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I Introduction 

Microorganisms are extremely versatile and adaptable. With doubling times 

ranging from several hundred or an estimated 120 thousand years (Parkes and 

Wellsbury, 2004) to less than half an hour they have adapted to about any environ-

ment on earth from extremely barren to the lavish, eutrophic and anthrophogenically 

contaminated habitats, making up a major part of the Earth’s biomass. Contact with 

other life forms led to the invasion of new habitats: microorganisms and later eu-

karyotes became hosts in symbiotic relationships. Symbiosis has strongly influenced 

evolution. In fact eukaryotes evolved through a series of symbiotic relationships. 

Chloroplasts were already in 1905 suggested to be derived from bacteria 

(Mereschowsky, 1905; Martin and Kowallik, 1999). Furthermore, mitochondria were 

first described by Altmann in 1890 as bacteria in a host cell (Altmann, 1890). Their 

nature as intracellular bacteria adjusted to life in a host cell was further propagated 

by Wallin in the 1920s (Wallin, 1923; Wallin, 1925). In 1970 this theory was revived 

as a hypothesis put forward that energy compartments such as mitochondria stem 

from bacterial endosymbioses (Margulis, 1970; Nakagawa and Takai, 2008). 

1 Defining symbiosis 
Symbiosis was first defined as the close living together of two unrelated spe-

cies or organisms (de Bary, 1879). The novel non-parasitic nature of this alga-fungus 

association had been discussed previously by Schwendener (Schwendener, 1867). 

At about the same time the term ‘symbiotism’ was used to describe spatial proximity 

of different organisms in mycorrhizae (Frank, 1877). The term is derived from Greek 

Sym meaning ‘with’ and biosis ‘living’. Such a long-term or permanent association 

can be 1) beneficial to one and harmful to the other organism in parasitism, 2) bene-

ficial to one partner but indifferent to the other or indifferent to both (e.g. when they 

share the same food-source without affecting each other) in commensalism, and 3) 

beneficial to both in mutualism. Originally the term symbiosis was applied in a non-

judgemental context; however, today ”symbiosis” is often used in the sense of mutu-

alism. These different concepts of symbiosis often originate from metabolically and 

phylogentically similar relationships. Transitions between parasitism, commensalism 

and mutualism can be continuous. Symbiosis should thus be referred to - as it will be 

in this thesis - in its original broad definition of different species living together in a 



Introduction 

 8 

close physical and/or metabolic association. In general, the smaller partner in such 

an association is called the symbiont, while the larger is called the host. 

1.1 Characterizing symbiosis  

As bacteria can thrive virtually everywhere, contacts and interaction between 

microbes and eukaryotes are inevitable. Many forms of symbioses between pro-

karyotes and eukaryotes have evolved to a myriad of pathogenic, opportunistic, 

commensal and mutualistic bacterial associations. Fascinating adaptations to symbi-

otic life-style have arisen in co-evolution. Many parasites such as the malaria caus-

ing agent Plasmodium have complex life-cycles sometimes involving not only a final 

but also an intermediate or reservoir host. They also have several morphological and 

developmental stages including asexual and sexual proliferation (Mehlhorn and 

Piekarski, 1995). Sometimes even the host’s behavior is influenced to guarantee the 

continuation of the symbiont’s life-cycle. This has been shown mostly in parasitic 

species and is thought to occur as well in commensal symbionts (Jog and Watve, 

2005). Certain changes in host behavior increase bacterial infection within a host 

population such as reduced dispersal behavior of female hosts of the spider Erigone 

atra (Goodacre et al., 2009) or intraspecific coprophagy of termites, i.e. eating faeces 

of mates for the acquisition of mutualistic gut flora (Kikuchi and Fukatsu, 2008), 

which can lead to complex social behavior (Nalepa et al., 2001; Minkley et al., 2006).  

In a race of arms between the microbial invader and the host commonly arises 

as a result of contact and infection. The mechanisms of invasion and in response 

evasion or defense are continually improved. While in mammals antibodies counter-

act invading bacteria and B-cells “memorize” the antigen for a fast host-response, 

bacteria and viruses overcome this defense by continuously altering their surface 

structure. Intracellular bacterial symbioses challenge the immune system and medi-

cal efforts when pathogens such as Rickettsia ‘hide’ in host cells. 

The symbiont benefits from a symbiotic lifestyle in several ways. The host of-

fers access to substrates, including waste products as well as a safe habitat for the 

much smaller partner. In a mutualistic relationship the hosts in turn acquire new 

physiological traits through their symbionts. Sometimes these are defensive in na-

ture, protecting the host against pathogens or predators, for example by production 

of antibiotics or toxins. In most cases the symbioses are nutritional, in which the 

symbiont supplies the host with carbon compounds and other vital products such as 
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amino acids and vitamins. The host can exploit new energy and nutritional sources 

through the metabolic potential of the prokaryotes such as the breakdown of complex 

carbon compounds (e.g. cellulytic bacteria in rumen and termite gut), photosynthesis 

or the coupling of oxidation of reduced inorganic substances and carbon fixation 

(chemosynthesis). The “acquired” foreign physiological capabilities often allow the 

host to colonize new habitats.  

Symbioses are facultative or obligate (see also 1.3.5). In facultative symbio-

ses the partners can live, grow and reproduce independently. The partners engage 

in associations when they come in contact and environmental conditions allow it. 

During the course of evolution a physiological characteristic of the symbiont can be-

come vital to the host making the symbiosis obligate. An example for this is 

Buchnera aphidicola, a bacterial symbiont of aphids. This symbiont provides essen-

tial amino acids and vitamins to the aphids, which they can neither synthesize nor 

retrieve from their nutrition, phloem sap. The genome of this symbiont is extremely 

reduced, making a survival outside the host impossible (Moran, 2003). The symbiont 

has genes for the biosynthesis of amino acids essential for the host in its genome, 

while genes encoding enzymes for the synthesis of other non-essential amino acids 

are completely missing (Shigenobu et al., 2000). Apparently the aphid and Buchnera 

share amino acid biosynthesis (Eisen and International Aphid Genomics Consortium, 

2010). Host and symbiont are interdependent and none can reproduce without the 

other (Baumann et al., 1995). 

As mentioned above animal-bacteria associations can shift between parasit-

ism, commensalism and mutualism. Human disease can be the result of such a shift. 

When bacterial fauna of the human gut is disturbed opportunistic bacteria which are 

normally kept at a low tolerable abundance by the healthy gut flora can proliferate 

and replace the latter. Furthermore, otherwise beneficial bacteria can acquire patho-

genic traits through genetic transfer. In a healthy state E. coli and other heterotrophic 

bacteria are responsible for effectively breaking down food compounds and supply-

ing essential amino acids and vitamins to their host. Yet, certain strains of E. coli 

have aquired ‘pathogenicity islands’ often through horizontal gene transfer, allowing 

them to cause infections (Oelschlaeger et al., 2002) or diarrhea (Mellies et al., 2001). 
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1.2 Marine symbioses 

Highly diverse symbiotic lifestyles have been discovered in marine environ-

ments from beaches to remote areas of the deep-sea. In the euphotic zones besides 

photosynthetic symbioses such as corals hosting zooxanthellae, heterotrophic sym-

bioses are common. In coastal areas organic matter is readily available, which is 

degraded by bacteria inhabiting guts of worms and sea urchins (heterotrophic sym-

bioses). The bacteria help in breaking down complex substrates and provide essen-

tial nutrients. Sea urchins, for example, rely on their gut bacteria to digest coarse 

sea-weed. Furthermore the bacteria make up for the low nitrogen content of this diet 

by fixing nitrogen (N2), (Barnes et al., 2001). 

More extraordinary heterotrophic symbioses occur when large pieces of wood 

or animal carcasses sink to the seafloor. Wood-boring mussels of the family Tered-

inidae are commonly found on sunken wood. They host various heterotrophic intra-

cellular bacteria in their gills that facilitate the degradation of the complex organic 

material such as cellulose (Luyten et al., 2006). Even in the vast organically depleted 

deep-sea, sunken whale bones are quickly colonized by bacteria. Some inverte-

brates have specialized on these rare, ephemeric habitats that form oases in other-

wise substrate-limited marine areas such as Osedax annelid worms whose symbi-

onts can degrade complex carbon compounds including whale oils and collagen 

(Goffredi et al., 2007). 

1.3 Chemosynthetic symbioses 

With its lack of light and thus photosynthetic primary production, low tempera-

ture and high pressure the deep-sea poses many challenges to higher organisms. 

For a long time the deep-sea was presumed to be scarcely populated by few well 

adapted organisms. This still holds true for the majority of the deep-sea. However, 

at hydrothermal vents and seeps where reduced chemicals are discharged, chemo-

synthetic primary production made the conquest of the deep-sea by diverse eu-

karyotic organisms possible. In the late 1970s, scientists on board the deep sub-

mersible vehicle Alvin discovered oases with a rich fauna closely associated with 

deep-sea hydrothermal vents on the Galapagos Ridge (Corliss and Ballard, 1977; 

Corliss et al., 1979). The discovery of animals such as the tube worm Riftia pachyp-

tila living in symbioses with chemosynthetic bacteria that formed highly productive 

ecosystems revolutionized the understanding of symbiosis (Cavanaugh et al., 1981; 
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Felbeck, 1981). Until then only photosynthetic symbioses such as lichens or corals 

and heterotrophic symbioses such as rumen and gut bacteria were known. Further-

more, the deep-sea oases at hydrothermal vents and seeps are the only ecosys-

tems - besides coral reefs where corals host zooxanthellae (photosynthetic 

dinoflagellates) – that are dominated by symbiotic production (Dubilier et al., 2008). 

To date representatives of many animal and protists groups are known to en-

gage in associations with chemosynthetic bacteria (see also Table 1, p17 and Ta-

ble 2, pp 21-22): Chromalveolata (ciliates), Porifera (sponges), Mollusca (e.g. bi-

valves and gastropods), Annelida (e.g. polychaetes and oligochaetes), Nematoda 

(nematodes) and Arthropoda (e.g. crustaceans, amphipods), (Stewart et al., 2005; 

Cavanaugh et al., 2006; Dubilier et al., 2008; Zielinski, 2008). The advantage of har-

boring bacterial primary producers in chemically reduced environments has led to a 

myriad of animal-bacteria associations and cooperations. Due to the fact that at 

methane- and/ or sulfide-rich habitats these symbioses often dominate the ecosys-

tem in abundance and turnover their biogeochemical importance can be consider-

able (Van Dover, 2000). 

1.3.1 Defining chemosynthetic symbioses 

In environments where highly reduced chemicals and oxidants are present, 

chemosynthesis can take place. Eukaryotic hosts often enhance bacterial chemosyn-

thesis by physically, spatially or temporally bridging the substrates for their mutualis-

tic bacteria. The chemosynthetic symbionts serve as the nutritional basis for the host, 

where either dissolved organic carbon compounds and other essential substances 

are passed to the host or the bacteria are taken up and lysed. 

 Electron donors and carbon substrates of the symbiotic bacteria can differ re-

sulting in distinct terms to describe these processes. In chemoorganoheterotrophy 

organic compounds serve both as a carbon source and energy source to gain ATP. 

In contrast, autotrophic prokaryotes fix carbon dioxide (CO2) and are thus independ-

ent of an external organic carbon source. Energy is derived from the oxidation of re-

duced inorganic compounds and is used to synthesize organic compounds in 

chemolithotrophy. Potential inorganic electron donors are reduced chemicals such as 

hydrogen (H2), reduced sulfur compounds such as hydrogen sulfide (H2S), iron 

(Fe2+), and manganese (Mn2+). In symbioses however, reduced sulfur compounds 

appear as the most common electron donor, followed by methane. Symbioses based 
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on hydrogen are rather exceptional, but have been reported (Takai et al., 2006; 

Zielinski, 2008), while the role of iron has been discussed but largely dismissed 

(Schmidt et al., 2009). As the energy used is based on chemicals instead of light it is 

often referred to as ‘dark energy’. However, chemosynthesis is in not entirely inde-

pendent of photosynthesis. Oxygen, the most common reducing agent, is originally a 

product of photosynthetic activity. While some bacteria can use alternative electron 

acceptors such as nitrate (see below 1.3.7), the majority of chemosynthetic symbi-

onts use oxygen. Oxygen is often preferred as it maximizes energy gain through a 

high redox potential. Most importantly, animal hosts can only survive in aerobic envi-

ronments. They need oxygen for respiration. Some can endure longer periods of 

oxygen limitation, but eventually they have to access oxygen. This is because an-

aerobic metabolism is much less energy efficient and leads to the accumulation of 

toxic waste products.  

Methane, a simple carbon compound, is an important potential electron donor 

for bacteria. The Earth crust contains large amounts of this gas. It can be of abio-

genic origin and is either mantle derived or is formed through low temperature water–

rock interactions (Sherwood Lollar et al., 2006) or of biogenic origin from thermal de-

composition of organic matter in deep oceanic sediments. Alternatively, methane is 

microbially synthesized by reduction of CO2 in marine sediments and the deep sub-

surface (Sherwood Lollar et al., 2006). Methane is an organic molecule, therefore 

methanotrophic bacteria are not defined as chemoautotrophic but rather chemoor-

ganoheterotrophic. The term chemosynthesis encompasses both life-styles. Some 

invertebrate hosts can engage in dual symbioses with sulfur oxidizers and methane 

oxidizers such as the snail Ifremeria nautilei (Galchenko et al., 1992), as well as 

some bathymodioline mussels, e.g. Bathymodiolus azoricus, and B. puteoserpentis 

(Distel et al., 1995; Duperron et al., 2006) and the Bathymodiolus-related mussel 

Idas sp. (Duperron et al., 2008).  

Today even certain marine heterotrophic symbioses are mentioned in the con-

text of chemosynthetic symbioses. Whale falls and sunken wood, as pointed out 

above, supply a habitat for various sulfide oxidizing symbioses through locally an-

aerobic decomposition of organic materials and the release of sulfide. As they also 

are habitat to heterotrophic symbioses such as that of siboglinid worms Osedax spp. 

and wood-boring mussels the latter are often included in discussions about chemo-

synthetic life. 
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1.3.2 Chemosynthetic habitats at vents and seeps 

The chemosynthetic habitats of the deep-sea, hydrothermal vents and seeps, 

and shallow water vents and seeps will be discussed briefly. Special emphasis will 

be put on coastal sediments in a separate section as the objects of this study, marine 

oligochates, live in this habitat. 

Hydrothermal vents 

Along the mid ocean ridges new seafloor emerges from the spreading apart of 

tectonic plates and deep-sea hydrothermal vents can form. Cold seawater pene-

trates through cracks of the earth crust, is heated up and charged with minerals from 

the hot rock. Reaching temperatures of up to 407 °C (Haase et al., 2007) or even 

464 °C (measured once at the South Mid-Atlantic Ridge (SMAR), (Koschinsky et al., 

2008)), it pushes back up rising in a plume. Along the ridge also areas of diffuse flow 

exist, where the temperature is more moderate (about 5 °- 30 °C) due to the mixing 

of cold bottom sea-water with vent fluids. Many invertebrates such as tubeworms, 

limpets, clams and mussels settle at these sites. Highly reduced inorganic com-

pounds from the vent fluids serve as electron donors that can be coupled with elec-

tron acceptors from the surrounding oxygenated sea-water for exergonic reactions 

with a large difference in redox potentials.  

There are many differences in the geological and chemical settings of vents 

and these can influence the composition of the symbiotic communities. For example, 

ultramafic-hosted settings, e.g. the MAR sites Logatchev and Rainbow occur at slow-

spreading centers and the vent fluids contain a high amount of dissolved hydrogen 

and methane. In contrast, basalt hosted vent systems at fast spreading ridges such 

as the East Pacific Rise contain lower amounts of these gases. Instead, their fluid 

chemistry is dominated by sulfide. 

Cold Seeps 

Cold seeps occur at passive and active continental margins at depths of 400 - 

8000 m. Passive continental margins are non-seismic, while at active margins, an 

oceanic crust is pressed against another crust, oceanic or continental crust, and one 

plate crust is forced into subduction. High concentrations of methane and sulfide 

which originate from biological or thermogenic transformation of organic matter mix 
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with cold seawater and allow methane- and sulfur-oxidizing bacteria to accumulate. 

As at hydrothermal vents, many of these chemosynthetic bacteria are associated 

with animal hosts.  

Animal communities of cold seeps are similar to those of hot vents and have a 

relatively low diversity compared to coastal environments. Still between the two envi-

ronments, diversity indices showed significantly higher diversity at seeps than at hot 

vents (Turnipseed et al., 2003). While at the species level most animals are endemic 

to seeps or vents, this is less so at the genus level (Sibuet and Olu, 1998; Sibuet and 

Olu-Le Roy, 2002). Furthermore, the diversity of species decreases with depth 

(Sibuet and Olu-Le Roy, 2002). 

Shallow-water vents and seeps 

Hydothermal vent communities above 200 m are referred to as ‘shallow-water’ 

(Tarasov et al., 2005);(Dubilier et al., 2008). Shallow water vents and seeps occur 

worldwide at sites of volcanic activity, e.g. Iceland, Mediterranean or Japan. Accord-

ing to Tarasov et al. (Tarasov et al., 2005) there is a shift at 200 m depth in environ-

mental parameters reflected in community structure and composition. Shallow-water 

hydrothermal vent communities in contrast to deep-sea vents have few if any vent 

obligate taxa. Only exceptionally do chemosynthetic symbioses dominate the bio-

mass of shallow water habitats such as Lamellibrachia satsuma off the coast of Ja-

pan (Hashimoto et al., 1993; Kharlamenko et al., 1995; Tarasov et al., 2005). Shal-

low water vents are often inhabited by mussels (see below). 

1.3.3 Chemosynthetic life in coastal sands and muds 

After the discovery of deep-sea vent communities other reduced environ-

ments were reinvestigated and searched for symbiotic species. Indeed many eu-

karyotic species, often previously described to have anatomical abnormalities such 

as a reduced gut and/ or a bacterial layer, proved to host chemosynthetic bacteria. 

Coastal muds and sands are highly diverse ecosystems. In many coastal areas re-

ducing sediments are habitat to invertebrates that have only in the last decades 

been recocgnized as chemosynthetic hosts.  

Sulfate reducing bacteria (SRB) play an important role in the productivity of 

coastal sediments. With high organic input, oxygen is quickly depleted by aerobic 

heterotrophs. Sulfate is readily available in the marine environment and SRB oxidize 
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organic substrates while respiring sulfate. Thus reduced sulfur compounds, sulfide 

are released to the sediment. In the redoxcline they serve as electron donors for 

thioautotrophic bacteria. Availability of reduced sulfur and penetration of O2 depend 

on the porosity of the sediment and the influence of tides or wave action. Dense and 

muddy sediments often only have a thin oxidized layer especially at low tide which is 

only a few millimeters thick. In sediments of larger grain size and strong wave action, 

oxygen can penetrate a few centimeters deep into the sediments. Here, overall sul-

fide concentrations might be lower than at most vents and seeps, while sulfate re-

duction can be high due to high organic input in coastal areas. It was suggested that 

the continuous supply of sulfide through sulfate reduction might be more important to 

symbiotic associations than the absolute concentrations (Dubilier et al., 2008).  

Thus, coastal sediments provide a habitat for non-photosynthetic primary pro-

duction as well, giving rise to associations between metazoans with chemosynthetic 

bacteria. Most hosts belong to the smaller macro- and meiofauna (small animals de-

fined as passing through a 500 μm sieve but being retained on meshes of 40 - 64 μm 

size (Higgins and Thiel, 1988) and are in most cases much smaller than deep-sea 

invertebrate hosts. While the deep-sea annelid R. pachyptila reach up to two meters 

in length symbiotic worms from coastal sediments are easily overlooked. Symbiotic 

oligochaetes only measure up to a few centimeters and marine nematodes including 

those with obligate endo- or ectosymbionts are only seldom larger than 10 mm. This 

size difference can also be observed for other invertebrates. Coastal symbiotic mus-

sels are generally smaller than their deep-sea relatives.  

Diversity in coastal sandy sediments can be as high or even higher than at 

deep-sea sites (Dubilier et al., 2008). Several species of nematodes with endo- or 

ectosymbionts occur in this habitat (Ott et al., 2004), as well as gutless oligochaete 

worms with multiple endosymbionts (Dubilier et al., 2006), turbellarians and ciliates 

(Fenchel and Finlay, 1995; Dubilier et al., 2008). It is likely that many more animals 

of this habitat are candidate hosts such as copepods (personal observation). Some 

copepods from Elba sediment appeared transparent and with white inclusions un-

derneath their thorax. Several mostly unidentified bacterial epibionts of diverse mor-

phology have been observed on copepods and various other crustaceans, such as 

isopods, amphipods and decapods (Carman and Dobbs, 1997). 
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Adaptations of symbiotic hosts in sulfidic coastal sediments  

To make both electron donors and electron acceptors accessible for their 

symbionts the host animals have - like their deep-sea counterparts (see below sec-

tion 1.3.4 endosymbionts) - adapted with anatomical, physical, physiological and/or 

behavioral traits to bridge the oxic and anoxic, sulfide-rich sediment layers. Motile 

sediment dwellers such as nematodes and oligochaetes can travel above and below 

the redox-cline to alternately supply their symbionts with oxidants and reductants. 

This life style would cater to the ability of many sulfur-oxidizing bacteria to transiently 

store sulfur under anoxic conditions, which is then completely oxidized in oxic envi-

ronments.  

Some ciliates create a water current that reduces the boundary layer thick-

ness and enhances contact with sulfide and oxygen for their ectosymbionts (Vopel et 

al., 2001; Røy et al., 2009). Chemosymbiotic clams that occur in inter- and subtidal 

sediment such as the lucinid Anodontia edentula living in sulfidic mangrove muds or 

thyrasid clams inhabiting reducing coastal North Sea sediments have developed al-

ternative strategies. A. edentula buries 28-50 cm deep in the mud thus gaining direct 

contact to sulfide. Oxygen is transported towards the clam via oxygenated water 

from the surface through ventilation burrows (Lebata, 2001). Thyasirid clams such as 

Thyasira (parathyasira) equalis, T. flexuosa, and T. sarsi stay in the upper layers of 

the sediment and can extend their foot up to 30 times their body size to reach re-

duced sulfur in lower reduced layers for their symbionts (Dufour and Felbeck, 2003). 

