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II. Summary 

This thesis represents a study of the ecophysiology and toxicity of the prymnesiophyte 

Prymnesium parvum.  The first aim was to investigate changes in the relative toxicity of P. 

parvum following a series of physiological ‘shock’ treatments, meant to simulate 

environmental conditions under which harmful blooms of this species have been observed.  

As blooms of this haptophyte often occur in dynamic coastal brackish water systems, 

Prymnesium parvum is noted for its physiological flexibility, which may contribute to 

providing a competitive advantage over other coexisting species.  Due to the unconfirmed 

nature of the compounds involved in toxigenic processes, two bioassays were employed to 

characterize changes in lytic capacity (extracellular vs. intracellular).  These bioassays are 

considered physiologically relevant, as observed icthyotoxicity occurs through lysis of the 

gill cell membranes, rendering the fish unable to perform gas-exchange processes and 

obtain oxygen.  Additionally, the gene expression of three polyketide synthase genes (PKS) 

were analyzed via quantitative PCR (qPCR), based on current chemical characterizations of 

toxic compounds produced by P. parvum.   

Low salinity and high irradiance were observed to alter the lytic effects of P. parvum on 

the sensitive cryptophyte Rhodomonas salina and erythrocytes.  Furthermore, these two 

shock treatments were found to increase the transcript copy number in selected PKS genes, 

suggesting a possible correlation between toxicity and the PKS biosynthetic pathway.   

Allelochemical mediation has been suggested to affect competition and predatory 

relationships associated with formation of P. parvum blooms.  As interactions between 

species are an integral part of understanding plankton ecology, interspecific interactions 

between P. parvum and three coexisting species were accordingly investigated.  Combining 

bioassays with a functional genomic approach allowed differential characterization of cell-

cell contact vs. waterborne cues depending on the organism with which incubated.  A 

unique response on both the levels of toxicity, gene expression profile as well as PKS 

transcript copy number to the potential predator Oxhyrris marina suggest a fundamentally 

different type of interaction between the two species.  Additionally, a dose-response time 

series experiment showed that changes in gene expression and toxicity did not occur 
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immediately in P. parvum, rather after 60-90 minutes.  Such a response by P. parvum may 

in fact signify a co-evolutionarily adaptive defense.   

Finally, examination of the effects of phosphorous limitation and low salinity stress on 

the gene expression profile and lytic capacity showed that the combination of these two 

stressors induces secretion or extracellular transport of toxic substances to a much higher 

degree than either stressor individually.  Whether this observation is due to changes in 

membrane integrity due to homeostatic processes needs further research.  The pattern of 

gene expression, however, revealed regulation of among others genes associated with 

active cellular transport processes, suggesting that maintenance of intracellular-

extracellular homeostasis may play a role in the observed toxicity.   

In summary, these studies integrate the concepts of ecophysiology and functional 

genomics, providing a useful platform for further research regarding environmental factors 

associated with the toxicity of P. parvum.  As functional genomic methods become more 

accessible, such approaches illustrate their potential application within the field of harmful 

algal research.  
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III. Zusammenfassung 

Die vorliegende Arbeit befasst sich mit der Ökophysiologie sowie der Toxizität des 

Prymnesiophyten Prymnesium parvum. Das Hauptanliegen dieser Arbeit bestand in der 

Untersuchung der veränderbaren relativen Toxizität von P. parvum infolge physiologischer 

Schockbehandlungen, welche Umweltbedigungen simulieren sollten, unter denen das 

Auftreten schädlicher Algenblüten dieser Art beobachtet wurde. Da Algenblüten dieses 

Haptophyten oft in dynamischen Brackwasserküstenökosystemen vorkommen, zeichnet 

sich Prymensium parvum durch seine eurypotenten physiologischen Eigenschaften aus, 

welche Konkurrenzvorteile gegenüber co-existierenden Arten bieten. Aufgrund der 

unvollständigen Charakterisierung der in die toxigenen Prozesse involvierten Substanzen 

wurden zwei Biotests zur Bestimmung des lytischen Wirkungsgrades (extrazellulär versus 

intrazellulär) dieser Substanzen durchgeführt. Die physiologische Relevanz beider Biotests 

ergibt sich aufgrund der ichthytoxischen Wirkungsweise welche eine Lyse der 

Kiemenzellmembranen bewirkt und dadurch Gasaustausch sowie Sauerstoffaufnahme für 

den Fisch unmöglich macht. Zusätzlich wurde die Genexpression dreier Polyketidsynthase-

Gene mittels quantitativer PCR (qPCR) analysiert; die Auswahl dieser Gene basiert auf der 

momentanen chemischen Charakterisierung der von Prymnesium parvum produzierten 

Substanzen.  

Niedrige Salinität sowie hohe Strahlungsintensitäten veränderten den lytischen 

Wirkungsgrad Prymensium parvums gegenüber dem Kryptophyten Rhodomonas salina, 

gleiches zeigte sich gegenüber den Erythrozyten. Zusätzlich zeigten beide 

Schockbehandlungen eine erhöhte Anzahl an PKS-Gen Transkripten und somit folglich eine 

mögliche Korrelation von Toxizität und PKS-Biosyntheseweg.  

Die Synthese und Verbreitung von Allelochemikalien scheint die mit der Blütenbildung 

in Verbindung stehenden Prozesse wie Konkurrenz und Prädation in P. parvum zu 

beeinflussen. Da Interaktionen zwischen Arten zu dem zentralen Verständnis der 

Planktonökologie gehören, wurden interspezifische Interaktionen zwischen P. parvum und 

drei Co-existierenden Arten entsprechend untersucht. Dabei erlaubte die Kombination von 

Biotests mit funktionellen genomischen Methoden eine differenzielle Charakterisierung 
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von einerseits direkten Zell-Zell Kontakten gegenüber im Wasser gelösten Signalstoffen. 

Die dadurch ermittelte Reaktion betreffend der Toxizität sowie auch auf Genexpressions- 

und PKS-Transkriptebene gegenüber dem potentiellen Prädator Oxhyrris marina deutet auf 

eine grundlegend andere Interaktionsart dieser beiden Arten hin. Darüberhinaus zeigt eine 

in Form eines Zeitreihenexperimentes durchgeführte Dosis-Wirkungsbeziehung, dass 

Veränderungen der Genexpression sowie der Toxizität in P. parvum nicht sofort erfolgen, 

sondern erst nach 60 – 90 Minuten eintreten. Diese Reaktionsweise von P. parvum deutet 

auf eine co-evolutiv entstandene, adaptive Verteidigungsstrategie hin. 

Die Untersuchung der Effekte von Phosphor-Limitation und erniedrigter Salinität auf 

die Genexpressionsprofile sowie auf den lytischen Wirkungsgrad zeigten, dass eine 

Kombination beider Stressoren die Sekretion oder einen extrazellulär gerichteten 

Transport der toxischen Substanzen zu einem viel höheren Ausmaß bewirkt als jeder 

Stressor einzeln. Ob dies auf Änderungen der Zellmembranzusammensetzung oder auf 

homöostatischer Prozesse zurückzuführen ist, benötigt weitere Untersuchungen. Anhand 

der Genexpressionsmuster zeigt sich jedoch, neben der Regulation anderer Gene, ein 

Muster welches mit aktiven zellulären Transportprozessen assoziiert werden kann und 

somit könnte der Aufrechterhaltung der intrazellulären-extrazellulären Homöostase eine 

tragende Rolle für die beobachtete Toxizitätsänderungen zukommen. 

Zusammenfassend kann gesagt werden, dass die vorliegende Arbeit Konzepte der 

Ökophysiologie und der funktionellen Genomik vereinigt und dadurch eine nützliche 

Grundlage ist für weitere Forschungen bezüglich der Umweltfaktoren die mit der Toxizität 

von P. parvum in Verbindung stehen. Da funktionelle genomische Methoden immer mehr 

zugänglich werden, illustrieren Ansätze wie diese welches Potenzial dadurch dem Gebiet 

der schädlichen Algenforschung zur Verfügung steht.  
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IV. Abbreviations 
 

ACP    acyl carrier protein 
AT    acyl transferase 
cDNA    complementary deoxyribonucleic acid 
coA    coenzyme a 
COG    clusters of orthologous groups     
Ct    threshhold 
Cy-3    cyanine-3 
Cy-5    cyanine-5 
DEPC    diethylpyrocarbonate 
DH    dehydratase 
DNase    deoxyribonuclease 
dNTP    deoxynucleotide triphosphate 
DTT    dithiothreitol 
EC50    half maximal effective concentration 
ELA    erythrocyte lysis assay 
ER    enoyl reductase 
ESD    estimated spherical diameter 
EST    expressed sequence tag 
FASs    Fatty acid synthases 
FBS    fetal bovine serum 
GAPDH   glyceraldehyde 3-phosphate dehydrogenase 
HABs    Harmful algal blooms 
IU    international units 
KS    ketoacyl synthase 
KR    ketoacyl reductase 
LPS    lipopolysaccharide 
MA    major allergen  
mRNA    messenger ribonucleic acid 
NSP    nitrile specifier protein 
Oligo    oligonucleotide 
PCR    polymerase chain reaction 
PKS    polyketide synthase 
Prym1    Prymnesin 1 
Prym2    Prymnesin 2 
psu    practical salinity units 
qPCR    quantitative polymerase chain reaction 
RNA    ribonucleic acid 
rRNA    ribosomal ribonucleic acid 
RDD    DNase digestion buffer (Qiagen) 
RLT    RNeasy lysis buffer (Qiagen) 
RNase    ribonuclease 
RPE    RNeasy membrane wash buffer (Qiagen) 
RT    reverse transcription  
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RW1    RNeasy high salt membrane binding buffer (Qiagen) 
tRNA    transfer ribonucleic acid 
TE    thioesterase  
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1 General Introduction 

 

1.1 Harmful algal blooms 

The spectrum of planktonic organisms that can form blooms is broad.  By definition, 

when cell concentrations become significantly higher than the typical background values, 

this is then termed a bloom (Smayda TJ, 1997).  Whether monospecific (primarily one 

species) or heterospecific (mixed species), blooms that are ecologically detrimental, either 

posing a threat to human health (Van Dolah F, 2000) and/or monetary losses through 

detriment to i.e. aquaculture or recreational regions (Tang & Gobler, 2009) are termed 

harmful algal blooms (HABs).  HABs have been noted by civilizations throughout history.  

The first probable written reference of this occurs in the Bible from approximately 1,000 

years B.C.: 

“…all the waters that were in the river were turned to blood.  And the 

fish that were in the river died; and the river stank, and the Egyptians 

could not drink of the water of the river. ” (Exodus 7:20-21) 

This historically documented occurrence is probably based on the occurrence of an algal 

bloom with fish-killing effects.  Formation of the bloom may have been caused by an 

imbalance in the Redfield N:P ratio, leading to oxygen depletion from high respiration rates 

that occur either at night, during self-shading of the bloom or during bacterial degradation.  

In any case, this first written record of an algal bloom vividly describes merely the 

beginning of the negative social and economic impact that today have become all too 

familiar in coastal areas   
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 There are three general types of HABs, classified by their detrimental effects 

(Anderson et al., 1998).  These are as follows:  

(1) Non-toxic blooms that cause discoloration of the water in enclosed as well as water-

shed areas.  These blooms occasionally can reach such high cell concentrations that oxygen 

depletion occurs.   

(2) Blooms that produce potent toxins that are either sequestered in fish or shellfish, and 

enter the food chain, eventually reaching and causing various gastrointestinal and 

neurological detriment to humans.  

(3) Blooms that are directly toxic to fish and invertebrates i.e. via mechanical or 

chemical disruption of oxygen exchange mechanisms at respiratory membranes.  

Production of toxic substances by algal species is a worldwide phenomenon.  These 

are termed phycotoxins, and refer to a structurally diverse group of toxic compounds 

produced by algal species.  Phycotoxins can represent a human health hazard, as is the case 

for several dinoflagellate toxins, however the compounds produced by Prymnesium parvum 

have yet to have been documented with any negative effects on humans.  Relatively little 

information is known about the biological role of the substances in question, which has led 

to several speculative suggestions.  Their role has been suggested to be as a defensive 

mechanism, perhaps in response to changes in environmental stress and/or predatory 

threats (Tillmann, 1998).  These compounds may also play a role in mixotrophy, a 

nutritional mode whereby a species is capable of both photosynthesis and phagocytosis to 

meet cellular energy requirements.  Immobilization of prey prior to ingestion is one 

potential role for toxic compounds. Whatever the function of these compounds, there is 

evidence that toxicity can vary due to changing environmental conditions.  Historically, on 
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the basis of sharply contrasting laboratory observations, it is difficult to precisely define 

why these compounds are being produced.  Speculation, however, is greatly increasing as 

genomic investigations begin to provide deeper insights into this area of scientific 

knowledge.   

 

1.2 Prymnesium parvum 

 The first record of any species now referable to Prymnesium is by J. Büttner in 1911, 

in his paper ‘Die farbigen Flagellaten des Kieler Hafens’. He described this organism as 

Wysotzkia gladiociliata, and referred to it as ‘another flagellate with three flagella’.  While 

this was not entirely true, as Prymnesium has two flagella and one short haptonema, it was 

a milestone observation at the time (Larsen, 1998).  Since then, this alga has been 

extensively recorded as being associated with seasonal toxic blooms and mass mortality 

events in aquaculture ponds and in native populations of gill breathing animals (La Claire, 

2010).  The genus Prymnesium currently comprises ten species, four of which are 

considered to be toxic.  Prymnesium  parvum is one of these four toxic species.   

The prymnesiophyte flagellate Prymnesium parvum is a mixotrophic species.  

Phagocytosis of other organisms such as bacteria (Nygaard & Tobiesen, 1993) and other 

protists (Tillmann, 1998) has been observed.  Most of the associated bloom events tend to 

occur in cooler waters, located in the subtropical and temperate zones between the Tropic 

of Cancer and the Arctic Circle and between the Tropic of Capricorn and the Antarctic Circle 

(La Claire, 2010).  HABs of P. parvum often form in estuarine brackish waters, exhibiting its 

extremely high tolerance for variations in salinity; however, a large number of blooms are 

now known to occur in mainland freshwater reservoirs (La Claire, 2010).  How P. parvum 
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crossed over from marine to freshwater habitats is currently unknown, however, proposed 

vectors include contaminated bilge water, bird guano and encystment (La Claire, 2010).  

Regions affected by Prymnesium blooms can be seen in Figure 1.2.1. 

 

Figure 1.2.1: Worldwide occurrences of P. parvum populations based on countries where 
reported.  (adapted from LaClaire, 2010). 
 
 
 

Blooms of P. parvum are often associated with massive fish-kills (Moestrup, 2004; 

Edvardsen & Larsen, 1998).  Besides being toxic to fish, P. parvum also produces hemolytic 

substances that lyse both prokaryotic and eukaryotic cells (Yariv & Hestrin, 1961; 

Tillmann, 1998).  The wide range of toxic effects caused by P. parvum suggests that there 

may be multiple compounds secreted (Shilo, 1967).  Igarashi et al. (1999) succeeded in 

describing the general structure of two polyether compounds as Prymnesium toxins, 

prymnesin-1 and prymnesin-2. These workers did not, however, determine a 
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straightforward way to quantify these toxic compounds, a difficult task as no commercially 

available standard exists.   

Prymnesium parvum both produces and secrete compounds that have toxic effects 

on other protists and fish.  Whether or not and to what extent prymnesins play a role in 

these observed detrimental effects is, however, not yet clear.  How the gene expression 

profile of this algal species changes depending on the culture conditions has also been 

recently described (La Claire, 2006).  The relative toxicity of Prymnesium parvum to other 

algal species has additionally been shown to be variable, depending on the culture 

conditions.   

 

1.2.1 Phylogeny 

After numerous attempts to revise the nomenclature, the family Prymnesiaceae was 

defined, representing one of up to eight recognized members within the order 

Prymnesiales.  Figure 1.2.2 shows a phylogenetic tree based on 18s ribosomal RNA 

sequences (Edvardsen et al. 2000).  It is important to note the position of the toxic species, 

shown exclusively in clade B1.   

The two prymnesiophyte genera Chrysochromulina and Prymnesium are closely 

related, based on 18s ribosomal RNA (rRNA), as shown in Figure 1.2.2.  The genera differ 

by the length of the haptonema, the structure of their organic surface scales, flagellar 

insertion and movements (Green et. al., 1982).  Despite their morphological differences, 

several species of these two genera are, according to nucleotide sequence data, more 

closely related than to any other species within their respective genus (i.e. P. parvum and C. 

polylepis).   
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Figure 1.2.2: Phylogenetic tree based upon maximum likelihood analysis indicating the 
relationships of the prymnesiophytes.  Bootstrap values are indicated at internal nodes (500 
replications) for values more than 50% for neighbour-joining and maximum parsimony 
analyses.  Tree is based on 18s ribosomal RNA sequence data (Edvardsen et al., 2000). 
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1.2.2 Morphology 

Prymnesium parvum is a unicellular flagellate, with an ellipsoid shape (Lee, 1980; 

Prescott, 1968).  Cells range from 8-11 μm in length, according to Green et al. (1982).  Each 

cell has two flagella of equal length and a haptonema.  The flagellae are for motility, 

whereas the haptonema may be involved in attachment and/or feeding via phagocytosis 

(figure 1.2.3) (McLaughlin, 1958; Prescott, 1968; Tillmann, 1998).  Green et al. (1982) 

found that the flagella can range from 12-15 μm in length, and the flexible, non-coiling 

haptonema ranges from 3-5 μm long. Each cell has scales of two types in two layers, with 

the outer layer having distinctively narrow inflexed rims, whereas those of the inner layer 

have wide, even more inflexed rims.  The scale arrangement and composition is an 

important phylogenetic diagnostic tool for this species.  The flagellum to haptonema ratio is 

another feature that can be used for phylogenetic identification (Chang & Ryan, 1985). 

 

 

 

Figure 1.2.3: Morphological characteristics of the genus Prymnesium (Rahat, 1965). 

flagella chloroplast 

scales 
(Edvardsen) 

haptonema 
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The nucleus is located centrally between two chloroplasts, one lateral in spatial 

arrangement whereas the other is parietal (Figure 1.2.3).  The chloroplasts are typically 

yellow-green to olive in color. A double-membrane endoplasmic reticulum (ER) is also 

present, with the outer membrane being continuous with the nuclear envelope outer 

membrane (Green, 1982).  A large Golgi apparatus is always found between the base of the 

two flagella and the nucleus (Bold & Wynne, 1985).  Finally, a contractile vacuole is 

sometimes found at the anterior end of P. parvum cells (Figure 1.2.3).  

 

1.2.2 Life cycle (currently proposed) 

It has been suggested that the reproductive life cycle of P. parvum alternates in 

nature (Larsen, 1999).  This refers to the "ploidy" or number of copies of chromosomes 

present in the organism's genome at any given time.  In Figure 1.2.4 (Larsen, 1999) it is 

suggested that the life cycle contains two morphologically different haploid cell types (P. 

parvum and P. patelliferum) and one diploid cell type (P. parvum).  This is very similar to 

the proposed life cycle for C. polylepis, which is already shown to be related to P. parvum 

through an 18s ribosomal DNA phylogenetic tree (Figure 1.2.2).  The two morphologically 

different diploid cell types are so different that they have been originally described as two 

different species (Larsen, 1998).  One reason for the haploid stage could be as a source of 

energy conservation, because of the lower nutrient requirements due to the smaller 

quantity of DNA in haploid cells.  It is also thought that sexual reproduction is a part of the 

P. Parvum life cycle under favourable environmental conditions.  Sexual reproduction is not 

known to occur in laboratory culturing of P. parvum.    
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Figure 1.2.4: The proposed haploid/diploid life cycle of P. parvum.  Adapted from Larsen, 

1999.  

 

1.2.4 Toxicity 

The toxins produced by P. parvum have been previously shown to be a collection of 

substances, rather than a single component (Shilo & Sarig, 1989).  This collective identity 

has led to several different chemical and/or structural characterizations.  Currently there 
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are four chemically classified potential components of the P. parvum toxin(s): proteolipid 

(Ulitzur & Shilo, 1970, Dafni et al., 1972), lipopolysaccharide (LPS) (Paster, 1973), 

galactoglycerolipid (Kozakai et al., 1982), and polyene polyethers (Igarashi et al., 1999).   

Prescott (1968) showed a portion of the extracted compound to be proteinaceous, 

acid labile, non-dialyzable and thermostabile.  This characterization was further supported 

by Ulitzur & Shilo (1970) who suggested that a portion of the toxin is a proteophospholipid. 

This hypothesis was agreed upon by Dafni et al. (1972). These three analyses were 

performed using cellular extracts, not whole cell cultures.   

Spiegelstein et al. (1969) used two methods to observe the effects of the toxin 

mixture on Gambusia, a large genus of fish in the family Poeciliidae.  They found that with 

the immersion method (fish in a toxin solution), the toxicity effect occurs as follows: first 

the toxin enters the gills (via capillaries), and enters the dorsal aortas, and then travels to 

the brain. These authors noted that in the intraperitoneal injection method, the toxin first 

enters the circulatory system whereby it travels to the liver, then enters the hepatic vein, 

the heart, the aorta and finally the brain. Since a portion of the toxic components was 

shown to be acid labile, Spiegelstein et al. (1969) further noted that the toxin may be 

inactivated in the gastrointestinal tract and liver.  This supports why the toxin is non-toxic 

to non-gill breathers, but toxic to gill breathers.   
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Figure 1.2.5: Fish kill associated with a bloom of the golden alga, Prymnesium 
parvum, on Lake Whitney in Texas. (photographer: J.Glass/TPWD) 

 

Paster (1973) noted that the attachment of extracted toxin to gill cell membranes 

most likely occurs where molecules such as lecithin and cholesterol are found, and that 

attachment induces a rearrangement on the membrane making it more permeable. He then 

proposed a portion of the toxin to be lipopolysaccharide, similar to toxins from bacterial 

cell walls.  The fact that these compounds interact with cholesterol in attacking erythrocyte 

membranes supports this idea (Padilla & Martin, 1973).   

After witnessing glycerol enhancement of hemolysin production, Padilla (1970) 

suggested that overall toxin biosynthesis was dependent on carbohydrate and lipid 
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metabolism.  This author also implied that hemolysin may be a structural part of the cell 

membrane.  The same research found a direct correlation between hemolysin formation, 

and the presence of membrane vesicles.  He further noted that the P. parvum toxin only 

appears under physiological conditions where growth is disturbed and/or growth factors 

are limited, an important underlying observation for the investigations performed in this 

Doctoral thesis project.  Dafni et al. (1972) finally suggested that the hemolysin portion 

could be a product of an imbalance in cell membrane metabolism.   

 
 

Figure 1.2.6: Structure of hemolytic component (hemolysin), as described by to Kozakai et al. 

1982.   

