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Summary 

Functionalization of nanostructures is a crucial step in many electronic, 
photonic, and sensing applications. Experimentally, nanodevices with a specific 
or multiple functionalities have been designed by capping semiconductor 
surfaces with organic molecules, polymers or biomolecules. In this scenario, ZnO 
shows a huge technologic potential, since its electric, magnetic and 
optoelectronic properties can be optimized via functionalization. In principle, 
molecular recognition properties can be also incorporated to ZnO 
nanostructures, by attaching biomolecules to their surfaces. For all this reasons, 
ZnO nanomaterials have been considered extremely promising for applications in 
nanotechnology; and understanding the influence of surface modification on their 
properties is a prerequisite for the development of new ZnO-based functional 
nanodevices. 

 In this work, we have used electronic structure simulations to investigate the 
role of organic functionalization on the electronic and structural properties of 
ZnO surfaces and nanostructures. Density Functional Theory (DFT) calculations 
have been employed to study the interactions of non-polar ZnO surfaces with 
different organic functional groups – i.e. –OH, –NH2, –SH, –COOH and –CN – 
showing the surface stabilization mechanisms involved in each case and 
identifying the most promising anchoring groups for ZnO functionalization in 
different chemical environments.  

Aiming to large scale simulations on functionalized ZnO, we have developed a 
Self-Consistent-Charge Density Functional based Tight Binding (SCC-DFTB) model 
for ZnO plus organics. The model has been validated by comparison against 
standard DFT calculations, achieving good performances in simulating Zn-
containing bulk solids and molecular complexes, ZnO surfaces and 
nanostructures, and the adsorption of organic acids on (1010)-ZnO surfaces. We 
have also employed this SCC-DFTB model in order to characterize native defects 
in ZnO hexagonal nanowires, finding that surface defects are expected to be 
dominant. Besides, oxygen vacancies and Zn interstitials are favored under Zn-
rich conditions, while zinc vacancies and oxygen interstitials are the most stable 
defects at O-rich environments. Finally, we have studied the interaction of surface 
oxygen vacancies with organic acids, finding that an oxidation-reduction reaction 
promotes a defect healing process, which allowed us to propose a mechanism to 
explain the suppression of photoluminescence anomalies observed for polymer 
coated ZnO nanowires.  
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Preface  
 

This text is the result of my work as Doktorand – i.e. doctoral candidate – in 
the Bremen Center for Computational Materials Science (BCCMS), University of 
Bremen.  

Along the last 3 and ½ years, I have dedicated all my efforts to understand – 
via electronic structure simulations – the influence of organic functionalization 
on the structural and electronic properties of ZnO surfaces and nanostructures. 
That is indeed a very up-to-date and exciting topic: The technological potential of 
ZnO based materials is huge – especially for applications in sensing and 
optoelectronics. Additionally, the knowledge on the ZnO surface chemistry is still 
in its infancy in comparison with other commonly employed nanomaterials – 
such as carbon or silicon. Currently there are still several open questions and 
much research space for those interested in ZnO based hybrid materials. 

Of course, here we cover just a small part of this formidable challenge; but a 
necessary one. Although from the very beginning our target has been simulating 
materials with possible applications in real life, it is important to keep in mind 
that mastering technologies is hardly possible without understanding the basic 
science behind them – and that is particularly true in nanotechnology. Therefore, 
we have focused on fundamental aspects of functionalized ZnO – i.e. ligand-
substrate interactions, defect spatial distributions, electronic structure effects, 
etc. By reporting our research here – in chapters 3, 4, 5 and 6, and in all scientific 
publications derived from this work – I hope I am giving my humble contribution 
to the scientific discussion on hybrid ZnO materials and on materials science in 
general. 

However, this work has also another important aspect for me: It is an 
opportunity to reach other students and share my experience with them. During 
my scientific training here in Bremen I have got to know several people 
interested on Computational Materials Science (CMS), including my fellow 
students here at the BCCMS and those from other universities – who came to visit 
us for a while. From the contact with these students, I have learned that most of 
us share a particular basic difficulty: Computational Materials Science is a broad 
interdisciplinary research field, where concepts from physics, chemistry, biology 
and engineering meet. Of course, that is one of the reasons why CMS is so 
exciting; but on the other hand, students coming to this field usually have a hard 
beginning while they must learn topics far beyond their original background 
disciplines. In fact, it still surprises me how often the same questions I had are 
brought back to me by some of my fellow students. 

After us, there will be other students coming to the BCCMS and to other CMS 
research groups. Thinking about these students – or about leaving something 
helpful for them – I have organized the first chapter of this dissertation as a small 
literature review, not only on hybrid ZnO but on hybrid and nanomaterials in 
general. With this approach, I intend to: i) contextualize my own work on a wider 
perspective, and ii) introduce some general ideas on hybrid materials, referring 
to both basic texts and advanced research papers where the reader can find a 
more detailed information. Accordingly, I’ve included also a brief overview on 
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computational materials science, commenting on the different approximation 
levels available to simulate materials in different size and time scales.  

Following the same philosophy, in Chapter 2 I have tried to present the 
theoretical background of this work by extending it a little beyond the limits of 
the Kohn-Sham Density Functional Theory (DFT). I have incorporated some 
general concepts of quantum mechanics – like the Born-Oppenheimer 
approximation – and also a brief discussion on the Hartree-Fock method, from 
where some important concepts in DFT came originally. There is also an entire 
section dedicated to basic solid-state theory and periodic quantum calculations, 
which may be helpful for those readers with less background in physics. In the 
same section, an introduction is given to both the Tight Binding model – a very 
useful theoretical tool in solid state physics – and to the Self Consistent Charge 
Density Functional Tight Binding method, which will be widely employed along 
this thesis. The idea was constructing bridges between the different theoretical 
concepts applied along this work. Accordingly, in Chapter 2 I have tried to 
present the demonstration of the most important equations in a step-by-step 
fashion, so that the text becomes more comprehensive for those less familiar with 
quantum mechanical formalisms. 

Finally, it is necessary to point out that neither the literature review on 
Chapter 1 nor the theoretical discussion on Chapter 2 are original research 
material. Instead, their contents are based on several sources cited along the text, 
from which I have been learning in the last few years. By sharing my 
understanding on these works, I hope I am not only providing a comprehensive 
basis for my research work presented in Chapters 3,4,5 and 6, but also that I will 
help some of the students who are going to simulate hybrid materials in the near 
future. 
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Chapter 1 

 

Introduction 

 

“Dante can be understood only within the 
context of Italian thought, and Faust 
would be unthinkable if divorced from its 
German background; but both are part of 
our common cultural heritage.” 

Gustav Stresemann – German Statesman.  

 

 

 

 

 

In this chapter, the scientific context of this work is overviewed. Starting from 
a broad and general perspective, we will present different classes of materials 
which are related to functionalized ZnO surfaces and nanostructures – the object 
of this study. A brief discussion on relevant technological examples will be given 
in each case, intending to demonstrate the main motivations of this project. 
Besides, a brief introduction on computational materials science is given. At the 
end of the chapter, we will outline the structure of this work.  

1.1 – Hybrid Materials 

As the name already suggests, hybrid materials are complex systems formed 
by different chemical species. They are present in several daily life situations, 
such as when we brush our teeth or paint our living rooms with a white paint. 
Hybrid materials are also present in our own bodies, constituting the complex 
structures of our bones, cartilages and teeth. The greatest advantage of hybrid 
materials is joining the functionalities of different constituents into a single 
improved element, like in ordinary white paints for example, where the optical 
properties of a white pigment – usually TiO2 – are combined with the viscoelastic 
and adhesive properties of a latex rubber, producing a coating material. 
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Figure 1.1 – Different classes of hybrid materials: a) Composites, b) Covalently 
bonded hybrids and c) Building blocks hybrids (schematic biosensor). 

1.1.1 – First Class: Composites  

The simplest class of hybrid materials is where a structural inorganic material 
– in the form of solid particles, fibers, lamellae or meshes – is embedded into a 
second substance – a matrix – resulting in a compound with improved 
mechanical properties. From the technological point of view, the most relevant 
examples of such materials are perhaps those applied to the engineering of 
macro-structures, like the reinforced concretes employed in the construction 
industry or Glass Reinforced Plastics (GRP) common in the automotive and 
equipments industry. Despite their importance, such materials are nothing else 
than a simple mixture of their macroscopic components – from a chemical 
perspective –  being intrinsically heterogeneous in their physicochemical 
constitutions. One clear disadvantage of this kind of materials is related to their 
processabilities, which are severely limited by the rigidity of their structural 
components. Such drawback can be partially overcome by reducing the size of 
the rigid bodies incorporated into the matrixes, which also enhances 
homogeneity [1] and may result in some mechanical performance gains. For 
example, polymers reinforced with carbon fibers may be more than 200% more 
resistant to tensile stress than their analogous with commercial E-glass fibers [2]. 
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Nevertheless, significant improvements in this direction usually must be credited 
to the quality of the structural material itself, and not to its size. 

1.1.2 – Second Class: Covalently Bonded Hybrids 

A second class of hybrid materials is where different components are formed 
in the same reaction media – i.e. in situ – or merged into one through a chemical 
reaction. In both cases, organic and inorganic components are intimately 
connected via strong chemical interactions in the final product. The most 
representative examples of such materials are the organo-silica compounds 
prepared through the so called sol-gel process [3]. 

 In the conventional sol-gel process, metal alkoxides react in presence of water 
to form a colloidal suspension of amorphous oxide particles (i.e. a sol). If properly 
aged, the colloidal particles start to interconnect with each other and form a 
tridimensional structure with large solvent quantities incorporated (i.e. a gel). 
Once dried, the gel gives origin to an amorphous solid body. Since C-Si bonds are 
extremely resistant to hydrolysis, organosilanes can be introduced in the 
alkoxides mixture (i.e. the precursor) in order to be incorporated in the 
material[1]. If the silane’s carbon chain is connecting two or more silyl groups, 
the silane is incorporated into the solid network, producing an alternating chain 
containing both organic and inorganic units. If it is connected only with one silyl 
group, the molecule acts as chain-terminator, letting its organic part covering the 
solid’s surface. In both cases, organic and inorganic components are connected 
via strong covalent bonds.  

As mentioned above, hybrid silica surfaces can also be modified through an 
additional synthetic step; namely via a surface silylation reaction, where –OH 
surface groups react with sylilane molecules to yield a permanent organic 
coating. Such materials also have a remarkable technologic importance. Among 
other applications, hybrid silica particles and porous matrix are extensively used 
in Reverse Phase Chromatography* [4]. Before its development, the performance 
of chromatographic methods on separating complex non-polar mixtures – like 
crude oil samples – was rather limited; mainly because of the strongly 
hydrophilic character of the conventional stationary phases (e.g. silica or 
alumina). With the advent of modified silica, it became possible using 
hydrophobic stationary phases [5], which allowed new efficiency levels to the 
separation of organic mixtures [6]. Today, the quality of virtually every product 
of the modern oil and pharma industries relies, at some stage, on reverse phase 
chromatographic analyses. With the increasing importance of reverse phase 
chromatography, also other hydrophobic stationary phases have been developed 
– mainly composed of block copolymer particles – but modified silica materials 
are still the most used. 

                                                 
*The basic idea of all chromatographic methods is separating the components of 

complex chemical mixtures according to their chemical polarities. The mixture is applied 
to one end of a stationary phase and eluted through it by a carrying media – i.e. a mobile 
phase. The mixture components whit less affinity for the stationary phase will elute 
faster, whereas those with more affinity will stay adsorbed on the stationary phase for 
longer times. The stationary phase can assume several different forms – such as a plate 
covered by alumina powder, a column filled with silica particles or a silica thin-film on the 
inner surface of a capillary tube – while the mobile phase can be either a liquid or a gas.       
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1.1.3 – Third Class: Building Blocks Hybrids 

A third class of hybrid materials can be identified somewhere between the 
first two classes sketched above. It comprehends the materials formed by joining 
well defined “building blocks”, which in this context means pre-existing 
functional chemical units – such as nanostructures, isolated molecules or 
polymeric matrices. One particularly exciting aspect in this approach is the 
possibility of creating multi-functional architectures simply by assembling 
diverse building blocks. In principle, each block should add its original 
functionalities to the final material, but completely new capabilities can 
eventually emerge in the final material. That is a consequence of using 
nano/molecular size building blocks, whose properties may be quite susceptible 
to changes in their chemical environment. Nevertheless, there is a clear 
separation among different components in such materials, although the interface 
between them may be mediated by strong chemical interactions. 

1.1.3.1 - Nanocomposites 

Among these third class hybrid materials, it is still possible to identify at least 
two distinct groups. The first results from the combination of distinct building 
blocks in a composite. Often called nanocomposites, such materials have been 
studied at least since the 60´s, when the interactions of organophilic clay 
minerals with polymeric matrixes have been originally observed [7]. However, 
the recent advent of synthetic nanostructures – in special the large-scale 
production of carbon nanotubes [8] and synthetic inorganic nanoparticles [9] – 
gave a new impulse to the field. Currently, there are more than 100.000 scientific 
publications dedicated to the study of nanocomposites. Two decades ago this 
number was still smaller than 10.000. A prominent example of such materials is 
represented by carbon nanotubes composites [10]. From a pragmatic point of 
view, many hopes deposited on nanocomposites along the last decades are still to 
be confirmed†, but on the other hand, several relevant findings came from the 
research of nanoscale composite materials. The so called “quantum dots”, for 
example, have been firstly observed dispersed into glass matrices [11]. 

1.1.3.2 – Single Nano-elements  

The second type of building blocks-based hybrid materials consists on single 
nanostructures – like carbon nanotubes or silicon nanowires – functionalized 
with organic molecules. Sensing devices are perhaps the most straightforward 
applications for such materials, since functionalizing a material with 
biomolecules can confer molecular recognition properties to it [12]. A more 
visionary perspective on the subject, however, is using such molecular 
recognition properties to induce and control self-assembling processes involving 
well-defined nanostructures. According to this view, individual functionalized 
nanostructures could be employed as active elements in complex electric devices, 
like field-effect transistors (FET) or nano switches. It is important to remember 
that FETs based on single nanostrutures have been demonstrated almost 10 
years ago [13], but interfacing different elements in nanodevices is still very 
challenging today. In this sense, using self-assembly phenomena for organizing 

                                                 
†
 For example, polymers reinforced with Carbon Nanotubes have fairly worse mechanical 

performances than carbon fiber reinforced polymers. 
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the elements of a device or controlling its functionalities would represent a huge 
step towards overcoming the traditional “top-down” lithographic technologies 
for electronics – which are already reaching their ultimate limits.  

 Another important potential application of building blocks-based hybrid 
materials is in energy production. A Dye-Sensitized Solar Cell (DSSC) employing  
functionalized TiO2 thin-films has been demonstrated almost 20 years ago by 
Grätzel et al [14], immediately achieving energy conversion efficiencies of ~ 12% 
under diffuse sun radiation. This excellent beginning has created a huge 
expectation on the potential of DSSC, but in reality the efficiency of such devices 
has not improved much since that pioneer work. Along the last decade, the major 
bottlenecks in the general performance of DSSCs have been identified as the 
stability of their commonly employed I¯/I3

¯ redox-couple and the light adsorption 
capacity of the TiO2 thin films [15], but attempts to overcome these difficulties 
have mostly lead to performance losses [16-20]. Today, it is consensual that the 
efficiency of DSSCs relies on a delicate equilibrium among electronic transport 
through the cathode, excitonic recombinations on its surface and the redox step 
involving the immobilized dye and the redox-couple. Apparently, the original 
DSSC design has already reached a considerable success in balancing these three 
phenomena, achieving conversion performances already close to the current 
limits – 20 years later. 

A promising alternative to increase the efficiency of DSSC is substituting the 
thin-film cathodes traditionally employed by arrays of monolithic nanowires. By 
packing dense arrays of nanowires, it is possible to expose larger surfaces to the 
sun radiation, so maximizing the light adsorption process. Furthermore, 
monolithic nanowires are expected to improve the electronic transport on the 
cell´s cathode, since they are not affected by electron percolation problems like 
metal oxide thin-films are. In fact, DSSC have been already fabricated with ZnO 
nanowires [21], although showing fairly low conversion efficiencies – ~ 2 %. 
Some efficiency improvement has been recently achieved by covering ZnO 
nanowires with a TiO2 thin film [15], but the mechanisms leading to such 
improvements are still not fully understood. 

Obviously, at this nano-scale, the properties of the inorganic building blocks 
are mostly dominated by surface effects. Consequently, they may be very 
susceptible to the interactions with the soft matter. DSSCs are again a good 
illustrative example of that. In their case, the devices’ functionality consists 
exactly on exciting electrons in the organic dye – via sun light – in order to inject 
them into the cathode’s solid material. Similarly, the interaction with the 
cathode´s surface is also expected to influence the excitation energies of the dye. 
In fact, the essential idea behind any hybrid material is joining parts to produce 
an effect which could not be achieved by the isolated components. But the 
interesting point in nano-scale hybrids is: the desired effects often come from the 
interactions among the materials, and not from the materials themselves. 
Synergy is an important word in nanotechnology.  

Of course, mastering such delicate and interconnected effects requires a deep 
understanding on the physico-chemical interactions involved. Therefore, the 
surface chemistry of nanomaterials is a topic of major relevance today; although 
still in its infancy in most cases. 
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1.2 – Inorganic Building Blocks 

The natural candidates for inorganic building blocks in nano-hybrid materials 
are, of course, inorganic nanostructures. From a pure scientific perspective, such 
materials are very interesting, because they simply do not behave like their 
macroscopic analogs. Their sizes and forms usually have a determining influence 
on their properties, enabling fine-tuning to the exigencies of specific applications. 
That is an incredible technological advantage, but exploring it almost always 
requires uniform samples and a formidable level of control on the material’s 
synthesis. Nevertheless, there is already a broad range of widely available 
nanostructures applied in several different technologies; from clinical imaging 
techniques to nanoelectronics. In most of them, the form of the nanostructures is 
almost as relevant as its chemical compositions. 

1.2.1 – Nanoparticles 

Although most people think that nanotechnology is a creation of modern 
science, synthetic nanoparticles have been finding technological applications for 
centuries already. In the ancient world, artisans synthesized copper, silver and 
gold nanoparticles by reducing metal-salt precursors and used them as coloring 
agent in art forms which last until our times, such as glass windows in European 
cathedrals and Chinese porcelain pieces. But in fact, the science of nanoparticles 
has sharply risen in the end of the 80’s, benefited by the advent of new 
physicochemical characterization techniques. Since then, several modern 
approaches – such as sol-gel processes, reaction into inversed micelles, pyrolysis 
and vapor deposition [22] – have been employed to synthesize several metal and 
semi-conducting nanoparticles.  

In the actual research stage, different nanoparticles are already being 
combined with organic molecules in order to design functional hybrid 
architectures, especially for medical applications. In a recent work [23], solid 
silica/iron-oxide composite nanoparticles have been designed for simultaneously 
imaging and treating cancerous tissues. The iron oxide crystallites act as 
magnetic active (contrasting) component for magnetic resonance imaging, while 
the silica – functionalized with both targeting agents and anti-tumor drugs – is 
responsible for driving the particles to the target tissues and delivering the 
therapeutic molecules. Note that such formidable functional nanoarchitectures 
strongly rely on the stable junction of their organic/inorganic components, which 
is achievable in this case just because the hydroxyl surface chemistry of silica is 
extremely well-known. 

1.2.2 – One-dimensional (1D) Structures 

In the beginning of the 21th century there was a boom in the number of articles 
reporting the synthesis of one-dimensional (1D) nanostructures, inclusive in 
large quantities and yielding high-quality single crystalline materials. According 
to Yang et al [24], now it seems inevitable that most solid-state lattices will be 
grown in a nanowire form.  
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Figure 1.2 – Vapor-liquid-solid synthesis of 1D-nanostrustures.  

One-dimensional nanostructures are formed by growing a given crystalline 
material preferentially along one of its crystallographic directions. Among the 
methods available for this purpose, the most popular are probably those based 
on metal catalyzed vapor-solid synthesis (Figure 1.2). The vapor-liquid-solid 
growth mechanism basically consists in using a liquid metal catalyst in order to 
catch gas-phase precursors through the formation of an eutectic alloy and 
consequently accelerate their deposition rates on a certain substrate. 
Perpendicular to the growth direction, the nanostructure’s form is in general 
determined by the metal catalyst. For example, it has been demonstrated that Si 
and GaP nanowires of any specific diameter can be obtained by controlling the 
size of the colloidal gold catalysts employed [25,26]. Along the growth direction, 
the size of the nanostructures can be simply controlled by the reaction time. 
There are also several reports on catalyst-free synthesis of one-dimensional 
nanostructures – whose more important examples are the metal oxide 
nanobelts/nanoribbons synthesized by Wang et al. [27] – but the growth 
mechanisms involved are still poorly understood.  

One of the drawbacks related to vapor-phase synthesis methods is their high 
energy demand. The formation of the gas-precursors into high temperature 
furnaces – by evaporating solid materials samples – is a very energy consuming 
procedure, which cannot be easily improved by scaling the process up. Therefore, 
there is also a great interest in developing mild wet chemical routes for 
synthesizing one-dimensional nanostructures. Actually, a broad range of metallic 
and semiconducting nanostructures has been already synthesized in solution, 
even in large (gram) scales [28]. In such wet syntheses, it is believed that 
molecular capping agents – i.e. molecules which adsorb preferentially to specific 
facets of a solid – have a fundamental role on controlling the growth kinetics and 
the shape of the structures. Nevertheless, the accumulated knowledge on the 
surface chemistry of most nanomaterials is still very limited (except for carbon 
and silicon) and choosing appropriate capping agents is still a rather empirical 
process consequently [24]. 
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1.2.2.1 – Carbon Nanotubes 

Carbon Nanotubes (CNT) were the first known and are still the most 
investigated kind of one-dimensional materials. They were first observed already 
in the 70’s, in experiments on the vapor-synthesis of carbon fibers via thermal 
decomposition of hydrocarbons in the presence of metal catalysts [29]. 
Nevertheless, the official milestone of the CNT research dates back to the 
beginning of the 90’s, when a Japanese [30] and a Russian groups [31] have 
independently reported the discovery of these interesting materials. Since then, 
CNT have been considered one of the greatest technological promises of our time. 
In fact, several CNT-based technologies have been already demonstrated along 
the last two decades, including FETs [13], logical circuits [32], switches [33], and 
interconnects [34]. In all these applications, CNT-based materials have shown 
performances either comparable to or better than their best commercial analogs. 
Furthermore, there is at least one kind of CNT-based devices about to be 
commercialized in the electronics market – the CNT-based displays recently 
demonstrated by Samsung and Motorola. 

Despite the importance of the examples above, the technological applications 
of CNT are not restricted to electronic devices only. In the energy sector, for 
example, CNT are employed as fillers in lithium batteries and in polymer based 
solar cells, where they improve the electrical conductivity of the solid electrolytes 
[35,36]. Because of the extraordinary mechanical properties of single CNT, such 
materials have been also often suggested for reinforced polymer composites. 
However, despite the intense research activity, there has not been much progress 
in this direction. Up till now polymers reinforced with CNT still do not 
outperform their counterparts filled with carbon fibers [37].  

CNT also have been demonstrated to be useful in gas and bio sensing 
applications [37]. In the last case, the sensor’s functionality depends on 
nanotubes modified with biological molecules – i.e. proteins, enzymes, DNA 
fragments, etc. Indeed, in comparison with other nanomaterials, carbon has a 
natural advantage in applications where surface functionalization is required, 
since its chemistry is the best known among all existing chemical elements. 

1.2.2.2 – Silicon Nanowires 

Among all existing 1D semiconductor nanostructures, Silicon Nanowires 
(SiNW) have been considered the most promising alternative to substitute the 
traditional silicon electronic devices. According to Fargas et al. [38], “SiNW offer 
an alternative route for the fabrication of ‘end-of-roadmap’ transistor 
technologies”. In fact, there are several good reasons for such confidence in the 
technological potential of SiNW, since they have been already employed in many 
functional nanodevices such as FETs [39-41], single-electron transistor 
geometries [42] and biosensors [43,44]. The electronic and photonic properties 
of SiNW can be controlled by doping [45-47] and, moreover, SiNW as thin as 1nm 
have been synthesized in a reproducible way [48-50].  Such dimensions are more 
than 10 times smaller than the smallest conceivable silicon transistor based on 
lithographic processes [37]. 

As a raw material for nanostructures, silicon shows numerous advantages in 
comparison with its competitors, like the fact that its production is already 
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completely integrated in the electronics industry. Besides, because of its 
technological importance, silicon has been widely investigated for decades, which 
ensures a large amount of knowledge accumulated on it. Concerning the chemical 
interface with soft matter, silicon also shows an additional advantage: its 
chemistry is closely related to the chemistry of carbon. Hence, the 
functionalization of silicon surfaces can be achieved by adapting very well-
established protocols of organic chemistry, as already demonstrated in several 
opportunities [51-58]. Not surprisingly, SiNW have been extensively investigated 
for biosensing applications [59]. 

1.2.2.3 – Metal Oxide 1D Nanostructures 

Despite their importance and multiple advantages, CNT and SiNW have at 
least one serious drawback: Their chemical compositions are fixed, and the 
possibilities of tuning their properties are rather limited. Of course, doping is 
always an option, but there are certain limits imposed to the efficiency of such a 
strategy.  

In this sense, Metal Oxides (MO) represent a much wider platform for the 
development of functional nano building blocks. In the words of Schmidt et al. 
[60], “The range of physical and chemical properties of oxide materials is 
overwhelming. Among metal oxides are superconductors and the best insulators; 
some oxides are inert enough to act as corrosion protection layers, whereas others 
are chemically active as catalysts. Some of the most interesting magnetic, optical 
and electronic properties are found within this class of materials”. MOs are also 
usually sensitive to changes in their chemical environments, which has made 
them the heart of most commercial sensing technologies available [61]. Still, MO-
based sensing devices can achieve new efficiency levels if constructed with 1D 
nanostructures. Gas sensors based on individual In2O3 nanowires – for example – 
show sensitivities up to 105 times larger than their solid-films analogs [62].  

1D nanostructures have been already synthesized from a range of MOs,  
including CdO, CuO, MgO, ZnO, CeO2, PbO2, TiO2, SnO2, Fe2O3, Ga2O3 and In2O3 
[63,64]; most of them in a monocrystalline form. As mentioned before, such 
materials have been often appointed as promising alternatives for applications in 
electronics, optics, sensing and catalysis. At least in these last two cases, 
understanding the surface chemistry of such materials is a fundamental step 
towards developing nano-MO based technologies. That is perhaps the most 
serious drawback of MOs 1D nanostructures in comparison with their CNT or 
SiNW competitors – especially concerning sensing applications – since the 
surface chemistry of MO is still poorly understood in most cases. In fact, the 
appliance of surface science techniques to study MOs is a relatively new research 
field [60], where the electric characteristics of many oxides – i.e. the insulator 
ones – still hampers the use of most surface characterization techniques. 

Providing an overview – even a brief one – on the applicability of each specific 
kind of MOs nanostructures would required a huge effort and is out of the scope 
of this thesis. Thus, from now we will focus only on ZnO 1D nanostructures, the 
most relevant species among all MO nanomaterials [65]. 
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1.2.2.3.1 – ZnO 1D Nanostructures 

Among all MOs employed in synthesizing 1D nanostructures, ZnO is by far the 
most important one. In order to confirm this fact, it is enough to remember that 
ZnO nanowires are the third most investigated nanostructures, closely behind 
CNT and SiNW in number of published articles in indexed journals [65]. That is 
actually not surprising given the unique characteristics of ZnO. Being naturally a 
multifunctional material, ZnO simultaneously shows semiconducting and 
piezoelectric properties, which makes it an ideal candidate for energy harvesting 
devices [66]. ZnO also is a wide band-gap semiconductor (Eg ~ 3.3 eV), with a 
huge potential for applications in optoelectronics, lasers and photonics in the UV 
region [67-69]. Moreover, ZnO gives origin to the richest family of nanostructures 
among all known materials; comprising nanowires, nanobelts, nanotubes, 
nanohelixes, nanopillars, nanobows, nanorings and nanocages [69]; most of them 
synthesized with purities of 100%. 

ZnO nanowires are usually synthesized via the vapor-liquid-solid growth 
mechanism, which has been proven to yield large quantities of highly ordered 
arrays of nanowires [70,71]. Typically, Au or Sn nanoparticles are employed as 
catalysts in the growth of ZnO nanowires [69, 72], where they have a strong 
influence on the product’s final morphology [73]. For example, it has been 
demonstrated that the density of a nanowires array can be controlled by using 
lithographically patterned Au seed-layers as catalyst [74]. Additionally, the 
pressure inside the reaction chamber – especially the oxygen partial pressure – is 
also considered an important parameter for controlling the growth kinetics and 
the products morphology consequently [75,76]. 

Aside from nanowires, most ZnO 1D nanostructures have been synthesized 
through a direct vapor-solid approach, where the material grows in the absence 
of a metal catalyst [64, 69, 72]. As mentioned above, such vapor-solid synthesis 
can be already extremely well-controlled and yield very pure final products [69]. 
Nevertheless the chemical kinetics behind vapor-solid syntheses is still not well 
understood. Several growth mechanisms have been proposed in the literature; 
but according to Yang et al. [24] most of them “lack compelling thermodynamic 
and kinetic justification of one-dimensional growth” and much fundamental 
research is still necessary to understand the vapor-solid synthesis of 
nanostructures.  

Note that understanding the mechanisms of vapor-solid syntheses would be a 
big achievement not only from a fundamental perspective, but also in order to 
guide new research on mimicking them in solution. As discussed before, vapor-
liquid-solid and vapor-solid syntheses are extremely energy consuming and 
therefore unviable for large-scale production. In fact, there is already a large 
amount of reports on wet-synthesis of ZnO nanostructures, but in most cases the 
results are hardly more than less symmetrical variations of nanowires or 
hierarchical structures based on them. Indeed, the outstanding structural variety 
of the ZnO 1D-materials synthesized via vapor-solid methods is still far from 
being achieved via solution synthesis. Despite that, it is important to keep in 
mind that such structural diversity is one of the biggest advantages of ZnO in 
comparison with other nano materials. From the lessons of molecular biology, 
scientists have learned that form and function are intimately related at 
nano/molecular scale. Thus, mastering the form of ZnO 1D nanostructures – or of 
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any other material – means opening perspectives of new functionalities and 
applications. 

1.2.3 – Two-dimensional (2D) Nanostructures  

As already mentioned in section 1.1.3.1, the first polymer nanocomposites 
were observed in the 60´s, resulting from the combination of water soluble 
polymers with natural lamellar organophilic clays [7]. Today it is well-known 
that such clays show a lamellar structure, which can accommodate the polymeric 
material into the interstices between adjacent inorganic layers. Thereby, the 
resultant material also assumes a layered form, consisting of alternating organic 
and inorganic layers. Because of this alternating structure, such composites are 
called also intercalation compounds‡. The inorganic layers in such composites are 
typically ~ 1nm thick, whereas their areas can reach μm2 scales [77].  

Such intercalation nanocomposites have several technological applications. 
One important example came in the first half of the 90’s, when a group from the 
Toyota Research Center (Japan) demonstrated that charges as small as 2% vol. of 
layered silicates could increase the deformation temperature of polyamides – like 
Nylon® – by up to 100°C [78-80], extending their applicability to high 
temperature components in automobiles[81]. In a more recent work, 
organometallic complexes have been intercalated into layered double 
hydroxides, resulting in a precursor for metal oxide mixtures with improved 
catalytic properties [82].  