1.3.4 Symbiont location: ecto- and endosymbionts 

Symbioses between animals and bacteria are morphologically and physically 

diverse. Bacterial endosymbionts live within the host organism. They can be located 

in specialized structures or organs in the host. Ectosymbionts, in contrast, attach to 

exterior soft or hard host surfaces. 

Endosymbionts 

Endosymbionts (Table 1) can occur intracellularly or extracellularly (Stewart et 

al., 2005). Various siboglinid tubeworms such as Riftia, Escarpia and Lamellibrachia, 

frenulates (Siboglinum, Oligobrachia) and Monilifera (Sclerolinum), host intracellular 

sulfur-oxidizing or methane-oxidizing symbionts (Dubilier et al., 2008). Early studies 
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Table 1. List of marine invertebrate hosts of (putative) chemosynthetic endosymbionts. 

Phylum/ major group Host Common 
name 

Symbiont-
supporting 
tissue 

Location Habitat Symbiont type 

Ciliphora 
Polyhemonophora 
Heterotrichida 

 
 
Folliculinopsis 
 

 
 
Blue-mat 
ciliate 

 
 
cytoplasm 
(also ectobionts) 

 
 
Intracellular 

 
 
hydrothermal vents 

 
 
Unknown 

Karyorelictea 
Kentrophoridae 

 
Kentrophorus 

 
Free-living 
ciliate 

 
cytoplasm 
(also ectobionts) 

 
Intracellular 
 

 
Shallow water 

 
Unknown 

Porifera       
Class Demospongiae 
Family Cladorhizidae 

 
Cladorhiza 

 
Sponge 

 
Skeletal matrix 

 
Extracellular, 
intracellular 

 
Cold seeps 

 
Methanotroph 

Plathyhelminthes 
Class Catenulida 
Family  
Retronectidae 

 
 
 
Paracatenula 

 
 
 
Mouthless 
flat worm 

 
 
 
Trophosome 

 
 
 
Intracellular 

 
 
 
Shallow water 

 
 
 
Chemoautotroph 

Nematoda 
Monohysterida 
Siphonolaimidae 

 
 
Astomonema 

 
 
Mouthless 
nematode 

 
 
Gut lumen 

 
 
Extracellular 

 
 
Shallow water 

 
 
Chemoautotroph 

Mollusca       
Class Aplacophora 
Simrothiellidae 

 
Helicoradomenia 
 

 
Worm 
mollusc 

 
Epidermis 
(also ectobionts) 

 
Intracellular 

 
Hydrothermal vents 

 
Unknown 

Class Bivalvia       
Subclass Protobranchia, 
Family Solemyidae 

 
 
Solemya 
Archarax 

 
 
Clam 

 
 
Gills 

 
 
Intracellular 

 
 
Reducing sediments, 
hydrothermal vents, 
cold seeps 

 
 
Chemoautotroph 

Sublass Heterodonta, 
Family Lucinidae 
 

 
Lucina 
Codakia 

 
Clam 

 
Gills 

 
Intracellular 

 
Reducing sediments,  
cold seeps 

 
Chemoautotroph 

Family Thyasiridae Thyasira 
Maorhithyas 

Clam Gills Intracellular Reducing sediments,  
cold seeps 

Chemoautotroph 

Family Vesicomyidae Calyptogena 
Vesicomya 

Clam Gills Intracellular Hydrothermal vents, 
cold seeps 

Chemoautotroph 

Subclass Pteriomorphia 
Family Mytilidae 

 
 
Bathymodiolus 
Idas 

 
 
Mussel 

 
 
Gills 

 
 
Extracellular, 
intracellular 

 
 
Hydrothermal vents, 
cold seeps 

 
 
Chemoautotroph 
and/ or methano-
troph 

Class Gastropoda 
Family Provannidae 
Peltospiridae 
 

 
Ifremeria 
Chrysomallon 

 
Snail 
Snail 

 
Gills 
Oesophageal 
gland 

 
Intracellular 
 

 
Hydrothermal vents 
 

 
Chemoautotroph 
unknown 

Annelida 
Class Polychaeta 
Family Siboglinidae2 
Vestimentifera1 
 

 
 
 
Riftia 
Escarpia 
Lamellibrachia 

 
 
 
Tube worm 
 

 
 
 
Trophosome 
 

 
 
 
Intracellular  
 

 
 
 
Hydrothermal vents, 
cold seeps 

 
 
 
Chemoautotroph 
 

Monilifera2 
 
 
Frenultata2 
 

Sclerolinum 
 
 
Siboglinum 
Oligobrachia 

Tube worm 
 
 
Beard worm 

Trophosome 
 
 
Trophosome 
 

Intracellular  
 
 
Intracellular  
 

Hydrothermal vents, 
seeps, whale falls, wood 
falls, fjords 
Hydrothermal vents, 
seeps, whale falls shallow 
water, fjords 

Chemoautotroph/ 
Chemosynthetic3 
 

incertae sedis2 
(Osedax spp.) 

 Bone-eating 
worm 

root (ovisac) Intracellular  
 

Whale falls Heterotroph4 

Class Clitellata 
Family Naididae 

  
Gutless 
oligochaete 

 
Subcuticular 

 
Extracellular 

 
Reducing sediments 

 
Chemoautotroph 

Table based on (Stewart et al., 2005) and (Dubilier et al., 2008) 
1 The non-taxonomic terms ‘major and subgroups’ used here as orders and families of chemosynthetic hosts still debated  
2 Sytematics have been frequently revised for this group; most recently in Pleijel et al. these tube and beard worms were all placed 

in a single family, the Siboglinidae (Pleijel et al., 2009) 
3 Contradictory evidence for presence of methanotrophic symbionts in siboglinid worms (Petersen and Dubilier, 2009a) 
4 Osedax included because of close phylogenetic relationship to tubeworms and their chemosynthetic whale fall habitat 
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on the tubeworm R. pachytila revealed that the worm’s physiology is completely 

modified to accommodate the bacteria and supply them with substrates (Cavanaugh, 

1985). The bacteria are housed in a specialized organ, the trophosome, not found in 

symbiont-free relatives. Within the trophosome the symbionts are located in cyto-

plasmic vacuoles of specialized host cells, the bacteriocytes (Hand, 1987). Oxygen 

and sulfide are taken up through branched plumes and transported through the host 

vascular system by modified haemoglobin to the trophosome (Arp et al., 1987; Gof-

fredi et al., 1997; Zal et al., 1998). Surprisingly the trophosomes of deep-sea worms 

might be ontogenetically of different origin. For vestimentiferan (today siboglinid) 

tubeworms mesodermal origin has been shown (Nussbaumer et al., 2006), while for 

frenulates and moniliferans development from endodermal gut tissue has been sug-

gested. Consequently, this form of explicit specialization through host-symbiont co-

evolution has occured multiple times independently in convergent evolution (Dubilier 

et al., 2008). 

In bivalves the bacteria live intra- or extracellularly in the gills. While the sym-

bionts of the Solemyidae, Lucinidae and Vesicomyidae are intracellular, those of 

members of the Thyasiridae and Mytilidae are sometimes extracellular. Extracellular 

symbionts occur in the pandemic gutless oligochaetes. Here the bacteria live in a 

bacterial layer between cuticle and epidermal cells (Dubilier et al., 2006). Related 

symbionts also occur as extracellular endosymbionts in the gut lumen of nematodes 

(Musat et al., 2007). 

Ectosymbionts 

Sulfur-oxidizing ectosymbionts can appear as long white filaments (epi- or ec-

tofilaments) attached to host surfaces such as the appendages and carapace of 

crustaceans (for overview see Table 2, pp. 21-22). Smaller rods or cocci are less 

readily detected, but can also occur on animal surfaces. Deep-sea galatheid crabs 

with epifliaments are the recently discovered Yeti Crab, Kiwa hirsuta (Goffredi et al., 

2008), and Shinkaia crosnieri (Watsuji et al., 2008). On specialized appendages and 

within the gill chamber of the deep-sea vent shrimp Rimicaris exoculata, filamentous 

bacteria are regularly found as well (Schmidt et al., 2008; Petersen et al., 2009). The 

related caridean shrimp Alvinocaris longirostris harbors rods directly on the surface 

of its gill filaments, a unique epibiont position in deep-sea shrimp (Tokuda et al., 

2008). Various ciliates such as Zoothamnium spp. have been shown to host specific 
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symbionts. Two Zoothamnium host species harbor each only one phylotype of ecto-

symbiont with the two ectosymbionts highly related to each other despite geographic 

distance of their hosts (Rinke et al., 2006; Rinke et al., 2009) . Nematodes can also 

host specific ectosymbionts (Stilbonematinae, (Bayer et al., 2009)). The nematode 

ectosymbionts are arranged in host specific patterns with bacterial morphotypes 

ranging from cocci to filaments (Polz et al., 1992). While in many cases it is unclear 

whether the hosts benefit or suffer from their ectosymbionts, nutritional function has 

been shown for the nematode ectosymbionts (Ott et al., 2004) and has been sug-

gested for R. exoculata (Rieley et al., 1999).  

On the other hand, in fish aquaculture and on crustaceans heavy colonization 

of the host with filamentous epibionts has in many cases been seen as ‘infestations’ 

compromising host health. In earlier publications these filaments were repeatedly 

identified as Leucothrix or Thiothrix (Johnson et al., 1971; Carman and Dobbs, 

1997), mostly based on morphology which can be misleading (following section). 

Leucothrix and Thiothrix have formerly been classified as members of the order 

Thiotrichaceae which use sulfur for lithoheterotrophic, chemolithoautotrophic or 

mixotrophic growth (Garrity et al., 2005). However, the family name Thiotrichaceae is 

invalid, because it contains genera such as Beggiatoa belonging to other families 

(Euzéby, 2009). According to their phylogeny these free-living aquatic bacteria 

should simply be referred to as members of the Leucothrix-Thiothrix clade.  

In the case of the amphipod Urothea poseidonis molecular identification veri-

fied the Thiothrix affiliation of the epifilaments (Gillan and Dubilier, 2004) as in the 

case of larval stages of the rock-lobster Panulirus ornatus (Payne et al., 2007). Here, 

epifilaments were identified (with fluorescence in situ hybridization (FISH)) as Thio-

thrix sp. and Leucothrix sp. bacteria and were detected on live and dead animals. 

Heavy infestation was assumed to contribute to larval mortality by affecting the im-

mune response allowing opportunistic pathogenic Vibrio spp. to cause disease. In-

terestingly in that study other epifilamentous bacteria on these animals could not be 

identified suggesting a more diverse bacterial community. 

Identification of bacterial ecto- and endosymbionts 

It is important to note that phenotypic characteristics alone cannot be relied 

upon for the taxonomic identification of bacteria. Phylogentic studies have shown 
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that bacterial morphology and phylogeny are not neccessarily congruent. Misidentifi-

cation by morphological traits can be corrected by molecular studies. The previous 

morphological identification of Thiothrix spp. filaments in the intestinal cecum of 

Echinocardium chordatum (Brigmon and De Ridder, 1998) was thus later corrected 

as Desulfonema spp. filaments (Thorsen et al., 2003). In other cases a single symbi-

otic phylotype was identified, where later extended studies with improved molecular 

techniques revealed multiple symbiont phylotypes. This was the case for studies of 

R. exoculata and gutless oligochaetes, both discussed below. With the help of FISH 

the abundance and specific locations of multiple symbionts can be identified. For 

example, two phylogenetically distinct subgroups of ectosymbionts of Alvinella pom-

pejana were horizontally separated on individual dorsal expansions suggesting niche 

specialization (Campbell et al., 2006). 

In general, specific FISH probing could also help to identify different persistent 

ectosymbiotic populations on host individuals and distinguish these ‘true ectobiotic’ 

sequences from those of ‘contaminants’ or loosely attached bacteria (e.g. in particles 

of detritus sticking to the host). This could clarify scattered phylogenetic patterns of 

invertebrate associated sequences (see section symbiont phylogeny below). To dis-

tinguish FISH identified sequences from pure bacterial clone sequences amplified 

from invertebrates, in this thesis I will refer to the latter as ‘invertebrate associated’ 

bacteria (sequences or clones). 

1.3.5 Obligate versus facultative association - Degrees of dependency 

Associations where the symbiont has taken over essential functions in its host 

physiology are obligate at least for the host: In chemoautotrophic symbioses the bac-

terial symbiont is often responsible for the nutrition of the host. Invertebrates that 

have completely adapted to a symbiotic lifestyle, eliminating their ability to take up 

food from the environment and digest it, depend on the bacteria for provision of or-

ganic molecules. Many chemosynthetic hosts such as vestimentiferans, gutless oli-

gochaetes, mouthless nematodes and a hydrothermal vent gastropod have special-

ized symbiont-harboring organs or reduced digestive systems and their symbioses 

are considered obligate (Goffredi et al., 2004; Dubilier et al., 2006; Musat et al., 

2007). 
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Among chemosynthetic mussels the degree to which they depend on their 

symbionts for food may vary. Some have a reduced gut, e.g. Bathymodilous mauri-

tanicus lacks an intestine (von Cosel, 1985) and for many a dependence on a signifi-

cant amount of nutrition from their symbionts has been shown (van Dover, 1996). 

Nevertheless, filter feeding can also play a role for example in B. thermophilus (Page 

et al., 1991; Duperron et al., 2009). It has been suggested that carbon compounds 

are sufficiently supplied by the methanotrophic symbionts of B. childressi mussels 

(Childress et al., 1986), however filter feeding might serve for supplementary nutri-

tion of larvae and adults (Tyler et al., 2007). There is physiological evidence that for 

optimal growth B. childressi acquire additional nitrogen by selective bacterioplankton 

uptake (Pile and Young, 1999). 

Furthermore, many of the mussel endosymbioses display a certain plasticity 

with the presence or absence of methanotrophic bacteria termed ‘opportunistic’ 

(Duperron et al., 2009) allowing the host to respond to methane availability. Symbi-

onts and their relative abundances may vary according to the environment. Other 

examples of less stringent associations are certain sponge-associated bacteria 

(Muscholl-Silberhorn et al., 2008) and some secondary symbionts of gutless oli-

gochaetes (Dubilier et al., 2006). The later vary phylogenetically between host spe-

cies, but some also vary within subpopulations of the same species as shown for 

O. crassitunicatus (Blazejak et al., 2005). In these facultative associations, the estab-

lishment of the association is possible in a favorable environment, but not essential 

to the survival of host or symbiont. 

In contrast to the majority of their hosts, chemosynthetic symbionts are rarely 

shown to depend on a purely symbiotic lifestyle. Many bacteria are transmitted hori-

zontally and recruited by their hosts from the environment, meaning they can also 

live freely. For these bacteria the association with the host is beneficial, but not cru-

cial. Free-living stages of symbionts have been reported for symbioses such as 

R. pachytila (Harmer et al., 2008) and the clam Codakia orbicularis (Gros et al., 

2003). For symbionts of bathymodioline mussels no proof for free-living stages exists 

yet, however a free-living form is thought to exist due to the environmental aquisition 

of their symbionts (Won et al., 2008; Duperron et al., 2009). 
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Nevertheless, the fact that chemosynthetic endosymbionts are hardly ever 

successfully cultivated indicates an intricate relationship between host and symbiont. 

As analyses independent of cultivation are often necessary to study chemosynthetic 

symbionts, most information stems from molecular methods. One way to assess the 

degree of dependency of the symbiont on the host is to sequence its genome. A re-

duced genome size, AT bias and loss of vital genes for survival in the environment 

like genetic repair systems are a sign for symbiont integration and co-dependency on 

the host. Often certain housekeeping genes are also lost while others are overex-

pressed. Most of these insights were gained from insect symbioses (see above, 1.1). 

Reductive genome evolution has recently also been reported for chemoautotrophic 

intracellular symbionts in two Calyptogena species with an AT bias and lack of repair 

genes (Kuwahara et al., 2008). 

Elevated numbers of transposable elements and genetic rearrangement have 

been considered signs for the transition from free-living to symbiotic lifestyle, while 

long-established obligatory endosymbionts are mainly free of mobile elements 

(Moran, 2003; Moya et al., 2008). Chemoautotrophic symbionts that appear to be in 

transition from facultative to free-living lifestyle due to high numbers of transposase 

genes will be discussed for the O. algarvensis symbiosis (see Results and Discus-

sion section 1.4). Moya et al. (2008) suggested that mobile elements initially increase 

as genes necessary for free-living stages become superfluous. Eventually, however 

they become detrimental and finally removed in the process of genome reduction. 

Obligate endosymbionts that have been transmitted vertically for long periods were 

considered to be the only bacteria without mobile genetic elements. This lack of mo-

bile elements was attributed to the lack of exchange with other prokaryotes for ex-

ample through horizontal gene transfer as well as to drastic genome reduction. Sta-

tistical analysis revealed that massive loads of mobile elements can appear and dis-

appear in any group of bacteria and that this phenomenon is not related to any cer-

tain life-style apart from obligate endosymbiosis (Touchon and Rocha, 2007). How-

ever, an exception to this rule was found in an ancient insect symbiosis. The ge-

nomes of Wolbachia, obligate symbionts of aphids, have experienced multiple and 

distinct invasions by insertion sequences and intense transpositional activity of inser-

tion sequences was found (Cordaux et al., 2008). Recently the genome of an obli-

gate amoeba symbiont was fully sequenced and revealed a transposase content of 

24%, while the genome appeared to be evolutionary stable (Schmitz-Esser et al., 
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2010). Thus, transposases may be more common amongst obligate symbionts than 

previously thought. 

Bacterial prerequisites for a symbiotic lifestyle  

Bacterial symbionts need certain prerequisites such as the ability to attach 

and keep close contact to the host or pass host barriers into the body. This should 

involve a set of genes similar to those on pathogenicity islands, large genomic re-

gions acquired by horizontal gene transfer, essential in invasion and virulence. 

Analogous genomic structures in mutualistic bacteria such as Rhizobia are called 

symbiotic islands (Uchiumi et al., 2004). Pathogenic and mutualsitic bacteria often 

use the same mechanisms for invasion and persistence (Dale and Moran, 2006). 

Bacterial attachment to cell surfaces is a key factor for symbiosis and pathogenicity. 

In Gram-negative bacteria bacterial pili extending out from the bacterial surface at-

tach to host cell receptors, while adhesins attach firmly to the hosts cells. Virulence 

genes often include toxins that are less likely to occur in a commensal or mutualistic 

symbioses unless they provide protection to parasites or predators (‘vaccination be-

havior’, (Jog and Watve, 2005)).  

On the other hand host susceptibility is another important factor in the estab-

lishment of host symbiont associations. Often host lectins are involved in bacterial 

recognition. One of the best described lectins in animals is the mannose- (or man-

nan-) binding lectin that can initiate a response cascade in the host (Sharon, 2008). 

As a defense mechanism the host can alter the surface proteins, selecting against or 

for certain bacteria. In turn the bacteria can again alter the adhesins in a ‘race of 

arms’ (Paracer and Ahmadjian, 2000). In mutualistic symbioses of marine nema-

todes a mannose/rhamnose-specific host lectin is thought to mediate recognition of 

the specific chemosynthetic symbionts (Nussbaumer et al., 2004). Similarly, a man-

nose-specific lectin may be involved in coral recognition of its symbiotic zooxanthel-

lae (Vidal-Dupiol et al., 2009). In the bacterial symbiont Vibrio fischeri different 

strains are specific for squid or fish hosts. In a recent study a bacterial exopolysac-

charide and mediator for biofilm formation was identified as the iniator for specific 

colonization. Here, a single regulatory gene was responsible for altering the bacterial 

host range (Mandel et al., 2009). 
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To understand how prokayotes interact with host cells genomic analysis can 

be very valuable as the complete genome of Candidatus Amoebophilus asiaticus, an 

obligate intracellular of amoeba symbiont recently showed (Schmitz-Esser et al., 

2010). Here various gene families were identified hitherto only known from eukaryo-

tes. The gene products such as ubiquitin specific proteases could allow the symbiont 

to interact with the host cell. Such adaptations to a symbiotic lifestyle were hypothe-

sized in presenting a stepping stone in bacteria-eukaryote symbioses leading to the 

ability in infecting higher eukaryotes, e.g. becoming human pathogens (Schmitz-

Esser et al., 2010).  

Ectosymbioses: stepping stone for obligate endosymbioses? 

In facultative ectosymbiotic associations the modes of attachment are proba-

bly less selective, less specific and more primitive (ancestral) than intricate recogni-

tion systems of host and symbiont that have developed over a long time scale in co-

evolution. Overall facultative associations likely represent an earlier step in the evolu-

tion of symbioses. The repeatedly observed attachments of bacteria such as Leuco-

thrix mucor and Thiothrix spp. to crustaceans and macroalgae are probably less 

specific and might represent an ancestral mechanism. They occur on various hosts 

and also on non-living surfaces. However, as mentioned above for most of these as-

sociations specificity cannot be assessed as the identification was in most cases 

based on morphology only (Johnson et al., 1971; Oeschger and Schmaljohann, 

1988; Carman and Dobbs, 1997).  

It has long been assumed that ectosymbioses in general represent a less 

evolved stage than endosymbionts (Smith, 1979). However, there is substantial evi-

dence that ectosymbioses per se are not necessarily more primitive and the hy-

pothesis proposing all obligate chemoautotrophic endosymbioses to have originated 

from facultative ectosymbioses does not hold true. Phylogenetic clusters can be 

purely ecto- or endosymbiotic, but also mixed. Some ectosymbioses like those of the 

stilbonematid nematodes (see 1.3.4 ectosymbionts) can be highly specific and obli-

gate. At the same time these ectosymbionts are closely related to endosymbionts of 

oligochaetes, hosts phylogenetically distant to the nematode hosts (Nussbaumer et 

al., 2004; Ott et al., 2004). Furthermore, recent studies on bathymodioline symbioses 

indicate that ectosymbioses are not more primitive than endosymbioses in this host 
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group. Thus it was concluded that there is more flexibility and plasticity in these sym-

bioses than anticipated (Dubilier et al., 2008; Duperron et al., 2009).  