 

In a more recent study the hemolytic portion was separated into six components, 

with the major component, hemolysin I (Figure 1.2.6), being a mixture of 1’-O-

octadecatetraenoyl-3’-O-(6-O-B-D-galactopyranosyl-B-D-galactopyranosyl)-glycerol and 1’-

O-octadecapentaenoyl-3’-O-(6-O-B-D-galactopyranosyl-B-D-galactopyranosyl)-glycerol 
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(Kozakai et al., 1982).  The evidence suggesting a portion of toxic compounds are 

membrane phospholipid precursors was further supported by a 10-20 fold increase in 

toxicity per cell (collectively ichthyotoxin, hemolysin, and cytoxin) when phosphate was 

limited (Shilo & Sarig 1989), potentially due to utilization of available phosphate to 

biosynthesize toxic compounds.   

In 1999 the first structural elucidation of two toxic polyether compounds produced 

by P. parvum was completed by Japanese researchers (Igarashi et al., 1999).  These were 

the first toxic metabolites to be chemically characterized from any isolate of P. parvum 

using modern analytical methods (Igarashi et al., 1996; Igarashi et al., 1999).  Prymnesin-1 

(prym1) and Prymnesin-2 (prym2) were shown to be polyketides possessing ichthyotoxic 

and hemolytic activities at nanomolar concentrations (Igarashi et al., 1996; Igarashi et al., 

1999).  Prymnesins appear to be structurally ladder-like polycyclic ether compounds with 

several key features (Figure 1.2.7).  They have double and triple carbon-carbon bonds in 

the unsaturated head and tail regions, an amino group, several chlorines, four 1,6-

dioxadecalin units, and a variety of sugar moieties  (Igarashi et al., 1996; Igarashi et al., 

1999).  Structurally similar, prymnesins 1 & 2 differ in the number and type of sugar 

moieties in the tail region (Figure 1.2.7) with prym2 containing a rare L-xylose, an 

infrequent, yet naturally occurring enantiomer of the sugar xylose.  Prym1 was shown to be 

slightly more polar (due to the addition sugar residues) and therefore elutes ahead of 

prym2 in reverse phase C-18 chromatography. The characterization by Prescott (1968) can 

indicate these mentioned properties for only a portion of the compounds since prymnesin 

1 and prymnesin 2 are dialyzable based upon molecular size. 
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Despite the lack of knowledge concerning the in vivo biosynthesis of prym1 and 

prym2, it is likely that they are derived via the polyketide synthase biosynthetic pathway.  

Polyketides are a multi-functional family of secondary metabolites produced by fungi, 

bacteria, higher plants and a few animal lineages.  The enzymes associated with their 

biosynthesis are termed polyketide synthases (PKSs).  PKSs are large multi-domain 

enzymes or enzyme complexes that are related to fatty acid synthases (FASs).  The three 

described types are PKS I, II and II; all of which share an identical set of functional modules: 

ketoacyl synthase (KS), acyl transferase (AT), ketoacyl reductase (KR), dehyrdratase (DH), 

enoyl reductase (ER), acyl carrier protein (ACP) and thioesterase (TE) domains.   Type I 

PKSs are further divided into iterative and modular, depending on the mode of 

biosynthesis they employ.  Short chain (branched) fatty acids, amino acids alicyclic and 

aromatic acids can act as started units.  Biosynthesis proceeds through Claisen 

condensation reactions in a conserved organized manner.   Post PKS modifications are also 

possible, i.e. glycosylation, acylation, alkylation and oxidation.  These modifications 

contribute greatly to the structural diversity of the polyketide family (John et al., 2010).   
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Figure 1.2.8: An example of polyketide synthesis by a type I modular PKS enzyme (Adapted 
from Wu et al., 2002) 
 

1.3 Allelopathic role of compounds produced  

Members of the genus Prymnesium produce and excrete several allelopathic 

compounds whose function and biosynthesis is not entirely understood.  Several 

possibilities exist concerning the specific function of these compounds.  They may reduce 

grazing from zooplankton (John et al., 2002), or may function allelopathically to reduce or 

interfere with growth of other phytoplankton (Legrand et al., 2003).  When toxicity is low, 

populations of Prymnesium are thought to be controlled by zooplanktonic grazing, 

however, when enough toxic compounds are secreted into the water, they may act as a 

chemical defense to repel or kill predators (Tillmann, 2003). Tillmann also suggested the 

potential of these compounds to immobilize prey prior to phagotrophy.  
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From an ecological perspective, studies of phytoplankton succession and bloom 

formation have primarily focused on comparative abiotic effects rather than on individual 

plankton components (Domingues et al., 2005; Levasseur et al., 1984; Lindenschmidt & 

Chorus, 1998; Sommer, 1988).  In this context, the apparent success of P. parvum leading to 

dominance and bloom formation might be attributed to its physiological flexibility reflected 

by its ability to grow in a wide range of environmental conditions (Larsen & Bryant, 1998). 

There is increasing evidence, however, that inter-specific interactions in the plankton play 

a major role in succession, food web structure and bloom development (Smetacek et al., 

2004; Tillmann, 2004). Among these interactions, the capacity to produce toxic or noxious 

allelochemicals that may deter grazing or affect competition for limiting resources has been 

increasing recognized as an important regulatory mechanism affecting bloom dynamics of 

plankton (reviewed by Cembella, 2003; Legrand, 2003). Allelochemicals produced and 

secreted by P. parvum have been shown to kill both competing algal species and their 

grazers (Tillmann, 2003; Granéli, 2006).  Closely related to this “killing capacity” (Tillmann, 

2003) is the mixotrophic tendencies of Prymnesium, i.e. the ability to ingest immobilized 

competitors and grazers (Tillmann, 2003; Skovgaard & Hansen, 2003).  This strategy to kill 

(and then eat) your enemies by means of toxic compounds is thought to significantly 

contribute to the ability of P. parvum to form dense and long-lasting blooms. 

 

 

 

 

 



Introduction 

17 
 

1.4  Prymnesium parvum: nutrient physiology 

Prymnesium parvum can thrive in a wide range of physiological conditions (La 

Claire, 2010); however nutrient availability has been shown to play a crucial role in HABs 

and toxin formation.  Agricultural run-off and eutrophication are often associated with an 

increase in growth for P. parvum (Hallegraeff, 1999; Collins, 1978; Holdway et al., 1978).  

High nitrogen as well as phosphorous loading ultimately leads to an imbalance in nutrient 

sources, slowing the growth of Prymnesium, which is often accompanied by an increase in 

toxicity (Larsen et al., 1993; Shilo, 1971; Sabour et al., 2000).  Several mesocosm 

experiments have been performed that suggest a decrease in extracellular toxicity, under 

favorable conditions (Roelke et al., 2007).  This has led to discussion that Prymnesium 

toxicity can be therefore be controlled by nutrient manipulation (Legrand et al., 2001).  
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1.5  Functional genomics: upcoming field in harmful algal research 

Increasing the knowledge of genes and gene products involved in toxic processes in 

microalgal species is a rapidly expanding research concept.  In the field of harmful algal 

research, a more comprehensive understanding of the link between an organism’s 

genotype and phenotype (toxicity) is urgently needed, in particular when aspects such as 

human health are at stake.  In the case of P. parvum, such approaches are hopeful in 

elucidating the biosynthetic pathways associated with observed toxicity and lytic effects 

that we see in lab experiments.  We have utilized a microarray platform, derived from a 

cDNA stress library of P. parvum, in an attempt to better understand what is happening at 

the gene level, in response to factors such as nutrient depletion and allelopathic 

interactions with coexisting organisms.   

 Despite the seasonal economic damage P. parvum causes through association with 

fish-kill events, so little is known concerning the exact biological role and mode of action of 

the toxic substances being produced and excreted.  Therefore, elucidating the metabolic 

story behind this prymnesiophyte during bloom formation is of particular importance, as 

its toxins, perhaps including prym1 and prym2, may be directly associated with massive 

fish kills (Edvardsen & Paasche, 1998).  Besides the economic impact of these fish kills on 

aquaculture, other aspects such as tourism are also affected.  The current need for a field-

probe based system to detect and monitor the presence of this prymnesiophyte in coastal 

waters, is a driving force behind the functional genomic race to understand the metabolism 

involved in the toxin production and secretion processes.   

Analysis of whole genomes is rapidly becoming a trend that allows new and crucial 

insights into different aspects of biology (La Claire, 2006).  cDNA libraries and expressed 
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sequence tag [EST] databases developed from them provide an inexpensive overview into 

the genome of an organism.  This overview includes gene expression levels, which may or 

may not have significance to metabolic processes, such as toxin production.  To date, 

eukaryotic algal complete genome projects comprise only that of the diatom Thalassiosira 

pseudonana (Armbrust et al., 2004), the filamentous seaweed Ectocarpus Siliculosus (Cock 

et al., 2010) and that of the red alga Cyanidioschyzon merolae (Metsuzaki et. al., 2004).  

Despite this low number of completed projects, sequencing and analysis of many algal 

genomes are very close to completion.  

 

1.6 Aim of the thesis 

The aim of this thesis was to obtain a more developed characterization of cellular 

processes potentially involved in toxicity (PKS gene expression), allelopathy, 

nutrient/resource competition and factors affecting bloom formation in the 

prymnesiophyte P. parvum, using a bioassay-linked functional genomic approach.   

 

1.7 Outline of the thesis 

This thesis is organized into three core chapters, corresponding to three separate 

publications where the candidate is first author.   

The toxigenic prymnesiophyte Prymnesium parvum commonly forms harmful algal 

blooms in coastal areas, where eutrophication and fluctuation of both abiotic and biotic 

factors play a role in its ecological success.  In Publication 1, a series of ecologically 

relevant physiological shock treatments were applied in an attempt to elucidate effects on 

the toxicity of P. parvum.  In order to determine treatment related differences in toxicity, 
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two separate bioassays were used: a Rhodomonas salina assay and an erythrocyte lysis 

assay (ELA).  The first is a measure of secreted lytic capacity, while the latter measures lytic 

capacity of intracellular compounds.  Additionally, gene expression via quantitative real-

time PCR (qPCR) was employed to investigate changes in transcript copy number for three 

polyketide synthase (PKS) genes, due to current chemical characterizations of the 

compounds Prymnesin 1 (prym1) and Prymnesin 2 (prym2).  Through the combination of 

toxicity bioassays and gene expression analysis, it was possible to associate PKS gene 

regulation patterns, with changes in toxicity, and associate these to high irradiance stress 

and low salinity stress.  The candidate designed the experimental setup and performed the 

according RNA isolations, toxicity bioassays as well as qPCR analysis.  The candidate 

analyzed the data and prepared the manuscript. 

 The lytic compounds produced by P. parvum are furthermore thought to play a role 

in allelopathic interactions, and therefore be important bloom initiation factors.  In 

Publication 2 an analysis of gene expression and toxicity arising from interspecific 

interactions between P. parvum and three coexisting phytoplankton species was 

investigated.  Incorporating a microarray platform into this study, it was possible to 

differentiate between gene expression associated with cell-cell contact and gene expression 

associated with recognition and response to chemical cues.  The candidate designed the 

experimental setup in collaboration with the coauthors and performed RNA isolations, 

toxicity bioassays, qPCR analysis and microarray hybridizations.  Analysis of the data as 

well as preparation of the manuscript was performed by the candidate.   

 Taking anthropogenic influences into ecological consideration, Phosphorus 

limitation is known to increase the toxicity of this prymnesiophyte.  Low salinity stress is 
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also known to be a stressor inducing toxicity in P. parvum.  In publication 3 an analysis of 

toxicity and gene expression related to a combination of Phosphorus limitation stress and 

low salinity stress was performed.  The aim was to use a functional genomic approach to 

characterize the underlying gene expression associated with changes in toxicity due to 

these two stressors.  With this goal in mind, the candidate designed the experimental setup 

in collaboration with the coauthors, performed RNA extractions, toxicity assays, nutrient 

measurements, qPCR as well as microarray hybridizations.  Data analysis and writing of the 

manuscript was additionally performed by the candidate.   

 



 

22 
 

 

 

 

 

 

 

 

 

.   

 

 

 

 

 

 

 

 

 

 



 

23 
 

2. Publications 

Publication 1 
Freitag MF, Beszteri SA, Vogel H & John U, (2011). Induced toxicity and polyketide 
synthase gene expression following physiological shock in the toxigenic Prymnesium 
parvum (Prymnesiophyceae). Eur J Phycol, in press 
 
Publication 2 
Freitag MF, Tillmann U, Cembella AD & John U, (2011). Differential responses of the 
prymnesiophyte Prymnesium parvum following interactions with planktonic species. 
ISME Journal, submitted  
 
Publication 3 
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2.1 Publication I 

Induced toxicity and polyketide synthase gene expression following 
physiological shock in the toxigenic Prymnesium parvum 
(Prymnesiophyceae) 
 
2.1.1 Abstract 

The toxigenic species Prymnesium parvum (prymnesiophyceae) is responsible for 

economically detrimental fishkill events worldwide every year.  Although numerous 

studies concerning the physiology and toxicity of Prymnesium parvum exist, the attempt to 

incorporate gene expression into such data sets is novel.  In this study we investigated 

relative toxicity (intracellular vs. extracellular) and differential gene expression via real-

time PCR (qPCR) of three polyketide synthase (PKS) transcripts, based on current 

hypothesized structural characterizations of toxic compounds produced by 

prymnesiophyte P. parvum.    We found that low salinity shock and high irradiation shock 

increase different aspects of toxicity (intra- vs. extra-cellular) in Prymnesium.  Furthermore, 

we found that these two physiological shock treatments induced higher copy numbers in 

selected polyketide synthase (PKS) genes, suggesting a connection between toxicity and the 

PKS biosynthetic pathway.  Our results demonstrate how PKS is likely to play an important 

role in toxic processes of P. parvum.  We anticipate our study to be a starting point for 

further investigations into the role of PKS in P. parvum in response to changing 

environmental conditions. 
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2.1.2 Introduction 

 The toxigenic prymnesiophyte P. parvum is a worldwide distributed mixotrophic 

species (Moestrup, 1994).  Blooms of P. parvum are associated with massive fish-kills 

(Edvardsen & Paasche, 1998).  P. parvum produces substances that are directly associated 

with ichtyotoxicity (lysis of gill cell membranes) and also show lytic activity towards both 

prokaryotic and eukaryotic single-celled organisms (Yariv & Hestrin, 1961; Tillmann, 

2003).  Effects of both abiotic and biotic factors have been extensively studied in P. parvum.  

For example, in the presence of a potential grazer such as the dinoflagellate Oxyhrris 

marina, lytic activity of P. parvum has been shown to increase towards the small 

cryptophyte Rhodomonas salina, also used in this study as a relative measure of lytic 

capacity (Tillmann, 2003).  Growth phase, cell culture density, temperature, nutrient 

availability, light intensity as well as salinity have all been shown to cause variations in 

observed toxicity in addition to a wide range of toxic effects, which suggests there may be 

multiple compounds responsible for the observed effects (Graneli et al., 2008; Larsen & 

Bryant, 1998; Graneli et al., 1998, Baker et al., 2007; Shilo, 1967).   

Blooms of P. parvum are often found in coastal or brackish water areas, where 

salinity and nutrient availability tend to fluctuate and play a potential role in the variations 

in toxicity observed in laboratory experiments (Baker et al., 2007). Prymnesium parvum is 

extremely physiologically robust and flexible, and it is this flexibility that may provide a 

competitive advantage over other coexisting microalgal species that leads to the infamous 

P. parvum associated fish-kill events worldwide.  As rapid acclimation of microalgae to 

environmental changes has previously been shown (Costas et al., 2001; Lopez-Rodas et al., 



Publication 1 

27 
 

2001), our intention was to simulate these rapidly changing environmental conditions 

through a series of ‘shock’ experiments.   

Physiological ‘shock’ responses have been demonstrated in many species of bacteria 

in response to a wide variety of extreme or changing environmental conditions 

(Grzadkowska & Griffiths, 2001).  In marine microalgae, hypoosmotic stress has been 

shown to induce responses primarily related to impaired photosynthetic capacity (Kirst, 

1989).  Using photosynthetic machinery as a measurement of response to stress is not 

representative of how other cellular processes are responding to the disruption in cellular 

equilibrium. Understanding the relationship between gene expression changes and the 

corresponding adaptive physiological responses of an organism to environmental cues is 

crucial in explaining how cells cope with stress (Vilaprinyo et al., 2006).    

The structural elucidation of at least a portion of the toxic substances produced by P. 

parvum (Igarashi et al., 1999) revealed two similar compounds: prym1 and prym2.  These 

two structurally polyether compounds were described to possess similar biological 

activities.  Their description raised interest in PKS enzymatic pathways and their potential 

role(s) in toxic processes described for P. parvum (John et al. 2008, LaClaire 2008), as well 

as for other protists (John et al. 2008, Kellmann et al. 2010).  Polyketides are a family of 

secondary metabolites whose carbon skeleton is formed through sequential condensation 

reactions of acyl-coenzyme A (coA), relating their biosynthesis to that of fatty acid 

compounds (Staunton & Weissmann, 2001; Crawford et al., 2006).  Of the known protist 

PKS enzymes, many have been shown to belong to the same molecular class of biosynthetic 

pathways, and most marine microalgal species studied so far exhibit two or more 

functionally different PKS genes (LaClaire, 2006; John et al. 2008; Worden et al. 2009; 
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Monroe, 2010).  As PKS biosynthetic pathways are  shown to be involved in brevetoxin 

(Monroe et al. 2010) and spirolide production (McKinnon et al. 2006), it seems likely that 

these enzymatic pathways also play a role in the biosynthesis of toxic compounds for P.  

parvum.   

 Our objectives for this study were to investigate: 1) the effect of short term ‘shock’ 

treatments on exhibited toxicity as well as on differential gene expression of three PKS 

transcripts (obtained from a non-normalized cDNA library constructed by Laclaire et al., 

2006) and 2) the extent to which PKS pathways are involved in the biosynthesis and/or 

secretion of toxic compounds produced by P. parvum.  Through a combination of bioassays 

and functional genomic approaches, we are able to correlate changes in toxicity, to changes 

in expression of select PKS transcripts.  We additionally demonstrate that housekeeping 

genes for a study as is described in this study are not ideal, and that fluctuations in their 

expression values can lead to misinterpretation of data obtained.  The correlation of PKS 

gene transcripts to changes in toxicity is a novel finding for P. parvum, and will serve to fuel 

future studies further characterizing the role of PKS enzymes in toxic processes in this 

species.   
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2.1.3 Materials and methods 

 

Culture conditions and experimental setup 

A toxic clonal strain RL10 of P. parvum, isolated in 1993 by Aud Larsen in the 

Sandsfjord system in Norway (Edvardsen & Larsen, 1998) was used for this study.  Strain 

RL10 was grown in 5 l stock culture in IMR medium.  The components of IMR medium 

(Eppley, 1967) can be viewed in Table 2.1.1-3.  Cultures were grown at a salinity of 26 psu 

under gentle aeration with sterilely filtered air to a concentration of 4.61 x 103 cells ml-1, at 

a constant temperature of 20°C and a light: dark photocycle of 14:10 h.  Photon flux density 

measured inside the flask by a QSL-100 Quantum Scalar Irradiance Meter (Biospherical 

Instruments, San Diego, USA) was kept at 90 μmol photons m-2 s-1. Cell concentrations were 

determined daily using a CASY cell counter (Innovatis AG, Reutlingen, Germany). 

 

 

 

 

 

Table 2.1.1: Components of IMR medium   
component final concentration l-1 

trace elements* (see Table 2) 
vitamins** (see Table 3) 
KNO3 500 μmol 
KH2PO4 50 μmol 
Na2SeO3 500 μmol 
Na2O3Si �9H2O 500 μmol 
North Sea water 80% (volume) 
bi-distilled 
water 

20% (volume) 

*Table 2.1.2: Trace element stock solutions   
substance final concentration  l-1 
Na2-EDTA 6 g 
FeCl3 � 6H2O 1 g 
MnSO4 � H2O 620 mg 
ZnSO4 � 7H2O 250 mg 
Na2MoO4 � 2H2O 130 mg 
CoCl2 � 6H2O 4 mg 
CuSO4 � 5H2O 4 mg 

**Table 2.1.3: Vitamin stock concentrations 
quantity vitamin final concentration per liter 
1.0 ml Vit. B12 (cyanocobalamin) 10 μg 
1.0 ml Biotin 1 μg 
100.0 mg Thiamine HCl 200 μg 
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From the initial stock culture, 400 ml cultures were inoculated at starting 

concentrations of 1.5 x 103 ± 123 cells ml-1 and grown under identical conditions as the 

stock culture (with exception of no aeration for smaller batch cultures) to a concentration 

of 3.75 x 103 ± 1,325 cells ml-1.  This cell concentration was crucial, because (1) the cells 

were still exponentially growing and (2) it would provide sufficient material for 

downstream analysis.  At this point, 400 ml batch cultures were separated and ‘shocked’ 

for 2 h.  A summary of physiological ‘shock’ and control conditions can be seen in Table 

2.1.4.  All experiments were carried out parallel, in triplicate, with a single control for all 

samples.  Culturing shock parameters were chosen based on known literature tolerance 

ranges of P. parvum (Larsen & Edvardsen, 1998; Graneli et al. 1998; Graneli et al., 2008; 

Edvardsen & Paasche, 1998; LaClaire, 2006). 

Table 2.1.4: Control and physiological ‘shock’ conditions for replicate 400 ml batch 
cultures.     

Treatment Description 

control 20°C, 90 μmol photons m-2 s-1, 26 psu 

25°C± 25°C, 90 μmol photons m-2 s-1, 26 psu 
5°C± 5°C, 90 μmol photons m-2 s-1, 26 psu 
turbulence aeration, 20°C, 90 μmol photons m-2 s-1, 26 psu 
16 psu* 20°C, 90 μmol photons m-2 s-1, 16 psu 
high light+ 20°C, 700 μmol photons m-2 s-1, 26 psu 
dark♦ 20°C, 0 μmol photons m-2 s-1, 26 psu 
 
±Temperature adjusted using pre-set water baths.  Internal temperature within culture flask was 
continually monitored through ‚shock‘ experiment.  25°C internal temperature was achieved in t‹15 
min, 5°C was achieved in t‹20 min.  
* Medium diluted using IMR prepared without North sea water (for identical nutrient/vitamin 
composition.  Magnetic stir bar applied to ensure minimal differences in local salinity within the 
culture flask. 
+Separated, and placed under identical conditions in a growth chamber, with altered light source. 
♦Darkness achieved with alumnimum foil enclosure of the culture flask. 
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Erythrocyte lysis assay 

 An erythrocyte lysis assay was performed as described by Eschbach et al. (2001), 

and was used to the test lytic activity of P. parvum whole cell extracts towards erythrocytes.   

 

Fish husbandry  

Carp (Cyprinus carpio) 4-5 years old and weighing 2-3 kg were used for blood 

collection. Tank and feeding conditions were previously described by Eschbach et al. 

(2001).  