Much attention has been also given to MO thin-films during the last two 
decades – i.e. since the advent of DSSCs – especially TiO2 and ZnO. Such materials 
can be fabricated either by vapor deposition techniques or by electrochemical 
deposition [83]. Nevertheless, the films usually consist of a network of 
interconnected nanoparticles, which strictly cannot be considered as a 2D 
building block. 

1.3 – Computational Materials Science  

 From a general perspective, there are two ways of tackling a particular 
problem. One way is performing experiments, i.e. inducing an event, observing it 
and then constructing empirical correlations between controllable conditions 
and observable properties. The second way is developing a theory, i.e. – with help 
of some basic assumptions – constructing a logical framework which permits 
predicting or explaining some event. Of course, such dichotomy is always 
arbitrary to some extent. Experimentalists often construct a theoretical model in 
order to explain their observations, while theoreticians are always either trying 
to explaining experiments or eager to have their models experimentally 
confirmed. Without experiments, a theory is hardly more than an elegant 

                                                 
‡ An intercalation compound is defined as a material where a filling agent is introduced between the 
sheets of a host layered matrix. As a matter of fact, this definition is not restricted to organic-
inorganic materials; the lithium-graphite anode used in batteries, for example, is a typical 
inorganic-inorganic intercalation compound. Nevertheless, layered polymer nanocomposites can be 
considered an important sub-class of intercalation compounds. 
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possibility§, while experiments without a guiding theory behind them are hardly 
more than scattered data. 

Certainly, theory and experiment walk together in science, but the distinction 
between them is usually very clear. In physics and physical-chemistry, 
developing a theory generally requires very simple and well-defined objects of 
study – many times even idealized ones – whose properties can be reasonably 
described by a tractable set of mathematical equations. Unfortunately, that is not 
the case in most real materials. Real materials have an essentially complex nature 
and therefore it has been very difficult addressing them directly by theory. Thus, 
the study of materials properties has been dominated by empiric approaches 
since its early origins. However, with the advents of hybrid materials and 
nanotechnology, a better comprehension of molecular scale phenomena is 
becoming crucial in order to design new materials and optimize their 
functionalities. Understanding materials from a microscopic perspective is 
quickly turning from “just” an exciting scientific subject into a real necessity in 
our pursuit of new and more efficient technologies.  

The problem at this point is that extracting molecular-scale information 
directly from experiments is also a complicated task.  Although the last decades 
have witnessed the birth of several new characterization techniques – some of 
those already reaching atomic/molecular resolutions, like in the Scanning-
Tunneling Microscopy (STM) and the Atomic Force Microscopy (AFM) cases – the 
truth of the matter is that their outputs are generally intricate and hard to 
analyze if supplementary information is not given. Even with such high-
resolution characterization methods, it is always necessary to rationalize 
experiments in terms of a comprehensible model.  

But how to proceed with that if the object of study is complex and intractable 
theoretically? Indeed, one of the most effective approaches to overcome such a 
situation is using computational simulations. In natural sciences, performing a 
simulation normally means breaking a complex problem into smaller and 
manageable pieces and after that solving them independently. The resulting set 
of equations is generally huge, but manageable with the help of computers.  Note 
that in order to expand the problem in small tractable parts it is always necessary 
to assume some reasonable approximations. So, instead of pursuing an elegant 
analytical solution for the problem, a simulation basically consists in defining an 
approximated physics to a model system and observing how it behaves. It is like 
performing a virtual experiment, whose outcome can be compared with those of 
real experiments. If the comparison is reasonable, the approximations employed 
suit the problem; the bridge between experiments and theory is built and some 
physical insight can be extracted from that. 

An important part of the art of computational simulations consists in choosing 
appropriate approximations for each object of study. Instead of using very 
elaborate and complete models in any case, the best solution ideally consists of a 
model capturing the essentials for the studied system and neglecting all 
unimportant effects. In practice it is not always easy to determine what is 
essential and what is not. On one hand, strong approximations may lead to 
unrealistic results, whereas some level of redundancy just increases the time 
necessary to perform the simulation. In this sense, it is always better to be 

                                                 
§
 This statement is obviously invalid if considering fields out the limits of natural sciences, 

such as pure mathematics for example. 
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conservative while choosing models. On the other hand, the more complicated 
your model is, the larger are the computing resources you need to solve it. So, 
being too conservative while choosing your approximations restricts the size of 
the system you are able to simulate, thereby also hampering the construction of 
realistic models. 

There are diverse levels of approximation which are relevant for materials 
simulations (Figure 1.3). Given their particularities, each of these levels can be 
considered as a science itself. Indeed, making a detailed survey on them is out of 
scope here. Nevertheless, the next sub-sections provide a very brief overview on 
the main levels of approximation used in computational materials science. The 
reader can find more detailed information in the references indicated along the 
text. 

 

Figure 1.3 – Different levels of approximation commonly employed in 
computational materials science. 

1.3.1 – Continuous Media 

The first important level of approximation in computational materials science 
is considering the materials as a continuous media. This approximation is widely 
applied in analysis of macro structures or in mechanics of fluids, where the 
studied phenomena can be satisfactorily described without considering 
nano/molecular scale interactions. At this level, the materials are simply 
characterized by macroscopic properties like compressibility or mass densities. 
In the case of heterogeneous materials, such properties change numerically from 
one phase domain to another, but all domains within the model are still treated 
as a continuous media. In the limit where the phase domains are much smaller 
than the entire model, the material can be simply represented by a homogeneous 
phase with average “effective” properties [84].   

One important analytical tool employing this level of approximation is the so-
called finite-element method [85], where a macroscopic material is discretized in 
smaller units (called elements) interconnected through their corners (called 
nodes). The physical properties within each element – e.g. its compressibility – 
are in general kept constant, while their shapes are determined by the movement 
of their nodes – according to pre-established physical rules. Each element can 
eventually have intermediate nodes between their ends in order to represent 
internal degrees of freedom. By imposing a load to the system it is possible to 
observe how it relaxes, by minimizing its potential energy for example [85]. The 
method allows mapping the stress along the system by analyzing the distribution 
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of forces among the nodes. So, finite elements analysis has straightforward 
applications in stress-analysis, but it has been also extended to other fields of 
materials engineering, such as heat and mass transport. 

1.3.2 – Coarse Grained Models  

 Coarse Grained (CG) methods can be considered as an intermediate stage 
between macro and micro-scale simulation techniques, where groups of atoms 
are represented together in a particle-based mapping scheme (Figure 1.4). CG 
models are well suited for simulating macromolecular phenomena, e.g. protein 
folding [86], biomembranes organization [87,88] and melting of polymers [89], 
where a good description of polymers’ thermodynamic properties and/or 
secondary and tertiary structures is more important than an accurate 
representation of atomistic primary structures. The derivation of coarse grained 
interaction potentials** may be either target to reproduce well-known 
thermodynamic properties of a prototype system – such as energies or free 
energies – or pre-defined structures from atomistic simulations [90]. At the 
current development stage, however, it is still not clear if energy-based potentials 
are suitable to reproduce atomistic structures and vice-versa [91,92].  

As a consequence of their simplified nature, CG models are computationally 
much less demanding than their atomistic counterparts, since representing 
groups of atoms by pseudo-atomic species reduces drastically the size of the 
mathematical problem to be solved. Furthermore, the inertia associated with the 
CG pseudo-atoms is always bigger than those with atomistic models; thus CG-
based Molecular Dynamics (MD) simulations can use larger simulation time-steps 
(ca. 30 fs) than those allowed for traditional all-atoms MD (ca. 1fs) without 
producing simulation artifacts [93]. It is important to remark that not only MD 
algorithms are employed in CG simulations, but also the Monte Carlo (MC) 
stochastic technique [94].  

    

Figure 1.4 –   Schematic representation of a Coarse Grained (CG) model. 

                                                 
**

 The CG pseudo-atomic interaction potentials – as the interatomic potentials in traditional 

atomistic simulations – are divided in bounded and non-bonded interactions. The bonded 

interactions consist of the stretching of consecutive covalent bonds, bending and dihedral bond 

angles, while the non-bonded interactions consist of pairwise additive potentials – like the 

Lennard-Jones potential for example – among all pseudo-atoms in the system.  
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1.3.3 – Classic Atomistic Simulations 

As the name already suggests, classic atomistic simulations are performed by 
considering atomic species as basic simulation units. They are the “high-
resolution” version of the CG techniques discussed in the last section††; so it is 
natural that the scopes of these two frameworks overlap. Atomistic simulations 
have also been widely used to study proteins [95], membranes [96] and polymers 
[90]; the difference is that atomistic simulations have enough size and time 
resolution to investigate environments dominated by local intermolecular 
interactions, such as hydrogen bonding media for example. In such simulations, 
the meso and macroscopic phenomena appear naturally as a consequence of the 
molecular-scale interactions. The drawback is that atomistic models are much 
more expensive than the CG ones, but the advantage on the other hand, is that 
sophisticated micro-scale phenomena – such as local stabilization mechanisms in 
biomolecular complexes [97] or dielectric relaxation effects [98] – become 
accessible.  

In atomistic simulations – as in coarse grained ones – the bridge between the 
microphysics and the macroscopic world is done via Statistical Mechanics. The 
basic idea is that a given Macrostate – characterized by thermodynamic 
properties such as temperature, pressure and etc. – emerges as a weighted 
average over the mechanical Microstates of a considered system‡‡.  Such weighted 
averages can be calculated by sampling the system´s configurational space either 
via randomly generated Ensembles (MC approach) or via time-resolved 
mechanical trajectories (MD approach)§§. Nevertheless, it is important to remark 
that the Statistical Mechanics’ framework is neither restricted to atomistic 
simulations nor even to strictly mechanical systems [101,102]. Instead, it is a 
broad theoretical platform, which among other things ensures that the 
microscopic and macroscopic worlds are interchangeable. 

The quality of statistics-based simulations strongly depends on an appropriate 
sampling of the system´s configurational space. In the context of atomistic 
simulations, that means employing a reasonable physical model to describe all 
involved interatomic interactions. In both MD and MC approaches, such 
interatomic interactions are represented by a set of classical potentials, 
separated in a bonded and a non-bonded part. As discussed for the CG models, 
the bonded part comprises all bond-stretching, bending and dihedral potentials 
among interconnected atoms; while the non-bonded part includes a term 
accounting for both van der Waals and Pauli interactions – i.e. a Lennard-Jones 
(LJ) pairwise additive potential – plus a Coulomb potential. Some models may 
also include atomic polarization potentials additionally. Besides operating on the 
atomic coordinates, all these potential functions depend on a set of specific 
parameters, i.e. constant forces, rotation barriers, atomic charges and the LJ  and 
 parameters. Once again, these parameters may be either target to reproduce 
well-known desired thermodynamic properties of the system or higher-level 
calculations. Once again, the interchangeability between these two choices is not 

                                                 
†† In fact, the CG framework has been developed as a “low-resolution” version of atomistic 
simulations, and not the opposite. 

‡‡ A comprehensive discussion on statistical mechanics is out of scope in this text. 
Interested readers are encouraged to consult the refs. [99] and [100], for example. 

§§ Both methodologies are equivalent according to the so called Ergodic Hypothesis. 
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a priori guaranteed. The definition of the suitable parameters for atomistic 
simulations is always something done on an ad hoc basis to some extent. 

1.3.4 – Quantum Simulations  

Despite their peculiarities, all approximation levels described above have at 
least one similarity: they are all based on classical physics. Nevertheless, there 
are many materials whose interesting properties are directly determined by their 
electronic structures. Just to mention some examples; metals, semi-conductors, 
catalysts, conducting polymers and virtually every single nanostructure belong to 
this group. So, in order to study such materials it is necessary to go beyond 
classical approximations and represent them from a quantum mechanical 
perspective. In fact, the development of quantum simulations has been often 
considered as one of the pillars of modern nanosciences. Roughly, there are three 
classes of quantum based computer simulations: ab initio, Density Functional 
Theory (DFT) and Semi-Empirical methods. 

1.3.4.1 – Ab Initio Methods 

The term ab initio, in Latin, means “from the beginning”. So, the name ab initio 
is given to calculation methods derived directly from theoretical principles, 
without incorporating any kind experimental data. Historically, the term has 
been often associated with quantum chemistry methods, especially with those 
based on the Hartree-Fock (HF) theory [103].  

Roughly speaking, the main objective of ab initio calculations is solving the 
Schrödinger equation for many-electrons systems, i.e. determining approximate 
N-electron-wave-functions in order to reasonably describe them. Of course, this 
task can be accomplished on several levels of accuracy and at different 
computational costs. Restricted HF method (RHF) – the simplest and least 
demanding ab initio level of theory – is applicable for systems up to few hundreds 
of heavy atoms if large computational resources are employed [104], but its 
results do not figure among the most accurate ones***. Yet the sophisticated 
Configuration Interaction (CI) and Quantum Monte Carlo (QMC) methods give the 
most accurate results within the quantum chemistry framework, but their 
applicabilities are still restricted to systems with few electrons because of their 
high computational costs. The choice of a specific level of theory always involves a 
compromise between the accuracy requirements of the study and the 
computational resources available. Nevertheless, it is important to remark that, 
even at the RHF level, ab initio calculations are generally more – or much more – 
expensive than their DFT or semi-empirical competitors. Therefore, their 
application has been more or less restricted to small/middle-size molecules in 
gas phase. 

1.3.4.2 – Density Functional Theory Methods 

Traditionally, DFT methods have been widely employed in quantum 
mechanical simulations of solid-state materials. The heart of the DFT approach is 
substituting the complex N-electron-wave-functions with a much simpler 
variable, i.e. the total electronic density. The first attempts to perform this 

                                                 
*** The errors in absolute orbital energies may reach ~ 1eV. 
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paradigm change dates back to 1927, to the pioneer works of Thomas and Fermi; 
but the foundations of the modern DFT started to be established almost 40 years 
later, with the Hohenberg-Kohn theorems.  

Since their early days, DFT simulations became a fundamental tool in 
computational materials science. According to Martin [105] (pg. 119) DFT “has 
provided the key step that has made possible the development of practical, useful 
independent-particle approaches that incorporate effects of interactions and 
correlations among particles.”, and therefore it became the primary theoretical 
tool for calculating the electronic structure of condensed-phase systems[105]. 
There is a big controversy on whether DFT methods should be classified as ab 
intio or not. In principle, DFT is a theory formulated from first principles; but in 
practice exact Exchange-Correlation (XC) functionals are unknown except for 
free-electron gases. Thus, most DFT formulations include XC functionals which 
are parametrized to reproduce experimental data. Controversies aside, DFT-
based simulations usually are the method of choice for studying solid systems 
with from few dozens to few hundreds of atoms – if enough computing power is 
available. A detailed discussion on the fundamentals of DFT will be given in 
Chapter 2. 

1.3.4.3 – Semi-Empirical Methods 

Semi-empirical methods are almost as old as the Schödinger equation. The 
first known example of them was the so called Hückel method [106] – proposed in 
1930 – where a simplified Hamiltonian and minimal set of p-type atomic orbitals 
have been used to predict the symmetries and energies of π-type molecular 
orbitals in conjugated hydrocarbons. Since Hückel’s pioneer work, several other 
semi-empirical methods have been proposed and extensively used. With a few 
exceptions, all of them share four basic characteristics [107]: 

i) The explicit treatment given only for valence electrons. 

ii) The use of minimal basis sets.  

iii)  Only one- and two-center integrals are computed.  

iv)  The use of parametrized two-center integrals.  

Thanks to both its approximated nature and the use of parametrized integrals, 
semi-empirical methods are extremely efficient in computational terms; being 
often used in high-throughput applications such as hybrid Quantum 
Mechanics/Molecular Mechanics (QM/MM) simulations†††. On the other hand, the 
transferability of semi-empirical models to problems out of their parametrization 
scopes is generally problematic and leads to inaccurate results. Nevertheless, 
semi-empirical methods are still very powerful tools for calculating the electronic 

                                                 
††† An exciting new research area in computational materials science is the development 
of the so called multi-scale hybrid methods. In such hybrid simulations, two or more 
approximation levels are hierarchically combined to study problems which cannot be 
addresses in only one level. A comprehensive text on the subject can be found in ref. 
[108]. 
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properties of large systems – i.e. from few hundreds to few thousands of atoms. 
In the context of this work, one important semi-empirical method is the Self-
Consistent Charge Density Functional based Tight-Binding (SCC-DFTB) approach 
[108,109], which consists of an approximated form of the Kohn-Sham DFT. A 
detailed introduction to the SCC-DFTB methods will be given in Chapter 2.  

1.4 – The Aim and Structure of this Work 

Across the last sections, the general scientific context of this work has been 
sketched. In Section 1.1, a brief introduction to hybrid materials was given, 
emphasizing the class of nano-hybrids and the importance of surface 
functionalization for the development of such materials. In section 1.2 the most 
common inorganic building blocks for nanohybrid materials were presented. 
Finally in section 1.3, a brief outline on computational materials science and its 
major levels of approximation was offered. 

In this work, we are interested in simulating the structural and electronic 
properties of functionalized ZnO surfaces and nanostructures. As we have seen in 
section 1.2, these materials have a huge technological potential, while several of 
their features – especially their surface chemistry – remain not well investigated. 
So, our basic aim in this work is identifying suitable organic functional groups for 
ZnO functionalization and understanding the substrate-ligand interactions in 
each case. As far as the electronic structure information is aimed, quantum 
simulations are necessary. Additionally, we want to develop a model to allow us 
simulating large/realistic models for functionalized ZnO nanostructures with 
reliable accuracy. 

We will start our study from DFT simulations of small/medium ZnO solid 
systems; so Chapter 2 is dedicated to reviewing the fundamentals of DFT and 
basic solid-state theory – including also an introduction to the Tight Binding 
model and to the SCC-DFTB method.  

Chapter 3 briefly presents our DFT simulations on bulk w-ZnO, performed in 
order to set and test simulation parameters – basis sets, pseudo potentials, etc.  

In Chapter 4, the main focus lies on functionalized ZnO non-polar surfaces. We 
start showing how to set up a surface simulation within the DFT framework, and 
then use this approach to investigate how different organic functional moieties 
interact with the ZnO non-polar surfaces‡‡‡. The aim is identifying suitable 
functional groups for stable functionalization of ZnO, while gaining some insight 
into the ZnO surface chemistry. 

The simulation of nanostructures poses considerable challenges in 
computational materials science. Their reduced symmetry make large models – 
i.e. with several atoms – necessary in order to represent them, and using efficient 
computational schemes is mandatory for simulating such materials in a realistic 
way. Therefore, In Chapter 5 we propose/validate a ZnO with organics SCC-DFTB 
model. 

In Chapter 6, we apply our SCC-DFTB model to a real problem – in  
collaboration  with  our  experimental  partners  in  the  University  of  Bremen: 

                                                 
‡‡‡ Non-polar surfaces are the dominant ones in ZnO nanostructures 
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the characterization of intrinsic defects in ZnO nanowires and the healing of 
surface defects with organic molecules.  

Finally, Chapter 7 brings our concluding remarks and future perspectives.   
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Chapter 2 

 

Theoretical Background 
 

“I always thought writing was the 
foundation and the basis for journalism 
in the same way being able to draw is the 
foundation for art.” 

Bob Schieffer – American Journalist.  

 

In this chapter, we will outline the theoretical background of this work, with 
special emphasis given on the Density Functional Theory (DFT) – the main 
theoretical framework to be employed in the next Chapters. We will start 
introducing some basic aspects of many-body Quantum problems (Sections 2.1 
and 2.2). After that, we will briefly discuss the Hartree-Fock method (Section 2.3), 
from where many important concepts used in DFT come. Density Functional 
Theory is presented in Section 2.4, with its exact formulation (i.e. the Hohenberg-
Kohn Theorems) introduced in Section 2.4.1, and the Kohn-Sham formalism for 
solving electronic densities self-consistently in Section 2.4.2. Exchange-
correlation functionals used the Kohn-Sham method are discussed in Section 
2.4.3; whereas the use of pseudopotentials in practical DFT calculations is 
addressed in Section 2.4.4. Section 2.5 is dedicated to the calculation of atomic 
forces from electronic structure methods; and Section 2.6 describes the basic 
theory involved in the simulation of crystalline solids – including a discussion on 
the Tight Binding model and the presentation of the Self-Consistent-Charge 
Density Functional based Tight Binding method (SCC-DFTB). Finally, in Section 2.7 
we make some comments on the basis sets used along this work. 

2.1 – The Time-Independent Schrödinger Equation 

Atoms, molecules, crystals and all other forms of matter which are considered 
in materials science are systems consisting of interacting nuclei and electrons. 
According to the first postulate of Quantum Mechanics, such systems are fully 
specified by a wave-function                – depending on the coordinates of all 
I electrons       , all N nuclei        and time     - which can be determined by 
solving the Time-dependent Schrödinger Equation:  

 

                             
                  

  
                                             

 

where    corresponds to the system´s total Hamilton operator.  
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Eq. 2.1 represents the fundamental physical law of a many-body quantum 
problem, but unfortunately its solution is too complicated to be managed in most 
cases. This point was spotted by Dirac early in 1929 [110]: “The underlying 
physical laws necessary for the mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known, and the difficulty is only that the 
exact application of these laws leads to equations much too complicated to be 
soluble. It therefore becomes desirable that approximate practical methods of 
applying quantum mechanics should be developed, which can lead to an 
explanation of the main features of complex atomic systems without too much 
computation”. It is notable that more than 80 years later – after the advent of 
microelectronics and computer sciences – the words of Dirac are in great part 
still true. Even with the current computer power available, it is still very relevant 
developing approximate quantum methods and, furthermore, identifying 
particular cases where the general many-body problem can be simplified. 

One important special case of the general quantum many-body problem is that 
of the conservative systems. In such systems, the    operator can be represented 
as: 

     
 

 

 

   

  
   

 

   

 

   

  
    

  

       

 

   

 

   

 

                                                         
 

       

 

   

 

   

   
    

       

 

   

 

   

                      

where Mn and Zn stand for the mass and charge of the nth nucleus respectively. 

As long as the    operator does not depend explicitly on time, it is possible to 
simplify the Eq. 2.1 by assuming the Ansatz:  

 

                                 , 

 

and proceeding with the following rearrangement:  

 

                          
      

  
                               

 

                   
 

    
   

      

  
   

 

            
                                   

 

Since the left side of Eq. 2.3 is only dependent on the time, and the right side 
only dependent on the coordinates of electrons and nuclei, both sides must be 
equal to a constant in order to maintain the equality true.  
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So, each term in Eq. 2.3 can be solved independently with respect to the 
constant E. If we concentrate just on the time-independent term, a simple 
rearrangement of Eq. 2.4 leads us to the so-called Time-independent Schrödinger 
Equation: 

                                                                                                  

 

Eq. 2.5 has been considered to be the cornerstone of Quantum Chemistry. It 
shows that the problem of determining the wave-function of a given conservative 
quantum system – like atoms and molecules in their ground state – is reduced to 
an eigenvalues problem. In other words, it shows that stationary states of 
quantum systems assume discrete energy values. Besides, as    is a Hermitian 
operator, all stationary states which are solutions of Eq. 2.5 must be orthogonal 
to each other.  

Nevertheless, solving the Time-independent Schrödinger Equation it still far 
from being a trivial task; and performing some approximations is still necessary 
in order to make it tractable.  

2.2 – The Born-Oppenheimer Approximation 

The solution of the Time-independent Schrödinger Equation is greatly 
facilitated by assuming the so called Born-Oppenheimer approximation, which 
consists in factorizing the time-independent wave-function (               ) into 
an electronic and a nuclear component: 

                                                                                  

or simply: 

                                                                                                            

by omitting the spatial variables in order to simplify the notation. 

The Ansatz 2.6 is justified by the fact that atomic nuclei are always 3-4 orders 
of magnitude heavier than electrons. Because of such mass differences, the 
movements of nuclei are much slower than the movements of electrons, allowing 
one to assume that the electrons adjust their positions “instantaneously” 
according to the nuclear positions. Conversely, the atomic nuclei can be 
considered to move in the average electric field produced by the electrons. Note 
that the electronic wave-function ( ) in the Ansatz 2.6 depends on both the 
electronic (      and nuclear (      coordinates. In other words, it means that   
can be solved parametrically which respect to a given set of nuclear positions.  
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Thus, it is possible to separate the system´s total energy in an electronic and a 
nuclear contribution, by substituting the Ansatz 2.6 into Eq. 2.5 and using the 
identity: 

                                                                   .                              (2.7) 

Thereby, Eq. 2.5 becomes: 

                
 

 

 

   

  
             

 

   

 

   

  
            

  

       

 

   

 

   

    

        
 

       

 

   

 

   

            
    

       

 

   

 

   

     

            
 

 

 

   

  
                

 

   

 

   

  
               

  

       

 

   

 

   

   

            
 

       

 

   

 

   

               
    

       

 

   

 

   

     

So: 

               
 

 

 

   

  
          

  

       

 

   

 

   

          
 

       

 

   

 

   

   

       
 

   

 

   

  
           

    

       

 

   

 

   

                       

The first three terms on Eq. 2.8 depend exclusively on the electronic wave-
function ( ), whereas the last two depend exclusively on the nuclear wave-
function ( ). If we are not interested in rotational or vibrational motions, the 
nuclear kinetic energy operator – i.e. the 4th term on Eq. 2.8 – can be neglected, 
since the nuclear masses are much larger than the electronic ones. Besides, it is 
convenient solving   parametrically with respect to the nuclear positions; so Eq. 
2.8 can be further approximated as:     

                                                           
    

       

 

   

 

   

                              

with: 
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Hence, for a given geometry, the total energy of a polyatomic system can be 
calculated simply from its electronic wave-function   plus the classical Coulomb 
repulsion term associated with the atomic nuclei. 

2.3 – The Hartree-Fock Approximation  

 As demonstrated in the last section, the Born-Oppenheimer approximation 
allows reducing the problem of calculating the system’s total stationary wave-
function   into calculating “just” its stationary electronic wave-function  . In fact, 
calculating the electronic wave function of many-electron systems has long been 
the ultimate aim of Quantum Chemistry. Across the years, several methods have 
been developed for determining   on different levels of theory (i.e. levels of 
accuracy). However, most of these methods are based on the same original 
foundation: The Hartree-Fock Theory.  

2.3.1 – The Form of the Wave-Function 

The first basic approximation in the Hartree-Fock Theory – originally proposed 
by D. Hartree – is that the total electronic wave-function   of system with I 
electrons can be factorized into a product of I independent one-electron 
functions: 

                              . 

Briefly after its introduction, the so called Hartree Product was contested by V. 
Fock and J.C. Slater, since it satisfies neither the Principle of Anti-symmetry 
required for multi-fermionic wave-functions nor the Pauli Exclusion Principle 
[103]. Slater also demonstrated that both these limitations can be overcome by 
approximating the total I-electrons wave functions as an I-order determinant, 
whose elements are the I independent one-electron functions: 

              
 

   
 

          
          

      
      

  
          

  
      

  
 

   
 

      

      

    

    

  
      

  
    

   

                                   
 

   
      

      

   

                            

where the factor    
  
 accounts to the normalization requirement and P 

represents a Permutation operator. Note that we assumed the 1st subscript on the 
one-electron functions to characterize the function itself, whereas the 2nd 
identifies the electron occupying it. Since its advent, the so-called Slater 
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Determinant became the method of choice for constructing anti-symmetric wave 
functions*.  

2.3.2 – The Hartree-Fock Equations  

For a given set of atomic positions, the nuclear Coulomb repulsion in Eq. 2.8 is 
always constant and does not interfere with the solution of the electronic wave-
function. Thus, we will concentrate just on the electronic Hamiltonian in Eq. 2.9, 
also dropping the subscript “Elec” from now on. So, the electronic Schrödinger 
Equation can be simply represented as: 

                                                                                                                                  

Before going head, it is also convenient noting that the electronic Hamiltonian 
can be factorized into one-electron (      and two-electron (    ) operators: 

                 
 

 

 

   

  
    

  

       

 

   

 

   

                   
    

    
 

       

 

   

 

            
    

   

By using the identity in Eq. 2.7 and representing the electronic wave-function as a 
single Slater Determinant, it is possible to rearrange Eq. 2.11 into: 

                                                                                            

Both terms in Eq. 2.12 can be handled separately without prejudice in the final 
result. So, let´s look at the one-electron term at the first place. The operator      
contains a summation over all I electrons in the systems, which means that it can 
be further factorized into single-electron components (      

 

                             

 

   

                              

  By applying the factorized form of    (Eq. 2.10) to each single-electron       
operator, it is not difficult to demonstrate that: 

                            

 

   

       
 

 
  

   
  

       

 

   

     

 

   

     

 

   

          

or, generalizing for all I electrons, that: 

                                                             
* Note that representing the total electronic wave-function as a single Slater Determinant 
is a strong approximation. In fact, high-level Multi-configuration Methods use linear 
combinations of different Slater Determinants. 
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It is important to note that, as far as    is a linear operator, it is also possible to 
rearrange Eq. 2.13 into:  

                            

 

   

                                            

which means that the Slater Determinant can be replaced by a simple linear 
combination of atomic basis as the solution of the single-electron Hamiltonian    . 
In other words, the solution of a one-electron Molecular Orbital can be in 
principle constructed as a linear combination of atomic orbitals.  

Now let us turn our attention to the      operator. Exactly as for the one-
electron term in Eq. 2.12, the Slater Determinant (and its complex conjugated) in 
the two-electrons term can be also expanded to its factorized form. The result is a 
summation with I!2 two-electrons integral terms for each considered electronic 
pair – since the Slater Determinant is composed of all I! permutations of the 
Hartree Product. Fortunately, most of these terms vanish, and only two kinds of 
two-electron integrals remain: The Coulomb and the Exchange Integrals. Before 
classifying each of them, it is convenient to introduce a shorter notation for the 
factorized form of the Slater Determinant: 

              
 

   
   

      

   

     

where the functions ζ represent the I! permutations of the Hartree Product with 
respect to the electronic occupancy ( including their pre-factors       ).  

With this notation, the Coulomb Integrals ( J ) can be defined as those 
assuming the form: 

         
 

       
             

 

       
         

where the term into the bra-vector is identical to that in the ket-vector. Note that 
the bra and the ket vectors also contain the same permutation pre-factor      , 
which implies that J is always positive. 

Yet the Exchange Integrals ( K ) are those assuming the form: 

            
 

       
              

 

       
         

Where    is pairwise permutation operator, which exchanges the positions of 

the electrons i an j in   . As the term in the bra-vector is always a single 
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permutation of the term in the ket-vector, K always assumes a negative value. 
With the help of some algebra† it is possible to demonstrate that:   

                            

 

   

 

   

  

and, consequently: 

                             

 

   

 

   

             

 

   

 

   

                

which is the desired form for the electronic energy expression in terms of the 
Molecular Orbitals for a single-determinant, closed shell wave-function.  

Finally, from Eq. 2.16 it is possible to define a complete one-electron 
operator – usually called Fock Operator: 

                                                           

 

   

                 

where VHF is the effective Hartree Potential. Note that the Coulomb and Exchange 
integrals contained in VHF correspond just to an average electrostatic potentials – 
weighed via the electronic spatial probability distributions   

    – and do not 
take any electronic correlation effect into account. For our discussion, the 
important result is that the Fock Operator is purely a one-electron operator; so 
that it is possible using it to determine the expected value of single electron 
energies: 

                                                                                                                     

Eq. 2.18 is useful because, as we have seen in Eq. 2.15, we can expand     as a 
linear combination of atomic orbitals: 

                                                

Thus, given a suitable set of atomic basis, the problem of finding     reduces to 
discovering an appropriate set of linear combination coefficients (ci). It is 
necessary to remark that for all one-electron wave-functions, the expansion of 
the     uses always the same basis, hence we will drop the index for the 
electronic occupation in  . 