1.3.6 Symbiont phylogeny  

Many lineages of chemosynthetic symbionts are known. Their diversity was 

long underestimated until advanced molecular characterization of diverse symbioses 

resulted in the discovery of entirely new phylotypes. One example for novel phy-

logentically isolated symbionts are the recently described Gamma 4 symbionts of the 

oligochaete Inanidrilus exumae which falls distant from established symbiont clusters 

and free-living sulfide-oxidizing bacteria in the phylogenetic tree (Fig. 1), (Bergin et 

al., submitted).  

Most chemoautotrophic and methanotrophic symbionts belong to the Gam-

maproteobacteria, but some sulfur-oxidizing symbionts to the Epsilonproteobacteria. 

More than 100 distinct 16S rRNA sequences from symbionts are available to date. 

Only for some of these symbionts sulfur-oxidizing capabilitiy has been shown directly 

and has been inferred for most others from indirect evidence (Dubilier et al., 2008). 

While most known gammaproteobacterial symbionts occur as endosymbionts most 

of the epsilonbacterial symbionts are ectosymbionts. Other bacterial lineages that 

can co-occur with these chemosynthetic bacteria belong to the Alpha-, Gamma- and 

Deltaproteobacteria, as well as the spirochetes or the Cytophaga-Flavobacterium-

Bacteroides group (CFB). In the deep-sea mussel Idas sp.,for example, five gam-

maproteobacterial and one Bacteroidetes phylotypes were found (Duperron et al., 

2008).  

Gammaproteobacterial symbionts 

Within the Gammaproteobacteria at least nine distinct clades of chemosyn-

thetic symbionts have been described (Fig. 1, (Dubilier et al., 2008)). Unlike previ-

ously assumed, many symbiont clades are interspersed by free-living bacteria and 

not exclusively symbiotic. This is also the case for the so far molecularly identified 

methanotrophic symbionts, which belong to a single lineage, related to type I metha-

notrophs (Dubilier et al., 2008; Petersen and Dubilier, 2009a). There is, however, a 

phylogenetic distance between gammaproteobacterial sequence clades from coastal 

sediment symbioses such as that of the gutless oligochaetes and nematodes and 

those of deep-sea hosts. The oligochaete-nematode clade is moreover most closely 
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Figure 1. Phylogenetic diversity of chemosynthetic, gammaproteobacterial symbionts based on 
maximum likelihood analyses of their 16S rRNA sequences. Scale bar indicates 10% estimated se-
quence divergence. From (Dubilier et al., 2008). 
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related to free-living sulfur-oxidizing bacteria, the Chromatiaceae. These are anoxy-

genic phototrophic bacteria and typically occur in shallow water habitats like the 

worms, leading to the assumption that they share a common ancestor from these 

habitats (Dubilier et al., 2008). 

Epsilonproteobacterial symbionts 

Epsilonproteobacterial sequences have been retrieved from various deep-sea 

hydrothermal vent animals. Animal associated Epsilonproteobacteria belong to the 

marine Group I and II of the recently defined family Thiovulgaceae fam. nov. 

(Campbell et al., 2006). Free-living bacteria in these groups often dominate deep-sea 

hydrothermal sites (Campbell et al., 2003; Campbell et al., 2006). Cultured members 

of marine Group I and II are Sulfurovum lithotrophicum and Sulfurimonas denitrifi-

cans (previously Thiomicrospira denitrificans reclassified by Takai (Takai et al., 

2006)). In the cladistics of Epsilonproteobacteria proposed by Corre et al. (2001) 

these bacteria fall into the epsilonproteobacterial groups F and B respectively 

(Inagaki et al., 2004; Nakagawa et al., 2005). Sulfurovum lithotrophicum is a chemo-

lithoautotroph that oxidizes elemental sulfur or thiosulfate with nitrate or oxygen 

(Inagaki et al., 2004). Sulfurimonas denitrificans is also a chemolithoautotroph with 

similar metabolism. The genus Sulfurimonas was originally described to grow 

chemolithoautotrophically with CO2 as carbon source and sulfide, elemental sulfur 

and thiosulfate as electron donors and O2 as electron acceptor (Inagaki et al., 2003). 

With the inclusion of S. denitrificans and S. paralvinellae, the first deep-sea Epsilon-

proteobacterium capable of growth by both hydrogen and sulfur oxidation, the 

emended description also included hydrogen as a possible electron donor and nitrate 

and nitrite as possible electron acceptors (Takai et al., 2006). Genome analysis has 

shown potential for hydrogen and formate oxidation in S. denitrificans (Sievert et al., 

2008b).  

Members of the Nautiliaceae and Campylobacteraceae were isolated from the 

hydrothermal vent polychaete Alvinella pompejana tubes. Belonging to the former, 

Nautilia lithotrophica (Miroshnichenko et al., 2002), Nautilia sp. str. AM-H (Campbell 

et al., 2001; Campbell et al., 2006) and Caminibacter hydrogenophilus (Alain et al., 

2002) are mixotrophs. They grow chemolithoautotrophically with H2 or facultatively 

heterotrophic oxidizing formate with elemental sulfur. C. hydrogenophilus could also 

grow on complex organic compounds and use nitrate as electron acceptor. Sulfuro-
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spirillum sp. str. Am-N belonging to the Campylobacteraceae is a heterotroph which 

uses formate and fumarate as electron donors and elemental sulfur as electron ac-

ceptor (Campbell et al., 2001). 

In phylogenetic analyses 16S rRNA sequences derived from deep-sea inver-

tebrates are either scattered throughout clades of free-living and animal associated 

sequences as in the recently published galatheid hydrothermal vent lobster Shinkaia 

crosnieri and the hydrothermal vent snails Alviniconcha spp. or form distinct mono-

phyletic clades. Again here in situ identification would help in identifying which bacte-

ria are the dominant ectosymbionts. In the deep sea hydrothermal vent shrimp Rimi-

caris exoculata the phylogenetic branching pattern of its Epsilon 1-5 ectosymbionts 

correlated with geographic distance, suggesting a radiation pattern (Petersen et al., 

2009).  

1.3.7 Symbiont energy metabolism 

Chemosynthetic symbionts use various electron donors. In most cases re-

duced inorganic sulfur species (referred to as sulfur below) or methane, in some 

cases hydrogen (Zielinski et al., 2005) or possibly reduced metals such as iron 

(Schmidt et al., 2008) have been suggested. The electron acceptor is in most cases 

oxygen. The role of nitrate under anaerobic conditions has been discussed and 

might play a role in some gammaproteobacterial  and epsilonproteobacterial symbi-

onts as in their free-living relatives (Hentschel et al., 1996; Arndt et al., 2001; 

Hentschel and Felbeck, 1993; Pospesel et al., 1999; Minic and Hervé, 2004; 

Campbell et al., 2006). Nitrate is rarely the obligate electron acceptor as in Lucinoma 

aequizonata (Hentschel and Felbeck, 1995). Sulfur is often an intermediate product 

and can serve as an electron donor (Nelson and Hagen, 1995; Nakagawa and Takai, 

2008) or in some symbionts under longer periods of anoxia as an electron acceptor 

(Duplessis et al., 2004). 

Sulfur metabolism 

Reduced sulfur species (H2S, S0 and S2O3
2-) are the most common electron 

donors in chemosynthetic symbioses (Stewart et al., 2005) and are oxidized in differ-

ent or partly alternating pathways (Nelson and Hagen, 1995; Meyer et al., 2007; Na-

kagawa and Takai, 2008). A universal pathway does not exist (Kelly, 1988). Horizon-
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tal gene transfer is assumed to have occurred between phylogenetically diverse bac-

terial lineages that have similar pathways (Meyer et al., 2007). 

Figure 2. Model of the 
reaction cycle of thi-
osulfate oxidation by 
the Sox enzyme system 
of Paracoccus panto-
trophus and reactivation 
of SoxYZ by the flavo-
protein SoxF. The capi-
tal letters indicate the 
respective Sox proteins, 
the central proteins 
SoxYZ in its active form 
is indicated in boldface, 
and the inactive form is 
indicates in fine type. 
The SoxY-Y interprotein 
disulfide of the hetero-
tetrameric SoxY-Y(Z)2 
represents a hypotheti-
cal intermediate in the 
transition of the inactive 
to active form of SoxYZ 
catalyzed by soxF. 

TCEP tris(2-carboxy-ethyl)phosphine. Model and legend from (Friedrich et al., 2008). 

While most free-living sulfur oxidizers such as the gammaproteobacterial 

Thiomicrospira crunogena and deep-sea Epsilonproteobacteria have a full set of 

genes of the sulfur oxidation multienzyme complex (Sox system, Fig. 2) for the com-

plete oxidation of H2S, S0, SO3
2- and S2O3

2- to SO4
2- (Nakagawa and Takai, 2008), 

most gammaproteobacterial symbionts lack Sox(CD)2, the sulfur dehydrogenase 

(Nakagawa and Takai, 2008). Instead the dissimilatory sulfite reductase (Dsr) path-

way, originally discovered in sulfate reducing bacteria, is used in reverse direction to 

oxidize the stored sulfur (Fig. 3), (Meyer et al., 2007; Dahl et al., 2008; Nakagawa 

and Takai, 2008). The terminal oxidation of SO3
2- to SO4

2- is mediated by the adeno-

sine phosphate reductase (APS reductase) which can also function in two directions 

(Meyer and Kuever, 2007). In the oxidative Apr pathway APS-reductase catalyzes 

the AMP-dependant oxidation of sulfite to adenosine-5’-phosphosulfate (APS). Pyro-

phosphate is then consumed with the release of sulfate and ATP by substrate level 

phosphorylation catalyzed by ATP sulfurylase (Meyer and Kuever, 2007). In addition 

to these pathways other mechanisms can be involved in the oxidation of sulfide to 

sulfur such as the flavocytochrome c sulfide dehydrogenase (FccAB) of Candidatus 

Endorfitia persephone, the symbiont of the hydrothermal vent tubeworm Riftia 

pachyptila (Robidart et al., 2008), that can also be found in (several) green and pur-
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ple sulfur bacteria and Chromatiaceae (Kostanjevecki et al., 2000) and the sul-

fide:quinone oxidoreductase (Sqr) of Candidatus Ruthia magnifica and Candidatus 

Vesicomyosocius okutanii, symbionts of the hydrothermal vent clams Calyptogena 

magnifica and Calyptogena okutanii respectively (Harada et al., 2009). 

 
Figure 3. Sulfur oxidation pathways found in Gammaproteobacteria (blue) and Epsilonproteobacteria 
(in both, purple). The Sox system completely oxidizes reduced sulfur compounds to sulfate. Often 
symbiotic Gammaproteobacteria lack soxCD coding for the sulfur dehydrogenase (SDH) and thus 
only two electrons can be transfered from sulfide to sulfur or thiosulfate to sulfide. Instead many 
Gammaproteobacteria have a Dsr and Apr system (see text) with which sulfide can also be com-
pletely oxidized to sulfate. APS: sulfite to adenosine-5’-phosphosulfate; Fcc: flavocytochrome c sulfide 
dehydrogenase; rDSR: reverse dissimilatory sulfite reductase; Sqr: sulfide:quinone oxidoreductase; 
SOR: sulfur-oxygenase-reducatse. Modified from Nakagawa and Takai, 2008. 

The presence of the genes dsrAB, coding for the dissimilatory sulfite reduc-

tase and aprA or aprBA, coding for the adenosine phosphate reductase, are widely 

used as indicators for dissimilatory sulfur metabolism. The encoded proteins of those 

genes from sulfate-reducing and sulfur-oxidizing bacteria are clearly separated in 

distinct clades. Another diagnostic gene, soxB, encodes the SoxB unit of the perip-

lasmic Sox enzyme complex (SoxXABYZ(CD)2). It is universal to all studied photo- 

and chemoautotrophic sulfur-oxidizing bacteria that form sulfur globules during thi-

osulfate oxidation (incomplete Sox enzyme system SoxXABYZ) and occurs also in 

bacteria that completely oxidize reduced sulfur species without sulfur globule inter-

����
�- 

���

����

���
�- 

����

���
�- 

Sox-System (periplasmic) 

Epsilon- and 
Gamma- 
proteobacteria 
(and others) 

rDSR 

APS 
reductase 

Sqr 
Some Gamma- and 
Alphaproteobacteria 
(and others) 

ATP 
sulfurylase 

Sox without 
SDH 

APS 

HS- 

? 

Reduced sulfur compounds 

HS-, S0, SO3
2- 



Introduction 

 33

mediates (complete Sox system SoxXABYZ(CD)2). In general soxB phylogeny 

showed good correlation with 16S rRNA phylogeny in separating lineages despite 

some occasions of lateral gene transfer (Petri et al., 2001; Meyer et al., 2007). Unlike 

APS reductase and DSR, it also occurs in Epsilonproteobacteria. Some Epsilonpro-

teobacteria also showed sulfur-oxygenase-reductase (SOR) activity for the oxidation 

of S0, indicating that they either do not use the Sox system or use a modified version 

of it (Sievert et al., 2008a). 

Alternative electron donors: methane, hydrogen, iron 

Methane can be used as an electron donor by some chemosynthetic symbi-

onts. Gammaproteobacterial methane oxidizers have been primarily found in bathy-

modioline mussels (Kochevar et al., 1992) and siboglinid worms (Schmaljohann and 

Flugel, 1987; Schmaljohann et al., 1990; Pimenov et al., 1999), sometimes in co-

existence with gammaproteobacterial sulfur oxidizers (Fiala-Medioni et al., 2002, 

Duperron et al., 2006; Naganuma et al., 2005). Two pathways lead to the complete 

oxidation of methane to CO2 via the intermediates methanol, formaldehyde, and for-

mate. All molecularly investigated methane-oxidizing symbionts belong to one gam-

maproteobacterial clade related to type I methanotrophs (Petersen and Dubilier, 

2009b). In general the C1-compounds are also used for the synthesis of higher car-

bon compounds (see 1.3.1). A widely used diagnostic gene is pmoA encoding the 

active site subunit of the particulate methane monooxygenase (Petersen and Dubil-

ier, 2009b).  

Hydrogen is an electron donor in autotrophic Deltaproteobacteria and is often 

transferred in microbial consortia. Recently, the gammaproteobacterial sulfur-

oxidizing symbiont of the hydrothermal vent mussel Bathymodiolus puteoserpentis 

was shown to use hydrogen as an energy source (Zielinski, 2008). A possible diag-

nostic gene is hynL encoding the large subunit of a membrane-bound [NiFe]-

hydrogenase, involved in respiratory hydrogen uptake. Finally, reduced iron has 

been suggested as an alternative electron donor for ectosymbionts of R. exoculata at 

the iron-rich Rainbow hydrothermal vent field on the Mid-Atlantic Ridge (Gloter et al., 

2004; Zbinden et al., 2004), but a recent study suggests that symbiotic iron oxidation 

cannot outcompete abiogenic iron oxidation (Schmidt et al., 2009). 
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Carbon fixation pathways 

Calvin Benson Bassham cycle 

Gammaproteobacteria primarily use this pathway for CO2 fixation. ATP and NADH, produced 
as energy sources in the oxidation of reduced chemicals, are used to convert carbon dioxide into car-
bohydrates. The key reaction is catalyzed by ribulose bisphosphate carboxylase (RubisCO). A CO2 
molecule is condensed with the 5-carbon molecule ribulose1,5-bisphosphate into a six-carbon inter-
mediate that rapidly hydrolyzes into two molecules of 3-phosphoglycerate. This reaction is part of the 
Calvin cycle where ribulose1,5-bisphosphate is regenerated. RubisCo is commonly found in the cyto-
plasm and in some bacteria in organelles, the carboxysomes (Shively et al., 2003). Two forms of 
RubisCO are known: I and II. Chemoautotrophic gammaproteobacterial symbionts generally have 
Form IAq and Form IAc, some use Form IC and Form II enzymes or even a combination (Badger and 
Bek, 2008). Form II enzymes are less efficient in partitioning CO2 and O2 and are primarily used to 
enable the CBB pathway to balance the cell’s redox potential according to growth conditions (Tabita et 
al., 2007). Indicator genes used in symbiont studies are cbbL for Form I and cbbM for Form II.  

Reverse tricarboxylic acid cycle (rTCA or reverse Krebs cycle) 

Many chemolithoautotrophic Epsilonproteobacteria (Campbell et al., 2003), some Gammapro-
teobacteria (Robidart et al., 2008; Markert et al., 2007), and some chemolithoautotrophic sulfate 
reducers (e.g. Desulfobacter hydrogenophilus, (Schauder et al., 1987)) as well as some archaea use 
this less energy consuming pathway. Because it involves oxygen-sensitive enzymes it is found in an-
aerobic and microaerophilic microbes only. In this cycle two molecules of CO2 are used to synthesize 
one molecule of acetyl-CoA which can then be converted to pyruvate and phosphoenolpyruvate (PEP). 
PEP either regenerates the intermediates of the cycle or is used for gluconeogenesis (Campbell et al., 
2006).  

Reversibility is common to the rTCA cycle. In the presence of small organic molecules it is 
used in the oxidizing direction for energy generation (Campbell et al., 2006). Key enzymes are: the 
ATP citrate lyase (the gene aclBA is often used as an indicator for CO2 fixation via the rTCA cycle), 
pyruvate synthase (pyruvate:ferredoxin oxidoreductase), ketoglutarate synthase (2-oxo-gluta-
rate:ferredoxin oxidoreductase) and fumarate reductase. 

Reductive acetyl-CoA pathway (Wood Ljungdahl Pathway) 

Anaerobes such as methanogenic archaea, some acetogenic and some sulfate-reducing bac-
teria use this non-cyclic pathway. According to Ragsdale (1991) there are two parts to this pathway: (1) 
reduction of CO2 to methyltetrahydrofolate and (2) formation of acetyl-CoA from methyltetrahydrofolate, 
a carboxyl donor and coenzyme A. Alternatively, carbon monoxide can be used to form acetyl-CoA. A 
two-carbon compound is formed from two one-carbon precursors. Key enzymes involved are the car-
bon monoxide dehydrogenase, formate dehydrogenase, 5,10 methenyl-terahydrofolate cyclohydrolase 
and 5,10-methylene-tetrahydrofolate reductase and a methyl-transferase (Ragsdale, 1991). 

3-Hydroxypropionate pathway 

Photolithoautotrophic bacteria of the genus Chloroflexus and some chemolithoautotrophic ar-
chaea (in a modified version) carboxylate acetyl-CoA to 3-hydroxypropionate, then reduce this to 
propionyl-CoA which is further converted via succinyl-CoA and CoA transferred to malyl-CoA. The 
latter is cleaved to glyoxylate, the fixation product, and acetyl-CoA, the primary CO2 acceptor, is thus 
regenerated (Strauss and Fuchs, 1993). Key enzymes are acetyl-CoA carboxylase, 3-hydroxy-
propionate-CoA ligase and malyl-CoA lyase. 

3-Hydroxypropionate/4-hydroxybutyrate pathway  

A novel pathway which uses some of the same intermediates as the 3-Hydroxypropionate 
Pathway (enzymes are phylogenetically distinct) was described recently for anaerobic and microaero-
philic archaea (Berg et al., 2007). It involves 4-hydroxybutyryl-CoA dehydratase, a radical, O2-sensitive 
enzyme. 
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Bacterial autotrophy 

There are several pathways with which microorganisms can fix carbon dioxide 

to build higher organic molecules (see inset, previous page). The most common car-

bon fixation pathways, also for chemosynthetic symbionts are the Calvin Benson 

Bassham Cycle (CBB) in Gammaproteobacteria and the reverse tricarboxylic acid 

cycle (rTCA) in Epsilonproteobacteria. 

All CO2 fixation mechanisms are energy consuming, especially the Calvin 

Benson Bassham Cycle (CBB cycle). Most bacteria with the respective metabolic 

potential refrain from carbon fixation when organic compounds are readily available 

from the environment. Genomic analyses have revealed heterotrophic potential in 

chemosynthetic symbionts such as Candidatus Endoriftia persephone (Robidart et 

al., 2008). Mixotrophy is also known from deep-sea Epsilonproteobacteria (Campbell 

et al., 2006). 

2 Symbioses of coastal marine oligochaetes 
Among the marine invertebrates that can engage in bacterial symbioses are 

gutless oligochaetes. Annelid worms in general are ubiquitous in terrestric and ac-

quatic environments. Often they dominate extreme habitats with little oxygen or high 

sulfide concentrations that are generally toxic to higher eukaryotes. As inhabitants of 

reduced sediments, oligochaetes are potential hosts for chemoautotrophic bacteria. 

Indeed a large host group of gutless oligochaetes obligately hosts endosymbionts. 

Ectosymbioses with filamentous, possibly thioautotrophic bacteria from reduced envi-

ronments have been reported only from one oligochaete: Tubificoides benedii (see 

2.2). 

2.1 Endosymbioses of gutless oligochaetes 

More than 80 species of monophyletic origin are grouped in only two genera 

Olavius and Inanidrilus. They belong to the family Phallodrilinae (class Naididae, 

previously Tubficidae (Erséus, 2008)). Their worldwide distribution and the fact that 

they mostly occur in accessible shallow water make them easy and cost-effective to 

collect and thereby ideal candidates for symbiosis and evolutionary studies. 
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2.1.1 Oligochaete host distribution, habitat, phylogeny 

Gutless oligochaetes are pandemic (collection sites Fig. 4), living in the pore 

waters of mostly shallow water sediments. The highest species diversity has been 

observed in calcareous coral reef sediments, but they also occur in silicate sedi-

ments and have been found in depths of up to several hundred meters off the coast 

of Peru (Blazejak et al., 2005). It is likely that due to their small size more species 

from other habitats remain undiscovered since specialists who can correctly identify 

them are rare. Their collection sites are generally considered sulfidic (Dubilier et al., 

2006). The worms are most abundant in 5-15 cm sediment depth in suboxic or an-

oxic zones in concentrations of sulfide not exceeding 500 μM (Bright and Giere, 

2005; Dubilier et al., 2006). 