 

Blood collection, storage and preparation  

For blood collection and storage, RPMI 1640 culture medium (Sigma) supplemented 

with fetal bovine serum (FBS) was diluted 10% (v/v) deionized water (Milli-Q filtration 

system), to adjust its osmotic pressure according to carp serum osmolarity (Mommensen et 

al., 1994). Syringes were pre-filled with 5 ml diluted RPMI medium, in addition to 50 IU ml-

1 heparin sodium (Sigma) to avoid clot aggregation formation. Caudal vein puncture was 

performed on the ventral side of each fish to obtain 5 ml of blood (Stoskopf et al., 1993). 

Repeated bleeding of the same fish was done with a minimum interval of 4 weeks. Whole 

fish blood was diluted 1:10 with diluted RPMI medium containing 22.5 IU ml-1 heparin 

sodium (Sigma). Cultures were stored in 25 ml angle necked culture flasks in an upright 

position at 4° C.  

Erythrocyte concentration was determined using a haemocytometer (Superior 

Marienfeld Laboratory Glassware). Concentration was diluted with assay buffer to 5 x 107 

cells ml-1 for use in the assay.  Cell solution with appropriate concentration was stored 
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overnight in RPMI medium, and then centrifuged in an Eppendorf centrifuge at 2000 x g for 

5 minutes at 4° C and resuspended in assay buffer the next day immediately prior to assay. 

After calculation of the desired number of erythrocytes for each sample well, cells were 

washed twice with assay buffer, and re-centrifuged at the previously mentioned speed, 

time and temperature.  A volume corresponding to 1.0 x 107 P. parvum cells from each 

treatment were harvested via centrifugation, and the cell pellet resuspended in lysis/assay 

buffer (150 mM NaCl, 3.2 mM KCl, 1.25 mM MgSO4, 3.75 mM CaCl2 and 12.2 mM TRIS base, 

pH adjusted to 7.4 with HCl, Eschbach et al. 2001). The resuspended pellets (each 

containing 1.0 x 107 P. parvum cells) were then completely lysed via sanitation at the 

following settings: 50% pulse cycle, 70% amplitude, for 1 min. Cell lysates were pipetted in 

biotriplicate, as well as technical triplicate, into a 96 conical bottomed optical microtiter 

plate (Nunc. Wiesbaden, Germany). Pre-washed blood (100 μl) (5.0 x 106 cells) and cell 

lysate (100 μl) was pipetted into each well. The saponin standard dilutions were pipetted 

in technical triplicate. The plate was sealed with foil, and was incubated at 15°C for 24 

hours. After incubation, each plate was centrifuged for 5 min at 2000 x g and room 

temperature in an Eppendorf centrifuge, and the supernatant subsequently transferred to a 

flat bottom optical 96 well microtiter plate (Nunc. Wiesbaden, Germany). The absorption of 

the released haemoglobin was scanned from 350 to 700 nm with an Ultrospec III 

UV/Visible photometer using Wavescan Application Software (Pharmacia LKB 

Biotechnology, Uppsala, Sweden).  Lytic activity was calculated in ng saponin equivalents 

per cell (ng SnE cell-1), utilizing the standard saponin from higher plants as an indicator of 

relative lytic capacity.   
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Extracellular and/or secreted toxicity: Rhodomonas salina bioassay 

 Rhodomonas salina is a sensitive cryptophyte that is commonly used as a measure of 

lytic capacity for structurally unconfirmed compounds, as is the case for the compounds 

from P. parvum.  A dose-response curve is established, and an EC50 value is calculated, 

indicating the concentration of P. parvum at which 50% of all Rhodomonas cells are lysed 

within the experimental system.  This assay was performed in this study as described by 

Tillmann et al. 2008.  Rhodomonas stock cultures were maintained in F/2 medium as 

described by Guillard & Ryther, 1962, at 15 ° C and ambient light conditions.  4 ml of a 

mixture of P. parvum (final cell concentrations in decreasing order: 3.75 x 104 ml-1, 2.34 x 

104 ml-1, 9.38 x 103 ml-1 and 4.69 x 103 ml-1) and R. salina (final cell concentration 1.0 x 105 

ml-1) were incubated in glass scintillation vials at 15° C for 24 h in darkness. Vials were 

then gently mixed by rotating, and 1 ml of mixture was pipetted into an Utermöhl cell 

sedimentation chamber and fixed with glutaraldehyde (2.5% final concentration). After 

settling, cells were viewed via epifluorescence microscopy (Zeiss Axiovert 2 Plus, Carl Zeiss 

AG, Göttingen, Germany) with Zeiss filter-set 14 at 64X magnification. Lysed versus non-

lysed cells were easily distinguishable due to pigment auto-fluorescence characteristics 

(Prymnesium - red or Rhodomonas - orange). Control Rhodomonas samples in triplicate 

represented 0% lysis, and lytic capacity for all samples incubated with Prymnesium were 

calculated based on this control value, as percentage Rhodomonas cells lysed. 

 

Statistical significance and standard deviation 

 For single data points originating from both bioassays as well as between 

treatments in the gene expression portion, a t-test was used with a significance cut off of 
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p‹0.05 to identify significant differences between physiological treatments, observed 

toxicity and gene fold regulation.  Additionally, Figures 1-5 contain error bars, which 

represent the standard deviation between biological, not technical, replicates.    

 

Total RNA isolation 

 Physiologically shocked triplicate cultures were centrifuged at 3000 x g for 15 min 

at 20 °C. The supernatant was removed, and the remaining cell pellet was resuspended in 

350 μl of buffer RLT (lysis buffer) containing β-mercaptoethanol (Qiagen, Hilden, 

Germany), and subsequently flash-frozen in liquid nitrogen at -80° C. Samples were then 

stored at -70° C to minimize activity of potential RNase enzymes and prevent degradation. 

Prior to starting the protocol 100% ethanol was added to the wash buffer RPE, and β-

mercaptoethanol was added as an RNAse inhibitor to the lysis buffer RLT.  The amount of 

starting material was also taken into consideration, following recommendations in the 

manufacturer’s handbook (see Qiagen Plant RNeasy protocol book).  Marine protists are 

known to produce a variety of different secondary metabolites and those such as 

polysaccharides and phenolic compounds can cause a variety of problems during nucleic 

acid extraction.  In order to obtain high quality RNA only low amounts of cells can be used 

for extraction, even when the theoretical capacity of the column is not approached. 

 Flash frozen samples were thawed ‘on ice’, and approximately two small spatulas 

full of 0.1 mm diameter glass beads were added to the sample.  The cells were disrupted 2 x 

30 s using a Qiagen Bead Beater (Hilden, Germany).  The homogenate was separated from 

the glass beads and placed in a QIAshredder column/collection tube and centrifuged for 10 

min at maximum speed.  Centrifugation through the shredder column functions to remove 
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cell debris, as well as homogenize the lysate.  A small pellet formed at the bottom of the 

collection tube.  The supernatant was very carefully removed and placed in a new 

centrifuge tube, without disturbing the pellet at the bottom of the tube.  Ethanol (250μl-

100%) was added to the lysate (0.5 x volume) and mixed by pipetting.  The entire sample 

was loaded onto a new RNeasy column/collection tube, and was spun at 8,000 x g for 30 s.  

The ethanol added previously functions to bind the RNA to the silica membrane in the 

column.  The flow-through was discarded.   700 μl RW1 buffer was added to the column, 

and column was centrifuged again at 8,000 x g for 30 s.  RWI buffer contains a high 

guanidine salt concentration that functions to wash the membrane-bound RNA.  The flow-

through was again discarded.  The column was transferred into a new collection tube.  

Wash buffer RPE containing ethanol (500 μl) was added to the column, and the column was 

centrifuged as before.  The flow-through was discarded.  This wash step was repeated once 

more, including the centrifugation and flow-through discarding step.  The column was 

centrifuged further for 1 min at maximum speed to remove all traces of ethanol present.  

Any remaining ethanol could interfere with downstream applications of the RNA, i.e. cDNA 

synthesis.  The column was placed next in a new centrifuge tube, 2 x 50 μl of DEPC treated 

water was pipetted directly to the center of the membrane in order to elute the RNA.  The 

final volume at this point was 100 μl.   

 

DNase in-tube treatment 

 To each sample of 100 μl volume, 10 μl buffer DNase buffer RDD and 5 μl DNAse 

resuspended in provided nuclease free water (Qiagen) were added.  This mixture was 

incubated for 1 h at room temperature (approximately 23° C).   
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RNA Clean-up 

 Buffer RLT (350 μl) was added to the DNAse and RNA mixture.  The solution was 

then thoroughly vortex mixed.  Ethanol (250 μl-100%) was added to the solution, and the 

mixture was repeatedly pipetted.  The sample (700μl) was applied to a new RNeasy 

column/collection tube and centrifuged at 8,000 x g for 30 s.  Both the flow-through and 

the collection tube were discarded.  The column was washed with 350 μl buffer RW1 (high 

salt), followed by a DNAse on column digestion.  DNAse stock solution (10μl) was added to 

70 μl buffer RDD, and was gently flicked, not vortexed, due to the fragile nature of the 

DNAse enzyme.  The entire 80 μl DNAse/buffer RDD solution was applied to the center of 

the membrane, and was incubated at room temperature for 15 min.  2 x 500 μl buffer RPE 

washes were performed as previously described, and then the final RNA was eluted either 

in 50 μl or 2 x 50 μl of DEPC treated water.  RNA concentration and quality/integrity was 

checked using the Nanodrop spectrophotometer and Agilent bioanalyzer (Agilent 

Technologies, Santa Clara USA). 

 

Sample purity  

A Nanodrop spectrophotometer was used to determine the purity of the RNA 

samples obtained. The Nanodrop system is a full spectrum spectrophotometer (220-750 

nm).  1 μl of each extracted RNA sample was pipetted onto the spectrophotometer 

measurement stage for analysis.  Polysaccharides absorb at 230 nm, while proteins absorbs 

at a wavelength of 280.  Nucleic acid absorbs at 260 nm, and therefore the ratio of 260/280 

indicates protein contamination, and the 260/230 ratio indicates polysaccharide 
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contamination.  It is important that both the 260/280 and 260/230 nm ratios are close to 

2.0. 

 

Sample Integrity  

 RNA integrity was measured using gel-chip technology (Agilent).  Each chip contains 

an interconnected set of gel-filled channels that allow for molecular sieving or sorting of 

nucleic acid samples.  Electrodes, which come into contact with the samples when the lid of 

the bioanalyzer is closed, control the movement of the samples within the gel channels.  

Each electrode is attached separately to a power source, allowing for very flexible control 

of the     sample movement.  RNA of an appropriate concentration and integrity was 

obtained for all samples, with the exception of the dark treatment.          

 

 In vitro transcription & cDNA synthesis 

Complementary to the gene expression analysis, three typical housekeeping genes 

(Ubiquitin, GAPDH and Actin) were compared with two genes stemming from the ‘small 

cabbage white’ butterfly Pieris rapae: major allergen-MA (EU265818) and nitrile specifier 

protein-nsp (EU265817).  These two genes show no sequence similarity to any accession 

outside of the Lepidoptera genus (Fischer et al., 2008) and therefore functioned to (1) 

normalize cDNA synthesis reaction efficiency and (2) provide a baseline expression value, 

similar to the function of traditional housekeeping genes.  Plasmid vectors (pDNR-Lib) 

containing full-length cDNAs of both MA & NSP  genes approximately 1.9 kb in size were 

constructed using an EST database and cDNA library (Fischer et al., 2008) and served as 

template in PCR reactions to obtain the corresponding DNA fragments.  All primers used in 
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this study were designed using Primer Express © v 2.0 software using the default settings 

and synthesized by MWG biotechnologies, Germany.   

To obtain mRNA for these two spike genes, in vitro transcription was performed 

with amplified MA & NSP PCR fragments. The reaction components can be viewed in table 

2.1.5.   

Table 2.1.5: Reaction components for in vitro transcription of MA and NSP spike genes 

Component Volume [Final]  
5x T7 RNA Pol. buffer 10 μl 1x 
NTP stock (10 mM each) 10 μl 2 μM 
10 mM DTT 5 μl 5 mM 
PCR template 1 μg 20 μg ml-1 

Final volume (with water)  50 ul 
 

This reaction mixture was incubated at 37° C for 1 h, after which 5 μl (250 units) T7 RNA 

polymerase was added to each reaction, followed by 1 h incubation at 37° C.  Na2EDTA (50 

μl) was immediately added.  The mRNA produced was recovered via the Qiagen RNeasy 

clean up protocol, which was previously described in the RNA extraction section of the 

materials and methods.   

cDNA was synthesized from 500 ng total RNA of all samples with the Omniscript RT 

kit (Qiagen, Hilden, Germany) using anchored oligoVN(dT)20 primer (Invitrogen, Paisley, 

UK) at a final concentration of 25 ng μl-1.  MA was added at a final concentration of 116 pg 

μl-1 and NSP at 10 fg μl-1.  RNA samples (500 ng) were diluted to 9.25 μl with RNAse free 

water.  Reaction components are listed in Table 2.1.6.  For dark treatment samples, only 

RNA with very high polysaccharide content in solution was consistently obtained.  This can 

be attributed to degradation of starch within the algal cells, in the absence of light, as has 

been previously described for the rhodophyte Gracilariopsis lemaneiformis (Rincones et al., 
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1993).  The high polysaccharide content of these samples made cDNA formation and 

subsequent downstream qPCR analysis extremely difficult, and thus they were left out of 

the gene expression portion of the study.   

 

Table 2.1.6: Components of cDNA synthesis 
reaction 
Component Volume 
5 mM dNTPs 1 μl 
Oligo dT primer 1 μl 
10 x buffer 2 μl 
RNAse Out 0.25 μl 
Omniscript 1 μl 
MA mRNA 2.64 μl (1.0 ng) 
NSP mRNA 2.862 μl (1.0 pg) 
Final volume 20 μl 

 

Target gene selection and qPCR 

One aim of this study was to characterize three PKS transcripts, originating from P. 

parvum, in response to short-term physiological acclimation.  For normalization of these 

three target genes, we chose two ‘foreign’ internal reference genes, as well as three 

commonly accepted housekeeping genes from qPCR related literature.  Sequences and 

names of target genes are given in table 2.1.7.  The ratio of the amount of target gene mRNA 

to the amount of housekeeping gene mRNA was analyzed with a SYBRgreen qPCR reaction, 

designed according to manufacturer’s protocol (Applied Biosystems, Darmstadt, Germany) 

using 2 μl of a 10-fold diluted cDNA.  qPCR reaction details are given in Table 2.1.8.  Cycle 

parameters included an initial denaturation at 95 °C for 10 minutes, followed by 40 cycles 

of 95 °C for 15 seconds and 59 °C for 1 minute. A product-primer dissociation step was 

utilized to verify formation of a single unique product and the absence of potential primer 
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dimerization. All reactions were performed with the same ABI Prism 7000 cycler (Applied 

Biosystems, Darmstadt, Germany).   

Amplification efficiency of all qPCR reactions was analyzed through linear 

regression of standard curves, with 6 cDNA (originating from the control culture) serial 

dilution points (1.0x10-3-1.0x10-8).  Percent efficiency was calculated from the slope of the 

threshold cycle (Ct) vs. concentration [cDNA] with equation (I) 

I         E = 10-1/slope 

 All PCR efficiencies were 98.88% ≥ x ≥ 92.31% 1.91, all R2 were > 0.94.  All samples 

were run in both biological (independent cultures) as well as technical triplicates.  

Variation was calculated as averages among technical replicates as well as standard 

deviation.  An R expression ratio was calculated using the ΔΔCt as described by Pfaffl et al. 

2001, incorporating individual reaction efficiencies as correction factors.  Calculation of an 

R expression ratio was performed using the following equation (II) 

II Ratio = Etarget^�ΔCt target (control- sample)� / EMA^�ΔCt housekeeping (control- sample)� 

The authors chose this method of quantification, in order to minimize intra and interassay 

variability, and to aid in a robust comparison between normalization (housekeeping) 

genes.  All calculations were performed using the REST-2009 software platform (Qiagen, 

Hilden, Germany).  



Pu
bl

ic
at

io
n 

1 

 

 

     

*o
b

ta
in

ed
 f

ro
m

 A
p

p
li

ed
 B

io
sy

st
em

s,
 D

ar
m

st
ad

t,
 G

er
m

an
y 

    

T
ab

le
 2

.1
.7

: T
ar

ge
t 

ge
n

es
 in

ve
st

ig
at

ed
 in

 t
h

is
 s

tu
d

y,
 a

n
d

 p
ri

m
er

s 
u

se
d

 t
o

 a
m

p
li

fy
 s

eq
u

en
ce

s 
vi

a 
q

P
C

R
 

Ge
ne

 
Se

qu
en

ce
 F

(5
´-

3´
) 

Se
qu

en
ce

 R
(5

´-
3´

) 
Ge

ne
 n

am
e 

Am
pl

ic
on

 le
ng

th
 

M
A

 
A

A
G

A
G

T
G

G
C

C
A

G
C

A
C

A
G

T
A

G
A

C
A

 
A

G
C

T
G

C
C

T
C

C
T

T
G

G
A

A
G

C
A

T
A

 
m

aj
o

r 
al

le
rg

en
 

1
0

0
 b

p
 

N
SP

 
T

T
G

A
C

C
A

C
T

A
C

C
C

A
C

G
G

A
T

G
A

 
A

C
G

A
T

C
A

A
T

C
C

A
G

T
A

T
G

C
A

A
C

A
A

 
n

it
ri

le
 s

p
ec

if
ic

 p
ro

te
in

 
1

0
0

 b
p

 

G
A

P
D

H
 

G
T

T
G

A
G

G
C

C
G

C
A

G
C

A
A

T
T

A
C

 
A

T
T

C
G

C
G

T
C

T
T

T
T

C
T

C
C

C
A

T
A

C
 

G
ly

ce
ra

ld
eh

yd
e-

3
-p

h
o

sp
h

at
e 

d
eh

yd
ro

ge
n

as
e 

1
5

0
 b

p
 

U
b

iq
u

it
in

 
C

T
C

A
A

T
G

T
T

C
G

G
G

T
C

A
G

C
A

A
 

C
T

G
G

A
C

G
G

C
A

A
A

G
T

C
T

G
C

A
T

 
U

b
iq

u
it

in
 c

o
n

ju
ga

ti
n

g 
en

zy
m

e 
1

5
0

 b
p

 

A
ct

in
 

G
C

T
G

A
T

G
T

T
C

G
A

G
A

C
G

T
T

C
C

A
 

A
T

C
G

C
A

T
A

G
C

A
C

T
C

G
T

 
A

ct
in

 e
n

co
d

in
g 

1
5

0
 b

p
 

P
K

S 
1

  
C

G
G

A
A

G
C

T
A

T
C

C
T

T
C

G
T

T
T

C
A

 
T

G
C

G
C

T
G

G
A

C
A

C
G

A
A

G
T

C
 

P
K

S 
1

 
1

5
0

 b
p

 
P

K
S 

2
  

G
C

T
C

G
G

A
A

G
C

T
A

T
C

C
T

T
C

G
T

T
 

G
C

G
C

T
G

G
A

C
A

C
G

A
A

G
T

C
A

A
 

P
K

S 
2

 
1

5
0

 b
p

 
P

K
S 

3
  

C
G

A
T

C
A

C
A

C
C

G
C

T
T

T
C

C
T

T
T

 
T

C
G

T
T

G
T

A
C

T
G

C
G

A
G

C
A

C
A

T
G

 
P

K
S 

3
 

1
5

0
 b

p
 

T
ab

le
 2

.1
.8

: C
o

m
p

o
n

en
ts

 o
f q

P
C

R
 r

ea
ct

io
n

 f
o

r 
al

l s
am

p
le

s 

C
o

m
p

on
en

t 
V

o
lu

m
e 

P
ri

m
er

 F
 (

1
0

 p
M

 c
o

n
ce

n
tr

at
io

n
) 

0
.2

5
 μ

l 
P

ri
m

er
 R

 (
1

0
 p

M
 c

o
n

ce
n

tr
at

io
n

) 
0

.2
5

 μ
l 

P
o

w
er

 S
Y

B
R

 g
re

en
 P

C
R

 m
as

te
r 

m
ix

* 
 

1
0

 μ
l 

W
at

er
 

7
.5

 μ
l 

cD
N

A
 t

em
p

la
te

 (
d

il
u

te
d

 1
:5

 [
v:

v]
) 

2
 μ

l 
T

o
ta

l v
ol

u
m

e:
 2

0
 μ

l 



Publication 1 

41 
 

Evaluation of reference gene stability via geNorm and NormFinder 

 To determine differences in stability (variation) between internal reference (MA 

and NSP) and housekeeping genes, we utilized two previously described algorithms: 

geNorm (Vandesompele et al., 2002) and NormFinder (Andersen et al., 2004).  geNorm 

uses a pairwise based correlative approach.  NormFinder is an algorithm that attempts to 

find the optimum reference genes out of a group of candidate genes. This algorithm can 

also, in contrast to geNorm, take information of groupings of samples into account, such as 

untreated vs. treatment .   The result is an optimal (pair of) reference gene(s). The resulting 

pair might have compensating expression, so that one gene, e.g., is slightly over-expressed 

in one group, but the other gene is correspondingly under-expressed in the same group 

(Andersen et al., 2004).  Applying differential ranking approaches, we deemed these two 

separate algorithms comparable and suitable for our study because 

reference/housekeeping genes should display non-differential expression across different 

treatments. 
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2.1.4-5 Results & Discussion 

 

Toxicity 

In the erythrocyte lysis assay (ELA) as a measure of intracellular toxicity, we found 

that high light induced the largest significant (t-test, p‹0.05) increase in lytic capacity 

relative to a control culture (Figure 2.1.1).   

 

 

Figure 2.1.1: Results of erythrocyte lysis assay.  Light shock treatment (700 μmol photons m-

2 s-1) shows the highest lytic effect on erythrocytes.  Turbulence shows the same effect as the 
control culture, while the remaining treatments show a decrease in lytic capacity against  
erythrocytes.  All shock treatments were performed for 2 h. 

 

Exposure to light has been linked to an increase in observed toxicity in P. parvum 

(Shilo & Aschner, 1953).  Parnas et al. (1962) found the lytic activity of extracted 

substances from P. parvum to decrease over time with exposure to light.  In their 
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conclusions, however, they made no concrete statements about either the intracellular 

production or extracellular secretion of toxins.  Photosynthetic processes play a major 

nutritional role for P. parvum, and therefore provide energy for cellular processes such as 

biosynthesis of toxic metabolites.  Due to the currently known structural characterizations 

of compounds derived from P. parvum (prym1 & prym2, Igarashi et al., 1996), it is likely 

that these compounds are biochemically costly to synthesize.  For many toxigenic algal 

species, the effect of light has been directly linked to changes in toxin content per cell, i.e. 

Alexandrium catenella (Proctor et al., 1975), toxin production in Pseudo-nitschia multiseries 

(Bates et al., 1991) as well as observed toxic effects in P. parvum (Shilo et al., 1971).     

