
Total synthesis of cofacial chlorin 

dimers of two different symmetries    

–  

Models of photosynthetic reaction 

centers 
 

 

Thesis 
 

 

Submitted as partial fulfilment of the requirement 

 for the degree 

Doctor of Natural Sciences 

( Doktor der Naturwissenschaften) 

(Dr. rer. nat.) 
 

 

Faculty of Biology/Chemistry, University of Bremen 

April 2011 

 

 

By 

Nguyen Thi Viet Thanh 
 

Bremen 2011 
 



Schriftliche Erklärung nach §6 Abb. 5 der Promotionsordnung vom 23 Mai 1984 

 

Ich, Nguyen Thi Viet Thanh, habe die Arbeit ohne unerlaubte fremde Hilfe angefertigt, keine 

anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den benutzen 

Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht. 

 
I, Nguyen Thi Viet Thanh, certify that I have conducted this work on my own and no other 

supporting material has been used other than those which are listed as references.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Referee: Prof. Dr. Franz-Peter Montforts 

2. Referee: Prof. Dr. Wolf-Dieter Stohrer  

 

Date of doctoral examination: May 10th, 2011 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ACKNOWLEDGEMENT 

 

 

 

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Franz-

Peter Montforts for his excellent advising from my very first to my final steps in conducting 

the work leading to this thesis. Under her supervision I became stronger in 

developping ideas as well as joining the research community. 

 

I owe immense thanks to persons for their technical support: Mr. Johannes Stelten (Dipl.-Ing) 

for NMR tutorial lessons and NMR analysis; Dr. Thomas Dülcks and Mrs. Dorit Kemken 

(Dipl.-Ing.) for the mass spectra measurements; Dr. Tobias for the theoretical calculations and 

explanation. 

 

I sincerely thank all colleagues in AK Montforts who create a wonderful environment for 

research and living, especially in many interesting social events: Dr. Martina Osmer, Dr. 

Stephan Leupold, Dr. Vladimir Azov, Dr. Doan Duy Tien, Dr. Thorsten Könekamp, Dr. Jan-

Erick Damke, Dr. Babara Maria Panek-Bryla, Dr. Christoph Eberle and Dipl.-Chem. Dennis 

Leupold (my wonderful labmates), Dipl.-Chem. Daniela Bauer, Dipl.-Chem. Yvonne 

Neumann, Dipl.-Chem. Martin Erbacher, Dipl.-Chem. Torben König, Dipl.-Chem. Matthias 

Düker, M.Sc Nghiem Hai Vu, M.Sc. Rudy Martin, M.Sc. Joana Cabrita, Dipl.-Chem. Emrah 

Görüs, Dipl.-Chem. Kathrin Lummer, Dipl.-Chem. Kerstin Geller, Mrs. Ursula Lücking. I am 

also very grateful to Mrs. Ursula Montforts. 

 

I extend thanks to MOET, DAAD as the two crucial financial sources for my thesis work. I 

also thank DAAD for the practical support during my studies in Germany such as annual 

meetings and policies in administration procedures. 

 

Last but not least, I am very lucky to have had many close friends to support me to get 

through the rough time. The study time in Bremen has made me realize more than ever 

how much my family means to me. I dedicate this dissertation to them. 

 

Bremen, 30. January 2011 

Nguyen Thi Viet Thanh 



 

 



Table of Contents - I - Nguyen Thi Viet Thanh 

 

TABLE OF CONTENTS 

1. INTRODUCTION .................................................................... 1 

1.1 Photosynthesis ............................................................................................ 1 

1.1.1 Bacterial Photosynthesis ................................................................................... 1 

1.1.2 Plant photosynthesis .......................................................................................... 3 

1.2 (Bacterio)chlorophyll special pair of the photosynthetic reaction 

center .......................................................................................................... 8 

1.3 Molecular systems for modelling naturally occurring special pairs ........ 12 

2. RESEARCH OBJECTIVES ...................................................... 16 

2.1 Design of cofacial chlorin dimers mimicking special pairs ..................... 16 

2.2 Strategies for synthesis of cofacial chlorin dimers .................................. 18 

2.2.1 Concept for synthesis of geminally dialkylated chlorin subunits ................... 18 

2.2.2 Concept for synthesis of iodinated geminally dialkylated chlorin subunits .... 20 

2.2.3 Concept for synthesis of a spacer subunit ....................................................... 23 

2.2.4 Construction of cofacial chlorin pairs from chlorin and spacer subunits ........ 24 

3. RESULTS AND DISCUSSION ................................................. 25 

3.1 Preparation of iodo pyrrole buiding blocks .............................................. 25 

3.2 Synthesis of geminally dialkylated chlorins with iodine substituents ..... 27 

3.3 Synthesis of diethynylbiphenylen spacer subunit .................................... 29 

3.4 Synthesis and structural characterization of a cofacial chlorin dimer ..... 31 

3.5 Studies directed to synthesis of 12-bromo-2,2,7,8,13,17,18-

heptalmethyl chlorin ................................................................................. 37 

3.5.1 Synthesis of a bicyclic thiolactam ................................................................... 37 



Table of Contents - II - Nguyen Thi Viet Thanh 

 

3.5.2 Synthesis of a tricyclic nickel complex ........................................................... 38 

3.5.3 Studies directed to synthesis of bilin 80 .......................................................... 40 

3.5.4 Synthesis of a 12-unsubstituted chlorin .......................................................... 41 

3.5.5 Synthesis of a bromo-oxo-tripyrrin ................................................................. 41 

3.5.6 Attempts to prepare a bromo-thiotripyrrin ...................................................... 42 

3.5.7 Studies directed to bromination of a geminally dimethylated chlorin ............ 43 

4. SUMMARY AND OUTLOOK ................................................. 44 

5. EXPERIMENTAL SECTION ................................................... 48 

5.1 General experimental conditions .............................................................. 48 

5.1.1 Quality of Chemicals and Solvents ................................................................. 48 

5.1.2 Analytical Instruments .................................................................................... 49 

5.1.3 Chromatography .............................................................................................. 50 

5.1.4 Formulas and Abrreviations ............................................................................ 51 

5.1.5 References for CAS and BRN numbers .......................................................... 52 

5.2 synthesis of different ring d building blocks ............................................ 53 

5.2.1 Synthesis of 3-methyl-1H- pyrrole-2-carbaldehyde (48) ................................ 53 

5.2.2 Synthesis of 4,5–diiodo-3-methyl-1H- pyrrole-2-carbaldehyde (26) ............. 54 

5.2.3 Synthesis of benzyl 3,5-dimethyl-1H-pyrrole-2,4-carboxylate (44) ............... 55 

5.2.4 Synthesis of benzyl 3-dimethyl-5-formyl-1H-pyrrole-2,4-dicarboxylate 

(45) .................................................................................................................. 56 

5.2.5 Synthesis of 3-dimethyl-5-formyl-1H-pyrrole-2,4-carboxylic acid (46) ........ 57 

5.2.6 Synthesis of 2,4-diiodo-3-methyl-1H-pyrrole-2-carbaldehyde (25) ............... 58 

5.3 Synthesis of a diethynylbiphenylene spacer ............................................. 60 

5.3.1 Synthesis of 2-iodo-3-methylnitrobenzene (53) .............................................. 60 

 



Table of Contents - III - Nguyen Thi Viet Thanh 

 

5.3.2 Synthesis of 6,6’-dimethyl-2,2’-dinitrobiphenyl (54) ..................................... 61 

5.3.3 Synthesis of 1,10-dimethylbenzo[c]cinnoline (55) ......................................... 62 

5.3.4 Synthesis of 1,8-dimethylbiphenylen (56) ...................................................... 64 

5.3.5 Synthesis of 1,8-bis(bromomethyl)biphenylene (57) ...................................... 65 

5.3.6 Synthesis of 1,8-diformylbiphenylene (58) ..................................................... 66 

5.3.7 Synthesis of p-toluene sulfonylazide (61) ....................................................... 67 

5.3.8 Synthesis of dimethyl-acetyl-diazomethylphosphonate (59) .......................... 68 

5.3.9 Synthesis of 1,8-diethynylbiphenylene (10) .................................................... 69 

5.4 Synthesis of a “trans”-chlorin dyad ......................................................... 71 

5.4.1 Synthesis of [2,3-dihydro-17-iodo-2,2,7,8,12,13,18-heptamethyl-

porphinato]-zinc(II) (27) ................................................................................. 71 

5.4.2 Synthesis of [2,3-dihydro-18-iodo-2,2,3,7,8,12,13,17-heptamethyl-

porphinato]-zinc(II) (28) ................................................................................. 73 

5.4.3 Synthesis of [5,6-dihydro-1-(8’-ethynyl-1’-naphthalylethynyl)-

5,5,10,11,15,16,20-heptamethyl-porphinato]-zinc(II) (62) ............................. 75 

5.4.4 Synthesis of cofacial chlorin dyad (64) ........................................................... 77 

5.5 Study directed to 12-bromo-2,2,7,8,13,17,18-heptalmethylchlorin ......... 78 

5.5.1 Synthesis of ethyl 4-bromo-3,5-dimethyl-1H-pyrrole-2-carboxylate (66) ..... 78 

5.5.2 Synthesis of ethyl 4-bromo-5-formyl-3-methyl -1H-pyrrole-2-carboxylate 

(29) .................................................................................................................. 79 

5.5.3 Synthesis of ethyl 5-formyl-3-methyl-1H-pyrrole-2-carboxylate (67) ........... 80 

5.5.4 Synthesis of ethyl 4-bromo-5-formyl-3-methyl -1H-pyrrole-2-carboxylate 

(29) .................................................................................................................. 82 

5.5.5 Synthesis of ethyl 5-(1,5-dyhidro-3,4-dimethyl-5-oxo-1H-pyrrole-2-

ylidenmethyl)-4-bromo-3-methyl-1H-pyrrole-2-carboxylate (68) ................. 83 

5.5.6 Synthesis of ethyl 5-(1,5-dyhidro-3,4-dimethyl-5-thioxo-1H-pyrrole-2-

ylidenmethyl)-4-bromo-3-methyl-1H-pyrrole-2-carboxylate (69) ................. 84 



Table of Contents - IV - Nguyen Thi Viet Thanh 

 

5.5.7 Synthesis of [ethyl-(14RS)-(14-cyano-12,13,14,17-tetrahydro-

2,7,8,13,13,14-hexamethyl-15H-tripyrrin-1-carboxylato)]nickel-(II) (74) 

and [ethyl-(14RS)-( 4-bromo-14-cyano-12,13,14,17-tetrahydro- -

2,7,8,13,13,14-hexamethyl-15H-tripyrrin-1-carboxylato)]nickel-(II) (75) ..... 86 

5.5.8 Synthesis of benzyl-(19RS)-8-bromo-19-cycano-17,18,19,21-tetrahydro-

2,3,7,12,13,18,18,19-octamethyl-22H-bilin-1-carboxylate (80) ..................... 89 

5.5.9 Synthesis of 2,3-dihydro-2,2,7,8,13,17,18-heptamethyl-22H,24H-

porphinato]-zinc-(II) (40) ................................................................................ 91 

5.5.10 Synthesis of benzyl-8-bromo-15-hydro-14-oxo-2,3,7,12,13-pentamethyl-

16H-tripyrrin-1-carboxylate (84) .................................................................... 93 

5.5.11 Synthesis of [2,3-dihydro-3-hydroxyl- -2,2,7,8,12,13,17,18-octamethyl-

22H,24H-porphinato]-zinc(II) (86) and [2,3-dihydro-2,2,7,8,12,13,17,18-

octamethyl-3-oxo-22H,24H-porphinato]-zinc(II) (87) ................................... 95 

6. REFERENCES ...................................................................... 97 

 

 

 

 



 



1. Introduction - 1 - Nguyen Thi Viet Thanh 

 

1.  INTRODUCTION 

1.1 PHOTOSYNTHESIS 
Photosynthesis is the process which converts light energy into chemical energy together with 

the transformation of CO2 to organic compounds, commonly carbohydrates. Photosynthetic 

systems are present in plants, algae and many species of bacteria. The bacterial photosynthetic 

center is based on one photosystem which does not produce oxygen while the plant 

photosynthetic center makes use of two photosystems named photosystem I (PSI), 

photosystem II (PSII) and generates oxygen.[1] In photosynthesis, light is absorbed by  light-

harvesting complexes then excitation energy transferred efficiently and rapidly to the 

photosynthetic reaction center (RC), where a charge separation and electron transfer to 

reactive species occur. 

1.1.1 Bacterial Photosynthesis 
 

Although photosynthesis is present mainly in plants and algae, the best understanding of the 

photosynthetic mechanism was based on the knowledge of bacterial RCs. The X-ray 

structures of photosynthetic reaction centers from Rps. viridis and Rb. sphaeroides were first 

determined by Johann Deisenhofer, Robert Huber and Hartmut Michel (the Nobel Prize in 

chemistry, 1988).[2] The investigation offered the structural and functional characterizations of 

the bacterial photosynthetic system at the molecular level.  

The RC of Rps.viridis (Fig. 1) comprises four protein subunits named L (light) (maroon), M 

(medium) (yellow), H (heavy) (purple), and cytochrome, and 10 cofactors. The L and M 

protein bind the cofactors in the core and arrange them in two branches L and M, but only one 

branch is active in the electron transfer process.[2-4] The origin of the two branches is a pair of 

bateriohlorophylls b (BChls-b) termed DL and DM. They are called special pair (SP), which is 

associated with two accessory bacteriochlorophyll b (BA, BB), bacteriopheophytins (ФA, ФB) 

(BChl without central Mg), one menaquinone-9 (QA), one ubiquinon-9 (QB), a carotenoid and 

a non-heme iron complex (referring to center Fe and its ligands without any heme). The size 

of the RC was determined clearly with a distance from the top of cytochrome to the bottom of 

protein H subunit of about 130 Å. The cofactor complex form is elliptical with the length of 

the two axes of about 70 Ǻ and 30 Ǻ.  
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Figure 1: The photosynthetic reaction center of Rps. Viridis[3] 
a): The reaction center with the four protein subunits: M (medium), H (heavy), L (light) and Cyt (cytochrome c). 

b): The cofactors of the reaction center: pair of bacteriochlorophylls (DM, DL), accessory bacteriochlorophylls 

(BB, BA), Bacteriopheophytins (ФA, ФB), menaquinone (QA) and ubiquinone (QB). 

 

From the electron transfer process of bacterial RC described in Fig. 2, light is absorbed by 

light harvesting antennas surrounding the reaction center. The energy is then transferred to the 

special pair SP, functioning as the donor, to raise it to the excited state SP*. This process is 

followed by the transfer of one electron to the ФA via the accessory BA along the L-branch 

with a rate of 2.8 ps. From ФA, the electron moves rapidly to the QA with the time constant of 

200 ps. This quinone slowly passes the electron to the secondary quinone (QB) through 

nonheme ion complex (100μs). The QB can take 2 protons from the cytoplasm to form 

dihydroquinone (QBH2). The electron transfer process can also be described following: 

SP  SP*  

SP* + BA  SP·+ + BA¯  

BA·¯ + ФA  BA + ФA·¯  

ФA·¯ + QA  ФA + QA·¯  

QA·¯ + QB + 2H+  QA + QBH2  
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Figure 2: The photosynthetic process of a typical purple bacterium [5] 

DL, DM, BA, BB: Bacteriochlorophyll, ФA, ФB: Bacteriopheophytine, QA, QB: quinone,  

QBH2: dihydroquinone, cyt c2: cytochrome c2. 

(1): energy transfer from antenna to RC, (2): the charge separation and transportation among RC subunits, (3): 

the release of QBH2 and refill of QB between RC and quinone pool in membrane, (4): oxidation of QBH2 resulting 

the electron transport along cyt c2 to SP and proton across the membrane, (5) the proton driving process for ATP 

synthesis. 

 

The QBH2 is isolated from the RC and the QB is refilled from the quinone pool in the 

membrane. The electrons on the QBH2 are transferred back through the cytochrome c2 to the 

cytochrome with the time constant of ~270 μs, to re-reduce SP+ to SP. The proton on QBH2 

transfers across the membrane to parcitipate in the ATP synthesis process. 

However, some questions of the electron transfer mechanism remain are still unexplained, 

such as the roles of the BA, BB, the non-heme iron complex, and details of electron transport 

process from soluble cytochromes.  

1.1.2 Plant photosynthesis 
 

Photosynthesises of plants and green algae produce oxygen and organic materials from CO2 

and water. This procedure provides food and fuel, and has determined the climate of the Earth 

for billions of years. 

The photosynthesis apparatus of plants contains two reaction center complexes termed 

photosystem I (PSI), which drives the transformation CO2 to carbohydrate, and photosystem 
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II (PSII) which splits water to form oxygen. The whole process of plant photosynthesis is 

described in Fig. 3. 

 

  
 

Figure 3: The photosynthetic apparatus of plants[6] 
PSII: Photosystem II, Cyt b6f: Cytochrome b6f, PSI: Photosystem I 

 

The electron transport chain of plant photosynthesis is shown in Fig. 4. This diagram reveals 

how photosystem I (PSI) and photosystem II (PSII) work together absorbing light for 

oxidation of water and reduction of NADP+. 
 

 
 

Figure 4: The light-induced electron pathway in the SPII and SPI of a higher plant [7] 

 

Details of the whole photosynthetic process could be obtained by the analysis of the structures 

and the electron transport mechanism in PSI and PSII following. 
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Photosystem II (PSII) 

Photosystem II is a multi-protein complex composed of more than 20 protein subunits, at least 

44 cofactors including chlorophylls and carotenoids, two pheophytins, plastoquinones, lipids, 

components of the Mangan cluster, and one Fe2+ (Fig. 5). The arrangement and the electron 

transfer in the core of PSII are quite similar to bacterial photosynthesis. Two chlorophyll a 

molecules termed PD1 and PD2, two chlorophylls ChlD1, ChlD2 and plastoquinone are 

equivalent to the ‘special pair’, accessory bacteriochlorophylls, and quinones, respectively, of 

the bacterial RC. However, the PD1 and PD2 are further apart than the two found in their 

bacterial counterparts.[8-9] 

 

 
 

Figure 5: The spatial arrangement of the cofactors regarding the electron transfer chain in PS II[9] 

PD1/PD2/ChlD1/ChlD2: chlorophylls; PheoD1/PheoD2: pheophytin, QA / QB: plastoquinones; TyrZ: tyrosine; 

CarD1/CarD2: carotenoids 

 

After being absorbed by antenna, light energy is transferred to the reaction center resulting in 

the excitation of primary electron donor P680 to excited state P680*. It is not clear if P680 

comprises PD1and PD2 or PD1, PD2, ChlD1 and ChlD2. One electron from P680* is released and 

travels along the electron chain by means of chlorophyll a (ChlD1 or ChlD2), pheophytin a 

(PheoD1), plastoquinone QA, forming P680+.QA-. The electron partcitipates in two further 

steps of reduction and protonation of the secondary plastoquinone QB. The plastoquinol QBH2 
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is formed then released to the platoquinone pool in the membrane. These processes are similar 

to the electron transfer in bacterial RC. QBH2 is then oxidized at the cytochrome b6f to 

plastoquinone QB. The electron gained after this oxidation is transferred to the plastocyanine 

to form the electron chain in PSI. At the oxidised side of SPII, the P680+ takes one electron 

from a Mn cluster by means of a redox-active tyrosine residue (D1-Tyr-161) (Tyrz) to be 

reduced to P680 for another photosynthetic cycle. In turn, the Mn cluster withdraws an 

electron from a water molecule leading to the oxidation of water to form oxygen and a proton 

(see Fig. 3, 4). This reaction provides oxygen generation for the atmosphere.[10-13] 

Photosystem I (PSI)[14-26] 

Photosystem I contains 11-14 proteins and different types of cofactors including organic and 

inorganic compounds. Chlorophyll is the most abundant component of PSI.   