 
Figure 4. Distribution of described gutless oligochaetes worldwide. In green sites where at least one 
was analysed molecularly, in red sites where none of the symbiotic communites of the found oli-
gochaetes were characterized molecularly yet with number of described oligochaetes versus molecu-
larly characterized bacterial symbionts thereof to date. Symbionts identified at the beginning of this 
study indicated by asterisks (*). Picture modified from http://www.sage.wisc.edu/riverdata/. 

Phylogentic studies show that all gutless oligochaetes stem from one common 

ancestor. Species range from primitive to highly developed forms. The genus In-

anidrilus is monophyletic according to morphological (Erséus, 1984) and molecular 

studies (Nylander et al., 1999; Sjölin et al., 2005) while there is evidence that the ge-

nus Olavius is paraphyletic (Erséus and Bergfeldt, 2007). 
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2.1.2 Host morphology and endosymbiont location  

Gutless oligochaetes are small worms of 0.1-0.3 mm diameter and 2-50 mm 

length (Fig. 5E). All described gutless oligochaetes lack mouth, gut and anus. More-

over, nephridia are completely absent. This is unique among free-living animals and 

extraordinary as these organs are responsible for the excretion of nitrogenous waste 

and essential in the marine environment for osmoregulation. Because of their ex-

tremely reduced digestive system, gutless oligochaetes were first assumed to absorb 

organic compounds from the environment through their body wall, since this had 

been previously suggested in other gutless worms, the long and thin frenulates 

(Southward et al., 1979). Later studies showed that indeed molecules of up to 70 

kDa can pass the gutless oligochates’ cuticle (Dubilier et al., 2006). Only after the 

discovery of the chemoautotrophic symbioses at hydrothermal vents, was the role of 

bacteria found in a dense multicellular layer between cuticle and epidermis (Fig. 5A-

B) reassessed. It was then realized that the bacteria might provide nutrition (Giere, 

1981).  

It is due to the bacterial sulfur and polyhydroxybutyric acid (PHB) filled storage 

vesicles and their refraction of light that the worms appear white. This white appear-

ance makes them easy to distinguish from non-symbiotic oligochaetes and resulted 

in the names of the first described species Inanidrilus albidus (albus: latin for white) 

and I. leukodermatus (leuko: Greek for white and derma: Greek for skin) in the 1970s 

before the discovery of their symbionts (Jamieson, 1977; Giere, 1979).  

2.1.3 Symbiont morphology 

All gutless oligochaetes investigated so far harbor large and small bacteria in 

the symbiont-containing layer between the worm’s cuticle and epidermis (Fig. 5C, D). 

They are extracellular and embedded between epidermal extensions in the apical 

part. Using transmission electron microscopy (TEM) the bacteria have been esti-

mated to reach at least 106 cells in an average adult worm comprising 25% of the 

hosts volume (Giere et al., 1995); The large bacterial morphotype is typically round 

or oval and 3-5 μm in diameter with large cellular inclusions. In addition a second 

smaller bacterial rod- or coccoid shaped morphotype about 0.5-1.5 μm in diameter 

devoid of inclusions has regularly been found. In some species, a third long, thin 

morphotype of about 1.8 up to 10 μm length and 0.3-0.4 μm in diameter occurs 

(Giere and Erséus, 2002; Bright and Giere, 2005; Giere et al., 1995; Giere and 
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Krieger, 2001). While first studies found only one 16S rRNA phylotype (Dubilier et al., 

1995) later improved molecular and phylogenetic analyses revealed that the distinct 

morphotypes represent diverse 16S rRNA phylotypes (Dubilier et al., 1997b; Blaze-

jak et al., 2006). 

 
Figure 5. Exemplary pictures of a gutless oligochaete (Olavius algarvensis) in light microscopy (A, E) 
and TEM (B - D). Complete cross section through postgenital segment of O. algarvensis (A) showing 
cuticle (cu), epidermal layer (ep), muscle layer (mu), chloragog cells (chl), blood vessel (bl) and nerve 
cord (nc) and details of body wall (B-D). Bacterial symbionts are embedded in a layer between the 
cuticle and extensions of the epidermis (B). Large (lb) bacteria with inclusions, small, crescent-shaped 
bacteria (sb) and intermediate sized bacteria co-occur in the bacterial layer (C) with contorted filiform 
bacteria appearing in some sections. Scale bars in (A) 50 μm, (B) 10 μm, (C) 1.0 μm, (D) 0.5 μm and 
(E) 1 mm. (A-D) from Giere and Erséus, (2002), (E) picture C. Lott in Ruehland et al. (2006). 

Bacterial fission was regularly observed in the large symbiotic morphotype 

(Giere and Krieger, 2001). In the basal region, lysis of bacteria has been observed 

(Giere et al., 1995; Giere and Krieger, 2001). This might be part of bacterial growth 

regulation and also part of the nutritional strategy of the host besides uptake of bac-

terial exudates (Dubilier et al., 2006; Woyke et al., 2006).  

2.1.4 Symbiont transmission 

Symbiont transmission can occur either horizontally between members of a 

population or vertically from parent to offspring: In gutless oligochaetes it is assumed 

to occur vertically, i.e. from the adult worm directly to its offspring, at least for the 

large symbiont (Krieger, 2000). Reaching full maturation the adults develop ‘genital 

E
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pads’. These paired sack-like pockets on the ventral side are filled with bacteria that 

are covered by a thin cuticle of the worm (Giere and Langheld, 1987). When eggs 

are released through the closely positioned oviparous, bacteria from rupturing genital 

pads are assumed to be released, thus colonizing the egg. This has been indicated 

in ultrastructural studies where eggs inside of the worm were free of bacteria while 

freshly laid eggs already contained bacteria between the inner and outer egg in-

tegument. Invasion of the egg cytoplasm was observed a few hours after deposition 

when bacteria accumulated at one pole and from there entered through the egg 

membrane (Krieger, 2000; Dubilier et al., 2006).  

Whether the additional symbionts are also transmitted in this way is not clear. 

Repeated infections with phylogenetically diverse bacteria is likely to have occurred 

from the environment instead of an ancient common ancestor harboring all phylo-

types which were then lost in speciation. While the Gamma 1 symbionts are closely 

related and monophyletic indicating a common ancestor the additional symbionts are 

highly diverse comprising several proteobacterial lineages (Fig. 6).  

2.1.5 Primary symbionts 

As mentioned above, initially the gammaproteobacterial symbiont Gamma 1 

was thought to be the only symbiont of the gutless oligochaete I. leukodermatus with 

its different morphotypes belonging to one phylotype (Dubilier et al., 1995). With en-

hanced molecular techniques the large morphotype was linked to the Gamma 1 phy-

lotype and additional phylotypes were identified (Dubilier et al., 1997b). 

Gamma 1 phylogeny 

All gutless oligochaetes described to date host a large bacterial morphotype. 

Phylogenetic analyses of this morphotype in 16 host species revealed that the sym-

bionts are host specific but closely related. As these gammaproteobacterial symbi-

onts occur in all gutless oligochaetes which rely on them for nutrition, they were 

called the primary Gamma 1 symbionts. Only recently a novel, distantly related 

Gammaproteobacterium, Gamma 4, of similar morphology as the Gamma 1 symbi-

ont, has been found to replace the primary Gamma 1 symbiont in Inanidrilus exumae 

from coral reef sediments of the Bahamas (Fig. 6), (Bergin et al., submitted). The 

primary Gamma 1 symbionts of gutless oligochaetes fall into a clade with 
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Figure 6. Phylogenetic diversity of endosymbionts of gutless oligochaetes known except those es-
sential to the results of this study (shown in Results and Discussion).Tree based on maximum like-
lihood analyses of 16S rRNA sequences. Scale bar indicates 10% estimated sequence divergence. 
Sequences that were published at the beginning of this study are marked with asterisks (*).
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endo- and ectosymbionts of marine nematodes that also occur in shallow water 

sediments. The closest free-living relatives are the Chromatiaceae (Fig. 6), purple 

sulfur bacteria that build sulfur globules as intermediates in the oxidation of sulfide. 

Some Chromatiaceae can also use thiosulfate or even hydrogen and in some cases 

organic molecules as electron donors (Imhoff et al., 1998). 

Gamma 1 physiology 

The Gamma 1 symbionts are considered obligatory for the host providing it 

with nutrition by using the energy derived from sulfur oxidation to fix carbon (Dubilier 

et al., 2006). They store sulfur in globules like their free-living relatives (Chroma-

tiaceae) as demonstrated by ultrastructural studies (Krieger et al., 2000; Giere and 

Krieger, 2001). Autotrophy was demonstrated in uptake experiments showing the 

incorporation of inorganic carbon (Felbeck et al., 1983; Giere et al., 1988b) and im-

munohistochemical labelling of RubisCO (Krieger et al., 2000; Giere and Krieger, 

2001). Additional evidence for thioautotrophy is presented in Chapters 1 and 2 (see 

also Results and Discussion section 1.1.1). 

2.1.6 Secondary symbionts 

Subsequent studies using the 16S rRNA approach showed the presence of 

not only a second bacterial symbiont but multiple and varying symbionts in gutless 

oligochaetes. The smaller morphotype can be of diverse phylogenetic origin (Fig. 6), 

either belonging to the Alpha- (Dubilier et al., 1997b; Blazejak et al., 2006), Gamma- 

(Blazejak et al., 2005), or Deltaproteobacteria (Blazejak et al., 2005), while the elon-

gated morphotype found in some species belongs to the Spirochaeta (Blazejak et al., 

2005; Dubilier et al., 2006). The majority of the alphaproteobacterial phylotypes fall 

within the Rhodospirillales and some are related to Rhizobia.  

Alphaproteobacterial symbionts have been found to primarily co-occur with 

the Gamma 1 symbionts in hosts from biogenic calcareous sediments of the Baha-

mas, Bermudas, and the Great Barrier Reef (Blazejak et al., 2006). With the recent 

analysis of I. exumae, Deltaproteobacteria have been found to co-occur with Al-

phaproteobacteria (Bergin et al., submitted). Deltaproteobacterial symbionts were 

first found in gutless oligochaetes in my Diploma thesis (Mülders, 1999). Further 
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analyses were a main focus of this thesis, thus they will be discussed shortly below 

and more detailed in Results and Discussion (section 1.1.3 and 1.3). 

Potential functions of secondary symbionts in gutless oligochaetes 

For the alphaproteobacterial and spirochetal symbionts of gutless oli-

gochaetes no detailed information on genetic potential is available to date. Possible 

functions suggested for the Alphaproteobacteria are the recycling of anaerobic waste 

products (Blazejak et al., 2006) or the use of organic sulfur compounds such as di-

methylsulfonioproprionate (DSMP) and related compounds that occur in coral reef 

mucus and sediments as electron and carbon sources (Bergin et al., submitted). One 

of the alphaproteobacterial symbionts of I. leukodermatus was related to a nitrogen-

fixing Sinorizobium, a symbiont of leguminose plants. However, potential for N2-

fixation by amplification of the indicator gene nifH could not be corroborated. As this 

symbiont occured only in I. leukodermatus and not in any other molecularly investi-

gated oligochaete hosts it was also assumed not to play an essential role in nitrogen 

uptake (Blazejak et al., 2006; Dubilier et al., 2006). The role of additional gammapro-

teobacterial symbionts was elucidated by molecular and metagenomic analysis and 

will be discussed in Results and Discussion (section 1.1.2 and 1.3). 

Spirochetal symbionts of gutless oligochaetes belong to a monophyletic clade 

most closely related to sequenced tube enrichment cultures from Alvinella pompe-

jana, a deep-sea polychaete living at hydrothermal vents (M.A: Cambon-Bonavita, 

unpublished Data, e.g. GenBank AJ431238; (Dubilier et al., 2006). The closest free-

living relative is Spirochaeta isovalerica, isolated from sulfidic muddy sediments and 

spirochetes from a Thiodendron sulfur mat. These spirochetes are obligate anaer-

obes or facultative microaerobes that ferment carbohydrates to acetate, ethanol, 

CO2, and H2 and are assumed to play a role in sulfur cycling by consuming sulfide to 

remove oxygen (Canale-Parola, 1992; Dubinina et al., 2004; Stephens et al., 2008). 

The spirochete symbionts of gutless oligochaetes could have a similar metabolism. 

However studies in termite symbioses revealed that the symbiotic bacteria have an 

alternative metabolism to their free-living relatives. Instead of a heterotrophic lifestyle 

they have the capacity for chemoautotrophy producing acetate from H2 and CO2 

(Leadbetter et al., 1999) and some also have the ability to fix nitrogen (Lilburn et al., 

2001). Clearly, hosts can benefit from such versatile symbionts. Further studies are 
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needed to identify the metabolic potential of spirochete symbionts in gutless oli-

gochaetes. 

2.1.7 Gutless oligochaetes in Mediterranean coastal sediments 

O. algarvensis was originally discovered in sediments of the Algarvan coast of 

Portugal (Giere et al., 1998), and later found to occur in a patchy distribution adja-

cent to sea grass beds in coastal sediments of the Mediterranean island Elba 

(Mülders, 1999; Giere and Erséus, 2002). During this PhD thesis, O. algarvensis and 

four bacterial morphotypes in its bacterial layer were described (Fig. 5, (Giere and 

Erséus, 2002)). A large oval morphotype (length 2.6 μm, width 1.4 μm) resembled 

that of other gutless oligochaetes, while a rod- or crescent shaped bacterium was 

much smaller (length 1.1 μm, width 0.4 μm). A third morphotype was also rod-

shaped but more stout and larger (length 1.5, width 0.6 μm) than the second mor-

photype. A fourth morphotype appeared filiform with a locally contorted cell wall 

(length 1.2 -2.4 μm, width 0.4 μm). While the large and third morphotype were found 

consistently in all sections the presence and abundance of the other two morpho-

types varied. 

The molecular analysis of this symbiosis in my Diploma thesis showed that 

next to the large Gamma 1 symbiont which belonged to the monophyletic group of 

primary sulfur-oxidizing Gamma 1 symbionts of gutless oligochaete these worms 

harbored deltaproteobacterial symbionts (later called Delta 1 symbiont), (Mülders, 

1999). The large Gamma 1 symbiont belonged to the monophyletic group of primary 

sulfur-oxidizing Gamma 1 symbionts of gutless oligochaetes. The Delta 1 was 

closely related to sulfate-reducing marine bacteria. It was the first deltaproteobacte-

rial endosymbiont discovered in marine invertebrates. Deltaproteobacteria were until 

then only known as gut bacteria and a novelty as invertebrate endosymbionts. Low 

external sulfide concentrations and amplification of bacterial dissimilatory sulfite re-

ductase (DSR), an indicator gene for sulfate reduction, from O. algarvensis led to the 

assumption that these two symbionts interact in sulfur syntrophy in an endosymbiotic 

sulfur cycle (Fig. 7) (Mülders, 1999), discussed in detail in Results and Discussion 

(section 1.3). 
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Figure 7. Schematic model of the hypothetical S-cycle in O. algarvensis as depicted in Mülders, 1999. 
The large sulfide oxidizer oxidizes reduced sulfur from the environment and sulfate reducers to gain 
energy for fixing carbon dioxide into higher organic compounds. The host benefits either by lysing the 
bacteria or taking up exuded carbon compounds. Under limited oxygen conditions the worm switches 
to anaerobic metabolism and released waste products are taken up by the sulfate reducer which oxi-
dizes them with oxidized S compounds such as sulfate, readily available from the marine environment 
or the sulfide-oxidizer. For a net gain oxygen and energy rich compounds, such as fatty acids or re-
duced sulfur have to be taken up from the environment. 

The discovery of a second gutless oligochaete host, O. ilvae, previously iden-

tified as Inanidrilus bonomii (Mülders, 1999), co-existing with O. algarvensis, gave an 

ideal opportunity to validate or reassess the hypothesis drawn for the ecology of the 

O. algarvensis symbiosis. This novel species, O. ilvae and its bacterial morphotypes 

were described by Giere and Erséus (2002). In O. ilvae a large morphotype (length 

2.3 μm, width 1.3 μm) was similar to that of O. algarvensis but slightly smaller. A 

small morphotype was described as rod-shaped (length 1.3 -1.9 μm, width 0.4 μm). 

A third bacterial morphotype was of intermediate size and shape (length 1.6 μm, 

width 0.6 μm). In first molecular analyses of one O. ilvae individual a novel Gam-

maproteobacterium sequence falling into the group of Gamma 1 symbionts as well 

as the Delta 1 sequence and an additional unique deltaproteobacterial sequence 

were retrieved, suggesting similar but not identical symbiont composition in the two 

co-occuring host species (Mülders, 1999). 

As presented in aims, this thesis further analysed symbiont composition, phy-

logeny, genetic, and physiological characteristics of these Mediterranean symbioses 

which are unique in occuring in an environment with little free sulfide. 
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2.2 Ectosymbioses of the gut-bearing Wadden Sea oligochaete 
Tubificoides benedii 

While gutless oligochaete symbioses have been studied extensively culminat-

ing in the metagenomic study of O. algarvensis (Woyke et al., 2006) little is known of 

other chemosynthetic coastal oligochaete symbioses. Tubificoides benedii 

(d'Udekem, 1855) is so far the only coastal gut-bearing oligochaete that has been 

reported to associate with bacterial filaments as epibionts (see Chapter 3). 

2.2.1 Distribution and habitat of T. benedii, Tubificinae (Naididae, Oligo-
gochaeta) 

Tubificoides benedii is a small oligochaete ubiquitous to limnic and marine 

coastal, intertidal sediments that are subject to highly variable environmental factors. 

Tubificoides species occur worldwide with populations described from the Northeast 

and Northwest Atlantic, the Mediterranean (e.g. Tubificoides vestibulatus), the 

Northeast Pacific, Heron Island, as well as the Gulf of Mexico, the Carribean and 

subtropical Asia (Baker, 1984; Milligan, 1991). Tubificoides populations also occur in 

seasonally variable abundances in sediments of the Northwestern Black Sea Shelf 

(Shurova, 2006). 

Figure 8. Collection site (arrow) 
of T. benedii individuals at the 
Lister Haken, Sylt, North Sea, 
scale 500 m (Google maps). 

T. benedii is a pio-

neer species and often 

dominates polluted coastal 

sediments. In previous ex-

periments it had a high tol-

erance to hypoxic and sul-

fidic conditions (Giere et al., 

1999). In the muddy sediments at the collection site of the worms studied here, at 

the Lister Haken of the island of Sylt (Fig. 8), the upper few millimetres were oxidized 

while the sediment layers below, where most worms occured in up to 5 cm depth 

were anoxic. Sulfide concentrations increasing with depth ranged between 5 and 

150 μM (Thiermann et al., 1996), however, often exceeding 500 μmol (Giere et al., 

1988a) and even increasing to 1 mM in late summer when algal mats extended over 

large parts of the intertidal mud flat (Thiermann et al., 1996; Dubilier et al., 1997a). 
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The negative effect of less energy generating anaerobic metabolism to which the 

worm had to switch in these oxygen depleted and sulfidic sediments was outweighed 

by a safe environment with high nutritional value, i.e. few predators and a rich supply 

of organic matter and bacteria (Giere et al., 1999). Like most other oligochaetes it 

ingested sediment rich in organic debris and bacteria for nutrition. 

Its sulfide tolerating lifestyle and its habitat with a rich supply of reduced sulfur 

and temporal surges of oxygen made it a candidate for sulfur-based symbioses. 

Morphologically distinct filamentous bacteria resembling Thiothrix have been found 

to regularly attach to the oligochaetes’ posterior end (see 2.2.3). 

2.2.2 T. benedii physiology 

In the sediment, the worms were positioned head down with the tail waving in 

the overlying water (Fig. 9A), (Dubilier, 1986) as most other tubificids (Guérin and 

Giani, 1996). Tail movement was considered a means to increase the oxygen levels 

in the immediate surrounding through circulation for their intestinal breathing that is 

also known from other tubificids (Dahl, 1960; Dubilier, 1986; Guérin and Giani, 

1996). Their body had a red coloring due to the haemoglobin in their blood (Fig. 9B). 

In highly eutrophic sediments they often appeared black due to iron-sulfide precipi-

tates in the mucus. While precipitates in the mucus between the papillae included 

sulfur, iron, silicon, and aluminium the cuticular matrix remained free of these (Giere 

et al., 1988a).  

As both ends of the worm were free of mucus, H2S could readily diffuse into 

the worm. It has been suggested that the mucus and regular shedding of the cuticle/ 

mucus complex could only be of minor importance as a sulfide trap and detoxifica-

tion mechanism (Dubilier, 1993). Furthermore, oxidation of sulfide to thiosulfate 

would not countervail against sulfide diffusion. Precipitation of sulfide by iron to iron 

sulfides also had no significant effect on hindering sulfide diffusion (Dubilier, 1993) 

leading to the question of how these worms coped with the fluctuating conditions 

with periodical hypoxic and sulfidic conditions. 

Physiological experiments showed that these worms were effective oxyregu-

lators with signs of severe hypoxia shown only at air saturation below 10% and 

minimal respiration still occurring at only 2% air saturation (Giere et al., 1999). Com-

pared to other sediment worms it had a very low critical PO2-value (equivalent to 

between 7.6% and 3.8% air saturation) where it switched from aerobic to anaerobic 
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metabolism, measured by mitochondrial succinate production (Giere et al., 1999). 

Under sulfidic and microaerobic conditions, anaerobic metabolism began at low sul-

fide conditions of about 30 μM, while under normoxic conditions respiration contin-

ued at concentrations up 300 μM sulfide (Giere et al., 1999). T. benedii appeared to 

cope with extreme conditions (low oxygen concentrations and temporarily high sul-

fide concentrations) by an effective circulation of blood of high oxygen affinity and a 

switch to energetically less favorable anaerobic metabolism under hypoxic condi-

tions (Giere et al., 1999). In laboratory experiments succinate production (as an indi-

cator for mitochondrial anaerobism) increased significantly after 12 hours. However, 

there was no significant change or damage in mitochondrial structure, even after 14 

days of sulfidic and hypoxic conditions. This appeared quite unique as invertebrate 

mitochondria usually show signs of damage with severe hypoxia. Thus T. benedii 

mitochondria seemed to have an extraordinary high tolerance to these conditions 

(Dubilier, 1993). As mentioned above sulfide concentrations and oxygen limitation 

could reach extremes in tidal mud flats, especially in summer. However, these were 

temporal and T. benedii could revert easily to aerobic metabolism even during short 

and small increases of environmental oxygen (Giere et al., 1999). 