Extracellular or secreted toxicity was investigated using a Rhodomonas salina assay, 

which may or may not be related to the internal toxicity.  Prymnesins may play a role in 

extracellular toxicity, due to several of their described physiochemical properties, however 

this has not yet been confirmed.  These compounds have been described to interact directly 

with exposed cell membranes, compromising integrity and permitting ion leakage through 

selective permeation (Manning and LaClaire, 2010).  Prymnesin toxicity is furthermore 

known to be dose-dependent, and to respond in a linear manner when analyzing change in 

membrane conductance after exposure to these compounds (Manning and LaClaire, 2010).  

The mechanism by which these compounds are secreted is, however, yet to be described.  

Observed differences in intracellular versus extracellular toxicity may be due to chemical 

signalling and recognition, which is a topic of current interest among Prymnesium 

researchers.  The effects observed in the Rhodomonas salina assay are furthermore those 

that have an impact on allelochemical interactions, since potential grazers and/or 

competitors can be affected (Tillmann, 2003).   
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In the Rhodomonas test, the light-shock treatment showed approximately 50% less 

toxicity (t-test, p‹0.05) when compared to the control cultures (Table 2.1.9).  The dark-

shock treatment also showed a significant decrease (t-test, p‹0.05) in lytic capacity (EC50 

5.8x104 cells ml-1) compared to the control.  Parnas et al. (1962) claimed that the 

icthyotoxicity of P. parvum was inversely proportional to salt concentrations.  Even further 

support of this inverse relationship was later presented (Ulitzer & Shilo, 1966) indicating 

that the uptake of trypan blue (i.e. cell permeability/toxicity) in the gills of fish decreased 

after exposure to increased saline conditions -strengthening both previous studies.  We 

were able to show that low salinity shock increases active extracellular process of toxin-

secretion of P. parvum towards the cryptophyte R. salina, although the salinity shock 

seemed to have no significant increase on the intracellular lytic capacity towards red blood 

cells of P. parvum vs. the control culture (figure 2.1.1).  

 

 

 

 

 

 

 

 

 In general the cryptophyte Rhodomonas salina responded variably to P. parvum cells 

from different shock treatments, indicating changes in extracellular toxicity and.  The 

results of these two bioassays suggest a difference in the biosynthesis and secretion of the 

Table 2.1.9: EC50 results for various physiological shock 
treatments of P. parvum strain RL10.  Cell concentrations 
represent concentration of P. parvum necessary for 50% 
mortality of R. salina.  
Treatment  EC50 Rhodomonas salina 
25° C 4.1x104 cells ml-1 ± 2045 
5° C 9.2x104 cells ml-1± 4732 
control 3.9x104 cells ml-1± 1854 
turbulence 6.8x104 cells ml-1± 2989 
16 psu 1.3x104 cells ml-1± 789 
high light 8.0x104 cells ml-1± 3689 
dark 5.8x104 cells ml-1± 3125 
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toxin following different physiological shock treatments.  A short intense light treatment 

increased the intracellular toxicity of P. parvum cells, whereas a low salinity shock 

treatment increased the amount of extracellular secreted toxin.  The other shock 

treatments showed changes in toxicity as well, were however not able to be correlated with 

the changes observed in gene expression, rendering these results less conclusive in 

discussion of PKS genes putatively associated with toxic processes in P. parvum.  A 

decrease in extracellular salinity may lead to a compromised cellular membrane, 

subsequently leading to a leakage of intracellular toxin.  The difference between active 

secretion and leakage through a compromised membrane has yet to be distinguished in 

Prymnesium parvum.  

 

Polyketide synthase gene expression analysis  

In differential gene expression studies, the use of housekeeping genes as 

endogenous controls can be problematic as they may be implicated in basal metabolic 

processes depending on the cell type (Thellin O. et al., 1999).  We therefore incorporated 

mRNA from foreign spike genes into our samples, providing stable transcript copy 

numbers for downstream endogenous normalization across all samples.  After analyzing 

the stability of the candidate reference genes (where the lower the ‘M’ variability value, the 

more stable the gene), we determined that both MA and NSP are in general more stable 

than all other housekeeping genes analyzed (Fig.  2.1.2).  Of the two spike genes, NSP was 

shown to be more stable, with a Normfinder M-value of 0.004, compared to MA with a 

Normfinder M-value of 0.016 (Fig. 2.1.2).  Both algorithms provided similar M-value 

rankings for the genes investigated. 
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The evaluation of potential gene expression differences in our samples using a real 

time PCR approach (qPCR) required data normalization, which is a crucial step for gene 

transcript quantification analysis (Bustin 2002, Pfaffl 2001).  The reliability of any relative 

qPCR experiment can be improved by including an invariant internal control (reference 

gene) in the assay to correct for sample to sample variations in qPCR efficiency and errors 

in sample quantification (Siebert & Larrick, 1992; Bustin, 2000). The qPCR-specific errors 

in the quantification of mRNA transcripts are easily compounded with any variation in the 

amount of starting material between the samples, e.g. caused by sample-to-sample 

variation, variation in RNA integrity, cDNA synthesis efficiency differences and cDNA 

sample loading variation (Stahlberg 2003, 2004a & 2004b).  

 

 

Figure 2.1.2: Stability value ‘M’ for housekeeping genes and endogen controls tested, as 
computed by the Normfinder software.  Most stable genes have the lowest ‘M’ value: NSP & 
MA. 
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The three housekeeping genes investigated (GAPDH, Actin and Ubiquitin) demonstrated 

varying levels of copy numbers across all treated samples.  Thus, the calculated expression 

fold changes in mRNA copy numbers for PKS 6t3, 7t3 and 81t3 differed depending on the 

endogen/housekeeping gene used for normalization.  In contrast, the spike gene MA was 

detected in all samples at a Ct value of 15.75 ± 0.28 (n=18), the second spike gene NSP at a 

Ct of 26.4 ± 0.29 (n=18) (data not shown); indicating a consistent reverse transcription 

reaction efficiency for high copy number (MA) and low copy number (NSP) genes across all 

samples.       

Low salinity shock (16 psu) treatment yielded not only an increase in extracellular 

toxicity towards the cryptophyte R. salina, but also an increase in copy number of the PKS 1 

gene 6t3 (Figure 2.1.3).  This is in contrast to the high light shock treatment caused an 

increase in lytic capacity towards erythrocytes, possibly representing an increased 

intracellular concentration of lytic compound, (Figure 2.1.1), and caused an increase in 

copy number of the PKS 2 gene 7t3 (Figure 2.1.4).  The association of particular PKS 

transcripts with changes in toxic processes indicates not only the uniqueness of at least the 

two transcripts PKS 1 6t3 and PKS 2 7t3, but also the potential differential roles that these 

PKS transcripts may play in toxic processes in P. parvum.  With further characterization of 

PKS genes in P. parvum, one could likely find specific sequential and thus structural based 

traits that associate a transcript with a particular process, i.e. biosynthesis or transport 

and/or secretion.   

This increase in copy number was apparent, regardless of whether or not 

normalized against a traditional housekeeping gene, i.e. GAPDH, or utilizing our spike-in 

endogen control (Figures 2.1.3, 2.1.4 & 2.1.5).  Although the trend remains the same, the 
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amplitude of the data is extremely variable depending on which housekeeping gene was 

used for normalization.  This shows that an internal method of normalization is indeed 

necessary, in order to accurately quantify the changes in relative gene expression.  The 

observed variability among housekeeping genes decreases the confidence interval of a data 

set relying on these genes for normalization, and thus renders the data open to skepticism.   

In contrast to the low salinity shock treatment, the 25 °C treatment yielded smaller 

changes in PKS relative gene expression, due to minimal variation among housekeeping 

genes and the spike-in gene NSP.  25° C shocked cultures also showed a lower increase in 

toxicity in either bioassay tested relative to the control (Table 2.1.9, Figure 2.1.1) compared 

to other shock treatments.  Under the hypothesis that the PKS genes studied here are 

involved in the biosynthesis of lytic/toxic substances produced by P. parvum, a dramatic 

increase in the PKS copy number after a 25 °C shock treatment was not expected.  The 

biosynthesis of toxic compounds toxins due to increased temperature, however, might 

additionally be due either to post-transcriptional or translational regulation, or perhaps to 

the presence of non-active precursors, potentially the activation of “toxin-precursors” that 

can also occur later under temperature stress. 
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Fig. 2.1.3: qPCR results for the PKS 1 6t3 gene indicating normalization against three 
housekeeping genes and one of our internal spike genes (NSP).  Data shown is normalized 
against a control culture [Control (20 °C, 26 psu, 90 μmol photons m-2 s-1]. 
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Figure 2.1.4: qPCR results for the PKS 2 7t3 gene indicating normalization against three 
housekeeping genes and one of our internal spike genes (NSP).  Data shown is normalized 
against a control culture. 
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Figure 2.1.5: qPCR results for PKS 3 81t3 gene investigated indicating normalization against 
three housekeeping genes and one of our internal spike genes (NSP).  Data shown are 
normalized against a control culture. 
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2.1.6 Conclusions 

 We studied the short term impact of environmental changes (shock treatments) on 

the toxicity and PKS gene expression of P. parvum.  This topic is of importance because P. 

parvum is known to be competitive in several niches where parameters such as salinity, 

light and water turbulence undergo rapid change (Edvardsen & Paasche, 1998).  

Furthermore P. parvum is often able to form monospecific algal blooms under these 

conditions, suggesting the presence of a competitive advantage over coexisting species.  

Blooms of P. parvum often have a strong negative impact on the ecosystem (Larsen & 

Bryant, 1998).  We found high light stress and low salinity stress to be the most relatively 

influential stresses in toxicity induction (based upon bioassay results) as well as 

differential gene expression of PKS.  The majority of shock treatments induced some level 

of increase in expression in PKS, suggesting these gene pathways to be of general stress-

response importance in P. parvum.  General transcriptional regulation in PKS related 

pathways in P. parvum following short-term acclimation stress supports the hypothesis 

that this biosynthetic pathway is involved in the production and/or secretion of toxic 

substances. 
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2.2 Publication 2 

Differential responses of the prymnesiophyte Prymnesium parvum 
following interactions with planktonic species 
 
2.2.1 Abstract 

The prymnesiophyte Prymnesium parvum is notorious worldwide for formation of 

toxic blooms associated with fish kills, but the ecological role the toxins play in pelagic food 

webs remains unresolved. Allelochemical mediation has been suspected to affect 

competition and/or predation-related interactions involving P. parvum blooms. 

Accordingly, we investigated heterospecific interactions between this prymnesiophyte and 

three naturally co-occurring planktonic species, the heterotrophic predatory dinoflagellate 

Oxyrrhis marina, and two potential prey species, the photoautotrophic dinoflagellate 

Heterocapsa triquetra and the unicellular cyanobacterium Chroococcus submarinus. 

Combining bioassay-guided toxicity and functional genomic approaches with a specific 

microarray for P. parvum allowed differential characterization of cell-contact and 

waterborne cue-mediated specific responses to grazing and competition. We identified 

differential responses in P. parvum, depending on the interacting species, in terms of lytic 

capacity, gene expression profile, as well as transcriptional regulation of polyketide 

synthase genes (PKS).  Microarray analysis identified a unique gene expression pattern in 

response to both whole-cell culture and filtrate from the potential predator Oxyhrris 

marina, suggesting a qualitatively different interaction compared to that with the potential 

prey species H. triquetra and C. submarinus.  A further time-series incubation with O. 

marina cells showed that the effects did not occur immediately, but rather after 60-90 min 
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exposure. Stress derived from competition or grazing pressure is a known factor in co-

evolution of species. The differential gene expression of P. parvum in response to predators 

such as O. marina versus potential prey species may therefore signify the existence of a co-

evolutionarily adaptive defense.  
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2.2.2 Introduction 

The prymnesiophytes constitute a predominantly marine group of microalgae with 

a few genera that play important roles in oceanic carbon recycling. In coastal and brackish 

waters prymnesiophytes occasionally become dominant members of plankton 

communities and can even form dense virtually monospecific blooms. Two marine genera 

Prymnesium and Chrysochromulina are especially notorious for the production of noxious 

and/or toxic blooms responsible for massive fish mortalities and ecosystem devastation in 

coastal and inshore waters, including ponds and lagoons. 

From an ecological perspective, studies of phytoplankton succession and bloom 

formation have primarily focused on comparative abiotic effects rather than on individual 

plankton components (Domingues et al., 2005; Levasseur et al., 1984; Lindenschmidt & 

Chorus, 1998; Sommer, 1988). In this context, the apparent success of Prymnesium parvum 

leading to dominance and bloom formation might be attributed to its physiological 

flexibility reflected by its ability to grow in a wide range of environmental conditions 

(Larsen & Bryant, 1998). There is increasing evidence, however, that inter-specific 

interactions in the plankton play a major role in succession, food web structure and bloom 

development (Smetacek et al., 2004; Tillmann, 2004). Among these interactions, the 

capacity to produce toxic or noxious allelochemicals that may deter grazing or affect 

competition for limiting resources has been increasing recognized as an important 

regulatory mechanism affecting bloom dynamics of plankton (reviewed by Cembella, 2003; 

Legrand 2003). Allelochemicals produced and secreted by P. parvum have been shown to 

kill both competing algal species and their grazers (Tillmann, 2003, Granéli 2006). Closely 

related to this “killing capacity” (Tillmann, 2003) is the mixotrophic tendencies of 
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Prymnesium, i.e. the ability to ingest immobilized competitors and grazers (Tillmann 2003; 

Skovgaard & Hansen 2003). This strategy to kill (and then eat) your enemies by means of 

toxic compounds is thought to significantly contribute to the ability of P. parvum to form 

dense and long-lasting blooms.   

Although multiple toxins may be produced by P. parvum, only two definitively toxic 

metabolites have been isolated and structurally elucidated from this species (Igarashi et al., 

1999). The two toxic compounds prym1 and prym2 share a linear polyether structure with 

similar ichthyotoxic and hemolytic properties. The polyether configuration of these 

analogues strongly suggests that they are derived via polyketide biosynthetic pathways, 

thereby raising interest in the putative polyketide synthase (PKS) enzymes involved in 

their biosynthesis and their biochemical role in toxigenic processes in prymnesiophytes 

(LaClaire, 2006, John et al., 2008, John et al., 2010). 

Polyketides are a family of secondary metabolites whose carbon skeleton is formed 

through sequential condensation reactions of acyl-coenzyme A (coA), via PKS enzymes 

evolutionarily related to fatty acid synthases (Staunton & Weissmann, 2001; Crawford et 

al., 2006). Among the known protist PKS enzymes, many have been shown to be modular 

PKS types belonging to the same molecular class of biosynthetic pathways; most marine 

protist species studied so far exhibit two or more functionally different PKS genes 

(LaClaire, 2006; John et al., 2008, John et al., 2010; Monroe et al., 2010).    

Effects of environmental conditions on toxicity as well as the ecological 

consequences of toxin-related species interactions of Prymnesium have been rather well 

studied (Larsen & Bryant 1998 Tillmann 2003; Uronen et al., 2007; Saponen et al., 2006). 

Nevertheless, related questions have barely been addressed: Does this responsiveness 
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come with well definable physiological costs? Is Prymnesium able to sense other protists 

and thus to potentially adjust pathways and processes, e.g. related to toxicity? What are the 

gene expression mechanisms involved in toxigenesis and how are they regulated?  

As for social insect populations, and also for the well defined mechanisms of quorum 

sensing defined for bacterial interactions (Waters & Basler, 2005, Seeley & Visscher, 2005), 

one may also expect similar mutually developed strategies of inter-specific chemically 

mediated sensing among planktonic species in marine ecosystems. For example, in the 

dinoflagellate Alexandrium minutum, selective sensing of waterborne cues has been shown 

to elicit a differential response in the toxicity of Alexandrium cells depending upon the 

grazer to which they are exposed (Bergkvist et al., 2008). Competitor sensing based on 

waterborne cues seems therefore to be a very powerful defense strategy to ensure survival 

of the population (Wolfe et al., 2002).  

With specific focus on the importance and/or necessity of physical contact vs. 

recognition of waterborne cues, we utilized a functional genomic-bioassay linked approach 

to characterize interactions between P. parvum and three potentially coexisting plankton 

species: the photosynthetic dinoflagellate Heterocapsa triquetra, the cyanobacterium 

Chroococcus submarinus, both considered to be possible resource competitors and/or 

potential prey for P. parvum, and the heterotrophic dinoflagellate Oxyhrris marina, capable 

of serving as either predator or potential prey depending on the toxicity status of P. parvum 

(Tillmann, 2003). Changes in toxicity, paired with differential gene expression data 

provided insights into such processes as induced defense and recognition of and response 

to coexisting organisms.  
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2.2.3 Materials & Methods 

 

Microalgal origin and culture conditions 

A toxic clonal strain RL10 of Prymnesium parvum was isolated in 1993 from the 

Norwegian Sandsfjord (Edvardsen & Larsen, 1998).  Prymnesium parvum cultures were 

maintained in IMR medium, prepared as described in publication 1 (Eppley, 1972) (see 

table 2.1.1-2.1.3).  IMR medium was prepared using a combination of North Sea water and 

milliq deionized water (4:1 v:v), to a salinity of 26 PSU, under gentle aeration to a 

concentration of 3.75 x 103 cells ml-1. The heterotrophic dinoflagellate Oxyhrris marina 

(Göttingen culture collection strain B21.89) and the peridinian dinoflagellate Heterocapsa 

triquetra (SCCAP strain K-0481) were cultured in preparation for the experiments in IMR 

medium (Eppley, 1972) also at a salinity of 26 psu in 100 ml flasks at 15 °C. Stock cultures 

of Oxyhrris in 100 ml flasks were fed upon the chlorophyte Dunaliella sp. cultured at 26 psu 

upon f/10 medium (Guillard & Ryther, 1962). Oxyhrris cultures for the experiment were 

grown at 15 °C to high cell concentrations until they became deprived of food. Heterocapsa 

cultures for the experiment were grown to a concentration of 2.7 x 103 cells ml-1. All 

cultures were kept at a constant temperature of 15°C under a light: dark photocycle of 16:8 

h. Photon flux density measured inside the flask by a QSL-100 Quantum Scalar Irradiance 

Meter (Biospherical Instruments, San Diego, USA) was kept at 90 μmol photons m-2 s-1. Cell 

concentrations were determined daily using a CASY cell counter (Innovatis AG, Reutlingen, 

Germany).   

 The cyanobacterium Chroococcus submarinus (NIVA culture collection strain 331) 

was maintained in MLA medium (Castro et al., 2004) at salinity 20 psu (achieved using 
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North Sea water), at 20°C, and grown to a concentration of 1.76 x 105 cells ml-1. 

Cyanobacterium cell concentrations were determined by Neubauer hemocytometer every 

second day.  

 

Batch culture Experiment 1 

An initial experiment was conducted to investigate the differential response in P. 

parvum to all three co-existing species, either through cell-cell contact, or via incubation 

with filtrate with putative chemical cues from the corresponding species. Triplicate 400 ml 

batch cultures of the P. parvum RL10 strain were established from a 5 l stock culture in the 

exponential growth phase.  Batch cultures were maintained with identical growth (IMR 

medium, 26 PSU) conditions to the stock cultures, without aeration.  Filtrate was prepared 

from all three test species (O. marina, H. triquetra and C. submarinus) via vacuum filtration 

via a 0.1μm vacucap at a maximal pressure of 200 mbar to minimize leakage of intracellular 

compounds. Equal parts by volume (1:1 total volume = 800 ml) of Prymnesium culture 

(final cell concentration: 1.88 x 104 ml-1) and coexisting species, either whole cell culture 

(final concentrations: O. marina 500 ml-1, H. triquetra 1.35 x 103 ml-1, C. submarinus 8.8 x 

104 ml-1), or corresponding filtrate from the same volume were incubated together for 2 h. 

A control culture was included by substituting 400 ml IMR medium for either whole-cell 

coexisting-species culture or filtrate. After incubation all cultures were harvested by 

centrifugation at 4,000 x g for 15 min at 20 °C.   
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Dose-exposure series Experiment 2 

The second experiment exclusively focused on the interactions between O. marina 

and P. parvum over a time course of exposure. With an identical set-up as in the first 

experiment (also in triplicate), samples were taken over the course of the total 2 h 

incubation (at t = 0, 15, 30, 45, 60, 90 and 120 min). Harvesting of the cultures was 

performed as described for the first experiment. A control identical to that for the first 

experiment was included. For both Experiments 1 and 2, control and treatment cultures 

were harvested in parallel.  

  

Rhodomonas salina lysis assay 

A bioassay was performed with Rhodomonas salina strain KAC 30 as a measure of 

extracellular toxicity as described in publication 1 of this dissertation. Rhodomonas stock 

cultures were maintained in F/2 medium (Guillard & Ryther, 1962) at 15 ° C and ambient 

light conditions.  In brief, 4 ml of a mixture of P. parvum (final cell concentrations in 

decreasing order: 3.75 x 104 ml-1, 2.34 x 104 ml-1, 9.38 x 103 ml-1 and 4.69 x 103 ml-1) and R. 

salina (final cell concentration 1.0 x 105 ml-1) were incubated in glass scintillation vials at 

15° C for 24 h in darkness. Vials were then gently mixed by rotating, and 1 ml of mixture 

was pipetted into an Utermöhl cell sedimentation chamber and fixed with glutaraldehyde 

(1% final concentration). After settling, cells were viewed via epifluorescence microscopy 

(Zeiss Axiovert 2 Plus, Carl Zeiss AG, Göttingen, Germany) with Zeiss filter-set 14 at 64 x 

magnification.. Lysed versus non-lysed cells were easily distinguishable due to pigment 

auto-fluorescence characteristics (Prymnesium - red or Rhodomonas - orange). Control 

Rhodomonas samples in triplicate represented 0% lysis, and lytic capacity for all samples 
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incubated with Prymnesium were calculated based on this control value, as percentage 

Rhodomonas cells lysed. 

 

Erythrocyte lysis assay 

A hemolytic activity bioassay was performed as described in Publication 1 of this 

dissertation. In brief, an aliquot volume corresponding to 1.0 x 107 cells from each culture 

was centrifuged at 4,000 x g for 10 min at 15 °C and subsequently added to assay buffer 

(150 mM NaCl, 3.2 mM KCl, 1.25 mM MgSO4, 3.75 mM CaCl2 and 12.2 mM TRIS base, pH 

adjusted to 7.4 with HCl). Hemolytic activity was quantified on samples incubated only 

with filtrate to rule out effects from other intracellular compounds originating from 

coexisting species. Cell pellets were then completely lysed via sonication.  After 24 h 

incubation, hemolytic activity was measured as absorbance at 540 nm in an Ultrospec III 

UV/Visible photometer with Wavescan Application Software (Pharmacia LKB 

Biotechnology, Uppsala, Sweden). A standard hemolytic curve was prepared based on 

concentrations of saponin (Sigma Adrich, Hamburg, Germany) in the assay buffer.  Results 

are displayed as EC50 value: concentration of corresponding P. Parvum cell concentration to 

cause lysis of 50% erythrocytes in the sample well.    