2.3.3 – The Variation Theorem and the Roothaan Equations  

The Variation Theorem [112] of quantum mechanics can be enunciated as: 

 Given a system whose the Hamiltonian is   , whose lowest-
energy eigenvalue is E; and   is any well behaved 
eigenfunction of    that satisfies the boundary conditions of 
the problem, then: 

                                                             
† See references [103] (Chapter 3) and [111] (Appendix 7) for details. 
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In other words, the Variation Theorem states that the “best”   is that which has 
the lowest-energy eigenvalue E as the expectation value.  

Now, this result can be used to optimize  . As we have seen in the last section, 
the single Slater Determinant wave-function       can be decomposed into a 
linear combination of atomic orbitals as the input vector for the one-electron 
Fock Operator: 

                                                               
    

 

   

 

   

                                          

Hence, according to Eq. 2.19, what we need is finding the coefficients (cij) which 
minimizes the one-electron energy   . Additionally,     has to be normalized; so 
the minimization must be subject to the constraint: 

                                                        
    

 

   

 

   

                                   

Fortunately, this problem can be managed via the Lagrange`s Multipliers 
method. The method consists in finding the stationary points of a function – i.e. 
the points where the function is invariant to changes in its variables – which in 
principle can be minimal or maximal points. In the case of electronic energies, 
there is no upper limit, and any stationary point of Eq. 2.20 is necessarily a 
minimum point. 

 In order to perform the minimization, the first step is defining a functional of 
both the function to be minimized and the constraint identity. In our case, such 
functional becomes: 

        
    

 

   

 

   

  
 
       

          
  

  
     

                            
    

 

   

 

   

                     
    

 

   

 

   

                            

In the definition of L we treat the one-electron energy    as the Lagra ge’s 
Multiplier and the linear combination coefficients     as independent variables. It 
is worthy to stress that, by definition: 

                     

so any stationary point for L is also a stationary point for              . 
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Besides, any stationary point of the functional L is characterized by the identity: 

                                                                            

where    is: 

      
 

    

 

   

    
      

 

   

                  

 

   

                                      

As the coefficients     are independent, the identity 2.23 only remains true in 

two cases: i) when all of them are zero (trivial solution) or ii) when all terms in 
round brackets – in Eq. 2.24 – and their conjugated complexes are simultaneously 
zero: 

                                                     

 

   

                  

 

   

                                            

So, by defining the Fock Matrix element (F) and the Overlap Matrix elemement 
(S) respectively as: 

                , 

and: 

                 

Eq. 2.25 can be rearranged into: 

               

 

   

         

 

   

  

and finally, by expanding it to all I-electrons, one finds the so-called Roothaan 
Equations: 

                                                                                                       , 

where F and S are I x I matrices containing all Fock and Overlap Matrix elements 
respectively, c is the I x I Coefficients Matrix and   is organized to be a diagonal 
matrix with all one-electron energies.  

Since we have been assuming an orthonormal basis set, the Overlap Matrix 
reduces to the Identity Matrix, and Eq. 2.26 becomes:  
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Eq. 2.26 has the form of a generalized eigenvector problem. Thus, from F and  , it 
is relatively simple to find the Coefficients Matrix c. Moreover, as F is Hermitian 
and     is real and arbitrarily arranged to be diagonal, c must be a unitary matrix– 
i.e.        (see chapter 8 in [112]) – so the process of solving (2.27) for c 
automatically leads to the diagonalization of F. 

2.3.4 – The Self-Consistent-Field Method 

Finally it is necessary to remark that the Roothaan Equations are not linear, 
since the elements in the Fock Matrix depend explicitly on the coefficients c – via 
the J and K integrals (Eq. 2.17). Therefore, it has to be solved iteratively, in a 
procedure called Self-Consistent-Field.  

The method consists in using a trial set of coefficients as input, in order to 
estimate the elements in the Fock (F) and One-electron Eigenvalues (   matrices, 
and then solving the Roothaan’s Equation for a new set of coefficients (c). With 
this new c, it is possible to recalculate J and K for every element in F and  . Then, 
F can be diagonalized again, once more leading to a new set of coefficients c. The 
procedure is repeated until some pre-established convergence condition is 
satisfied; so ensuring that the final result fulfills the accuracy requirements of the 
calculation. 

2.4 – Changing the Paradigm: Density Functional Theory 

In the last sections we have seen how one can solve the many-electrons 
problem within the Hartree-Fock approximation. However, despite their obvious 
importance, all Hartree-Fock and post-Hartree-Fock methods – i.e. Møller-Plesset 
Perturbation Theory, Configuration Interaction, etc. – have one serious 
inconvenience:  The electronic wave-function is a complex entity depending on 
the position and spin coordinates of all electrons in the system, which is very 
difficult to translate to a simple and intuitive physical model. Therefore, since the 
very beginning, there have been attempts of formulating the quantum many-body 
problem in terms of a simpler and physically meaningful variable:  The electronic 
density    . 

The use of the electronic density as central variable has at least three major 
advantages: i) it depends only on three spatial coordinates, ii) its distribution in 
polyatomic systems is somehow intuitive and iii) it can be experimentally 
measured in X-ray diffraction experiments. As mentioned before, the first 
endeavor towards an electronic density-based theory was the so called Thomas-
Fermi model [113,114], where the electronic kinetic energy (T) is approximated 
as a functional of the electronic density – assumed to be locally equal to that in a 
non-interacting homogeneous electron gas [105]. The original model has been 
subsequently extended by Dirac – the Thomas-Fermi-Dirac model – in order to 
take exchange effects into account‡ [105]. Nevertheless, at that time there was no 
formal proof that the electronic density contains enough information to 
completely characterize a many-electrons quantum system. The proof came 
almost 40 years later, with the first Hohenberg-Kohn Theorem, which is 
considered today as the foundation of modern Density Functional Theory. 

                                                             
‡ Today, the Thomas-Fermi and Thomas-Fermi-Dirac models have just an historical 
importance in the context of computational materials simulations. Therefore they will not 
be addressed in detail here. 
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2.4.1 – The Hohenberg-Kohn Theorems 

According to Koch and Holthausen [115], the Hohenberg-Kohn Theorems 
represent “the major theoretical pillars on which all modern-day Density 
Functional Theories are erected “. They establish the basis for an exact many-body 
theory, which applies to any system of interacting particles under an external 
potential – inclusive to electrons around static nuclei (Born-Oppenheimer 
Approximation). 

2.4.1.1 - The First Hohenberg-Kohn Theorem 

The first Hohenberg-Kohn Theorem can be formulated as:  

The external potential        of a given many-particles 
system is entirely determined, within a trivial additive 
constant, by its ground-state particle density      . 

Since the Hamiltonian of a many-electrons system is completely determined 
by its        – except for a rigid energy shift – all its eigenfunctions, for both 
ground and excited states, are fully determined by its      . The demonstration 
of the first Hohenberg-Kohn Theorem is straightforward: Let us assume two 
Hamiltonians,     and    , which lead to the same ground state      , and whose 
external potentials –    

     and    
     respectively – differ by more than a 

constant. Let us assume also that    and    characterize the ground states of     
and     respectively. So, it follows that: 

                             

and: 

                            

The inequalities can be rewritten as:  

                                

                                                  
        

                                     

and:  

                                

                                                  
        

                                     

Note that integrals on Eq. 2.28 and 2.29 have the same form because      and 
    lead to the same      . Finally, by adding Eq. 2.28 and 2.29 we find: 
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Thus, as Eq. 2.30 is absurd,       must be a bijective function§ of        .  

2.4.1.2 - The Second Hohenberg-Kohn Theorem 

One of the consequences of the first Hohenberg-Kohn Theorem is that the 
ground state electronic density       contains already the information of all 
possible wave-functions of a many-electrons system within a particular external 
potential       .  Accordingly, all system´s properties – including its total energy 
– can be represented as functionals of the electronic density; so that the problem 
now becomes finding the actual form of       .  

By writing the system´s total energy as a functional of a trial electronic density 
    : 

           

it follows that – according to the Variation Theorem(Eq. 2.19): 

                                                                                                            

                                                                                         

Eq. 2.31 establishes the so called second Hohenberg-Kohn Theorem, which 
states that:  

Given a system with the electronic density     , the ground 
state energy    corresponds to the global minimum of the 
total energy functional        , and the density       which 
minimizes         is the exact ground state density.  

Accordingly, finding the ground state energy of a many-electron system 
corresponds to minimizing the total energy functional         subject to the 
constraint: 

           

Here we can once more apply the Lagrange´s Multipliers method by defining: 

                         

                                                             

§ If we are working within the Born-Oppenheimer approximation, the system´s atomic 
positions are always given and the electronic density is solved according to it. In this case, 
{   

    } must be considered the functional Domain and {      } the Image. 
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and observing that δL=0** at any stationary point of L. Thus:  

                              

                        

                                                                                                            

However, the quantity    is defined as: 

    
  

  
 

  

    

where : 

 
  

  
 

  

              

Then, by incorporating   into  , Eq. 2.32 rearranges to its final form: 

                                                        
        

     
                                          

The Lagrange Multiplier   – usually referred as Electronic Chemical Potential – 
assumes a fundamental physical meaning. According to Parr and Yang [118], it 
“measures the escaping tendency of an electronic cloud. It is constant, through all 
space, for the ground state of an atom, molecule or solid, and equals to the E versus 
I curve at        constant.”  

Note that Eq. 2.33 would be an exact expression for the ground-state 
electronic density if the form of         were known. Unfortunately, that is still 
not the case. Despite that, we can extract some valuable information by 
expanding         in: 

                                         

where T is the kinetic energy functional and     accounts for all electron-electron 
interactions. Alternatively, T and    can be grouped into a unique functional: 

                                                                                          

                                                             
** In most texts, the minimization of the of the functional         is performed via 
Calculus of Variations instead of explicitly deriving the function L. Here we have preferred 
this approach in order to keep the coherence with the traditional DFT literature. Although 
using the Calculus of Variations is common in general physics, there might be some 
readers which are not quite familiar with the technique. For those included in this group, 
refs. [116] and [117] are suggested. 
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where           is the so-called Hohenberg-Kohn Functional. Observe that 
          does not depend on       , which means that it is a universal 
functional. In other words,           must have the same form for all imaginable 
systems, no matter which external potential is experienced by the particles. 

Starting from Eq. 2.34, it is also possible to demonstrate that: 

                                                  
          

     
                                               

which is equivalent to Eq. 2.33. The demonstration of Eq. 2.35 is essentially the 
same as that for Eq. 2.33 – except for an intermediate step involving integration 
by parts – and therefore we will not repeat it here. 

2.4.2 – The Kohn-Sham Equations 

In the last sections, we have seen how the Hohenberg-Kohn Theorems allow 
formulating the quantum many-body theory in terms of functionals of the 
particles’ density. Nevertheless, all the Hohenberg-Kohn formalism is based on 
unknown functionals, and solving Eq. 2.35 for the ground state density       is 
not possible before they are properly defined. Indeed, defining functionals for 
complex systems – such as many interacting particles – is not a trivial task. 

Therefore, in 1965, Kohn and Sham [119] have reformulated the DFT problem 
and created the most popular way to use Eq. 2.35 for realistic electronic structure 
simulations. The so-called Kohn-Sham approach is based on two simple 
assumptions [105] :  

i)  The exact ground state density of an interacting particles system 
      can be represented by the ground state density of an auxiliary 
system    

     composed by many non-interacting particles.  

ii)  The auxiliary Hamiltonian is chosen to have the usual kinetic operator and 
an effective local potential     acting individually on each electron in the 
system.  

According to these statements, the Kohn-Sham Hamiltonian assumes the 
following form (in atomic units): 

                                                                  
 

 
                                                   

By defining     as a one-electron operator,      becomes mathematically similar 
to the Fock-Operator (Eq. 2.17). Now, if we assume the Ansatz††: 

                                                             
†† The Ansatz 2.37 corresponds to representing the density integral     

       in terms 
of a single Slater Determinant     (likewise in section 2.3.1, for the one-electron Hartree-
Fock Hamiltonian). The functions {     corresponds to an appropriate basis set to 
represent the Kohn-Sham Orbitals. 
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we can rewrite the second Hohenberg-Kohn Theorem as: 

              
              

Hence, the problem of finding    
     – and       consequently – reduces to 

minimizing            
    subject to: 

              
   

 

   

 

   

   
     

       

Observe that, in the end, we have the same mathematical problem described in 
section 2.3.3 for the Hartree-Fock case; which consequently yields similar set of 
Roothaan Equations after the minimization via Lagrange Multipliers – the so-
called Kohn-Sham Equations: 

                                                                                                                     

where the elements of the Kohn-Sham Matrix (    ) are defined as: 

      
         

        

Thus, exactly as in the Hartree-Fock theory, we can start from a trial set of Kohn-
Sham orbitals and use the same Self-Consistent-Field procedure – as described in 
section 2.3.4 – in order to obtain        and   . In the end of the process, the 
ground state energy is the sum over the energies of all optimized Kohn-Sham 
orbitals. 

It is interesting to remark that there has been much skepticism on using Kohn-
Sham orbitals in order to interpret chemical processes [119], since they have 
been long considered as nothing else than an artifice to derive electronic 
densities in a self-consistent fashion. However, it has been already demonstrated 
that the form and symmetry of the Kohn-Sham orbitals agree very well with those 
from the Hartree-Fock theory or from the extended Hückel model [120]. Besides, 
Kohn-Sham eigenvalues have been found to be consistent with the Koopmans 
theorem after some rescaling [120], confirming that they constitute a reliable 
basis for qualitative molecular orbital analyses [121,122]. 

2.4.2.1 – The Kohn-Sham Effective Potential 

Although the Kohn-Sham equations provide a systematic way to calculate the 
ground state electronic densities, we still have to define an appropriate     in 
order to calculate the elements of the Kohn-Sham Matrix. Generically,     can be 
represented as: 
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where             is a functional for the Coulomb energy between the electrons 
and the external potential        : 

                        

            is the Hartree energy functional:  

           
 

 
 

       

      
     

accounting to electron-electron repulsions, and            is the so-called 
Exchange-Correlation Functional.  

The physical meaning of             needs no further discussion at this point; 
but there are some important remarks on the             and           . 
According to its definition, the functional            gives the interaction energy 
of        with its own electrostatic field. This mean-field approximation is 
assumed for the sake of computational convenience; but unfortunately it 
generates a spurious self-interaction energy [105, 115]. To check this fact, it is 
enough to observe that the Hartree Functional gives a non-vanishing repulsion 
energy even for a system with only one electron. In the Hartree-Fock theory, this 
effect is automatically canceled by the exchange integrals – which always appear 
as a stabilizing term in the Fock Operator – but the same is not true in the Kohn-
Sham scheme, where any correction must be incorporated into the XC functional 
– which will be discussed bellow. 

2.4.3 – Exchange-Correlation Functionals 

As its name already suggests, the XC functional must account not only for the 
self-interaction correction but also for the electronic correlation energies. The 
problem at this point is: the exact form of the XC still remains unknown. Several 
approximated XC functionals have been developed during the years. In general, 
such functionals are parametrized against high-level quantum chemical methods, 
which is often seen as a weak spot in an otherwise “pure ab initio” theory. On the 
other hand – from a more pragmatic perspective – approximated XC functionals 
give the flexibility necessary to perform small ad hoc corrections at a relatively 
modest computational price. In the words of Koch and Holthausen [115], the XC 
functional of DFT became “a kind of junkyard where everything is stowed away 
which we do not know how to handle exactly”. With that said, it is clear that the 
understanding the approximations included in the existing XC functionals is of 
capital importance. Therefore, we will take a closer look at the most accepted XC 
schemes.  

2.4.3.1 – Local Density Approximation 

The first successfully EX scheme in DFT was the so-called Local Density 
Approximation (LDA), which has been already sketched by Kohn and Sham early 
in 1965 [119]. The idea is considering that the electrons of a given system can be 
treated – in the limit – as homogeneous electron gas, where all XC effects are 
strictly local [105,115,118].  The model also assumes that the XC functional can 
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be split in two independent terms, one for the exchange and one for the 
correlation energies respectively: 

                                , 

so that the XC energy (EXC )can be simply computed by: 

                                             

The motivation behind these assumptions is that, for a homogeneous electron 
gas, the form of the            functional is known from the Thomas-Fermi-Dirac 
Model [118]: 

                                                                  
 

 
 
       

 
 

 
 

                                      . 9  

which means that – within the LDA – the exchanged energy can be computed 
exactly. 

Concerning on the functional           , unfortunately there is no such 
analytical expression defining its form. Nevertheless, an alternative solution 
arose from the work of Ceperley and Alder [123], who have calculated the 
correlation energy for a homogeneous electron gas with great accuracy by using 
sophisticated Quantum Monte-Carlo simulations. Since then, several expressions 
for            have been proposed from interpolations of the Ceperley and Alder´s 
results. Among them, the most widely used is probably is the one parametrized 
by Zunger and Perdew [124]. 

For systems like infinite nearly-free-electron metals – where the electronic 
density is essentially uniform – the LDA approach works considerably well in 
predicting atomistic structures and charge moments. On the other hand, it may 
dramatically fail for systems such as atoms, molecules and surfaces, where the 
electronic density decays uniformly outside the system’s boundaries. That is 
because of the form of the LDA            functional, which always creates a 
spherical Fermi hole centered at the reference electron – no matter where it is. It 
may be a very a good approximation while considering uniform electron 
distributions, but indeed does not correspond to the right physical picture if 
electronic gradients are involved. In non-uniform electronic distributions, Fermi 
holes should vanish in very-low-density regions. Because of this shortcoming, 
LDA functionals strongly overestimate cohesive properties, thereby reducing its 
applicability in cases where free-atoms, molecules or surfaces must be taken into 
account.  

2.4.3.2 – The Generalized Gradient Approximation 

From the discussion above, it is not difficult to intuit that correcting the LDA 
shortcomings necessarily involves including density gradients in the formulation 
of XC functionals. However, several attempts to do so have demonstrated that 
there is no simple and systematic way of accomplishing this task. Instead, 
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developing improved XC functionals has been always involving a strong trial-and-
error character. Currently, there are several different XC functionals designed to 
take density gradients into account. Nevertheless, the formulation of a functional 
is not straightforward, usually involving a considerable amount of algebra and 
physical intuition. Therefore, here we will refrain from giving details on the 
derivation of specific functionals, favoring just a brief overview on the general 
features of gradient corrected functionals. 

The first attempt to incorporate gradient effects to XC functionals was made 
by interpreting the LDA as the first order term of the Taylor expansion of the 
exact          with respect to the electronic density. Consequently, the first 
logical step towards an improved functional would be incorporating the higher 
orders of the expansion.  Written up to the second order term, the XC assumes the 
form of the so-called Gradient Expansion Approximation (GEA): 

                                                          
                     

      

    
 
 

    ,              .    

where CXC represents the Taylor expansion coefficient‡‡.  

However – despite considering the density gradient explicitly – the GEA 
performs even worse than the LDA. To understand the reason behind such 
unexpected failure, it is useful to go back to the work of Gunnarsson and Lundqvist 
[126], who interpreted           as the electrostatic interaction of each electron 
of the system with its own XC hole; so that it can be represented (in atomic units) 
as:  

                                                                                                                    

where     is the density of the XC hole and u its distance from the reference 
electron. Still according to Gunnarsson and Lundqvist, Eq. 2.41 requires that     
satisfies the summing rule: 

                                                           ,                            .    

or in other words, that the XC hole must contain exactly one fundamental charge.  

Given that, Langreth and Perdew have showed that the GEA hole – which is 
rather a truncated expansion, instead of an exact formulation for the real hole – 
violates Eq. 2.42 [127], whereas LDA doesn’t [1 7,1 8]. Besides, GEA also 

                                                             
‡‡ Note that in most texts, Eq. 2.40 is explicitly expressed in terms of spin dependent 
densities. However, we have avoided explicitly denoting spin dependencies until now, 
assuming that different spin orbitals are simply different functions. Therefore – following 
the example of ref. [125] – we have also preferred skipping the spin notation in Eq. 2.40 
in order to keep the consistence with our own notation. Nevertheless, it should be noted 
that – rigorously – the spins must be taken into account while setting practical 
applications of Eq. 2.40, since exchange Integrals are non-null only if the orbitals involved 
have the same spin part. 
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violates other desirable XC functional boundaries, such as the negativity condition 
and the Kato´s cusp condition [115], which all together has been often considered 
the reason why LDA in fact yields better results than GEA.   

In part, such failures of the GEA model are related to its spurious behavior for 
holes far from the reference electron (i.e. large u values) [127-129]. But on the 
other hand, it has been also demonstrated that the GEA improves the LDA results 
when the XC hole is close enough to the reference electron [127-129]. Because of 
this property, it is possible correcting the GEA functional by simply cutting off its 
spurious long-range part and fitting its short-range contributions to some 
arbitrary analytical function (FXC), which can be specially chosen in order to 
satisfy some pre-determined functional boundaries – i.e. the summing rule in Eq. 
2.41, the negativity condition, etc. In the end, the quality of the corrected 
functional is not evaluated based on its mathematical form, but on how its results 
compare with either experiments or higher level ab initio calculations. This very 
pragmatic philosophy for constructing XC functionals is what constitutes the so-
called Generalized Gradient Approximation (GGA), whose generic functional form 
is expressed as: 

   
                             

 Along the years, several forms have been proposed for FXC, in general splitting 
it in an exchange and a correlation parts. Preeminent examples of GGA 
functionals are the Becke [130](exchange) and Perdew [131] (correlation) (BP), 
Becke (exchange) and Lee-Yang-Parr [132](correlation) (BLYP), Parr and 
Wang[133] (PW91) and the Parr-Burke-Ernzerhof [133](PBE) functionals. 
Despite they have been often classified as “non-local” or “semi-local” functionals 
in the literature, it is necessary to emphasize that all GGA functionals have only 
     and       as their functional domains, being completely independent of 
electronic densities and gradients anywhere else than the reference positions r – 
i.e. there is no explicit dependence on       and       . Hence, all GGA functionals 
are strictly local; and classifying them as non-local or semi-local constitutes a 
misleading nomenclature [115]. In the conventional DFT calculations along this 
work we have employed the PBE functional, which is known for describing 
geometries and cohesive properties of solids and molecules with very good 
accuracies§§.  

2.4.3.3 – The Band Gap Problem 

One serious limitation of the LDA/GGA functionals is their inability of 
predicting correct band gap energies*** (Eg) in semiconductors and isolators, 
which are systematically underestimated in such conventional DFT calculations. 
This deficiency is particularly important in the context of this work, since ZnO is 

                                                             
§§ Molecular atomization energies can be calculated within mean average errors of 0.3 eV 
with PBE, whereas LDA and HF calculations give 1.3 eV and 3.1 eV respectively [133]. 

*** The band gap energy of a given system is formally defined as the difference between 
the Ionization Potential and the Electron Affinity. If the system´s electrons are 
approximated as non-interacting particles, the band gap energy reduces to the difference 
between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO and 
LUMO respectively).  
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strongly affected by the so-called Band Gap Problem (BGP). Experimentally, the 
ZnO Eg is ~ 3.3 eV, whereas PBE predicts ~ 0.8 eV. Also particularly critical is the 
case of the semiconductor germanium, which is found to be a metal in LDA/GGA 
calculations. 

Historically, several reasons have been appointed to explain the BGP, with 
some authors – including Sham [134] – even suggesting that it is intrinsic to the 
DFT formalism itself [134-136]. Despite that, it is consensual that the problem 
comes from the use of approximated local XC functionals. In a recent work [137], 
Wang et al demonstrated that the electronic chemical potentials assume a convex 
form while using LDA/GGA functionals; resulting in over-delocalized states and 
consequently to the underestimation of the gap energy. In fact, quasi-particles 
band structures calculated through the GW method – where the many-body 
problem is handled via the Green Functions formalism – are not influenced by the 
BGP [138], but such calculations are still too demanding to be applied even to 
modest size models.  

One widely used alternative to overcome the DFT gap problem is mixing some 
Hartree-Fock Exchange into the LDA/GGA-XC functional; thereby producing a 
hybrid functional.  The success of hybrid functionals in correcting the BGP is often 
attributed to the fact that the HF Exchange is an exact functional [115]. However, 
there is some controversy about this statement. As emphasized by Wang et al 
[137], the HF Exchange produces a concave behavior on electronic chemical 
potentials – opposing the LDA/GGA case – thereby inducing over-localized 
electronic states. So, a suitable balance between LDA/GGA and HF amount in the 
hybrid XC functional may lead to a useful cancelation of errors; and to correct gap 
energies consequently. Still, hybrid functional-based calculations are also 
computationally very expensive. 

A more computationally efficient alternative to overcome the BGP is 
correcting the DFT Coulomb interactions through the so-called LDA+U method 
[139]. In its most popular implementation – the Dudarev’s rotationally invariant 
method [140] – the LDA+U approach consists in applying a penalty function to 
disfavor partial occupations on specific orbitals: 

                         
       

 
 

      
  , 

where U and J are the orbital dependent Hubbard and exchange parameters 
respectively, and nm is the occupation number of the orbital m – note that the 
penalty function vanishes if nm =1. This method has been often used to calculate 
ZnO electronic properties, generally reaching improved Eg values, varying from ~ 
1.5 to ~ 3.7 eV depending to the U and J parameters employed [141-144].  

The LDA+U method will be employed in Chapter 4, in order to calculate the 
electronic properties of functionalized ZnO surfaces. 

2.4.4 – The Pseudo Potential Method 

Up till now, our discussion on the electronic many-body problem has been 
made with all electrons in the system being considered explicitly.  
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However, it is well known that only valence shell electrons are active in 
chemical processes, with core electrons being insensitive to the changes in the 
external environment. Given that, a very reasonable way of speeding up quantum 
simulations is substituting the inner-shells electrons in the system by effective 
atomic pseudopotentials. By definition, a pseudopotential is a function designed to 
mimic the effect of core electrons on the valence shell of a certain atom. So, by 
using appropriate pseudopotentials it is possible to reduce the computational size 
of electronic structure simulations while keeping the accuracy of all-electrons 
calculations.  

Currently, most pseudopotentials used in electronic structure simulations are 
generated from all-electron atomic calculations. Since such pseudopotentials are 
not fitted according to any kind of experimental data, they are also called ab initio 
pseudopotentials. In order to construct suitable pseudopotentials, there are some 
primary conditions which must be satisfied: 

i) All-electrons and pseudo-valence eigenvalues must agree for the 
chosen reference atomic configuration:  

  
      

ii) All-electrons and pseudo-valence wave-functions agree beyond a 
chosen cutoff core radius RC. 
 

iii) The logarithmic derivative of all-electrons and pseudo-valence wave 
functions must agree at RC. 

 
iv) The integrated charge inside RC must be the same for both all-electrons 

and pseudopotential calculations. 
 

Conditions i) and ii) ensures that the pseudopotential reproduces the atomic 
potential outside the cutoff radius. Condition iii) that the pseudo potential is 
smooth and condition iv) that the charge inside RC is correct and that the pseudo-
orbitals are equal to the true orbitals outside RC. Altogether, these four conditions 
ensure that the pseudopotential is able to reproduce the core electrons it is 
supposed to replace, which is essential for accuracy and transferability purposes. 
The pseudopotential which satisfies all these four conditions are classified as 
norm-conserving.  

In this work, we have used norm-conserving pseudopotentials generated with 
the Troullier-Martins protocol [145], as implemented in the ATOM program – 
distributed with the SIESTA package [146]. For the Zn pseudopotential, the 3d 
electrons have been included into the valence shell, since it is known such 
orbitals hybridize with the oxygen 2p orbitals in ZnO. Table 2.1 brings the 
reference atomic configuration used for all pseudopotentials in this work.   
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Table 2.1 – Reference atomic configurations for the pseudo-atoms used 
in this work. Rc s, Rc p and Rc d denote the cutoff radius for the s, p and d 
pseudopotential components respectively. 

Atom 
Reference 

Configuration 
RC  s (Å) RC p (Å) RC d (Å) 

H 1s1 1p0 0.66 0.66 0.66 

C 2s2 2p4 3d0 0.66 0.66 0.66 

N 2s2 2p5 3d0 0.66 0.66 0.66 

O 2s2 2p4 3d0 0.60 0.60 0.60 

S 3s2 3p4 3d0 0.79 0.89 0.89 

Zn 3d10 4s2 4p0 1.06 1.20 0.91 

  

2.5 – Equilibrium Configurations and Atomic Forces  

 In sections 2.3 and 2.4 we have discussed the two most traditional 
approaches to the quantum electronic many-body problem: the Hartree-Fock 
model and the Density Functional Theory. In both cases, the electronic structure 
problem is solved within the Born-Oppenheimer approximation – i.e. with the 
nuclear wave-function χ decoupled from the electronic wave-function ψ(Section 
2.2). In other words, the electronic many-body problem can, in principle, be 
solved for any specified atomic geometry, no matter whether it is physically 
meaningful one or not.  

Of course, one of the ultimate aims of Quantum simulations is exactly 
predicting equilibrium atomic configurations of molecules and solids. So, in 
practice, what one has to do is sampling the system’s potential energy surface in 
order to identify its minimum. Roughly speaking, the most efficient way to 
perform such geometry optimization is: i) starting from a reasonable trial 
configuration, ii) calculating the forces on each atomic site in the system, iii) using 
these forces to move the atoms accordingly, and finally iv) repeating the whole 
procedure until the all forces in the system become smaller than a given 
tolerance criteria. 

In electronic structure simulations, atomic forces can be calculated via the so 
called Hellman-Feynman theorem [147], which states that the force acting on a 
nucleus n is equal to the total energy derivative with respect to the position of n:  

                                          
  

   

      
       

   

   
       

   

                    .    

where, 

         
    

       

 

   

 

   

 

It is important to remark that, in calculations using localized basis-sets, the 
bases are tight to the atomic positions. Consequently, the atomic shifts necessary 
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to compute the energy gradients in 2.43 induces small changes in the systems 
wave-function, thereby introducing errors in the forces. Fortunately, Eq. 2.43 can 
be corrected by the introduction of the so-called Pulay Forces 
[148,149](expressed according to the Kohn-Sham formalism): 

  
     

   
      

   

     
             , 

where     is the Kohn-Sham energy for the unperturbed reference system,      is 
the Kohn-Sham wave-function for the perturbed system and     

  is Kohn-Sham 
Hamiltonian for the perturbed system. Note that the Pulay Forces vanish when 
the perturbed and unperturbed Hamiltonians are equal. 

2.6 – Modeling Crystalline Solids  

Crystals††† can simply be defined as periodic arrays of atoms, where the 
general structure corresponds to the tridimensional repetition of a smaller 
structural unit – i.e. a cell – which is invariant to translational symmetry 
operations.  

Mathematically, a three-dimensional periodic crystal is formed by the 
combination of two distinct components: i) a Bravais lattice and ii) a basis.  

A Bravais lattice is an infinite array of points formed by all possible position 
vectors (R) with the form: 

                                                                                                           

where a, b and c are non-simultaneously coplanar primitive lattice vectors and na, 
nb  and  nc are arbitrary integers. Note that the Bravais lattice is only a 
mathematical abstraction which summarizes the underlying geometry of a 
periodic structure, regardless what the actual repetition unit is.  

Yet the basis can be defined as the minimal set of atoms that, when replicated 
along all possible lattice points, gives origin to the actual crystal structure (Figure 
2.1). Because the lattice points are not physical entities, the basis can be defined 
at any position within the lattice, without changing the final crystal structure. 