It is unclear whether T. benedii can gain energy from reducing sulfur com-

pounds without the aid of symbiotic bacteria by mitochondrial oxidation of sulfide to 

thiosulfate like its North Sea sediment cohabitating relative Arenicola marina (Völkel 

and Grieshaber, 1997) for which the involved enzymes were recently identified 

(Hildebrandt and Grieshaber, 2008). A. marina had furthermore a sulfide-insensitive 

mitochondrial cytochrome c oxidase (Völkel and Grieshaber, 1997). 

2.2.3 Morphological characteristics of the association  

As one of the smallest members of the macrofauna, T. benedii can grow to 

about 5.5 cm with a diameter of about 0.5 cm and have 75 to 100 body segments. 

Most internal structures are comparable to those of other tubificids. However, as a 

unique morphological peculiarity among tubificids these worms have mucus covered 

leaf-shaped cutaneous papillae that are regularly shed (Giere et al., 1988a). Ultra-

structural studies revealed high abundances of diverse bacterial morphotypes popu-

lating the mucus membrane between the papillae, while none were found in the mu-

cus of the clitellar region (Fig. 9C and D),(Giere et al., 1988a). 

  



Introduction 

 48 

 
Figure 9. (A) T. benedii in laboratory sediment with tail ends waving in the overlying water for intesti-
nal respiration. (B) Light microscopic image of an intact worm with filamentous bacteria colonizing the 
posterior end, scale bar 1 mm. (C) Cross section of body wall with cuticular papillae (pa) and detail 
thereof (D). Mucus (mu) is populated by various bacteria (ba). Below cuticle (cu) dark mucus vesicles 
(ves) in epidermis (ep) for regular release of mucus; cmu circular musculature, lmu longitudinal mus-
culature, cuma cuticular matrix. (A, B) courtesy of N. Dubilier, (C, D) modified from Giere et al., 1988a. 

Long filamentous bacteria were found to colonize the posterior end (Fig. 9B). 

Abundances and distribution of bacterial filaments in the host population were espe-

cially high in late summer and autumn when sulfide concentrations were at their 

peak. Bacterial filaments ranged in size between 10 to 80 μm length and 0.4 to 0.8 

μm in diameter. They consisted of individual cells with an electron-light nuclear re-

gion in the center and granular cytoplasm along the multilayered cell wall (Fig. 10), 

(Dubilier, 1986). Globular electron-dense inclusions of 60 to 100 nm diameter oc-

curred regularly in their cytoplasm. Filament morphology resembled that of sulfur-

oxidizing bacteria such as Thiothrix and Leucothrix (Fig. 10). Due to the correlation 

of bacterial abundance with the presence of sulfide in the sediments and morpho-

logical resemblance to sulfur oxidizers, the filaments were proposed to be sulfur-

metabolizing bacteria as well. However, no further studies on the identification of the 

bacteria and their metabolism had been done. 
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Figure 10. Bacterial filaments on T. benedii tail ends in SEM (A, B) and details therof in TEM (C, D). 
C: Filament embedded in cuticle (Cu). In the basal cell of this bacterial filament the periplasmic space 
(pR) extends into the inner cell. Note tiny globules around basal end. D: Bacterial cells contain vesi-
cles (V) and globular elctron-dense inclusions (gi) and have an outer membrane (om) and cytoplamic 
membrane (cm). Modified pictures A,B from SEM by Renate Walter, University of Hamburg and C, D 
modified from (Dubilier, 1985). 

2.2.4 Ecological implications of the associations 

While very small globules surrounding the basal cells of the filaments suggest 

a reaction of the worm, physiological experiments have shown no difference between 

filament-colonized and filament-free worms (Dubilier, 1985, p 61). Pathogenic effects 

were also not observed and unlike Tubifex tubifex (Fischer and Horváth, 1977) no 

filaments were detected at cuticular lesions. The association was presumed to be 

commensal where the bacteria benefit from host excretions and its positioning be-

tween oxic and anoxic conditions, while the host stays unaffected (Dubilier, 1986). 

Identification of the bacteria and their metabolism was one aim of this thesis to eluci-

date the nature of this association. 

D
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II Aims of this thesis 
In this thesis, bacterial associations with oligochaetes from different coastal 

sediments were studied: 1) Olavius algarvensis and O. ilvae, gutless oligochaetes 

from coarse silicate sediments from the coast of Elba and 2) Tubificoides benedii, an 

oligochaete from the muddy tidal sediments of the Wadden Sea Coast of Sylt, 

Germany. The aim of this thesis was the identification of the bacterial symbionts, and 

to assess their abundance and reveal functional aspects of the symbioses. 

1 Bacterial endosymbioses of gutless oligochaetes from Elba 
In the first part of this study, the gutless oligochaete O. algarvensis from 

marine silicate sediments of the Mediterranean island Elba, Italy was investigated 

(Chapter 1). Previous molecular characterization of this marine worm had 

demonstrated that it not only hosts a Gamma 1 sulfur-oxidizing symbiont common to 

gutless oligochaetes, but also a deltaproteobacterial symbiont affiliated with free-

living sulfate reducers (Mülders, 1999). This was the first time such a bacterium was 

found in a marine worm and surprising, because sulfide, the product of sulfate 

respiration, is potentially toxic to eukaryotic cells. Thus one aim was to verify the 

sulfate-reducing potential of the novel deltaproteobacterial symbiont by analysis of a 

gene diagnostic for sulfate reduction (dsrAB). In addition, sulfide production in the 

worm was investigated applying radiolabeled sulfate for subsequent autoradiography 

and measurement of sulfate reduction rates.  

With the availability of enhanced molecular techniques the symbiosis of 

O. algarvensis was reinvestigated analyzing symbiont community and physiological 

potential of the symbionts (Chapter 2). A novel second gutless oligochaete, O. ilvae, 

was discovered co-occurring with O. algarvensis raising the question whether the 

two hosts share the same symbiont community. In order to assess similarities and 

differences in symbiont community and physiology, I used comparative molecular 

and phylogenetic analysis of 16S rRNA, and diagnostic genes for autotrophy (cbbL 

and cbbM) and sulfur metabolism (aprA and dsrAB). To verify that the retrieved 16S 

rRNA sequences originated from the symbionts of O. algarvensis and O. ilvae 

respectively, FISH and CARD-FISH was applied with group and specifically 

designed probes (16S rRNA approach, see Appendix). This was also applied for 

localization of the symbionts and assessment of relative abundance and thus 

significance of the individual symbionts (Chapter 2).  
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The above studies were based on culture-independent techniques. In 

addition, cultivation attempts were made to isolate the deltaproteobacterial 

symbionts and identify their substrate range. For this, anaerobic cultivation 

techniques established for the isolation of sulfate-reducing bacteria were applied. 

The results of these experiments did not lead to a publication and are presented in 

Results and Discussion.  

2 Filamentous ectosymbionts of Tubificoides benedii from 
sulfidic muddy Wadden Sea sediment 
The aim of the third part of this study was to identify the filamentous 

ectosymbionts of the Wadden Sea oligochaete T. benedii and to characterize the 

symbiont community of the mucus layer (Chapter 3). Previous studies suggested 

that the morphologically homogeneous filamentous bacteria attached to the posterior 

end belonged to the same genus (Dubilier, 1986). This assumption was checked 

using the 16S rRNA approach (see Appendix), identifying retrieved bacterial 

sequences by designing and applying specific probes in addition to common group 

probes. Phylogenetic analysis was used to elucidate whether the ectosymbiotic 

bacterial filaments are related to known symbionts of other oligochaetes and 

nematode ectosymbionts or if they are related to free-living bacteria known to inhabit 

Wadden Sea sediments.  

A sulfur oxidation metabolism was suggested for the T. benedii ectosymbionts 

based on the correlation of highest bacterial densities with increased sulfide in the 

sediment, and the filaments’ morphology resembling that of free-living sulfur 

oxidizers (Dubilier, 1986). Chemosynthetic potential of the bacterial community on T. 

benedii tail ends was assessed using diagnostic genes for sulfur metabolism and 

autotrophy. In addition, preliminary experiments for the immunohistochemical 

detection of RubisCO, a common CO2-fixing enzyme in chemosynthetic Gamma-

proteobacteria, were conducted to assign function to the bacterial ectosymbionts in 

situ. 

 

Dubilier, N. (1986) Association of filamentous epibacteria with Tubificoides benedii (Oligochaeta, 
Annelida). Mar Biol 92: 285-288. 

Mülders, C. (1999) Molekularbiologische Charakterisierung von Bakterien assoziiert mit marinen 
Oligochaeten (Annelida). (Diplomarbeit). In Fachbereich Biologie. Hamburg: University of 
Hamburg. 
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Supplementary Information 

 
Figure 1 Immunocytochemical localization of form I RubisCO in bacterial endosymbionts of Olavius 
algarvensis. Only the larger symbionts (arrowheads) are labelled by the RubisCO antiserum 
(asterisks) while the smaller bacteria (arrows) and host tissue do not show immunoprecipitates. Scale 
bar = 0.4 μm. 

Methods 

Specimen collection. O. algarvensis specimens were collected by SCUBA diving in 
1998-2000 from sediments surrounding sea grass beds at 6-8 m water depth in a bay off Capo 
di San Andrea (Elba, Italy). Worms were identified under a dissection microscope and fixed 
for electron microscopy, DNA analysis, and FISH, or transported live to the home laboratory 
in sediment from the collection site for experiments with radiotracers. The Inanidrilus 
leukodermatus specimens used as negative controls for the DSR amplifications were 
collected from shallow water sediments of Bermuda in 1997 and fixed in 96% ethanol for 
DNA analysis.  

Pore water sulphide concentrations. Pore water from the O. algarvensis collection site was 
collected using samplers inserted at 5, 10, and 15 cm depth via SCUBA diving with 
immediate fixation of the samples in zinc acetate. In 6/99, 10/99, and 1/2000 1-2 ml of pore 
water per sample was collected and sulphide concentrations in all samples were always below 
the detection limit of 0.4 μM. In 6/2000 a higher detection limit was achieved by collecting 
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greater amounts of pore water (40-60 ml per sampling site) using samplers connected to 
evacuated serum vials containing 2 ml of 10% zinc chloride. In order to insure that only pore 
water from the desired sampling depth was drawn, no more than 2-5 ml pore water was 
sucked into a vial at one time, after which the sampler was reinserted to the same depth in 5-
10 cm distance from the previous site. This procedure was repeated multiple times until a 
serum vial was filled with 40-60 ml of pore water. The contents of the vials were filtered 
through 0.2 μm Nucleopore filters, the filters placed in 2 ml of distilled water, and 0.16 ml of 
diamine reagent added for colorimetric detection1. This technique of precipitating and 
filtering zinc sulphide has been used to analyze nM concentrations of sulphide in open ocean 
waters2. 

Transmission electron microscopy and immunocytochemistry. O. algarvensis individuals 
were fixed in Trump’s fixative and prepared for electron microscopical examination as 
described previously3. For immunocytochemistry, ultra-thin sections of worms were 
prepared as described in ref.4 by hybridization with an antiserum directed against the large 
sub-unit of form I spinach RubisCO, followed by labelling with gold conjugated anti-rabbit 
IgG as a secondary antiserum. In each worm (n=5) between 50-100 symbionts were 
examined for labelling response. Specificity of the antiserum was tested as described 
previously4 on sections with preimmune serum, and on immunoblots with preimmune serum 
and Rhodospirillum rubrum, which expresses form II RubisCO. 

DNA preparation, PCR amplification, and phylogeny. Three O. algarvensis individuals 
(as well as two I. leukodermatus specimens for DSR negative controls) were prepared 
individually for PCR as described in ref. 5. DNA was isolated from Desulfosarcina variabilis 
DSM 2060 as described previously6. Amplifications were performed with primers specific 
for the bacterial 16S rRNA genes (8F and 1507R) or the DSR genes of sulphate-reducing 
bacteria (DSR1F and DSR4R)6. PCR products were cloned and grouped using ARDRA with 
the restriction enzymes Hae III, Sau 3A I, and Rsa I. 2-3 clones per individual from dominant 
ARDRA groups were partially sequenced and at least 1 clone per individual from each 
ARDRA group was sequenced fully in both directions. For the 16S rRNA data set, sequences 
were aligned automatically using the ARB program (http://www.mikro.biologie.tu-
muenchen.de/pub/ARB/) and results corrected manually. For the DSR data set, nucleotides 
and deduced amino acid sequences were aligned and analysed as described previously6. 
Treeing and phylogenetic analyses were performed with the ARB program using distance 
matrix (neighbor joining with gaps treated as missing data), maximum parsiomony 
(DNAPARS with gaps treated as a fifth nucleotide state), and maximum likelihood 
(fastDNAml for DNA and ProtML for amino acids with gaps treated as unknown nucleotides 
or amino acids). For the 16S rRNA trees shown in Fig. 2a and 2b, 1515 sites 
(-lnLi=12974.43) and 1497 sites (-lnLi=12087.79) respectively were analysed. For the DSR 
tree shown in Fig. 2c, 646 sites were analysed with -lnLi=8016.48 in a tree without 
Desulfonema limicola and Desulfovibrio oxyclinae. The relatively short DSR sequences of 
these 2 species were added to the existing ML tree without changing its overall topology 
using the Parsimony Interactive Tool of the ARB package. O. algarvensis symbiont 
phylogenies were independent of the 3 treeing algorithms used and for DSR, whether DNA 
or amino acids were analysed.  

FlSH. Five worms were fixed and stored as described previously5. After embedding in 
paraffin and sectioning, slides were pretreated and hybridized using methods described in ref. 
5 with Cy3 and Cy5 labelled group-specific probes (GAM42a and DSS658) as well as 2 
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specific probes designed for this study (OalgGAM445: 5'-CTCGAGATCTTTCTTCCC-3'; 
OalgDEL136: 5'-GTTATCCCCGACTCGGGG–3'). Specificity of the probes was tested with 
reference strains (OalgGAM445: Inanidrilus leukodermatus gamma symbiont, 4 mismatches; 
OalgDEL136: Desulfonema magnum and Rhodothermus marinus, both 2 mismatches) and 
the formamide concentrations of the hybridizations adjusted accordingly as described 
previously5. 

35SO4
2- incubations. For silver needle experiments worms were incubated in 0.2 μm filtered 

seawater from the collection site to which 7 Mbeq of carrier-free Na35SO4
2- tracer was added 

to a specific activity of 218 Mbeq mmol-1. The medium was solidified with 2% (w/v) low 
melting point agar and the worms paralysed with lidocaine (2 mg ml-1) to prevent excessive 
movements of the worms during insertion with silver needles. The silver needles were made 
from 99.999% pure 50 μm Ag wire, tapered to a <1 μm tip, and inserted into the worms 
through a 10 μm glass capillary. Slow movements of the worms throughout the incubation 
procedure indicated that these were alive and viable. Incubations were run for 2-3 h under 
microaerobic (2-4 μM O2) and aerobic (200 μM O2) conditions with oxygen concentrations 
monitored during the incubations with microsensors (2 replicate experiments per O2 
concentration with 1 worm per incubation). In a control experiment at 2-4 μM O2 with a dead 
worm, the specimen was fixed in 4% formalin in seawater and subsequently washed in 
filtered seawater to remove the formalin. After removal of the needles, these were washed 
carefully in 50 mM Na2SO4 solution, and exposed to autoradiography film for 2-3 weeks. 
Results were similar in replicate experiments.  

For determination of sulphate reduction rates 5 worms per experiment were incubated for 2-3 
hours in 0.2 μm filtered seawater from the collection site using agar or sand as a substrate. 
7 Mbeq of carrier-free Na35SO4

2- tracer was added to the same specific activity as above. 
Agar incubations were conducted as described with paralysed worms and monitoring of 
oxygen concentrations. In experiments with sand, incubation vials and medium were 
prepared for microaerobic and aerobic incubations in the same manner as the agar 
experiments, but worms were not paralysed and allowed to move freely in sand from the 
collection site that had been washed and combusted at 480°C for sterilization and to remove 
any potential organic substrates. Oxygen concentrations were not monitored during the sand 
incubations. For control experiments with dead worms, specimens were heat killed in water 
at 70°C for 10 min. Sulphate reduction rates were determined using the one step acidic Cr-II 
method to separate reduced 35S7. 

Elemental sulphur analyses. Elemental sulphur was extracted individually from 5 worms 
with methanol and determined by HPLC as described previously8. 

Flux calculations. Sulphide diffusion flux (Q) from the pore water to the worms was 
calculated using the equation in ref. 9. We assumed a cylindrical geometry of the worms with 
an outer, surrounding cylindrical mass boundary layer, so that diffusion flux was calculated 
through a hollow cylinder with an inner radius of a (radius of the worm) and an outer radius 
of b (radius of the worm plus the thickness of the boundary layer). Thus 

Qt �
2 l �  D t (C2 � C1)

ln (b/ a)
 

where t is time, l the length of the worm, D the diffusion coefficient of total sulphide, C2 the 
concentration of total sulphide at b, and C1 at a. Assuming t=1 (mass flux per second), C1=0 
(all sulphide diffusing in from the environment is consumed, so that the concentration inside 
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the symbiont layer reaches 0), C2 = the pore water sulphide concentration (Cp), the worm 
radius (r) is half the diameter (d) of the worm, and � is the thickness of the mass boundary 
layer, Q in mol worm-1 sec-1 is: 

Q �
2 l �  D Cp

ln((d/2 +� )/(d/2))
 or Q �

2 l �  D Cp

ln(1+ 2� /d)
 or Q �

2 l �  D Cp

ln(1 +� /r)
 

In essence, the mass boundary layer is a film of water surrounding the worm in which 
diffusion is the only mass transfer mechanism. The thickness of the boundary layer is 
dependent on the flow velocity, i.e. the lower the flow the thicker the boundary layer. We 
assumed that flow velocity is essentially negligible at sediment depths between 5-15 cm. 
Under stagnant conditions, the thickness of the boundary layer around a cylinder is equal to 
the radius of the cylinder, i.e. the radius of the worm (100 μm). Thus �=r, so that 

Q �
2 l �  D Cp

ln(2)
 

The length of the worms is approximately 1 cm. Since part of the worm surface is not 
exposed but covered by sand grains, we assumed that the effective exchange surface and thus 
the mass flux was further reduced to 60% (f = 0.6). The molecular diffusion coefficient of 
total sulphide in water is proportional to the molecular diffusion coefficient of O2 in water by 
a factor of 0.64: D(H2S)=0.64 D(O2)10. Therefore, at 40‰ salinity and 20°C (conditions at 
collection site of the worm) D=1.26 10-9 m2 s-1. The actual effective diffusion coefficient of 
total sulphide Deff in the worm’s environment is lower than in water because of the porosity 
and tortuosity of sediments. We conservatively estimate Deff=0.6 D(H2S): 

Q �
2 l �  Deff Cp

ln(2)
�  f  

Pore water sulphide concentrations in the worm’s environment ranged between <14-76 nM. 
Thus, Q or sulphide flux from the environment into the worms ranged between <50-270 pmol 
worm-1 d-1. These calculations overestimate the importance of sulphide flux from the 
environment: 1) we assumed that the sulphide concentration inside the symbiont layer is 0, 
but this is unlikely. No reliable data on biological sulphide oxidation kinetics exist, so we 
assumed 0-order kinetics. Sulphide concentrations in the worms are presumably higher than 
0, so that flux from the environment should be lower than calculated, in proportion to the 
difference between sulphide concentrations inside and outside of the worm, 2) the mass 
transfer resistance through the cuticle of the worm is ignored; 3) the mass boundary layer was 
assumed to be equal to the diameter of the worm (200 μm), while the boundary layer 
thickness measured with microsensors was 250 μm; 4) the worm is not a perfect cylinder but 
curled, reducing effective exchange surface. 

Internal sulphide flux from the symbionts is based on sulphate reduction rates measured in 
worms incubated in sand (Table 1), assuming that all sulphide produced is consumed by the 
sulphide-oxidizing symbionts. Sulphate reduction rates in the worms are assumed to be 
underestimated, given that no external electron donor was used and experimental conditions 
are suboptimal in comparison to the natural environment. 
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Supplementary Information 

 
Table S1 Additional oligonucleotide probes used in this study that did not result in reproducible clear 
signals.  

Probe Targets Probe sequence (5´-3´) Positiona 

TbGAM3-826 
 

T. benedii Thiothrix spp.   
Gamma 3 

GTT GGA ACC AAC GGC TAG 826-843 

TbGAM4-645 T. benedii Gamma 4  ATC AGA CTC GAG TCA AGC 645-662 

TbGAM4-733 T. benedii Gamma 4,  
microbial mat clones, e.g. AM421142  

GTC TTG ATC CAG GTA GCC 733-750 

TbGAM5-645 T. benedii Gamma 5,  
environmental clones, e.g. AY592349 

ACC ATA CTC TAG TCC GAC 645-662 

TbGAM89IIF9-137 T. benedii single clone 89IIF9  
environmental clones, e.g. AM292413 

AGT TGT CCC CCT CTA CCA 137-154 

TbGAM89IIF9-645 T. benedii single clone 89IIF9  GGC ATG CTA GAG TTT GGT 645-662 

TbGAM86_06_1_3-841 T. benedii 2 clones, e.g. 86_06_1#3  
invertebrate associated clones, e.g. Shinkaia 
crosnieri, AB440176 and Capitella sp., EU418468  

CGT CAC TAA TCC CTC AAG 841-858 

TbEP1+-67 
 

T. benedii Epsilon 1 
invertebrate associated clones, e.g. Shinkaia 
crosnieri, hydrothermal vent and volcanoe clones, e.g. 
AY075124 

 CAA GCA CTG CTG TTT CCG 67-86 

TbEP2-184 
 

T. benedii Epsilon 2 
4Riftia pachyptila tube clones, e.g.  AF449251, 
hydrothermal vent clones, e.g. AF420359, ammonia 
biofilter clone, AF090545 

CCA ACT ACC ATT AAG GCA 
 

184-194 

 

a Position in the 16S rRNA of E.coli 
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VI   Results and Discussion 
In this section results presented in the previous chapters are briefly summarized. 