 
 

Figure 6: The structure of the PSI core with two branches A, B of electron transfer[15] 

P700: SP, two assessory chlorophylls (red color), A0: chlorophylls a as the primary acceptor. A1: phylloquinone, 

clusters FX, FA and FB 

 

It is until today not clear which oneof the two branches or if both of them are involved in the 

electron transfer process. There are two sets of accessory chlorophylls a, termed A. The 

second chlorophylls a as the first acceptor is termed A0 and phylloquinone functional as the 

redox center A1. The two branches are symmetrically arranged along a central axis.  PSI 
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contains also 3 iron-sulphur complex (Fe–S) clusters, termed FX, FA and FB. They function as 

intermediate cofactors to transport electrons to ferredoxin (FD), that parcitipates in the CO2 

transformation. 
 

The PSI undergoes the electron transfer from plastocyanine (PC) to ferredoxin, resulting in 

the reduction of NADP+. After the light is absorbed by antenna, the energy is transferred to 

the special pair P700, which traps energy and subsequently donates an electron to the 

acceptor. The primary charge separation occurrs probably from the electronically excited 

P700 (P700*) to primary acceptor A0 through the intermediate accessory chlorophyll a (A) 

(Fig. 6). This process is followed by electron transfer to phylloquinone A1 then to clusters FX, 

FA and FB. It is accepted that the electron is transferred from Fx through FA, FB to ferredoxin. 

The reduced ferredoxin is an essential redox center used in many chloroplast reactions, 

especially the reduction of NADP+ to NADPH. NADPH and ATP then provide the chemical 

energy for the transformation of CO2 to organic compounds. In turn, the oxidant P700+ 

abstracts one electron from plastocyanine forming P700 to drive the next electron transport 

chain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction - 8 - Nguyen Thi Viet Thanh 

 

1.2 (BACTERIO)CHLOROPHYLL SPECIAL PAIR OF THE 

PHOTOSYNTHETIC REACTION CENTER 
 

The (bacterio)chloropyll dimer occurs at the heart of RC termed special pair (SP). It functions 

as the donor, the starting point of the light driven electron transfer chain in RC. In purple 

bacteria, SP absorbs photons at 870 nm, thus, it is called P870 with P standing for "pigment". 

Similarly, SP is termed P700 in photosystem I (PSI).[27] In the photosystem II (PSII) of 

cyanobacteria, algae, or plants, it is under debate that SP is the primary donor termed P680 or 

there is no SP. The one electron oxidation potential of P680 is 1.1-1.2 V, very different in 

comparison with 0.49 V of P700 and 0.45 of P870.[28] According to Marcus theory (Nobel 

price in chemistry 1992),[29-31] the electron transfer rate depends on three factors: the overlap 

of electron densities of molecules, the redox potential between donor and acceptor, and the 

reorganization energy relating to the energy of rearrangement of atoms within molecules. The 

theory states that the slightly overlapped electronic orbitals are efficient for the reaction 

involving the electron transfer between reacting molecules.  

 

The properties of P870 
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Figure 7: The structure of special pair in bacterial reaction center 

 

The two molecules overlap at their pyrrole rings A (Fig. 7) in such a way that, when looking 

in a direction perpendicular to the ring planes, the atoms of these rings eclipse each other. 
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The pyrrole rings A of both BChls-b are nearly parallel, and about 3.2 Å apart. The distance 

from center to center of the two macrocycles is 7.6 Å. Both tetrapyrrole macrocycles, 

however, are non-planar, the planes through the pyrrole nitrogens of each BChl-b form an 

angle of 11.3º. The BChl (DM) ring is considerably more deformed than that of BChl (DL) 

(see Fig. 1). This can cause an unequal charge distribution between the two components of the 

special pair, which in turn can be one of the reasons for unidirectional electron transfer.[2,32] 

The SP of bacteria RC inherits space, thus the electron density overlaps and the difference of 

redox potential between donor SP and acceptor ФA is essentially influenced for transfering 

electrons.[33] Moreover it is bounded rigidly by proteins, keeping the donor reorganization 

energy small.  

1.2.1 The properties P700 
The primary electron donor of photosystem I structure termed P700 is obtained from the X-

ray crystallographic structure analysis at 2.5 Ǻ resolution.[34]  

    
1      2 

Figure 8: The spatial structure of P700 bounded by local amino acids at 2.5 Å resolution [34]         
 

 

 

1) Top (a) and side (b) view of chlorophyll 

dimer 
2) Molecular structure and IUPAC numbering scheme 

for chlorophyll a (Chl a). Chl a’ is the 132 epimer of Chl 
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Fig. 8 indicates that P700 is a dimer composed of one Chl a and one Chl a’, 132 epimer of Chl 

a (Fig. 8). These two chlorophyll macrocycles overlap at two corresponding rings A and ring 

B. The average distance between two planes is about 3.6 Ǻ. P700 is surrounded by proteins 

but hydrogen bond is found only between proteins and Chl a’. The absorption spectrum of 

P700 shows a red shift compared to Qy transition of chlorophyll in solution. That could be an 

additional evidence of P700 as a dimer with the interaction between two chlorophylls. The 

orientations of the Chlorophyll a in P700 and the Bchl in purple bacteria are very similar. 

This reveals the same origin of the photosynthetic systems. However, the electronic and 

chemical structure of P700 is not yet clear. Some questions are still not answered, such as the 

role of the H-bondings, whether an electron is transfered from P700 into both branches in RC 

or only into one side.[34-39] 

1.2.2 The properties of P680 
  

 
 

Figure 9: Organization of the donor in PSII from Synechococcus elongates at 3.8 Å 

resolution [40] 
 

The primary electron donor of photosystem II termed P680 is composed of chlorophylls a. 

The structure of P680 is still under debate. J. Barber et al.[40,41] suggested that four attributers 

including PD1, PD2 and two accessory chlorophylls a were approximately equidistant from 

each other, with a centre-to-centre distance of about 10–11 Å, further in comparison of the 
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corresponding bacteriochlorophylls in bacterial SP. The two chlorophylls, equivalent to the 

‘special pair’, were spaced further apart than those found in their bacterial counterparts (10 to 

11 Å in PSII compared with 7 Å in bacteria, based on centre-to-centre distance). The authors 

also stated that all other types of SP show the redox potential of 0.5 V or less. However, P680 

radical had an outstanding redox potential of 1 V or more. This requires that all four 

chlorophylls in the PSII reaction center have high redox potentials when oxidised Therefore, 

a monomeric form of chlorophyll is necessary in order to develop a redox potential for the 

oxidation of water. 

 In contrast, a study of crystal structure of Photosystem II from Thermosynechococcus 

vulcanus at 3.7 Å resolution by Nobuo Kamiya and Jian-Ren Shen [42] indicated that the 

closest distance between PD1 and PD2 was 4 Å, shorter than the closest distance from these 

chlorophylls to the ChlD1 of 5 Å (Fig. 10). The overlapped space between PD1 and PD2 is larger 

than the corresponding space between PD1, ChlD1 and PD2, ChlD2 as well. This suggests that 

PD1 and PD2 interact with each other stronger than with ChlD1 and ChlD2. 

 

 
 

Figure 10: Arrangement of the special pair and other cofactors from Thermosynechococcus 

vulcanus at 3.7 Å resolution [42] 
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1.3 MOLECULAR SYSTEMS FOR MODELLING NATURALLY 

OCCURRING SPECIAL PAIRS 
 

The investigations of the structure and the electronic mechanism of the reaction center and the 

SP are still in progress.  Thus mimicking the reaction center and in particular the SP have 

attracted scientists in the field of artificial photosynthesis in recent decades. The main aim of 

these researches is the better understanding of the photo initiated-electron-transfer reactions 

by simplifying the SP in laboratory models.[43] 

A well designed model depends on the selection of chromophores and the linkage between 

them. The chromophors should be selected from natural pigment such as chlorin, chlorophyll, 

bacterial chlorophyll. The efficient linkage is determined by the spatial and the angular 

relation to mimic protein bouding chlorophyll.[44] 

Although numerous models accounting for artificial photosynthetic system were reported, the 

major models were based on covalently linked porphyrins to mimic antenna complexes or 

donor-acceptor systems of RCs. Porphyrin-based models mimicking SP of RC regarding their 

similarity compared to natural structures are limited.[45] 

The first artificial model of SP based on tetrapyrroles was published by Schwartz et al. [46,47] 

in 1972 (Fig. 11). This artificial SP was based on two porphyrins which were connected each 

other via an amide group. 

 

N

N

N

N

Zn

H3C CH3

CH3

H3C CH3

N

N

N

N

Zn

H3C CH3

CH3

CH3

H3C CH3

H3C

H3C H3C

O
NH R NH

O

1  
R is ethylene or p-phenylene 

 

Figure 11: Model 1 of SP based on the metallporphyrins  
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Wasielewski et al. prepared a bis-pyrochlorophyllide 2 successfully.[48] In the synthetic 

process, pyropheophorbide free acid was esterified with ethylene glycol to form 

pyropheophorbide a ethylene glycol monoester, which was then linked with another 

pyropheophorbide free acid again by the second ester bond. The same synthetic pathway was 

employed to yield bis-chlorophyllide 3. However, both dimers showed similar or decreasing 

fluorescent lifetimes and quantum yield compared to monomeric subunits. 
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Figure 12: The structure of the covalently bound dimers of pyrochlorophyllide a 2 (a), 

chlorophyllide 3 (b) 
 

Another model chlorophyll SP is bis(chlorophyll)cyclophane 4,[49] in which two 

chlorophyll derivatives were bound by 2 covalent linkages (Fig. 13). This dimer 

underwent the one-electron oxidation more easily than the chlorophyll monomer. 
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Figure 13: The Bis(chlorophyl1)cyclophanes (4) as model of SP in photosynthetic reaction 

center [49] 

Osuka et al. developed models of SP based on porphyrins. They linked each other via a 

disubstituted phenyl bridge (Fig. 14).[50] 
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Figure 14: Arrangement of a porphyrin dimer 5 with a fixed distance 

 

In the model, two porphyrins are partially overlapped with each other at one pyrrole ring 

with a vertical separation of ca. 4 Ǻ, the dihedral angle between two planes is about 10-

35o and the center to center distance of two monomers is ca. 10 Ǻ. This conformation is 

relatively similar to the SP of Rhodoseudomonas viridis bacterial RC. 

One electron oxidation potential of Mg-porphyrin dimer and Mg-porphyrin were 

measured in butyronitrile as 0.12 V and 0.16 V, respectively. The author implied that the 

oxidation potential of this SP model may be achieved by the delocalization of an unpaired 

electron over both porphyrin monomers. This result demonstrated the similar charater of 

the model as the SP in vivo.  

Another attempt to mimic SP was also achieved by Osuka et al..[51] 

6 7
 

Fig 15: The pheophorbide dimers linked by the benzene derivatives, 6: benzene, 7: 

naphthalene as the bridges[51] 
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This model is based on 3-devinyl-3-carboxylpyropheophorbide-a as the monomer subunit. 

A benzene or naphthalene spacer was employed as the bridge in order to link two 

chromophores in the cofacial dimer using an ester linkage. The redox potential of both 

dimeric models shifted to lower value compared to corresponding monomer (0.06 V of 6 

and 0.15 V of 7). These shifts were larger compared to the model reported by 

Wasielewski et al. (0.06 V). The author implied that this shift depended on the geometry 

of the dimer, and this result was similar to the difference between redox potential of 

bacterochlorophyll a and SP in Rhodoseudomonas viridis bacterial photosynthesis 

reaction center. 

Ganzeng et al. has developed  porphyrin-based models[45] with the geometry, orientation 

and π electron system sufficiently similar to the SP in bacteria (Fig. 16). In this study, two 

monomer subunits were employed as chlorins or bacteriochlorins and they were linked by  

a spacer unit. Dimer 8 was unstable and converted to dimer 9. The NMR upfield shift of 

N-H proton of unexpected dimer 9 revealed a remarkable electron π overlap. The X-ray 

structure determination indicated that the spatial separation between chlorin subunits of 9 

(3.4 Å) was in the same range as found in SP (3.1-3.6 Å). The dihedral angle between two 

chlorins in 9 was about 3o. This determined the dimer more planar than bacterial SP 

(about 11o). The author also stated that if focusing only on the relative orientation and 

space overlap between rings, the behaviour of the dimer 9 is very similar to SP in bacterial 

reaction center. 
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Fig 16: Artificial bacterial chlorophyll dimers as models for reaction centers: bis-chlorin 

model system 8, unexpected chlorin-spurichlorin dimer 9
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2. RESEARCH OBJECTIVES  

2.1 DESIGN OF COFACIAL CHLORIN DIMERS MIMICKING 

SPECIAL PAIRS 
This project focuses on well-defined models of SP which are spatially and electronically 

similar to the natural bacteriochlorophyll and chlorophyll dimers occuring in bacteria and 

plant reaction centers. When invoking models that mimic the reaction center and the SP, 

numerous systems based on porphyrin were designed. However these models indicated that 

they have only limited validity compared to models based on natural chlorin pigments, which 

exhibit low symmetry with respect to a low S1 energy state, strong Q absorption band, leading 

to a higher potential for electron and energy transfer. Therefore various chlorin dimers of 

different symestries were designed to mimic the special pair (Fig. 17). 

In the cis- arrangement, the saturated pyrrole rings of chlorin are adjacent orientation and in 

the trans-arrangement the saturated pyrrole rings of chlorin are opposite orientation. 

 
Figure 17: The cofacial chlorin dimer in different orientations[52] 

 

Inherent bacterial SP structure, the two BChl overlap partially at ring A. Accordingly in our 

designed model, two subunits were partially interfaced as well. The appropriate spacers for 

the chlorin dyads were also designed to reflect the natural system. Variation of the distances 

between two chlorins should be achieved by different spacers using polyarenes (Scheme 1). 
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3.85 Ao2.96 Ao 5.08 Ao

 
Scheme 1: Spacer variation 

 

Scheme 1 indicates that a biphenyl unit could be the well-suited spacer with a distance of 3.85 

Å comparable to the Bchl. dimer of the bacterial reaction center (3.2 Å) and the chlorophyll 

dimer in PS I (3.6 Å). 

The coupling of chlorins to the spacer should be performed by the Shonogashira reaction 

which enables the connection between alkynyl functionalities of spacer with halide 

substitutions of chlorins. Therefore, the diethynylbiphenylen 10 was adopted as a spacer. Iodo 

or bromo substituted chlorins were envisaged as the subunits of the cofacial chlorin dimer 

(Scheme 2). 
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Scheme 2: Different subunits of envisaged chlorin dyads 

 

 The opposite (trans) chlorin dyad could be constructed by the combination of the 17-iodo or 

17-bromochlorin with the 18- iodo or 18-bromo chlorin. The adjacent (cis) orientation should 

be formed by the combination of the 17-iodo or bromo chlorin with the 12-iodo or 12-

bromochlorin. 
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2.2 STRATEGIES FOR SYNTHESIS OF COFACIAL CHLORIN 

DIMERS 

2.2.1 Concept for synthesis of geminally dialkylated chlorin subunits 
 

The total synthesis of geminally dialkylated chlorin was developed according to a strategy of 

our laboratory making use of four heterocyclic building blocks (Scheme 3).[53-55] The 

preparative advantage is the great flexibility of the strategy. Any changes in the substitution 

pattern of the chlorin leading to different substituted chlorins can be introduced while the 

stage of heterocyclic building blocks and linking sequence were not changed.  
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Scheme 3: The synthesis concept leading to geminally dialkylated chlorin 

 

The synthetic procedure is described in Scheme 4. The condensation of the nucleophilic 5-

position of the pyrrolinone 12 with the pyrrolcarbaldehyd 15 is taken place first, followed by 

the thiolation of the lactam function. The resulting thiolactam is linked to ring A building 

block rac-16 via a selective nucleophilic ester unit using the sulfide contraction method.[56] 

The formed tricycle is stabilized by complexation with nickel(II) yielding nickel tricycle rac-

21. Rac-21 can be condensed after the ester cleavage and decarboxylation with the 

pyrrolecarbadehyde 22 affording rac-23. The cyclization of secochlorin rac-23 is carried out 

by base-induced or thermal HCN elimination to form chlorin 24. 
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Scheme 4 : Synthesis of a geminally dimethylated chlorin 24 
 a: 1.) CH3CN, DBU,  20 min., 0 °C; 2.) P(OEt)3, 80 °C, 2 h, Pd(PPh3)4, piperidine, THF*, reflux; b: DBU*, 

molecular sieve, benzene*, reflux, 16 h; c: Lawessons-Reagent, THF*, 40 oC; d: 1.) rac-13, NBS, CH2Cl2, rt., 20 

min.; 2.) 17, DBU, CH3CN, rt., 40 min.; e: TFA, P(CH2CH2CN)3, benzene, reflux, 20 min.; f:  Ni(OAc)2.4 H2O, 

NaOAc, MeOH/CH2Cl2, rt., 20 min.; g: 1.) THF, KOH, MeOH/H2O (9+1), reflux; 2.) p-TsOH, CHCl3, reflux; 

30 min.; h: 1) Zn(OAc)2.H2O, t-BuOK, t-BuOH, 70 °C; 2) 25 % HCl/CH2Cl2. 
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2.2.2 Concept for synthesis of iodinated geminally dialkylated chlorin subunits  
 

Iodinated geminally dialkylated chlorins can be prepared using β-iodinated pyrrole building 

blocks. The tricycle rac-21 can be condensed with the iodo substituted ring D building blocks 

followed by the subsequent cyclization during which different leaving groups at α position of 

rings D ( I-, Br-, or CN-) and the cyano group of ring A are eliminated. Since iodide or 

bromide was substituted in the case of CN at the β position in ring D, a better yield of the 

resulting chlorins were achieved when α-leaving groups were bromide or iodide.[57] Therefore 

the ring D building block for the chlorin subunits of “trans”-chlorin dimer could be employed 

as 3,5-diiodo pyrrole 25 and 4,5-diiodo pyrrole 26. 
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Scheme 5: The concept for synthesis of iodo chlorin 27, 28  

 

Also the synthesis of 12-bromo or 12-iodo substituted chlorins could follow the concept of 

Scheme 4 using ring C pyrrole buiding block 29 or 30. 
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An alternative concept for the synthesis of 12-bromochlorin synthesis should be studied by 

changing the sequence of connection steps for obtaining the tetracyclic bilin intermediate 38. 