It is important to remark that in reality there is no infinite crystal. Instead, 
crystals are always limited in size, being surrounded by real surfaces. 
Additionally, thermal fluctuations constantly induce changes in the relative 
atomic positions; and there are always defects to break the crystal’s perfect 
symmetry. Despite of that, the vast majority of the atoms in real crystals are too 
far away from surfaces and defects to be affected by them, and thermal 

                                                             
††† According to the International Union of Crystallography (IUCr), a crystal is classified as 
a materials which has an “essentially sharp diffraction pattern“[15 ]. This definition has 
substituted the classical definition of crystals – i.e. periodic arrays of atoms – in order to 
incorporate the so-called quasicrystals (i.e. structures who have well defined diffraction 
patterns although they are not strictly periodic in the direct space). Nevertheless, as we 
will not address any quasicrystal in this work, we will keep assuming the old crystal 
definition for the sake of simplicity. 
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fluctuations usually have only marginal effects – if any – on the fundamental 
electronic levels. Therefore, assuming the crystal structure as the infinite 
repetition of an atomic basis along Bravais lattices can be considered a very good 
approximation to real periodic crystals. In solid-state simulations, this 
approximation is conventionally referred to the use of Periodic Boundary 
Conditions. 

 

 

Figure 2.1 – Representation of the Lattice vectors, lattice points and the atomic basis 
(top) of a bi-dimensional crystal (bottom).  

2.6.1 – The Reciprocal Lattice 

Fundamental to the analysis of periodical systems, the reciprocal lattice can be 
defined as “the set of all wave-vectors (k) that yields plane-waves with the 
periodicity of a given Bravais lattice” [151]. Mathematically, this definition can be 
expressed as: 

               , 

which must hold true for any reference position r and for any Bravais position 
vector R. Some more information on k can be obtained by simply factoring out the 
right-hand term above, so that we have: 

                                                         1,                                               .    

which implies that: 
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Now, if we expand the wave-vector k in terms of any three non-simultaneously 
coplanar vectors: 

                        

we find that Eq. 2.47 only holds true if the coefficients ki, kl and km are integers. In 
other words, the set of all possible wave vectors k which satisfies Eq. 2.46 also 
corresponds to a Bravais lattice itself. Moreover, it can be also demonstrated that 
there is a mutual correspondence between any Bravais lattice and its reciprocal. 

2.6.2 – The Wigner-Seitz Cell and The First Brillouin Zone 

  For a given Bravais lattice, it is possible to define a unit cell as the volume that 
fills all the lattice space – without overlapping with its neighbors or leaving voids 
– when translated to all possible lattice points. According to this definition, there 
are infinite ways of choosing unit cells for a given Bravais lattice; with the only 
constraint being that each unit cell must contain only one lattice point. 
Nevertheless, there is one case where all points inside the unit cell are closer to 
its own lattice point than to any of its translations along the lattice. For a Bravais 
lattice in the direct space – i.e. not in the reciprocal space – this special unit cell 
construction is called Wigner-Seitz cell (WS). 

Because of the mutual correspondence between any Bravais lattice and its 
reciprocal lattice, there is also a unit cell which corresponds to the WS in the 
reciprocal space, which is called First Brillouin Zone (BZ). An important property 
of WSs and BZs is that they hold exactly the same symmetry properties of their 
respective Bravais lattices – in the direct and reciprocal space respectively. 

 As we will see in the next sections, important properties of crystals have to be 
integrated within the BZ – such as the total electronic energy and the density of 
states (DOS). The graphical representation of the BZ for a hexagonal lattice – the 
one in the wurtzite ZnO structure – and its high-symmetrical lines is given in 
Figure 2.3. 

                             

Figure 2.3 – First Brillouin Zone for hexagonal lattices and its highly symmetrical 
points. 
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2.6.3 – The Bloch Theorem 

Given that a crystal is a periodic array of atoms or ions, the external potential 
experienced by their electrons also must be a periodic function – with the same 
periodicity of the Bravais lattice underlying the system: 

                                                               .                                          . 8  

Consequently, the electronic Hamiltonian of a crystalline solid also becomes 
periodic – since the Hamiltonian is entirely defined by the form of the external 
potential. Then, it is convenient to define a translation operator      with the 
following properties: 

                                               . 

and : 

                                                                                                                       . 9  

Additionally, the result of two consecutive translation operations must not be 
affected by the order in which the translations are performed: 

                                            . 

Consequently, we have that: 

                                                                     .                                         .5   

Eqs. 2.49 and 2.50 establish that the Hamiltonian of a periodic system commutes 
with the translation operator for any given position vector R of the system´s 
Bravais lattice.  

An important property of commuting operators is that they always share the 
same set of eigenfunctions [112]. Therefore, for any wave-function ψ satisfying 
the time-independent Schrödinger equation, we have: 

                                                           ,                                  .51  

where      is the eigenvalue related to the operator    . From Eq. 2.50 and Eq. 
2.51, it follows that: 

                            . 

Once R is defined in terms of the primitive lattice vectors (Eq. 2.45), we can 
conclude that: 

                                                               .                           .5   
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Note that – as a function of the primitive lattice vectors – the eigenvalues   are 
also periodic, which allows representing it in the form:  

             

Given that, Eq. 2.52 reduces to: 

                         , 

which is equivalent to: 

                                                           ,                                          .5   

with k equal to: 

                   . 

Finally, by substituting Eq. 2.53 into Eq. 2.51, we find that: 

                                                                                            .5   

Eq. 2.54 is the mathematical expression of the Bloch Theorem, which states 
that:  

To each eigenstate      of a one-electron Hamiltonian    is a 
wave-vector k , so that                     holds true for every 
R in the lattice. 

Among other consequences to the quantum theory of crystals, the Bloch 
theorem introduces the wave-vector k, which can be interpreted as a quantum 
number for the translational symmetry of a wave-function in a periodic potential 
[151]. It is interesting to remark that all relevant values of k are confined in the 
First Brillouin Zone (BZ) of the system, since any wave-vector k’ outside the BZ 
has a corresponding one into it – because of the periodicity of the reciprocal space 
(Section 2.6.1). 

2.6.3.1 – Energy Bands and Band Structures 

Another important consequence of the block theorem is that the eigenvalues 
of the one-electron Hamiltonian    do not appear as discrete energy levels, but 
form continuous energy bands. Observe that – since    does not operate directly 
on k – there is a one-electron eigenvalue ( k) for each possible value of k in the BZ. 
Now, if we consider that, in the limit of macroscopic crystal, the reciprocal lattice 
can be approximated as a continuous vectorial space, k is allowed to vary 
continuously within the BZ, and the one-electron eigenvalue becomes a 
continuous function      – i.e. an energy band.  
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Accordingly for the set      containing all eigenfunctions of   , there will be a 
corresponding set of energy bands        . This set         is the so-called band 
structure of the system, which contains all the electronic structure information 
associated with its unit cell. 

2.6.3.2 – Integration over the First Brillouin Zone and k-points Sampling 

 Considering a semi-conductor/isolator‡‡‡ the average electronic energy per 
unit cell (      ) is in principle determined by a sum over all filled one-electron 
energy bands in the First Brillouin Zone (BZ): 

                                             
 

   

    

 

  

     

 

 

                                  

where     is the volume of BZ. In practice however, the functional forms of 
        are not known and the integral in Eq. 2.55 must be substituted by a 
reasonable sample of discrete energy levels in the k-space: 

                                                   
 

  

     

 

 

 

 

 ,                                  

where NK is the total number of k-points – i.e the number of different wave-
vectors k – sampled. For a sufficient set of k-points, Eq. 2.56 gives exactly the 
expected value of 2.55.  

There are several ways to choose an adequate k-points sample. Among them, 
the most popular is the so-called Monkhorst-Pack (MP) grid [152], which is 
specified by the relation: 

    
        

   

  

    

  

 

   

 

where ki represents the primitive vectors of the reciprocal space. The MP grid 
defines a uniform set of points, which is a scaled version of the system´s 
reciprocal lattice. The mesh of the grid is defined by the number of k-points Ni 
taken along each direction. Of course, denser grids lead to more accurate results, 
but are also computationally more expensive. In practice, performing 
convergence tests for the system’s electronic energy with respect to the mesh of 
the MP grid is necessary; and then using the sparsest converged grid in all 
subsequent production calculations. One can also reduce the number of k-points 
to be sampled in actual calculations – without losing accuracy – by sampling the 
k-space only within the Irreducible Brillouin Zone (IBZ), which is the BZ reduced 
by all symmetry operations of the lattice´s point group. 

                                                             
‡‡‡  The fact that there are no partially filled energy bands in semi-conductors and 
isolators makes our discussion in this section more straightforward, and therefore we 
will not comment explicitly on metals here. Nevertheless, the basic principle to be 
sketched here holds true for semiconductors, isolators and metals. 
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2.6.3.3 – Density of States (DOS) 

Usually, the physicochemical information contained in an electronic band 
structure         is as rich as hard to analyze. Partially, that is because         is a 
complex energy diagram in the k-space, whose interpretation is not intuitive at 
first glace. Although there are important properties which can be directly 
extracted from         – such as the existence of energy band gaps for example – 

but rationalizing chemical events based on electronic band structures normally is 
not straightforward.  

However, the information contained in         becomes much more suitable 
for qualitative chemical analysis if transformed into its Density of States (DOS) 
form: 

     
 

   
            

 

  

  

 

  

where δ in the Dirac’s Delta function, and the sum runs over all electronic states 
in the First Brillouin Zone. Defined in this way, the DOS counts the total number of 
electronic states with eigenvalue     numerically equal to a given reference 
energy E. In other words, the DOS represents the energy distribution of all 
electronic states of a system; showing a clear similarity with traditional 
molecular energy diagrams used in chemistry.  

The information of the DOS can be further refined by separating – or 
projecting – its contributions from individual atoms or orbitals in the system. The 
so-called Projected Density of States (PDOS) is a very useful tool for rationalizing 
chemical phenomena, since it permits indentifying how the electronic states of 
some particular specie changes when exposed to different environments. PDOS 
analyses will be extensively employed along Chapter 4 to interpret the 
interactions of different molecular anchors with ZnO non-polar surfaces.  

2.6.4 – The Tight Binding Model 

 The Tight Binding model is a very helpful theoretical tool in solid state 
physics. That is not only because it is the basis for constructing approximated 
electronic Hamiltonians and computationally efficient methods, but especially 
because it leads to a very intuitive interpretation for the origin and the physical 
meaning of electronic bands in the k-space. Instead of viewing the solid state as 
an array of positive nuclei immersed into an electron gas – which was implicitly 
done until now – the Tight Binding model assumes that solids are basically 
formed by a collection of interacting neutral atoms. The difference is that while in 
the first case each electron is from the very beginning assumed to be delocalized 
along the system, in the Tight Binding approach it is initially considered as bound 
to a certain atom. 

2.6.4.1 – General Tight Binding Formulation  

To understand the Tight Binding model, let us imagine a crystal where we can 
change the lattice constants   arbitrarily, with all bond lengths varying linearly 
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with R. Additionally, let us assume the independent electron approximation, so 
that we can represent our system as a sum of one-electron Hamiltonians     (see 
Section 2.3.2). As usual, our problem here becomes finding the set of one-electron 
wave functions       which satisfy the one-electron Schrödinger Equation: 

                                                             .                           .57  

At first, let us consider the extreme case where all inter-atomic distances in 
our crystal are simply very large – i.e.     – with the system corresponding to 
an infinite array of M isolated atoms. In this case, it follows that the external 
potential in     must reduce to a simple atomic potential. Therefore, it is 
convenient to define     in terms of a simple atomic Hamiltonian (   

    )[151]: 

                                                
                                              

where       is a correction operator accounting for the external potential 
differences between the free atom and the crystal cases. Obviously,       must 
vanish for      . Note that, according to the ansatz in Eq. 2.58, any atomic 
orbital       will satisfy Eq. 2.57 for     . Nevertheless, because of the 
periodicity of the system, we have to ensure that       satisfies not only Eq. 2.57 
but also the Bloch theorem (Eq. 2.54). Such requirement is fulfilled by expanding  
      as a linear combination of atomic orbitals, localized in all equivalent atomic 
positions in the lattice: 

                                                                   

 

.                         .59  

where cR are linear combination coefficients – and normalization constants at the 
same time. Now, let us calculate the expectation value of       by using        as 
defined in Eq. 2.59: 

          
  
           

              
    

 
         

    
       

 
       

   

.         .    

Since the atomic functions       are eigenfunctions of    
    , Eq. 2.60 can be 

rewritten as:  

                                              
                         

   

.                 . 1  

If     is larger than the length of      ´s radial part, the overlap integrals in Eq. 
2.61 will vanish unless       . Thus: 

                         
       

 
                       ,

 

 

                                                  
                      .
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 Eq. 2.62 brings two important qualitative results: i) the dependency of     on 

the wave-vector k is eliminated if      , and ii) the eigenvalues associated to     

become equal to the eigenvalues    of the atomic orbital      . Finally, if we recall 
that for each of the M atoms in our infinite crystal there must be an electronic 
level with exactly the same mathematical structure in Eq. 2.59, we arrive at the 
conclusion that – for the whole crystal – the eigenvalue    must be M-times 
degenerate. Of course, the degeneracy of    will also follow the degeneracy of the 
atomic orbitals       used to expand    . For example, if     is related to atomic p-
levels, then    will be 3M-times degenerate. 

Now let us consider the case where        – i.e. a crystal with finite lattice 
vectors. Remember that – by construction – the potential       contains all 
corrections necessary to turn the one-electron atomic Hamiltonian into the full 
one-electron crystal Hamiltonian. If that is true, then all we have to do in order to 
find the band       is calculating the expectation value for the       operator and 
adding it to the correspondent atomic eigenvalue   : 

                                                                                           .                                 .    

Here we can once more use the ansatz in Eq. 2.59 in order to expand the one-
electron wave function in terms of an atomic basis; thereby rewriting Eq. 2.63 as: 

                                        
                               

   

                

            
                          

 

         
                               

    

                    

Just like in Eq. 2.61, the dependency on k vanishes for        and the first sum in 
Eq. 2.64 becomes just a rigid one-site energy shift: 

                       . 

Furthermore, the second sum in Eq. 2.64 – i.e. the terms where        – can be 
simply rearranged as: 

        
                               

    

         
                                

    

                                             

    

  

which leads us to the final Tight Binding expression for the energy band       in a 
crystal: 
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The first and the second right-hand terms in Eq. 2.65 are rather “rigid” one-
site energies, which implies that all the energy dispersion in       depends 
exclusively on the third right-hand term in Eq. 2.65. Hence, it is possible to 
interpret such energy dispersions as a measure of the overlap between orbitals at 
different locations in the crystal [151]. In order to confirm that, observe that the 
dependency of       on k disappears if the overlap integrals                    

vanish. So, according to Eq. 2.65, it is possible to draw some important intuitive 
conclusions on the structure of the energy bands      : i) energy dispersions are 
expected to be negligible for core-electron bands, since core-electron orbitals are 
rather localized and chemically inert; ii) the dispersions on       are expected to 
increase with the radial size of the valence orbitals, and iii) the dispersions on 
      come mostly from the orbitals’ interactions with their near neighborhood, 
where the orbital overlaps are more effective. Interactions with the first-
neighbors are indeed expected to be dominant, but second and third-neighbors 
are also often important [105].  

Finally, Eq. 2.65 still left the combination coefficients cR to be determined. 
Since we assumed the independent-electrons approximation we can use the 
variation principle and the Lagrange multipliers method (see Section 2.3.3) to 
minimize the Tight Binding total energy expression in its Eq. 2.60 form. In the end 
– exactly as in Sections 2.3.3 and 2.4.2 – we will find a set of Roothaan Equations 
for the Tight-Binding problem – one for each possible point in the k-space: 

                  

 which can be solved self-consistently in conjunction with Eq. 2.65. 

It is important to remark that the Tight Binding formalism is not restricted to 
any type of specific basis-set or further approximation beyond the independent-
electrons model. Instead, it is a quite general formulation to solve the electronic 
structure of periodic systems by employing localized basis sets. In fact, there are 
several different methods – with different levels of accuracy – constructed on a 
Tight Binding platform, like the DFT implementation in the SIESTA package or the 
semi-empirical SCC-DFTB method for example – both used in this work. 
Historically, however, the term “Tight Binding” has been often associated with 
empirical Tight Binding models, where the elements of Hamiltonian matrix (H) 
are approximated by empirical analytical functions – fitted against ab initio 
calculations or empirical data.  

2.6.4.2 – The SCC-DFTB Method 

The SCC-DFTB method is a semi-empirical Tight Binding model based on the 
Kohn-Sham Density Functional Theory formalism, which will be detailed in the 
next two sections. At first we will show how to express the Kohn-Sham total 
energy formula in terms of density fluctuations in the system – which is a more 
appropriate form to solve the electronic energy self-consistently with respect to 
charge distributions. After that we will introduce the set of approximations which 
characterize the SCC-DFTB method. 
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2.6.4.2.1 – Rearranging the Kohn-Sham Total Energy Formula 

Given the Kohn-Sham total energy expression: 

                          

                                              

                
    

 

 
  

              
 

 
 

     

      
       

   

 

   

            ,      .    

the derivation of the SCC-DFTB model starts from separating the electronic 
density in a reference density       and a variation term accounting for density 
fluctuations in the system     : 

             , 

where    is chosen to be the superposition of the neutral-atom densities for all 
species in the system. Given that, we can rewrite Eq. 2.66 as:  

            
    

 

 
  

        
       

 

 
 

               

      
       

   

 

   

                   .                                                                           . 7  

Note that Eq. 2.67 already introduces a first approximation into the model, since 
substituting            in Eq. 2.66 simply by       

      corresponds to neglecting 
crystal field effects acting on the system’s electrons. Now, Eq. 2.67 can be 
conveniently rearranged by defining a zeroth-order Hamiltonian    : 

     
 

 
  

        
       

      

      
             . 

So: 

            
         

   

 

   

 

  
 

 
  

                   

      
      

 

 
  

                   

      
     

                                                       . 8  

The first double integral in Eq. 2.68 accounts for canceling the Hartree Integral’s 
double counting in     and the third integral cancels the           term in    .        
Eq. 2.68 can now be simplified by factorizing its double integrals. The terms 
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depending linearly on        and       will cancel each other for any      ; so       
Eq. 2.68 becomes: 
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We can also expand the XC energy           around the reference density      : 

                           
    

  
 

  

 
 

 
       

 
 
     

   
 

  

                   

Now, if we recall that: 

                          

we have that: 

                                          
    

  
 

  

                                              

Hence, by using Eqs. 2.70 and 2.71 into  Eq. 2.69, we get: 

            
         

   

 

   

  
 

 
  

           

      
      

 

 
  

           

      
     

 
 

 
       

 
 
     

   
 

  

                                                                                 

Finally, if we use the functional derivative identity: 

       
 
 
     

   
 

  

  
 

  
 
    

  
 

  

           
 

  
                           

we can rewrite Eq. 2.72 in its final functional form: 
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2.6.4.2.2 – The SCC-DFTB Approximations 

Except for some minor approximations – i.e. neglecting the crystal field 
corrections and the truncation error for the expansion of           – Eq. 2.73 is 
just a reformulation of the Kohn-Sham total energy expression. Hence,  Eq. 2.73 
can be solved – at least in theory – with the same accuracy and at similar 
computational costs as any other Kohn-Sham DFT implementation. In order to 
turn Eq. 2.73 into a more computationally efficient scheme, we still have to 
introduce a set of approximations: 

i) The first approximation to be introduced in Eq. 2.73 is assuming that 
the density fluctuations    can be decomposed as a set of atomic density 
fluctuations: 

             

 

 

      

Each atomic density fluctuation can be represented as a multipole 
expansion. In the SCC-DTFB method, the series is truncated already on 
the monopole term, so that each     term is represented as a simple 
atomic charge fluctuation    : 

    

 

 

     

 

 

      

Observe that the sums above vanish because the system´s net charge is 
constant.  

ii) The second approximation is assuming that, at large distances, the 
second order exchange-correlation term is negligible; so that last term 
in Eq. 2.73 can be substituted by a simple pair-wise potential: 

 

 
   

 

      
      

     

           
               

 

 
           

 

  

 . 

For α ≠ β,      is determined from the Coulomb interaction of two 

spherical charge distributions centered in the atoms α and β respectively 
[109,223]. Yet for α   β – were correlation effects are important and 
there is no Coulomb interaction to take into account –      is simply 

approximated as the DFT chemical hardness of the atom α, defined as the 
second derivative of atomic total energy with respect to the atomic 
electron occupancy (  ): 
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According to the Ja ak’s Theorem [224],    can be also represented as 
the derivative of the highest occupied atomic orbital (HOAO) with 
respect to its occupancy: 

   
   

 

   
                

which can be easily obtained from atomic DFT calculations. The 
chemical hardness (  ) is also often called as Hubbard parameter in 
literature. 

iii) The third approximation is assuming that the Kohn-Sham wave-
functions (  

  ) can be expanded as linear combinations of non-
orthogonal atomic orbitals – Eq. 2.59 – which are individually 
determined by variationally solving a modified Kohn-Sham equation for 
the spin-unpolarized free atoms: 

                                                          
 

 
  

       
 

  
 

 

   
       

   
                                            

In Eq. 2.74, the additional harmonic potential  
 

  
 

 

is used in order to 

enforce the localization of the atomic orbitals and improve the quality of 
energy bands calculations. In this calculations a minimal Slater type 
orbitals basis is employed. 

iv) Once determined the basis set, it is possible to redefine the elements of 
the zeroth-order Hamiltonian according to the two center  
approximation: 

   
        

 
   

      
                                                           

   
   

 

 
      

   
   

 
                        

  

where    
   

 stands for a pair effective potential operating only on the 
electrons in the atoms   and  . In other words, the diagonal terms of the 
system´s Hamiltonian are simply taken as DFT atomic eigenvalues, 
whereas all non-diagonal terms are obtained via DFT calculations for a 
 -  dimer. Of course, all non-diagonal elements of the zeroth-order 
Hamiltonian depend on the distances between   and  . So, in practice, 
what one has to do is constructing a table – usually called Slater-Koster 
table – for each pair of atoms in the system, containing the values of 
both the Hamiltonian and Overlap (to be used below) matrixes´ elements 
in a desired range of interatomic distances. Once constructed, such 
Slater-Koster tables can be accessed for any distance  -  in the range, 
which avoids the necessity of massive integral calculations during the 
running-time of a SCC-DFTB simulation. 

With the approximation above it is possible to define the SCC-DFTB 
electronic energy expression:  
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where    and    are the combination coefficients used to expand the 

Kohn-Sham wave-function. Observe that, for a given set of atomic 
positions, a trial set of combination coefficients can be used in order to 
estimate all one-electron energies of the system via Eq. 2.75 – once all 
      

      elements have been previously stored into the Slater-Koster 

tables and the atomic charge fluctuations can be determined via 
Mulliken population analysis. Moreover, as the Kohn-Sham wave-
function has been constructed as a linear combination of atomic orbitals, 
it is possible to construct a SCC-DFTB secular equation: 

                                                                                    

 

                             ,        .7   

where: 

        
  

1

 
                

 

 

 

                                                      
        

                                        , 

                                                                                                         , 

Thus, Eq. 2.76 can be solved self-consistently in conjunction with         
Eq. 2.75 to find the optimal set of linear combination coefficients. Note 
that the self-consistency is given with respect to the charge 
fluctuations   , so inspiring the term “self-consistent-charge” in the 
method´s name. 

v) Finally, in order to calculate the SCC-DFTB total energies, it is 
necessary to introduce the nuclear repulsions into the problem – which 
has not been considered until now. Besides, it is still necessary to 
reintroduce the double-counting compensation integrals in Eq. 2.73 – 
which has been also ignored in Eq. 2.75. These both corrections can be 
performed in a semi-empirical fashion, by using a set of distance-

dependent pairwise repulsive potentials     
   

         , modeled as the 

difference between the SCC-DFTB electronic energy (     
    ) and the total 

DFT energy for some reasonably chosen reference system: 
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59 
 

In practice, the repulsive potentials     
   

 are constructed by choosing a 

suitable reference system – where the interatomic distance         can 

be varied arbitrarily – calculating the       
             and        

     
              energy profiles for this system, and then fitting the 

difference between them to an adequate polynomial function. Once 

ready, the potentials     
   

 can be also stored in Slater-Koster tables for 

their respective   and   elements pair. 
  

Finally, the SCC-DFTB total energy expression can be written as: 
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Note that all terms in Eq. 2.77 depend explicitly on the atomic positions Rα. 
Hence, one can always calculate the gradients of        

     with respect to the atomic 
positions and use the Hellman-Feynman Theorem (Section 2.5) in order to derive 
the atomic forces necessary for geometry optimizations. 

2.7 – Notes and Remarks on Basis Sets 

In quantum simulations, a basis set is the finite set of functions used to 
represent the molecular orbitals.   

Given that, it is important to keep in mind that the exact representation of 
molecular orbitals as combinations of basis functions would require an infinite 
set of them [112]. In this sense, the choice of any finite basis set to represent 
orbitals always corresponds to assuming an arbitrary truncation of the complete 
functional space (Hilbert space) where the exact orbitals exist. In general, larger 
basis sets give better results because they cover a larger region of the Hilbert 
space, but that is not guaranteed in all cases [103, 105, 112]. In practice, the 
choice of a particular basis set must always be done with a certain pragmatism.  

There are several kinds of basis set available for quantum mechanical 
simulations – most of them based on localized functions [112]. Just to mention 
some prominent examples: Slater Type Orbitals (STO) minimal sets are widely 
used in semi-empirical calculations (including the SCC-DFTB method, to be 
employed in Chapters 5 and 6); conventional quantum chemical calculations 
usually employ split-valence Pople (Gaussian) basis set and highly-accurate multi-
reference methods typically employ the so-called correlation-consistent basis. In 
solid state DFT simulations the expansion of the wave-functions in terms of plane 
waves is also very popular. In periodical calculations, plane-waves basis sets have 
at least two advantages in comparison to localized basis. First, the integration of 
plane waves can be performed very efficiently by Fast Fourier Transform 
algorithms, which may result in saving significant amounts of computational 
time. Second, increasing the size of the basis – i.e. adding more plane waves to it, 
with shorter wavelengths – always improves its quality. On the other hand, for 
systems where the electronic densities change very quickly in the direct space – 
like surfaces, molecules or heavy atoms with explicit core electrons – the use of 
plane waves might not be the best option for accurate calculations. The reason is 
that describing fast changing electronic densities requires extending the basis to 
a large number of plane waves – with very short wavelengths – which might 
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become computationally too demanding. Besides, the use of localized basis 
furnishes a much more intuitive interpretation of electronic band structures, as 
we seen in the description of the Tight-Binding model. 

In this work, we have preferred the use of localized basis sets. The major part 
of our ab initio DFT calculations (Chapters 3, 4 and 5) have been performed by 
using numerical orbitals§§§ – as implemented in the SIESTA package [146] – 
whereas STO-4G orbitals have been employed in all our SCC-DFTB calculations 
(Chapters 5 and 6). The exceptions have been the calculations dedicated to the 
qualitative electronic structure analysis of functionalized ZnO surfaces (Chapter 
4). In order to overcome the LDA/GGA band gap problem (Section 2.2.4), these 
calculations have been performed by using the LDA+U functional, which is 
implemented in the VASP code [153,154] – a plane waves based code.   

Although it is not a very elegant solution, the use of two different codes was 
necessary for the work presented in Chapter 4 – since there is no official 
implementation of the LDA+U method in the SIESTA package****, and plane waves 
calculations would be too demanding for all geometry optimizations required. 
Nevertheless, it is important to emphasize that our choice does not result in any 
methodological inconsistency, since both VASP and SIESTA codes are just 
different – but equivalent –implementations of the same Kohn-Sham DFT 
framework. Moreover, the LDA+U calculations have been performed exclusively 
for qualitative analysis purposes, with all quantities based on DFT energy 
differences – i.e. formation energies, cohesive energies, binding energies, etc – 
being calculated from SIESTA simulations; using the same kind of basis and the 
same XC functional. 

In all our DFT-SIESTA simulations, we have employed a numerical double-ζ 
plus polarization function (DZP) basis set. Besides its size – i.e. how many 
functions are used to represent each orbital – the quality of numerical basis is 
also controlled by the radial cutoff assumed for each basis function. In the SIESTA 
implementation, this control can be automatically done via the simulation 
parameter PAO.EnergyShift, which establishes the tolerance between atomic 
energies calculated with the confined – i.e. with the cutoff – and unconfined basis. 
In our case, we have set PAO.EnergyShift to 0.001 Ry (0.0136 eV), which is a 
rather conservative choice considering the absolute energy errors associated 
with PBE calculations [133]. 

For our VASP simulations in Chapter 4 we have assumed a plane-waves 
energy cutoff of 500 eV, which is also a conservative choice. 

In all cases, the Zn-3d electrons have been explicitly included in the atomic 
valence. 

 

 

                                                             

§§§ Numerical orbitals are usually constructed from atom-like calculations where the 
electrons are subjected to an spherically symmetric confinement potential. 

**** There is a beta-version implementation of LDA+U in SIESTA, but its use is still 
discouraged by the developers for production runs. 
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Chapter 3 

 

Bulk ZnO 
“Perfection is achieved not when there is 
nothing more to add, but when there is 
nothing left to take away.” 

Antoine de St.-Exupéry – French Writer 
and Aviator.  

 

 

 

In this chapter we will briefly address the perfect bulk ZnO crystal, which is 
the reference point for all calculations involving surfaces and nanostructures in 
the next chapters.  We will start by giving a short description of bulk ZnO and its 
properties. After that we will use the literature available on bulk ZnO to validate 
our DFT simulation model.  We have also extended the validation to the hcp-Zn 
structure, since it will be used in the parametrization of a SCC-DFTB model for 
ZnO in Chapter 5. 

3.1 – Bulk ZnO 

ZnO is a natural multifunctional material. It is a polar semiconductor, whose 
the wide band gap (3.3 eV) at the Γ-point and the large excitonic energy (60meV) 
have been inspiring several applications in electronics and optoelectronics [155-
157]. Additionally, its piezoelectric and pyroelectric properties make ZnO a 
strong candidate for sensing and energy harvesting applications [65]. In its most 
stable form, ZnO assumes the wurtzite structure (w-ZnO) (Figure 3.1), where two 
distinct hexagonal closed-packed (hcp) sub-lattices – comprising the Zn2+ cations 
and O2- anions respectively – are interconnected, with all ions occupying the 
center of a tetrahedron with its counter-ions at the corners. Under very special 
conditions*, ZnO also can be obtained in the meta-stable zinc-blend and rock-salt 
forms [158, 159].  

One of the most serious challenges to the development of ZnO-based 
technologies for electronics is controlling its electric properties. ZnO naturally 
shows high levels of unintentional n-type doping, with carrier concentrations 
typically varying from ~1016 to ~1017 electrons cm-3 [159,160]. Such n-type 
conductivity has been often attributed to intrinsic defects – especially to Zn 
interstitials and O vacancies – but the subject is still controversially discussed 
[160]. Furthermore, the natural occurrence of n-type conductivity has been 
hampering the preparation of p-type ZnO, since shallow acceptors introduced via  

                                                             
* Zinc Blend ZnO can be obtained by epitaxial growth on ZnS or cubic salts substrates, 
whereas rock-salt ZnO can be achieved only at very high pressures (~ 10GPa) and cannot 
be stabilized in epitaxially grown materials. 
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Figure 3.1 – The wurtzite Zinc Oxide (w-ZnO) structure, composed of two 
interconnected hexagonal closed-packed sub-lattices. 

doping can be compensated by the intrinsic defect donors. Although p-type 
doping in ZnO has already been achieved several times in the last few years – 
with several doping agents and different doping mechanisms being proposed to 
explain it [160] – the stability and reliability of the resulting materials are also 
subject of debate [160,161]. 