Unpublished experiments and analyses of this thesis are shown. First, the symbioses 

of the two co-occurring Mediterranean gutless oligochaetes O. algarvensis and 

O. ilvae from sediments low in sulfide are discussed. Finally, the molecular ecology 

of ectosymbionts of the Wadden Sea oligochaete T. benedii is addressed. 

1 Similar endosymbiotic communities in the co-occurring 
gutless oligochaetes O. algarvensis and the novel species, 
O. ilvae 

Extensive molecular analyses and improved FISH techniques were used to 

study the symbiont community of O. ilvae and to re-examine the symbiont community 

of O. algarvensis. Phylogenetic diversity of the symbionts in both species (and other 

gutless oligochaetes) (Fig. 1) was higher than previously assumed. In addition to the 

two symbionts of O. algarvensis, Gamma 1 and Delta 1, described in my Diploma 

thesis (Mülders 1999) and Chapter 1 (Dubilier et al., 2001), additional symbionts 

were found to occur in O. algarvensis. Multiple symbionts were also identified in 

O. ilvae (Chapter 2, (Ruehland et al., 2008)). O. algarvensis and O. ilvae both har-

bored Gamma 1 and Delta 1 symbionts. Some O. algarvensis individuals also host 

Gamma 3 and Delta 4 symbionts as well as a spirochete. All examined specimens of 

the gutless oligochaete O. ilvae harbored four symbionts, i.e. Gamma 1, Delta 1, and 

also Gamma 3 and Delta 3 symbionts, but no spirochetes. Other sequences rarely 

occurred in the clone libraries suggesting a minor role of the corresponding organ-

isms. This was supported by results from FISH where probes specific for the symbi-

onts covered the symbiotic community as visualized with the general eubacterial 

probe EUB338 ((Chapter 2), (Ruehland et al., 2008)). 

1.1 Physiology of O. algarvensis symbionts 
The symbionts of O. algarvensis were extensively studied by comparative 

gene analysis, metagenomics (Woyke et al., 2006) and metaproteomics (Kleiner, 

2008), which gave insight into the metabolic potential of the various gamma- and 

deltaproteobacterial symbionts. Molecular analysis suggested that the symbiont 

community of O. ilvae and their physiological potential is similar to that of the co-

occurring O. algarvensis (see section 1.2). Therefore, the endosymbiotic system in  
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Figure 1. Phylogenetic diversity of oligochaete endosymbionts including sequences from this study. 
The 16S rRNA tree is based on ML analyses with 100 bootstraps. Scale bar indicates 10% estimated 
sequence divergence.  
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O. algarvensis may serve as a more general model for Mediterranean gutless oli-

gochaete symbiosis. 

1.1.1 Gamma 1 symbiont physiology 
As in other gutless oligochaetes, the Gamma 1 symbiont of O. algarvensis 

corresponded to the large morphotype. Consistently, it affiliated with Gamma 1 sym-

bionts of previously analysed gutless oligochaetes (Fig. 1 and Chapter 1 (Dubilier et 

al., 2001)). The oligochaete Gamma 1 symbionts form a sister clade to the Chroma-

tiaceae, free-living phototrophic sulfur oxidizers. This phylogenetic affiliation sug-

gested a thioautotrophic metabolism for the Gamma 1 symbionts. Thioautotrophic 

potential of the O. algarvensis Gamma 1 symbionts was first confirmed by immuno-

histochemistry and molecular evidence and more recently corroborated by metage-

nomic and proteomic analyses: 

 In the Gamma 1 symbiont the ribulose-1,5-bisphosphate carboxlase/ oxy-

genase (RubisCO) form I, an enzyme involved in CO2 fixation, was localized (Figure 
2 2D and Chapter 1 (Dubilier et al., 2001) Supplementary Information). The pres-

ence of genes involved in dissimilatory sulfur metabolism (the gene for the alpha 

subunit of the adenosin-5’-phosphosulfate reductase, aprA) and autotrophy (genes 

for the large subunit of RubisCO form I, cbbL) was confirmed in this study (see be-

low ‘Confirmation of sulfur cycling’). These genes and additional genes indicative of 

autotrophy and sulfur metabolism including dissimilatory sulfite reductase (dsr), fla-

vocytochrome c sulfide dehydrogenase (fcc) and sulfur oxidation (sox) could be as-

signed to the Gamma 1 symbionts based on metagenomic binning analyses (Woyke 

et al., 2006). A sulfur storing potential similar to the sister clade Chromatiaceae was 

supported by the detection of both the gene and the protein of sgpB encoding a sul-

fur globule protein in the Gamma 1 symbiont (Woyke et al., 2006; Kleiner, 2008). 

This protein is involved in the formation of intracellular sulfur globules under limited 

oxidant supply. 

The Gamma 1 symbiont seems to be metabolically versatile and is not limited 

to the use of O2 and sulfur compounds, but can also use alternative electron accep-

tors and donors when redox conditions change. In the upper, oxygenized layers it 

can oxidize sulfur compounds with O2. Migrating downwards in the sediment fu-

marate may serve as an electron acceptor with succinate and S0 as products of in-

complete oxidation. When moving upwards to the oxidized sediment layers the 

stored sulfur is further oxidized to sulfate (Woyke et al., 2006; Kleiner, 2008). 
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Finally, the Gamma 1 symbiont also has heterotrophic potential and could use host 

waste products as a carbon source. For example, in metaproteomic studies evidence 

for a modified version of the 3-hydroxypropionate pathway was found that indicates 

the uptake of acetate and propionate (M. Kleiner, personal communication). Fur-

thermore, proteomic analyses supported previous evidence for granular polyhy-

droxyalkanoate (PHA) storage in the Gamma 1 symbiont by detection of several in-

volved proteins (phasin (PhaP) and a PHA-synthase protein), (Kleiner, 2008). Thus, 

the Gamma 1 symbiont is adapted to fluctuating availabilities of electron donors and 

acceptors such as oxygen and sulfide when the worm moves through the sediment. 

1.1.2 Gamma 3 symbiont physiology 
While the phylogenetic affiliation with known sulfur-oxidizing bacteria already 

indicated sulfur metabolism for the Gamma 1 symbiont, the Gamma 3 symbiont of 

O. algarvensis was not related to known sulfur oxidizers based on 16S rRNA phylog-

eny (Fig. 1 and Chapter 2 (Ruehland et al., 2008)). However, data from molecular 

and metagenomic analyses revealed that Gamma 3 in O. algarvensis, like the 

Gamma 1, is a thioautotroph as well. All genes necessary for the oxidation of re-

duced sulfur (dsr), (apr), the gene for sulfate adenosyltransferase (sat), fcc and sox) 

and carbon fixation (cbbL) were assigned to the Gamma 3 symbiont (Woyke et al., 

2006). In contrast to the Gamma 1 symbiont, the Gamma 3 symbiont does not ap-

pear to store sulfur, as no sulfur storage genes were found in the nearly complete 

genome, supporting previous ultrastructural studies where sulfur was only observed 

in the Gamma 1 symbiont (Woyke et al., 2006). 

Figure 2 (opposite page). Sant' Andrea bay on the northern coast of Elba where the worms were 
collected (A). In situ measurements and collection of pore water samples for biogeochemical analysis 
(B), pictures C. Lott/ M. Weber from (Ruehland et al., 2006). TEM of bacterial endosmbionts in 
O. algarvensis (C) with larger bacteria (arrowheads) containing numerous globules, smaller (arrows) 
none; (cu) cuticle (from (Dubilier et al., 2001). Immunocytochemical localization of form I RubisCO (D). 
The larger symbionts  (arrowheads) are labelled with an RubisCO antiserum (asterisks) (supplemen-
tary material for Dubilier et al (2001).FISH of O. algarvensis gamma- and deltaproteobacterial symbi-
onts (green and red respectively) with group probes (E) for the Gammaproteobacteria (Gam42a) and 
Desulfosarcina/Desulfococcus group (DSS658), and with specific probes (inset, F) for O. algarvensis 
Gamma 1 and Delta 1 symbionts. To prove that sulfate reduction occurs actively in the worm we in-
serted silver needles into individual Elba worms (G) in incubations with radiolabelled 35SO4

2- under 
aerobic and microaerobic conditions. Precipitation occurred on needles from microaerobic experi-
ments showing a blot on the autoradiographic film (H) while the formalin fixed control showed no posi-
tive signal (I), discussed but not shown in Dubilier et al. (2001).  
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While no genes for the use of oxygen as a terminal electron acceptor could be 

found (N. Dubilier and M. Kleiner, personal communication), the Gamma 3 symbionts 

uses nitrate as an electron acceptor, when oxygen becomes depleted in the deeper 

sediment. Nitrate respiration was indicated by genes involved in dissimilatory nitrate 

reduction in the Gamma 3 symbiont bin such as the genes for the periplasmic nitrate 

reductase (nap) and nitrite reductase (nir) (Woyke et al., 2006). The periplasmic ni-

trate reductase was also highly abundant in the metaproteome (M. Kleiner, personal 

communication) In nitrate depleted layers, fumarate or worm osmolytes such as tri-

methylamine N-oxide could also serve as electron acceptors as well as carbon and 

nitrogen sources. In this way the Gamma 3 symbiont is theoretically capable of sulfur 

oxidation in all layers inhabited by the worm making it a valuable symbiotic partner 

(Woyke et al., 2006).  

1.1.3 Delta 1 and 4 symbiont physiology 
The Delta 1 and Delta 4 symbionts of O.algarvensis are related to free-living, 

sulfate-reducing Deltaproteobacteria. The presence of such bacteria in an inverte-

brate symbiosis was unprecedented and unexpected. Until then these bacteria had 

only been found in the digestive systems of invertebrates. These organisms release 

sulfide which is a potent inhibitor of respiration and thus toxic to aerobic organisms. 

Therefore, active sulfate reducers were unlikely candidates for symbiosis with inver-

tebrates. However, an internal supply of reduced sulfur compounds could be benefi-

cial to thioautotrophic symbionts in a sulfide limited environment and could explain 

their presence in this symbiosis. 

By autoradiography and detection of sulfate reduction we could show that hy-

drogen sulfide is produced in O. algarvensis under low oxygen conditions (Chapter1 

(Dubilier et al., 2001)) and Fig. 2G, I, J). Furthermore, subsequent molecular and 

genomic studies revealed characteristic genes involved in sulfate reduction (such as 

dsr, periplasmic cytochrome c (qmo), and apr) in both the Delta 1 and 4 symbionts 

((Woyke et al., 2006); Chapter 2 (Ruehland et al., 2008)). Delta 4 furthermore ap-

pears to have a complete pathway for tetrathionate reduction suggesting a possible 

exchange of sulfur intermediates with the sulfur oxidizers. This cycling of intermedi-

ates is energetically more favorable than the cycling of sulfate and sulfide (Woyke et 

al., 2006), because the activation of sulfate is very energy-consuming (with one ATP 

necessary for the conversion of sulfate to adenosine phosphosulfate).  
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Heterotrophy is the most common metabolism of the highly versatile free-living 

sulfate reducers. While few can live chemoautotrophically, most consume a wide 

range of organic substrates (Thauer et al., 2007). Such a substrate versatility was 

reflected in the presence of genes for transport and utilization of diverse carbohy-

drate substrates assigned to the deltaproteobacterial symbionts in the metagenomic 

analysis (Woyke et al., 2006). In this way the Delta symbionts could recycle the 

worm’s waste products such as organic acids e.g. succinate formed during anaerobic 

metabolism, oxidizing these substrates in sulfate reduction. Nevertheless, for a net 

gain of the symbiosis and growth of the symbiotic partners external electron donors 

have to be taken up. However, so far, metabolomic analyses show no significant 

sources of easily available organic substrates in the pore waters of the worm’s habi-

tat (N. Dubilier, personal communication). 

Furthermore, metagenomic analyses suggested that the deltaproteobacterial 

symbionts might have the potential to fix CO2 via the reductive acetyl-CoA pathway 

(Woyke et al., 2006). While it has been discussed whether the involved enzymes 

might rather be used in heterotrophic metabolism (M. Kleiner, C. Wentrup, personal 

communication) the recent discovery of the expression of a carbon monoxide dehy-

drogenase (CO dehydrogenase) and hydrogenases in proteomic analyses corrobo-

rated the hypothesis for autotrophic potential of the Delta symbionts (M. Kleiner and 

N. Dubilier, personal communication). 

1.2 Physiology of O. ilvae symbionts  
The previous section discussed what is known about the different symbionts 

found in O. algarvensis. Molecular analysis revealed a similar symbiont composition 

in O. ilvae. To show the potential for sulfate respiration and thioautotrophy in both 

host species I comparatively analysed diagnostic genes. Indeed, genes involved in 

sulfur metabolism (aprA, dsrAB) and autotrophy (cbbL) in O. algarvensis and O. ilvae 

indicated sulfur syntrophy in both co-occuring host species. As described in Chap-

ter 2 (Ruehland et al., 2008), phylogenetic analyses and metagenomic binning fur-

thermore allowed the assignment of most genes and thus metabolic functions to the 

respective symbionts (Chapter 2, (Ruehland et al., 2008)). The close phylogentic 

position of the genes of gammaproteobacterial O. ilvae symbionts, Gamma 1 and 3, 

to the genes of Gamma 1 and 3 of O. algarvensis, suggested that they also possess 

thioautotrophic potential. Likewise, sulfur metabolism was also indicated by assign-
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ment of aprA genes falling into the lineage of sulfate-reducing bacteria for 

O. algarvensis Delta 1 and 4 and O. ilvae Delta 1 symbionts. Additionally phyloge-

netic analysis of dsr genes suggested that this gene, indicative for sulfate reduction, 

was present in all deltaproteobacterial symbionts of O. algarvensis and O. ilvae. 

Therefore, the symbiotic communities found in the two co-occurring Mediterranean 

gutless oligochaetes from sediments low in sulfide have the potential to engage in 

sulfur syntrophy described below. 

1.3 Syntrophy in the Mediterranean gutless oligochaete symbio-
ses  

The low sulfide concentrations in the habitat of O. algarvensis and O. ilvae 

(Chapter 1) might explain the importance of the sulfate reducers to this symbiosis 

(see also Introduction Chapter 1 (Dubilier et al., 2001), (Woyke et al., 2006), and 

Chapter 2 (Ruehland et al., 2008)). In short, the sulfate reducers provide reduced 

sulfur compounds by the respiration of sulfate or other oxidized sulfur compounds to 

oxidize organic substrates. The reduced sulfur compounds such as sulfide are oxi-

dized by the Gamma symbionts to generate energy for carbon fixation. In this man-

ner sulfur compounds could be constantly recycled. 

In the absence of oxygen, sulfate is likely already reduced by the deltaproteo-

bacterial symbionts under microaerobic conditions in the upper oxidized sediment 

layers. Here, the active sulfur oxidizers quickly respire the influxing oxygen for sulfur 

oxidation. Oxygen scavenging is one effect that allows the generally oxygen-

sensitive sulfate reducers to thrive in free-living consortia in the presence of oxygen 

(Teske et al., 1996). Syntrophic cycling of oxidants and reductants yields higher 

growth yields for all involved partners, especially when intermediates are involved 

and the energy costly activation of sulfate for sulfate reduction is avoided (see above 

Delta 4 metabolism). This has been shown for various consortia of (anoxygenic 

photo- or aerobic chemoautotrophic) sulfur oxidizers and sulfate reducers (Biebl and 

Pfennig, 1978; van den Ende et al., 1997; Overmann and Gemerden, 2000). Fur-

thermore, synergic effects of consortia on other heterotrophic bacteria have been 

shown in mixed cultures (Loka Bharati, 2004).  

As an additional syntrophic effect, the Gamma 3 symbiont might produce hy-

drogen, which the Delta 1 might scavenge and use as energy source for autotrophic 

carbon fixation. Additional substrate cycling (e.g. fumarate/succinate between 

Gamma- and Delta symbionts) reduces the loss of energy–rich waste products by 
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channeling them back into the symbiosis. Waste products from the host such as 

volatile fatty acids from anaerobiosis or urea can serve as alternative substrates for 

the four symbionts and alleviate the host from the harmful accumulation of waste 

products (Woyke et al., 2006). Thus, substrate cycling poses advantages to the 

symbionts as well as the host.  

Figure 3. Simplified diagram of potential interactions of the symbiotic partners in the O. algarvensis 
symbiosis from sediments low in sulfide. The two sulfate-reducing symbionts (red) oxidize organic 
compounds (from worm waste products or the environment) or possibly hydrogen via sulfate reduc-
tion, producing sulfide, which is taken up by the sulfur oxidizers. The two sulfide oxidizers (green) use 
reduced sulfur compounds as an energy source for autotrophic fixation of CO2 into organic com-
pounds. Thus, sulfur compounds are constantly recycled. The function of the spirochete is unclear. 
Under anaerobic conditions the Gamma 1 and 3 sulfide-oxidizing symbionts have the ability to respire 
fumarate to oxidize H2S to elemental sulfur. The produced succinate can serve as an electron donator 
for the Delta 1 and 4 sulfate-reducing symbionts, thereby recycling it to fumarate. Recent results from 
metabolomic analysis indicate that both sulfate reducers and the Gamma 3 symbiont might use car-
bon monoxide (CO) as an additional electron donator and carbon source. Furthermore, Gamma 3 
most likely uses nitrate not oxygen as a terminal electron acceptor. For a more complete diagram and 
descriptions refer to Woyke, 2006. Diagram based on Dubilier (2001) and Woyke (2006). Inorganic 
electron donors in purple, inorganic electron acceptors in blue. 

The complex syntrophic interactions and cycling of substrates gives the im-

pression of a closed and self-sustaining system, however, this is thermodynamically 

impossible and the symbiosis is not a perpetuum mobile. For net growth additional 

energy equivalents such as hydrogen, reduced sulfur compounds or dissolved or-

ganic compounds need to be imported from the environment (Chapter 1 (Dubilier et 

al., 2001)). Uptake of substrates is possible as the cuticle is passable for molecules 

up to 70 kDa (Dubilier et al., 2006) and the surrounding sediments are full of organic 
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debris from the adjacent Posidonia sea grass beds. However, as mentioned above 

analyses of the sediment indicated that there are no easily available organic sub-

strates like sugars, amino acids or organic acids in the Elba pore waters. Thus hy-

drogen and carbon monoxide (CO) may be the main electron donors. 

1.4 Multiple symbionts: evolutionary dynamics in balancing of 
microniches and competition 

For a long time symbioses with multiple symbionts had been considered to 

occur mainly in digestive systems with complex substrates. In chemoautotrophic 

symbioses the symbionts appeared to be specialized, host-specific and their popula-

tion genetically homogenic. Competition for space and nutrients as well as strict ver-

tical transmission or host selection seemed to outrule the establishment of multiple 

associations. However, in the last decade the advance of molecular methods re-

vealed multiple symbionts occurring in a variety of chemosynthetic symbioses such 

as the endosymbioses of gutless oligochaetes. 

In the O. algarvensis and O. ilvae symbioses the benefit of syntrophy is likely 

to outweigh the competition for space between gamma- and deltaproteobacterial 

symbionts. It is intriguing that at a first glance the additional Gamma- and Deltapro-

teobacteria seem to have a redundant function implying competition for resources 

while space already has to be shared between symbionts. This leads to two possible 

hypotheses: 1) The metabolism of the symbionts may slightly differ at a closer look. 

Within the symbiotic shuttling system as the worm travels through the different oxi-

dized and reduced layers of the sediment, the symbionts could occupy physiological 

microniches. They may use different substrates or have different substrate affinities 

resulting in alternating production peaks depending on the environmental conditions. 

2) However, when the ecophysiological strategies are too similar (or other reasons 

such as varying growth rates, antagonism of symbionts or host), competition could 

lead to the displacement of one symbiont during the course of evolution. 

1) In favour of the first hypothesis are the results of the metagenomic study on 

O. algarvensis symbionts. As the worm moves through oxidized and reduced sedi-

ment layers, the gamma- and deltaproteobacterial symbionts express their metabolic 

versatility in the respective physiological niches resulting in a continued cycling of 

substrates. Various electron acceptors and donators are taken up during the migra-

tion and metabolites are released which are partitioned among symbionts. In the 

deeper, oxygen-free layers, the Gamma 1 symbiont replenishes the transient sulfur 
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storage by using alternative electron acceptors such as fumarate for sulfide oxida-

tion. In the presence of oxygen the stored sulfur can be further oxidized. The 

Gamma 3 in turn apparently does not use oxygen as a terminal electron acceptor 

and does not store sulfur (M. Kleiner and N. Dubiler, personal communication). In-

stead it can use a wide palette of alternative electron acceptors such as nitrate and 

fumarate, but also worm osmolytes when oxygen is limited (see above Gamma 3 

physiology). 

The strategy to perform different energy-yielding processes in oxic and anoxic 

sediment layers is similar to the ecophysiology of filamentous sulfur oxidizing Gam-

maproteobacteria such as Thioploca and Beggiatoa. Both free-living sulfur oxidizers 

perform sulfide oxidation to sulfur with (stored) nitrate in the sulfidic, anoxic sediment 

layers, then move to the sulfide-free, oxic surface and further oxidize sulfur to sulfate 

using oxygen. Interestingly some Thioploca can engage in sulfur syntrophy with the 

sulfate reducer Desulfonema attached to their sheaths (Karavaiko et al., 2006). 

 The deltaproteobacterial symbionts also showed metabolic versatility. The 

Delta 4 symbiont uses intermediates of the sulfur cycle and the Delta 1 symbiont ap-

parently takes up osmolytes and polyamines as well as mono-and dicarboxylates as 

suggested by metagenomic analysis (Woyke et al., 2006). Thus, all symbionts would 

contribute to the system by temporal and physiological niche partitioning. In addition 

to divergent substrate spectra the symbionts might exhibit gradual differences in af-

finities to the same substrate (e.g. sulfide) as shown for ammonia-oxidizing bacteria 

and archaea (Martens-Habbena et al., 2009). 