The BC lactam bicycle 32 should be connected to ring D building block 33. Subsequently, the 

resulting tripyrrin 36 should be linked with ring A rac-13 to yield the bilin 38 via sulfur 

bridged tetracycle 37. The cyclization following the usual scheme 4 could afford 12-

bromochlorin 39 (Scheme 6). 
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Scheme 6: The modified sequence of the total synthesis of 12-bromochlorin 39 
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Another possibility for the preparation of 12-bromochlorin 39 synthesis should be performed 

by directed electrophilic bromination of 12-unsubstituted chlorin 40. The starting chlorin 40 

should be available from the coresponding monocyclic building blocks along the general 

route. 
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Scheme 7: Posibility of preparation of 12-Bromochlorin 39 by directed bromination 

2.2.3  Concept for synthesis of a spacer subunit 

A synthetic approach leading to a diethynylbiphenylene spacer subunit was successfully 

developed  in ourlabratory[58] starting from 2-methyl-6-nitro aniline (Scheme 8). 
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Scheme 8: Preparation of a diethynylbiphenylene spacer  
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2.2.4 Construction of cofacial chlorin pairs from chlorin and spacer subunits 

The linkage between chlorin and spacer should be performed by Shonogashira coupling. The 

selectivity should be achieved by protecting one of the acetylenyl functional groups by 

trimethylsilylane. After the connection of the first chlorin to the spacer, the protecting group 

should be deprotected in order to link another chlorin unit. The 17-iodo chlorin was selected 

as the first subunit because the resulting mono coupling intermediate could be used for the 

synthesis of both cis- and trans- arrangement (Scheme 9). 
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Scheme 9: Concept for the linkage sequence between chlorin and spacer subunits 

Another concept of the SP synthesis is based on the dynamic control of some factors such as 

temperature, concentration of the reaction solution and the ratio of the starting material to 

afford the chlorin-spacer mono coupling product. The chlorin dyad could be achieved by the 

subsequent insertion of another chlorin. 
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Scheme 10: Concept of the direct connection pathway between chlorin and spacer subunits 
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3. RESULTS AND DISCUSSION 

3.1 PREPARATION OF IODO PYRROLE BUIDING BLOCKS 

The synthetic approach to attain ring D subunits of the dialkylated iodochlorin has been 

previously developed in our research group.[52] The present work is aimed to optimize the 

synthesis procedure and prepare starting materials for the next tasks. 

3,5-diiodopyrrole is the ring D building block of 17-iodochlorin 27 and it was obtained from 

the commercially available starting material, benzylacetoacetate 43, which was converted to 

the pyrrole 44 by the Knorr reaction in high yield. Subsequently, the α-methyl group was 

oxidized by Pb(CH3COO)4 in order to produce the formyl pyrrole 45. The hydrolysis of 

benzylester group leaded to the formation of the carboxylic acid. The decarboxylative 

iodination of the resulted pyrrole 46 yielded finally the diiodo formyl pyrrole 25 (Scheme 

11).[59-61] 
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Scheme 11: Preparation of the ring D building block 25 of 17-iodochlorin 27 
a:NaNO2, AcOH, 0 oC, Zn, reflux, 79.6 %; b: ammonium cerium(IV)nitrate, THF, water, AcOH, 2 h, rt., 65 %; 

c: 10 % Pd-C, H2, quan.; d: NaHCO3, I2, KI, 20 min, 70 °C, 25 %. 

 

As illustrated in scheme 12, γ-picoline-N-oxide 47 was rearranged to form formylpyrrol 49 by 

being exposed to a high intensive lamp in an aqueous copper sulphate solution.[62] The 
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iodination at two unsubstitued carbon position gave the 4,5-diiodpyrrol 26 as the ring D 

building block of 18-iodochlorin 28. 
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Scheme 12: Synthesis of the ring D building block 26 of 18-iodochlorin 28 
a: CuSO4, H2O, hυ, 40 h, rt., 13 %; b: DMF*, NaOH, I2, 1 h, 40 °C, 39.5 %. 
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3.2 SYNTHESIS OF GEMINALLY DIALKYLATED CHLORINS 

WITH IODINE SUBSTITUENTS 
The synthesis of 17- and 18-Iodochlorin followed the concept for chlorin synthesis (Scheme 

4), making use of rings A, B, C and D building blocks. 

The nickel tricycle rac.21, which was synthesized according to the process described in the 

section 2 (page 22), underwent the condensation pathway with the iodinated ring D building 

blocks 25, 26 (Scheme 13). 

Hydrolysis of the ester function with methanolic-aqueous KOH solution produced the free 

carboxylic tricycle rac-49. Under acidic conditions, this tricycle was decomplexed and the α-

aldehyde group of the ring D was activated by protonation. Subsequently, the tricycle 

underwent an nucleophilic attack on the α–position of ring C, followed by decarboxylation 

and rearrangement of the π-system establishing the tetracycles 50, 51. To avoid 

decomposition of intermediate compounds, in this synthetic process, milder reaction 

conditions during the condensation were achieved by performing the reaction at room 

temperature and for a longer time (Scheme 13). 
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Scheme 13: Synthesis of the secochlorins 52, 53 

a: KOH, MeOH/H2O, THF, 70 °C, 30 min.; b: 25, CHCl3, p-TsOH, rt., 16 h, 67 %, b': 26, CHCl3, p-TsOH, rt., 

16 h, 62 %. 
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The recomplexation and cyclization of the tetracycle was performed under basic reaction 

condition. 
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Scheme 14: Cyclization of tetracyclic bilins to chlorins 27, 28 
DBU, sulfolane*, Zn(OAc)2, 3 h, 80 °C, ~79 %. 

 

In presence of zinc(II) acetate, the zinc complex of tetracycle was formed. The initial step of 

the cyclization started with the elimination of HCN leading to the formation of an enamine 

double bond at ring A, which subsequently attacked iodide substitution at α-position of ring 

D. The HI elimination then closed the π-system of the chlorin (Scheme 14).[63] 

Other approaches for cyclization were performed in another basic solvent system of tert-

BuOH/BuOK or by thermal cyclization. However, in all cases, the yields did not exceed 10 % 

due to the decomposition of intermediate products (Scheme 15). 
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Scheme 15: Studies on alternative cyclization conditions 
tert-BuOH/tert-BuOK, Zn(OAc)2, reflux, 2 h. 

1: Zn(OAc)2, MeOH, 20 min., rt., 2: 1,2,4-triclobezene, 210 oC, 45 min., ~10 %. 
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3.3 SYNTHESIS OF DIETHYNYLBIPHENYLEN SPACER 

SUBUNIT 

The implementation of the biphenylene 10 synthesis as the spacer subunit was basically 

conducted according to Thorsten Könekamp’s dissertation,[58] Wilcox et al. and Collman et 

al. .[64,65] 

Starting from the commercially available 6-methyl-2-nitroaniline 52, the corresponding iodo 

substituted benzene 53 was formed by Sandmeyer reaction. The Ullmann coupling linked two 

iodobenzenes to form the dinitrobiphenyl 54. Subsequently, the reduction of 54 by LiAlH4 

afforded dimethylbenzo[c]cinnoline 55 (Scheme 16). 
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Scheme 16: Synthesis pathway of benzo[c]cinnoline 55 
a: 1) HCl, NaNO2, 0 °C, 30 min.; 2) KI, 10 min., (90.4 %); b: DMF, Cu, reflux, 6 h, (61.6 %);  

c: LiAlH4, benzene, diethylether, 2 h, 62 %. 

 

The synthesis of 1,8-dimethylbiphenylene 56 from dimethylbenzo[c]cinnoline 55 based upon 

a pyrolysis reaction has been described by Wilcox et al..[64] After adjustment of several 

experimental parameters (e. g. apparatus geometry, pyrolysis temperatures and reaction time), 

the sufficient pyrolysis procedure was established at 700 oC with 2 g scale of starting material 

55 for 1 hour of the reaction time. Subsequently, the radical bromination with N-bromo-

succinimide, under light irradiation, gave bis(bromomethyl)biphenylene 57 in 35 % yield 

because monobromobiphenylene was also formed as the major side product. The following 

oxidation of bis(bromomethyl)biphenylene 57 yielding diformylbiphenylene 58 was achieved 

by using tetra-n-butyl ammonium dichromate as an oxidation reagent (Scheme 17). 
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Scheme 17: preparation of diformylbiphenylene 58 

d: Pyrolysis, 700 °C, 1 h, (27.9 %); e: NBS, dibenzoylperoxid, CCl4, hν (150 W), reflux, 6 h. (35 %); f: ((n-

Bu)4N)2Cr2O7, CHCl3, reflux, 3 h., (78 %). 

 

As represented in schemes 18 and 19, the functional ethynyl group of the spacer 10 was 

introduced by the Seyferth-Gilbert homologation of diformylbiphenyl using 

Bestmann’reagent. The preparation of the Bestmann’s reagent 59 was performed by the diazo 

transfer of p-toluolsulfonylazide to dimethyloxopropylphosphonate.[66] 

P
H3CO

H3CO

O O

CH3
N2

CHO CHO

+
g

58 59 10  
Scheme 18: Seyferth-Gilbert homologation of diformylbiphenylene 58 

g: K2CO3, MeOH, rt., 4 h, (80.1 %). 
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Scheme 19: Preparation of Bestman’s reagent 
K2CO3, H3CCN, rt., (82.7 %). 
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3.4 SYNTHESIS AND STRUCTURAL CHARACTERIZATION 

OF A COFACIAL CHLORIN DIMER 

The connection of 18-iodochlorin with the spacer was performed by the Shonogashira 

reaction.[67-71] This refers to the sp2-sp coupling between the terminal alkyne and an aryl 

halide in the presence of  Pd(II)/Pd(0) catalyst, with or without Cu(I), under basic conditions.  

Scheme 20 describes the initial mechanism including key elements: oxidative addition, 

transmetalation and reductive elimination. In the course of the oxidative addition, Pd0L2 is 

inserted into the carbon-halogen bond of RX to form the square-planar complex PdL2R1X. In 

the next step, the Pd-cycle connected with the cycle of the copper cocatalyst (the Cu-cycle) 

(Scheme 20). Thus, the transmetalation of the copper acetylide occurring in the Cu cycle 

generates the R1PdR2L2 complex, which then undergoes a trans-cis isomerization. The last 

step of the reductive elimination gives the final coupled R1-C≡C-R2 and releases palladium(0) 

complex, starting a new catalytic cycle. 
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Scheme 20: The mechanism of the copper-cocatalyzed Sonogashira reaction 

 

The mechanism of copper-free Sonogashira reactions is still under debate. The first step 

should be the oxidative addition of R1-X to the palladium(0) complex to form PdXL2. The 
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complexation of the alkyne to the complex is supposed to be firstly proceeded with the 

displacement of one ligand to give the intermediate complex PdXLR1(HR2). The bonded 

alkyne would be easily deprotonated by an amine, forming the new complex R1Pd-

PdL2R1R2, which gives the coupling product R1-C≡C-R2 by reductive elimination (Scheme 

21). 
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Scheme 21: The mechanism of copper-free Sonogashira reaction 

 

The catalyst for the Shonogashira reaction was developed mostly based on palladium-

phosphine ligand complex with or without the presence of copper(I) salt, in the presence of 

amine. Among various reaction conditions frequently performed,[68-70] the ratio of the catalyst 

would be up to 5 mol %, the solvents could be DMF, toluene, THF, and the amines could be 

TEA or pyrrolidine. To avoid the Glaser-type homocoupling, the strict exclusion of oxygen 

was also required.[70,71] 

 Some reaction conditions were tested for the coupling of iodochlorins with the spacer, such 

as Pd(dba)2 and P(o-tol)3, Pd[PPh3]4/CuI, Pd(dba) and As(o-tol)3, in different solvents namely 

THF, DMF and toluene, as well as applying different reaction times. As the result, the best 

condition was found with Pd(dba)2 and P(o-tol)3 in toluene/TEA (5:1). Unfortunately, side 

products were observed decreasing the yield of this reaction. The tetraphenyl-chlorin 63 as 

one of side products resulted from the monochlorinspacer homocoupling was identified by 

MS spectra (Scheme 22). 
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Scheme 22: Synthesis of the monochlorin-spacer unit 62 and the formation of side product 63 

Pd2(dba)3.CHCl3, P(o-tol)3, Toluene/TEA (5:1), 60 oC, 7 h,~10 % 

 

To avoid the homocoupling and to optimize the desired coupling reaction, as illustrated in 

scheme 13, the spacer could be protected by a trimethylsilane group,[72] following the original 

concept (page 24). However, the attempt of lithiation, followed by quenching with TMSCl 

was not successful.  

 

1 BuLi, THF, -78 oC, 1 h

2 TMSCl, -78 oC,1h, rt., 1h

 
Scheme 23: Attemp to protect the spacer’s functional side 

The final step of the total synthesis of chlorin dyad was the coupling of the 17-iodochlorin 27 

with the mono chlorin-spacer 62. This reaction was performed under the same reaction  
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conditions but for a longer reaction time (Scheme 24). 
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Scheme 24: Synthesis of chlorin dyad 64 

Pd2(dba)3.CHCl3, P(o-tol)3, Toluene/TEA (5:1), 60 oC, 17 h, ~10 %. 

 

 
Figure 18: UV-VIS spectra of the trans-chlorin dyad 64, monochlorin-spacer 62 and chlorin 

subunits 27, 28 

 

The UV spectra presented in figure 18 shows the red shift of the Q bands of chlorins 27, 28, 

monochlorin-spacer 62 and chlorin dyad 64 ranging from 625 to 635 and 640 nm respectively 

.........17-Iodo chlorin 27 

.......  18-Iodo chlorin 28 

------  18-Iodo chlorin spacer 62 

-··-··- trans - chlorin dyad 64
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due to the increasing the π-system. The double intensity of chlorin dimer 64 in the UV spectra 

compared to single chlorin reflexs the dimeric structure.  

After excited at 400 nm, monochlorin-spacer 62 and chlorin dyad 64 showed high intensities 

of emission fluorescence at 638 nm while no fluorescence was observed in the case of chlorin 

28 (Fig. 19). The broad band in the UV and the split of the Q-band in fluorescence spectra of 

chlorin dyad indicates the existence of two conformations of the dyad. 
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Figure 19: The Fluorescence of trans-chlorin dyad, monochlorin and chlorin subunits (10-6 M) 

 

The conformation of the cofacial chlorin dimer was calculated based on semi-empirical PM3 

calculations. The chlorin subunits of the dyad are arranged in two conformations. The energy 

for both conformations is almost equal with a caculated difference of only 1.5 kcal/mol. When 

looking perpendicularly at the chromophore plane, for structure I, two chlorin subunits are 

almost eclipsed to each other while for structure II, the chlorin subunits are only partially 

overlapping. The shortest distance between the two chlorin planes is about 3.2 Å while for the 

distance between two central Zn atoms it is about 4.5 Å. In both cases, the spatial separations 

of the two subunits are relatively close to those of SP in bacteria and plants, as shown in Fig. 

3. The geometric orientation and the overlapping π-electron system of the conformation II are 

arranged remarkably similar to SP in P700 of plant reaction center. However, in order to 

confirm the electron transfer ability of this chlorin dyad, experimental and theoretical 

investigations are necessary in particular under the influence of an electron acceptor. 

 

Wavelength (nm) 

Intensity 



3. Results and Discussion - 36 - Nguyen Thi Viet Thanh 

       

 

   
 

Figure 20: Top and side view of the cofacial chlorin dyad I and II 
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3.5 STUDIES DIRECTED TO SYNTHESIS OF 12-BROMO-

2,2,7,8,13,17,18-HEPTALMETHYL CHLORIN  

3.5.1 Synthesis of a bicyclic thiolactam 

For the synthesis of 12-halide chlorin, pyrrole 29 or 30 (see 2.2.3) was employed. The more 

stable bromo BC building block compared to the iodo BC fragment should avoid halogen loss 

from the lactam.  

The preparation of bromo pyrrole 29 as the ring C building block for 12-bromochlorin was 

carried out along two different pathways (Scheme 25). Both included bromination and 

oxidation. The bromination followed by oxidation procedure (a, b) gave a better yield than the 

alternative procedure with an interchange of the reaction steps (a’, b’).[73-76] 
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Scheme 25: Preparation of  ring C building block 29 
a: NBS, -78 oC, 2 h, 70.2 %; b: 1: Pb(CH3COO)4, 17 h; 2: HCl 2.5 M, 4 h, 62.3 %. 

a’: Pb(CH3COO)4, 17 h; 2: HCl 2.5 M, 4 h, 62 %; b’: NBS, -78 oC, 2 h, rt., 3 h, 12 %. 

 

Base-catalyzed condensation of pyrrolinone 14 and aldehyde 29 produced the bicyclic lactam 

68 without any removal of bromide. 68 was then converted to the thio analogue 69 (Scheme 

26).   
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Scheme 26: Synthesis of the bromo-substituted thiolactam 69 

a: Schwesinger base, molecular sieve, benzene*, reflux, 15 h, (32.9 %);  

b: Lawesson’s Reagent, THF*, 40 oC, 3 hours, 72.5 %. 

3.5.2 Synthesis of a tricyclic nickel complex 

Coupling of brominated rac-13 with thiolactam 69 yielded the tricyclic sulfide 70 (Scheme 

29). In the further sulfide contraction step, under acidic conditions, the desired tricyclic 73 

was formed togetther with by product debrominated tricycle 72. 

 The bromide removal took place along with the sulphide contraction of 70 using 

P(CH2CH2CN)3  in the presence of  TFA. The bromide could be replaced by nucleophilic 

attack of the phosphine at the bromine yielding the brominated phosphorous (Scheme 27). 
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Scheme 27: Possible mechanistic course of unexpected bromide removal at ring C building 

block in the sulfid contraction 
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The formation of side product 72 could be supressed by using P(C6H5)3 instead of  

P(CH2CH2CN)3 in the sulfide contraction procedure. Complexation of these compounds with 

nickel(II) yielded two nickel complexes 74 and 75 (Scheme 28). 