Concerning its mechanical properties, ZnO is a relatively soft material; with an 
average bulk hardness of ~ 5 GPa for c-axis oriented crystals† [156] – compared 
to ~ 12 and ~15 GPa for Si and GaN respectively [162]. Interestingly, ZnO 
becomes even softer if a-oriented crystals are measured (~ 2 GPa)‡ [159], with 
such anisotropy probably related to the orientation of the ZnO basal planes in the 
wurtzite structure. Despite its relative softness, nano-indentation studies on ZnO 
have showed that contact-induced defects propagate cracks beyond the 
experimental contact regions. Moreover, such defects lead to a quenching in the 
ZnO near band edge (NBE) excitonic UV emission [162]; an effect which has been 
often observed in the photoluminescence spectra of ZnO nanostructures.  

Another important mechanical property of ZnO is its piezoelectricity. Among 
the tetrahedrally coordinated semiconductors, ZnO figures among those with the 
highest piezoelectric constants [161], showing an electromechanical coupling 
larger than those of GaN and AlN [161]. The origin of the piezoelectricity in ZnO is 
its wurtzite structure (symmetry space group P63mc), where the sequence of 
     (Zn2+) and      (O2-) planes can be viewed as a sequence of parallel 
capacitors [60]. Additionally, recent theoretical calculations have demonstrated 
that the piezoelectric properties of ZnO can be strongly enhanced through doping 
with Hg ions [163]. Because of such outstanding piezoelectric characteristics, 
ZnO has been attracting much attention as active material in piezotransducers, 
piezogenerators and self-powered nanodevices [163-165].  

 

                                                             
† Value obtained in plastic penetration experiments at 300nm depth bellow the contact 
plane. 

‡ Value obtained in plastic penetration experiments at 50nm depth bellow the contact 
plane. 
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Table 3.1 – Selected Properties of ZnO at Room temperature. 

Crystal Structure Wurtzite  a 

Symmetry Space Group P63mc  a 

Lattice Constants (Å) a=3.25  a 

 c=5.2 a 

Density (g/cm3) 5.6  b 

Bulk Modulus (GPa) 133.7-183 a 

Bulk Hardness (GPa) 5.75 c 

Band Gap Energy (eV) 3.3  a 

Excitonic Binding Energy (meV) 60  a 

Piezoelectric Constant 33 (μC m-2) 0.96 c 

Static Dielectric Constant 8.47 b 

Refraction Index 2.09 b 

a) Ref. [161] 
b) Ref. [165] 
c) Ref. [159] 

3.2 – Simulation Details 

The DFT-PBE calculations in this chapter have been performed with the 
SIESTA package [146]. In these calculations, we have used double-ζ plus 
polarization function (DZP) basis sets and norm-conserving Troullier-Martins 
pseudo potentials [145] for representing the valence and inner electrons 
respectively – with Zn 3d electrons included in the valence. Converged (8 x 8 x 4) 
Monkhorst-Pack grids [152] have been employed for the k-point sampling and all 
atomic positions have been relaxed with the conjugated gradient (CG) algorithm 
till all forces become smaller than 0.01 eV/Å.   

3.3 – Structural Properties and Compressibility 

The equilibrium structure and the compression susceptibility of a crystalline 
bulk solid can be determined by using the Murnaghan equation of state [166]:  

                                             
   

  
  

    

  
   

    
    

  
   

                                   

where V is volume of the solid’s primitive cell, E its total energy,    is the solid’s 
bulk modulus (B) – i.e. its resistance to uniform compression – evaluated at the 
equilibrium unit cell’s volume(V0): 

       
  

  
 
      

  

and    
  the bulk modulus derivative (    with respect to the pressure (P), 

evaluated at V0: 
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As    and   
  are expected to be well determined values at V0, they can be simply 

treated as parameters in Eq. 3.1. Thus, it is possible to find the equilibrium volume 
V0 by simply calculating the system´s total energy for several different values of V 
and fitting the data to Eq. 3.1 using     and   

  as fitting parameters.   

Given that, we have performed periodic DFT-PBE calculations for the w-ZnO 
unit cell (Figure 3.3) assuming different volumes around the experimental value 
[167] and fitted the data to the Murnaghan equation of state (Figure 3.2). In all 
these calculations, we have used converged (4 x 4 x 8) MP grids for k-points 
sampling and the atomic positions have been relaxed till all the forces became 
smaller than 0.01 eV/Å. The results of the fitting procedure are summarized in 
Table 3.2, together with experimental and other DFT data found in literature for 
w-ZnO. Note that, in hexagonal structures, the volume of the unit cell is related to 
its lattice parameters through the simple geometric relation: 

  
 

 
         

so it is easy to extract the system´s lattice parameters from the Murnaghan 
equation’s fit.  

 

Figure 3.2 – w-ZnO lattice parameters optimization. DFT (PP-PBE-DZP) 
calculations performed for different unit cell volumes (black dots) and their fit to 
the Murnaghan equation of states (red line). 
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Figure 3.3 – The w-ZnO primitive unit cell from three different perspectives. 

 

Table 3.2 – Structural and Mechanical Properties of w-ZnO calculated with different 

DFT methods and their comparison with experiments. 

Method a(Å) c(Å) V0(Å3) B0(GPa) B’0 

PP-PBE-DZPa 3.30 5.34 51.08 124 4.55 

PP-PBE-PWb 3.34 5.30 51.40 171 - 

PP-LDA-PWb 3.23 5.21 47.23 212.5 - 

AE-PBE-GTOc 3.29 5.29 49.67 133.7 3.83 

AE-LDA-GTOc 3.20 5.16 45.75 162.3 4.05 

Exp.c 3.25 5.20 47.62 142.6 - 183 3.6 - 4.0 

a) This work. PP means pseudopotential and DZP double-ζ plus polarization 
function numerical basis set. 

b) Ref. [168]. PP means pseudopotential and PW plane waves basis set. 

c) Ref. [167]. AE means all-electrons and GTO Gaussian-type orbitals basis 
set. 

 As the table above shows, our results are in good agreement with other PBE 
calculations in literature. The volume of the unit cell is ~ 6,8% overestimated in 
comparison with experiments – with the lattice vectors a and c respectively ~ 
4,5% and ~ 2,6% overestimated. Yet the bulk modulus    is slightly 
underestimated in our model – although its agrees within ~ 7% with other PBE 
results calculated by using a localized basis set [167] – whereas the   

  is slightly 
overestimated in comparison with both theoretical and experimental reference 
data in table 3.2. In general, the size of the deviations is in line with the usual 
trends observed for GGA calculations, which indicates the reliability of our ZnO 
model. 

Besides w-ZnO we have employed the same procedure to simulate metallic Zn 
in its hexagonal closed-pack (hcp) structure – the most stable form of Zn in 
normal conditions. Such simulations are important not only to further verify our 
DFT model for Zn, but also because they will be used to validate our SCC-DFTB 
model for Zn in Chapter 5. The results of our DFT simulations for hcp-Zn are 
summarized in Table 3.3, once more in comparison with experiments and other 
DFT simulations in literature. 
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Table 3.3 – Structural and Mechanical Properties of hcp-Zn calculated with different 
DFT methods and their comparison with experiments. 

Method a(Å) c(Å) V0(Å3) B0(GPa) B’0 

PP-PBE-DZPa 2.68 5.00 31.24 73 5.93 

PP-PW91-PWb 2.65 5.10 31.02 60 6.59 

PAW-PW91-PWc 2.65 4.96 30.79 51.8 7.40 

Exp.b 2.61 4.91 28.96 60-80 5.2-6.4 

a) This work. 
b) Ref. [169] 
c) Ref. [170]. PAW means Projector-Augmented Wave method. 

Once again we find a good agreement between our model and the literature 
data, with the unit cell volume agreeing within ~ 1.5% with other DFT-GGA 
calculations and ~ 7% with experimental results. In this case, both our    and   

  
estimations are within the experimental variation. 

3.4 – Cohesive Properties 

The cohesive energy§ (    ) of a generic compound     
   

 is defined as the 

enthalpy change involved in its atomization: 

   
           

                     

I.e.: 

                                                
   

                
   

                               

where    and    are the chemical potentials of the atomic species A and B 
respectively, and      

   
 is the total energy per formula of    

   
. Of course, the 

definition can be easily extended to compounds with more than two components. 
Considering T = 0K,    and    reduces to the respective atomic total energies of A 
and B – which can be obtained with reasonable accuracy from DFT calculations.  

By starting from the structures optimized in Section 3.2, we have calculated 
the cohesive energies for both w-ZnO and hcp-Zn structures – which are given in 
Table 3.4 in comparison with literature values. In the w-ZnO case** our values are 
in line with other PBE calculations, agreeing with the experimental cohesive 
energy of ZnO within ~ 7%. Recall that, considering the fourth-fold atomic 
coordination in w-ZnO, the absolute error in our model is ~ 0.1 eV per chemical 
bond with respect to experiments, which can be considered a very good result for 
PBE calculations employing pseudopotentials. In Table 3.4 it is also possible to 

                                                             
§ In the chemical literature,      is often called atomization energy. 

** It is important to remark that the atomic energy of the oxygen atom must be calculated 
by considering spin polarization effects, since the fundamental states of atomic oxygen is 
a triplet state. 
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see that the all-electron calculation of Jaffe et al. [167] performs slightly better 
than our pseudopotential-based model, with the      difference below 0.1 eV per 
chemical bond. It is important to reinforce that the major part of the error in the 
PBE/LDA cohesive energies are not expected to be related with the errors in the 
bulk material description itself, but rather with errors while calculating the free-
atoms with local XC functionals – as discussed in Section 2.4.3.1. In fact, the ZnO 
enthalpy of formation†† (∆Hf) calculated with our model is 3.5 eV per ZnO formula, 
in excellent agreement with the experimental value of 3.6 eV [174]. 

Table 3.4 – Cohesive energies of w-ZnO and hcp-Zn 

 Method          

w-ZnO PP-PBE-DZPa 8.08 

 PP-PBE-PWb 8.98 

 PP-LDA-PWb  10.57 

 AE-PBE-GTOc 7.69 

 AE-LDA-GTOc 9.77 

 Exp.b 7.52 

hcp-Zn PP-PBE-DZPa 1.92 

 PP-PW91-TZPd 1.17 

 PP-PBE-GTOe 0.97 

 PP-LDA-TZPd 1.91 

 PP-LDA-GTOe 1.65 

 Exp.f 1.36 

a) This work. 
b) Ref. [168]. 
c) Ref. [167]. 
d) Ref. [171]. TZP means Triple-ζ plus polarization 

function numerical basis set. 
e) Ref. [172]. Results obtained for experimental 

lattice constants. 
f) Ref. [173]. 

In the hcp-Zn case the      absolute error per chemical bond in our calculation 
is ~ 0.1 eV, which is very similar to the PP-LDA-TZP calculation of Philipsen and 
Baerends [171] and slightly worse than their PP-PW91-TZP calculation. The PP-
GTO calculations of Wedig et al. [172] are also in the same accuracy range. 
Nevertheless, these last results are probably underestimated in relation to the 
expected LDA and PBE values for their model, because the experimental hcp-Zn 
structure has been assumed in the calculations – while it is known that LDA/PBE 
under/overestimate the lattice constants of solids. 

                                                             
†† I.e. the enthalpy of the reaction Zn(s) + ½O2(g)    ZnO(s). In this case, the chemical 
potential of the O2 molecule is approximated as its DFT total energy – which also must be 
performed by considering spin polarization effects, since the ground state of O2 is a triplet 
state. 
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3.5 – Electronic Properties 

As we have seen in Section 2.6.3.1, all the electronic information for a given 
solid’s unit cell is contained in its electronic band structure       , which is 
usually represented by plotting its energy bands      along the highly 
symmetrical lines of the system´s First Brillouin Zone. Figures 3.4 and 3.5 show 
the respective band structures for the w-ZnO and hcp-Zn solids, obtained from 
our DFT (PP-PBE-DPZ) simulations. In both cases the calculations have been 
performed by using the lattice parameters and atomic positions optimized in 
Section 3.2. 

   

Figure 3.4 – DFT (PP-PBE-DPZ) w-ZnO band structure represented along the 
highly symmetrical lines of the corresponding First Brillouin Zone. The Fermi 
level – in this case the top of the valence band – corresponds to the origin of the 
energy axis.  

 

Figure 3.5 – DFT (PP-PBE-DPZ) hcp-Zn band structure represented along the 
highly symmetrical lines of the corresponding First Brillouin Zone. The Fermi 
level corresponds to the origin of the energy axis. 
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Our calculations show the w-ZnO band structure with a direct Γ-point gap of 
0.82 eV, here estimated as the difference between the Valence Band Maximum 
(VBM) and the Conduction Band Minimum (CBM). These results are in very good 
agreement with most theoretical predictions based on conventional DFT 
calculations, where the size of the w-ZnO band gap is strongly underestimated 
with respect to experimental results because of the band gap problem of 
LDA/GGA functionals (Section 2.4.3.3). By analyzing the composition of the 
electronic levels      – i.e. the contribution of the atomic orbitals in the 
molecular orbitals – it is possible to see that the bottom of the Conduction Band 
(blue lines in Figure 3.4) basically consists of Zn 4s orbitals, whereas the top of 
the Valence Band (red lines in Figure 3.4) has a strong O 2p orbitals character. 
Furthermore, the CBM is formed by a single band, whereas the VBM is composed 
of three non-degenerate bands (Figure 3.6), usually called A, B and C in literature. 
The energy splitting between the levels A and C in the Γ-point (~ 50 meV) is 
attributed to crystal field effects and is in good agreement with literature results 
[175]. A small energy splitting between A and B is also observed in experiments 
due to spin-orbit coupling effects [175]. Such effects are not included in our 
calculations and consequently no Γ-point energy splitting between A and B is 
evident in our results. 

 

Figure 3.6 – w-ZnO band structure represented around the Γ-point in First Brillouin 
Zone. The Fermi level corresponds to the origin of the energy axis. 

The band-structure of hcp-Zn is more complex to analyze, because it has 
important hybridization gaps at the Γ  L and H points  These gaps have been 
demonstrated to be the origin of the c/a distortion observed for the hcp-Zn [176]. 
Nevertheless, a detailed discussion on the hcp-Zn band structure is out of scope 
in this thesis. Here the important result is that our model accurately reproduces 
other DFT hcp-Zn band structures [176], reinforcing the confidence in our 
calculations.  
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Chapter Summary  

In this chapter we have performed DFT-PBE simulations on bulk w-ZnO and 
hcp-Zn systems in order to test the used simulation parameters to be employed. 
We have found a good agreement with previous DFT simulations in literature for 
the electronic, structural and mechanical properties of both systems – which 
ensures the reliability of our simulations. 
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Chapter 4 

 

Functionalized ZnO Non-Polar 
Surfaces 
 

“God made the Bulk; but Surfaces were 
created by the Devil.”  

Wolfgang Pauli – Austrian Physicist. 

 

In this chapter, we will employ DFT calculations to investigate the interactions 
of ZnO-(1010) surfaces with five different organic functional groups (i.e. –OH, –
NH2, –SH, –COOH and –CN). Our aim is identifying effective anchoring groups for 
stable functionalization of ZnO-(1010) – the dominant surface in ZnO nanowires 
– while gaining some insight on its surface chemistry. We will analyze the 
influence of the surface coverage on adducts’ geometries and binding energies, 
and also compare the relative stability of the surface adducts under different 
chemical conditions – including humid atmospheres and aqueous media. A 
special emphasis will be given to the characterization of the ligand-substrate 
interactions in each case, performed by analyzing the electronic structure of the 
modified surfaces*.   

4.1 – Surface Functionalization and ZnO 

Surface functionalization is a critical issue in surface science and 
nanotechnology. Through functionalization, it is either possible to enhance the 
intrinsic properties of a material or add new capabilities to them, which is 
essential to develop high-performance hybrid-materials. In the past few years, 
several hybrid nanodevices – with specific or multiple functionalities (such as e.g. 
electric conductivity, molecular recognition properties or light sensing) – have 
been designed by capping semiconductor surfaces with organic molecules, 
polymers, biomolecules or inorganic thin films [180-184]. Among the substrates 
used in such devices, ZnO has been one of the most investigated, once its electric, 
magnetic and optical properties can be significantly influenced by 
functionalization [155,157,185,186]. Hybrid ZnO nanostructures are also often 
suggested for chemical and bio-sensing applications [12,187,188], where the 

                                                             

* The theoretical characterization of clean ZnO surfaces has been addressed several times 
in literature [177-179]; thus we will not address it specifically in this chapter. The subject 
will be also extensively discussed in Chapter 5, in the context of the validation of our SCC-
DFTB model for ZnO. 
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functionalization with biomolecules – i.e. enzymes, proteins, nucleic acids, etc. – 
results in high selective responses against desirable target analytes, such as 
specific proteins or bio-markers for example. 

The functionalization of ZnO surfaces and nanostructures has been attempted 
with several different molecules – including carboxylic acids, thiols, amines and 
phosphonic acids [157,185,186,189,190] – but conflicting results have been 
reported in many cases [157,186,189]. Thiols and benzoic acids, for example, 
have formed stable monolayer (ML) coverages on ZnO in some experiments 
[157,190], whereas others have yielded non-uniform coverages or even just 
weakly physisorbed layers [189,191]. That demonstrates not only that well-
controlled experimental conditions are critical while functionalizing ZnO, but also 
that our understanding of this subject is still rather limited. Fundamental aspects 
of the ZnO surface chemistry remain either entirely unknown or not well 
understood. For example, it has been assumed for a long time that Zn sites on 
ZnO surfaces act as Lewis acids [192-196], although such a hypothesis has never 
been seriously investigated with theoretical methods. Circumstantial evidences  
like contact angle measurements[191], cyclic voltammograms [197] or even 
supposed similarities with other metal oxides [198] have been appointed as 
signatures of covalent ligand-substrate interactions on ZnO surfaces, even though 
such evidences can hardly provide any electronic structure information. Hence, 
the current understanding on the ZnO surface chemistry still has a strong 
speculative character; and a very limited predictive power consequently. 

That is a serious drawback of ZnO compared to other nano-materials, such as 
carbon or silicon, whose basic functionalization protocols rely on very well-
established organic chemistry principles. Besides, the reactivity of carbon and 
silicon compounds has been for a long time investigated with high-level 
quantum-chemistry methods and is often rationalized in terms of molecular 
orbitals – even at introductory textbook level – whereas simulating realistic ZnO 
models is still challenging in many cases. As a matter of fact, there is a growing 
activity in simulating the adsorption of small inorganic molecules on ZnO [199-
203], but the characterization of the ligand-substrate chemical interactions has 
been mostly bypassed. In such investigations, the major focus has been dedicated 
to: i) surface adduct geometries [199,201,204], ii) adsorption phase-diagrams 
[199, 200, 204] and iii) adsorption-induced changes on energy gaps [205,206] or 
magnetic properties [207,208], with very little effort done to rationalize the 
adsorption processes from a chemical perspective. Despite that, understanding 
the surface chemistry of ZnO at electronic structure level is still a crucial step 
towards the rational design of functional ZnO hybrid materials. 

 
Figure 4.1 – The slab approach for simulating surfaces with periodic boundary 
conditions. A suitable vacuum region must be introduced in the system’s unit cell – 
perpendicular to the surface’s normal – in order to isolate consecutive surface from 
each other in the periodic scheme. 
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4.2 – Simulation Details 

In this study, we have used substituted methane molecules (Me–X, with X= 
NH2, OH, SH, COOH and CN) as prototype ligands. These molecules have been 
selected based on two very simple criteria: i) the availability of electron lone 
pairs, necessary for checking the formation of acid-base adducts with the surface 
Zn sites; and ii) the small molecular volume, in order to minimize repulsive steric 
effects. The surfaces have been modeled within the so-called slab approach [179] 
(Figure 4.1), by using periodic boundary conditions (PBC) in all directions and 
suitably oriented supercells – containing 16-atomic ZnO layers† and a 50 Å 
vacuum region along the [1010] direction. We have considered the monolayer 
(ML) and half-monolayer (½ ML) coverages, with one ML corresponding to one 
ligand molecule for each ZnO surface pair. 

The optimized slab geometries and their respective total energies have been 
obtained from DFT-PBE calculations performed with the SIESTA package [146]. 
In these calculations, we have used double-ζ plus polarization function (DZP) 
basis sets and norm-conserving Troullier-Martins pseudopotentials (PP) [145] for 
representing the valence and inner electrons respectively – with Zn 3d electrons 
included in the valence. Converged (4 x 3 x 1) Monkhorst-Pack grids [152] have 
been employed for the k-points sampling and all atomic positions have been 
relaxed with the conjugated gradient (CG) algorithm till all forces become smaller 
than 0.01 eV/Å. Along the directions parallel to the surface, the lattice 
parameters have been derived from the w-ZnO structure optimized in Section 3.3. 

Although DFT-PBE calculations yield accurate results for the ground-state 
properties of ZnO, the band gap problem (Section 2.4.3.3) may impose serious 
limitations to the electronic structures analysis of functionalized surfaces if intra-
gap states are involved. Therefore, we have performed extra LDA+U calculations 
in order to get a better qualitative picture of the surfaces’ electronic structures, 
for both bare and functionalized forms. In these calculations we have employed 
the projected augmented wave method [209] – as implemented in the VASP 
package [153,154] – using a plane-wave energy cutoff of 500 eV. Single-point 
calculations have been performed on the geometries previously optimized with 
the PBE functional, also keeping the same grid for the k-points sampling. The 
LDA+U Hubbard (U) and exchange (J) parameters have been obtained from [142] 
for the Zn 3d and O 2p orbitals. Test calculations have showed ligands’ levels 
insensitive to the LDA+U corrections applied on their orbitals. 

4.3 – Thermodynamic Properties of Functionalized Surfaces 

4.3.1– Ligand-Substrate Bond Strength and Adsorption Regimes 

The strength of individual ligand-substrate interactions can be characterized 
by their binding energies (  ):

 

  

                                            
              

  

                                       ( . ) 

                                                             
† Atomic relaxations extend only until the third atomic layer in ZnO-(1010)surfaces [177-
179], which makes 16-atomic layers a quite conservative choice in order to isolate the 
two surfaces created in the slab model from each other. 
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where    is the total energy of the functionalized surface,        is the total energy 
of the ZnO-(1010) bare surface,    is the chemical potential of the ligand i – 
assumed as the free-ligand total energy – and    is the total number of ligands 
adsorbed. 

Table 4.1 summarizes the binding energies for all the different surface adducts 
tested. As a general trend, it is possible to identify that the ½ML coverages show 
stronger ligand-substrate interactions than their ML counterparts. Such an effect 
is partially explained by ligand-ligand repulsions, which are already expected for 
densely packed coverages. Two different adsorption regimes have been 
recognized: i) the non-dissociative adsorption, favored for the Me–CN, Me–NH2 
and Me–OH ligands and  ii) the dissociative adsorption, favored for the Me–SH 
and Me–COOH ones. It is also clear that the ligand-substrate interactions are 
much weaker for the aprotic Me–CN ligand than for all its protic counterparts. 

Table 4.1. – Adduct binding energies (  ) for different ligands on the ZnO-
(1010) surface. All values of   are given in eV. 

Me–X Ligand Form ½ML ML 

 –CN Dissociated - - 
 Non-dissociated  -0.80 -0.48 

 –NH2 Dissociated -0.94 -0.18 
 Non-dissociated  -1.35 -0.88 

 –OH Dissociated -1.06 -0.75 
 Non-dissociated  -1.30 -1.02 

 –SH Dissociated -1.79 -1.03 
 Non-dissociated  -0.82 - 

 –COOH Dissociated -2.07 -1.39 
 Non-dissociated  - - 

 

 

Figure 4.2 – Optimized geometries for the Me–COOH surface adduct in the ML (a) 
and ½ML (b) coverages. 
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4.3.2 – Coverage Stability 

4.3.2.1 – Does a Stronger EB Yield a More Stable Coverage? 

Although the      determines how strong individual ligand/substrate 
interactions are, its definition overlooks how large the area occupied by the 
surface adducts in each particular case is. However, the thermodynamic stability 
of a modified surface is always determined by the Gibbs free energy release of the 
adsorption process – which is an extensive property. Thus, directly comparing    
values for analyzing the relative stability of modified surfaces may yield 
misleading conclusions. Consider the case of the adsorption of Me–COOH (at          
T = 0K) as example: in the ½ML coverage each Me–COOH molecule adsorbs on 
two distinct Zn surface sites (Figure 4.2); whereas in ML coverages each Me–
COOH molecules docks to only one Zn on the surface. Consider now the Gibbs free 
energy releases for the adsorption of Me–COOH on a 2x1 surface unit – i.e. a 
surface area containing two ZnO pairs: for ½ML case the energy release will be 

equal to   
    (i.e. -2.07 eV), since only one molecule occupies the whole 2x1 

surface unit. Yet in the ML case the energy release will be two times   
   (i.e.         

-2.78 eV), since there are two molecules occupying the 2x1 surface unit at the 
same time. Despite its corresponding surface adduct has a weaker EB, the ML 
coverage is favored because of the larger number of ligand-substrate interactions 
per unit area. Furthermore, the definition of EB also disregards the influence of 
the experimental conditions on the chemical potential of the ligands, which 
prohibits estimations of the stability of a particular coverage under reactive 
conditions.  

Thus, the stability of modified substrates can be better estimated by 
comparing their surface Gibbs free energy variation (  )[200]: 

                                          
                        

 
                                ( . ) 

where A is an standard area unit, assumed here as the area of a 2x1 ZnO surface 
unit, and     is a term introduced to account to the influence of the experimental 
conditions on   . 

4.3.2.2 – Coverage Stability Under Ligand-rich Conditions. 

Under ideal synthetic conditions, a uniform modified surface is formed when 
the clean substrate is exposed to the ligand, in abundant quantities and without 
interference of competing adsorbates. Such process can be simply simulated – 
within the ideal gas approximation – by assuming     = 0 in the Eq. 4.2, which 
corresponds to having a reaction chamber containing only the substrate and a 
free-ligand gas at standard pressure (i.e. 1 atm). 

Under such ligand-rich conditions, we have found the ML coverage as the 
thermodynamically stable phase for the most of the considered ligands (Figure 
4.3). The Me–COOH-ML coverage has resulted in the most stable surface, whose 
   = -2.78 eV indicates the carboxyl group as an effective anchoring agent for ZnO 
functionalization. The adsorption of Me–SH (ML, dissociative), Me–NH2 and Me–
OH (ML, non-dissociative) also lead to a considerable surface stabilization under 
ligand-rich conditions, with    = -2.06 eV, -2.02 eV and -1.76 eV respectively. This 
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is in good agreement with recent experiments on ZnO surface modification [185, 
186, 189, 190], where these groups have been used to anchor organic molecules 
on ZnO. The Me–CN-ML coverage has been found less favorable (   = -0,98 eV), 
although still fairly spontaneous under the considered conditions. 

 

Figure 4.3 – Surface free-energy variation (Δγ) for ZnO-(1010) surfaces 
functionalized with substitute methane molecules under ligand-rich 
conditions – calculated with DFT (PP-PBE-DPZ). The abbreviations (D) and 
(ND) state for the dissociated and non-dissociated ligand forms respectively.  

4.3.2.3 – Coverage Stability under Ordinary Laboratory Conditions 

While modified ZnO-(1010) surfaces have been shown to form fairly 
spontaneously under ligand-rich conditions, the technological applicability of 
such systems depends on their stability under ordinary atmospheric conditions. 
Therefore, we have estimated the adsorption phase diagrams for all considered 

ligands by varying their chemical potentials parametrically – via    in Eq. 4.2. 

Figure 4.4 shows the estimated phase diagram for the dissociated Me–COOH 
case. As discussed in the last section, the ML coverage is favored at ligand-rich 
conditions (i.e.    = 0), with the phase transitions to the ½ML and to the bare 
surface (BS) taking place at    ≈ -0.7 eV and    ≈ -2.1 eV respectively. These    
values can be better interpreted if translated into macroscopic variables via the 
thermodynamic relation: 

                                                               
                                           (4.3) 

where R is the universal gas constant, T is the absolute temperature and   
  is the 

ligand partial pressure in the gas mixture. Assuming ordinary laboratory 
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pressure (1atm) and temperature (300K), it follows from Eq. 4.3 that the Me–
COOH-ML → Me–COOH-½ML transition takes place only under ligand-poor 
environments, with         

  in order of 10-12 atm. Besides, a         
  of ≈  0-36 

atm would be necessary in order to completely desorb the Me–COOH-½ML. Just 
to put these values in perspective, the average pressure in outer space is                 
≈ 3x 0-20 atm. 

 

Figure 4.4 – Estimated phase diagram for a ZnO-(1010) surface modified with Me-

COOH– calculated with DFT (PP-PBE-DPZ). The symbols ●  and ■  mark respectively 
the Me–COOH-ML → Me–COOH-½ML and the Me–COOH-½ML → Bare Surface phase 

transitions. The symbol X indicates the Me–COOH-ML → H2O-ML transition under an 

atmosphere saturated with water vapor –  at absolute temperature T = 300K and 
total pressure P = 1atm. 

Table 4.2 – Transition Chemical Potential Shifts (Δμǂ) and Partial Pressures 
(pǂ) calculated for different ZnO-(1010) modified surfaces. The abbreviation 
BS stands for Bare Surface. We have assumed the absolute temperature         
T = 300K and total pressure P = 1atm.  

Me–X Ligand Form ML → ½ML ½ML → BS 

  Δμǂ(eV) pǂ(atm) Δμǂ(eV) pǂ(atm) 

–COOH Dissociated  -0.7 ≈ 10-12 -2.1 ≈ 10-36 

 –SH Dissociated -0.3 ≈ 10-7 -1.8 ≈ 10-31 

 –NH2 Non-dissociated -0.4 ≈ 10-7 -1.4 ≈ 10-24 

 –OH Non-dissociated -0.7 ≈ 10-12 -1.3 ≈ 10-22 

 –CN Non-dissociated -0.2 ≈ 10-4 -0.8 ≈ 10-14 

The phase transition analysis has been extended to the remaining ligands, 
with their respective transition chemical potential shifts (     and partial 

pressures (  ) summarized in Table 4.2. Besides Me–COOH, Me–OH is the only 
ligand leading to stable ML coverage at trace ligand amounts (i.e.   

  smaller than 
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10-9 atm). Me–SH and Me–NH2 form stable ML under ligand pressures larger 10-7 
atm, whereas the ML→½ML transition is expected at p’ ~ 10-4 atm in the Me–CN 
case. In all cases, the total desorption of the ligand (i.e. the ½ML→ BS transition) 
is expected only under extreme ligand-poor conditions. 

However, the discussion until now has not taken into account possible 
competing ligands present in the atmosphere. Among potential interfering 
atmospheric species, water is the most critical for two distinct reasons: i) water 
also strongly binds to ZnO-(1010) substrates, with EB = -1.13 eV for the ML 
coverage [200]; and ii) it is abundant under ordinary laboratory conditions. Thus, 
in order to consider the influence of water on the stability of the modified 
substrates, we have calculated    for a H2O-ML coverage on the ZnO-(1010) 
substrate (     ), under a 1 atm/300K atmosphere saturated with water vapor 

(i.e.        
  = 0.035 atm). The result has been also included in Figure 4.4 

(doted/dashed red line), where the Me–COOH-ML → H2O-ML transition can be 
identified at    ≈ -0.35 eV (        

   ≈  0-6 atm). Hence, it is safe to assume that 
the Me–COOH-ML coverage must be also considerably stable under ordinary 
room conditions. In contrast, the Me–COOH-½ML coverage is not expected to be 
formed under humid conditions. 