Given a stable environment at evolutionary time scales, the symbioses might 

have reached equilibrium, where each symbiont serves a definite function. The sym-

biosis might function like a microcosm where competition is avoided by adaptation to 

microniches with phenotypic and ecological differentiation. An extreme case of such 

fine-scale evolution has recently been reported for co-existing free-living strains 

(Salinibacter ruber) identical in 16S rRNA and intergenic regions, but with genomic 

differences resulting in new ecotypes (Pena et al., 2010).  

2) The symbiont composition varies through the recurrent uptake of bacteria 

from the environment, of which some are able to establish themselves as facultative 

or even obligate (at least for the host such as the Gamma 4 of Inanidrilus exumae 

replacing the Gamma 1 (Bergin et al., submitted), see below) symbionts. In this case 

we can consider the symbiosis as we see it now as representing just a moment in 
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time which is under constant change. If novel and established symbionts have re-

dundant function competition could lead to displacement. Over the course of evolu-

tion novel symbionts could replace the primary symbionts or vice versa, the addi-

tional symbionts might be superseded by the primary symbionts. In the 

O. algarvensis specimen that harbored both, the Gamma 1 and Delta 1 as well as 

Gamma 3 and Delta 4 symbionts, the secondary symbionts appeared at least as 

abundant as the primary symbionts (Chapter 2 (Ruehland et al., 2008)). If the secon-

dary symbionts are more efficient in uptake and substrate metabolism and exchange, 

they might outcompete the primary Gamma 1 and Delta 1 symbionts in the long run. 

A change in the environmental conditions might push the balance off to either side, 

favoring the primary Gamma 1 and Delta 1 or the secondary Gamma 3 and Delta 4 

symbionts. Thus, the association with Gamma 3 and Delta 4 symbionts could have 

been established recently and might steadily spread in the population. Follow-up 

studies over a long term period to monitor the relative abundance of these symbionts 

in a given host population (same sampling site) are needed to address the stability of 

these multiple symbioses. Worm cultivation studies might also help in elucidating the 

fitness and versatility of the symbionts, monitoring their abundance and activity under 

different conditions. 

Evolutionary aspects of the Mediterranean symbioses  

The monophyly of the Gamma 1 symbionts indicates their common ancestry 

and a long evolutionary history is indicated through their co-speciation with oli-

gochaete hosts. The Gamma 1 symbionts might have an advantage over other co-

occurring symbionts as their association with the worms was the first one in this en-

dosymbiosis. The adaptation to fluctuating substrate concentrations during the 

worm’s vertical sediment migration might explain why the Gamma 1 symbiont has 

successfully established and maintained a stable symbiotic relationship with gutless 

oligochaetes over long evolutionary periods. They have co-evolved with the host 

which relies on them. Co-evolution in a long-term symbiotic relationship can lead in 

many ways to an optimization in synergy, symbiont transmission, recognition, and 

host-symbiont communication.  

An indication for the transition from a facultative to an obligate symbiosis with 

vertical transmission could be an increased number of transposons in the symbiont 

genome (Plague et al., 2008). The Gamma 1 symbiont showed an unusually high 
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proportion and the Gamma 3 symbiont a smaller proportion of transposases indicat-

ing such a transition stage (Woyke et al., 2006). Other signs for an obligatory life-

style are genome reduction, AT bias or loss of certain metabolic pathways. However, 

this did not seem to be the case for any of the oligochaete symbionts (Woyke et al., 

2006). None of the symbiont genome was reduced in size as an indication for their 

obligatory state. Additionally, flagellar proteins were found in Delta 1, Delta 4 and 

Gamma 3 symbionts indicating a free living stage. However, flagellar proteins can 

also be responsible for communication functions (Shimoyama et al., 2009), essential 

in a symbiotic state. In previous studies sediment samples from the Elba site bore 

sequences highly similar to the secondary symbionts, Gamma 3 and Delta 1, and 

bacterial cells hybridized with the Gamma 1 and Gamma 3 probes indicating that 

these bacteria might occur as free-living species (Perner, 2003). Thus a recent ac-

quisition at least of the secondary symbionts is conceivable. However, since eu-

karyotic cells were also detected in the samples the symbiont signals could have 

originated from ruptured hosts. At this point, it remains unclear whether some of the 

oligochaete symbionts have advanced states of dependency that might involve supe-

rior communication with the host and provide them with an advantage over other 

symbionts. 

Even the Gamma 1 symbiont, although it is ubiquitous and considered obli-

gate for gutless oligochaetes, can be replaced. Only recently it was revealed that a 

gutless oligochaete from calcareous coral reef sediments hosts an entirely novel 

gammaproteobacterial symbiont instead of the Gamma 1 symbiont. It was postulated 

that the Gamma 4 invaded the Gamma 1 symbiont hosting I. exumae ancestor, and 

that the two symbionts might have coexisted for a certain time (Bergin et al., submit-

ted). Unlike for the Gamma 1 symbiont and Gamma 3 symbionts in Olavius spp., 

however, the morphology as well as the metabolism of the Gamma 1 and 4 sulfur-

oxidizing symbionts is highly similar. Both are large and thus competition for space 

was presumably much more prevalent than between the large Gamma 1 and smaller 

Gamma 3 symbionts of the Mediterranean hosts. Unlike the Gamma 3 symbiont, 

both, the Gamma 1 and the Gamma 4 symbionts store sulfur globules, indicating 

redundant function in the symbioses (Bergin et al., submitted). Here, it appears as if 

the novel symbiont took over the functions of the Gamma 1 symbiont and eventually 

replaced it. 
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Environmental influences and symbiont composition 

While under the current conditions in the Elba sediments niche partitioning 

appears to function well, shifts between activity and abundance of symbionts might 

change over short temporal intervals or seasonally in individual worms. External fac-

tors such as storms or human interference might pose sudden and drastic changes. 

In this case the cooperation of the multiple symbionts might be disturbed and lead to 

a shift in symbiont activity and eventually composition. Lack of activity has been ob-

served previously, when the worms were kept in the laboratory over longer periods 

(more than two months). While deltaproteobacterial sequences could still be re-

trieved, no signal was obtained using specific probes for the Delta symbionts and 

group specific probes (DSS658), indicating that their activity was significantly re-

duced (Musat, 2006). It would be interesting to see whether the originally described 

O. algarvensis population from Portugal harbors similar symbionts or whether here 

environmental differences influenced symbiont composition.  

Another possible factor determining fitness of the different symbionts and thus 

the symbiont community is susceptibility to predators such as viruses or Bdellovibrio 

and Bacteriovax. Substantial amounts of fosmid end reads had similarities to pro-

teins of viral origin (Woyke et al., 2006) and sequences closely related to bacterial 

predators were present in the clone libraries (Chapter 2 (Ruehland et al., 2008; 

Kleiner et al., In press). These sequences were found in only in two specimens and 

invasions of symbionts could not be observed in ultrastructural studies, although 

these were not explicitly looked for. It is conceivable that rare events of predation or 

viral infection might lead to the elimination of susceptible bacterial symbionts. 

1.5 Cultivation and enrichment of sulfate-reducing bacteria from 
Mediterranean gutless oligochaetes 
 

Cultivation of bacteria allows the definition of physiological characteristics 

such as substrate spectra, temperature, oxygen and salinity optimum. Cultivation of 

the deltaproteobacterial symbionts would help in elucidating their role and their 

source of carbon in the symbiosis. Potential carbon sources could be substrates 

common to free-living SRB acquired through diffusion from the exterior. It had been 

demonstrated that molecules of up to 70 kDa could freely pass the cuticle, however, 

metabolomic analysis contradict this assumption (see above). Alternatively, the del-

taproteobacterial symbionts could rely on carbon transfer from the gammaproteobac-
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terial symbionts or on host metabolites. During anaerobiosis, oligochaetes produce 

organic acids such as succinate, proprionate and acetate. Alternatively, the Delta 

symbionts could thrive autotrophically by using hydrogen and fixing CO (see above 

section 1.1.3). 

In this thesis I attempted to cultivate the deltaproteobacterial symbionts of gut-

less oligochaetes collected from Elba with microbiological techniques. Worms were 

washed four times in sterile filtered Elba sea-water, homogenized in 1 ml medium 

and used as the inoculum. Anaerobic agar dilution series (10-1 to 10-8) were prepared 

as described (Widdel and Bak, 1992b). Alternatively, filtered seawater from the site 

as well as a defined bicarbonate-buffered and sulfide-reduced artificial sea-water 

media (Widdel and Bak, 1992a) were flushed with N2/CO2 (90:10) in culture flasks. 

Media were then inoculated with N2/CO2 (90:10) flushed pieces of single worms with 

and without various electron donors using three dilution steps. A variety of substrates 

such as volatile fatty acids and H2 were added to the media (Table 1). To enhance 

growth of bacteria that need attachment, sterilized sand from the site was added. 

Incubations were kept in the dark at room temperature (~23°C). Colder incubation 

temperatures of 16°C yielded barely any growth. 

Table 1. Substrates used in cultivation and enrichment of bacterial symbionts in liquid 
media and agar shakes  

Substrate 
 

1mM acetate + H2/CO2 

8mM acetate 

5mM propionate 

5mM succinate 

2 mM succinate + 
2mM propionate 
3mM acetate 

2 mM succinate + 
2mM propionate + 
3mM acetate + 
0,3g/L yeast extract 

control 
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Growth of colonies was detected in agar shakes with acetate (10-1 and 10-5 dilution), 

propionate (10-1) and H2/CO2 (10-1). These colonies were transferred to liquid media 
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using the same substrates as their origin. Growth was also detected in synthetic me-

dia with the volatile fatty acid mixture. This culture had a strong smell of sulfide. Test-

ing with CuSO4 resulted in brown coloring as proof for the presence of sulfide, indi-

cating growth of SRB. Under the microscope coccoid cells with one or two small cir-

cular structures at one site were visible. These cells resembled Desulfovibrio sp. in 

stationary phase (M. Mußmann, personal communication).  

To verify whether these bacteria were the symbionts previously identified in 

O. algarvensis or O. ilvae, FISH was conducted with specific probes from this study. 

Other vials and transferrals from agar to liquid media which showed growth, but had 

no sign of sulfide production were also tested. Only the sulfide positive vial resulted 

in a positive signal with the O. algarvensis Delta 1 probe. No signal occurred with the 

1 mismatch O. ilvae Delta 1 probe. 

The colonies positive with the Delta 1 probe were further analysed based on 

16S rRNA sequences. BLAST (Altschul et al., 1990) of the resulting sequence 

showed 99% similarity to Desulfovibrio acrylicus. As the morphology had already 

indicated Desulfovibrio and a contamination with this species in cultivation of free-

living Deltaproteobacteria was common (M. Mußmann, personal communication) the 

experiment was not continued. 

The Delta 1 symbiont might need the Gamma 1 symbiont for optimal growth. 

The cultivation of syntrophic cultures would require more sophisticated methods. As 

noted earlier, Gamma 1 and Delta 1 symbionts always co-occurred in the examined 

O. algarvensis individuals indicating a mutual dependency. Many syntrophic bacteria 

rely on their mutual partner to optimize energy yield and to grow faster e.g. by scav-

enging inhibitory waste products. Subsequent efforts to cultivate deltaproteobacterial 

symbionts by two colleagues (N. Musat, MPI Bremen, and A. Gaetjen, University of 

Oldenburg) also did not result in significant enrichment of the deltaproteobacterial 

symbionts. Obviously, the interactions between gamma- and deltaproteobacterial 

symbionts and maybe even the host are complex, making it difficult to mimic these 

natural conditions. However, free-living relatives from marine sediments are equally 

difficult to enrich. A continuous culture with a constant inflow of media and monitoring 

of concentrations of substrate and chemicals might be more successful in maintain-

ing a co-culture.  
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2 Characterization of ectosymbionts on a gut-bearing oli-
gochaete from muddy Wadden Sea sediments  

At the beginning of this study gammaproteobacterial epibionts were known to 

occur on some marine nematodes from shallow coastal sediments, while long fila-

ments from the deep-sea crab R. exoculata were identified as Epsilonproteobacteria 

(see ntroduction). Other reports of ectosymbionts on crustaceans often lacked phy-

logenetic identification. Previous studies on T. benedii epifilaments emphasized mor-

phological resemblance to the gammaproteobacterial Thiothrix and Leucothrix, and it 

was assumed that all filaments belonged to the same genus (Dubilier, 1986). In this 

thesis the filamentous epibionts of T. benedii were identified as gamma- and epsi-

lonproteobacterial ectosymbionts (Chapter 3 (Ruehland and Dubilier, 2010)).  

2.1 T. benedii ectosymbionts are closely related to deep-sea in-
vertebrate associated bacteria 

Comparative 16S rRNA sequence analysis and FISH identified the dominant 

ectosymbionts as a filamentous Gammaproteobacterium (named the Gamma 1 ec-

tosymbiont) and a filamentous Epsilonproteobacterium (named the Epsilon 1 ecto-

symbiont). Unexpectedly, both ectosymbionts were not closely related to known 

symbiotic or free-living shallow water bacteria but instead fell into clades dominated 

by bacteria associated with deep-sea invertebrates (Fig. 4 and 5). The T. benedii 

Gamma 1 ectosymbiont is the first described non-vent shallow water ectosymbiont 

whose 16S rRNA sequence falls into a clade with sequences from deep-sea invetre-

brates such as the crab Shinkaia crosnieri, the crab Kiwa hirsuta, the shrimp Rimi-

caris exoculata and the barnacle Vulcanolepas oshehai. Furthermore, this is the first 

epsilonproteobacterial ectosymbiont found in shallow water sediments.  

The T. benedii Epsilon 1 ectosymbiont affilated with a clade very similar to that 

of the Gamma 1 ectosymbiont. The two clades included bacterial sequences from 

the same deep-sea hydrothermal vent invertebrate hosts such as the species men-

tioned above. The hosts within the Gamma 1 and Epsilon 1 clades are not closely 

related to each other. Thus, these associations must have been established inde-

pendently multiple times. Bacteria from these clades have likely specialized in estab-

lishing associations with invertebrates irrespective of their habitat and geography. 

Thus, neither host affiliation nor biogeography seem to have influenced these sym-

bioses. Instead, environmental factors, i.e. highly fluctuating concentrations of oxi-
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dants and reductants may have been a driving force in the establishment and evolu-

tion of these associations. 

2.2 Thiothrix/Leucothrix and Thiovulgaceae - bacterial clades 
forming specific associations with invertebrates 

The closest cultured relative of the Gamma 1 ectosymbiont is Leucothrix mu-

cor. Leucothrix species attach to all kinds of surfaces (see Introduction 1.3.4). The 

next closest free-living relatives are Thiothrix spp. which have been shown to associ-

ate with invertebrate as well (Gillan and Dubilier, 2004; Dattagupta et al., 2009). 

Thus, colonization of surfaces seems to be a common trait to Leucothrix-Thiothrix 

bacteria. This seems to be even more pronounced within the invertebrate-associated 

clade the Gamma 1 ectosymbiont affiliates with which is dominated by invertebrate 

associated bacteria. Likewise the clade that the Epsilon 1 ectosymbiont belongs to 

within the Thiovulgaceae appears to be indigenous to invertebrate surfaces. Fur-

thermore, members of these two ectosymbiont dominated clades co-occur on many 

invertebrates indicating that they form bacterial communities that characteristically 

inhabit invertebrate hosts. It has recently been suggested that bacteria of the 

Thiovulgaceae (Epsilonproteobacteria) and the Leucothrix-Thiothrix (Gammaproteo-

bacteria) clades preferentially form associations with invertebrates (Goffredi, 2010).  

For a long time marine ectosymbioses appeared to primarily consist of only 

single phylotypes (Polz et al., 1994; Polz and Cavanaugh, 1995; Polz et al., 2000; 

Rinke et al., 2006). With recent extensive molecular analyses of deep-sea inverte-

brates such as the crabs Kiwa hirsuta and Shinkaia crosnieri and the shrimp Rimi-

caris exoculata it was revealed that the associated bacterial layers of these animals 

often harbor a more diverse bacterial community (Goffredi et al., 2008; Watsuji et al., 

2008; Petersen et al., 2009). This bacterial community can be limited to a few spe-

cific phylotypes  as shown for R. exoculata where FISH with specific probes was im-

plemented (Petersen et al., 2009)  

These bacterial associations with deep-sea invertebrates are not random. 

While specific bacterial phylotypes attach to hosts of different phyla, only certain 

members of each phylum appear as suitable hosts. It has been reported that K. hir-

suta specimen were densely covered with filaments, whereas other co-occurring 

crustaceans lacked such colonization. Thus, these associations might involve spe-

cific recognition interactions between bacteria and host similar to those reported for  
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Figure 4. Phylogenetic placement of gammaproteobacterial 16S rRNA sequences from T. benedii tail 
ends based on a ML-tree (sequences from this study in red in parentheses the number of sequences 
with >99.0% to the given sequence). Bootstrap values based on 100 replicates. Scale bar = 0.10 es-
timated substitutions per site.  
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Figure 5. Phylogenetic placement of epsilonproteobacterial 16S rRNA sequences from T. benedii tail 
ends based on a ML-tree (sequences from this study in red in parentheses the number of sequences 
with >99.0% to the given sequence). Bootstrap values based on 100 replicates. Scale bar = 0.10 es-
timated substitutions per site. 

the highly specific associations of some marine nematodes (Nussbaumer et al., 

2004) and coral-dinoflagellate symbiosis involving lectin/glycan recognition systems. 

They might also involve regulatory mechanisms that are essential for successful for 

colonization as in Vibrio fischeri where one regulatory gene could alter its squid host 

range (Mandel et al., 2009). More studies (with specific FISH probes) in diverse 

chemosynthetic environments and the respective hosts are necessary to further in-

vestigate the presence of specific phylotypes. Additionally, regulatory genes and 

molecules involved in mechanisms mediating recognition and binding (such as 
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lectin/glycan systems) could be searched for molecularly, immunohistochemically or 

in cultivation experiments. 

2.3 Host modification and possible interactions between 
T. benedii and its ectosymbionts 

Some of the deep-sea invertebrates such as the shrimp R. exoculata  have 

morphologically adapted to hosting ectofilaments. Appendages covered by bacteria 

were enlarged, suggesting that the host adapted to provide more space for bacterial 

ectosymbionts, possibly for eventually harvesting them (Petersen et al., 2009). While 

such an anatomical modification is not reported for T. benedii, the Epsilon 1 fila-

ment’s penetration of the cuticle suggests a specific relationship. Unlike the 

T. benedii Gamma 1 filaments and other epibiotic bacteria, the Epsilon 1 ectosymbi-

ont has gained access to the subcuticular space. This indicates a specialization for 

host invasion. The presence of globules around the bacterial base may further indi-

cate communication or transfer of products between host and symbiont (Dubilier, 

1986) . 

Nevertheless, it remains unclear whether T. benedii benefits from this associa-

tion by exchange of metabolites. Clearly, there is no dependency as the symbiosis is 

only facultative. The host like other sediment dwellers ingests bacterially enriched 

sediment and detritus for nutrition. If environmental conditions were to shift to con-

stant high sulfide concentrations and the association were thus sustained over longer 

periods, it might prove beneficial to bacteria and worm to interact more tightly. They 

could cooperate in exchanging metabolites in mutualism, especially if the bacteria 

have autotrophic potential like many beneficial symbionts in chemosynthetic envi-

ronments. Such mutualistic ectosymbioses have evolved in shallow water sediments 

in nematodes and ciliates with sulfur-oxidzing symbionts of different gammaproteo-

bacterial lineages (see Introduction1.3.4 and 1.3.5).  

2.4 Metabolic potential of the T. benedii ectosymbionts 
As discussed in Chapter 3 (Ruehland and Dubilier, 2010) the bacterial com-

munity of T. benedii has the potential for autotrophy and sulfur metabolism. Both 

cbbL and cbbM genes encoding subunits of the CO2-fixing enzyme RubisCO form I 

and II respectively, were successfully amplified from T. benedii tail ends. However, 

metabolic potential could not be resolved in detail for the T. benedii ectosymbionts, 

because the retrieved gene sequences could not be unambiguously assigned to sin-
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gle 16S rRNA phylotypes. Immunohistochemical methods in combination with FISH 

could show which filaments actively fix carbon. In this study first attempts to assign 

autotrophic potential to specific T. benedii associated bacteria using RuBisCO form I 

and II antisera were made. In these preliminary experiments single filaments could 

be labelled indicating autotrophic metabolism (see next section). However, more 

controls (e.g. preimmune serum etc.) are necessary to rely on these results. Another 

possibility to identify autotrophic bacteria on the worm’s posterior end would be culti-

vation experiments with labelled 14C02 followed by microautoradiography combined 

with FISH. 

Preliminary immunohistochemical detection of autotrophic potential in 
situ: RubisCO form I and II antiserum-labelling of T. benedii ectosymbi-
onts 

HRP-conjugated antibodies against anti-RubisCO form I and II antisera were 

applied to sections of T. benedii tail ends. The RubisCO form I antiserum (Fig. 6A-C) 

labeled filamentous and small coccoid cells in the mucus membrane. Additional spe-

cific FISH failed. Whether the smaller cocci are the Gamma 2 epibionts which have a 

similar morphology (Gamma 2 epibionts described below) or the filaments of 

Gamma 1 origin can thus only be clarified in future studies optimizing additional hy-

bridization with specific 16S rRNA targeting probes. However, the morphology of the 

filament in the RubisCO I immunohistochemic labeling is different from the typical 

Gamma 1 ectosymbiont. The filament is much thinner and thus might result form a 

different rare bacterial epibiont. 

There was scattered labelling of filaments with the RubisCO form II antiserum 

on filaments resembling the thicker Gamma 1 ectosymbionts (see Fig. 2E-H in Chap-

ter 3 (Ruehland and Dubilier, 2010), this section Fig. 6D). FISH with the Gamma 1 

probe (targeting the 16S rRNA) after antiserum labelling was not successful. Differ-

ences in signal intensity and distribution (RubisCO II detection in the filaments was 

scattered and showed low signal intensities) could be due to the either cytosolic or 

organelle bound state of RubisCO (in carboxysomes, see Introduction1.3.7). So far 

only the morphological resemblance of the RubisCO form II labeled filaments (thick 

and long, see Fig. 2E-H in Chapter 3 (Ruehland and Dubilier, 2010) and this section 

Fig. 6D) with the Gamma 1 ectosymbionts suggests that the Gamma 1 ectosymbi-

onts of T. benedii might have autotrophic potential. It is also possible that like many 

thiotrophic bacteria they use both forms of RubisCO (form I and II) and that the reac-
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tion with the antibody for RubisCO form I failed because of methodological problems. 