 

HN

Br

CH3

EtO2C

HN

S
CH3

CH3

Br

CH3

EtO2C

HN

N

CH3

CH3NH
CH3

CH3

CH3

CN

S

N

CH3

CH3
CH3

NC
N

N

CH3

CH3

CH3

EtO2C

Ni

Br

NH

CH3

CH3
CH3

NC

N

HN

CH3

CH3

CH3

EtO2C Br

NH

CH3

CH3
CH3

NC

N

HN

CH3

CH3

CH3

EtO2C H

CO2t-Bu

b

NH
CH3

CH3

CH3 CN
NH

CH3

CH3

CH3
CN

Br
CO2t-Bu

CO2t-Bua

rac-13

N

CH3

CH3
CH3

NC
N

N

CH3

CH3

CH3

EtO2C

Ni

H

69

70

72 73

74 75

+

+

c

d

1 : 3  
 

Scheme 28: Synthesis of the nickel complexes 74, 75 

a:NBS, CH2Cl2, rt., 20 min.; b: DBU, CH3CN, rt., 40 min.; c: 1) TFA, P(Ph)3, benzene, reflux, 20 min.; d: 

Ni(OAc)2.4 H2O, NaOAc, MeOH/CH2Cl2, rt., 20 min., (35.7 %). 
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3.5.3 Studies directed to synthesis of bilin 80  
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Scheme 29: Synthesis of bilin 80 
a: KOH, MeOH/H2O, THF, 70 °C, 30 min.; b: 41 or 76-78, CHCl3, p-TsOH, reflux, 30 min. 

 

According the synthetic procedure described in the Scheme 29, the ester group was cleaved to 

yield a polar deep violet compound. With this intermediate assumed as carboxylic acid 79 of 

tricyclic nickel complex 75, the condensation reaction with different ring D building blocks 

(41, 76-78) were performed. In all cases, decompositions were observed so that the 

preparation of bilin 80 failed.  
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3.5.4 Synthesis of a 12-unsubstituted chlorin 
 

The nickel complex 74 produced as the side product (see Scheme 27) was used to synthesize 

12-unsubstituted chlorin 40 (Scheme 30). This synthesis was carried out successfully 

following the general chlorin synthetic concept (see 2.2). 
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Scheme 30: Synthesis of 12-unsubstituted chlorin 40 
a: KOH, MeOH/H2O, THF, 70 °C, 30 min; b: 41, CHCl3, p-TsOH, rt., 16 h, 62 %,  

c: Zn(CH3COO)2, DBU, sulfolane*, 80 oC, 49.2 %. 

3.5.5 Synthesis of a bromo-oxo-tripyrrin [77-79] 
 

For formation of tricyclic lactam 84, the ester function of the bicyclic lactam 69 was 

hydrolized followed by acid inducted condensation with pyrrole aldehyde 76. The tripyrrin 84 

was formed in 19 % yield (Scheme 31).  
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Scheme 31: Synthesis of oxo-tripyrrin 84 
a: THF, KOH, MeOH/H2O (9+1), reflux, 1 h; b: TFA, CHCl3, reflux, 2 h, 19 %. 

3.5.6 Attempts to prepare a bromo-thiotripyrrin  
Attempts to transform the tricyclic lactam 84 into its thio analogue using Lawesson’s Reagent 

showed only decomposition. The observation is in agreement with previous studies which 

demonstrated that thiolactams are not accessible.[73] 
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Scheme 32: Attempts to form thiotripyrrin from tricyclic lactam 84 
P4S10 or Lawesson's Reagent, THF*, rt. 
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3.5.7 Studies directed to bromination of a geminally dimethylated chlorin 
 

To investigate the bromination of chlorins, the standard reaction was performed based on the 

bromination of the geminally dimethylated chlorin 24. 

Previous studies[81-83] demonstrated that the electrophilic bromination of β-unsubstituted 

chlorins undergo selectively at the C-5 and C-20 positions. However, the bromination of 

chlorin 24 gave a mixture of hydroxyl substituted chlorin 86 and oxochlorin 87 unexpectly 

(Scheme 33). 

The mechanism exhibited the tautomerization of ring A resulting the double bond between the 

position C-3 and C-4, as well as the enrichment of electron density at the C-4. The 

electrophylic brominated substitution at C-3 generated the substituted bromochlorin, which 

was easily hydrolized to form the hydroxylchlorin 86. The oxidation of hydroxyl group gave 

the oxochlorin 87 as the second product. 
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Scheme 33: Bromination of a geminally dimethylated chlorin 24 yielding hydroxylchlorin 86 

and oxochlorin 87  
NBS, THF, -78 oC, 1 h, rt., 1h, 57.8 % 
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4. SUMMARY AND OUTLOOK 

Based on the rings A, B, C and iodine substituted rings D, the total synthesis of 17-, 18-

iodinated chlorins were achieved according to concept developed in our laboratory (Scheme 

34). 
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Scheme 34: Total synthesis of 17-, 18-iodochlorins 27 and 28 from building blocks A-D 

The synthesis of diethynylbiphenylene 10 as the spacer for connecting two chlorins 27, 28 

was improved and modified along a route previously described in the literature. 
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Scheme 35: Synthesis of diethynylbiphenylene 10 as the spacer unit of of chlorin dyads 

The subsequent connections of the 17-, 18- iodochlorins 27, 28 and the spacer unit 10 were 

performed by the Shonogashira coupling. However, the yield of this reaction was not optimal 

due to the formation of side products. The final cofacial chlorin dyad 64 was characterized by 

HR-MS. The absorbance and fluorescence spectrum indicated the existance of the chlorin 

dyad in two conformations. This is in agrrement with the Semi-empirical PM3 calculations, in 

which the two chlorins are completely overlapping (eclipsed) II and partial overlapping 

(partial eclipsed) I. Both conformations represent arrangments which can be found in 

different photosynthetic systems. 
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The investigation of 12-bromochlorin synthesis is based on the synthetic concept also applied 

for 17 and 18-iodochlorin. The bromo substituted pyrrole was employed as the corresponding 

ring C building block. The tricyclic nickel complex was formed as an intermediate with 

reasonable yields. 
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However the desired chlorin as the final product was not achieved due to decomposition of 

the bilin intermediate in the course of condensation of ring D building blocks to the tricyclic 

nickel complex. 

An alternative concept for synthesis of 12-bromochlorin was approved by direct bromo 

substitution on the 12-unsubstituted chlorin 40. This starting material was yielded based on 

the coresponding nickel complex 74, a side product formed in the bromo nickel complex 75 

synthesis process.  
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 The directed bromination of chlorin was tested on the geminally dimethylated chlorin. 

However this starting material was easily accesible the bromonation yielding an undesired 

oxochlorin and hydxoxyl chlorin. 

Another concept which should afford the 12-bromochlorin was investigated by attaching first 

the ring D buiding block 76 to the BC fragtment 69 to yield the oxo-tripyrrin 84.   
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However the thiolation of the oxo-tripyrrin showed completed decomposition of the formed 

product. 
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5. EXPERIMENTAL SECTION 

5.1 GENERAL EXPERIMENTAL CONDITIONS 

5.1.1 Quality of Chemicals and Solvents 
 

The chemicals and reagents in the reaction were used without any purification. They were 

“synthesis” grade and purchased product of Fluka, VMR (Merck), Aldrich, Acros, Riedel-de-

Häen, Lancaster and TCI.  

All reactions and purification steps were performed with distilled solvents. For UV and 

fluorescence analysis, solvents were used in "HPLC" quality. 

Solvents and reagents marked with (*) were dried and distilled under an argon atmosphere 

before usage according to literature procedures mentioned following: 

 

Preparation of dry solvents and /or reagents (marked with * in next pages) 

Acetonitrile  distilled over P4O10    

Chloroform  distilled over P4O10 

Benzene  distilled over sodium with indicator benzophenone  

1,8-Diazabicyclo[5.4.0]undec-7-en (DBU)  distilled over molecular sieves 

Dichloromethane distilled over P4O10 

Diethyl ether  distilled over sodium with indicator benzophenone 

Ethanol  distilled over CaO 

Methanol  distilled over CaO 

Sulfolane  distilled over CaH2  

Tetrahydrofurane distilled over sodium with indicator benzophenone 

Toluene  distilled over sodium with indicator benzophenone  

Triethylamine  distilled over CaH2  

Pyridine  distilled over molecular sieve      
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5.1.2 Analytical Instruments 
 

Melting points (Mp) 

The melting point determination was performed on a Reichert Thermovar hot stage and 

melting point apparatus from Gallenkamp Company. The results observed are uncorrected in 

both cases. 

 

Infrared Spectroscopy (IR) 

Spectra were recorded on a Paragon 500 FT-IR spectrometer from Perkin-Elmer with a 

resolution of 4.0 cm-1. The relative band intensities were designated s (strong intensity), m 

(medium intensity), w (weak intensity) of band and br (broad band). 

 

Ultraviolet and VIS Spectroscopy (UV/VIS)  

UV/VIS measurements were performed on a Cary 50 spectrometer of Varian. Solutions with 

the concentration range 0.510-5 to 5*10-5 molar were used for the quantitative measurement. 

The absorption maxima at a wavelength λ were recorded as the molar extinction coefficient ε. 

                                                    dc
I
IA 0log  

A = absorbance at a wavelength λ 

ε = molar extinction coefficient in cm 2 mmol-1 or mol-1
*dm3

* cm-1 

c = concentration mol.L-1 

d = layer thickness in cm 

 

Fluorescence Spectroscopy 

The fluorescence determinations were performed on a LS50B fluorescence spectrophotometer 

from Perkin-Elmer. The particular excited wavelength λexc and the emitted wavelength λem 

were given in nm. Samples were measured in a molar concentration range of about 10-6 

(molL-1). 

 

Nuclear Magnetic Resonance Spectroscopy NMR (1H and 13C-NMR, and NOE 

experiments) 

NMR spectra were recorded by a Bruker-Daltonik DPX-200 (υ: 1H = 200 MHz, 13C = 50 

MHz), or AM-360 (υ: 1H = 360 MHz, 13C = 90 MHz) spectrometer with 0.5 mL deuteriated 

solvent in a NMR tube of 5 mm diameter at the room temperature. The standard was set up by 
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the spectrometer software from Bruker Daltonic. The "lock in" was carried out on the 

respective solvent signal. The chemical shift δ (in ppm) was determined using deuterated 

solvent residues. The fine structure of proton signals was described by chemical shifts ( ) in 

part per million (ppm) and the multicity were quoted by s (singlet), bs (broad singlet), d 

(doublet), t (triplet), q (quartet), dd (doublet of doublets) and m (multiplet), The coupling 

constants xJ relate to 1H, 1H coupling constants, in which x represents the number of bonds 

between the coupled nuclei. 

 

Mass Spectrometry (MS)   

The MS measurements were recorded on the double focusing mass spectrometers MAT 8200 

and MAT 95 and on an electrospray mass spectrometer from Bruker Esquire LC Daltronic. 

Samples were measured by direct inlet method. The electron-impact ionization (EI) was 

performed with an ionization energy of 70 eV at a temperature, of 200 °C, if not noted. The 

electrospray ionization (ESI) was performed with a given solvent and a sample addition of 2 

mL/min using direct inlet. 

 The spectrum, which had the molecule peak group with the largest percentage, was used for 

analysis. Only the peaks with a relative intensity of more than 10% were determined for 

analysis. Critical peaks were not noted in the structural determination. 

 

High-resolution Mass Spectrometry (HR-MS) 

High resolution spectrums were obtained on a double-focusing mass spectrometer MAT 8200 

from Finnigan MAT company using the peak-matching method and on an APEX Qe 9.4T 

(superconducting magnet) unit with Apollo II electrospray source and Qh unit (quadrupole 

Filters included). 

The reference substance Perefluxuorkerosin (PPR) was used as the reference substance and 

the resolution R was stated. 

5.1.3 Chromatography 
 

Thin Layer Chromatography (TLC) 

TLC was performed on aluminium plates coated with silica gel 60 F254 (20x20 cm) or with 

aluminum oxide ALOX/UV254 from Fluka. The layer thickness was 0.2 mm. Band 

detections were obtained using a fluorescent lamp at wavelengths of 254, 366 nm or in an 
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iodine chamber.   

 

Flash Chromatography  

Flash chromatography was carried out using silica gel 32-63 μm 60 Å from ICN 

Biomedicales or aluminum oxide (ALOXN II-III, neutral, activity II-III) of the company ICN 

Biomedicals. The columns were packed by the slurry method (by slurry and degassing) in the 

indicated eluent. The separation was performed with normal or slightly elevated pressure. 

 

Column Chromatography   

The chromatography was carried out on silica gel 32 - 63 μm 60 Å from ICN Biomedicales or 

aluminum oxide (ALOXN II-III, neutral, activity II-III) of the company ICN Biomedicals. 

Packing of the column was performed by the slurry method using the indicated solvent 

system.   

5.1.4 Formulas and Abrreviations 
 

The abbreviations are generally used according to CAS Standard Abbreviations & Acronyms. 

Other abbreviations used are mentioned below:  

 

aq.  aqueous  

BRN  Beilstein registration number  

Bn  benzyl  

Bp  boiling point 

CAN  ammoniumcer (IV)nitrat [(NH4)2Ce(NO3)6] 

CAS-No. CAS registration number  

EtOAc  ethyl acetate   

ether  diethyl ether  

et  ethyl 

eq.  equivalent(s)  

h  hour 

lit.  literature  

m  medium 

Me  CH3 

min.  minute 

Mp  melting point 
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PE  petroleum ether  

rel.  relative  

rac.  racemic 

rt.  room temperature 

s.  strong 

sat.  saturated   

sol.  solution  

THF  tetrahydrofurane  

th.  theoretical  

TEA  triethylamine  

w  weak  

5.1.5 References for CAS and BRN numbers 
 

The respective numbers are stated at the end of the analytic data of a substance. If no number 

was noted, the substances were not referenced in the MDL Beilstein Crossfire Commander 

V6 (version 7.1) database at the time of the literature search. 

 

 

 

 

 

 

 

 

 

 

 

 



5. Experimental Section - 53 - Nguyen Thi Viet Thanh 

5.2 SYNTHESIS OF DIFFERENT RING D BUILDING 

BLOCKS[52] 

5.2.1 Synthesis of 3-methyl-1H- pyrrole-2-carbaldehyde (48) 
 

N
H

CHO

CH3

N+

O-

CH3

C6H7NO

109.13

C6H7NO

109.13

47 48

 
 

The solution of 3.6 g (0.033 mmol) γ-piclolin-N-oxide and 120 g CuSO4.5H2O (0.48 mol) in 

600 mL water was irradiated by an irradiation apparatus with a high intensive mercury lamp 

(500 W). After 44 hours, the green-brown reaction mixture was extracted three times with 100 

mL portions of diethylether. The combined organic layers were dried through a plug of cotton 

and the solvent was removed by rotary evaporator. The dark brown residue was purified by 

column chromatography (50 g of silica gel, dichloromethane/ethyl acetate 9:1) to give the 

formylpyrrol 48 (473 mg, 13 %) as colorless crystals. 

 

Mp:  95 oC (CH2Cl2); 

 

Rf:  0.5 (silica gel, CH2Cl2/EtOAc, 9:1); 

 

IR (KBr): ~ = 3244.9 (s, br., NH), 2856 (w, CH3), 1629 (s, C=O), 1489 (m), 1430 (m), 1342 

(m), 1175 (m), 1025 (m), 805 (s), 769 (s), 729 (m), 623 cm-1 (w); 

 
1H NMR (200 MHz, CDCl3): δ = 2.4 (s, 3H, CH3), 6.15 (s, 1H, 5-CH), 7.02 (s, 1H, 4-CH), 

9.27 ppm (s, br., 1H, 1-NH), 9.65 (s, 1H, CHO); 
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 MS (EI, 70 eV, 200 oC): m/z (% rel. intensity) = 109 (100) [M]+,  108 (68) [M-H]+, 80 (36) 

[M-CHO]+, 53 [M-CHO-HCN]+, 40 (16); 

 

BRN: 107876; 

 

CAS-No: 24014-18-4. 

 

5.2.2 Synthesis of 4,5–diiodo-3-methyl-1H- pyrrole-2-carbaldehyde (26) 
 

             

N
H

CHO

CH3I

IN
H

CHO

CH3

C6H7NO C6H5NOI2
109.13 360.92

48 26

 
 

 To a solution of pyrrole 48 (50 mg, 0.48 mmol) in 5 mL of DMF* was added a solution of 

NaOH (65 mg, 1.6 mmol, 3.5 eq.) in 2mL water.A solution of iodide (350 mg, 1.4 mmol, 3 

eq.) in 20 mL DMF* was then dropped slowly for 30 minutes. The reaction mixture was 

heated to 45 oC for 2 hours. After cooling, the solution of Na2S2O3 (20 %) was dropped until 

the iodide color disappeared then the mixture was extracted 2 times with 20 mL portions of 

CH2Cl2. After removing the solvent, the organic residue was purified by column 

chromatography (silica gel, CH2Cl2/EtOAc, 9:1) and recrystallized from THF/n-hexan to 

afford pyrrole 26 (65.3 mg, 39.5 %) as colorless crystals. 

 

Mp:  215 oC (THF/n-hexane); 

 

Rf: 0.6 (silica gel, CH2Cl2/EtOAc, 9:1); 

 

IR (KBr): ~ = 3435 (s, br., NH), 3229 (s, N-H), 2851 (w, CH3), 1627 (s, C=O), 1635 (s), 

1407 (m), 1354 (s), 1206 (m), 1022 (m), 1005 (m), 827 (m,), 729 (m), 495 cm-1 (w); 
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1H NMR (200 MHz, CDCl3): δ = 2.32 (s, 3H, CH3), 9.42 (s, br.,1H, NH), 9.63 ppm (s,1H, 

CHO); 

 MS (EI, 70 eV, 200 oC): m/z (% rel. intensity) = 452 (100) [M]+, (9) [M-CHO] +, 233 (5) [M-

I] +, 205 (4) [M-CHO-I]+, 179 (3), 107 (3), 79 (4), 51 (6). 

 

HR-MS [EI, C6H5ONI2, R ≈ 10000]: Calculated: 360.84607; 

                                                  Measured: 360.84713. 

 

5.2.3  Synthesis of benzyl 3,5-dimethyl-1H-pyrrole-2,4-carboxylate (44) 
 

H3C

BnO2C

O

N
H

CO2Bn

BnO2C CH3

H3C
2

C11H12O3 C22H21NO4

192.20 363.42

43 44

 
Benzyl acetoacetate (40 mL, 0.23 mol) (d = 1.114 g/mL) was dissolved in 50 mL of acetic 

acid and the solution was cooled to about 0 oC. The solution of NaNO2 (10 g, 0.144 mol, 1.3 

eq.) in 20 mL of water was dropped for 30 min.. The cooling mixture was stirred for further 4 

hours. Zinc powder was further added while the temperature of the reaction mixture was kept 

at about 70 oC. The adding process was continuous until the temperature not increased. After 

the addition, the reaction was refluxed for 1 hour and poured into 700 g of crushed ice. The 

precipitate was separated from a filter funnel, washed with water and crystallized from 

benzene/PE to yield pyrrole 44 (34.5 g, 79.6 %) as white crystals. 