For the remaining ligands, thermodynamically stable coverages in humid 
environments are expected only under ligand-rich conditions – or even extreme 
ligand-rich conditions for the Me–CN case – as shown in Table 4.3. Nevertheless it 
is important to keep in mind that the formation of uniformly functionalized ZnO 
surfaces has been demonstrated to be energetically favorable under controlled 
atmospheres, while the mechanism of substituting the organic layer by a water 
layer has never been investigated. In other words, although the most of 
functionalized surfaces investigated here are expected to be thermodynamically 
unstable under humid conditions – except for the Me–COOH case – they still may 
be kinetically stable. Such kinetic stability has been experimentally demonstrated 
for functionalized TiO2 nanoparticles, which are able to keep the 
functionalization even in very aggressive chemical environments after 
functionalization [210].  However, investigating such kinetic stability hypothesis 
and its atomistic mechanisms would involve long and demanding molecular 
dynamics simulations, which are out of our scope. 

Table 4.3 – Thermodynamic critical conditions for i-ML → H2O-ML surface 
phase transitions under atmospheres saturated with water vapor –  at 
absolute temperature T = 300K and total pressure P = 1atm.  

i-ML → H2O-ML  

i Δμǂ(eV) pǂ(atm) 

Me–NH2 0.16 ≈ 102 

Me–SH 0.01 ≈ 1.5 

Me–COOH -0.35 ≈ 10-6 

Me–OH 0.02 ≈ 2.0 

Me–CN 0.55 ≈ 109 
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4.3.2.4 – Coverage Stability in Aqueous Media 

Since the thermodynamic condition for a gas-liquid equilibrium is the equality 
of the chemical potentials in both phases, the       value calculated in Section 

4.2.2.3 is also valid for the adsorption of liquid water on the ZnO-(1010). Besides, 
the limiting ligand partial pressures for the ML coverages can be easily converted 
into molar fractions for an aqueous solution – via the Raoult’s Law‡ [211]. 
Consequently, it is possible to estimate the critical ligand concentrations (C ǂ) 
necessary to keep the ML coverages stable in water. 

Nevertheless, the Raoult’s Law does not take solute-solvent interactions into 
account, and the     values must be corrected according to the thermodynamic 
cycle in Figure 4.5. Such correction can be performed by incorporating the 
ligand/water relative solvation energies [212] (       ) into   : 

                                                                                                                        

where         corresponds exactly to the free energy release of the reaction:  

Ligand(g) +  H2O(aq) →   Ligand(aq) +  H2O(g). 

Based on previous molecular dynamics simulations for the considered ligands 
[213], we have estimated         and C ǂ in water for all cases (Table 4.4). In the 
Me–COOH case, the low C ǂ (2 mmol·l-1) indicates that the stability of the ML 
coverage must be appreciable in moderate diluted solutions. It is also interesting 
that, for the Me–SH ligand, the relatively large ligand’s         helps in 
stabilizing the modified surface in the aqueous media, resulting in a C ǂ close to as 
that for Me–COOH. These results reasonably agree with recent experiments in the 
literature, which have demonstrated the successful functionalization of ZnO 
nanotips by immersing them into solutions of carboxylic acids diluted to 2 
mmol·l-1, although the same procedure has failed for thiols [189]. For the Me–OH 
and Me–NH2 cases, the high C ǂ values (~ 30 and 104 mol·l-1 respectively) – 
although unphysical – clearly indicate that such ligands would be washed out in 
water. 

 

Fugure 4.5 – Thermodynamic cycle for substituting an adsorbed ligand on 
the substrate for a water molecule in aqueous media. 

 

                                                             
‡ Here we have to assume that the solutions density does not change with the solutes 
concentration. 
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Table 4.4 – Solvation Energies (ΔGsolv,) and Relative Solvation Energies 
(ΔΔGsolv ) for different ligands (i) in water, besides the critical chemical 
potential shifts (Δμǂ), vapor pressure (pvap) and critical ligand 
concentrations (C ǂ) for the  i-ML → H2O-ML surface phase transitions in 
water. We have assumed the absolute temperature T = 300K and total 
pressure P = 1atm.  

i-ML → H2O-ML.... 

i ΔGsolv (eV) ΔΔGsolv (eV) Δμ
ǂ
(eV) pvap (atm) C 

ǂ 
(mol·l

-1
) 

Me–NH2 -0.21a 0.08 0.08 4.189b ≈ 103 

Me–SH -0.04a 0.25 -0.24 2.061c ≈ 0.003 

Me–COOH -0.29a 0.00 -0.35 0.023c ≈ 0.002  

Me-OH -0.22a 0.07 -0.06 0.184c 30 

H2O -0.29a  - -  - 

a) Ref. [213] 
b) Ref. [214] 
c) Value calculated from the Antoine Equation (Log10 (pvap) = A – [B/(C-T)]) 

for T=300K and the parameters A, B and C obtained from ref. [215]. 

4.4 – Adduct Geometries and Electronic Structure Analysis  

While in the last sections we have identified thermodynamically stable 
configurations for all considered ligand-substrate pairs under diverse conditions, 
now we will analyze their electronic structure and discuss the nature of the 
ligand-substrate interactions in some of these configurations. We will focus on 
the stable configurations under ligand-rich conditions (i.e.    = 0), since they 
have been determined as the most relevant ones under ordinary laboratory 
conditions (Section 4.3.2.3). 

As mentioned before, the differences in the EB values for the different surface 
adducts are not self-explaining from a chemical point of view. In order to 
understand them better it is necessary to take a closer look into the electronic 
structure of each surface adduct. In comparison with the bare ZnO-(1010) 
surface (Figure 4.6), all ligands induce variations on a broad region of the ZnO 
Valence Band (VB) – from -2.5 to -6 eV approximately – which is an evidence of 
delocalized ligand-substrate interactions. Nevertheless, the most noticeable 
changes take place in the band-gap region, where the surface resonance observed 
for the clean surface (~ -2.3 eV) – assigned to electron lone-pairs on oxygen 
surface sites – is apparently suppressed in the Me–OH and Me–NH2 cases or 
substituted by new states in the remaining ones. 

In order to gain some chemical insight from these changes, we have analyzed 
the projected density of states (PDOS) for all ML surface adducts. The results are 
presented in the next sections, giving a brief discussion on the adsorption 
geometry in each case.  
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Figure 4.6 – Density of States (DOS) for the bare and modified ZnO-(1010) 
surfaces. The origin of the energy axis corresponds to the conduction band 
minimum in all cases. All levels with negative energies are fully occupied. 
Calculations within the DFT (PP-LDA+U-PW) level of theory. 

4.4.1 – Me–OH and Me–NH2 on ZnO-(1010) 

As mentioned above, both Me–OH and Me–NH2 ligands favor the non-
dissociative adsorptions on the ZnO-(1010)  surface, assuming a mono-dentate 
adduct geometry in both investigated coverages (Figures 4.7 and 4.8). 
Interatomic distances of 2.09Å and 2.18Å have been respectively determined for 
the Zn-O1 and Zn-N pairs in the ML coverage, and 2.09Å and 2.10Å for the ½ML 
case. Another important similarity is that both adducts show a hydrogen bond 
with oxygen surface sites (O1st) – with bond lengths of 1.40 and 1.71Å for the 
O1H···O1st and NH···O1st interactions respectively (1.45Å and 1.68Å in the ½ML 
case). Additionally, the tilting angles of the Methyl group – with respect to the 
surface plane – have shown the same trend for both ligands, decreasing from ~ 
100° in the ML coverage to ~ 30° in the ½ML case. 

 

Figure 4.7 – DFT (PP-PBE-DPZ) optimized geometries for the Me–OH 

surface adduct in the ML (a) and ½ML (b) coverages.  
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Figure 4.8 – DFT (PP-PBE-DPZ) optimized geometries for the Me–NH2 

surface adduct in the ML (a) and ½ML (b) coverages.  

With comparable adduct geometries, the Me–OH and Me–NH2 surface adducts 
lead to very similar changes in the surface´s electronic structure. Both ligands 
appear to suppress the surface resonances observed for the bare surface, 
resulting in a DOS apparently free of intra-gap levels (see Figure 4.6). This effect 
is a direct consequence of the hydrogen bonds formed on the surface, as 
evidenced by the PDOS depicted in the Figure 4.9 for the Me–NH2 case. The 
picture shows important contribution from O1st to the valence band maximum 
(VBM), where the PDOS peak at ~ -2.5 eV evidences that localized O states still 
remain on the surface, although shifted slightly down in energy because of the 
hydrogen bond with the ligand. The PDOS analysis for the Me–OH case leads to 
identical qualitative conclusions. 

 

Figure 4.9 – Projected density of states (PDOS) for the Me–NH2-ML surface 
adduct. The atomic labels convention follows that specified in Figure 4.8.a. 
The origin of the energy axis corresponds to the conduction band minimum. 
All levels with negative energies are fully occupied. Calculations within the 
DFT (PP-LDA+U-PW) level of theory. 
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Through the PDOS analysis it is also possible to identify the ligand-substrate 
electronic interaction, with a noticeable component from the N atom spread all 
along the VB. Nevertheless, the contributions from the Zn 4s orbitals are 
insignificant along the VB, indicating that the ligand-substrate interaction does 
not correspond to a Lewis acid-base adduct in this case. Instead, there is a 
delocalized interaction with the O network in the oxide, with the same pattern 
also found for the Me–OH case. Note that such delocalized electronic interactions 
do not necessarily have a bonding character. In fact, every energy band is always 
bonding in its lower and anti-bonding in its upper half. Hence, the covalent 
interaction in the Me–NH2-ML surface adduct has a slightly anti-bonding 
character, considering that the PDOS distribution for the N atom – or the O atom 
in the Me–OH case – is slightly concentrated in the VB´s upper-part. In other 
words, the ligand-substrate covalent interactions are not expected to play any 
significant role in the stabilization of the surface adduct in these cases. 

Despite this fact, the adsorption of Me–NH2 and Me–OH still results in 
considerable surface relaxations. Whereas in the bare ZnO-(1010) surface the Zn 
surface sites relax inward to a planar three-fold coordinated structure [178], in 
the modified case the ligand pulls the Zn atom back – almost to its ideal surface 
position – reestablishing its tetrahedral fourfold coordinated form. In the absence 
of remarkable covalent Zn-ligand interactions, such relaxations must be driven 
by electrostatic forces (ion-dipole interactions), which apparently is the main 
stabilizing factor in the adsorption process. 

4.4.2 – Me–SH and Me–COOH on ZnO-(1010) 

In contrast to the Me–OH and Me–NH2 cases, the Me–SH and Me–COOH ligands 
favor the dissociative adsorption on the ZnO-(1010) surface – in both ML and 
½ML coverages. 

Meta-stable non-dissociated forms have not been observed for the Me–COOH 
and Me–SH surface adducts in the ML coverage, with the conjugated gradient 
optimizations always yielding the dissociated forms. The same holds true for the 
Me–COOH-½ML adduct, whereas a non-dissociated form of the Me–SH-½ ML 
adduct has been found ~ 0.7 eV less stable than its dissociated counterpart 
(Table 4.1). 

In the ½ML coverage, the Me–SH adduct (EB = -1.79 eV) relaxes towards a 
position nearly equidistant from two consecutive Zn sites, assuming a bridging 
geometry. The interatomic distances Zn1-S and Zn2-S (Figure 4.10.b) are 
measured as 2.41 and 2.49Å respectively, showing that the sulfur atom interacts 
with two distinct Zn sites simultaneously. The adsorption also induces 
considerable atomic relaxations down to the 3rd atomic layer below the surface. 
The O2-Zn4 bond (Figure 4.10.b) – directly below the S atom – is ~ 5% shorter 
than its O1-Zn3 and O3-Zn5 analogs. Additionally, the H transfer to the substrate 
distorts the atomic relaxations, with the distance Zn2-O3 (on the protonated side 
of the adduct) ~ 3.5% shorter than its Zn1-O1 counterpart. 
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Figure 4.10 – DFT (PP-PBE-DPZ) optimized geometries for the Me–SH surface 
adduct in the ML (a) and ½ML (b) coverages. 

In the ML coverage, the ligand does not assume a bridging geometry, showing 
the sulfur atom preferentially coordinated with one specific Zn site (Figure 
4.10.a). However, different adduct geometries have shown almost isoenergetic 
behaviors (i.e. ΔEB ≤ 0.0  eV). For example, for two equally stable competing 
geometries – including that in Figure 4.10.a – we have found the same Zn2-S 
distance (~ 2.30Å), but very different values for Zn1-S in each case (2.67Å and 
3.13Å respectively). This result indicates that the Zn-S interactions are noticeably 
flexible in such system. 

 

Figure 4.11 – Projected density of states (PDOS) for the Me–SH-ML surface 
adduct. The atomic labels convention follows that specified in Figure 4.10.a. 
The origin of the energy axis corresponds to the conduction band minimum. 
All levels with negative energies are fully occupied. Calculations within the 
DFT (PP-LDA+U-PW) level of theory. 

Concerning to its electronic structure, the Me–SH-ML adduct introduces two 
DOS peaks into the ZnO band-gap region, which can be interpreted as electron 
lone-pairs on the sulfur atom (Figure 4.11). The energy split observed on these 
levels probably originates on non-uniform electron-electron repulsions 
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experienced by distinct orbitals from S. Besides, the energy dispersion on the 
highest intragap level (from ~ -1.7 eV to ~ -0.3 eV) indicates electronic 
delocalization, which implies some hybridization among S atoms in neighboring 
ligands in the ML coverage. Note that ΔEB between the Me–SH-ML and Me–SH-
½ML surface adducts (~ 0.8 eV) is considerably larger than that between Me–
OH-ML and Me–OH-½ML cases (~ 0.3 eV), which is consistent with the larger 
size of the S atom. The top of the highest sulfur level is close to the conduction 
band minimum (CBM), but the system still has a small band-gap (~ 0.3 eV) and 
keeps its semiconductor character. 

As observed for the Me–OH and and Me–NH2 cases, some covalent character is 
also evident for the Me–SH-ML adduct, with noticeable components from the 
sulfur orbitals spread all across the VB (see Figure 4.11). Other similarities are 
the dominance of an anti-bonding character on the sulfur´s PDOS distribution and 
the absence of significant contributions from Zn 4s orbitals in the VB. As an 
apparent difference, a sharp peak at ~ -4.5eV occurs, being a signature of the 
localized S-C bond. In general, the chemical picture drawn for the Me–SH-ML 
adduct is similar to that in last section. The covalent interaction with the O 
network is again expected to play just a marginal role in the adduct stabilization, 
with no significant evidence of a classical Lewis acid-base adduct. This finding is 
in fact very consistent with the smooth EB changes with the adduct’s geometry.   

Also the electrons on the second ZnO oxygen layer (O2nd) become affected by 
the Me–SH ligand, being shifted to higher energies due to Pauli repulsions with 
the sulfur electrons. Note that – in comparison with the Me–NH2 case – the 
contributions of O2nd to the lower part of the VB are completely quenched, 
whereas their contributions to the VB’s upper part are considerably enhanced.  

Indeed, neither the dominant anti-bonding character of the covalent ligand-
substrate interaction nor the electron-electron repulsion with the O2nd electrons 
are expected to stabilize the surface adduct. Hence, electrostatic interactions 
must again play a strong role on the stabilization of the surface adduct. In 
comparison with the Me–OH and Me–NH2 cases, this mechanism is expected to be 
even stronger, since the dissociative adsorption – i.e. a proton transfer reaction – 
results in a positively charged surface plus an anionic ligand atop. In fact the 
atomic relaxations driven by the Me–SH-ML adduct reflect such enhanced 
electrostatic interaction, with the positively charged Zn surface sites appearing 
visibly above the ideal surface plane (see Figure 4.10.a).  

Besides, the proton-transfer itself appears as factor to stabilize the Me–SH-ML 
adduct. The surface resonance otherwise on O1st – observed for the clean surface 
and in the Me–OH/Me–NH2 cases – is completely quenched with the dissociative 
adsorption. Instead, a split DOS peak appears below the valence band minimum 
(~ -7.8 eV) due to the O-H bond formed on the surface. In other words, the 
proton-transfer reaction passivates the oxygen lone-pairs on the surface. Indeed, 
separating this effect from other chemical forces acting on the Me–SH-ML adduct 
is not trivial, but its importance becomes evident if one notes that ΔEB between 
the dissociated and no-dissociated Me–SH-½ML forms is ~ 1 eV. 

For the Me–COOH-ML adduct (Figure 4.2.a), the PDOS analysis shows several 
similarities with its Me–SH-ML analog. The electronic levels involving O2nd are 
shifted to higher energies, although their contributions to the bottom of the VB 
are not completely suppressed in this case (Figure 4.12). Furthermore, there is a 
sharp DOS peak immediately below the valence band minimum (~ 6.5eV), whose 
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the dominant contribution from O1st indicates the passivation of the surface lone-
pair by the proton-transfer reaction (see inset in Figure 4.12). In its place, two 
sharp DOS peaks appear close to the VBM; both assigned to the carboxylate ion, 
as evidenced by the strong contributions from the two carboxylic O atoms (O1 
and O2) to these levels (see Figure 4.2.a). Additionally, the carboxylate anion also 
shows delocalized contributions spread along the VB. 

 

Figure 4.12 – Projected density of states (PDOS) for the Me–COOH-ML 
surface adduct. The atomic labels convention follows that specified in Figure 
4.2.a. The origin of the energy axis corresponds to the conduction band 
minimum. All levels with negative energies are fully occupied. Calculations 
within the DFT (PP-LDA+U-PW) level of theory. 

For the surface resonance at ~ 2.2 eV, the signatures of both O1 and O2 are 
quite similar, while a smaller contribution from the carboxylic carbon atom is 
perceptible in the same region (not shown). All three components show a 
shoulder in their PDOS distributions – from ~ -2.5 to -3.eV (inset in Figure 4.12), 
indicating some electronic hybridization with the substrate levels. However, such 
delocalized contribution decays faster for O2, showing that the ligand-substrate 
electronic interaction is preferentially mediated through O1. As discussed for the 
Me–SH case, such interactions are predominantly anti-bonding and also impose 
Pauli repulsions to the O network on the substrate. Consequently, electrostatic 
interactions and the passivation of the surface levels also seem to be the driving 
forces of the adsorption process in this case. 

The ligand-substrate interactions are in fact very similar for the Me–COOH-ML 
and Me–SH-ML surface adducts. The most remarkable difference is the hydrogen 
bond verified for the Me–COOH-ML adduct (Figure 4.2.a) – which is completely 
absent in the Me–SH-ML case. Considering that DFT/PBE hydrogen bonds are 
estimated as ~ 0.23 eV for OH···O interactions [216], even their EB look extremely 
similar. Finally, there are no significant contributions from Zn 4s surface orbitals 
neither along the VB nor in the DOS peaks dominated by O1 and O2. Furthermore, 
the Mulliken charges on the Zn surface are more positive in the modified surface, 
by ~ 0.2 e-, than in its clean counterpart. These results clearly show that the 
formation of a classical Lewis acid-based surface adduct is also absent for the 
Me–COOH adsorption process. 



 

91 
 

The details on the atomistic structure of the Me–COOH surface adducts, in 
both ML and ½ML coverages, will be given in Chapter 5, in the context of the 
validation of our SCC-DFTB model for ZnO. 

4.4.3 – Me–CN on ZnO-(1010) 

Despite the weakest binding energy among all investigated species in this 
work, the Me–CN surface adducts are the only case where the ligand-substrate 
interactions are predominantly covalent. Already the adducts´ geometries – 
which are very similar in the ML and ½ML coverages (Figure 4.13) – give the first 
indication of such covalent predominance. Once on the surface, the ligand loses 
its otherwise linear geometry, with one of its C1-N π-bonds broken in favor of 
forming the O1st-C1 bond with the surface (bond length ~ 1.57 Å). In fact, there 
are strong contributions from the O1st surface site to DOS peaks between -6.5 and 
-8.6 eV, while the same DOS region is also shared by ligand´s levels (see the insets 
in Figure 4.14). There is a clear hybridization among ligand’s and substrate’s 
levels, once more confirming the covalent character of the interaction. Moreover, 
the intra-gap state observed at ~ -1.0 eV shows a strong component from the N 
atom, indicating the migration of C1-N π-electrons to that site.  In fact, the 
Mulliken charge for the N atom in the adsorbed molecule is about 0.2 e- more 
negative than that for the free molecule. 

There are also delocalized ligand levels spread across the VB, indicating the 
same kind of hybridization with the meterial’s O network discussed in Sections 
4.4.1 and 4.4.2. As in the previous cases, the Zn 4s orbital contributes very little to 
the VB. Despite of that, the Zn-N interatomic distance is measured as 1.94Å, 
suggesting a strong electrostatic interaction between these two sites.  

While the formation of ligand-substrate covalent bonds is evident for the Me–
CN adducts, the interaction with the surface strongly disturbs the ligand´s 
electronic structure. As a consequence, the net energy gain for the global 
adsorption process is quite small. In other words, the formation of strong ligand-
substrate covalent bonds – like the O-C bond formed in this case – does not 
necessarily mean the formation of stable surface adducts – especially if the 
adsorption process results also in breaking a strong covalent bond, such as the π-
C-N bond in this case. 

 

Figure 4.13 – DFT (PP-PBE-DPZ) optimized geometries for the Me–CN 

surface adduct in the ML (a) and ½ML (b) coverages.  
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Figure 4.14 – Projected density of states (PDOS) for the Me–CN-ML surface 
adduct. The atomic labels convention follows that specified in Figure 4.13.a. 
The origin of the energy axis corresponds to the conduction band minimum 
in all cases. All levels with negative energies are occupied. Calculations within 

the DFT (PP-LDA+U-PW) level of theory. 

Chapter Summary  

In this chapter we have employed DFT calculations in order to investigate 
ZnO-(1010) surfaces functionalized with different substituted methane 
molecules (i.e. Me–X, X = –OH, –NH2, –SH, –COOH, and –CN).  By analyzing the 
electronic structure of the surface adducts, we have identified four different 
chemical forces acting on them: i) the covalent interaction between the electron 
rich-ligands with the ZnO oxygen network, ii) the electrostatic attraction between 
the electron-rich ligands and the positive Zn surface ions, iii) surface hydrogen 
bonds – for the Me–NH2, Me–OH and Me–COOH cases – and  iv) the passivation of 
surface O levels through proton-transfer reactions – in the Me–COOH and Me–SH 
cases. Contradicting the usual chemical intuition, the formation of classical Lewis 
acid-base adducts on Zn surface sites has been not observed. Furthermore 
covalent ligand-substrate interactions have shown a predominant anti-bonding 
character for the Me–OH, Me–NH2, Me–SH and Me–COOH cases. For the Me–CN 
case, the formation of a covalent C-O ligand-substrate bond is demonstrated, but 
it disturbs the ligand´s electronic structure, resulting in a small net energy gain 
for the global adsorption process. Concerning the stability of the modified 
surfaces, the ML coverage has been found as the favored phase under ligand-rich 
conditions in all cases. In agreement with experiments, our calculations predict 
that surfaces modified with Me–COOH are also expected to be stable under 
ordinary laboratory conditions or even in moderately diluted aqueous solutions. 
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Chapter 5 

 

SCC-DFTB Model for ZnO and 
Organics 

 

 

“Simplify, simplify.”   

Henry David Thoreau – American 
Philosopher. 

 

In this chapter we present our Self-Consistent-Charge Density Functional 
based Tight-Binding (SCC-DFTB) model for representing zinc and its interactions 
with hydrogen, carbon, nitrogen, oxygen and sulfur. We will start by commenting 
on the demand of computationally efficient methods for realistic simulations on 
ZnO based materials. After that, we will address the parametrization of our ZnO 
plus organics SCC-DFTB model and its validation, performed by comparing their 
predictions with DFT reference data for solid-state zinc-containing systems – i.e. 
hcp-Zn, w-ZnO and zinc blend ZnS (zb-ZnS) structures – ZnO surfaces and 
nanostructures, adsorption of small molecular species on ZnO, and models for 
zinc biological complexes. 

5.1 – Why do we need a SCC-DFTB model? 

ZnO and other Zinc-containing systems have been widely investigated by DFT 
methods along the last years. Nevertheless, although such methods represent the 
state-of-the-art approach in materials science and solid-state simulations, they 
become prohibitively expensive at simulating a large number of atoms. In this 
context, the SCC-DFTB method [217-219] arises as one of the most successful 
alternatives for large-scale quantum-mechanical simulations in solid-state 
physics, chemistry, materials science and biophysics [220-222]. The method is an 
approximation to the Kohn-Sham DFT, which combines the accuracy of 
conventional DFT methods and the computational efficiency characteristic of 
semi-empirical models. However, the limited set of available parameters is still a 
drawback of SCC-DFTB, and in some cases the transferability of parameters 
between solid and molecular environments is still problematic. For example, an 
earlier SCC-DFTB parametrization for Zn has been successfully applied to 
investigate zinc-containing biological molecules [222], but it fails in modeling 
solid-phase zinc systems with acceptable accuracy. 

Considering the technological importance that ZnO has achieved along the last 
decade, it becomes evident that a new SCC-DFTB model, specially designed for 
ZnO and related materials, would open up several exciting research possibilities – 
such as simulating realistic models for functionalized ZnO nanostructures. 
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5.2 – The ZnO + Organics SCC-DFTB Parametrization. 

With the basis of the SCC-DFTB method already reviewed in Chapter 2, we will 
directly turn our attention to the construction and validation of a ZnO + Organics 
SCC-DFTB model. Before starting this discussion however, it is important to keep 
in mind that the SCC-DFTB parametrization process always has a strong trial and 
error character. To be brief, what one basically has to do is setting some key input 
variables (cf. next section) and extensively testing the resulting model for some 
well known reference systems – like simple molecules, simple solids, etc. A 
careful validation is always the most important and most demanding part of the 
whole parametrization process, since that ensures the reliability of the model. 
Not avoiding discussing all input variables sets we have tried would hardly be 
more than a presentation of test calculations. Therefore, in Section 5.2.1 we will 
just present the best set of these key input variables among all those we have 
tried and specify which simulation details we have used while testing them. After 
that, in Section 5.2.2, we will focus on the validation of our ZnO + Organics SCC-
DFTB model, which in fact is the most important part of this chapter. 

5.2.1 – Parametrization Details 

The parameters necessary to represent a given system within DFTB 
framework include the Hubbard parameters for every chemical element, the    

  

and     matrix elements and the repulsive pair-wise potentials for all interacting 

neighbors. Fortunately, all of these parameters are controlled by few main 
quantities to be determined in the parametrization process, namely: i) the 
reference input density (     ); ii) the wave-function confinement radius (r0) and 
iii) the repulsive cutoff's, determining the distances where the repulsive pair-wise 

potentials (    
   ) vanish. 

As the parametrization reported here extends a previous well-established one 
[109], all parameters not involving zinc atoms are assumed to be the same as in 
[109], including       – i.e. confined atomic densities –  and r0 for the H, C, N, O 
and S atoms.  For zinc,       was confined to a 2.69 Å radius while r0 was chosen 
to be 1.59 Å – since these values provided a good compromise among the 
geometries, cohesive properties and electronic band-structures for the hcp-Zn 
and w-ZnO structures (Section 5.2.2). The reference systems and cutoff's used to 
model the Zn-X (X = H, C, N, O, S and Zn) pair-wise repulsive potentials are 
summarized in Table 5.1. 

For the Zn-Zn and Zn-O cases we have opted for using solid state reference 
systems – namely the face-centered cubic (fcc) Zn and the zinc blend (zb) ZnO 
structures – because these structures reproduce the fourfold coordinated local 
environment of the Zn atoms in our target w-ZnO and hcp-Zn systems. The choice 
of cubic lattices is also convenient since all bond lengths in the crystal can be 
uniformly varied with only one lattice parameter in such systems. 

The electronic DFTB parameters – i.e. atomic Hubbard parameters,    
  and     

matrix elements,  were  derived directly from DFT calculations, performed with 
PBE exchange-correlation functional. All parameters derived here are available 
for the scientific community and can be downloaded from: 

http://www.dftb.org/parameters/download/znorg/znorg_0_1/ 

http://www.dftb.org/parameters/download/znorg/znorg_0_1/
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Table 5.1 – Parametrization details of the pair-wise repulsive potentials for Zn-
X interactions ( X = H, C, N, O, S and Zn ).  

 
Interaction 

Reference 
System 

Repulsive 
Cut-off (Å) 

Equilibrium  
Zn-X distance (Å) 

SCC-DFTB 

Equilibrium 
Zn-X distance (Å) 

DFT 

Zn-H ZnH2 1.63 1.63 1.54 

Zn-C Zn(CH3)2 2.01 1.97 1.95 

Zn-N Zn(NH3)2 2.10 1.92 1.95 

Zn-O zb-ZnO 2.23 2.00 1.98 

Zn-S Zn(SH)2 2.40 2.21 2.17 

Zn-Zn fcc-Zn 2.75 2.79 2.74 

5.2.1.1 – Reference DFT Calculations: Simulation Details 

In the DFT reference calculations for the Zn-X repulsive potentials (Uαβ) we 
have employed the PBE [133] functional (for X = H, C, O and Zn) – as 
implemented in the SIESTA package[146] – together with a double-ζ plus 
polarization function (DZP) basis set and norm-conservative Troullier-Martins 
pseudopotentials [145] (PP) for representing the valence and inner electrons 
respectively.  For X = N, S, the Becke three-parameter, Lee, Yang and Parr (B3LYP) 
hybrid functional[130,132] in conjunction with a 6-311G+(d,p) basis set was 
used – as implemented in the GAUSSIAN03 package [225].   

All DFT/PBE calculations in this chapter have been performed by using 
Periodic Boundary Conditions (PBC). For the fcc-Zn and zb-ZnO solid state 
reference systems, the k-points were sampled with a (8 x 8 x 8) Monkhorst-Pack 
grid [152]. For the molecular reference systems, the calculations have been 
performed by employing large supercells, including a 25 Å vacuum region in all 
directions in order to isolate the molecules from their periodic replicas. 

5.2.2 – Validation of the Parameters  

The validation of our SCC-DFTB parameters has been performed by 
comparing their predictions with standard DFT data taken from literature. In 
order to do that, the validation set has been separated in five different categories: 
i) Zn-containing bulk solids, ii) Zn-containing molecular complexes, iii) clean ZnO 
surfaces,  iv) ZnO [0001] 1D Nanostructures and v) adsorption of small molecules 
on ZnO non-polar surfaces.  

5.2.2.1 – SCC-DFT Calculations: Simulation Details 

All our SCC-DFTB calculations have been performed with the DFTB+ code 

[226]. Solid state hcp-Zn, w-ZnO and zb-ZnS properties were calculated using PBC 
and converged (8 x 8 x 4), (8 x 8 x 4) and (8 x 8 x 8) MP k-points, respectively. 
The calculations for ZnO surfaces (clean and with small adsorbates) have been 
performed using suitably oriented supercells and PBC within the slab approach 
[179] (See also Section 4.2). A vacuum region of at least 25 Å along the surface-
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normal direction and a (4 x 3 x 1) MP grid for the k-point sampling has been 
employed. The ZnO 1D nanostructures´ [0001] growth direction has been 
oriented along the z-axis in the supercell, with vacuum regions of 25 Å along the x 
and y directions; and a (1 x 1 x 4) MP grid for has been used for the k-point 
sampling. The tests for molecular complexes have been performed by geometry 
optimizations of small zinc-containing complexes, as suggested by Elstner et 
al.[222]. In all SCC-DFTB calculations, the atomic positions were relaxed till the 
forces in the system become smaller than 0.003 eV/Å. 

5.2.2.2 – Zn-Containing Bulk Solids 

The lattice parameters and elastic properties of bulk hcp-Zn, w-ZnO and zb-
ZnS were determined by calculating their energy-volume profiles in a ∓ 15% 
range around the experimental equilibrium volumes; and fitting the results to the 
Murnaghan equation of state (Chapter 3.2). For hcp-Zn and w-ZnO structures we 
have fixed the experimental c/a ratios (1.86 [227] and 1.60 [228] respectively). 