 

RNA isolation and processing 

Experimental cultures were centrifuged at 4,000 x g for 15 min at 20 °C. The 

supernatant was removed, and the remaining cell pellet was resuspended in 350 μl of 

buffer RLT lysis buffer (Qiagen, Hilden, Germany) containing β-mercaptoethanol, and 

subsequently flash-frozen in liquid nitrogen at -80 °C. Samples were then stored at -70 °C 
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for later extraction. Total RNA was isolated from all samples according to the 

manufacturer’s protocol (see Qiagen Plant RNeasy extraction kit, Qiagen, Hilden, Germany). 

An additional in-tube DNase treatment was included to facilitate downstream microarray 

and qPCR processing of samples. RNA concentration was measured with a NanoDrop ND-

1000 Spectrophotometer (Peqlab, Erlangen, Germany), and the purity estimated by the 

260/280 and 260/230 nm absorption ratio (all ratios >2.0). Integrity of the RNA was 

verified with the lab-on-a-chip Bioanalyzer 2100 system (Agilent Technologies, Boeblingen, 

Germany).  

Microarray Analysis 

Agilent RNA Spike-In Mix (p/n 5188-5279) was added to the tRNA samples prior to 

the labelling reactions following the RNA Spike-In Kit protocol (Agilent Technologies, 

Boeblingen, Germany). Total RNA (500 ng) was amplified, reverse-transcribed and labelled 

using the two colour low RNA Input fluorescent linear amplification kit (Agilent 

Technologies, p/n 5184-3523). The Cy-3 and Cy-5 dye incorporation was verified by 

NanoDrop ND-1000 spectrophotometer. Hybridization was performed onto 4 x 44k 

microarray slides containing oligonucleotide 60mers designed by the Agilent eArray online 

platform, using the gene expression hybridization kit two colour (Agilent Technologies, p/n 

5188-5242), contained in SureHyb Hybridization Chambers (Agilent p/n G2534A) in a 

hybridization oven (Agilent p/n G2545A) at 65° C for 17 h. Microarrays were scanned by 

an Agilent Scanner (p/n G2565BA).  

Raw data were extracted with the Agilent Feature Extraction Software version 9.5, 

incorporating the GE2_105_Dec08 protocol. Feature extraction software served to remove 

spots that had been flagged ‘outliers’, ‘not known’ or ‘bad’, based on background median 
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analysis (Storey, 2003). Further analysis of gene expression was performed using 

GeneSpring GX version 10 software (p/n depending on license).  

 

SYBR green qPCR analysis 

Plasmid vectors (pDNR-Lib) containing full-length cDNAs of both the nitrile-

specifier protein (NSP) and the major allergen (MA) genes of approximately 1.9 kb each 

from the commonly known ‘small cabbage white’ butterfly Pieris rapae were generated to 

serve as spike-in controls. Both of these genes are of particular importance in regulation 

processes regarding plant-insect interactions (Fischer et al., 2008). These plasmid 

constructs were used as template in PCR reactions to obtain the corresponding DNA 

fragments. MA and NSP primers were designed using Primer Express © v 2.0 software with 

the default settings.  

In vitro transcription was performed according to the manufacturer’s protocol with 

a T7 RNA polymerase (Invitrogen, Paisley, UK) to obtain mRNA for two internal spike 

reference genes, as described in publication 1 of this dissertation (Freitag et al., 2011 In 

Press). Spike genes MA (major allergen) and NSP (nitrile- specific protein) were utilized for 

quantification of results, as well as controlling the cDNA efficiency reaction prior to qPCR 

analysis. MA was added at a final concentration of 116 pg μl-1 and NSP at 10 fg μl-1. cDNA 

was synthesized from all tRNA samples with the Omniscript RT kit according to the 

manufacturer’s instructions (Qiagen, Hilden, Germany) using anchored oligoVN(dT)20 

primer (Invitrogen, Paisley, UK) at a final concentration of 25 ng μl-1. All primers for qPCR 

were designed with the Primer Express 2.0 software on default settings (Applied 

Biosystems, Darmstadt, Germany) and synthesised from MWG Biotechnologies Germany. 
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Standard PCR primers were designed based on the Primer 3 platform using default settings 

(http://frodo.wi.mit.edu/) and synthesised from MWG Biotechnologies (Germany). Primer 

sequences are available as supplementary material. The SYBR green qPCR reaction was 

designed according to manufacturer’s protocol (Applied Biosystems, Darmstadt, Germany) 

using 2 μl of a 10-fold diluted cDNA. Cycle parameters included an initial denaturation at 

95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 59 °C for 1 min. A product-

primer dissociation step was utilized to verify formation of a single unique product and the 

absence of potential primer dimerization. All reactions were performed with the same ABI 

Prism 7000 cycler (Applied Biosystems, Darmstadt, Germany).  

 Samples were run in biological triplicate to obtain mean values and standard 

deviation. For each primer pair, a standard curve was established by 10 fold dilutions of the 

qPCR template, spanning concentration differences of at least four orders of magnitude.  

 Amplification efficiency of all qPCR reactions was analyzed through linear 

regression of standard curves, with 6 cDNA (originating from the control culture) serial 

dilution points (1.0x10-3-1.0x10-8).  Percent efficiency was calculated from the slope of the 

threshold cycle (Ct) vs. concentration [cDNA] with equation (I) 

I         E = 10-1/slope 

 All PCR efficiencies were 98.88% ≥ x ≥ 92.31% 1.91, all R2 were > 0.94.  All samples 

were run in both biological (independent cultures) as well as technical triplicates.  

Variation was calculated as averages among technical replicates as well as standard 

deviation.  An R expression ratio was calculated using the ΔΔCt as described by Pfaffl et al. 

2001, incorporating individual reaction efficiencies as correction factors.  Calculation of an 

R expression ratio was performed using the following equation (II) 
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II Ratio = Etarget^�ΔCt target (control- sample)� / EMA^�ΔCt housekeeping (control- sample)� 

The authors chose this method of quantification, in order to minimize intra and interassay 

variability, and to aid in a robust comparison between normalization (housekeeping) 

genes.  All calculations were performed using the REST-2009 software platform (Qiagen, 

Hilden, Germany).  

 

Statistical analysis 

 Physiological data described are the mean of biological triplicates with the 

corresponding standard deviation.  Significance of physiological data was confirmed using 

a Student’s t-test (p<0.05).  Microarray expression measurements are given as the 

geometric mean of three measurements, corresponding to biological triplicates.  
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2.2.4 Results 

 

Batch culture experiment 1 

Encounter rates 

An encounter model (Gerritsen & Strickler 1977) was employed to simulate 

predators, prey and their encounters within the experimental setup. In this model, 

plankton are assumed to move at a defined speed in a random direction; when they 

approach to within a critical distance they are considered to ‘encounter’ each other. Several 

assumptions for a plausible model were made regarding the cells of P. parvum and those of 

coexisting species. The cells were assumed to be: 1) moving in a homogeneous three-

dimensional environment; 2) swimming randomly at constant speeds; 3) randomly 

distributed. 

The encounter rate (Z) of Prymnesium to coexisting species was determined 

according to the following equation (Gerritsen & Strickler, 1977): 

 

where d = encounter distance (estimated spherical diameter: esd), N = P. parvum cell 

concentration, v = P. parvum swimming speed and u = coexisting species swimming speed. 

An encounter distance was defined by a fixed estimated spherical diameter (esd) 

measurement for each species. Encounter rate between P. parvum and C. submarinus was 

roughly 800% less frequent than that between P. parvum and O. marina.  Encounter rates 

are detailed in Figure 2.2.1. 
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Figure 2.2.1: Encounter rate (min-1) for Prymnesium parvum and coexisting species. 
Estimated spherical diameter (ESD) and average swimming speed values were 
obtained from the literature: Evans, 1989; Calliaria & Tiselius, 2005; Skovgaard & 
Hansen, 2003, Henriksen, 2005). 
 
 
 
Lytic capacity 

Variation in the lytic capacity of Prymnesium parvum depended on the coexisting 

organism and/or chemical cues together with which the prymnesiophyte cells were 

incubated.  Table 2.2.1 shows results from experiment 1 intracellular lytic capacity of 

erythrocytes, whereas Table 2.2.2 shows results from experiment 1 extracellular or 

secreted lytic capacity towards Rhodomonas salina.  Incubation of P. parvum cells with O. 

marina and H. triquetra filtrates failed to show a significant increase in intracellular lytic 
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capacity (p>0.05, n = 3, ANOVA) (11.9 ng SnE cell-1 versus 12.5 ng SnE cell-1, respectively) 

relative to the control, and showed a high standard deviation among replicates (Table 

2.2.1). Significant changes in lytic capacity were, however, observed after incubation with 

C. submarinus filtrate compared to the control as well as to the other treatments, with a 

substantial decrease in lytic capacity relative to the control (5.4 ng SnE cell-1 respectively, 

(p<0.05, n =3, ANOVA) (Table 2.2.1). 

 

 

 

 

 

 

 

 

Incubation with O. marina filtrate significantly increased (p<0.05, n = 3, ANOVA) 

extracellular or secreted toxicity response towards R. salina cells (EC50 = 1.3x104 cells ml-1) 

relative to the control (EC50 = 1.8 x 104 cells ml-1 (Table 2.2.2) Incubation with H. triquetra 

filtrate, however, apparently induced only a slight (but not significant) increase in lytic 

capacity (EC50 = 1.7 x 104 cells ml-1) relative to the control, whereas incubation with C. 

submarinus (NIVA 331) decreased the lytic capacity significantly (EC50 2.8 x 104 cells ml-1, 

p<0.05 ANOVA) relative to the same control, p>0.05 ANOVA l (table 2.2.2).  

 

 

Table 2.2.1: Lytic capacity towards erythrocytes of Prymnesium parvum 
following treatment with filtrate of coexisting organisms. Values shown 
as saponin equivalent units = SnE per cell ( ng SnE cell-1) ± std. deviation 
(n=3). 
Filtrate treatment Lytic activity 

Oxyhrris marina 11.9 ± 0.9  

Heterocapsa triquetra 12.5 ± 1.0  

Chroococcus  submarinus  
Control 

5.4 ± 1.8  
10.8 ± 1.3  
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Microarray analysis and qPCR 

Prymnesium parvum exhibited differential gene expression when incubated with 

both chemical cues contained in filtrate and whole cell culture from the three coexisting 

species. Observed gene regulation patterns (Figures 2.2.2A & 2.2.2B) in P. parvum are 

qualitatively different between all three coexisting species. A global transcriptomic 

response was observed for all treatments for both whole cell culture and filtrate 

incubations: referring to up and down regulatory patterns observed for all treatments. The 

common response genes among all three organisms comprised 70 whole culture up-

regulated, 23 filtrate-up-regulated (Figure 2.2.2A), 423 whole culture down-regulated and 

81 filtrate down-regulated (Figure 2.2.2B).  

Table 2.2.2: lytic activity of P. parvum cells towards R. salina target cells following 
incubation with coexisting species filtrates. Values are given as the mean ± standard 
deviation (n=3) of the effective concentration of P. parvum cells yielding 50% mortality of 
R. salina cells(EC50).  

Filtrate EC50 Rhodomonas salina  

Oxyhrris marina 1.3 x 104  ± 153 cells ml-1 
Heterocapsa triquetra 1.7 x 104  ± 111 cells ml-1 
Chroococcus  submarinus  
Control (IMR medium) 

2.8 x 104  ± 226 cells ml-1 
1.8 x 104  ± 179 cells ml-1 
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Figure 2.2.2A & 2.2.2B:  
 
A: Numbers of genes differentially up-regulated following incubation of P. parvum 
with three coexisting organisms. ‘*’ indicates those genes differentially regulated 
following incubation of P. parvum with the corresponding filtrate (waterborne 
signals). 
 
B: Number of genes differentially down-regulated following incubation with three 
coexisting organisms. ‘*’ indicates those genes differentially regulated following 
incubation of P. parvum with the corresponding filtrate (waterborne signals). 
 

 The induced gene expression programme in P. parvum following incubation with O. 

marina was the most complex on both quantitative and qualitative levels. Oxyhrris marina 

filtrate induced the highest number of genes regulated among the filtrate-treatments, with 
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289 up-regulated (Figure 2.2.2A) and 78 down-regulated (Figure 2.2.2B). Similarly, 

incubation with whole cell culture of O. marina also induced the highest number of genes 

regulated of all three species, with 1,854 up-regulated (Figure 2.2.2A) and 650 down-

regulated (Figure 2.2.2B).  

 Incubation with Heterocapsa triquetra filtrate induced 49 uniquely up-regulated 

genes and 18 down-regulated genes in P. parvum (Figure 2.2.2A). This is in contrast to the 

corresponding whole cell culture which induced up-regulation of 303 genes (Figure 2.2.2A) 

and down-regulation of 526 genes (Figure 2.2.2B). 

 Incubation with Chroococcus submarinus filtrate induced a slight up-regulation of 4 

genes and down-regulation of 26 genes (Figure 2.2.2B). This is again in contrast to the 

much higher corresponding whole cell culture induced gene up-regulation of 1,246 genes 

(Figure 2.2.2A) and down-regulation of 819 (Figure 2.2.2B). 

 Following a qualitative identification of general gene expression pattern trends, the 

regulated genes were grouped according to organism/treatment with respect to the 

assigned COG categories. Most genes induced by all three organisms (both culture and 

filtrate) were readily assignable to one of three COG categories: 1) translation, ribosomal 

structure and biogenesis; 2) RNA processing and modification; and 3) transcription (Figure 

2.2.3A). Notable exceptions included H. triquetra culture induction of several cytoskeletal 

related proteins, O. marina filtrate induction of fatty acid metabolism-related genes, as well 

as O. marina culture induction of down-regulation in several posttranslational 

modification-associated genes (Figure 2.2.3A).  COG categorization for the second 

experiment will be detailed later in the corresponding materials and methods section. 
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 A group of genes associated with fatty acid metabolism, general cellular transport 

and a calmodulin associated gene were selected from the microarray and verified using 

qPCR (Figure 2.2.4) Furthermore, three known P. parvum derived PKS genes (PKS 6t3, PKS 

7t3, and PKS 81t3) (Figure 2.2.4) warranted investigation of their transcriptional 

regulation due to the putative polyketide structure of toxic prymnesins previously 

identified in prymnesiophyte (Igarashi et al., 1999).  These genes identified from the 

microarray exhibited comparable results in terms of gene expression fold-change as 

observed in qPCR analysis (see Table 2.2.3 & Figure 2.2.4).  

The PKS 7t3 gene displayed the most drastic increase in expression fold-change 

relative to the control (approximately 37-fold) following incubation with O. marina whole-

cell culture, compared with a virtually identical fold-change  following incubation with 

filtrate from this species (Figure 2.2.4). The two remaining PKS transcripts showed 

regulation of ±5.0 fold change (Figure 2.2.4).  
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Dose-exposure experiment 

Lytic capacity 

Extracellular or secreted toxicity/lytic activity towards the cryptophyte R. salina 

was significantly highest relative to the control after 90 minutes incubation with O. marina 

filtrate, yielding an EC50 for Prymnesium parvum of 5.3 x 103 cells ml-1 ( Figure 2.2.5B, 

p<0.05, n = 3). After 2 h, the lytic activity of the control decreased but was still significantly 

lower than that of the treatment (p<0.05, n = 3).  

 An initial significant difference in lytic activity towards erythrocytes at t = 0 was 

observed, despite equal starting Prymnesium cell concentrations. The presence of 

intracellularly stored lytic compounds increased slightly increased over time for both the 

control and the treatment incubated with O. marina filtrate (Figure 2.2.5B). However, after 

60 min incubation, the treatment showed a significant increase relative to the control 

(treatment EC50 of 14 x 104 cells ml-1 vs. control EC50 2.2 x 104 cells ml-1, p<0.05, n = 3). 

 

Microarray analysis and qPCR 

Two general response up-regulated genes were identifiable from all time points, 

despite having unknown functions. Between 30 to 90 minutes, the number of genes up-

/down-regulated increased from 398/75 to 1,097/564 when incubated with O. marina 

whole-cell culture, and shifted from 69/16 to 51/45 with O. marina filtrate). After 120 

minutes, the number of genes regulated reached values similar to those from Experiment 1, 

providing confirmation of the reproducibility of the initial incubation period (120 minutes). 

O. marina culture induced up-regulation of P. parvum genes associated primarily with 
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translation, transcription and lipid transport and metabolism (Figure 2.2.3B) representing 

between10-50% of genes with predicted function. This corresponds to the microarray 

results from the initial experiment. Interestingly, regulation of these aforementioned gene 

categories occurred throughout the entire series experiment. 

As shown in Figure 2.2.6, PKS transcript copy number increased over time, 

beginning with PKS 6t3 (+4.7-fold) and PKS 7t3 (+7.6-fold) following 30 minutes 

incubation with O. marina whole-cell culture (Figure 2.2.6). After 45 minutes, there was a 

slight increase in expression of PKS 6t3 in the filtrate-incubated sample. In comparison, the 

first noticeable induction in PKS 81t3 (whole cell culture +6.3 fold) appeared after 60 

minutes, whereas there was a stark induction of PKS 6t3 (whole-cell culture +4.7-fold; 

filtrate +2.1-fold) and an even more pronounced induction in PKS 7t3 (whole-cell culture 

+26.2-fold).  

Furthermore, filtrate treatment led to an increase (+8-fold) of transcripts of PKS 7t3. 

After 90 minutes incubation, transcriptional regulation seems to reach a maximum for PKS 

6t3 (whole-cell culture +9.2-fold; filtrate +5.1-fold), PKS 7t3 (whole-cell culture +54-fold; 

filtrate +19 fold) and PKS 81t3 (whole-cell culture +13- fold; filtrate +1.4-fold). Finally, 

filtrate treatment also led to an increase (+3-fold) of transcript number for PKS 8t3 at 120 

minutes, whereas whole-culture treatment yielded a decrease (+3-fold) from the previous 

time point.  
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2.2.5 Discussion 

 Information transfer via chemicals signals in aquatic sytems has been a research 

interest for many years. In several cases infochemicals (Dicke & Sabelis, 1988), have 

demonstrated a defining role in predator-prey interactions competitive processes.  For 

example, infochemicals exuded by carnivorous zooplankton (DeBeauchamp, 1952; Gilbert, 

1966, 1967) have been reported to induce defenses in other zooplankton.  In freshwater 

systems, production of toxins or repellent chemicals by cyanobacteria even promotes 

grazing resistance (Lampert, 1981, 1982; DeMott & Moxter, 1991). Exposure to the 

freshwater cladoceran Daphnia has been shown to induce phenotypic plasticity in the 

green alga Scenedesmus (Hessen & VanDonk, 1993), indicating the potential flexibility of 

aquatic organisms in response to chemical cues. The evolution of allelochemical substances 

due to competitive mechanisms among planktonic species has been considered for decades 

but many issues remain unresolved (Lewis 1986; Jonsson et al. 2009). 

Species-specific differential response 

The significance of encounter rate in predator-prey and competitive interactions in 

the plankton should not be underestimated. This concept is of ecological importance in our 

study because entering the chemical sphere vs. recognition of secreted chemical signals 

may induce different responses in P. parvum with respect to co-existing species and their 

metabolites. In the current experiments, the response of P. parvum cells to filtrates of 

various species are interpreted as a reflection of elicited activity derived from dissolved 

chemical signatures released by the respective species into the surrounding medium. On 

the other hand, P. parvum responses to direct exposure to intact cells are presumably 

mediated by cell-contact or close encounters with bioactive compounds retained at the 
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elicitor cell surface or bound within the phycosphere along a steep concentration gradient. 

Treatment with filtrate from O. marina, H. triquetra and C. submarinus caused differential 

responses in terms of lytic activity in P. parvum.  Both O. marina and H. triquetra filtrates 

induced an increase in lytic activity of P. parvum towards erythrocytes (intracellular lytic 

capacity) when compared to the control (Table 2.2.1).  Different responses suggest a 

recognition system, in this case: chemical in nature.   

 However, these same treatments caused significant increases in extracellular lytic 

activity of P. parvum towards the sensitive cryptophyte R. salina. An increase of 

extracellular lytic compounds directly affecting coexisting protists is suggested to be of 

more ecological relevance compared to an increase of intracellular lytic compounds as 

reflected by the erythrocyte lysis assay. 

Treatment with C. submarinus filtrate significantly decreased (p<0.01) the lytic 

activity of P. parvum in both the erythrocyte and Rhodomonas bioassays (Tables 2.2.1 & 

2.2.2). These results, however, are difficult to ascribe to either active regulation or passive 

decrease in lytic activity. In principle, a decrease of intracellular lytic activity could be 

explained by a reduced production perhaps accompanied by rapid turnover of the lytic 

compounds - this would be a “shoot down” attack/defense response based upon a 

perceived lack of external threat. Alternatively, lytic activity may be subject to intracellular 

modulation and regulation, e.g. via conformational shifts, that is not directly related to the 

concentration of the potentially lytic compounds. Finally, the decrease in intracellular 

activity may reflect a rapid reallocation of compounds by exudation into the surrounding 

medium, e.g. as a rapid response to potential prey or competitor signals. The latter 
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mechanism, however, seems unlikely because extracellular lytic activity, as quantified by 

the Rhodomonas bioassay also decreased. Nevertheless, a decrease of extracellular activity 

might also be due to non-specific binding of potentially lytic components to dissolved 

organic compounds or even particles.  

In this context, lytic activity of P. parvum has been shown to decrease by adding 

increasing amount of target cells (Tillmann, 2003). Many cyanobacteria as well as 

eukaryotic microalgae are known to exude large amounts of organic material (Hesen, 

1993) potentially acting as binding (and thus inactivating) sites for lytic compounds. In 

addition, decreasing extracellular lytic activity might be due to a fast decomposition of 

compounds together with reduced production and/or exudation rate (again as a “shoot 

down response”). As the toxicity of Prymnesium is known to be quite unstable on the scale 

of hours to days (Igarashi 1999, Larsen & Bryant 1998 & Larsen et al. 1993) it is impossible 

to decide which of the depicted possibilities is the main explanation for the observed 

decreasing intra- and extracellular lytic activity.  

From an ecological perspective, a possible reason for this decrease in lytic activity in 

P. parvum exposed to the cyanobacterium and/or its extracellular metabolites is the lack of 

predatory or competitor threat posed by C. submarinus. Coexistence of P. parvum and C. 

submarinus may have rendered a mutual tolerance towards respective chemical signatures. 

In fact, cyanobacteria have been found to be among the most tolerant groups of coexisting 

organisms in response to P. parvum allelochemicals (filtrate) in a natural community 

experiment (Fistarol et al., 2003). Nevertheless, the large number of genes up- and down-

regulated as found by microarray hybridization (Figures 2.2.2A & 2.2.2B) following 

treatment with both whole-cell culture and filtrate of C. submarinus does suggest the 
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recognition of cyanobacterial chemical signals by P. parvum. Although a similar number of 

regulated genes were noted following treatment with O. marina and a lower number for H. 

triquetra than for the cyanobacterium (Figures 2.2.2 A & 2.2.2B, P. parvum reacted by 

increasing lytic activity. This response can be interpreted as recognition of two coexisting 

species that pose either a potential predatory threat (O. marina) or competition, i.e. for 

nutrients and/or other limiting resources (H. triquetra).  