 

Mp: 135 oC (benzene/PE);  

 

Rf: 0.6 (silica gel, CH2Cl2/EtOAc, 9:1); 

 

IR (KBr): ~ = 3309 (s, N-H), 3060, 3032 (w, =CH), 2963 (w, CH3), 1699, 1664 (s, br, C=O), 

1586 (w), 1567 (w), 1511 (w), 1489 (w), 1451 (m), 1432 (m), 1379 (w), 1342 (w), 1275 (s), 

1260 (s), 1195 (s), 1111 (w), 1087 (s), 1047 (w), 1029 (w), 980 (w), 940 (w), 883 cm-1(w); 
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1H NMR (200 MHz, CDCl3): δ = 2.50 (s, 3H, 5-CH3), 2.59 (s, 3H, 3-CH3), 5.30, 5.32 (s, s, 

4H, 2 CH2), 7.41 (m, aromatic, 10 H), 8.9 ppm (s, br, 1H, NH); 

 

 MS (EI, 70 eV 200oC): m/z (% rel. intensity) = 363 (13) [M]+,  272(10) [M-C6H5CH2] +, 91 

(100) [C6H5CH2] +, 65 (15) [C5H5]+, 43 (28) [C4H3]+; 

 

BRN: 319664; 

 

CAS-No: 52459-55-9. 

 

5.2.4 Synthesis of benzyl 3-dimethyl-5-formyl-1H-pyrrole-2,4-dicarboxylate (45) 
 

N
H

CO2Bn

BnO2C CH3

H3C

C22H21NO4

363.42

N
H

CO2Bn

BnO2C CH3

OHC

C22H19NO5

377.13

44 45

 
 

To a solution of benzyl 3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate 44 (2.2 g, 5.5 mmol) in 60 

mL of THF* and 5 mL of acetic acid was dropped a solution of ammonium cerium(IV) nitrate 

[(NH4)2Ce(NO3)6] (15.076 g, 27.5 mmol, 5 eq.) in 30 mL water for 1 hour. The reaction 

mixture was further stirred for one hour at rt.. To terminate the reaction, 300 mL of water was 

added, the mixture was then extracted three times with 50 mL portions of dichloromethane. 

The combined organic extracts were washed with 50 mL of sat. aq. NaHCO3 solution. The 

organic phase was dried through a plug of cotton and the solvent was removed by rotary 

evaporator. The given residue was purified by column chromatography (50 g of silica gel, 

dichloromethane/EtOAc 19:1). The crude product was crystallized from CHCl3/n-pentane to 

afford benzyl 5-formyl-3-methyl-1H-pyrrole-2,4-dicarboxylate 45 (1.35 g, 65 %) as 

colourless crystals. 
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Mp: 128 oC (CHCl3/n-pentane); 

 

Rf: 0.5 (silica gel, CH2Cl2/EtOAc, 19:1); 

 

IR (KBr): ~ = 3256 (s, br, N-H), 2902 (w, CH3), 1708, 1694 (s, br, C=O), 1587(w), 1553 (m), 

1483 (m), 1465 (m), 1455 (m), 1381 (w), 1362 (w), 1337 (w), 1257 (s, C-O-C), 1231 (m), 

1194 (s), 1120 (m), 1084 (w), 1029 (w), 946 (w), 913 (w), 878 (w), 828 cm-1(w); 

 
1H NMR (200 MHz, CDCl3): δ = 2.62 (s, 3H, CH3), 5.36, 5.38 (s, s, 4H, 2 CH2), 7.41 (m, 

aromatic, 10 H), 9.63 (s, br, 1H, NH), 10.24 ppm (s, 1H, CHO); 

 

 MS (EI, 70 eV, 200 oC): m/z (% rel. intensity) = 377 (7) [M]+,  359 (4) [M-CO]+, 286 (24) 

[M-C6H5CH2]+, 271 (15) [M-C6H5CH2-CH3]+, 180 (6) [M-C6H5CH2-CH3-C6H5]+, 162 (6), 91 

(100) [C6H5CH2]+, 65 (7) [C5H5]+; 

 

BRN: 498286; 

 

CAS-No: 52649-13-5. 

 

5.2.5 Synthesis of 3-dimethyl-5-formyl-1H-pyrrole-2,4-carboxylic acid (46) 
 

N
H

CO2H

HO2C CH3

OHC

C8H7NO5

197.15

N
H

CO2Bn

BnO2C CH3

OHC

C22H19NO5

377.13

45 46

 
 

Benzyl 3-dimethyl-5-formyl-1H-pyrrole-2,4-dicarboxylate 45 (1.45 g, 3.84 mmol) was 

dissolved in 10 mL THF * and mixed with 2-3 drops of triethylamine*. The flask was 

evacuated and gassed with argon. This process was repeated 2 times and the reaction mixture 

was added with 150 mg Pd-carbon catalyst. The flask was again evacuated 2 times, gassed 
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with hydrogen and the reaction mixture was stirred at rt. and controlled by TLC. At the end of 

the reaction, the mixture was filtered through celite and washed with 50 mL of methanol. The 

solvent was then removed by rotary evaporator to give 3-dimethyl-5-formyl-1H-pyrrole-2,4-

carboxylic acid 46 (757 mg, 3.83 mmol, quantitative) as the colourless powder, which was 

further implied without any characterization. 

 

BRN: 170129; 

 

CAS-No: 79754-38-4. 

 

5.2.6 Synthesis of 2,4-diiodo-3-methyl-1H-pyrrole-2-carbaldehyde (25) 
 

N
H

CO2H

HO2C CH3

OHC

C8H7NO5

197.15

N
H

I

I CH3

OHC

C6H5NOI2

360.92

46 25

 
 

A three-neck flask with a dropping funnel and a thermometer  was charged with a solution of 

dicarboxylic acid 46 (210 mg, 1.06 mmol) and NaHCO3 358 g (4.24 mmol, 4 eq.) of in 10 mL 

water then the mixture was heated to 70 oC. A solution of iodide (430 mg, 2.12 mmol, 2eq.) 

and potassium iodide (1.05 g, 6.36 mmol, 6 eq.) in 15 mL of water was dropped for 30 min.. 

The reaction mixture was stirred for further 20 min. at 70 oC. After cooling, the mixture was 

added with some drops of sat. Na2S2O3 solution to neutralize the excess of iodine. The 

resulting mixtre was filtered through a pad of celite and the aq. filtrate was then extracted 3 

times with 30 mL portions of CH2Cl2. The combined organic phases were washed with 30 mL 

of sat. aq. NaCl solution and dried through a plug of cotton. The solvent was removed by 

rotary evaporator to give the crude product, which was purified by column chromatography 

(20 g silica gel, dichlomethane/ethylacetate 9:1) and recrystalized from CHCl3/n-pentane to 

obtain diiodopyrrole 25 (96.1 mg, 25 %) as colourless crystals. 
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Mp: 175 oC (CHCl3/n-pentane); 

 

Rf: 0.5 (silica gel, CH2Cl2/EtOAc, 9:1); 

 

IR (KBr): ~ = 3182.1 (s, br, N-H), 2839 (w, CH3), 1708, 1640 (s, br, C=O), 1430 (m), 1382 

(m), 1330 (m), 1381 (w), 1227 (m), 1030 (w), 793 (m), 757 (w), 495 (w, C-I) cm-1(w); 

 
1H NMR (200 MHz, CDCl3) δ = 2.10 (s, 3H, CH3), 9.19 (s, 1H, CHO), 9.21 ppm (s, br, 1H, 

NH); 

 

 MS (EI, 70 eV, 200 oC): m/z (% rel. intensity) = 361 (100) [M]+,  332 (4) [M-CHO]+, 233 (8) 

[M-I]+, 107 (7) [M-I-I]+, 79 (12), 51 (18), 28 (9); 

 

BRN: 1526401; 

 

CAS-No: 49569-09-7. 
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5.3 SYNTHESIS OF A DIETHYNYLBIPHENYLENE SPACER        
[58, 64,65] 

5.3.1 Synthesis of 2-iodo-3-methylnitrobenzene (53) 
 

CH3

NH2

NO2

CH3

I

NO2

C7H8O2N2 C7H6O2NI

152.15 263.04

52 53

 
 

A three-necked flask with a dropping funnel, an internal thermometer and a big stirrer was 

charged with 2-methyl-6-nitro aniline 52 (25 g, 164.5 mmol). This starting material was then 

suspended in 125 mL of concentrated hydrochloric acid and the mixture was cooled to 0 °C.  

A solution of sodium nitrite (14.25 g, 206.5 mmol, 1.2 eq.) in 50 mL of water was added 

dropwise slowly so that the temperature was not higher than 10 °C. After the addition, the 

reaction solution was stirred for further 30 min.. The mixture was then poured to a solution of 

potassium iodide (54.5 g, 328.27 mmol, 2 eq.) in 210 mL water cooled to 0 °C and stirred for 

further 10 min.. To remove the excess of iodide, 10 mL portions of sat. Na2S2O3 solution was 

added to the reaction mixture until the dark colour disappeared. The precipitate was filtered 

through a filter funnel and washed with 500 mL of water. The crude product was recrystalized 

from ethanol to give 2-iodo-3-methyl nitrobenzene 53 (39.11 g, 90.4 %) as pale yellow 

powder. 

 

Mp: 61 oC (ethanol); 

 

Rf: 0.7 (silica gel, PE/CH2Cl2 1:1); 
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IR (KBr): ~ = 3073 (w, C-H, aromatic), 2946 (w, CH3), 1530 (s, NO2), 1450 (m), 1430 (w), 

1370 (s, NO2), 1270 (w), 1186 (w), 1023 (s, C-I), 910 (m), 806 (s, C-H aromatic), 786 (s, C-H 

aromatic), 730 (m), 693 (m),  530 cm-1(w); 

 
1H NMR (200 MHz, CDCl3): δ = 2.6 (s, 3H, CH3), 7.3-7.5 ppm (m, 3H, 3 CH-benzene); 

 

 MS (EI, 70 eV, 200 oC): m/z (% rel. intensity) = 263 (100) [M]+,  217 (15) [M-NO2]+, 136 (6) 

[M-I]+, 90 (70) [M-I-NO2]+, 78 (8), 63 (16); 

 

BRN: 2691415; 

 

CAS-No: 6277-17-4. 

 

5.3.2 Synthesis of 6,6’-dimethyl-2,2’-dinitrobiphenyl (54) 
 

53

CH3

I

NO2

C7H6O2NI

263.04

NO2 NO2

H3C CH3

C14H12N2O4

272.26

54

 
 

A 500 mL round flask was charged with 2-iodo-3-methylnitrobenzene 53 (25.5 g, 0.093 mol) 

in 100 mL of DMF* and copper powder (17.85 g, 0.278 mol, 3 eq.). The mixture was charged 

with argon and heated to 160 oC for 4 hours under argon atmosphere. After cooling, 

additional copper (17.85 g, 0.278 mol, 3 eq.) was added and the mixture was heated again to 

160 oC for 2 hours. To remove the solid, the mixture was filtered through a pad of of celite 

then the inorganic residue was washed with 50 mL portions of diethylether. The combined 

organic solution was concentrated under reduced pressure and the residue was poured to 800 

mL of water. The mixture was kept in the fridge overnight to afford the crude solid product, 
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which was recrystallized from ethanol to yield dinitrobiphenyl 54 (8.12 g, 61.6 %) as light 

yellow crystals. 

 

Mp: 109 oC (ethanol); 

 

Rf: 0.5 (silica gel, PE/CH2Cl2 1:1); 

 

IR (KBr): ~ = 3093 (w, C-H, aromatic), 2913, 2853 (w, CH3)1603 (w, C=C, aromatic), 

1530(s, NO2), 1456 (m, aromatic), 1350 (s, NO2), 1286 (m), 1156 (w), 1106 (w), 910 (w), 

816, 793, 740 (s, C-H), 673 cm-1 (w); 

 
1H NMR (200 MHz, CDCl3): δ = 2.0 (s, 6H, 2* 6–CH3); 7.49 (dd, 2H, 3J = 7.7 Hz, 8.10 Hz, 

4,4’-CH), 7.93 (d, 2H, 3J = 7.31 Hz, 5,5’ –CH), 8.01 ppm (d, 2H, 3J = 8.10 Hz, 3,3’ –CH); 

 

MS (EI, 70 eV, 200 oC): m/z (% relative intensity) = 272 (19) [M]+, 255 (11), 226 (100) [M-

NO2]+ , 211 (3) [M-NO2-CH3]+, 195 (10) [M-C2H6NO2]+, 178 (11), 165 (16), 152 (24), 

139 (8), 115 (14), 77 (10); 

 

BRN: 1996263; 

 

CAS-No: 55153-02-1. 

 

5.3.3 Synthesis of 1,10-dimethylbenzo[c]cinnoline (55) 
 

NO2 O2N

CH3 CH3

C14H12N2O4

272.26

N N

CH3 CH3

C14H12N2

208.27

54 55
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A two-necked round-bottomed flask equipped with magnetic stirrer, a dropping-funnel was 

charged with LiAlH4 (5.34 g, 0.142 mmol) and 70 mL of diethyether*. The solution of 6,6’-

dimethyl-2,2’-dinitrobiphenylene 54 (7.9 g, 0.029 mmol) in 70 mL benzene* was dropped 

slowly under argon so that the mixture was refluxed gently and turned to dark brown colour. 

After the addition was completed, the mixture was stirred for further 30 min., water was 

added dropwise carefully to neutralize the excess of LiAlH4. The reaction mixture was filtered 

through pad of celite then washed with 30 mL portions of diethylether. The filtrate was 

concentrated under reduced pressure to give an orange oil, which was recrystallized from 

ethanol to form 1,10-dimethylbenzo[c]cinnoline 55 (3.74 g, 62 %) as orange crystals. 

 

Mp: 114 oC (ethanol); 

 

Rf: 0.5 (silica gel, CH2Cl2/EtOAc: 1:1) 

 

IR (KBr): ~ = 3054, 3005 (w, C-H aromatic), 2980, 2919 (w, CH3), 1594 (w, N=N), 1568 (m, 

C=C), 1460 (m), 1430 (m), 1382 (s), 1337 (s), 1229 (m), 1169 (m), 1125 (m), 1095 (m) 968 

(w), 910 (w), 793, 779 (s C-H aromatic), 704 cm-1 (m); 

 
1H-NMR (200 MHz, CDCl3):  = 2.65 (s, 6H, 2* –CH3); 7.78 (m, 4H, Aryl-H); 8.59 ppm (m, 

2H, Aryl-H); 

 

MS (EI, 70eV, 200 oC): m/z (% relative intensity) = 208 (100) [M]+, 180 (15) [M-N2]+ , 179 

(68) [M-N2-H], 178 (50) [M-N2-H2]+, 165 (88) [M-N2-CH3], 152 (11), 139 (5), 115 

(4), 89 (12), 76 (9); 

 

BRN: 159675; 

 

CAS-No: 60984-22-7. 
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5.3.4 Synthesis of 1,8-dimethylbiphenylen (56) 
 

N N

H3C CH3

C14H12N2

208.27

CH3 CH3

C14H12

180.25

55 56

 
 

The transformation of 10-dimethylbenzo[c]cinnoline to 1,8-dimethylbiphenylen was 

performed by pyrolysis apparatus. For this purpose, a 10 mL round bottomed flask was 

charged with 1 g benzo[c]cinnoline 55 then connected to a quartz tube. This was surrounded 

by a pyrolysis furnace. A flask cooled with liquid nitrogen was connected to the other side of 

the tube. The apparatus was evacuated, the pyrolysis furnace was heated to 700 °C and the 

starting material was heated to 220 °C using a metal bath. From 160 oC, the benzo[c]cinnoline 

55 was evaporated and partly condensed on the tube, which was evaporated by using the 

heating foam, leaving only a dark residue in the flask. The brown crude product was obtained 

on the other side of the tube. After an hour, the reaction was terminated and the apparatus was 

rinsed with CH2Cl2. The solvent was concentrated by vacuum and  washed  on the column of 

silica gel, eluted with (PE/CH2Cl2: 2:1) to give the yellow oil in the first fraction, which was 

further purified by column chromatography (silica gel, PE) to afford 1,8-dimethylbiphenylene 

56 (240 mg, 27.9 %) as light yellow crystals. 

 

Mp: 79 oC (ethanol); 

 

Rf: 0.5 (silica gel, PE); 

 

IR (KBr): ~ = 3027 (w, C-H aromatic), 2915 (w, CH3), 2846 (w, CH3), 1663 (s, C=C), 1448 

(m), 1388 (m), 1276 (w), 1227 (w), 1194 (w), 1151 (w), 1107 (w), 1034 (w), 883 (w), 810 

(w), 754 (s, C-H, aromatic), 698 (s, C-H, aromatic), 625 (w), 457 cm-1 (w); 
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1H-NMR (200 MHz, CDCl3):  = 5.45-6.7 (m, 6H, 6 C-H aromatic), 2.2 ppm (s, 6H, 2 CH3); 

 

MS (EI, 70 eV, 200 oC): m/z (% relative intensity) = 180 (100) [M]+, 165 (28) [M-CH3]+ , 

152 (8), 139 (6), 90 (7), 76 (8); 

 

BRN: 2042837; 

 

CAS-No: 36230-17-8. 

 

5.3.5 Synthesis of 1,8-bis(bromomethyl)biphenylene (57) 
 

CH3 CH3

C14H12

180.25

56

CH2Br CH2Br

C14H10Br2

338.04

57

 
 

To a solution of 1,8-dimethylbiphenylene 56 (350 mg, 1.94 mmol) and N-bromosuccinimide 

(690 mg, 3.88 mmol) in 3 mL of CCl4* was added 2 mg of dibenzoyl peroxide. The mixture 

was refluxed for 6 hours under light irradiation (150 W lamp). The hot mixture was filtered 

through paper filter and the residue was washed twice with hot CCl4. The solvent was 

removed to give the solid mixture containing the staring material, 

mono(bromomethyl)biphenylen and the product, which was purified by column 

chromatography (50 g silica gel, cyclohexane). The crude product was then recrystallized 

from CHCl3/n-heptane to yield 1,8-bis(bromometyl)biphenylene 57 (234 mg, 35 %) as a 

yellow solid. 

 

Mp: 204 oC (CHCl3/n-heptane); 

 

Rf: 0.3 (silica gel, PE); 
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IR (KBr): ~ = 3016 (w, C-H, aromatic), 1634 (m, aromatic), 1444 (m, aromatic), 1394 (m, 

aromatic), 1285 (w), 1245 (w), 1217 (w), 1188 (s), 1136 (w), 1095 (w), 1043 (w), 977 (w), 

940 (w), 778 (s), 715 (s), 625 (s), 609 cm-1 (s); 

 
1H-NMR (200 MHz, CDCl3):  = 6.55-6.88 (m, 6H, 6 C-H aromatic), 4.45 ppm (s, 4H, 2 

CH2Br); 

 

MS (EI, 70eV, 220 oC): m/z (% relative intensity) = 340 (24) [C14H10
81Br2]+, 338 (48)   

14H10
81Br79Br]+, 336 (24) [C14H10

79Br2]+, 259 (84) [C14H10
81Br79Br-79Br], 257 (84)  

C14H10
81Br79Br-81Br], 178 (100) [C14H10

81Br79Br-79Br],  152 (20), 88 (32), 76 (28); 

 

BRN: 1970019; 

 

CAS-No: 36396-04-0. 