As shown in Table 5.2, the DFTB predictions for all considered bulk systems 
are in a fairly good agreement with DFT and experimental results. The deviations 
in the cohesive energies are not surprising, since DFTB calculations usually 
overestimate this property [229], while the error in the Zn bulk modulus is a 
consequence of strong zinc wave-function compression applied to this element 
(r0 only ~1.3 times larger than the Zn covalent radius), which shortens its 
dissociation bond distances and lowers its electronic energy wells. Nevertheless 
this strong wave-function compression ensures reasonable band structures for 
the solid materials, as exemplified in Figure 5.1 for the hcp-Zn and w-ZnO cases. 

Table 5.2 – Selected hcp-Zn, w-ZnO and zb-ZnS bulk properties calculated with 
SCC-DFTB, DFT methods and obtained from experiments.  

 Method   Ecoh (eV) a (Å) c (Å) V (Å3) B0 (GPa) B0' 
hcp-Zn        

 SCC-DFTBa 2.45 2.71 5.04 32.20 114 5.67 
 PP-DZP/PBEa 1.92 2.68 5.00 31.24 73 5.93 
 PP-PW/PW91b - 2.65 5.10 31.02 60 6.59 
 Exp. 1.36c 2.61b 4.91b 28.96b 60-80b 5.2-6.4b 

w-ZnO        
 SCC-DFTBa 9.77 3.28 5.25 50.04 161 2.49 
 PP-DZP/PBEa 8.08 3.30 5.34 51.08 124 4.55 
 PP-PW/PBEd 8.98 3.34 5.30 51.40 171 - 
 Exp.e 7.52 3.25 5.20 47.62 208 4 

zb-ZnS        
 SCC-DFTBa 7.93 5.43 - 160.1 44.2 2.4 
 PP-PW/LDAf 7.22 5.35 - 153.3 82 4.6 
 PP-PW/PW91g - 5.60 - 175.6 66.7 3.95 
 Exp.f 6.33 5.40 - 157.5 76.9 4.9 

a) This work.  
b) PW91 calculation in ref. [169] 
c) Ref. [173] 
d) PBE calculation in ref. [168] 
e) Ref. [167] 
f) LDA calculation in ref. [145] 
g) PW91 calculation in ref. [230] 



 

99 
 

It should be mentioned that due to the minimal basis set employed, the energy 
band structures calculated with the SCC-DFTB method are not affected by the 
band-gap problem in the same way as LDA and GGA band structures are. 
Therefore, with no additional correction scheme being applied, the ZnO band-gap 
obtained via SCC-DFTB calculations (~ 4.1 eV) is closer to the experimental value 
(~ 3.3 eV) than the LDA/PBE results (~ 0.8 eV). This fact can be taken as an 
advantage to study intra-gap electronic states introduced by defects or adsorbed 
species – and we will use it in Chapter 6 – but it should be clear that the better 
description of the ZnO band gap is due to a cancelation of errors. It must be also 
noted that the dispersions at the edge of the conduction-band are considerably 
smaller than those found in GGA-PBE results and may lead to deviations in 
calculating transport properties. Despite that, the structures of the SCC-DFTB 
energy bands are in good qualitative agreement with their DFT counterparts.  

Concerning the hcp-Zn and w-ZnO cohesive energies calculated with SCC-
DFTB, the overestimation of ~ 0.5 eV per chemical bond is significant, although in 
line with the usual DFTB trend. In principle such deviations could be corrected by 
applying larger cutoff’s to repulsive potentials of the Zn-Zn and Zn-O bonds, 
slightly sacrificing the description of the geometrical parameters. Nevertheless, 
we have verified that this procedure leads to wrong relaxations for ZnO surfaces 
and nanostructures, where the outermost atoms move towards the vacuum 
region in order to avoid the enhanced repulsions. 

 

Figure 5.1 – Comparison between DFT and SCC-DFTB energy band structures for 
hcp-Zn and w-ZnO. Panel A: hcp-Zn(PBE-PP-DPZ); panel B: hcp-Zn(SCC-DFTB); panel 
C: w-ZnO(PBE-PP-DPZ) and panel D: w-ZnO(SCC-DFTB). In all panels the Fermi 
energy is indicated by the symbol ““. 
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5.2.2.3 – Zn-containing Molecular Complexes 

In order to validate our model for Zn in molecular environment, we have 
simulated small zinc complexes with NH3 and SH- ligands, finding a reasonably 
good agreement with DFT-B3LYP results (see Table 5.3). Besides, we have also 
reproduced recent B3LYP geometry parameters for cyclic ZnCn (n = 2-5) clusters 
[231] and found the errors in the Zn-C and C-C bonds to be smaller than 0.05 Å. 

By applying the procedure suggested by Elstner et al.[222], we have calculated 
three zinc-containing complexes in order to model zinc interactions with specific 
functional groups in proteins, using SH-, CH2=NH and HCOO- ligands for 
representing the thiol group in cysteine, the imidazole group in histidine and the 
carboxylate group present in all amino acids, respectively. Figure 5.2 depicts the 
geometries of the investigated complexes whereas Table 5.4 summarizes their 
geometrical characteristics calculated with B3LYP and two different SCC-DFTB 
parametrizations, i.e. our and the work reported in [222]. In comparison with 
DFT results, both DFTB parametrizations describe the Zn-X (X=S,N,O) reasonably 
well: Zn-S bond lengths in the Complex 1 were found to be longer by up to 2% 
compared to DFT ones, whereas the same bonds in the  Complex 2  are  described 

Table 5.3 – SCC-DFTB and B3LYP/6-311+G(d,p) cohesive energies and 
equilibrium geometries for zinc-complexes with NH3 and HS- ligands. 

Species Ecoh (eV) 
Bond length (Å) 

(Zn-X) 

Bond Angles (°) 

(X-Zn-X) 

 SCC-DFTB B3LYP SCC-DFTB B3LYP SCC-DFTB B3LYP 

Zn-N       
[ZnNH3]2+ 5.98 5.36 1.93 1.97 - - 

[Zn(NH3)2]2+ 11.86 10.70 1.92 1.95 180 180 

[Zn(NH3)3]2+ 13.96 13.34 1.97 2.03 119.9 119.5 

[Zn(NH3)4]2+ 16.75 15.3 2.02 2.09 109.5 109.4 

Zn-S       
[Zn(SH)]+ 18.06 18.35 2.03 2.18 - - 

Zn(SH)2 27.81 27.56 2.21 2.19 177.5 178.4 

 

 

Figure 5.2 – Optimized geometries of model zinc complexes calculated with SCC-DFTB.  
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with an accuracy of 0.8% or better with the current parameters. Similar trends 
have been found in the case of Zn-O bond lengths, with errors around 5% and 
2.6% in comparison with DFT values for the complexes 1 and 3 respectively.  The 
non-bonded Zn-O3 distance in the Complex 3 is also in a good agreement with 
DFT ones (cf. Table 5.4). The current parametrization leads to a underestimation 
of the Zn-N bond lengths, as exemplified by both Complex 1 and Complex 3 
(within 7% and 5.6 % to DFT, respectively). 

Also the bond angles are reasonably described with both DFTB 
parametrizations. Our S-Zn-S values in Complexes 1 and 2, for instance, agree 
within 6.6% and 3.3%, respectively, in comparison with DFT results. It should be 
noted that some bond angles disagree even up to 10 degrees with DFT, which 
may indicate a relatively floppy bending potential-energy profile. 

Table 5.4 –  Geometric parameters of model zinc complexes calculated with 
B3LYP/6-311+G(d,p) and SCC-DFTB methods.  

 Method 

Complex B3LYP a SCC-DFTBa SCC-DFTBb 

1: Zn(SH)2
.(CH2=NH).EtOH    

r(Zn-S1)(Å) 2.261 2.258 2.301 

r(Zn-S2) (Å) 2.261 2.243 2.290 

r(Zn-O) (Å) 2.272 2.288 2.158 

r(Zn-N) (Å) 2.155 2.056 2.001 

∠(S1-Zn-S2) (°) 143.5 140.3 134.0 

∠ (S2-Zn-O) (°) 91.2 102.8 105.4 

∠ (S1-Zn-N) (°) 106.9 104.1 105.4 

2: [MeSH-Zn-SMe]+    

r(Zn-S1) (Å)  2.349 2.293 2.329 

r(Zn-S2) (Å)  2.152 2.123 2.169 

r(S1-C) (Å)  1.853 1.832 1.831 

∠ (C-S1-Zn) (°) 104.9 108.0 104.9 

∠ (S1-Zn-S2) (°) 175.1 169.1 169.9 

∠ (Zn-S2-C) (°) 105.8 110.2 105.5 

3: Zn(OH)(HCOO).(CH2=NH)2    

r(Zn-O1) (Å)  1.876 1.906 1.868 

r(Zn-O2) (Å) 1.972 2.080 2.023 

r(O2-C3) (Å) 1.282 1.301 1.304 

r(C3-O3) (Å) 1.237 1.241 1.251 

r(Zn-O3) (Å) 3.010 2.911 2.931 

r(N1-C1) (Å) 1.270 1.267 1.262 

r(Zn-N2) (Å) 2.129 2.045 2.009 

∠ (O1-Zn-O2) (°) 131.6 109.1 125.8 

∠ (N1-Zn-N2) (°) 103.3 102.7 104.1 

∠ (N2-Zn-O1) (°) 100.3 104.0 109.8 

a) Ref. [222] 
b) Using current parametrization; this work. 
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Table 5.5 – Formation energies (kcal/mol) of model zinc complexes 
calculated with B3LYP/6-311+G(d,p) and SCC-DFTB methods. 

 Method 

 B3LYP SCC-DFTBa SCC-DFTBb 

Reaction 1c -14.7d -12.3 -20.1 

Reaction 2e -50.9b - -53.2 

Reaction 3f -159.4d -180.9 -186.9 

a) Ref. [222] 
b) This work. 
c) EtOH + Zn(SH)2.(CH2=NH) → Zn(SH)2.(CH2=NH).EtOH. 
d) B3LYP/6-311+G(d,p) data from Ref. [222] 
e) CH3SH + [Zn(SCH3)]+ →  [MeSH-Zn-SMe]+. 
f) OH- + [Zn(HCOO).(CH2=NH)2]+ → Zn(OH)(HCOO).(CH2=NH)2. 

Table 5.5 lists the formation energies of the investigated complexes, calculated 
as the difference between the total energy of the complex and those of reactants. 
It can be inferred from this data that the current SCC-DFTB parametrization leads 
to an overbinding of ligands in zinc complexes with the largest error to DFT of 0.3 
eV (37 %) for the first reaction, and 0.1 (4.5%) and 1.2 eV (17.2%) for the second 
and third reaction, respectively. This finding is however in line with the general 
overbinding trend of the DFTB method, and one can conclude that the our 
parametrization is qualitatively applicable to model zinc in molecular/biological 
environments. 

Table 5.6 – Comparison of geometrical relaxations in ZnO surfaces 
calculated with DFTB, for selected structural parameters as specified in 
Figures 2 and 3, with DFT (PP-PW/PW91) results in ref. [177]. 

Parameter Surface Layers Inner Layers 

 SCC-DFTB DFT-PW91 SCC-DFTB DFT-PW91 

ZnO-(1010) 

dZn-O (Å)  1.88 1.85 2.01 1.99 
d'Zn-O (Å) 2.05 2.06 2.01 1.99 

 (°) 117 117 109 - 

 (°) 108 - 109 - 

ZnO- (1210) 

dZn-O (Å)  1.93 1.87 2.01 1.99 
d'O-Zn (Å) 2.00 1.96 2.01 1.99 
d'Zn-O (Å) 2.05 2.06 2.01 - 

 (°) 118 117 109  

 (°) 97 - 109 - 

ZnO-(0001/0001) 

dZn-O (Å)  1.94 1.92 1.99 1.97 
d'Zn-O (Å) 2.08 2.15 2.05 2.08 

 (°) 111 113 109 - 

 (°) 120 120 90 - 

ZnO-dep-(0001) 

dZn-O (Å)  1.90 1.93 1.90 - 
d'Zn-O (Å) 2.34 2.4 2.34 - 

 (°) 120 120 120 - 

 (°) 90 - 90 - 
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5.2.2.4 – Clean ZnO surfaces 

Clean ZnO surfaces form a good probe set to test the new parameters, since 
they have the bulk symmetry broken along one direction. Furthermore, they have 
been subject to several DFT studies in the recent literature [177-179],which 
ensures us a reliable comparison basis.  The (1010), (1210), (0001/0001)and 
depolarized dep-(0001) ZnO surfaces were constructed starting from the 
equilibrium SCC-DFTB w-ZnO structure (Section 5.2.2.2), with the surface unit 
cells used for these four structures represented in Figure 5.3. In all cases, our 
results for the surfaces’ relaxations are in a good agreement with those reported 
in [177], as shown in Table 5.6. 

 

Figure 5.3 – Top and side views of surface unit cells for (1010) (A), (1210) 
(B) and (0001/0001) ZnO surfaces(C). The dep-(0001) surface unit cell is 
similar to those used for its polar counterpart, but with planar ZnO sheets 
perpendicular to the [0001] direction.  
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Figure 5.4 – Side and top views of the relaxed (1010) (A) and (1210) (B) 
ZnO surfaces calculated with the SCC-DFTB method. 

           

Figure 5.5 – Side and top views of the relaxed (0001/0001) (A)  and dep-
(0001) (B) ZnO surfaces calculated with the SCC-DFTB method. 

The relaxations in the (1010) terminated slabs (Figure 5.4A) are only 
significant in the three outermost surface layers. The oxygen atoms remain close 
to their bulk positions, while the zinc atoms move inward in the top layer and 
slightly outward in the second layers. In comparison with the bulk values, the 
bond lengths between the top and the second layer, dZn-O, are ~6% shortened 
while the bonds between the second and the third layers are ~ 3% larger.  The O-
Zn-O angle (α) changes from its 109° bulk value to 117° at the top surface layer, 

remaining unchanged in the inner layers. The (1210) terminated slabs follow 
similar trends, with relaxations observed especially at the outermost Zn atoms, 
leading to a ZnO bond length ~ 4% shorter and strongly distorted bond angles at 
the surface. 
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The depolarized (0001) surface relaxation – Figure 5.5.B – agrees well not 
only with the theoretical prediction derived by Cleyssens et. al. [177] but also with 
recent experimental data confirming such structure in ZnO ultra-thin films [232]. 
This is a graphite-like structure where both O and Zn atoms assume a planar 
configuration, with all in-plane bonds ~ 3% smaller than those in the w-ZnO, and 
with large interlayer distances (~ 2.34 Å). In this case, the relaxations do not 
differ significantly among different layers in the slab and are also not influenced 
by the slab thickness. For the polar (0001/0001) surfaces, where the structure 
resembles the w-ZnO (Figure 5.5 A), the relaxations extend through the whole 
slab and are more sensitive to variations in its thickness as well. Furthermore we 
also have observed small charge transfers from the oxygen-terminated to the 
zinc-terminated surface (~ 0.3e per slab unit cell), which have usually been 
considered as a stabilizing mechanism in such surfaces [178,233]. 

Since the polar (0001) and (0001) ZnO surfaces are not equivalent, it is not 
possible to calculate their absolute formation energy separately. Therefore, we 
have calculated the cleavage energy (the energy required to create two surfaces 
by cleaving the perfect crystal) for all considered slabs in order to verify their 
relative stability as a function of the film thickness (Figure 5.6). The results are in 
excellent agreement with the DFT predictions in [177].  As expected, the slabs 
with the polar surfaces are less stable than those (1010) and (1210) terminated. 
However, the depolarized (0001) structure is the most stable for the thinnest 
films – in accordance with experiments for ultra-thin ZnO films [232] – but 
quickly rising in energy with the slab thickness. It is necessary to remark that the 
phase-transitions from the depolarized 0001- film to the other configurations (in 
this study found at 5, 6 and 16 layers-thick slabs) take place at points slightly 
different than those found by Cleyssens at. al. (namely at 9, 10 and 18 layers), 
which does not affect the general conclusions above however. 

 

Figure 5.6 – SCC-DFTB cleavage energy for (1010), (1210), (0001/0001) and  
dep(0001) ZnO surfaces as a function of the slab thickness. 



 

106 

5.2.2.5 – ZnO 1D – Nanostructures 

In order to extend the validation procedure to ZnO nanostructures, we have 
investigated (1010)-faceted hexagonal nanowires with different diameters (3.7, 
10, 16 and 23 Å, respectively). Figure 5.7 shows the relaxed cross-sections of the 
investigated nanowires and their respective band structures, calculated with the 
SCC-DFTB method. For all nanowires, the relaxations at the outermost layers 
follow the same general trends observed for the ZnO-(1010) surface, being also 
in very good agreement with previous DFT results [178]. The inner atoms remain 
close to their positions in the bulk w-ZnO, as the O atoms at the surface, whereas 
the zinc atoms at the surface move inward, shrinking the distance to their nearest 
inner Zn neighbors to 3.07 Å. The exception is the smallest nanowire – where the 
relaxations are more pronounced, with 2.86 Å as the minimal distance between 
Zn atoms. For these wires, the energy band structures along the Γ-Z direction in 
the First Brillouin Zone are in a good agreement with DFT results in [178], with a 
direct band gap at the Γ-point – shrinking from 4.1 to 3.6 eV with the nanowires’ 
diameter, as a consequence of quantum confinement effects. As expected, the 
SCC-DFTB band dispersions and band gaps calculated for the nanowires showed 
the same kind of qualitative deviations – with respect to DFT calculations [178] – 
as observed for bulk w-ZnO. 

 

Figure 5.7 – Relaxed geometries and electronic band structures for hexagonal 
[0001] ZnO nanowires calculated with the SCC-DFTB method. In all panels the Fermi 
energy is indicated by the symbol ““. 

The relative stabilities of the nanowires are also in good agreement with plane 
waves calculations by Xu et al. [234], who have also demonstrated that the 
formation energy (Ef = ET – Ew-ZnO) of hexagonal nanowires depends linearly on 
their ZnO surface pairs ratio. To further validate the parameters, we have 
calculated [0001]-oriented ZnO nanobelts, finding a similar linear dependence on 
the surface pair ratio – Figure 5.8. The nanobelts were found to have their 
relaxations consistent with those observed for their dominant surfaces, with 
their stabilities lying between that of the corresponding nanowire (diameter of 
10 Å) and that of the infinite thin film. As expected, the relative stability of the 
ZnO nanobelts increases with their width. 
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Figure 5.8 – Panel A: Cross section of (1010)- (top) and (1210)-faceted (bottom) 
[0001] ZnO nanobelts with different widths along their dominating surface. Panel B: 
SCC-DFTB formation energies calculated for [0001] ZnO nanostructures, including 
hexagonal nanowires, (1010)-faceted and (1210)-faceted nanobelts.   

5.2.2.6 – Small Molecules on ZnO Non-Polar Surfaces. 

With the good performance of our ZnO model for bulk materials, surfaces and 
nanostructures – as demonstrated in the last sections – let us now turn our 
attention to adsorption processes. At first we will investigate our model’s 
performance in describing the adsorption of two important inorganic species – 
namely NH3 and CO2 – on ZnO-(1010). We will analyze their geometrical 
configurations on the surface and also their Gibbs free energy variation    
(Section 4.3.2.4). After that, we will compare the SCC-DFTB predictions for the 
functionalized ZnO-(1010) surfaces studied in Chapter 4 – giving a special 
emphasis to the Me–COOH case. 

5.2.2.6.1 – CO2 and NH3 on ZnO-(1010) 

For the CO2-covered surfaces, the predictions of our SCC-DFTB model are in 
good qualitative agreement with DFT results of Wöll et al. [199]. The surface 
adduct shows a tridentate carbonate (TC) structure (Figure 5.9) as the most 
stable adsorbate form, showing bond-lengths and bond-angles in excellent 
agreement with the DFT predictions. It is interesting to observe that the 
interaction with the CO2 molecule influences the surface geometry in the same 
way observed for the Me–X series in Chapter 4 – i.e. by pushing the Zn atoms 
outwards, thereby decreasing the angle α (Figure 5.4) to 89° and increasing the 
ZnO dimer distance dZn-O  to 2.29 Å. 
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Figure 5.9 – Geometry of the trindentate surface carbonate structure calculated with SCC-
DFTB. The bond length values in round brackets are DFT results taken from [199]. The 
angles calculated with SCC-DFTB coincide exactly with those reported in [199].  

Concerning the adsorption energetics, we have calculated the adsorption’s    by 

using the CO2 chemical potential as a variational parameter (Section 4.3.2.1), 

obtaining a phase diagram fairly similar to that in [199] (Figure 5.10). Nevertheless, it 

should be noted that our    values are overestimated by significant ~ 0.5 eV per CO2 

molecule in comparison with the DFT results. Accordingly, the Monolayer ⟶ Half-

Monolayer and Half-Monolayer ⟶ Bare Surface phase-transitions are also shifted 

towards more negative chemical potentials in comparison with the DFT values. At the 

first glance such deviation may not be surprising – given the usual overestimation 

trend of SCC-DFTB calculations in comparison with DFT – but in fact this was the 

first sign of a more pathological behavior of our parametrization – to be discussed in 
Section 5.2.2.5.2. 

We have also introduced the ammonia molecule in our validation set because 
ZnO has been considered a promising material for sensing such molecules in a 
gas phase [234]. Nevertheless, there are only a few theoretical studies on the 
absorption of NH3 on ZnO surfaces, none of them dealing with extended 
structures. Taft et al. [201], for example, have employed cluster models in order 
to investigate the adsorption of single ammonia molecules on ZnO, finding a 
binding energy of ~ -1.8 eV for NH3–ZnO-(1010) surface adduct. Because of such 
strong binding energy and the small molecular volume of ammonia – in 
comparison to CO2 for example – it is quite probable that adsorption of NH3 also 
lead to the formation of self-assembled monolayers on ZnO-(1010). We have 
tested this hypothesis with our SCC-DFTB model, finding the monolayer coverage 
as the stable phase at ligand-rich conditions (Figure 5.11). We have found a 
binding energy of ~ -1.6 eV for the NH3–ZnO-(1010) ML and ~ -2.2 eV for the 
NH3– ZnO-(1010) ½ML surface complexes, which indicates a strong overbinding 
in comparison with the coupled cluster results of Taft et al., which have been 
calculated for the adsorption of single molecules, where steric repulsion are not 
involved.  Concerning the adduct geometry (Figure 5.12), the adsorption also 
influences the surface relaxations, reducing the angle α (Figure 5.4)  to 115° and 
increasing the ZnO dimer distance dZn-O to 1.96 Å. No ammonia dissociation was 
found. Instead, there is a typical hydrogen-bond distance of 1.68 Å between 
ammonia hydrogen and ZnO surface oxygen. The NH3 tilting angle with respect to 
the surface normal of 41° is in fairly good agreement with near-edge X-ray fine-
structure spectroscopy reported by Kamada et al. [193]. Besides, our surface 
adduct geometry (cf. Figure 5.12) agrees very well with that from coupled-cluster 
calculations in [201]. 
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Figure 5.10 – Phase-stability diagram calculated with SCC-DFTB for different 
coverages of CO2 on ZnO-(1010) surfaces. The surface free energy variation 

   is given per a standard unit area A corresponding to a 2x1 surface unit. 

 

Figure 5.11 – Phase-stability diagram calculated with SCC-DFTB for different 
coverages of NH3 on ZnO-(1010) surfaces. The surface free energy variation 

   is given per a standard unit area A corresponding to a 2x1 surface unit. 
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Figure 5.11 – Geometry of the H3N-ZnO-(1010) surface complex calculated 
with SCC-DFTB. The values in round brackets are ab initio results taken from 
[201]. 

5.2.2.6.2 – Organic Ligands on ZnO-(1010) 

As last validation step, let us now compare the performance of our SCC-DFTB 
model with the DFT calculations for substituted methane molecules on ZnO-
(1010) surfaces (Chapter 4). Figure 5.12 shows the adsorption free energy 
variations (  ) for the Me–NH2, Me–OH, Me–SH, Me–COOH and Me–CN ligands, 
obtained with both DFT-PBE and SCC-DFTB calculations. 

 

Figure 5.12 – DFT (PP-PBE-DZP) (black) and SCC-DFTB (red) surface free-
energy variations (Δγ), calculated for (1010)-ZnO surfaces functionalized 
with substitute methane molecules (ligand-rich conditions). The 
abbreviations (D) and (ND) state for dissociated and non-dissociated ligand 

forms respectively. The surface free energy variation    is given per 
standard unit area A corresponding to a 2x1 surface unit. 
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As the picture shows, the    pattern formed by the SCC-DFTB model is very 
different from that obtained from DFT calculations. Therefore, it is fair to 
conclude that our model – in its present form – still does not yield acceptable 
results for modeling molecular adsorptions on ZnO; clearly requiring corrections 
before its use can be unrestrictedly recommended for actual simulations. Despite 
of that, it is interesting to observe that – fortunately – the results for the Me–
COOH case are in fact quite reasonable, reproducing very well the qualitative 
trend verified by the DFT-PBE calculations. 

The SCC-DFTB binding energies (EB) for the Me–COOH-ML and Me–COOH-
½ML adducts – -1.53 and -2.48 eV respectively – are overestimated in relation to 
their DFT-PBE counterparts, but only up to 0.2 eV per Zn-O bond. Besides, the 
SCC-DFTB geometries for the Me–COOH surface adducts (Figure 5.13) agree very 
well with those in our DFT calculations (Table 5.7) – assuming the bidentate 
chelating (BC) and the bidentate bridging (BB) configurations for the ML and 
½ML coverages respectively. In both SCC-DFTB and DFT-PBE simulations, the 
adsorption of Me–COOH influences the ZnO surface relaxations, by pushing the 
Zn atoms outwards and increasing the Zn-O surface dimer bond lengths. In the 
ML-BC configuration, this effect is more pronounced in the SCC-DFTB model, 
where the surface dimer bond length (Zn–O3) is ~ 12% larger than that for the 
clean surface – against ~ 9% in the DFT-PBE calculation. For the ½ML-BB 
configuration, SCC-DFTB and DFT-PBE geometries are very alike. Yet for the ML-
BC configuration, the only striking difference resides in the Zn–01 and Zn–02 

distances (cf. Figure 5.13), which are almost symmetric in the SCC-DFTB model, 
but differs by ~ 0.3 Å in the DFT one. Nevertheless, in both calculations, both C–
01 and C–02 bond lengths assume intermediate values between usual single and 
double C–O bonds (1.4 and 1.2 Å respectively). Additionally, the O1–H distance in 
the ML-BC configuration is compatible with a hydrogen interaction in both SCC-
DFTB and DFT-PBE calculations. 

 

Figure 5.13 – SCC-DFTB optimized geometries for the stable surface configurations 
of the ZnO-(1010) functionalized with Me–COOH. The atomic labels introduced here 
refer to the geometrical parameters in Table 5.7. 
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In order to further validate our SCC-DFTB model for the adsorption of Me–
COOH on ZnO-(1010), we have simulated additional surface configurations 
involving all possible combinations of the three classical adsorption geometries 
of carboxylic acids on metal oxides with the ¼ML, ½ML and ML coverages 
(Figure 5.14). As expected, the results are compatible with the DFT-PBE 
predictions (Section 4.3.2.3), showing only the ML-BC and ½ML-BB 
configurations as stable coverages. Accordingly, no stable coverage has been 
found with the surface adduct in a mono-dentate ester-type (ME) geometry – 
which is in good agreement with recent Attenuated Total Reflectance Infrared 
(ATR-IR) experiments [189]. Besides, meta-stable phases were found neither for 
the ME nor for BC configurations at partial coverages, with the geometry 
optimizations always leading to the BB structure. 

 

                 

 

Figure 5.14 – Classical adsorbate models for carboxylic acids on metal-oxide 
surfaces; and the SCC-DFTB adsorption phase-diagram for Me–COOH on ZnO-

(1010). The surface free energy variation    is given per standard unit area 
A corresponding to a 2x1 surface unit. The labels marked with “*”stand for 
non-equivalent conformers of the ML-ME and QL-BB configurations. 
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Table 5.7 – Geometrical parameters for the Me–COOH–ZnO-(1010) surface 
adducts – in their ML-BC and ½ML-BB surface configurations – calculated 
with the SCC-DFTB method and their comparison with the corresponding 
DFT (PP-PBE-DZP) values (in brackets). 

ML-BC ½ML-BB 

Bond Lengths (Å) 
C-O1 1.28 (1.30) C-O1 1.27 (1.27) 
C-O2 1.30 (1.26) C-O2 1.30 (1.30) 

Zn-O1 2.16 (2.08) Zn1-O1 2.05 (2.06) 
Zn-O2 2.15 (2.36) Zn2-O2 2.04 (2.04) 
Zn-O3 2.10 (2.05) Zn1-O3 1.95 (1.94) 
Zn-O4 2.07 (2.05) Zn1-O4 2.04 (2.04) 
O1-H 1.74 (1.61) Zn2-O5 2.04 (2.06) 

  Zn2-O6 1.99 (2.00) 
  O1-H 1.99 (2.03) 

Angles (°) 
 ∠ O1-H-O2 27 (18) ∠ O1-H-O2 36 (33) 
∠ O1-C-O2 118 (120) ∠  O1-C-O2 127 (126) 

  ∠ O3-Zn-O4 101(101)   ∠ O3-Zn1-O4 109 (112) 
    ∠ O5-Zn2-O6 108 (106) 

Finally, we must comment on the failure of our SCC-DFTB model in describing 
the adsorption of Me–NH2, Me–OH, Me–SH and Me–CN on ZnO-(1010). From 
Figure 5.12 it is possible to observe at least two patent sources of error: i) an 
excessively easy dissociation of the protic ligands and ii) the overestimated 
binding character for the Zn-N interactions. Concerning this last, there is a 
systematic overbinding of ~ 0.5 eV per Zn-N bond in comparison with DFT 
calculations – which also appeared in the adsorption of ammonia (Section 
5.2.3.5.1) and in the cluster models for zinc complexes with ammonia (5.2.2.3). 
Note that in the Me–CN case, subtracting 0.5 eV for each Zn-N bond in the surface 
cell would bring the SCC-DFTB    values very close to the DFT-PBE ones, with the 
same holding true for the non-dissociate surface complexes involving Me–NH2. 

Regarding the too excessively stable dissociation of Me–NH2, Me–OH and Me–
SH, the reasons of such behavior is still not fully understood. Within our SCC-
DFTB model, these ligands prefer to transfer a proton to the surface and assume a 
bridging position between two consecutive Zn sites (Figure 5.15). One possible 
explanation for this spurious behavior is the use the two center approximation 
itself. Observe that in such bridging geometry, each Zn-site becomes fivefold 
coordinated. In standard DFT calculations, one of the components expected to 
counteract such over-coordination is the electronic repulsion between competing 
ligands at the coordination site. Such specific electronic repulsion, however, is 
given by three center integrals, which are neglected in the SCC-DFTB framework. 
In theory, such problem can be compensated via the pairwise repulsive potential, 
but in practice this approach works only if the symmetry of the actual problem is 
similar to that used to fit the repulsive potential.  

Another probable limitation is related to the construction of the Slater-Koster 
tables. Recall that the SCC-DFTB Hamilton and overlap matrix elements are 
obtained from dimer calculations. Once stored in the Slater-Koster tables, such 
values are called during the simulation according only to interatomic distances. 
In other words, the symmetry of the orbitals are not really taken into account 
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during the SCC-DFTB calculation, which may lead to such geometry distortions if 
there are too much degrees of freedom for atomic relaxations. Once again, this 
effect can be compensated via the repulsive potential, but only if the symmetry of 
the studied system is similar to that used to construct the repulsion potential. In 
the Me–COOH case this limitation apparently does not manifest, once it is not 
possible to translate the carboxylic oxygen atoms independently. In other words, 
the bidentate structure of the ligand seems to prevent such over-coordination 
errors.  