The ability to differentiate among coexisting species and their potential threats may 

be dependent on variation in chemical signal strength over time, allowing planktonic 

species to allocate their metabolic energy/costs based on whether the signals come from 

competitors, prey or predators or from innocuous sources (Carlsson & Taffs, 2010; Strauss 

et al., 2002). Prey-predator interactions represent a very strong selective pressure and can 

therefore co-evolve in a more sharply defined relationship than between mere competitors. 

Nevertheless, such interactions are complex and are not always unidirectional in the 

plankton. For example, Tillmann et al. (2003) showed that the heterotroph O. marina can 

voraciously feed on Prymnesium (thus the dinoflagellate is a predatory danger), but in an 

intriguing reversal of fortune depending on the toxicity of Prymnesium, the dinoflagellate 

can be lysed and phagocytized by the prymnesiophyte. Survival therefore entails a complex 

interplay between physical constraints and selective pressures, such as those posed by 

predation.  

In marine ecosystems, both microalgae (Paul & Van Alstyne, 1992) and macroalgae 

(Rothaeusler et al., 2005) have been shown to display induced defense mechanisms related 

to differential gene expression, however, with some degree of variability. Waterborne cues 

of copepods induce toxicity and changes in gene expression profiles in the dinoflagellate 
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Alexandrium spp. (Yang et al, 2010, Wohlrab et al. 2010 accepted). Even selective grazing 

and bio-recognition of prey in O. marina has been thought to be attributable to noxious 

chemicals produced by prey species, such as P. parvum (Martel, 2008). A bio-recognition 

system that allows for recognition and processing of O. marina chemical cues before actual 

physical encounter occurs is therefore plausible.  

The functional genomic data obtained in this P. parvum study indicate that there is a 

qualitative difference between gene regulation in this prymnesiophyte in the presence of 

intact cells of coexisting species versus exposure to the corresponding filtrates. For all 

three coexisting species, the raw number of genes expressed differentially was much 

higher than for the filtrate (Figures 2.2.2A & 2.2.2B). After COG classification, the 

differentially expressed gene classes show striking similarity between culture and filtrate 

treatments, the primary difference being a qualitative decrease in gene number regulated 

following filtrate incubation (Figures 2.2.2A & 2.2.2B). Genes classified as transcription- 

and translation-associated are of particular interest, assuming that these genes were 

differentially expressed in response to an exogenous stimulus, e.g., with the coexisting 

species as source.  

In this study the differential gene expression data on P. parvum indicate that there is 

a difference in gene expression induced by chemical waterborne cues vs. intact coexisting 

cells. Despite the fact that there are fewer genes regulated in the filtrate treatments 

(Figures 2.2.2A & 2.2.2B) than for whole cell exposure, these results are consistent with the 

presence of chemical cues, and their recognition by P. parvum.  

Exposure time 
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 The second experimental setup allowed for consideration of the effects of time and 

exposure to O. marina on P. parvum. The relevance of an exposure- and time-dependent 

response describing of the interaction between P. parvum and O. marina must be 

considered in the content of both parameters of time and change in toxicity from the 

second experiment, as well as the changes in gene expression regulation (Figures 2.2.3B & 

2.2.6). The effects we observed as increased or decreased lytic activity could be related to 

differing levels of exposure (dose-dependence) as well as to differences in exposure time. 

We argue therefore that it makes metabolic sense that Prymnesium does not immediately 

respond to the presence of co-existing cells. In our interpretation, the required dose of 

chemical cues from competitor/predator cells must reach a threshold level before 

Prymnesium merits activating its defense. Allocation of energy either to growth or a switch 

to defense-related physiology represents a balance with associated bioenergetic costs 

(Carlsson and Taffs, 2010; Strauss et al., 2002). Defense mechanisms and induction of toxic 

processes are no doubt costly to the organism, and thus warrant finely tuned control. 

Hence it is important not only to differentiate between different species and between cell 

contact and chemical cues, as demonstrated in our first experiment, but also that the 

signals reach a certain time- or concentration-dependent threshold to be sensed before the 

“defense machinery” is activated.  

A similar system has been described for the marine bacterium Vibrio fischeri, which 

produces bioluminescence only at high cell densities, yet can be induced at low cell 

densities by being placed in ‘spent’ high cell density filtrate (Bassler et al., 1997). The 

signaling molecule responsible for this ‘auto induction’ was later found to be an acylated 

homoserine lactone (Bodman et al., 2008). This type of recognition has been termed 
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‘quorum sensing’, and specifically refers cell density-linked, coordinated gene expression in 

populations that experience threshold signal concentrations to induce a synchronized 

population response (Fuqua et al, 1994).   For an individual cell a direct grazer attack 

(mechanical contact) a direct defense system (such as trichocysts and/or escape) would be 

required. In contrast, threshold induction systems support the survival of the population 

and hence the gene pool and although this does not directly benefit the individual cell, 

altruism in natural systems cannot be ruled out. 

 Regarding PKS gene expression and corresponding changes in toxicity showed that 

following incubation with O. marina, an increase in both extracellular and intracellular 

toxicity is apparent in P. parvum. Since the experimental time was relatively short, and the 

cell densities identical, we can rule out the effect of pH on relative toxicity (Schmidt and 

Hansen, 2001). Hence, the induction of toxicity observed was significant, and can be related 

to the treatment itself. The induced toxicity exhibits a similar trend to that of the qPCR gene 

fold-change expression data obtained for PKS, and in particular for PKS 7t3. Such 

circumstantial evidence supports the importance of PKS biosynthetic pathways in toxic 

processes of P. parvum, although this does not directly demonstrate that the 

allelochemicals are polyketides. 
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Conclusions 

This study sheds light on heterospecific interactions between the toxic 

prymnesiophyte Prymnesium parvum, and three coexisting species: Oxyhrris marina, 

Heterocapsa triquetra and Chroococcus submarinus. We found the interactions to be 

species-specific and to differ in complexity, based upon a combined functional genomic-

bioassay linked experimental approach. The results of the treatment with the potential 

predator O. marina, in contrast to the response to whole cells and filtrate of the other 

coexisting species, may be attributable to a co-evolutionary mechanism developed in P. 

parvum in response to grazing pressure and stress from O. marina. Such pressure has 

previously been described for yeast as a driving force behind genomic diversity and 

regulation (Chu et al., 1998).  The experimental design implemented in this study has also 

allowed for determination of the importance of cell-cell physical contact vs. recognition of 

waterborne cues and the time dependence of chemical signalling effects on P. parvum. 

Finally, the fact that PKS genes show transcriptional regulation supports the role of 

polyketide pathways in toxic processes in P. parvum. This integrated study furthered 

understanding of recognition and responses to signalling molecules in P. parvum, with 

broader implications of the ecological role and evolution of chemical signalling pathways in 

plankton assemblages.  
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2.1 Publication 3 

Investigating phosphorus limitation and low salinity stressors in the 
prymnesiophyte Prymnesium parvum 
 
2.3.1 Abstract 

It has previously been shown that low saline culturing conditions increase the 

relative toxicity of Prymnesium. Whether or not this involves an increase in the production 

of these toxic compounds is still unknown.  More recently, nutrient deficiency (N&P) has 

been shown to enhance the toxicity of Prymnesium as well.  In this study, a combination of 

low saline aqueous medium and phosphorous limitation is used to investigate if the 

combination of these two physiological factors can even further 

enhance Prymnesium's toxicity.  The Prymnesium parvum strain K252 was cultured at both 

26 and 5 psu, with or without addition of an organic phosphate source to the culture 

medium.  Intracellular production of lytic compounds of Prymnesium cultures was 

measured using an Erythrocyte Lysis Assay (ELA).  In contrast, extracellular compound 

secretion was investigated through mortality rates of Rhodomonas salina treated with the 

differentially cultured Prymnesium.  The combination of low salinity and phosphorous 

deficiency proved to enhance the toxicity of this Prymnesium strain the most. These results 

support the idea the production and/or secretion of lytic compounds in Prymnesium 

parvum may provide a competitive advantage under phosphorous limited conditions as 

well as under fluctuating salinity.   
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2.3.2 Introduction 

The earliest description of a Prymnesium parvum related fish-kill event dates back to 

the 1920s as described by Liebert & Deerns (1920) in Holland.  9 years later a similar event 

was observed in Denmark, where the culprit was identified as Prymnesium parvum Carter.  

Otterstroem and Nielsen (1940) further confirmed that the toxicity observed was due to an 

extracellular, thermolabile toxin.  Blooms of prymnesiophytes have since then been 

frequently associated with massive both ecologically and economically detrimental fish 

kills (Otterstrøm & Nielsen, 1940; Shilo, 1971; Shilo, 1967; Edvaardsen & Paasche, 1998; 

Moestrup, 1994)).  

Although the species in traditionally described as being euryhaline (Shilo, 1971), 

these dense, detrimental blooms have been described primarily in coastal or brackish 

water systems (Parnas & Abbott, 1965; Skulberg et al., 1993).  Studies investigating the 

roles of environmental and physiological factors’ effects on the toxicity of this 

prymnesiophyte have become numerous.  Parnas et al. (1962) claimed that the activity of 

extracted ichthyotoxin of P. parvum is inversely proportional to salt concentrations.  Ulitzer 

& Shilo (1964) found with whole cell culture experiments that a decrease in salinity 

induces an increase in ichthyotoxicity, and that ichthyotoxicity decreases as salinity 

increases.  More recently Larsen & Bryant (1998) investigated several Prymnesium strains 

and concluded that salinity has a strong effect on relative toxicity using a brine shrimp 

Artemia bioassay.  However, for all strains, no general pattern concerning the relation of 

salinity and relative toxicity could be determined.   

Phosphate sources in the growth medium have also been found to display an inverse 

relationship to toxicity.  Dafni et al. (1972) found that a decrease in phosphate caused an 
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increase in toxicity.  These authors hypothesized that a phosphate-limited environment 

may cause a flaw in biosynthesis of membrane phospholipids, thus leading to a higher 

membrane permeability, and leakage of compounds that possess a lytic capacity.  In 

particular, they noted that the cell volume of Prymnesium parvum decreased under such 

conditions, further indicating a membrane disturbance.  Furthermore, Paster (1973) found 

P. parvum to be more toxic when grown in phosphate-poor medium.  More recently, a 

massive fish kill in the Sandsfjord system in Norway was attributed to phosphate-limited 

growth of P. parvum (Kaartvedt et al., 1991).  Johansson & Graneli (1999) described 

increases in toxicity related to both nitrogen and phosphate limitation.  They further 

hypothesized that an unbalanced N:P ratio, caused by nutrient input or eutrophic 

conditions, could be one factor governing toxicity in this prymnesiophyte.  Although the 

authors admit that the reason for toxin production is unknown, they suggest it may have 

something to do with competition for resources during nutrient limitation.   

The documentation of monospecific blooms of P. parvum highly suggests the 

presence of a competitive advantage over other co-existing phytoplankton species.  

Prymnesium parvum blooms often occur in eutrophic areas, such as coastal waters, where 

run-off can alter the N:P ratio (Collins, 1978).  This observation, in conjunction with 

observed increases in toxicity under nutrient stress (Paster, 1973; Johansson & Graneli, 

1999; Kaartvedt et al., 1991) suggests that P. parvum is able to outcompete other 

phytoplankton species for limited resources.  This advantage is most likely not based solely 

on growth rate, as P. parvum has been previously shown to display moderate growth rates 

under a variety of physiological conditions (Holdway et al., 1978; brand, 1984; Larsen & 

Bryant, 1998), perhaps rather on production or secretion of allelochemical compounds that 
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have an effect on coexisting species.  Despite the rigor and number of studies, our 

understanding of environmental factors and their effects on toxin production and toxicity 

in P. parvum is still quite poor.   

A major hurdle in furthering the understanding of regulation of toxicity in P. parvum 

is that the observed toxicity varies both in nature and in culture (Ulitzur & Shilo, 1966; 

Dafni et al., 1972; Larsen et al., 1993).  Indeed toxin production has been shown not to be a 

basal part of metabolism in phytoplankton (Plumley, 1997), but rather dependent on 

environmental conditions.  Prymnesium parvum blooms often occur in eutrophic areas, 

such as coastal waters where run-off can alter the N:P ratio (Collins, 1978).  The accepted 

ecological reference for C:N:P ratios is termed the Redfield Ratio, as first described by 

Alfred C. Redfield in 1934.  This ratio refers to the global elemental composition of marine 

organic matter, of C:N:P 106:16:1 (Redfield, 1934).  Since nutrient availability as well as 

ratios can have a significant impact on phytoplankton growth, and thereby phytoplankton 

interactions, changes in nutrient levels may in fact alter toxin biosynthesis.     

In the current study we examined the combined versus individual effects of 

phosphorous limitation and low salinity stress on the toxicity of P. parvum (strain K0252).  

This particular strain was of ecological relevance due to the tidal nature of its geographical 

origin (Norman Bay) demonstrating eutrophic conditions, as well as fluctuations in salinity.   

We investigated the effects of low salinity and phosphorous limitation on the 

physiological processes of growth and observed toxicity.  Salinity as well as phosphorous 

limitation was shown to influence the growth rate of P. parvum strain K0252 cultures.  

Utilizing a functional genomic bioassay-linked approach, we also observed the combination 

of phosphorous limitation with low salinity stress to increase the lytic capacity/toxicity of 
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P. parvum in a non-linear manner. This is, to our knowledge, the first example of an 

experimental system involving P. parvum where toxicity is inducible to such a high degree. 

Lastly, this study lays the groundwork for future functional genomic studies involving P. 

parvum, in an attempt to better understand the ecology of this harmful algal species.  
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2.3.3 Materials & methods 

 

Algal culture conditions 

A non-axenic toxic clonal strain of Prymnesium parvum f. patelliferum (K0252), 

isolated by Ø. Moestrup from Wilsons Promontory, Norman Bay, Victoria, Australia on 

07.12.1987, was grown in IMR medium as described in Publication 1 of this dissertation 

(4:1, v:v, North Sea seawater: MilliQ deionized water) in 5 l stock culture.  This strain was 

chosen based on results from preliminary experiments on lytic capacity towards 

erythrocytes and Rhodomonas salina. The components of IMR medium (Eppley, 1967) are 

given in Table 2.1.3-5 (Publication 1).  Salinity of the IMR medium was adjusted either with 

North Sea seawater volume, or with NaCl, to minimize phosphorous from increased volume 

of North Sea water.  Phosphorous limitation was achieved by withholding KH2PO4 from the 

culture medium.   

Stock cultures were grown in conditions corresponding to those of the experimental 

treatments (Table 2.3.1). Four experimental treatments were carried out, one of which 

served as a control (26 psu, P-replete) (Table 2.3.1.).  Experimental cultures were grown in 

5 l Duran bottles (Schott AG, Mainz, Germany) under gentle aeration with sterile-filtered 

air, at a constant temperature of 20°C and a light: dark photocycle of 14:10 h.  Sampling 

was performed using a combination of sterile tube-vacuum system (as described in 

Eschbach et al., 2005) to minimize bacterial growth, and centrifugation of exponential 

growth phase cultures.  Experimental cultures were inoculated with starting 

concentrations of 1.5x103 ± 535 cells ml-1, and were sampled four times throughout the 

experiment.  Nutrient sampling points included early and late exponential, and early and 
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late stationary growth (days 1, 4, 6 and 12, Figure 2.3.3).  Samples for gene expression 

analysis (qPCR and microarray) and toxicity measurements via bioassay were taken on day 

4 (exponential growth phase, Figure 2.3.3).  Sampled cultures were centrifuged at 3000 x  

 
 
* Prepared by adding NaCl  to 5 psu P-limited medium, to avoid addition of trace amounts of 
phosphate present in North Sea seawater. 
 

g for 15 minutes at 20 °C.  The supernatant was removed, and the remaining cell pellet was 

resuspended in 350 μl of buffer RLT lysis buffer containing β-mercaptoethanol (Qiagen, 

Hilden, Germany), and subsequently flash-frozen in liquid nitrogen at -80° C. Samples were 

then stored at -70° C to minimize activity of potential RNase enzymes and to prevent 

degradation.  Irradiance was kept at 90 μmol photons m-2 s-1 and was measured as 

described in Publication 1 using a Quantum Scalar Irradiance Meter (Biospherical 

Instruments, San Diego, USA).  Cell concentrations were determined daily using a CASY cell 

counter (Innovatis AG, Reutlingen, Germany).   

 

 

 

 

Table 2.3.1: Experimental treatments. 

Treatment Description 

26 psu, P-replete 20 °C, 90 μmol photons m-2 s-1, 26 psu 
26 psu, P-
deplete* 

20 °C, 90 μmol photons m-2 s-1, 26 psu, no KH2PO4 added to culture 
medium 

5 psu, P-replete 20 °C, 90 μmol photons m-2 s-1, 5 psu 

5 psu P-deplete 
20 °C, 90 μmol photons m-2 s-1, 5 psu, no KH2PO4 added to culture 
medium 



Publication 3 

92 
 

Erythrocyte lysis assay 

An erythrocyte lysis assay was performed as described in Publication 1, and was 

used to the test lytic activity of P. parvum whole cell extracts towards erythrocytes.  A 

volume corresponding to 1.0 x 107 P. parvum cells from each treatment were harvested via 

centrifugation and the cell pellet resuspended in lysis/assay buffer (150 mM NaCl, 3.2 mM 

KCl, 1.25 mM MgSO4, 3.75 mM CaCl2 and 12.2 mM TRIS base, pH adjusted to 7.4 with HCl, 

Eschbach et al. 2001). The resuspended pellets each containing 1.0 x 107 P. parvum cells 

were then completely lysed via ultrasonication at the following settings: 50% pulse cycle, 

70% amplitude, for 1 min.  Lytic activity was calculated in ng saponin equivalents per cell 

(ng SnE cell-1), utilizing the standard saponin from higher plants as an indicator of relative 

lytic capacity.   

 

Extracellular and/or secreted toxicity: Rhodomonas salina bioassay 

A Rhodomonas salina assay was performed as described in Publication 1 to 

characterize differential extracellular/secreted toxicity of P. parvum.  4 ml of a mixture of P. 

parvum (final cell concentrations in decreasing order: 3.75 x 104 ml-1, 2.34 x 104 ml-1, 9.38 x 

103 ml-1 and 4.69 x 103 ml-1) and R. salina (final cell concentration 1.0 x 105 ml-1) were 

incubated in glass scintillation vials at 15° C for 24 h in darkness. Vials were then gently 

mixed by rotating, and 1 ml of mixture was pipetted into an Utermöhl cell sedimentation 

chamber and fixed with glutaraldehyde (2.5% final concentration). After settling, cells were 

viewed via epifluorescence microscopy (Zeiss Axiovert 2 Plus, Carl Zeiss AG, Göttingen, 

Germany) with Zeiss filter-set 14 at 64X magnification. Lysed versus non-lysed cells were 

easily distinguishable due to pigment auto-fluorescence characteristics (Prymnesium - red 
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or Rhodomonas - orange). Control Rhodomonas samples in triplicate represented 0% lysis, 

and lytic capacity for all samples incubated with Prymnesium were calculated based on this 

control value, as percentage Rhodomonas cells lysed. 

 

Nutrient analysis 

Filtered medium samples for dissolved nutrient analysis were preserved by adding 

3 μL 3.5% (w/w) HgCl2 per ml sample and stored at 4 °C until analysis.  Dissolved nutrients 

were analyzed by continuous-flow analysis with photometric detection (AA3 Systems, Seal 

GmbH, Norderstedt, Germany).  For total dissolved phosphorus and nitrogen, the analysis 

was preceded by digestion with peroxodisulphate in an autoclave.  Samples for particulate 

nutrient analysis were filtered on pre-combusted glass fiber GF/F filters (Whatmann, 

Omnilab, Bremen, Germany) and stored at -20°C. Filters for particulate C/N-measurements 

were dried at 60°C and encapsulated into chloroform-washed tin containers.  Samples were 

analyzed on an NA 1500 C/N Analyzer (Carlo Erba Instrumentazione, Milan, Italy).  

Particulate phosphorus was measured photometrically by continuous-flow analysis with 

photometric detection (AA3 Systems, Seal GmbH, Norderstedt, Germany) after digestion 

with peroxide and sulphuric acid (Eberlein et al., , 1980).  Mean C/N values were calculated 

from the C/N measurements for individual filters; C/P and N/P values were determined 

from the average of all possible pairs of measurements for each culture at a given sampling 

point. 
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RNA isolation 

RNA isolation was performed as described in Publication 1, according to the 

protocol in the RNeasy Plant total RNA extraction kit (Qiagen, Hilden, Germany).  Prior to 

starting the protocol 100% ethanol was added to the wash buffer RPE, and β-

mercaptoethanol was added as an RNAse inhibitor to the lysis buffer RLT.  The amount of 

starting material was also taken into consideration, following recommendations in the 

manufacturer’s handbook (see Qiagen Plant RNeasy protocol book).   

Flash frozen samples were thawed ‘on ice’, and approximately two small spatulas 

full of 0.1 mm diameter glass beads were added to the sample.  The cells were disrupted 2 x 

30 s using a Qiagen Bead Beater (Hilden, Germany).  The homogenate was separated from 

the glass beads and placed in a QIAshredder column/collection tube and centrifuged for 10 

min at maximum speed.  Centrifugation through the shredder column functions to remove 

cell debris, as well as homogenize the lysate.  A small pellet formed at the bottom of the 

collection tube.  The supernatant was very carefully removed and placed in a new 

centrifuge tube, without disturbing the pellet at the bottom of the tube.  Ethanol (250μl-

100%) was added to the lysate (0.5 x volume) and mixed by pipetting.  The entire sample 

was loaded onto a new RNeasy column/collection tube, and was spun at 8,000 x g for 30 s.  

The ethanol added previously functions to bind the RNA to the silica membrane in the 

column.  The flow-through was discarded.   700 μl RW1 buffer was added to the column to 

wash the membrane-bound RNA, and the column was centrifuged again at 8,000 x g for 30 

s.  The flow-through was again discarded.  The column was transferred into a new 

collection tube.  Wash buffer RPE containing ethanol (500 μl) was added to the column, and 

the column was centrifuged as before.  The flow-through was discarded.  This wash step 
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was repeated once more, including the centrifugation and flow-through discarding step.  

The column was centrifuged further for 1 min at maximum speed to remove all traces of 

ethanol that could interfere with downstream applications of the RNA, i.e. cDNA synthesis.  

The column was placed in a new centrifuge tube, and 2 x 50 μl of DEPC- treated water was 

pipetted directly onto the center of the membrane to elute the RNA.  The final volume was 

100 μl.   

 

DNase in-tube treatment 

To each sample of 100 μl volume, 10 μl buffer DNase buffer RDD and 5 μl DNAse 

resuspended in provided nuclease free water (Qiagen) were added.  This mixture was 

incubated for 1 h at room temperature (approximately 23 °C).   