 

5.3.6  Synthesis of 1,8-diformylbiphenylene (58) 
 

57

CH2Br CH2Br

C14H10Br2

338.04

CHO CHO

C14H8O2

208.22

58

 
 

A solution of 1,8-bis(bromomethyl)biphenylene 57 (200 mg, 0.591 mmol) and 

bis(tetrabutylammonium) dichromate (1.60 g, 2.18 mmol, 3.7 eq.) in 30 mL CHCl3 was 

refluxed for 3 hours under argon atmosphere. After cooling, the reaction mixture was filtered 

through a pad of celite and washed with 30 mL portions of diethylether until no more product 

eluted. The combined solvent was removed by rotary evaporator and the crude product was 

purified by column chromatography (50 g silica gel, CH2Cl2/PE 1:1) and recrystallized from 

CH2Cl2 to yield 1,8-diformylbiphenylene 58 (96 mg, 78 %) as yellow crystals.  
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Mp: 124 oC (CH2Cl2); 

 

Rf: 0.6 (silica gel, CH2Cl2); 

 

IR (KBr) ~ = 3112 (w, C-H, aromatic), 1698 (s, C=O), 1674 (s, C=O), 1657 (m, aromatic), 

1381 (m), 1279 (w), 1251 (m), 1194 (w), 1127 (w), 973 (w), 945 (m), 778 (w), 765 (s), 739 

(w), 700 cm-1 (w); 

 
1H-NMR: (200 MHz, CDCl3):  = 6.87 (d, 3J = 7.5 Hz, 2H, 4,5-CH), 7.04 (dd, 3J = 6.8 Hz, 3J 

= 8.2 Hz, 2H, 3,6-CH), 7.29 (d, 3J = 8.5 Hz, 2H, 2,7-CH), 10.33 ppm (s, 2H, CHO); 

 

MS (EI, 70 eV, 200 oC): m/z (% relative intensity) = 208 (100) [M]+, 180 (62) [M-CO]+ , 151 

(68) [M-2CO-H], 126 (5), 99 (6), 76 (15); 

 

BRN: 1871182; 

 

CAS-No: 58746-94-4. 

 

5.3.7 Synthesis of p-toluene sulfonylazide (61) 
 

                        

CH3

SO O
Cl

CH3

SO O
N3

C7H7O2SCl
190.65

C7H7O2N3S
197.22

90 61

 
 

To a solution of p-toluenesulfonyl chloride 90 (2.86 g, 15 mmol) in 50 mL acetone/water 

(1:1) cooled to 0 oC was added sodium azide (1.07 g, 16.5 mmol, 1.1 eq.). The mixture was 
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stirred at 0 °C for 2 hours under argon atmosphere. After removing acetone by a rotary 

evaporator, the remaining aqueous mixture was extracted several times with 20 mL portions 

of diethyl ether. The organic phase was dried through a plug of cotton and concentrated by 

rotary evaporator to obtain quantitative yield of p-toluene sulfonylazide 61 as colourless oil. 

This compound was further implemented without further purification and characterization. 

 

BRN: 4258947; 

 

CAS-No: 941-55-9. 

 

5.3.8 Synthesis of dimethyl-acetyl-diazomethylphosphonate (59) 

         
CH3

S OO

N3

+ P

O
H3CO

CH3

O

N2

H3CO

60 61 59

P

O
H3CO

CH3

O

H3CO

C7H7O2N3S

197.22

C5H11O4P

166.11

C5H9O4P

192.11  
 
A two-necked round bottom flask equipped with a dropping funnel was charged with 

dimethyl-acetylphosphonate 60 (1.15 g, 6.9 mmol) and K2CO3 (1.36 g, 11.76 mmol, 1.7 eq.) 

in 10 mL of acetonitrile*. To this mixture a solution of p-toluene sulfonylazide 61 (2.32 g, 

11.76 mmol, 1.7 eq.) in 10 mL acetonitrile* was added dropwise slowly. The end of the 

reaction was determined by TLC after about 1-2 hours. The reaction mixture was filtered 

through a pad of celite and washed exhaustively with diethyl ether. After removing the 

solvent, the residue was purified by column chromatography (20 g of silica gel, EtOAc) to 

yield dimethyl-acetyl-diazomethylphosphonate 59 (1.1 g, 82.7 %) as a yellow oil. 

 

d: 1.2 (g/mL); 
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Rf: 0.6 (silica gel, EtOAc); 

 
1H-NMR (200 MHz, CDCl3):  = 2.27 (s, 3H, CH3C=O), 3.82 (s, 3H, CH3O), 3.88 ppm (s, 

3H, CH3O); 

 

MS (EI, 70 eV, 200 oC): m/z (% relative intensity) = 192 (22) [M]+, 164 (12) [M-N2]+, 150 

(8) [M-CH2CO], 130 (10) [M-CH2O-CH3]+, 93 (100) [M-(CH3O)2PO]+, 79 (28) [M-

CH3CON2-CH2O]+, 63 (14), 47 (12), 43 (19); 

 

BRN: 10426989; 

 

CAS-No: 90965-06-3. 

 

5.3.9 Synthesis of 1,8-diethynylbiphenylene (10) 

59

P
H3CO

H3CO

O O

CH3
N2

C5H9O4P

192.11

CHO CHO

C14H8O2

208.22

+

C16H8

200.24

58 10

 
 

To a solution of 1,8-diformylbiphenylene 58 (80 mg, 0.38 mmol) and K2CO3 (203 mg, 1.52 

mmol, 4 eq.) in 8 mL MeOH* was injected dimethyl-acetyl-diazomethylphosphonate 59 (0.13 

mL, 0.81 mmol, 2 eq.) of through a septum cap. The reaction mixture was stirred for 4 hours 

at room temperature. The reaction was quenched by sat. NaHCO3 solution and the resulting 

mixture was extracted several times with 15 mL diethyl ether. The combined organic phases 

were washed through a plug of cotton and concentrated by rotary evaporator. The residue was 

purified by column chromatography (1 cm column) (10 g of silica gel, PE/CH2Cl2 2:1) yield 

1,8-diethynylbiphenylene 10 (62 mg, 80.1 %) as light yellow crystals. 
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Mp: 128 oC; 

 

Rf: 0.6 (silica gel, CH2Cl2/PE 2:1); 

 

IR (KBr) ~ =3283 (m, C≡C-H), 2148 (w, C≡C-), 1448 (m), 1385 (m), 1271(m), 1197 (m), 

973 (w), 888 (w), 769 (s, Aryl-H), 703 (m, CH), 654 (m), 625 cm-1 (s); 

 
1H-NMR (200 MHz, CDCl3):  = 3.15 (s, 2H, 1,8-CCH), 6.60 (d, 3J = 6.2 Hz, 2H, 4,5-CH), 

6.78 (dd, 3J = 6.9 Hz, 3J = 8.3 Hz, 2H, 3,6-CH), 6.84 ppm (d, 3J = 8.3 Hz, 2H, 2,7-CH); 

 

MS (EI, 70 eV, 200 oC): m/z (% relative intensity) = 200 (100) [M]+, 199 (21) [M-H]+ , 150 

(3) [M-C4H2], 100 (10) [M-C8H4], 87 (4), 74 (2); 

 

HR-MS [EI, C16H8, R ≈ 10000]: Calculated: 200.06260;                                              

           Measured: 200.06325. 
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5.4 SYNTHESIS OF A “TRANS”-CHLORIN DYAD  

5.4.1 Synthesis of [2,3-dihydro-17-iodo-2,2,7,8,12,13,18-heptamethyl-

porphinato]-zinc(II) (27)[52,57] 
 

N N

N

H3C
H3C

H3C

CH3

CH3

CH3

CH3

EtO2C

Ni
CN

H
N

IH3C

CHOI

N N

NN
Zn

H3C

CH3

CH3

CH3

CH3

H3C

I

H3C

N N

N

H3C
H3C

H3C

CH3

CH3

CH3

CH3

HO2C

Ni
CN

N HN

NNH

H3C

CH3

CH3

CH3

CH3

H3C

I

H3C

I
H3C CN

C25H30N4O2Ni

447.23

C6H5NOI2
360.92

C23H26N4O2Ni
422.97

C27H27N4IZn

598.06

C28H31N5I2

691.40

rac-21

rac-49

25

rac-5027

 
 

To a solution of nickel complex rac-21 (10.0 mg, 0.021 mmol) in 3 mL of THF* was added a 

solution of 5 N KOH in MeOH/H2O (9:1) (1.6 mL, 8 mmol). The reaction mixture was heated 

to 70 oC for 45 minutes. After cooling, the solution was treated with 10 mL of sat. aq. 

NaHCO3 solution then extracted 3 times with portions of CH2Cl2 (10 mL). The combined 

organic phase was filtered through a plug of cotton, concentrated under reduced pressure and 

dried on an oil pump to yield acid rac-49. To a solution of crude acid rac-49 (8.2 mg, 0.019 

mmol) and diiodopyrrole 25 (11.35 mg, 0.03 mmol, 1.5 eq.) in 6 mL of CHCl3* was added a 

solution of 0.4 N p-toluenesulfonic acid in CHCl3* (4 mL, 1.6 mmol). The reaction mixture 
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was stirred for 2.5 hours at rt.. The solution was then treated with 10 mL of sat. aq. NaHCO3 

solution and extracted 3 times with 10 mL portions of CH2Cl2. The combined organic phases 

were filtered through a plug of cotton and concentrated. The resulting solid was purified by 

column chromatography (10 g of neutral Al2O3 10 g, CH2Cl2) to afford tetracycle rac-50 

(10.27 mg, 67 %) as a blue-green solid. To a solution of crude teracycle rac-53 and 

Zn(CH3COO)2 (19.7 mg, 0.11 mmol, 5 eq.)  in 3 mL of sulfolane was added 0.8 mL of DBU. 

The reaction mixture was heated to 80 oC for 3 hours. After cooling, the solution was treated 

with 10mL of sat. aq. NaHCO3 solution then extracted 3 times with 10 mL portions of 

CH2Cl2. The organic extract was concentrated using kugelrohr distillation at 110 oC. The 

residue was purified by column chromatography (10 g silica gel, CH2Cl2) to afford chlorin 27 

(6.7 mg, 0.011 mmol, 53 %) as a green solid. 

 

Mp: 280 oC (chloroform, decomposition); 

 

Rf: 0.55 (silica gel, PE/acetone, 3:1); 

 

IR (KBr): ~ = 2944 (w, CH3), 2911 (m, CH3), 2849 (w, CH3), 1614 (s, C=C), 1559 (m), 1586 

(m), 1559 (m), 1458 (w), 1309 (w), 1221 (w)1194 (m), 1127 (s), 1032 (s), 890 (m), 816 (w), 

744 (s), 708 10 cm-1 (m); 

 

UV/ VIS (acetone): λmax (ε) = 625 (42457), 575 (2795), 505 (1242), 400 (98447), 320 nm 

(38198 cm2mmol-1); 

 
1H-NMR (200 MHz, C6D6/D5 pyridine): δ = 1.78 (s, 6H, 2*2-CH3), 3.18, 3.21, 3.24, 3.28, (4 

s, 12H, 7-, 13-, 8-, 12-, CH3), 3.36 (s, 3H, 18-CH3), 4.21 (s, 2H, 3-CH2), 8.57, 8.66, 9.65, 

10.13 ppm (4s, 4H, 5-, 20-, 10-, 15-CH); 

 

MS (ESI, positive, MeOH): 598 [M]+, 621 [M+Na]+; (ESI, negative, MeOH): 597 [M-H]-; 

 

HR-MS [EI, C27H27N4IZn, R ≈ 10000]: Calculated: 598.05719; 

                                                      Measured: 598.05862. 
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5.4.2 Synthesis of [2,3-dihydro-18-iodo-2,2,7,8,12,13,17-heptamethyl-

porphinato]-zinc(II) (27)[52,57] 
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To a solution of nickel complex rac-21 (10.0 mg, 0.021 mmol) in 3 mL of THF* was added a 

solution of 5 N KOH in MeOH/H2O (9:1) (1.6 mL, 8 mmol). The reaction mixture was heated 

to 70 oC for 45 minutes. After cooling, the solution was treated with 10 mL of sat. aq. 

NaHCO3 solution then extracted 3 times with 10 mL portions of CH2Cl2. The combined 

organic layers were filtered through a plug of cotton, concentrated and dried over an oil pump 

to yield acid rac-49. To a solution of crude acid rac-49 (8 mg, 0.019 mmol) and diiodopyrrole 

26 (11.35 mg, 0.03 mmol, 1.5 eq.) in 6 mL of CHCl3* was added a solution of 0.4 N p-

toluenesulfonic acid in CHCl3* (4 mL, 1.6 mmol). The reaction mixture was stirred for 2.5 

hours at room temperature. The solution was then treated with 10 mL of sat. aq. NaHCO3 
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solution, extracted 3 times with 10 mL portions of CH2Cl2. The combined organic phases 

were filtered through a plug of cotton and concentrated. The resulting solid was purified by 

chromatography (10 g of neutral Al2O3, CH2Cl2) to afford tetracycle rac-51 as a blue-green 

solid. To a soluion of teracycle rac-51 (9.5 mg, 62 %) and Zn(CH3COO)2 (19.7 mg, 0.11 

mmol, 5 eq.)  in 3 mL of sulfolane was added  0.8 mL of DBU. The reaction mixture was 

heated to 80 oC for 3 hours. After cooling, the solution was treated with 10 mL of sat. aq. 

NaHCO3 solution then extracted 3 times with 10 mL portions of CH2Cl2. The organic extract 

was concentrated using kugelrohr distillation at 110 oC. The residue was purified by column 

chromatography (10 g of silica gel, CH2Cl2) to afford chlorin 28 (6.2 mg, 0.01 mmol, 49 %) 

as a green solid. 

 

Mp: 280 oC (decomposition); 

 

Rf: 0.6 (silica gel, PE/acetone, 3:1); 

 

IR (KBr): ~ = 2949 (w, CH3), 2916 (m, CH3), 2848 (w, CH3), 1625 (C=C), 1585 (m), 1586 

(m), 1559 (m), 1456 (w), 1389 (w), 1220 (w), 1193 (m), 1139 (m), 1051 (s), 943 (m), 842 

(w), 740 (s), 708 cm-1 (m); 

 

UV/ VIS (acetone): λmax (ε) = 620 (44225), 575 (5633), 510 (21818), 400 (108450), 325 nm 

(23943 cm2mmol-1); 

 
1H NMR (360 MHz, C6D6): δ = 1H NMR (360 MHz, C6D6) δ = 1.87 (s, 6H, 2*2-CH3), 3.13, 

3.19, 3.21, 3.23, (4s, 12H, 7-, 13-, 8-, 12-CH3), 3.43 (s, 3H, 17-CH3), 4.10 (s, 2H, 3-CH2), 

8.47, 8.90, 9.48, 10.54 ppm (4s, 4H, 5-, 20-, 10-, 15-CH); 

 

MS (ESI, positive, MeOH): 597 [M-H]-, 629 [M+CH3O-]; 

 

HR-MS [EI, C27H27N4IZn, R ≈ 10000]: Calculated: 598.05719; 

                                                      Measured: 598.05798. 
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5.4.3 Synthesis of [5,6-dihydro-1-(8’-ethynyl-1’-naphthalylethynyl)-

5,5,10,11,15,16,20-heptamethyl-porphinato]-zinc(II) (62) 
 

N N

NN
Zn

H3C

CH3

CH3

CH3

CH3

I

H3C

H3C

+

62

10
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N N

CH3

CH3

CH3

CH3

Zn
N

CH3

H3C N

CH3
18C27H27N4IZn

598.06

C16H8

200.24

C43H34N4Zn
672.13

 
 

To a solution of 18-iodochlorin 28 (10.2 mg, 0.017 mmol) and 1,8-diacetylenbiphenylen (10.0 

mg, 0.05mmol, 3 eq.) in 5 mL of Toluene/TEA (5:1) was added Pd2(dba)3 (2.60 mg, 2.84 

μmol) and P(o-tol)3 (5.2 mg, 0.017 mmol). The mixture was heated to 60 oC under argon 

atmosphere. After 7 hours, the mixture was concentrated under reduced pressure and the 

residue was purified by column chromatography (10 g of silica gel, PE/acetone 3:1) to afford 

62 (1.3 mg, 11.4 %) as a green solid. 

 

Mp: 230 oC (chloroform) (decomposition); 

 

Rf: 0.4 (silica gel, PE/acetone, 3:1); 

 

IR (KBr): ~ = 2922 (s), 2850 (w, CH3), 3437 (s, -C≡C-H), 2360 (w, -C≡C-), 1624 (m), 1459 

(w), 1389 cm-1 (w) ; 
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UV/ VIS (acetone): λmax (ε)= 635 (59885), 590 (6303), 505 (2292), 405 (102292), 325 nm 

(28653 cm2mmol-1); 

 
1H NMR (360 MHz, C6D6): δ=1.87 ppm (s, 6H, 2*5-CH3), 2.72 (s, 1H, 8’-CH), 3.12 (s, 3H, 

10-CH3), 3.21(s, 3H, 11-CH3), 3.26 (s, 3H, 16-CH3), 3.29 (s, 3H, 15-CH3), 3.63 (s, 3H, 20-

CH3), 4.10 (s, 2H, 6-CH2), 6.25 (d, 3J = 6.9 Hz, 1H, 5’-CHAr), 6.31 (d, 3J = 6.7 Hz, 1H, 4’-

CHAr), 6.36 (dd, 3J = 7.5 Hz, 3J = 6.8 Hz, 1H, 6’-CHAr), 6.56 (dd, 3J = 7.5 Hz, 3J = 0.79 Hz, 

1H, 3’-CHAr), 6.78 (d, 3J = 0.83, 1H, 7’-CHAr), 7.25(d, 3J = 8.1 Hz, 1H, 2’-CHAr), 8.46 (s, 1H, 

5=CH), 9.16 (s, 1H, 20=CH), 9.51 (s, 1H, 10=CH), 9.66 ppm (s, 1H, 15=CH); 

 

MS (ESI, positive, MeOH): 670 [M]+; (ESI, negative, MeOH): 705 [M+Cl]-; 

 

HR-MS [MALDI, C43H34N4Zn, R ≈ 7000]: Calculated: 670.2069; 

                                                           Measured: 670.2045. 
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5.4.4 Synthesis of cofacial chlorin dyad (64) 
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To a solution of 62 (5 mg, 7.4 μmmol) and iodochlorin 27 (5 mg, 8.3 μmol) in 3 mL of 

toluene/TEA (5:1) was added Pd2(dba)3 (1.3 mg, 1.4 μmol) and P(o-tol)3 (3 mg, 9.8 μmol). 

