical model was developed 

to estimate the NOx
- availability by simulating the influx of NOx

- driven by advection 

using annual in situ monitoring data as input parameters, which included temperature, 

bottom current velocity and ambient NOx
- concentrations in the overlying seawater. The 

simulated result of the model showed that sufficient NOx
- influx in the sediments 

exceeded the amount required to support measured N loss rates during most of the year. 

Annual N-loss for the Wadden Sea permeable sediments was estimated to be 0.22 Tg N y-

1 based on the annual average N-loss rate of 750 mmol N m-2 y-1 at intertidal flats as 

determined from experimental and model simulation results and the consequent 

extrapolated rate of 1788 mmol N m-2 y-1 at subtidal flats, gullies and offshore areas. The 

sandy seafloor is therefore considered as a major sink for riverine N loads into the 

Wadden Sea and permeable sediments have great potential to regulate the flow of nitrogen 

at the land-sea boundary. 

The enhanced thickness of oxic zone in permeable sediments due to advection might 

favor nitrification. The importance of nitrification in the Wadden Sea permeable 

sediments, nitrification and its coupling to N-loss processes, mainly aerobic denitrification, 

were quantified using various 15N-isotope-paring experiments. Net NOx
- production via 

nitrification was examined under aerobic conditions in these sediments. Results showed 

that the NOx
- accumulation in sediments is attributed to nitrification, and the subsequence 

consumption of accumulated NOx
- suggested that nitrification could be the NOx

- source 

for other dissimilatory processes (i.e. anammox and denitrification) or the potential efflux 

of NOx
- from the sediments. As Anammox occur at very low rates (<2 µmol N m-2 h-1, 

<1 % of total N loss), aerobic denitrification was the dominant N-loss process observed in 

these sediments. Nitrification coupled to denitrification was found to contribute to as 

much as 17% of total N-loss especially in surface sediments and the rest of total N-loss 

was fueled by NOx
- from the overlying water. Both nitrification and the influx of NOx

- 

from the overlying water were strongly influenced by advection. Here, coupled 

nitrification-denitrification might be underestimated, especially in the summer, due to the 
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O2 limitation during incubations instead of in situ continuous aerated advective porewater 

flushing. In summary, by being tightly coupled to aerobic denitrification, nitrification 

plays a significant role linking N-source and N-sink in these permeable Wadden Sea 

sediments, especially in overlying water NOx
- depleted season. 

This thesis shows that permeable sandy sediments, accounting for 58-70% of the 

continental shelves, play a key role in global marine N-loss, and that they act as efficient 

filters for the increasing N-inputs from terrestrial/freshwater systems that would otherwise 

reach the Ocean. Aerobic denitrification has been found in these sediments as the 

predominant N-loss process. However, the microbial mechanism remains unclear. Co-

metabolism of both NOx
- and O2 in single cells or co-inhabiting of distinct denitrifying 

and oxygen respiring populations in this redox zone should be investigated in future 

studies using molecular biological techniques. The substantial denitrification rates in these 

permeable sediments are neither restrained by O2 or by NOx
- availability. Another 

important factor in the regulation of denitrification activity is organic matter. Hence, the 

seasonal availability of organic matter should be further investigated to verify if it is 

sufficient to support the high denitrification rates over a year. The difference between 

potential and conservative gross nitrification rates suggested there may be the interactions 

with DNRA, which would channel some of NOx
- produced by nitrification back to NH4

+ 

and thus preventing direct N-loss, or benthic primary production, which will produce O2 

as well, though also providing more organic matter, etc. Therefore, to understand the 

whole N-cycling, those questions should be focused on in the future. 
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