However, this is highly speculative at this point. 

There was also a strong rod shaped signal in the mucus membrane which 

might belong to the Gamma 2 epibiont again based on morphological resemblance 

(chapter 3 (Ruehland and Dubilier, 2010), Fig S3 and this study Fig. 6E). As true for 

all other bacteria that showed a signal in this immunohistochemic labeling only future 

studies with additional FISH will help to conclusively identify this bacterium. 

 
Figure 6. Flourescence microscopy images of immunocytochemical reaction of bacteria on T. benedii 
tail ends with RubisCO form I (A-C) and form II antisera (D, E). The RubisCO rabbit-antibody was 
labelled with HRP-conjugated anti-rabbit goat antibody. Signal intensity was amplified by HRP signal 
amplification with Alexa 488. These are only preliminary results. Further refinement and controls are 
necessary to improve and validate signals. 

2.5 Epibiotic community in the mucus layer of T. benedii 
In addition to the Gamma 1 and Epsilon 1 ectosymbionts, several other 

gamma- and epsilonproteobacterial were found in T. benedii 16S rRNA clone librar-

ies (Fig. 4 and 5). I designed specific probes for all dominant and symbiont-related 

gamma- and epsilonproteobacterial sequences. An additional coccoid or small rod 

shaped gammaproteobacterial epibiont in the mucus membrane was identified and 

named T. benedii Gamma 2. All other specifically designed probes did not result in 

reproducible signals. 

This lack of FISH signal from specific probes for gamma- and epsilonproteobacterial 

sequences could be due to several factors: 1) Contamination in the library as the 

worm mucus is sticky and sediment or detritus might not have been washed off com-

pletely. 2) De- and rehydration as well as additional enzymatic treatment and the 
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washing procedures for FISH might have decreased bacterial abundance within the 

mucus cover (washing off) or reduced signals by decomposition of cell membranes. 

3) Activity of the additional bacteria was low and thus the bacteria had a low ribo-

some content (bacterial activity and ribosome content generally correlate (Srivastava 

and Schlessinger, 1990; Amann et al., 1995; Felske et al., 1996)). 4) Overall low 

abundances (either on some individuals only or only in some regions). 5) Signal dif-

fusion in the mucus area might have increased any problems with low signal inten-

sity. Despite various elongated enzymatic treatments signal diffusion could not be 

completely eliminated. Excessive digestion of mucus had to be prevented as it also 

damages the bacterial cells resulting in signal reduction again. 

Other phylotypes from the T. benedii tail end 16S rRNA gene library belonged 

to the Bacteroidetes (Suppl. Fig. S1 in Chapter 3 (Ruehland and Dubilier, 2010)) or 

the Deltaproteobacteria (Suppl. Fig. S2 in Chapter 3 (Ruehland and Dubilier, 2010)). 

Hybridization with probes specific for these two groups resulted in regular signals in 

the mucus membrane (Suppl. Fig. S3 in Chapter 3 (Ruehland and Dubilier, 2010)). 

The phylogenetic positioning of sequences of Bacteroidetes and Deltaproteobacteria 

was very diverse in both groups the T. benedii sequences spread throughout the 

16S rRNA trees. However, some CFB bacteria fell into clades with sequences from 

the same deep-sea hosts as those from the Gamma 1 and Epsilon 1 clades, namely, 

Shinkaia crosnieri, Kiwa hirsuta, and Chrysomallon squamiferum. In the deltaproteo-

bacterial tree some sequences were related to sequences from gutless oligochaetes 

(Delta 3, Delta 5, Delta 6). This could be pure coincidence as members of these 

phyla are common inhabitants of marine sediments. To test whether certain phylo-

types actually appear as epibionts on the surfaces or in mucus membranes while 

others are more or less ‘contaminants’, specific probes could be designed and ap-

plied (to all possible hosts available) in a comparative study.  

However, associations of heterotrophic bacteria with animals in general are 

likely to be common, as the animal waste products and mucus zones offer plenty of 

substrates. The mucus is rich in host waste products and detritus loaded with organic 

matter easily sticks to it. Syntrophic relations between bacteria might further enhance 

the attractiveness of this habitat. As these areas are exterior host defenses are also 

probably less eminent. 



Results and Discussion 

 145

3 Synthesis 
A variety of bacteria-invertebrate associations exist ranging from loose, facul-

tative ectobiosis to obligate endosymbiosis. In this study two marine oligochaete 

symbioses representing two ‘extremes’ were studied, an obligate endosymbiosis and 

a facultative ectosymbiosis. The advantage for the gutless oligochaetes seems to be 

obvious for the primary and some of the secondary symbionts (see below). The 

benefit for the hosts in the associations with additional symbionts such as Alphapro-

teobacteria and spirochetes in gutless oligochaetes, as well as ectosymbionts of gut-

bearing oligochaetes remains to be resolved. For the bacteria however, associations 

with animals have several advantages and in general they are the initiators of asso-

ciations when they first attach and in some occasions successfully invade the host. 

 In general, the short generation times of bacteria, their ability for gene ex-

change via horizontal gene transfer, gene rearrangements and thus increasing 

metabolic versatility enable them to rapidly adapt to various habitats. Often heat 

shock proteins, chaperones and DNA repair systems allow them to respond quickly 

to short term environmental stress such as higher temperature or radiation. Many 

free-living bacteria have resting stages. Some such as Clostridia, and members of 

the Bacteriales can form highly resistant spores, while others including some Gam-

maproteobacteria (various Pseudomonadales) have developed other structures such 

as cysts to endure long-term anabiosis (Suzina et al., 2006). This allows them to en-

dure more intense or longer periods of stress such as famine. These resistant stages 

are also responsible for the passive dispersal via air, water currents and animals 

where at new destinations they await better conditions for revival (e.g., only recently, 

DNA of extremophiles was found in arctic sediments (Hubert et al., 2009)). To those 

bacteria that have the ability to pass immunological defences, animals present a safe 

space to settle and gain access to substrates. 

Chemosynthetic symbionts, once engaged with an invertebrate host have an 

advantage over free-living bacteria. These specialized symbiotic bacteria are often 

hard to encounter in the environment, making up only a small proportion of the free-

living bacterial community – if they possess free-living stages at all. However, they 

can reach high densities in or on host tissues which are often specialized to provide 

their symbionts with substrates. Often the symbionts are transmitted to the next host 

generation, giving them another advantage over the free-living bacteria. Less spe-
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cialized heterotrophic bacteria can also benefit from associations with animals 

through a constant supply of host (or their symbionts’) exudates (see above, 2.5). 

These associations are often commensal unless the host can benefit from detoxifica-

tion effects of accumulating waste products, such as anaerobic metabolites and am-

monia. 

In chemosynthetic symbioses, the mutualistic nature of the relationship clearly 

presents an advantage to the host. While associations with one specialized bacte-

rium might already provide an advantage to both partners, it has become clear in the 

last decade that most invertebrate associations are not limited to one bacterial sym-

biont. Instead, several phylotypes are present in many invertebrate associations. 

Their discovery was at first surprising and the function of some symbionts remains to 

be clarified, however, a myriad of new cultivation independent methods have greatly 

contributed to the understanding of symbioses with multiple symbionts. Bacteria 

taken up from the environment can aggregate with existing symbionts to build bacte-

rial consortia that increase their own net gain through syntrophy (like their free-living 

analogues). By incorporation into the symbiosis metabolism they further increase 

host versatility. In this way the host is enabled to optimally exploit the substrates 

available in the environment which by itself it could not use.  

Symbiotic systems are evolutionary processes that in the beginning might of-

ten rely on chance. For example, introduction of a new bacterium as a matter of 

chance might under certain environmental conditions not be advantageous, but very 

well so under different conditions, then helping the host to respond to changes such 

as fluctuating substrate availability. Symbioses are not static systems, but like any 

other biological organism, subject to dynamic environmental conditions, which they 

have to respond to. While some bacteria are lost others persist in a constant ‘survival 

of the most cooperative’ such as shown recently in a laboratory experiment with un-

related bacteria (Harcombe, 2010). 
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4 Concluding Remarks 
In this PhD study associations of different oligochaetes with bacteria from 

Mediterranean and North Sea sediments were studied. Molecular investigation of the 

Mediterranean gutless oligochaete Olavius algarvensis revealed that it harbored mul-

tiple bacterial symbionts, at the time considered a rare phenomenon in marine 

chemosynthetic symbioses. Furthermore, deltaproteobacterial sulfate reducers were 

discovered, at the time surprising because sulfide is toxic to eukaryotes. However, 

this study demonstrated that sulfide produced in the worm by the deltaproteobacte-

rial symbionts provided the sulfide-oxidizing symbionts with an energy source. Thus 

the deltaproteobacterial symbionts serve an essential function by enabling the inter-

nal cycling of reduced and oxidized sulfur compounds between themselves and the 

sulfur-oxidizing symbionts. This syntrophic sulfur cycle between the symbionts ex-

plained how the worm symbionts could successfully colonize sediments low in sul-

fide.  

This study’s comparative examination of the co-occurring O. algarvensis and 

O. ilvae showed that both hosts coped with sulfide limitation in a similar manner. 

Both harbor two distinct gamma- and deltaproteobacterial symbionts with the meta-

bolic potential for sulfur syntrophy. As the hosts are not closely related and different 

deltaproteobacterial symbionts are involved, these associations must have been es-

tablished independently of each other in convergent evolution. Thus, the 

O. algarvensis symbiosis - strange as it first appeared - is not the result of an exotic 

single event in evolution. Instead, environmental conditions have favored the estab-

lishment of endosymbioses with sulfate reducers in this habitat. 

The identity of the filamentous T. benedii symbionts was unclear at the begin-

ning of this study. The bacteria were speculated to be sulfur oxidizers based on their 

morphological resemblance to free-living sulfur oxidizers and sulfidic conditions in 

the worms’ habitat. Using molecular methods and FISH the filamentous ectosymbi-

onts were shown to belong to two phylotypes, a Gammaproteobacterium attached to 

the cuticle and an Epsilonproteobacterium penetrating it. Phylogenetic analyses re-

vealed that both phylotypes were related to deep-sea ectosymbionts. Furthermore, 

Epsilonproteobacteria of this affiliation were only known from deep-sea environments 

and not previously described from Wadden Sea sediments. Thus, this study showed 

that these bacteria and their epibiotic associations with invertebrates are not limited 
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to the deep-sea. Instead, they are probably more wide spread than previously as-

sumed. We concluded that these associations are influenced neither by host affilia-

tion nor biogeography, but instead by the environmental conditions, such as strongly 

fluctuating oxidants and reductants in their habitat. 

In conclusion, the results of this thesis indicated that in the different oli-

gochaete symbioses studied, environmental factors had a strong impact on the com-

position of the symbiont community. Furthermore, both of these oligochaete popula-

tions from coastal marine habitats are ideal models to study symbioses with multiple 

symbionts as they are cheap and easy to collect. Gutless oligochaetes in general are 

ideal model systems to study the function of different bacteria in symbioses with mul-

tiple endosymbionts as the bacterial diversity is relatively low. T benedii in turn could 

serve as a model for ectosymbioses with Gamma- and Epsilonproteobacteria of the 

Gamma 1 and Epsilon 1 clades that appear characteristic also to deep-sea inverte-

brates. 
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5 Outlook 
In this thesis, the symbiotic communities of O. algarvensis and O. ilvae and 

their metabolic potential were characterized. Building on these results, the next level 

would be to investigate if the identified metabolic genes are expressed and if so un-

der which conditions, by looking at mRNA (transcriptomics) or protein expression 

patterns (proteomics). A first step in this direction was achieved in a metaproteomic 

study of the bacterial symbionts of O. algarvensis (Kleiner, 2008). 

For localization of gene expression in situ, e.g. of RubisCO or Sox in the 

gammaproteobacterial symbionts, a combination of mRNA and 16S rRNA FISH 

could be applied (Pernthaler and Amann, 2004). Another possible method to validate 

metabolic function of particular symbionts is immunohistochemistry where tissue sec-

tions are treated with antisera against enzymes. This was already applied success-

fully to demonstrate the presence of the CO2-fixing enzyme RubisCO in 

O. algarvensis Gamma 1 symbionts with gold-labeled antibodies and TEM-FISH (see 

Results and Discussion) and could be extended to other enzymes in question such 

as nitrate reductase. Identifying enzymes of the rTCA cycle or the reductive Acetyl 

CoA pathway could confirm the autotrophic potential of the deltaproteobacterial sym-

bionts. 

To investigate if substrates are metabolized by the symbionts as indicated by 

metagenomic and molecular results, for example urea by the gammaproteobacterial 

symbionts or volatile fatty acids by the deltaproteobacterial symbionts, the worms 

could be incubated with radiolabeled substrates. Subsequent microautoradiography 

with FISH could trace the uptake by the bacterial symbionts. In longer incubations, 

the substrates then might be further traced to the host thus demonstrating a mutual-

istic function of the symbionts. Fixed carbon in the symbioses has been tracked us-

ing radiolabeling and Nano-SIMS showing high CO2 fixation activity of the primary 

symbionts (Bergin, 2009). Recent improvements in image analysis showed the trans-

fer of freshly fixed carbon from the primary symbionts to the host (C. Bergin and 

L. Polerecky, personal communication). Future studies will focus on potential carbon 

and nitrogen substrates such as CO, acetate, propionate and urea to trace the fixa-

tion and uptake by the different symbionts and subsequent transfer to the host. 

There was no information from the metagenomic studies on the spirochaetes’ 

metabolism in O. algarvensis. However, these symbionts occur in various oligo-
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chaetes worldwide and thus might play an important role for their hosts. To selec-

tively investigate these symbionts, they could be isolated by micromanipulation 

(Fröhlich and König, 1999; Ishøy et al., 2006), a method already tested once for 

I. leukodermatus symbionts (Bergin, 2009), immunomagnetic cell capture (Pernthaler 

et al., 2008) or cell sorting using flow cytometry (Brehm-Stecher and Johnson, 2004). 

Another method is microfluidics (Chao and Ros, 2008) which is currenlty imple-

mented by the Symbiosis Group in a cooperation with Paul Blainey to separate 

O. algarvensis symbionts. Single cells can also be separated from tissue by laser 

capture microdissection (LCM) (Espina et al., 2006). A combination of LCM with ge-

nomic techniques was proposed as an ideal way to study symbiont communities 

(Thornhill et al., 2008). Recently a complete symbiont genome was successfully as-

sembled by single cell genomics (Woyke et al., 2010).  

The same methods can be applied to the study of the filamentous ectosymbi-

onts of T. benedii where first immunohistochemical localization of RubsisCO has 

been done in this thesis. This method needs to be optimized for RubisCO and used 

in junction with 16S rRNA FISH (results and discussion 2.3) and can then be ex-

tended to other enzymes. Another issue which has not been addressed experimen-

tally, but is especially important in this facultative ectosymbiosis is recognition be-

tween symbiont and host and the factors leading to colonization. Does the host se-

lect and control the symbiotic population? Here, comparative genomics of symbiotic 

oligochaetes and related non-symbiotic oligochaetes might generate new insights. 

While differences in the symbiotic and nonsymbiotic host genetic components can 

already be a good indication, genes known to be involved in animal-host interaction 

could be specifically searched for in host and symbiont genomes, e.g. lectin-glycan 

systems that occur in a variety of animal-bacteria symbioses (Visick and McFall-

Ngai, 2000; Bulgheresi et al., 2006; Wood-Charlson et al., 2006; Chaston and Good-

rich-Blair, 2009). Other indicators for host-bacteria interaction are the type III secre-

tion systems found in symbiont and pathogen genomes. 

Experiments with cultured symbiotic and aposymbiotic hosts with different gly-

cans could reveal whether they loosen or prevent attachment of bacteria by compet-

ing with the host receptor molecules. This has been successfully implemented to 

study the attachment mechanism of nematode ectosymbionts (Nussbaumer et al., 

2004). 
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IX Appendix 

 
The 16S rRNA approach (based on Amann et al. (1995)): 

In the 16S rRNA approach bacterial DNA is extracted from environmental samples 

such as sediment or host tissue and phylogenetic and functional marker genes such 

as for the 16S rRNA are amplified using polymerase chain reaction. In inserting the 

different 16S rDNA genes into bacterial vectors such as plasmids, the genes are 

separated as each vector only takes up one copy. Cloning these vectors into chemi-

cally or electrically competent bacteria, allows the multiplication and storage of the 

genes which then can be extracted again and sequenced. Computer software such 

as the ARB program can then be used to phylogenetically analyze the genes 

(Ludwig et al., 2004). This program can also design specific probes for the bacterial 

16S rRNA. New sequences are compared to those already in the public databases 

such as GenBank and ideally a region of about 18 oligomers with full match to the 

target- and at least one mismatch to nontarget-16S rRNA sequences is calculated. 

By labelling these oligomers with a fluorescent dye, the origin of the 16S rRNA can 
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be identified in situ (fluorescence in situ hybridization – FISH). By labeling the probes 

with DIG which is then detected by a horseradish peroxidase labeled antibody, the 

signal can subsequently be amplified by catalyzed reporter deposition with fluoro-

chrome-labeled tyramides. This step increases the signal substantially and can be 

used when the monolabeled signal is too low. Thus, the 16S rRNA approach allows 

the assessment of the abundance of uncultivable and rare microorganisms from dif-

ferent environments in situ. This is important for ecological studies aiming to identify 

the key players in ecosystems because most organisms are to date unculturable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995) Phylogenetic identification and 
in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 
143-169. 
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar et al. 
(2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-
1371. 



Danksagung 

 161

 

Danksagung 
Ein großes Dankeschön an alle die zur Entstehung dieser Arbeit beigetragen haben! 

Für die freundliche Aufnahme in seine Arbeitsgruppe am MPI und die stete Unterstützung 
und das Vertrauen in meine Arbeit möchte ich mich ganz besonders bei Prof. Dr. Rudi 
Amann bedanken. Besonderer Dank gilt auch meiner Doktormutter, Dr. Nicole Dubilier, die 
mein Interesse, das vorher vor allem den Parasiten galt, für Symbiosen geweckt hat und mir 
die Arbeit am MPI und später in ihrer Arbeitsgruppe Symbiose ermöglicht hat. Im 
wissenschaftlichen Austausch konnte ich von ihrem analytischen Verstand und teils 
revolutionären Ideen profitieren. Symbiosen mariner darmloser Oligochaeten sind das 
Spezialgebiet von Prof. Dr. Giere und Prof. Dr. Christer Erséus, die meine Arbeit ebenfalls 
ein gutes Stück begleitet und unterstützt haben, wofür ich ihnen danken möchte.  

Danke auch an die Mitglieder der Prüfungskommission Prof. Dr. Ulrich Fischer,  
Dr. Christian Borowski, Manuel Kleiner und Julia Zimmermann.  

Prof. Dr. Friedrich Widdel und Dr. Ralf Rabus danke ich herzlich für die Einführung in 
die Welt der Sulfatreduzierer und deren anaerober Kultivierung. Bei Dr. Dirk de Beer und Dr. 
Tim Ferdelman bedanke ich mich für gemeinschaftlichen Laborarbeiten und anregende 
Diskussionen. Einen besonderen Dank für die Vermittlung eines mikrobiologischen 
Auslandsaufenthaltes und sein stets freundliches Interesse an und Enthusiasmus für meine 
Arbeit möchte ich Prof. Dr. Karlheinz Altendorf aussprechen. 

Herzlicher Dank an Dr. Werner Armonies für die Benutzung seines Labors auf Sylt. 
Danke auch an das Team von HYDRA, Elba. 

Sehr am Herzen liegt mir, mich für die große Einsatzbereitschaft und hochwertige 
Laborunterstützung vor allem durch Silke Wetzel zu bedanken. Auch Jörg Wulf, Daniela 
Lange und Lisa Kemp und viele andere fleißige Laborkräfte waren eine große Hilfe, die auf 
die kleinen und großen Fragen zwischendurch stets schnell antworteten oder gemeinsam 
eine Lösung suchten. Während meiner Schwangerschaften haben mich Dagmar Wöbken, 
Martha Schattenhöfer, Claudia Bergin und die schon erwähnten TAs super im Labor 
unterstützt. Ein großes Dankeschön hierfür. 

Wie könnte ich die Kollegen der molekularen Ökologie, die ein paar Jahre lang meine 
Tage ausfüllten vergessen? Besonderer Dank für wissenschaftliche Unterstützung aber auch 
den einen oder anderen ‚comic relief’ in der Teeküche möchte ich unseren Mollie-
Dinosauriern aussprechen: Bernhard Fuchs und Frank-Oliver Glöckner. Desweiteren 
allergrößter Dank an meine Kollegin Claudia Bergin für Diskussionen und Korrekturlesen 
sowie einen eiskalten Spaziergang mit Hund an einer wunderschönen eisschschollen-
bedeckten Elbe, den ich mir zwar vorgenommen, aber sonst nicht gemacht hätte. Viele 
weitere (Symbio-) Mollies haben mit Diskussionen, einigem Korrekturlesen zwischendurch - 
mit oder ohne Kaffee - oder metagenomic und computational problems geholfen. Danke 
dafür an Hanno Teeling, Katrin Knittel, Marc „Scully“ Mussmann, Regina Schauer, Christian 
Lott, Jill Petersen, Anna Blazejak, Sebastian Behrens, Niculina Musat, Manuel Kleiner, 
Sabine Lenk, Renzo Kottmann, Michael Richter, Jost Waldmann, Quique Llobet-Brossa, 
Andreas Ellrott, Marga Bauer, Tanja Woyke und Thorben Stührmann. 
 

Ohne die große Unterstützung, das Verständnis und die Geduld meiner Familie hätte 
ich diese Arbeit nicht geschafft! Liebevoller Dank gilt insbesondere Philipp, Paula und Pina 
und meiner Mutter Stephanie. Dem Rest meiner großen (Heuschrecken-) Familie ein 
Dankeschön für positives feedback und wunderschöne, regenerierende Urlaubspausen! 
 