The reaction mixture was heated to 60 oC under argon atmosphere for 7 hours. After 

concentrated, the residue was purified firstly on the column chromatography (10 g silica gel, 

PE/acetone 3:1). The fraction containing the product was continuously chromatographed (10 

g silica gel, PE/acetone/methanol 4:1:0.5) to afford cofacial chlorin dyad 64 (0.9 mg, 10 %) as 

a green solid. 

 

Rf: 0.6 (silica gel, PE/acetone/methanol 4:1:0.5); 

 

UV/Vis (methanol): λmax (ε) = 640 (88857), 515 (8000), 395 nm (172000 cm2mmol-1); 

 

MS (ESI, positive, MeOH): 1140 [M]+; 
 

HR-MS [MALDI, C70H60N8Zn2, R≈7000]: Calculated: 1140.3518; 

                                                      Measured: 1140.3512. 
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5.5 STUDY DIRECTED TO 12-BROMO-2,2,7,8,13,17,18-

HEPTALMETHYLCHLORIN  

5.5.1 Synthesis of ethyl 4-bromo-3,5-dimethyl-1H-pyrrole-2-carboxylate (66) 
 

N
H

CH3Br

CO2EtH3CN
H

CH3

CO2EtH3C

C9H13O2N C9H12O2NBr

166.11 246.09

65 66

 
        

To a solution of pyrrole 65 (139 mg, 0.84 mmol) in 6 mL of THF* cooled to -78 oC was 

added a solution of NBS (149 mg, 0.84 mmol, 1 eq.)  in 10 mL of THF* through a septum 

cap. After 1 hour, the cooling bath was removed. The reaction mixture was diluted with 20 ml 

of dichlomethane and quenched by addition of 30 mL of sat. aq. NaHCO3 solution. The 

mixture was separated and the aqueous phase was extracted twice with 20 mL portions of 

dichlomethene. The combined organic phases were concentrated under reduced pressure. The 

resulting residue was purified by column chromatography (20 g of silica gel, CH2Cl2). The 

crude product was recrystallized from THF/n-hexan to yield ethyl 4-bromo-3,5-dimethyl-1H-

pyrrole-2-carboxylate 66 (114.1 mg, 70.18 %) as a colourless solid. 

 

Mp: 148 oC (THF/n-hexan); 

 

Rf: 0.6 (silica gel, CH2Cl2); 

 

IR (KBr): ~ = 3304 (s, NH), 2990 (w, CH-alkyl) , 2922 (w, C-H, alkyl) 1674 (s, C=O), 1445 

(m), 1270 (s), 1215 (s), 1121 (m), 1023 (m), 767 (m), 685 (w), 618 cm-1 (w); 

 
1H NMR (200 MHz, CDCl3): δ = 1.37 (t, 3J = 7.1 Hz, 3H, CH2CH3), 2.30 (s, 3H, 5-CH3), 

2.37 (s, 3H, 3-CH3), 4.32 (q, 3J = 7.3 Hz, 2H, OCH2), 8.7 (s, 1H, NH); 
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MS (EI, 70 eV, direct, T = 200 °C): m/z (% rel. intensity) = 247 (88) [M, 79Br]+, 245 (92) [M, 
81Br]+, 121 (100) [M, 81Br - C2H5OH]+, 199 (100) [M,79Br - C2H5OH]+, 120 (12) [M - 

C2H5OH79Br]+, 92 (40) [M - C3H6O2
79Br]+, 65(28); 

 

BRN: 142633;  

 

CAS-No: 5408-07-1. 

 

5.5.2 Synthesis of ethyl 4-bromo-5-formyl-3-methyl -1H-pyrrole-2-carboxylate (29) 
 

N
H

CH3Br

CO2EtH3C

C9H12O2NBr

246.09

N
H

CH3Br

CO2EtOHC

C9H10O3NBr

260.07

66 29

 
 

To a solution of pyrrole 66 (1.03 g, 4.2 mmol) in 30 mL of CHCl3* was added Pb(CH3COO)4 

(1.86 g, 4.2 mmol, 1 eq.). The mixture was refluxed for 1 hour. Pb(CH3COO)4  (2.80 g, 6.3 

mmol, 1.5 eq.) was then added and the reaction mixture was refluxed for further16 hours. 

After cooling, the solid was removed by a pad of celite and the filtrate was then added with 

ethylene glycol (0.3 mL, 5mmol). The resulting mixture was stirred for 20 min. and then 

washed with 10 mL of sat. aq. NaCl solution to separate the organic phase. The aqueous 

phase was extracted twice with 20 mL portions of CH2Cl2. The combined organic phases 

were concentrated to yield the crude diacetate. This intermediate product was then dissolved 

in THF (20 mL) and hydrolyzed with 25 mL of  HCl (2.5 M) at rt. for 4 hours. 100 mL of sat. 

aq. NaCl solution was then added to separate the organic phase. The aqueous phase was 

continuously extracted twice with 30 mL portions of CH2Cl2. The combined extracts were 

washed with sat. aq. NaHCO3 solution and the solvent was removed by rotary evaporator. The 

crude product was purified by column chromatography (50 g of silica gel, CH2Cl2/EtOAc 

20:1) and recrystallized from CHCl3/n-pentan) to yield formylpyrrole 29 (673.2 mg, 62.3 %) 

as colourless crystals. 
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Mp: 135 oC (CHCl3/n-pentane); 

 

Rf: 0.6 (silica gel, CH2Cl2/EtOAc 20:1); 

 

IR (KBr): ~ = 3248 (s, NH), 2980 (w, CH-alkyl) , 2931 (w, C-H, alkyl), 1698 (s, C=O, 

aldehyde), 1668 (s, C=O, ethylester) 1546 (m), 178 (m), 1438 (m), 1258 (s), 1101 (m), 1014 

(m), 773 (s), 637 (w), 606 cm-1 (w); 

 
1H NMR (360 MHz, CDCl3): δ = 1.42 (t, 3J = 7.1 Hz, 3H, CH2CH3), 2.34 (s, 3H, CH3), (s, 

3H, CH3), 4.39 (q, 3J = 7.3 Hz, 2H, OCH2), 9.73 (s, 1H, CHO); 

 

MS (EI, 70 eV, direct, T = 200 °C): m/z (% rel. intensity) = 261 (98) [M, 81Br]+, 259 (100) 

[M, 79Br]+, 232 (56) [M, 81Br - CHO]+, 230 (56) [M,79Br - CHO]+, 216 (82) [M, 81Br -

C2H5O]+, 215 (65) [M, 81Br - C2H5OH]+,  214 (84) [M,79Br - C2H5O]+, 213 (58) [M,79Br -

C2H5OH]+, 187 (40) [M, 81Br - C3H6O2]+, 185 (36) [M, 79Br - C3H6O2]+, 106(38) [M, -  

C3H6O2
79Br]+, 78 (20), 51 (23); 

 

BRN: 176617. 

 

5.5.3 Synthesis of ethyl 5-formyl-3-methyl-1H-pyrrole-2-carboxylate (67) 
 

N
H

CH3

CO2EtOHCN
H

CH3

CO2EtH3C

C9H13O2N C9H11O3N

166.11 181.19

65 67

 

       

To a solution of dimethylpyrrole 65 (520 mg, 3.1 mmol) in 20 mL of CHCl3* was added 

Pb(CH3COO)4 (1.4 g, 3.1 mmol, 1 eq.). The mixture was refluxed for 60 minutes. 

Pb(CH3COO)4 (2.1 g, 4.6 mmol, 1.5 eq.)  was then added and the reaction mixture was 

refluxed for 16 hours. After cooling, the solid was removed by a pad of celite and the filtrate 
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was then treated with ethylene glycol (0.3 mL, 5mmol). The resulting mixture was stirred for 

20 min. then washed with 10 mL of sat. aq. NaCl solution to separate the organic phase. The 

aqueous phase was extracted twice with 20 mL portions of CH2Cl2. The combined organic 

phases were concentrated to yield a crude diacetate. This intermediate product was then 

dissolved in 15 mL of THF and hydrolyzed with 20 mL of HCl (2.5 M) at rt. for 4 h.. 100 mL 

of sat. aq. NaCl solution was then added to separate the organic phase. The aqueous phase 

was continuously extracted twice with 30 mL portion of CH2Cl2. The combined extracts were 

washed with 30 mL of sat. aq. NaHCO3 solution and the solvent was removed by rotary 

evaporator. The residue was purified by column chromatography (50 g of silica gel, 

CH2Cl2/EtOAc 20:1) and recrystallized from CHCl3/n-pentan to yield formylpyrrole 67 (351 

mg, 62.0 %) as colourless crystals. 

 

Mp: 106 oC (CHCl3/n-pentane); 

 

Rf: 0.6 (silica gel, CH2Cl2/EtOAc 20:1); 

 

IR (KBr): ~ = 3273 (s, NH), 2975 (w, CH-alkyl), 1674 (s,br C=O, aldehyde,  C=O, 

ethylester) 1546 (m), 1485 (s), 1382 (m), 1323 (s), 1261 (s), 1143 (s), 1123 (m), 1102 (m), 

1018 (s), 871 (m), 821 (s), 777 (m), 760 (s), 726 (m), 674 (w), 632 cm-1 (w); 

 
1H-NMR (360 MHz, CDCl3):  δ = 1.40 (t, 3J = 7.2 Hz, 3H, CH2-CH3), 2.39 (s, 3H, CH3), 4.40 

(q, 3J = 7.2 Hz, 2H, CH2CH3), 6.76 (s, 1H, H), 9.61 (s, 1H, CHO); 

 

 

MS (EI, 70 eV, Direkteinlass, T = 200°C): m/z (% relative Intensität) = 181 (100) [M]+, 152 

(69) [M - CHO]+, 136 (45) [M - C2H5O]+, 134 (52), 107 (35) [M - C3H6O2]+, 80 (6), 78 (6); 

 

BRN: 156188; 

 

CAS: 26018-30-4. 
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5.5.4 Synthesis of ethyl 4-bromo-5-formyl-3-methyl -1H-pyrrole-2-carboxylate 

(29) 

67

N
H

CH3

CO2EtOHC

C9H11O3N

181.19

N
H

CH3

CO2EtOHC

C9H10O3NBr

260.07

Br

29

 
 

A solution of pyrrole 67 (181 mg, 1 mmol) in 6 mL of THF* was cooled to -78 oC and 178 

mg NBS (1 mmol, 1 eq.) NBS in 10 mL of THF* was then added through a septum cap. After 

1 hour, the reaction mixture was diluted with 20 ml of dichlomethane and quenched by 

addition of 30 ml of sat. aq. NaHCO3 solution. The mixture was separated and the aqueous 

phase was extracted twice with 20 mL portions of dichlomethane. The combined organic 

phase was concentrated by rotary evaporator. The resulting residue was purified by column 

chromatography (20 g of silica gel, CH2Cl2). The crude product was recrystallized from 

(THF/n-hexane) to yield bromopyrrole 29 (31 mg, 12 %) as a colourless solid. 

 

For characterization: see 5.5.2 
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5.5.5 Synthesis of ethyl 5-(1,5-dyhidro-3,4-dimethyl-5-oxo-1H-pyrrole-2-

ylidenmethyl)-4-bromo-3-methyl-1H-pyrrole-2-carboxylate (68) 

 

N
H

CH3Br

CO2EtOHC

C9H10O3NBr

260.07

N
H

CH3H3C

O

+

HN

CH3

CH3

O

HN

CH3

Br

EtO2C

C6H9ON
111.14

C15H17O3N2Br
353.21

14 29 68

 
 

To a solution of pyrrolinone 14 (19.92 mg, 0.179 mmol, 1 eq.) and pyrrole 29 (56 mg, 0.215 

mmol, 1.2 eq.) in 7 mL of benzene was added DBU (75 μL, 0.258 mmol, 1.45 eq.). The 

mixture was connected to the soxhlet apparatus containing molecular sieve (3 Å) and refluxed 

for 17 hours. After cooling, the reaction mixture was washed with 20 mL of sat. aq. NaHCO3 

solution and extracted 3 times with 20 mL portions of CH2Cl2. The combined organic extract 

was filtered through a plug of cotton and the solvent was removed by rotary evaporator.  The 

resulting crude product was purified on the column chromatography (20 g of silica gel, 

CH2Cl2/EtOAc: 3:1) to afford bicycle 68 (44.6 mg, 32.9 %) as a pale yellow solid. 

 

Mp: 270 oC (CHCl3); 

 

Rf:  0.3 (silica gel, CH2Cl2/EtOAc 3:1); 

 

IR (KBr): ~ = 3238 (m, br, NH), 2981 (w, CH-alkyl) , 2919 (w, C-H, alkyl), 1713 (s, C=O, 

lactam), 1681 (s, C=O, ethylester) 1615 (m), 1615 (m), 1452 (m), 1280 (s), 1222 (m), 1070 

(m), 1119 (m), 1024 (w), 755 (w), 695 cm-1 (w); 

 

UV/ VIS (methanol): λmax (ε) = 400 (28480), 375 ( 30062), 254.9 nm (23048 cm2mmol-1); 
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1H NMR (200 MHz, CDCl3): δ = 1.37 (t, 3J = 7.1 Hz, 3H, CH2CH3), 1.95 (s, 3H, 3-CH3), 

1,95 (s, 3H, 4-CH3), 2.33 (s, 3H, 10-CH3), 4.34 (q, 3J = 7.3 Hz, 2H, OCH2), 6.04(s, 1H, 6-

CH), 9.00 (s, 1H, 1-NH), 9.67 ppm (s, 1H, 8-NH); 

 

MS (EI, 70 eV, direct, T = 200 °C): m/z (% rel. intensity) = 354 (56) [M, 81Br]+, 352 (55) [M, 
79Br]+, 308 (46) [M, 81Br – C2H5OH]+, 307 (45) [M,79Br – C2H5OH]+, 227 (16) [M- 81Br]+,  

199 (100) [M- C3H6O2
81Br]+, 172 (16); 

 

HR-MS [EI, C15H17N2O3Br, R ≈ 10000]:  Calculated: 352.04225; 

                                                       Measured: 352.04212. 

 

5.5.6 Synthesis of ethyl 5-(1,5-dyhidro-3,4-dimethyl-5-thioxo-1H-pyrrole-2-

ylidenmethyl)-4-bromo-3-methyl-1H-pyrrole-2-carboxylate (69) 

 

C15H17O2N2SBr

369.27

HN

CH3

CH3

O

HN

CH3

Br

EtO2C

C15H17O3N2Br

353.21

HN

CH3

CH3

S

HN

CH3

Br

EtO2C

68 69

 
 

To a solution of bicyclic lactam 68 (200 mg, 0.56 mmol) in 10 mL of THF* was added 

Lawessons-Reagent (0.68 mmol, 1.2 eq.) under argon atmosphere. The mixture was stirred 

and warmed to 40 oC for 3 hours and the reaction was controlled by thin layer 

chromatography. After removing the solvent by rotary evaporator at rt., the oily residue was 



5. Experimental Section - 85 - Nguyen Thi Viet Thanh 

dried on a high vacuum and purified by column chromatography (50 g of silica gel, 

CH2Cl2/EtOAc 9:1) to yield thiolactam 69 (151.56 mg, 72.5 %) as an orange solid. 

 

Mp: 270 oC;  

 

Rf: 0.75 (silica gel, CH2Cl2/EtOAc 9:1); 

 

IR (KBr): ~ = 3367 (m, br, NH), 2926 (w, CH-alkyl) , 2908 (w, C-H, alkyl), 1654 (s), 1598 

(s, C=O, ethylester) 1502 (m), 1294 (s), 1258 (s), 1124 (s), 1026 (s), 954 (m), 830 (m), 687 

(w), 534 cm-1 (w); 

 

UV/ VIS (methanol): λmax (ε) = 450 (27333), 280 nm (5999 cm2mmol-1); 

 
1H NMR (360 MHz, CDCl3): δ = 1.38 (t, 3J = 7.1 Hz, 3H, -CH2CH3), 2.07 (s, 3H, 3-CH3), 

2.13 (s, 3H, 4-CH3), 2.33 (s, 3H, 10-CH3), 4.37 (q, 3J = 7.3 Hz, 2H, OCH2), 6.07(s, 1H, 6-

CH), 9.47 ppm (s, s, 2H, 1-NH, 8-NH, ); 

 

MS (EI, 70 eV, direct, T = 200 °C): m/z (% rel. intensity) = 354 (56) [M, 81Br]+, 352 (55) [M, 
79Br]+, 308 (46) [M, 81Br – C2H5OH]+, 307 (45) [M,79Br – C2H5OH]+, 227 (16) [M- 81Br ]+,  

199 (100) [M- C3H6O2
81Br]+, 172 (16). 

 

HR-MS [EI, C15H17N2O2SBr, R ≈ 10000]: Calculated: 368.01941; 

                                                       Measured: 368.01853. 
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5.5.7 Synthesis of [ethyl-(14RS)-(14-cyano-12,13,14,17-tetrahydro-

2,7,8,13,13,14-hexamethyl-15H-tripyrrin-1-carboxylato)]nickel-(II) (74) 

and [ethyl-(14RS)-( 4-bromo-14-cyano-12,13,14,17-tetrahydro- -

2,7,8,13,13,14-hexamethyl-15H-tripyrrin-1-carboxylato)]nickel-(II) (75) 

 

HN

Br

CH3

HN

S
CH3

CH3

Br

CH3

EtO2C

HN

N

CH3

CH3NH
H3C

H3C

H3C

CN

S

N

CH3

H3C
H3C

NC
N

N

CH3

CH3

CH3

EtO2C

Ni

Br

NH

CH3

H3C
H3C

NC

N

NH

CH3

CH3

CH3

EtO2C Br

NH

CH3

H3C
H3C

NC

N

NH

CH3

CH3

CH3

EtO2C H

EtO2C

CO2t-Bu

NH
H3C

CH3

H3C CN
NH

H3C
H3C

H3C
CN

BrCO2t-Bu

CO2t-Bu

rac-13

N

CH3

H3C
H3C

NC
N

N

CH3

CH3

CH3

EtO2C

Ni

H

C14H22O2N2

250.34

C15H17O2N2SBr
369.27

C29H37O4N4SBr
617.60

C24H27O2N4BrNi

542.10

C24H28O2N4Ni

463.21

+

+

rac-74 rac-75

69
rac-70

rac-72 rac-73

 
 

To a solution of tert-butylester rac-13 (40.5 mg, 0.162 mmol, 1 eq.) in 8 mL of CH2Cl2* was 

added N-bromosuccinimide (31.7 mg, 0.178 mmol, 1.1 eq.). The reaction mixture was stirred 

in the dark and under argon atmosphere. After 30 min., the mixture of DBU (84 μL, 0.64 

mmol, 4 eq.) and bicyclic thiolactam 69 (46.4, 0.152 mmol, 1 eq.) in 30 mL of CH3CN was 

added and the reaction mixture was further stirred for 40 min.. The mixture was then 
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quenched with 20 mL of sat. aq. NaHCO3 solution and extracted twice with 20 mL portions of 

CH2Cl2. The combined organic phases were concentrated under reduced pressure and the 

residue was purified by column chromatography (10 g of neutral Al2O3, CH2Cl2), 

concentrated and dried on a oil pump to afford rac-70 as a yellow oil (70.53 mg, 0.11 mmol, 

75.1%). 