So far we have shown that the SCC-DFTB performance obtained for the 
adsorption of Me–COOH molecules on ZnO-(1010) is sufficient, but further 
improvements of our model are subject of future studies. 

 

Figure 5.15 – SCC-DFTB optimized geometry for the dissociated Me–OH 
surface adduct in the ML coverage. 

Chapter Summary 

In this chapter we have presented our SCC-DFTB parametrization for Zn-X 
interactions (X = H, C, N, O, S and Zn). The model has demonstrated a reliable 
performance in representing different the zinc-containing systems, including 
bulk phases (hcp-Zn, w-ZnO and zb-ZnS), ZnO surfaces, ZnO nanostructures and 
model zinc molecular complexes – being transferable among these different 
chemical environments. Nevertheless, the parameters have not succeeded in 
accurately describing adsorption processes; making further improvements 
necessary in the future. An important exception is the adsorption of Me–COOH on 
the ZnO-(1010) surface, whose SCC-DFTB results reproduce their DFT-PBE 
analogs with adequate accuracy. In order to further validate the Me–COOH 
adsorption on ZnO-(1010), we have tested several different surface 
configurations involving the classic adsorption modes of carboxylic acids on 
metal oxides and different surface coverages. The results have confirmed our 
previous DFT-PBE calculations, being also in line with recent ATR-IR experiments 
– which confirms its reliability in this case. 
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Chapter 6 

 

Native Defects in ZnO Nanowires 
and Defect Healing with Organic 
Acids 

 
“Nature has perfections in order to show 
us that she is the image of God; and 
defects to show us that she is only his 
image. ”   

Blaise Pascal – French Physicist. 

 

 

 

 

 

In the last chapter we have seen that ZnO surfaces – including the adsorption 
of organic acids on that – and nanostructures are accurately described by the 
SCC-DFTB method.  In this chapter we will apply SCC-DFTB simulations to a 
problem we have discussed with our experimental collaborators in the University 
of Bremen: The characterization of native defects on ZnO nanowires. After that, 
we will also apply the SCC-DFTB method to study the interaction of surface 
oxygen vacancies with organic acids, giving a reasonable explanation for the 
photoluminescence anomalies observed in polymer coated ZnO nanowires. 

6.1 –Why Characterizing Native Defects on ZnO Nanowires? 

As we have discussed during the past chapters, ZnO nanostructures have been 
often indicated as promising building blocks for electronic and optical 
nanodevices. However, the development of reliable ZnO-based nanodevices is 
still hampered by the lack of control on the electric and optical properties of such 
materials. Controlling the resistivity of ZnO has long been a difficult task because 
of high levels of unintentional n-type doping and the challenging achievement of 
p-type doping (as discussed in Section 3.1). The optical properties of ZnO are also 
not fully understood, since the photoluminescence (PL) spectra of ZnO 
nanostructures have been often reported to be strongly dependent on 
synthetic/annealing conditions. In fact, several exciting technological 
potentialities have been demonstrated for ZnO nanostructures across the last few 
years, but it is necessary to understand and control their intrinsic properties 
before they can be applied to new commercial ZnO based technologies. 
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Both electric and optical properties of ZnO have often been suggested to be 
dominated by intrinsic defects. Oxygen vacancies and zinc interstitials in ZnO, for 
example, have been suggested as possible sources of both the n-type conductivity 
in ZnO [141, 235,236] and the green deep level emissions (DLE) in the PL spectra 
of ZnO nanowires [237,238]. Several experimental techniques have been 
employed in order to identify intrinsic defects in ZnO, including 
photoluminescence spectroscopy, electron spin resonance and positron 
annihilation spectroscopy [239].  

On the theoretical side, first principles density functional theory (DFT) 
methods have been widely employed for calculating intrinsic defects in bulk ZnO. 
However, different levels of exchange-correlation treatment and different 
correction schemes for supercell-size effects have been leading to conflicting 
results. The most notorious case has been that of oxygen vacancies, whose +2/0 
charge state transition has been found in Fermi energies ranging from 1 to 3 eV 
below the conduction band minimum (CBM)[141, 240-243]. Furthermore, less 
attention has been given to surface defects, despite there are considerable 
experimental evidences showing that they are critical for the physical behavior of 
ZnO films and nanostructures. The differences observed in the photo-
luminescence spectra of bare and polymer-coated ZnO nanowires [155], for 
instance, strongly suggest that surface defects dominate the optical properties of 
such materials. Besides, a recent first-principles DFT study has suggested that 
neutral oxygen vacancies in ZnO nanowires strongly contributes to their optical 
absorption in the visible region [142]. Despite of that, most theoretical works on 
ZnO nanostructures are still limited to the relative stability and size effects in 
different defect-free systems – such as nanowires [178,203,244-246], thick-
/single-walled nanotubes[244,245,247] and nanobelts [248]. Although there are 
few recent works addressing specific defects in ZnO nanostructures[249,250], a 
comprehensive characterization of intrinsic defects in these systems is still 
missing. 

In this chapter, we will employ the SCC-DFTB method in order to investigate 
the relative stability and electronic structure of native point defects in hexagonal 
[0001] ZnO nanowires. We will investigate the relative stability of four different 
point defects – oxygen vacancies (VO), zinc vacancies (VZn),  oxygen interstitials (Oi) 
and  zinc interstitials (Zni) – occupying different positions across the wire’s cross-
section (Figure 6.1). We also will compare the formation energy and the 
geometries of defects in different charge states, calculated by using a simple 
potential alignment procedure. Finally, we will demonstrate how neutral oxygen 
vacancies in non-polar ZnO surfaces can be healed by reacting them with organic 
acids, constituting a tempting explanation for the suppression of PL-DLE bands 
observed for polymer-coated ZnO nanowires. 

6.2 – Simulation Details 

The  ZnO surfaces and nanowires have been simulated as infinite structures by 
using Periodic Boundary Conditions and suitably oriented supercells. The 
calculations have been performed with a suitable vacuum region surrounding the 
structures – along the directions normal to their surfaces – in order to avoid 
spurious interactions among consecutive periodic replicas. Geometry 
optimizations have been performed with the Conjugated Gradient algorithm, 
until all forces became smaller than 0.005 eV/Å. Convergence tests on the k-
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points sampling showed that a (1 x 1 x 1) Monkhorsh-Pack grid [152] is 
appropriate for our calculations. As SCC-DFTB is not influenced by the band gap 
problem (Section 2.4.3.3) to the same extent as standard DFT methods, we have 
applied no post-processing band gap correction scheme. All calculations have 
been performed with the DFTB+ package [226] , using the SCC-DFTB model for 
ZnO reported in Chapter 5.  

For the characterization of the point defects, we have performed the 
simulations by using model-nanowires with 1.6 nm of diameter in supercells 
ranging from 3 to 9 ZnO bi-layers (L) along the wire’s growth direction (Figure 
6.1.a). The defects have been placed in five different positions across the cross-
section of the nanowire (Figure 6.1.b and 6.1.c), and considered in three different 
charge states in each case – namelly 0,1+ and 2+ for VO and Zni  and 0,1- and 2- for 
VZn and Oi. Besides, the wires have been simulated into rectangular supercells ( a 
x b x c, a=b ) with its lattice vector a (perpendicular to the growth direction) 
being empirically determined in order to align the reference potential for 
calculations involving neutral and charged states (further details will be 
addressed in Section 6.3). We have not employed any post-processing correction 
for spurious long-range electrostatic interactions among charged periodic 
images, once convergence tests have indicated that our alignment potential 
procedure is enough to eliminate such simulation artifacts (depicted in the Figure 
6.5). Besides, the applicability of such correction schemes has been considered 
controversial for extended structures [141,251,252]. For the reaction between 
neutral oxygen vacancies and organic acids, the calculations have been 
performed by using periodic slab models with one single   

     defect for each 
4x4 surface unit. Furthermore, we have tested several distinct adsorption 
geometries as simulation starting points in order to identify different possible 
meta-stable configurations. 

 

Figure 6.1 – Side view of a [0001] ZnO nanowire (a), constructed by the 
periodic repetition of a ZnO bi-layer unit (L), and the investigated defect 
positions – denoted by the symbols A, B, C, D and S –  for intrinsic vacancies 
(b) and interstitials (c) along its cross-section.  
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Figure 6.2  – Influence of the supercell vacuum size on the DOS of a [0001] 
ZnO nanowire (4xL) with a   

      defect, calculated with the SCC-DFTB 
method. 

6.3 – The potential Alignment Procedure  

In order to identify and compare different point defects, the pivotal property 
to be quantified is the defect formation energy (  ): 

                               
       

        
             

 

                        

where     
   and     

   state for the total energy of the supercell with (  ) and 
without the defect (  ) respectively;    is number of atoms of type i removed or  
added to    in order to create the defect, μi is the chemical potential of the specie 
i, q is the defect charge and    is the Fermi energy. The chemical potentials of 
oxygen and zinc are subject to upper bounds, given by the energy of the O atom in 
the O2 molecule (extreme O-rich conditions) and the energy per Zn atom in the 
hexagonal closed packed  structure  (Zn-rich conditions).  The lower chemical 
potential bounds are defined by the thermodynamic stability condition for ZnO 
(               ). 

 

Figure 6.3  – Influence of the vacuum size on the band edges for a [0001] 
ZnO nanowire (4xL) with a   

      defect, calculated with the DFT(PP-PBE-
DZP) and SCC-DFTB methods. 
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Figure 6.4  – Optimal DOS alignment for nanowires with   
      defects – 

calculated with different supercells by using the SCC-DFTB method – 
obtained with the supercell side length a = 26 Å.  

It is important to note that Eq. 6.1 can only be considered if     
   and     

   
are calculated under the same potential reference. However, that is not a trivial 
task when calculating charged defects in extended structures, since a divergent 
electrostatic potential arises as a consequence of using periodic boundary 
conditions. Although this effect is partially compensated by introducing an 
uniform jellium background into the supercell, a finite shift in the electrostatic 
potential usually remains, which makes a careful potential alignment procedure 
between   and   generally necessary [253,254]. 

For charged nanostructures, such potential alignment can be performed 
through a simple empirical procedure, since the dimensions of the employed 
supercell influence its own electrostatic potential in two different ways: i) by 
setting the separation among the charged replicas in the periodic superlattice 
and ii) by determining the density of the compensating jellium background 
contained in the supercell. These dependencies appear in the electronic structure 
of the model, whose density-of-states (DOS) is systematically shifted with the size 
of the supercell – as shown in Figure 6.2 for a doubly charged oxygen vacancy at 
the surface of a ZnO nanowire    

    )). To ensure the reliability of our procedure, 
we have also reproduced this result with first principles DFT-PBE calculations 
(Figure 6.3) – using the SIESTA package [146] – and found similar results. 

The potential equality between   and    can be achieved by choosing 
adequate supercell dimensions in order to align their characteristic DOS peaks. 
This principle is demonstrated in Figure 6.4 for different supercells containing 
a   

      defect – assuming a perfect/neutral wire as   . In these cases we have 
found a DOS alignment better than 0.1eV for a = 26 Å. The alignment of the DOS 
ensures that the presence of point defects does not influence electronic states far 
from the defect site, and that all electronic levels are calculated under the same 
potential reference for both    and   . It is worth to mention that changing the 
supercell size does not lead to any significant change in the charge distribution 
across the defective wires, reinforcing that such procedure just influences the 
external reference potential. We have repeated the procedure for the wires with 
   

      defects, also achieving a DOS alignment better than 0.1eV with a = 26Å.   
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Figure 6.5 – Formation energies of    
     ,   

      and    
     defects in 

[0001] ZnO nanowires calculated with different supercell sizes and assuming 
the Fermi energy as valence band maximum. The dashed line corresponds to 
the formation energy of non-relaxed   

     .  

Our DOS alignment procedure has been further-tested by calculating    for 

  
    ,   

      and   
      in ZnO nanowires (Figure 6.5) with different supercells 

sizes (from 3L to 9L). The picture shows converged results for   
     and   

     , 
with the fluctuations observed for the   

      case identified as minor relaxation 
effects among the different supercells – since the    for the non-relaxed   

      

defects (dashed blue line) have been found to be as convergent as those in the 
  

    ,  and   
      cases. These results confirm the reliability of the potential 

alignment procedure, which has yielded consistent formation energies for 
charged VO defects calculated with different supercell sizes. On the other hand, 
they also show that supercell-size effects on the atomic relaxations do not vanish. 
Therefore, for all remaining defects, we have performed the potential alignment 
for supercells with 8L (~ 864 atoms), meeting the alignment with a = 26Å for VO 

and Zni and a = 27Å for the VZn and Oi respectively. These values lead to a ratio 
D/V of  ≈ 1.5, where V is the size of the vacuum region into the supercell and D is 
the diameter of the wire. We have also confirmed this D/V ratio for thiner ZnO 
nanowires (10 Å of diameter) with   

      defects. Similar results have been also 
reported for the alignment of the Hartree potential in DFT calculations for 
charged silicon nanowires [255]. 

  6.4 – Defect Positions and Atomic Relaxations 

After performing the alignment of the DOS, we have calculated      for all 

defects considered here (Figure 6.6). Both VO and VZn have shown the surface (S) 
as preferential site in all charge states, since that position minimizes the number 
of dangling bonds created by the defects and favors geometry relaxations. The 
surface has been also the preferential site for the Zni in all charge states and for 
  

   as well. It is interesting that the formation energy of    
    ,  is 2.7 eV lower in 

energy than the one for    
     whereas the difference between   

     and   
     is 

only 0.7 eV – which is in line with the atomic size differences between oxygen and 
zinc. 
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Figure 6.6 – Relative stability diagram for intrinsic defects in [0001] ZnO 
nanowires. The defect position labels correspond to those specified in Figure 
6.1. In all cases the Fermi energy has been assumed to be equal to the valence 
band maximum.  

The states   
   and   

   have been found energetically favorable at the position 
A (Figure 6.7). Such inner positions favor the electronic hybridizations involving 
the interstitial atom and the host structure, helping to accommodate the charge 
excesses in the   

   and   
   states. In fact, compared to   

    , the interstitial atom 
in    

      shows just a residual increment of ~ 0.2 e- in its electronic density, 
with the most of the charge excess spread among Zn atoms in the host structure. 
It is interesting to note that polarized PL measurements have recently shown that 
yellow DLE bands cannot be originated on the surface of ZnO the wires [239], 
while thermal-annealing/PL experiments have been suggesting oxygen 
interstitials as sources of such bands. Altogether, our calculations corroborate 
this picture. 

Unlike   
   and   

  , wide charge dispersions have not been verified for Zni. 
The Mulliken charge on the interstitial atom remains close to zero for    

    , but 
is ~ + 0.4 e- and + 0.8 e- for    

      and    
      respectively. For the    

     and 
   

     , the interstitial atom have been found adsorbed on the surface of the 
nanowire through an oxygen and a zinc sites simultaneously (Figure 6.7.d and 
6.7.e), whereas for    

      it relaxes towards the surface in order to enhance its 
interactions with the O surface anions. Moreover, the interstitial atom pushes one 
Zn surface atom inwards, to the position C approximately, resulting in a split 
interstitial geometry (Figure 6.7.f). It is interesting to note that the displaced Zn 
atom also shows a Mullikan charge of +0.8 e-, which means that the most of the 
charge excess in    

      is localized on two Zn sites only. 
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Figure 6.7 – SCC-DFTB optimized geometries for : a)   

    , b)   
      (Side View), 

c)   
      (Front View), d)    

    , e)    
      and f)    

      in ZnO [0001] 
nanowires. The wire growth direction is indicated with the arrow in a), b), d), e) and 
f); and perpendicular to the paper plane in c).  

 
Figure 6.8 – SCC-DFTB optimized geometries for : a)    

   ) (Side View), b)    
   ) 

(Top View), c)    
   ) (Top View), d)   

1   ) (Top View) and e)   
    ) (Top View) 

defects in ZnO [0001] nanowires. The wire growth direction is indicated with the 
arrows. In b), c), d) and e) the ZnO layers below the surface have been omitted in 
order to aid the visualization of the defect structure. 
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The    
     defect also leads to a noticeable relaxation, with one oxygen surface 

atom strongly relaxing outwards from the defect site in order to enhance its 
coordination (Figure 6.8.a and 6.8.b).  The relaxations for    

1     and    
      are 

very similar to that observed for    
    , whit their respective charge excesses 

distributed uniformly along the nanowire.  

For the surface oxygen vacancies, the atomic relaxations have been found very 
similar to those in their bulk counterparts [141]. In the neutral case (  

    ), the 
three Zn sites around the vacancy relax inward to form a sort of small Zn-cluster 
on the surface of the wire (Figure 6.8.c). The cohesion of this metal cluster is held 
by a localized defect level – basically composed by the 4s Zn orbitals – which acts 
like a 3-centers-2-electrons (3c/2e) chemical bond. Thus, the ionization of the 
defect to its   

1     and   
      states corresponds to weakening this bond and 

leads to the relaxation of the Zn sites around the defect outwards (Figure 6.8.d 
and 6.8.e). Nevertheless, it is important to remark that oxygen vacancies in ZnO 
have been a quite controversial issue. Under Zn-rich conditions, formation 
energies between 0.8 and 5.0 eV have been calculated – with different DFT-based 
methods – for   

  defects in bulk ZnO. Janotti and Van de Walle [141] suggested 
that oxygen vacancies cannot be the source of n-type conductivity in ZnO because 
of  its high formation energy calculated with LDA+U (~ 3.7 eV). On the other 
hand, values around 1.0 eV have been reported for calculations using both GGA 
and the hybrid Heyd-Scuseria-Ernzerhof  (HSE) functionals [240, 254], which are 
consistent with our results for the bulk-like position in the nanowire (position A). 
Besides, our calculations suggest that the oxygen vacancies are considerably 
more stable on the surface of the wire, where their formation energies decreases 
to ≈ 0.3 eV, suggesting that such defects are reasonably likely under Zn-rich 
conditions. 

6.5 – Healing Surface Oxygen Vacancies with Organic Acids 

As mentioned above, recent DFT calculations have demonstrated that neutral 
oxygen vacancies are the most likely sources of the green DLE PL-bands observed 
for ZnO nanowires. It has been also demonstrated that such bands are effectively 
suppressed by capping the wires with polymers and surfactants – most of them 
containing highly oxidized organic groups – giving a strong evidence that they are 
originated in the surface of the ZnO nanowires. Altogether, such results suggest 
that the suppression of the green DLE bands may be related to some chemical 
reaction involving the   

   ) defect and the organic matter. In fact, the   
     

defect is expected to show an enhanced reactivity under oxidative conditions, 
since its trigonal planar geometry lets its 3c/2e bond exposed to the environment 
and susceptible to oxidizing agents consequently. Besides, the reactivity of 
oxidizing gases  (i.e. O2 and NO2) against neutral oxygen vacancies in single 
walled ZnO nanotubes has been demonstrated by DFT calculations [250], 
although the electronic deep-levels observed for their final reaction products 
strongly suggest that their luminescence spectra would be still dominated by DLE 
bands. On the other hand, experiments strongly indicate that the organic matter 
plays a role in such DLE suppression in ZnO nanowires, but such hypothesis has 
been never addressed theoretically and the atomistic mechanism behind it 
remains unknown. 
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Figure 6.9 – Virtual reaction pathway for the healing of a   
   ) with organic 

acids. The defective surface and a gas-phase Me–COOH molecule (A) have been 
assumed as starting reactants and the clean surface and a gas-phase 
formaldehyde molecule (Me–COH) (E) as final products. The surface adducts B, C, 
and D correspond to intermediate states indentified in our calculations. 

Therefore, we have investigated the reaction of the   
     defect with small 

highly oxidized organic groups, using Me–COOH as a prototype molecule. By 
assuming the defective surface plus the Me–COOH gas phase molecule (A in 
Figure 6.9) as our energy reference state (E=0), we have identified three different 
adsorbate geometries (B, C and D in Figure 6.9) which can be interpreted as 
intermediates in a virtual defect healing reaction. In the first case (the adduct B in 
Figure 6.9) one of the carboxylic oxygen atoms attaches to the surface and fills 
the vacancy site, with the 3c/2e defect bond being substituted by 3 conventional 
Zn-O bonds – besides the coordination of the second carboxylic oxygen with an 
ordinary Zn surface site. So, the carboxyl group receives the electrons coming 
from the defect state. Since the O atom cannot expand its valance, the carboxylic 
C=O bond must be broken, and its π-electrons migrate to the carboxylic carbon 
atom. The carbon atom is then reduced, assuming a sp3 hybridization in order to 
accommodate its former π-bond electrons as an lone-pair – identified as a 
localized deep-level slightly above the former   

     defect level in energy (Figure 
6.10).  It is worth to mention that the observed A → B adsorption is similar to the 
dissociative chemisorption of O2 and NO2 on   

     defects in single-walled ZnO 
nanotubes, demonstrated in [250]. 

Yet the formation of the adduct B leads to a considerable free-energy release 
of 1.1 eV, it is very unlikely that such specie shows a long life-time under usual 
temperature conditions. Lone pairs localized on carbon atoms are very reactive 
and often promote molecular rearrangements, such as hydrogen migrations for 
example. In fact, we observed that a hydrogen migration in the adsorbed Me–
COOH – from the oxygen to the carbon site – results in an additional energy 
release of 1.8 eV. Besides, the resulting surface adduct (C in Figure 6.9) resembles 
an aldehyde molecule adsorbed on a perfect ZnO surface, coordinated through 
both the carbon and oxygen atoms. In other words, the hydrogen migration 
consolidates the reduction of the Me–COOH molecule by the   

   ). It is 
interesting to notice that no intra-gap state appears in the DOS for the adduct C 
(Figure 6.10), corroborating the idea that the defect healing through the reaction 
with the organic molecule may lead to the DLE suppression. 
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Once the carbonyl group is reduced, the defect healing process can be 
concluded by cutting the remaining carboxylic C-O σ-bond, yielding a 
monodentate formaldehyde adsorbate on the defect-free surface (adduct D in 
Figure 6.9). However, the adduct D has been found 0.3 eV above its bidentate 
counterpart (adduct C) in energy, being hardly expected to exist in significant 
amounts under ordinary equilibrium conditions. Regarding to the electronic 
structure, the DOS calculated for adduct D shows an empty deep-level (Figure 
6.10) indentified as the C=O anti-bonding π-orbital  π*), whose energy is lowered 
because of the interaction with the surface. Nevertheless, this deep-level is not 
expected to play any significant role in the ZnO PL spectrum, once the adduct D 
has been identified just as marginal configuration. 

 

Figure 6.10 – SCC-DFTB total density of states (DOS) calculated for the reactants, 
intermediates and products of the reaction between Me–COOH and a   

     defect on 
the 1010-ZnO surface. The labels A,B,C,D and E refer to the configurations depicted 
in Figure 6.9. 

Finally, we have verified that the dissociation of the adduct D – yielding the 
clean ZnO surface plus a gas-phase formaldehyde molecule (E in Figure 6.9) – 
would cost additional  0.9 eV in energy, showing that such process is unlikely to 
happen under ordinary conditions. On the other hand, the configuration E is still 
1.7 eV more stable than the initial configuration A (the gas-phase acetic acid plus 
the defective surface), which means that E would probably be the favored 
product on high-vacuum thermal dissociation experiments. It is also interesting 
to mention that a similar reaction mechanism – also involving neutral oxygen 
vacancies – has been proposed in order to explain the release of ethylene and H2 
in the temperature-programed desorption (TPD) of ethanol on ZnO nanowires 

[256], which reinforces the confidence in our surface healing model. 
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In conclusion,   
     defects are hardly expected to survive if exposed to 

carboxylic acids, which more likely heals the surface by docking one of its oxygen 
atoms to the defect. In this process, the defect-related electronic deep-level is 
eliminated; making the surface reaction between the   

     defect and the 
oxidized organic molecule a tempting explanation for the suppression of DLE 
bands in polymer/surfactants coated ZnO nanowires. 

Chapter Summary 

In this chapter, we have investigated intrinsic point defects in ZnO [0001] 
hexagonal nanowires by using the SCC-DFTB method. We have demonstrated a 
consistent empirical potential alignment procedure, which allowed us to 
calculate and compare formation energies of defects in different charge states in 
an efficient but accurate manner. We have shown that the defects lie 
preferentially on the surface of the wire, where their atomic relaxations around 
the defect are facilitated. The exception has been the   

   and   
   defects, which 

are stabilized in inner positions due to a better charge accommodation. Finally, 
we have investigated the surface reaction between neutral oxygen vacancies and 
carboxylic acids, demonstrating that such molecules can heal the defective 
surface through an oxidation-reduction reaction, which is a tempting atomistic 
mechanism to explain the suppression of the anomalous green luminescence 
bands in organic-coated ZnO nanowires. 
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Chapter 7 

 

Concluding Remarks and Future 
Plans. 

 

 
 “The future belongs to those who believe 
in the beauty of their dreams.”   

Eleanor Roosevelt – Former American 
First Lady and Human Rights Activist. 

 

 

 

 

In this work, we have employed different Density Functional Theory (DFT) 
based methodologies to investigate functionalized ZnO surfaces and 
nanostructures.  

In order to better understand the surface chemistry of ZnO, we have employed 
standard Kohn-Sham DFT calculations to investigate the interactions of ZnO non-
polar surfaces with five different organic functional groups (i.e. –OH, –NH2, –SH, –
COOH, and –CN). Contradicting the usual chemical intuition, the formation of 
classical Lewis acid-base adducts has not been confirmed. Instead, we have 
demonstrated that the major surface stabilization mechanisms in these cases are: 
i) electrostatic interactions involving the ligand and Zn surface sites, ii) hydrogen 
bonds involving O surface sites and iii) the passivation of O surface sites through 
proton-transfer reactions – for the acetic acid and methanethiol cases. We have 
also discussed the influence of the surface coverages on the adducts’ geometries 
and binding energies, besides quantitatively characterizing their thermodynamic 
stabilities under different chemical conditions – including humid atmospheres 
and the aqueous media. Among all the investigated functional groups, –COOH is 
the most promising one as anchoring agent for ZnO functionalization, being 
expected to form stable monolayer coverages even in the presence of water. 

Aiming to large scale simulations on ZnO hybrid materials, we have also 
presented an Self Consistent Charge Density Functional based Tight Binding  (SCC-
DFTB) model for ZnO plus organics. The developed parameters comprise all Zn-X 
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interactions (X = H, C, N, O, S and Zn), which have been validated by comparing 
their predictions with standard DFT results. The parameters have demonstrated 
a reliable performance in modeling bulk zinc-containing systems – i.e. hcp-Zn, w-
ZnO and zb-ZnS  – ZnO surfaces, ZnO nanostructures and zinc-containing 
molecular complexes; showing good transferability among these different 
chemical environments. Unfortunately, the model was not able to accurately 
reproduce the interactions of Me–OH, Me–NH2, Me–SH and Me–CN with           
ZnO-(1010) surfaces. The Zn-N interactions showed a systematic overbinding of 
~ 0.5 eV per bond. Besides, the dissociation trend of Me–OH, Me–NH2 and Me–SH 
was clearly overestimated. Nevertheless, the adsorption of Me–COOH – the most 
important case among the investigated ligands – has been reproduced with good 
accuracy; even in quantitative terms. 

Finally, we have employed our SCC-DFTB model to investigate the geometry 
and formation energies of intrinsic defects in ZnO nanowires. We have calculated 
the atomic relaxations and formation energies for neutral and charged defects, by 
using an empirical potential alignment procedure developed in this work. Oxygen 
vacancies and zinc interstitials have been found as the lowest energy defects 
under Zn-rich conditions, whereas oxygen interstitials and zinc vacancies are 
favored under O-rich conditions. Most defects have been found to be favored on 
the surface of the wire; except for charged oxygen interstitials, which prefer inner 
positions because of a better charge accommodation observed there. 
Additionally, we have also investigated the interaction between surface oxygen 
vacancies and carboxylic acids – by using Me–COOH as a prototype molecule – 
demonstrating that an oxidation-reduction reaction may explain the suppression 
of green luminescence bands experimentally observed for organic-coated ZnO 
nanowires. 

In conclusion, we have achieved significant progresses at three active topics of 
the current hybrid-ZnO research: i) understanding the surface chemistry of ZnO; 
ii) understanding the defect physics of bare and functionalized ZnO 
nanostructures and iii) developing a computationally efficient method for 
realistic large scale simulations on ZnO.  

Certainly, such advances provide a good starting point for future projects. For 
example, the stabilization mechanisms identified for organic functional groups on 
ZnO indicate a clear direction towards more efficient anchoring agents: The 
electrostatic nature of the ligand-substrate interactions and the role of the proton 
transfer reaction in the adducts´ stabilization suggest that other acid species can 
be even more effective than the –COOH group. Phosphonic and Sulfonic groups 
are the natural candidates to be explored in the near future. Another interesting 
question is how the strength of ligand-substrate interactions correlates with well 
known molecular properties of the ligands, such as their acid dissociation 
constant (pKa). If such correlations exist, how acid can a ligand be before it 
destroys the ZnO surface in aqueous media? Is it possible to create a stable 
hydrophobic coat, so that functionalized ZnO nanostructures are kinetically 
stable in harsh chemical environments? Some of these questions can be 
addressed directly via standard DFT calculations, but some of them require 
demanding hybrid Molecular Dynamics or QM-MM approaches. Given that, it 
seems to be urgent improving the SCC-DFTB description of adsorption processes 
on ZnO. 

Another very promising direction is going beyond the standard Time 
Independent DFT in order to investigate photo excitations on functionalized ZnO. 
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As we have discussed in Chapter 1, ZnO nanowires seem to be the most natural 
candidates for nano-based Dye Sensitized Solar Cells (DSSC); but until now, the 
reported conversion efficiencies of such devices are rather disappointing – ~ 2 %. 
Hybrid ZnO nanostructures do have a considerable potential for applications in 
photovoltaics; however, our knowledge on their photo-physics is still too limited, 
and so our ability of understanding and eliminating the bottlenecks in ZnO-based 
DSSCs. In this context, we can apply our know-how to characterize the ground 
state properties of ZnO functionalized with organic dyes, and then use Time-
Dependent Density Functional Theory (TDDFT) to explore the photo-excitation 
processes in these systems. Such investigations may have a considerable impact 
on our understanding of photo-induced electron injections on sensitized ZnO and 
its use for solar energy generation. 

Still related to photo-excitation processes, ZnO is also a prominent material 
for photo-catalysis – a topic strongly connected with some of the great challenges 
of our time: energy generation and environmental protection. Exactly as in the 
DSSC case, we can combine our current know-how on ground state DFT with 
TDDFT calculations.  

It is also important to keep in mind that all these research opportunities above 
arise as natural extensions of the work developed in this thesis. Nevertheless – as 
we have mentioned in the Chapter 1 – beyond ZnO there is a large and fascinating 
variety of metals oxides to be explored: CdO, NbO, CuO, MgO, CeO2, PbO2, TiO2, 
SnO2 and many others – In addition to all their possible combinations via doping, 
surface modification, and so on. ZnO is one prominent example of how our 
knowledge on metal oxides has changed in the last few years – from an ordinary 
white pigment to an sophisticated multifunctional nanomaterial – and a good 
indication on how many possibilities we still have with other less investigated 
materials. There is still much physics and much chemistry to be unveiled about 
ZnO and other metal oxides. There is still a long way before these materials can 
provide more wellness and quality of life for average people, and paving this way 
is the real challenge to be assumed. Alone, our computer simulations on technical 
materials possibly cannot be expected to change the world in the next couple of 
years; but they will certainly help those experimentalists and engineers who will 
manage that somewhere in the future. That is what thesis is about; that is how 
this author would like to further contribute, and that is a really very exciting 
perspective. 
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