 

RNA Clean-up 

 Buffer RLT (350 μl) was added to the DNAse and RNA mixture.  The solution was 

then thoroughly vortex mixed.  Ethanol (250 μl-100%) was added to the solution, and the 

mixture was repeatedly pipetted.  The sample (700μl) was applied to a new RNeasy 

column/collection tube and centrifuged at 8,000 x g for 30 s.  Both the flow-through and 

the collection tube were discarded.  The column was washed with 350 μl buffer RW1 (high 

salt), followed by a DNAse on column digestion.  DNAse stock solution (10μl) was added to 

70 μl buffer RDD, and was gently flicked, not vortexed, due to the fragility of the DNAse 

enzyme.  The entire 80 μl DNAse/buffer RDD solution was applied to the center of the 

membrane, and was incubated at room temperature for 15 min.  2 x 500 μl buffer RPE 

washes were performed as previously described, and then the final RNA was eluted in 
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either 50 μl or 2 x 50 μl of DEPC-treated water.  RNA concentration and quality/integrity 

was checked using the Nanodrop spectrophotometer and Agilent bioanalyzer (Agilent 

Technologies, Santa Clara, USA). 

 

Sample concentration and purity  

Sample concentration and purity were determined as described in Publication 1, 

using a Nanodrop spectrophotometer. 

 

Sample Integrity  

 RNA integrity was measured as described in Publication 1, using gel-chip technology 

(Agilent).  RNA of an appropriate concentration and integrity was obtained for all samples, 

with the exception of the dark treatment.          

 

SYBR green qPCR analysis 

qPCR analysis was performed as described in Publication 1.  Plasmid vectors 

(pDNR-Lib) containing full-length cDNAs of both the nitrile-specifier protein (NSP) and the 

major allergen (MA) genes of approximately 1.9 kb each from the commonly known ‘small 

cabbage white’ butterfly Pieris rapae were generated to serve as spike-in controls.  MA and 

NSP primers were designed using Primer Express © v 2.0 software with the default 

settings.  

In vitro transcription was performed according to the manufacturer’s protocol with 

a T7 RNA polymerase (Invitrogen, Paisley, UK) to obtain mRNA for two internal spike 

reference genes, as described in Publication 1. Spike genes MA (major allergen) and NSP 
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(nitrile-specific protein) were utilized for quantification of results, as well as controlling 

the cDNA efficiency reaction prior to qPCR analysis. MA was added at a final concentration 

of 116 pg μl-1 and NSP at 10 fg μl-1. cDNA was synthesized from all tRNA samples with the 

Omniscript RT kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany) 

using anchored oligoVN(dT)20 primer (Invitrogen, Paisley, UK) at a final concentration of 

25 ng μl-1. All primers for qPCR were designed with the Primer Express 2.0 software on 

default settings (Applied Biosystems, Darmstadt, Germany) and synthesised from MWG 

Biotechnologies Germany. Standard PCR primers were designed based on the Primer 3 

platform using default settings (http://frodo.wi.mit.edu/) and synthesised from MWG 

Biotechnologies (Germany). Primer sequences are available as supplementary material. 

The SYBR green qPCR reaction was designed according to manufacturer’s protocol 

(Applied Biosystems, Darmstadt, Germany) using 2 μl of a 10-fold diluted cDNA. Cycle 

parameters included an initial denaturation at 95 °C for 10 min, followed by 40 cycles of 95 

°C for 15 s and 59 °C for 1 min. A product-primer dissociation step was utilized to verify 

formation of a single unique product and the absence of potential primer dimerization. All 

reactions were performed with the same ABI Prism 7000 cycler (Applied Biosystems, 

Darmstadt, Germany).  

Amplification efficiency of all qPCR reactions was analyzed through linear 

regression of standard curves, with 6 cDNA (originating from the control culture) serial 

dilution points (1.0 x 10-3 to 1.0 x 10-8).  Percent efficiency was calculated from the slope of 

the threshold cycle (Ct) vs. concentration [cDNA] with equation (I) 

I         E = 10-1/slope 
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 All PCR efficiencies were 98.88% ≥ x ≥ 92.31% 1.91, all R2 values were >0.94.  

Samples were run in both biological (independent cultures) as well as technical triplicates.  

Variation was calculated as averages among technical replicates as well as standard 

deviation.  An R expression ratio was calculated using the ΔΔCt as described by Pfaffl et al. 

2001, incorporating individual reaction efficiencies as correction factors.  Calculation of an 

R expression ratio was performed using the following equation (II) 

II Ratio = Etarget^�ΔCt target (control- sample)� / EMA^�ΔCt housekeeping (control- sample)� 

This quantitative method was chosen to minimize intra- and interassay variability.  All 

calculations were performed using the REST-2009 software platform (Qiagen, Hilden, 

Germany).  

 

Microarray analysis 

Microarray analysis was performed as described in Publication 1.  Agilent RNA 

Spike-In Mix (p/n 5188-5279) was added to the tRNA samples prior to the labelling 

reactions following the RNA Spike-In Kit protocol (Agilent Technologies, Boeblingen, 

Germany). Total RNA (500 ng) was amplified, reverse-transcribed and labelled using the 

two colour low RNA Input fluorescent linear amplification kit (Agilent Technologies, p/n 

5184-3523). The Cy-3 and Cy-5 dye incorporation was verified by NanoDrop ND-1000 

spectrophotometer. Hybridization was performed onto 4 x 44k microarray slides 

containing oligonucleotide 60mers designed by the Agilent eArray online platform, using 

the gene expression hybridization kit two colour (Agilent Technologies, p/n 5188-5242), 

contained in SureHyb Hybridization Chambers (Agilent p/n G2534A) in a hybridization 
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oven (Agilent p/n G2545A) at 65° C for 17 h. Microarrays were scanned by an Agilent 

Scanner (p/n G2565BA).  

Raw data were extracted with the Agilent Feature Extraction Software version 9.5, 

incorporating the GE2_105_Dec08 protocol. Feature extraction software served to remove 

spots that had been flagged ‘outliers’, ‘not known’ or ‘bad’, based on background median 

analysis (Storey, 2003). Further analysis of gene expression was performed using 

GeneSpring GX version 10 software (p/n depending on license).  

 

Statistical analysis 

 Physiological data described are the mean of biological triplicates with the 

corresponding standard deviation.  Significance of physiological data was confirmed using 

a Student’s t-test (p<0.05).  Normal distribution of data was analyzed by the Shapiro-Wilk 

test as implemented in R.  Microarray expression measurements are given as the geometric 

mean of three measurements, corresponding to biological triplicates.  
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2.3.4 Results 

Growth and physiological assessment 

 All cultures displayed a short initial lag phase from inoculation to approximately 2 

days following initiation of the experimental (Figure 2.3.3).  All cultures showed similar 

initial growth patterns until 4 days (Figure 2.3.3).  P limitation occurred after 4 days, where 

the two P replete cultures continue to grow exponentially, whereas the two P deplete 

cultures reach a stationary growth phase.  Mean growth rate was calculated for all four 

treatments between days 4 and 11 (last culture to reach stationary growth phase), using 

the following equation: 

Growth rate:  K' = Ln (N2 / N1) / (t2 - t1) 

where N1 and N2 = biomass at time (t1) and time (t2) respectively (Levasseur et al., 1993).  

Mean growth rates can be seen in Table 2.3.2.   

 

Table 2.3.2: Exponential mean growth rates. 

Treatment 
Mean growth rate (days 4-11) ± st. 
dev. 

26 psu, P-replete 11.80 ± 0.34 

26 psu, P-deplete*   9.04 ± 0.28 
5 psu, P-replete   8.65 ± 0.17 

5 psu P-deplete 11.44 ± 0.22 

 

As expected, P-deplete cultures (after day 4) demonstrate a lower growth rate during the 

exponential growth phase.  Interestingly, 5 psu P-replete cultures demonstrated a lower 

exponential growth rate than 26 psu P-replete cultures: suggesting salinity may play a role 

in hindering cell division in P. parvum.  Also as expected, pH measurements showed a trend 
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towards higher values with increasing cell concentration, and were not dependant on 

salinity (Figure 2.3.4).   

 P-limited cultures contained reduced concentrations of dissolved phosphate (Figure 

2.3.5).  P-limited cultures depleted the available phosphorous by Day 4, as indicated by a 

reduction in cell division (Figure 2.3.6), a significant increase in the particulate organic C:P 

ratio (Student’s t-test, p<0.05)(Figure 2.3.6) and a significant increase in the particulate N:P 

ratio (Student’s t-test, p<0.05)(Figure 2.3.6).  Intracellular particulate N levels and C:N 

ratios, however,  were not significantly different between P-limited and non-limited 

cultures (Student’s t-test, p>0.05) (Figure 2.3.6).   
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Figure 2.3.6: Prymnesium parvum organic nutrient ratios (atomic N:P, C:N and C:P).  
Redfield ratio is indicated by dashed red line (C:N 106:1, C:N 6:1 and N:P 16:1).
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Lytic activity 

Extracellular or secreted toxicity/lytic activity towards the cryptophyte R. salina 

was significantly highest relative to the control in the low salinity P-deplete (5 psu, -P) 

cultures, indicating an EC50 for Prymnesium parvum of 116 ±39 cells ml-1.  This is a 

significant increase (Student’s t-test, p<0.05) of approximately +1940 fold in lytic activity 

compared to the control culture (26 psu), which yielded an EC50 of 2.25 x 105 ±4732 cells 

ml-1 (Table 2.3.3).  Low salinity cultures (5 psu) gave an EC50 of 1.32 x 103 ± 256 cells ml-1, 

whereas for P-limited cultures (26 psu, –P) showed an EC50 of 3.56 x 104 ±1264 cells ml-1.  

These differences from the control were both significant (Student’s t-test, p<0.05). 

 Observed differences among treatments in lytic activity towards erythrocytes were 

not as large as the differences in extracellular or secreted lytic activity between treatments.  

Low salinity P-limited cultures showed a significant increase in lytic activity of 22.56 ng 

SnE cell-1 (Student’s t-test, p<0.05) (Figure 2.3.7) compared to lytic activity for the control 

culture of 15.4 ng SnE cell-1.  Low salinity cultures (5 psu) and P-limited cultures (26 PSU, –

P) did not show significant changes in lytic activity towards erythrocytes compared to the 

control (14.39 ng SnE cell-1 and 15.76 ng SnE cell-1, respectively).    

Table 2.3.3: EC50 results Phosphate limitation and low salinity treatments of P. parvum strain 
K0252.   EC50 is defined as the P. parvum cell concentration causing 50% mortality of R. salina 
cells. 

Treatment  EC50 Rhodomonas salina (mean ± standard deviation cells 
ml-1) 

5 psu P-replete  1.32 x 103 ± 256 
26 psu P-replete 2.25 x 105 ± 4732 
5 psu P-deplete  1.16  x 102 ± 39 
26 psu P-deplete 3.56 x 104± 1264 
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Gene expression 

 A total of 2,788 genes were identified as differentially expressed among the three 

treatments (5 psu P-replete, 5 psu P-deplete –P & 26 psu P-deplete –P), and the control (26 

psu P-replete) as a reference probe, harvested in exponential growth phase.  The highest 

number of genes regulated was observed in 5 psu P-replete with 1409 upregulated (Figure 

2.3.7).  Indications of a more refined, less global response in gene regulation were observed 

for the 26 psu P-deplete treatment, with 18 upregulated and 30 downregulated (Figure 

2.3.7).  These identified sets of genes were used to select genes relevant to nutrient and 

salinity stress, general growth processes and cellular transport.  A comparison of gene 

expression ratios for these genes is shown in Table 2.3.4.  The microarray hybridization 

scheme applied in this study allowed for selection of differentially regulated genes that 

could be associated with single factors, i.e. due to a decrease in salinity or P-limitation, as 

well as due to a combination of these factors (Figure 2.3.7).  Low salinity induced 

differential upregulation in genes related to general cellular transport and cellular skeletal 

function (actin, caltractin) and a protein phosphatase (Table 2.3.4). Low salinity induced 

downregulation in a phosphate acyltransferase, a triosephosphate isomerase, a very strong 

downregulation of a sodium symporter membrane transport protein, and an even stronger 

downregulation of a Ras-related protein (Table 2.3.4).  Phosphorus limitation induced an 

upregulation in a tetraphosphate hydrolase, a pyrophosphate powered membrane bound 

proton pump, actophorin, caltractin and a mitochondrial inner membrane transport 

protein (Table 2.3.4).  Nutrient stress also induced a strong downregulation in a phosphate 

acytransferase and particularly a nearly 416 fold downregulation of N-acetylneuraminate 

phosphate synthase. The combination of low salinity and P-limitation induced upregulation 
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in several of the same genes as the individual treatments, including a pyrophosphate 

powered membrane-bound proton pump, caltractin, a mitochondrial inner membrane 

transport protein, actophorin, in addition to a protein phosphatase (Table 2.3.4).  

Downregulation of a lesser degree compared to 26 psu P-deplete was observed for a 

membrane potassium channel, a phosphate acytransferase, a triosephosphate isomerase, a 

sodium symporter as well as N-acetylneuraminate phosphate synthase (Table 2.3.4).   

  

 

 

 

 

 

 

 

 

 

 

 

 



Pu
bl

ic
at

io
n 

3 

 

 

Fi
gu

re
 2

.3
.7

: W
or

k
fl

ow
 o

f g
en

e 
ex

p
re

ss
io

n
 p

or
ti

on
 o

f P
-l

im
it

at
io

n
 a

n
d

 lo
w

 s
al

in
it

y 
st

re
ss

or
 s

tu
d

y 
on

 P
. p

ar
vu

m
 s

tr
ai

n
 

K
0

2
5

2.
  A

. M
ic

ro
ar

ra
y 

h
yb

ri
d

iz
at

io
n

 s
ch

em
e 

B
. U

p
re

gu
la

te
d

 g
en

es
 fo

u
n

d
 fo

r 
th

re
e 

tr
ea

tm
en

ts
 (

n
or

m
al

iz
ed

 a
ga

in
st

 2
6

 
P

SU
-c

on
tr

ol
).

 C
. D

ow
n

re
gu

la
te

d
 g

en
es

 fo
u

n
d 

fo
r 

th
re

e 
tr

ea
tm

en
ts

 (
n

or
m

al
iz

ed
 a

ga
in

st
 2

6
 P

SU
-c

on
tr

ol
).

  G
en

es
 c

h
os

en
 

in
 t

h
re

e 
ca

te
go

ri
es

 fo
r 

ve
ri

fi
ca

ti
on

 v
ia

 q
P

CR
. 



 

 

  T
ab

le
 2

.3
.4

: C
om

p
ar

is
o

n
 o

f 
q

P
C

R
 a

n
d

 m
ic

ro
ar

ra
y 

ex
p

re
ss

io
n

 r
at

io
s 

(f
o

ld
 c

h
an

ge
 n

o
rm

al
iz

ed
 a

ga
in

st
 c

o
n

tr
o

l 2
6

 p
su

 P
-r

ep
le

te
) 

fo
r 

a 
se

le
ct

ed
 s

et
 o

f 

p
h

ys
io

lo
gi

ca
ll

y 
re

le
va

n
t 

ge
n

es
.  

qP
CR

 e
xp

re
ss

io
n 

ra
ti

os
 a

re
 it

al
ic

iz
ed

. ±
 s

ta
n

d
ar

d
 d

ev
ia

ti
o

n
 n

o
te

d
 b

et
w

ee
n

 b
io

lo
gi

ca
l t

ri
p

li
ca

te
s.

  V
al

u
es

 in
 r

ed
 r

ep
re

se
n

t 

th
o

se
 a

b
o

ve
 a

 S
A

M
S-

b
as

ed
 2

.5
 f

o
ld

 t
h

re
sh

o
ld

 o
f 

d
if

fe
re

n
ti

al
 r

eg
u

la
ti

o
n

 f
ro

m
 t

h
e 

co
n

tr
o

l s
am

p
le

.  
V

al
u

es
 in

 r
ed

 a
re

 a
b

o
ve

 a
n

 a
rb

it
ra

ri
ly

 c
h

o
se

n
 c

u
t 

o
ff

 v
al

u
e 

o
f 

2
.5

 f
o

ld
 c

h
an

ge
. 

Pr
ob

e 
id

en
ti

fie
r 
 

Pu
ta

ti
ve

 g
en

e 
pr

od
uc

t  
5 

ps
u 

P 
de

pl
et

e 
 

26
 p

su
 P

-
de

pl
et

e 
 

5 
ps

u 
 

5
 p

su
 P

-

d
ep

le
te

  
2

6
 p

su
 P

-

d
ep

le
te

  
5

 p
su

  

P
ry

m
n

es
iu

m
-C

-a
-6

9
k

0
9

.m
1

3
f 

T
et

ra
p

h
o

sp
h

at
e 

h
yd

ro
la

se
  

1.
65

±0
.0

1 
 

3.
31

±0
.1

1 
 

1.
15

±0
.0

2 
 

2
.4

5
±

0
.3

2
  

3
.6

4
±

0
.1

4
  

0
.9

8
±

0
.0

2
3
 

P
ry

m
n

es
iu

m
-C

-a
-2

9
o

2
4

.m
1

3
f 

P
yr

o
p

h
o

sp
h

at
e 

p
ro

to
n

 

p
u

m
p

-m
em

b
ra

n
e 

b
o

u
n

d
  

6.
85

±0
.1

6 
 

4.
91

±0
.0

8 
 

0.
62

±0
.0

1 
 

7
.2

3
±

0
.2

4
  

5
.2

1
±

0
.1

5
  

8
.1

2
±

0
.2

2
  

P
ry

m
n

es
iu

m
-C

-a
-1

0
2

n
1

0
.m

1
3

r 
P

ro
te

in
 p

h
o

sp
h

at
as

e 
 

3.
27

±0
.0

2 
 

1.
00

±0
.0

1 
 

1.
47

±0
.0

3 
 

3
.6

6
±

0
.4

2
  

0
.8

1
±

0
.2

3
  

1
.7

3
±

0
.2

9
  

P
ry

m
n

es
iu

m
-C

-a
-9

9
e1

7
.m

1
3

f 
A

ct
in

  
1.

82
±0

.0
4 
 

1.
19

±0
.0

12
  

6.
29

±0
.1

7 
 

2
.1

1
±

0
.0

2
  

2
.1

1
±

0
.0

2
  

7
.8

8
±

0
.0

1
3

  
P

ry
m

n
es

iu
m

-C
-a

-1
0

0
n

1
9

.m
1

3
r 

A
ct

o
p

h
o

ri
n

  
3.

05
±0

.0
9 
 

3.
97

±0
.1

6 
 

2.
22

±0
.1

4 
 

2
.7

8
±

0
.0

3
  

4
.2

3
±

0
.0

2
1

  
2

.9
9

±
0

.0
1

  
P

ry
m

n
es

iu
m

-C
-a

-9
0

h
0

9
.m

1
3

f 
C

al
tr

ac
ti

n
  

45
.3

3±
1.

41
  

5.
57

±0
.1

0 
 

9.
84

±2
.2

4 
 

5
1

.1
±

2
.7

0
  

6
.8

±
1

.0
3

  
1

1
.2

±
1

.0
2

  
P

ry
m

n
es

iu
m

-C
-a

-5
9

e1
2

.m
1

3
r 

M
it

o
ch

o
n

d
ri

al
 in

n
er

 

m
em

b
ra

n
e 

tr
an

sp
o

rt
 

su
b

u
n

it
  

3.
62

±0
.1

7 
 

11
.6

±0
.2

2 
 

3.
14

±0
.1

0 
 

4
.2

2
±

0
.6

8
  

1
3

.3
±

2
.1

  
2

.8
8

±
0

.0
1

  

P
ry

m
n

es
iu

m
-C

-a
-1

0
2

n
1

0
.m

1
3

r 
P

ro
te

in
 p

h
o

sp
h

at
as

e 
 

2.
56

±0
.0

8 
 

1.
38

±0
.0

2 
 

15
.9

±1
.2

  
2

.4
0

±
0

.0
1

  
0

.9
8

±
0

.0
3

  
1

8
.2

±
0

.0
2

  
P

ry
m

n
es

iu
m

-C
-a

-7
2

j2
2

.m
1

3
f 

 H
yp

o
th

et
ic

al
 p

ro
te

in
 

R
1

4
4

.6
 in

 c
h

ro
m

o
so

m
e 

II
I.

  
1.

82
±0

.0
2 
 

0.
82

±0
.0

3 
 

1.
84

±0
.0

6 
 

1
.2

2
±

0
.0

5
  

0
.2

3
±

0
.0

1
  

2
.8

2
±

0
.0

4
  

P
ry

m
n

es
iu

m
-C

-a
-9

6
b

0
1

.m
1

3
r 

h
yp

o
th

et
ic

al
 p

ro
te

in
 

p
ro

te
in

|o
_s

at
iv

a 
 

0.
78

±0
.0

6 
 

1.
15

±0
.0

8 
 

0.
86

±0
.0

6 
 

0
.9

2
±

0
.1

6
  

1
.5

6
±

0
.1

8
  

0
.4

5
±

0
.0

4
  

P
ry

m
n

es
iu

m
-C

-a
-9

0
h

0
2

.m
1

3
f 

M
em

br
an

e 
po

ta
ss

iu
m

 
ch

an
ne

l  
-2

.8
0±

0.
06

  
-0

.7
6±

0.
01

-  
-0

.5
2±

0.
01

  
-4

.1
2

±
0

.1
5

  
-1

.2
3

±
0

.1
2

  
-0

.2
1

±
0

.0
1

  

P
ry

m
n

es
iu

m
-C

-a
-8

9
l2

4
.m

1
3

f 
In

os
it

ol
 1

,4
,5

-t
ri

sp
ho

sp
ha

te
 

re
ce

pt
or

 ty
pe

 2
  

-0
.1

1±
0.

01
  

-0
.2

8±
0.

02
  

-0
.3

8±
0.

05
  

-1
.2

9
±

0
.1

3
  

-0
.7

8
±

0
.0

2
  

-2
.1

2
±

0
.0

3
  

P
ry

m
n

es
iu

m
-C

-a
-8

8
c0

6
.m

1
3

f 
Ph

os
ph

at
e 

ac
yl

tr
an

sf
er

as
e 
 

-8
1.

8±
2.

45
  

-6
4.

7±
6.

9 
 

-7
.0

5±
0.

29
  

-7
1

.1
±

1
.9

6
  

-5
2

.1
±

3
.4

4
  

-9
.0

9
±

1
.3

  
P

ry
m

n
es

iu
m

-C
-a

-0
5

g0
2

.m
1

3
f 

T
ri

o
se

p
h

o
sp

h
at

e 
is

o
m

er
as

e 
 -

4.
55

±0
.1

1 
 

-1
8.

1±
0.

30
  

-8
.6

9±
0.