The racemic mixture rac-70 was dissolved in 28 mL of benzene* together with 3 mL of 

trifluoroacetic acid and tris(2-cyanoethyl)phosphine (199.2 mg, 1.03 mmol, 10 eq.) . The 

resulting solution was refluxed for 20 min.. After cooling, the strongly red mixture was filled 

with 30 mL of CH2Cl2 and then with 20 mL of ice water. The aqueous phase was extracted 

twice with 10 mL portions of CH2Cl2. The combined organic phase was washed with 30 mL 

of sat. aq. NaHCO3 solution and filtered through a plug of cotton and concentrated by a rotary 

evaporator. The crude product was purified by column chromatography (10 g of neutral 

Al2O3, CH2Cl2) to yield tricyclic rac-72 and rac-73 as organge solids in two first fractions. 

The crude products mixture was dried over an oil pump for the next step. 

 To a solution of mixture tricyclic rac-72 and rac-73 in 4 mL CH2Cl2 was added a solution of 

nickel(II) acetate tetrahydrate (154.4 mg, 0.63 mmol, 4 eq.) in 5 mL of MeOH and sodium 

acetate (200 mg, 2.4 mmol, 15 eq.) in 3 mL MeOH. After stirring at rt. for 30 min., the 

reaction mixture was quenched with 2 mL of CH2Cl2 and 5 mL of ice water. The aqueous 

phase was extracted twice with 5 mL portions of CH2Cl2. The organic phase was concentrated 

by a rotary evaporator and the resulting residue was purified by chromatography (10 g of 

neutral Al2O3, CH2Cl2/ PE 2:1) to give two fractions. Both divisions were concentrated and 

recrystalized from (CHCl3/ n-pentane) separately. The first fraction gave the bromo 

substituted Ni-complex rac-75 (25.3 mg, 26.2 %) as violet crystals sand the second fraction 

gave Nikelcomplex rac-74 (6.7 mg, 9.5 %) as pink crystals. 

 

Nickelcomplex rac-74 

 

Mp : ≥ 280 oC, decomposed; 

Rf : 0.5 (aluminium oxide, CH2Cl2/ PE 2:1); 

 

IR (KBr): ~ = 2924 (w, CH3), 2854 (CH2), 1570 (s, C=O, ethylester), 1503 (s), 1463 (s), 

1438 (m), 1384 (s), 1336 (s), 1306 (m), 1259 (w), 1175 (w), 1156 (m), 1124 (m), 1106 (m), 

1012 (m), 899 (w), 827 (w), 774 (w), 726 (w), 669 (w), 629 cm-1 (w); 
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UV/ VIS (CH2Cl2): λmax (ε) = 530 (23608), 495 (11581), 337 (21826), 295 nm (18708) 

cm2mmol-1); 

 
1H NMR (360 MHz, CDCl3): δ = 1.21 (s, 3H, 2a-CH3), 1.28 (s, 3H, 2b-CH3), 1.44 (t, 3H, -

CH2-CH3), 1.77 (s, 3H, 1-CH3), 2.06 (s, 3H, 7-CH3), 2.16 (8-CH3), 2.36 (s, 3H, 13-CH3), 

2.68/2.85 (AB-system, 2H, 3-CH2), 4.60/4.68 (m, 2H, 14-CH2CH3), 5.52 (s, 1H, 5-CH), 6.31 

(s, 1H, 12-CH)6.53 (s, 1H, 10-CH); 

 

MS (ESI, positive, MeOH): 463 [M+H]+, 485 [M+Na]+, 501 [M+K]+. 

 

Bromo nickelcomplex rac-75: 

 

Mp: ≥ 280 oC, decomposed; 

Rf: 0.7 (aluminium oxide, CH2Cl2/ PE 2:1); 

 

IR (KBr): ~ = 3468 (w, br, NH), 2924 (w, CH-alkyl), 2854 (w, C-H, alkyl), 1574 (s), 1503 

(s), 1462 (m), 1382 (m), 1314 (m), 1104 (m), 820 (w), 788 cm-1 (w); 

 

UV/ VIS (CH2Cl2): λmax (ε) = 530 (26086), 490 (13056), 345 (18258), 298 nm (3910 

cm2mmol-1); 

 

 
1H NMR (360 MHz, CDCl3): δ = 1.21 (s, 3H, 2a-CH3), 1.28 (s, 3H, 2b-CH3), 1.44 (t, 3H, -

CH2-CH3), 1.76 (s, 3H, 1-CH3), 2.06 (s, 3H, 7-CH3), 2.20 (8-CH3), 2.30 (s, 3H, 13-CH3), 

2.69/2.85 (AB-system, 2H, 3-CH2), 4.62/4.67 (m, 2H, 14-CH2CH3), 5.55 (s, 1H, 5-CH), 6.57 

(s, 1H, 10-CH); 

 

MS (EI, 70 eV, direct, T = 200 °C): m/z (% rel. intensity) = 542 (10) [M]+, 462 (100) [M- 

Br]+, 407 (12) [M-Br-HCN-C2H4]+, 389 (8) [M–Br-CO2C2H5]+, 363(5), 217(8), 204 (10); 

 

HR-MS [EI, C24H27O2N4BrNi, R ≈ 10000]: Calculated: 540.06708; 

                                                       Measured: 540.06765. 
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5.5.8 Synthesis of benzyl-(19RS)-8-bromo-19-cycano-17,18,19,21-tetrahydro-

2,3,7,12,13,18,18,19-octamethyl-22H-bilin-1-carboxylate (80) 

N N

N

H3C
H3C

H3C

CH3

CH3

Br

CH3

EtO2C

Ni
CN

H
N

CH3H3C

CHOBnO2C

N N

N

H3C
H3C

H3C

CH3

CH3

Br

CH3

HO2C
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NC

NH N

HNN

H3C

CH3

CH3

Br

CH3

CH3

H3C

H3C

BnO2C
H3C

CN

C25H29O2N4BrNi

542.10

C15H15O3N

257.28

C23H25O2N4Ni

514.15

C36H38O2N5Br

652.63

rac-75

76

rac-79

rac-80

1

8

13
18

21

23

 
 

To a solution of nickel complex rac-75 (5 mg, 9.2 μmol) in 3 mL of THF* was added a 

solution of 5 N KOH in MeOH / H2O (9:1) (2 mL). The mixture was heated to 70 °C for 30 

min.. After cooling, the mixture was transferred to the separating funnel, added with 10 mL of 

water and exhaustively extracted with 10 mL portions of CH2Cl2. The combined organic 

phases were filtered through a plug of cotton, concentrated by a rotary evaporator, and dried 

on a oil pump to afford the crude intermediate rac-79. A round bottomed flask with the crude 

carboxylic acid rac-79, equipped with a septum cap and a magnetic stirrer was evacuated 

under high vacuum and then gassed with argon. A solution of formyl-pyrrole-bezylcarbonate 

76 (3.5 mg, 13.8 μmol, 1.5 eq.) in 2 mL of CHCl3 and a solution of 0.4 N p-TsOH in CHCl3* 
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(0.3 mL) were then injected through the septum cap. The reaction mixture was stirred at rt. for 

5 hours. After treating with 10 mL of sat. aq. NaHCO3 solution, the mixture was extracted 

with 10 mL of CH2Cl2. The organic phase was filtered through a plug of cotton and 

concentrated by a rotary evaporator. The residue was purified by column chromatography (1 

cm column, 10 g aluminum oxide, CH2Cl2) to yield a blue solid. 

  

Rf : 0.6 (aluminium oxide, CH2Cl2/ PE 2:1); 

 

MS (ESI, positive, MeOH): 652 [M,79Br + H]+, 654 [M,81Br + H]+, 674 [M,79Br + Na]+, 676    

[M,81Br + H]+; 

       (ESI, negative, MeOH): 650 [M,79Br - H]-, 652 [M,81Br - H]-. 
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5.5.9 Synthesis of 2,3-dihydro-2,2,7,8,13,17,18-heptamethyl-22H,24H-

porphinato]-zinc-(II) (40) 
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CH3

CH3

CH3

H3C

H3C

H3C

N N
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H3C
H3C

H3C

CH3

CH3

CH3

HO2C

Ni
NC

N HN

NNH

H3C

CH3

CH3

CH3

CH3

H3C

H3C

Br
H3C

CN

C7H8NOBr

202.05

C24H28O2N4Ni

463.21

C22H24N4O2Ni

437.17

C27H28N4Zn

473.93

C28H32N5Br

518.50

rac-74

41

rac-81

rac-8240

 
 

To a solution of nickel complex rac-74 (6 mg, 0.012 mmol) in 3mL of THF* was added a 

solution of 5 N KOH in (MeOH/H2O) (0.4 mL, 2mmol). The reaction mixture was heated to 

70 oC for 45 min.. After cooling, the solution was treated with 10 mL of sat. aq. NaHCO3 then 

extracted twice with 10 mL portions of CH2Cl2, the combined organic layers were filtered 

through a plug of cotton, concentrated and dried over oil pump to afford the crude free acid 

nickelcomplex rac-81. To a solution of crude acid product rac-81 (5.2 mg, 0.0119 mmol) was 

added a solution of 5-bromo-3,4-dimethyldopyrrole-1-carbadehyde 41 (3.8 mg, 0.019 mmol, 

1.5 eq.) and a solution of 0.4 N p-toluenesulfonic acid (0.4 mL, 0.16 mmol) in CHCl3*. The 
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reaction mixture was stirred for 2.5 hours at rt.. The solution was then treated with 10 mL of 

sat. aq. NaHCO3 solution, extracted 3 times with 5 mL portions of CH2Cl2. The organic phase 

was filtered through a plug of cotton and concentrated under reduced pressure. The resulting 

solid was purified by chromatography (10 g of neutral Al2O3, CH2Cl2) to afford tetracycle 82 

(4.5 mg, 67 %) as a blue-green solid. To a solution of tetracycle rac-82 (4.5 mg, 8.6 μmol) 

and Zn(CH3COO)2 9.8 mg (0.052 mmol, 4.3 eq.) in 3mL of sulfolane was added 0.8mL of 

DBU. The reaction mixture was heated to 80 oC for 3 hours. After cooling, the solution was 

treated with 10 mL of sat. aq. NaHCO3 then extracted 3 times with 5 mL portions of CH2Cl2. 

The organic extract was concentrated using a kugelrohr at 110 oC. The residue was purified 

upon column chromatography (10 g of silical gel, CH2Cl2) to afford chlorin 40 (2.8 mg, 49.2 

%) as a green solid. 

 

Rf: 0.6 (silica gel, PE/acetone 3:1); 

 

IR (KBr): ~ = 2956 (w, CH3), 2928 (m, CH3), 2847 (w, CH3), 1614 (m, C=C), 1485 (m), 

1376 (m), 1233 (w), 1458 (w), 1132 (w), 1036 (w), 946 (w), 849 (w), 813 (w), 723 cm-1 (m); 

 

UV/ VIS (acetone): λmax (ε) = 610 (16038), 395 nm (80365cm2mmol-1); 

 
1H NMR (360 MHz, C6D6): δ= 1H NMR (360 MHz, C6D6) δ= 2.01 ppm (s, 6H, 2*2-CH3), 

3.23, 3.28, 3.33, 3.37, 3.49 (5*s, 10H, 7-, 18-, 8-, 17-,13- CH3), 4.49 (s, 2H, 2-CH2), 8.49 (s, 

1H, 20-CH), 8.58 (s, 1H, 5 CH), 8.6 (12-CH), 9.38 (s, 1H, 10-CH), 9.51 ppm (s, 1H, 15-CH); 

 

MS (ESI, positive, MeOH): 597 [M-H]-, 629 [M+CH3O-]. 
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5.5.10 Synthesis of benzyl-8-bromo-15-hydro-14-oxo-2,3,7,12,13-pentamethyl-

16H-tripyrrin-1-carboxylate (84) 
 

HN

CH3

CH3

O

HN

CH3

Br

EtO2C

C15H17O3N2Br

353.21

NH

H
N CO2BnOHC

CH3H3C

C13H13O3N2Br

325.15

C15H15O3N

257.29

BnO2C

H3C

H3C

C27H26O3N3Br

HN

CH3

CH3

O

HN

CH3

Br

HO2C

HN

CH3

CH3

O

N

CH3

Br

68 83
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84

1

8

14

520.41  
 

To a solution of lactam 69 (22 mg, 0.062 mmol) in 6 mL of THF was added a solution of 5 N 

KOH in MeOH/H2O (9:1) (0.8 mL, 1 mmol, 16 eq.). The mixture was stirred to 70 oC for 1 

hour. After cooling, the reaction mixture was treated with 0.3 mL of TFA until the pH of the 

mixture was less than 7. The solvent was removed under reduced pressure and the solid was 

dried overnight to yield the crude acid 83. 

The crude acid 83 and 23.92 mg (0.093 mmol, 1.5 eq.) pyrrole 76 were dissolved in 10 mL of 

(CHCl3/TEA 5:1). The mixture was connected to a sohlet apparatus and refluxed for 2 hours. 

After cooling, 5 mL of sat. aq. NaHCO3 solution was then added to the mixture and the 

organic phase was separated. The aqueous phase was extracted twice with 10 mL portions of 

CH2Cl2. The combined extracts were dried through a plug of cotton and concentrated by a 



5. Experimental Section - 94 - Nguyen Thi Viet Thanh 

rotary evaporator. The crude product was purified by column chromatography (10 g of Al2O3, 

CH2Cl2) and recristallized from CHCl3 to give tripyrrin 84 (6.7 mg, 19 %) as red crystals. 

 

Mp: 215 oC (CHCl3); 

  

Rf: 0.7 (silica gel, CH2Cl2); 

 

IR (KBr): ~ = 2923 (w, CH3), 2854 (w, CH3, CH2), 1683 (C=O, benzyl ester), 1654 (s), 1464 

(s), 1391 (m), 1370 (m), 1263 (s), 1205 (m), 1161 (m), 1105 (m), 938 (m), 911 (m), 856 (w), 

83 (m), 774 (m), 753 (m), 696 (s), 627 (m), 506 cm-1 (m); 

 

NMR (360 MHz, C6D6): δ = 1.58, 1.60 (s, s, 6H, 2-CH3, 3-CH3), 1.72, 1.83 (s, s, 6H, 12-CH3, 

13-CH3), 2.23 (s, 8-CH3), 5.74 (s, 2H, CH2-benzyl), 6.00, 6.46 (s, s, 5-CH, 10-CH); 7.02 (m, 

5H, C6H5-benzyl); 

 

UV/ VIS (CH2Cl2): λmax (ε) = 540 (24750), 320 (39600 cm2mmol-1); 

 

MS (ESI, positive, MeOH): 542 [M,79Br + Na]+, 544 [M,81Br + H]+, 558 [M,79Br + K]+, 560 

[M,81Br + H]+; 

       (ESI, negative, MeOH): 518 [M,79Br - H]-, 520 [M,81Br - H]-; 

 

HR-MS [MALDI, C27H26O3N3Br, R≈10000]: Calculated: 519.1157; 

                                                         Measured: 519.1148. 
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5.5.11 Synthesis of [2,3-dihydro-3-hydroxyl- -2,2,7,8,12,13,17,18-octamethyl-

22H,24H-porphinato]-zinc(II) (86) and [2,3-dihydro-2,2,7,8,12,13,17,18-

octamethyl-3-oxo-22H,24H-porphinato]-zinc(II) (87) 
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501.92

24

86

87

 
 

To a solution of chlorin 24 (6.2 mg, 0.012 mmol) in 4 mL of THF* cooled to -78 oC was 

added a solution of NBS (2.3 mg, 0.013 mmol, 1 eq.) in 1 mL of THF* through the septum 

cap under argon atmosphere. The reaction mixture was stirred at -78 oC for 2 hours then the 

cooling bath was removed. The reaction mixture was then warmed up to rt. and stirred for 

further 1 hour.  20 mL of dichlomethane was then added to diluted the solution and the 

reaction was quenched by addition of 30 mL of sat. aq. NaHCO3 solution. The mixture was 

separated and the aqueous phase was extracted twice with 20 mL portions of dichlomethene. 

The combined organic phases were dried through a plug of cotton and concentrated under 

reduced pressure. The residue was purified by column chromatoghraphy (10 g of silica gel, 

PE/methyaceate 3:1) to afford hydroxylchlorin 86 (2.5 mg, 39 %) and oxochlorin 87 (1.2 mg, 

18.8 %). 
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Characterization of hydroxylchlorin (86): 

 

Rf: 0.3 (silica gel, PE/methylacetate 3:1); 

 

IR (KBr): ~ = 3436 (w, br.), 2924 (m, CH3), 2854 (w, CH3), 1625 (m), 1459 (m), 1139 (m); 

867 cm-1 (m); 

 

NMR (360 MHz, CDCl3): δ = 1.93, 1.94 ppm (6H, 2 2-CH3), 3.29 (6H, s, shouder, 2 CH3, 

3.33 (s, CH3), 3.34 (s, CH3), 3.36 ( s, shouder, 2 CH3), 6.07 (d, 3J=5.9 Hz, 1H, 3-CH), 8.55, 

8.80 (s, s, 2H, 5-CH and 20-CH), 9.47, 9.51 (s, s,  2H, 10-CH and 15-CH); 

 

UV/ VIS (CH2Cl2): λmax (ε) = 620(49260), 570(11330), 415(17232), 330(19704) nm (38198 

cm2mmol-1); 

 

 HR-MS [EI, C28H30N4OZn, R ≈ 10000]:  Calculated: 506.1668; 

                                                                   Measured: 506.1670. 

 

Characterization of oxochlorin (87): 

 

Rf: 0.6 (silica gel, PE/methylacetate 3:1); 

 

IR (KBr): ~ = 3468 (w, br.), 2960 (w, CH3), 2923 (m, CH3), 2854 (w, CH3), 1709 (s, C=O), 

1538 (w), 1463 (m), 1378 (w), 1261 (m), 1221 (w), 1147 (m), 1097 (m), 1023 (m), 802 cm-1 

(m); 

 

NMR (200 MHz, CDCl3): δ = 2.09 ppm (6H, 2 2-CH3), 3.26 (s, 3H, CH3), 3.27 (s, 3H, CH3), 

3.36 (s, 3H, CH3), 3.37( s, 3H, CH3), 3.41(s, 6H, 2 CH3), 8.9, 9.4 (s, s, 2H, 5-CH and 20-

CH), 9.45, 9.59 (s, s,  2H, 10-CH and 15-CH); 

 

UV/ VIS (CH2Cl2): λmax (ε) = 610(10899), 395(53133) nm (38198 cm2mmol-1); 

 

HR-MS [EI, C28H28N4OZn, R ≈ 0000]: Calculated: 500.1554; 

                                                        Measured: 500.1554. 
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