14
  

-5
.3

4
±

2
.3

3
  

-2
1

.6
±

3
.9

4
  

-3
.4

5
±

1
.2

4
  

P
ry

m
n

es
iu

m
-C

-a
-8

6
k

1
7

.m
1

3
f 

So
d

iu
m

 s
ym

p
o

rt
er

  
-8

.2
8±

0.
64

  
-3

9.
5±

1.
60

  
-5

2.
2±

2.
80

  
-9

.2
1

±
1

.7
1

  
-5

1
.3

±
1

.9
  

-8
.8

7
±

2
.9

3
  

P
ry

m
n

es
iu

m
-C

-a
-4

6
e0

7
.m

1
3

r 
R

as
 r

el
at

ed
 p

ro
te

in
  

-1
26

.7
±8

.8
0 
 

-6
7.

5±
2.

5 
 

-6
9.

5±
7.

14
  

-1
4

4
.2

±
1

0
.2

  
-5

6
.3

±
5

.8
5

  
-8

8
.2

±
9

.4
  

P
ry

m
n

es
iu

m
-C

-a
-6

2
b

0
3

.m
1

3
f 

N
-a

ce
ty

ln
eu

ra
m

in
at

e 

p
h

o
sp

h
at

e 
sy

n
th

as
e 
 

-6
5.

9±
7.

11
  

-4
15

.7
±2

0.
7 
 

-3
.1

1±
0.

18
  

-4
9

.3
±

5
.1

2
  

-3
8

8
.2

±
0

.2
1

  
-4

.0
2

±
0

.3
4

  

Upregulated Downregulated 



Publication 3 

106 
 

2.3.5 Discussion 

Knowledge about the ecological role of phycotoxins is still scarce, despite decades of 

research. Whether or not the mode of action of known phycotoxins in mammalian systems 

reflects (in whole or in part) ecological function as allelochemicals remains under debate. 

The argument that allelochemicals may regulate growth and survival of coexisting species, 

particularly under growth limiting conditions, such as nutrient depletion, is nevertheless 

compelling. In certain cases, phycotoxins have been shown by several studies to have a 

negative effect on zooplankton (Ives, 1985; Huntley et al., 1986) as well as on other 

microalgae (Windust et al., 1996; Keating, 1977).  Specifically, the compounds produced by 

P. parvum have been shown to effect gill breathing organisms (Shilo, 1967), while also 

displaying effects on copepods (Nejsgaard & Solberg, 1996) and other microalgae (Arlstad, 

1991).  

 

Growth and physiology 

 In this study we have used cellular particulate nutrient content (C, N & P) as well as 

dissolved nutrient levels (NO3, PO4 & NH4) as indicators of P-limitation.  The nutrient status 

of the environment within which phytoplankton grow influences their respective cellular 

elemental composition and ratios (Harrison et al., 1988). One effect of nutrient limitation is 

the reduction of intracellular levels of the limiting nutrient thereby reflected in the 

elemental ratios (Cembella et al., 1984; Sakshaug and Olsen, 1986; Darley, 1988).  If the C-

supply is replete, under P- or N-limitation the cellular levels of C increase due to residual C 

following cell division (Cembella et al., 1984).  In our study, cellular particulate nutrient 

content (C, N, P) as well as dissolved nutrient (NO3-, PO4-3 and NH4+) concentrations in the 
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growth medium served as indicators of P-limitation. The cellular carbon content of P-

limited P. parvum cells did not differ significantly from that of the P-replete control culture, 

indicating that P-limitation has only a slight effect on the intracellular carbon content.   

For both nutrient limited and replete control cultures, nutrient quotas and molar 

ratios (C:N, C:P and N:P) were within the range of literature values for P. parvum (Uronen 

et al., 2005, Graneli et Johansson, 2003).  Phosphorus-limited cultures showed expected 

increased in molar ratios (C:P and N:P) whereas P-replete control cultures showed only 

slight deviations from the canonical Redfield ratio C:N:P 106:16:1 (Figs. 2.3.7-2.3.9), widely 

considered to represent balanced growth and developmental conditions in natural 

phytoplankton populations.  A clear separation in growth curves was visible between P-

limited and non-limited control cultures (Fig. 2.3.3), indicating that growth limitation was 

indeed attributable to the restriction in P-supply.  

 

Lytic activity 

 Mixotrophic flagellates such as Prymnesium parvum are both photosynthetic and 

able to take up particulate food.  It has previously been speculated that Prymnesium species 

utilize phagotrophy as a mechanism to obtain essential growth factors, i.e. nutrients for use 

in photosynthetic growth (Caron et al., 1993; Arenovski et al., 1995; Legrand et al., 1998; 

Stoecker et al., 1998).  Feeding may therefore supply the organism with nitrogen and 

phosphorous when concentrations of dissolved inorganic nutrients in the surrounding 

water are limiting (Skovgaard et al., 2006).  It is plausible that Prymnesium parvum may 

incorporate mixotrophic tendencies into its feeding regime, in an attempt i.e. to obtain 

phosphorous, when faced with growth limiting phosphorous concentrations (Nygaard & 
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Tobiesen, 1993, Tillmann, 2007).  This hypothesis (Tillmann, 2007) may explain changes in 

extracellular or secreted lytic activity in cultures stressed by P-limitation. An increase in 

lytic capacity in P. parvum cultures would therefore be expected in response to P-

limitation, if in fact this method is effective to immobilize and ingest prey to obtain organic-

P.  The observed increase in lytic capacity associated with the combination of low salinity 

and P-limitation is, however, a novel observation. This may be explained as an attempt by 

P. parvum cells to maintain membrane homeostasis in the presence of low extracellular ion 

(e.g. Na+) concentrations.  Increasing the permeability or “leakiness” of the external cell 

membrane may increase secretion of intracellular compounds that possess lytic capacity 

and may also interfere with the function of PO4-3 ion transporters. Moreover, the 

phenomenon of increasing lytic activity may be due to increased release of lytic 

compounds, but this mechanism is not necessarily adaptive. The response could be an 

artifact of increased membrane permeability and loss of membrane integrity leading to 

enhanced diffusion of lytic compounds into the extracellular environment.  In the 

erythrocyte lysis assay, the intracellular lytic activity does increase under the combination 

of low salinity and P-limitation, but not nearly to the same extent as observed in the 

Rhodomonas salina bioassay, which is diagnostic for extracellular activity.  This indicates 

that in fact there is an increase in lytic activity of intracellular compounds (however not 

proportional to the increase observed in the R. salina bioassay) and supports the idea that 

the observed increases in extracellular lytic capacity may be due to a compromised less 

selective cellular membrane.  Whether or not this increase in activity is linked to an 

increase in biosynthesis of the same compounds must be further elucidated.   
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Gene expression 

 Our microarray hybridization scheme allowed for qualitative identification of 

groups of genes potentially associated with physiological stress factors, namely low salinity 

and P-limitation.  Overlapping genes found between treatments indicate however that the 

processes of coping with low salinity and P-limitation are not regulated by strictly distinct 

pathways. The identification of 43 genes differentially expressed between 5 psu P-replete 

and 5 psu P–deplete treatments provides circumstantial evidence that genes may be 

specifically regulated by P-nutrient status.  Nevertheless, the identification of 7 

differentially expressed genes (up and downregulated) been the between 26 psu P-replete 

and 5 psu P-replete indicates that the stressor of low salinity also alters gene regulation on 

the transcriptional level (Figure 2.3.11).  26 psu P-deplete and 5 psu P-deplete had 3 

commonly differentially regulated genes (up and downregulated) suggesting these genes 

may play a role in Prymnesium’s response to low salinity stress.  From this qualitative 

analysis, we can discern two principles: 1) specific regulatory pathways associated with 

effects of P- limitation versus low salinity are not easily decipherable, and 2) the 

combination of these two stressors likely involves regulation on another level, such as post 

translational modification.  However, our conclusive interpretation is limited by the 

relatively low number of available annotated sequences for this toxigenic prymnesiophyte, 

and is subject to change considerably with a significantly higher functional annotation. In 

any case, confirmation of selected genes via qPCR reveals a similar finding, in that there 

seems to be little specificity on the level of transcriptional regulation concerning the 

individual stress factors of P-limitation and low salinity.   
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Early previous studies have shown that the relationship between growth and 

toxicity in P. parvum is not simple, and our current  work underscores this complexity. High 

toxicity has been observed with very low cell numbers, contrasting with other cases where 

massive growth of P. parvum did not produce any observable toxic effects in nature (Shilo, 

1967).  It is therefore evident that growth and toxicity are regulated by different factors in 

this prymnesiophyte.  Comparing the capacity of P. parvum to produce toxins under various 

environmental conditions has illustrated that growth and toxicity have different optimal 

requirements (Shilo, 1971).  More specifically, it has long been known that toxicity of this 

species is increased when growth conditions are limiting (Dafni et al., 1972).  These earlier 

observations are supported by our findings, as non-P-limited cultures exhibited smaller 

increases in lytic capacity than P-depleted cells over time in batch growth mode. The effect 

on extracellular toxicity observed for the combination of low salinity and P-limitation is 

however not easily decipherable from our transcriptomic analysis, in terms of its 

regulatory basis. 

Our results confirm that P. parvum does alter its physiology and metabolism when 

P-resources are limiting for growth.  These metabolic shifts are reflected through an 

increase in lytic capacity towards Rhodomonas salina, an increase in hemolytic activity, and 

differential gene regulation between treatments and the P-replete control. From an 

ecological perspective, it is likely although not definitive that these metabolic responses 

and increased lytic activity represent a selective competitive advantage under nutrient-

limited growth conditions. A general transcriptomic approach, supplemented with more 

detailed comparative expression analysis of key regulatory genes provide a platform for 
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further understanding of growth and toxicity of Prymnesium parvum in natural 

populations.    
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Synthesis 

The toxic prymnesiophyte Prymnesium parvum is a harmful algal bloom species with a 

complex life cycle, physiology as well as ecology (Barkoh & Fries, 2010).  It has a haploid-

diploid life cycle, two flagellated stages as well as a non-motile form (Larsen, 1998; Johnsen et 

al., 2010).  These organisms synthesize their own food when inorganic nitrogen and phosphorous 

are abundant (Nicholls, 2003); however when one of both of these nutrients are limited, they 

release a cocktail of chemical compounds (collectively termed prymnesins) that may serve 

various purposes.  Prymnesins lyse or break up cells of other organisms to release available 

nutrients (Estep & McIntyre, 1989) or even immobilize prey for P. parvum to ingest whole 

(Nygaard & Tobiesen, 1993; Johansson & Granéli, 1999; Tillman, 2003).  Prymnesins also play 

a potential role in deterring potential grazers as well as killing or inhibiting the growth of 

coexisting species (Tillmann, 2003; Uronen et al., 2005, Granéli et al., 2008).  Observed changes 

in toxicity and gene expression patterns from the aforementioned studies provide evidence that 

P. parvum does possess a competitive advantage in certain systems.   

Research focusing on P. parvum has been conducted since the late 1930’s, yet no clear 

understanding currently exists concerning the ecology and factors effecting toxicity.  The current 

dissertation exploits recent advances in genomics in combination with toxicity assays, and 

expands current knowledge, particularly concerning the transcriptional regulation of PKS in 

response to specific abiotic stressors and the association with changes in toxicity is valuable 

ecological information concerning this toxic prymnesiophyte.  The work performed in this thesis 

represents the foundation for understanding genotypic and phenotypic relationships in the 

toxigenic P. parvum.  The ecology of this haptophyte is currently poorly understood, despite the 

existence of studies investigating factors such as allelopathy and nutrient limitation.  The most 
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obvious casualty of P. parvum toxicity being fishkill events worldwide (Ulitzur and Shilo, 1966; 

Paster, 1973; Linam et al., 1991), other invertebrates such as planktonic algal species and 

bacteria are also negatively affected (Sarig, 1971; Nygaard and Tobiesen, 1993; Fisterol et al., 

2003).  The latter may be involved in processes such as planktonic community structure, of 

which an improved understanding is crucial to predicting and responding to economically 

detrimental bloom events.   

 

3.1 Molecular advances in harmful algal research 

Prymnesium parvum is as crucial as all other microalgal species to global productivity 

and biogeochemical cycling however the genomic understanding of these organisms is still 

currently at an immature stage relative to comparable projects involving human and plant 

genetics.  Despite limitations in HAB genomic analyses, it is nonetheless crucial to discuss 

which microalgal species are be examined using genomic techniques, the information obtained 

and what this information can tell us about relevant structural, functional, developmental and 

even evolutionary aspects of these organisms (Grossman, 2005).  Collaborative studies 

incorporating traditional phycological approaches and functional genomic experimental piplines 

are providing the further insight needed to better understand the underlying ecology of HABs.     

One of the primary goals of functional genomic studies, as applied to harmful algal 

bloom research, is to describe the gene(s) or gene products associated with toxin production that 

could subsequently be used as markers of toxigenic blooms (Plumley, 1997).  A second 

important goal is to identify genetic expression signatures associated with ecophysiological 

responses to known conditions in the natural environment (Kudela et al., 2010).  Using a stress 

derived cDNA library, I have addressed both these primary goals in the three aforementioned 
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publications.  Through these studies, novel genomic characterizations for the toxic 

prymnesiophyte have been made.   

Application of molecular and functional genomic tools allowed for further 

characterization of factors involved in bloom initiation and development.  Response to abiotic 

shock treatments induced toxicity, particularly high irradiation and low salinity, which was able 

to be correlated with transcriptional regulation of PKS genes.  This is a novel characterization for 

P. parvum.  Microarray gene expression profiling aided in unraveling alleopathic interactions by 

indicating qualitative transcriptional regulatory patterns, distinguishing cell-cell contact vs. 

recognition of chemical cues.  These patterns helped to explain the ecological niche in which P. 

parvum lives, the ways in which gene content have been arranged and potentially modified by 

evolution in response to predator or prey encounters.  Additionally, PKS transcriptional 

regulation analysis via qPCR was able to be associated with changes in P. parvum’s allelopathic 

behavior and lytic capacity.  

 

3.2 Evolutionary significance of interspecific interactions between P. parvum and coexisting          

planktonic species and  

  Interaction of two species rarely indicates a shared interest, either in a particular resource 

or in niche selection.  More often we see the growth of one of these species affected by the other, 

likely in an attempt to outcompete.  In particular, interspecific interactions between members of 

different species i.e. competing for the same resource or space warrant a competitive advantage 

of one over the other.  Production of allelochemicals in this sense can sometimes be considered a 

defense mechanism, and could potentially play a role in structuring the phytoplankton 

community.  In contrast, an increase in growth rate or nutrient uptake independent from 
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production of allelochemical compounds could also provide a competitive advantage.  Increased 

toxicity in P. parvum under phosphorus limitation potentially serves both these purposes.  

Production of alleopathic compounds could be envisioned as a method by which to retard the 

uptake of valuable nutrient by other coexisting species.     

  As shown by Granéli and Hansen (2006), production and/or release of chemical 

compounds may in fact be an evolutionarily developed response to competition, in the presence 

of co-existing species.  Evolutionary biology suggests that these developed responses are 

associated with metabolic cost constraints which we have attempted to observe in our studies, 

either through the gene expression profile, or relative toxicity in P. parvum.  Chemicals 

associated with defense in phytoplankton are very often complex secondary metabolites, whose 

biosynthesis require a plethora of cellular machinery and energy sources.  However, organisms 

such as Alexandrium tamarense that have been studied do not seem to show a reduction in i.e. 

growth rate (Tillmann et al., 2009).  We can therefore presume that using growth rate as a sole 

indicator of the costs involved with the production of chemical defense compounds is an 

insufficient method of characterization.  Even if there is a cost in terms of growth rate, this may 

be compensated for via i.e. production of allelopathic compounds. 

  There are many aspects which speak for evolutionary development playing a role in 

responses such as described in Publication 2 (i.e. increased lytic activity, higher qualititative 

gene expression regulation).  The term “co-evolution” is highly debated by researchers in the 

sense that coexisting species may have parallel developed mechanisms by which they attempt to 

maintain the competitive advantage in limiting systems.  This term refers specifically to selection 

that occurs as a result of interactions between species (e.g. predation or parasitism) where we see 

evolutionary transmission of physiological traits in both species involved (Freeman and Herron, 
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2007).  This principle would theoretically involve recognition on either the infochemical or 

physical encounter (e.g.  via cellular surface receptors), leading to selection of individuals within 

a population that are able to respond appropriately to pressure such as grazing or even nutrient 

limitation.   

 In Publication 2, we demonstrated the difference between cell-cell physical encounter and 

recognition of chemical cues for P. parvum, both on the level of transcriptional regulation (gene 

expression) and toxicity.  We furthermore demonstrated that P. parvum’s response is differential, 

depending on the organism which it encounters.  O. marina is a potential predator.  It is plausible 

that recognition by P. parvum of molecules produced by O. marina contributes to the metabolic 

response we observed (increased toxicity and PKS gene expression).  Such a recognition system 

could have evolutionary implications and indicate a coevolved response by both organisms 

involved.  Furthermore, there is a principal difference in P. parvum’s physiological response 

when confronted with cells vs. chemical cues from the same competitor.  This response also 

leads us to believe that recognition of predator cells has a stronger effect on toxicity and related 

gene regulation in P. parvum.   

 

3.3 Possible role of polyketide synthase enzymes (PKS) in toxic processes originating from 

P. parvum 

Due to the putative polyketide structure of Prymnesin-1 and Prymnesin-2 proposed by 

Igarashi et al. (1996), we focused the qPCR portion of our gene expression analyses on three 

PKS transcripts, identified from a cDNA library (LaClaire 2006).  The role of PKS enzymes in 

the biosynthesis of toxic compounds for P. parvum is not confirmed, however further bioassay-

guided chemical analyses are currently underway (Schug et al., 2010).  Despite the lack of in 
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vivo knowledge concerning biosynthesis of toxic compounds in P. parvum, it is likely that the 

polyketide synthase pathway plays a role based on current characterizations of toxic compounds 

produced by P. parvum.   The data obtained in Publications 1 and 2 of this dissertation support 

the importance of this biosynthetic pathway in toxic processes.   

 
In Publication 1, we demonstrated that high light and low salinity stress induce both the 

highest transcriptional regulation in select PKS transcripts, as well as the largest increases in 

toxicity, both extracellular and intracellular.  Here we observed two general trends in differential 

regulation.  A global regulation pattern was observed for all shock treatments applied, suggesting 

that polyketide synthase enzymes may be involved in general stress responses in P. parvum.  In 

contrast, higher regulatory patterns were observed for the shock treatments of high light and low 

salinity.  These two shock treatments also induced toxicity, as observed in both the Rhodomonas 

salina bioassay as well as the erythrocyte lysis assay.  The causality relationship between 

toxicity and PKS gene expression is however questionable, as transcriptional regulation in other 

shock treatments was observed as well.   

As presented in Publication 2, we found evidence that the same three PKS transcripts 

may serve allelopathic or chemical defense purposes in P. parvum.  In particular in the presence 

of O. marina cells and filtrate, the increase in both PKS transcript copy number over time (Dose 

exposure experiment) and of relative toxicity (both extracellular and intracellular) strongly 

suggests a relationship between PKS gene regulation and a change in the phenotype, namely an 

increase in toxicity.  This relationship however needs further study in order to be confirmed.   
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3.4 Phosphorus limitation and low salinity as a toxigenic trigger  

  As global eutrophic zones increase, the role of nutrient limitation has become an 

important topic when discussing factors involved in bloom formation and toxicity of the 

haptophyte P. parvum.  Imbalances in nutrients such as phosphorous and nitrogen have been 

shown to decrease the growth rate of P. parvum, ultimately leading to an increase in toxicity of 

this microalgal organism (Hallegraeff, 1999; Collins, 1978; Holdway et al., 1978).  Control of 

toxicity via nutrient limitation is therefore a very relevant issue, and must be addressed further to 

gain a more complete understanding of Prymnesium parvum’s ecology (Legrand et al., 2001).   

Considering P. parvum’s notorious physiological flexibility, it is relevant to consider the 

process of mixotrophy when discussing nutrient limitation and observed changes in toxicity.  For 

example, the observed increase in lytic capacity presented in Publication 3 seems logical, if one 

considers the release of organic phosphorus achieved through this process.  This may also be 

viewed as a competitive advantage, in nutrient limited situations.  This is also supported by 

observed increases in both extracellular and intracellular toxicity observed in P. parvum under P-

nutrient limited conditions.  Investigating the combinatory effects of low salinity and phosphorus 

limitation is however a novel experimental design.  The data obtained for Publication 3 strongly 

suggest that these two physiological factors play collaborative roles in toxigenic processes in P. 

parvum.   

Of particular interest is the phenomenon that under the combined stressors of low salinity 

and phosphorous limitation, extracellular toxicity (R. salina bioassay) increases over 1000 fold, 

when compared to intracellular toxicity (erythrocyte lysis assay).  This suggests either 

compromised membrane conditions under phosphorus limitation, or an increase in active 

extracellular transport of bioactive compounds.   
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Functional genomic analysis revealed that in fact there are pathways associated with both 

individual stressors, however, deciphering the gene regulation individually is a daunting task.   

Due to the limited nature of the data set (stress-derived cDNA library) it is possible that an 

increase in annotatable genes may change this analysis dramatically.  This would not however 

change the significant changes in extracellular toxicity observed under P-depleted and low 

salinity conditions.   

 

3.5 Future perspectives 

  Functional genomic approaches are limited in the sense that identification of 

genes and gene products is a database-limited process.  Non-model organisms are therefore at a 

disadvantage, due to time and financial constraints regarding the elucidation of the genome.  The 

three aforementioned studies take advantage of current available information concerning the 

genome of P. parvum, however their limitations must be acknowledged.  As more information 

becomes available, such studies must be further developed to reduce the gap between speculation 

and fact.  To compensate for such shortcomings, it would be necessary to have better gene 

annotations available for functional genomic analysis.  This would greatly improve the search for 

relevant genes and gene products involved in toxic processes.     

 Regarding the coevolutionary development of infochemical sensing and response thereto, 

there are no experiments to date specifically testing this principle in phytoplankton and protists.  

To test such a principle, it would be necessary to have an experimental model involving the 

organism of interest i.e. P. parvum, and two other organisms, one with which Prymnesium  has 

shared an ecological niche and one from a completely isolated niche where no Prymnesium has 

been observed.  This type of experimental setup would provide the evolutionary basis on which 
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to further analyze coevolutionary development of such traits as predation and defense.  Observed 

variations in toxicity such as those seen in Publication 2 provide a useful platform for further 

investigations.  When an allelochemical producer can have negative, neutral as well as positive 

effects this would suggest that target organisms can in fact possess a developed tolerance, similar 

to that observed in hosts and parasites.  In order to test this principle, it would be necessary to 

compare the allelopathic effects of i.e. P. parvum on an organism it has coevolved with, vs. an 

organism it has not coevolved with.   

 Furthermore, until the toxic compounds produced by P. parvum are fully characterized, 

researchers working with Prymnesium parvum must rely on relative bioassays as indicators of 

differential toxicity, such as the two used in this work (R. salina bioassay and erythrocyte lysis 

assay).  The inability to measure distinct chemical compounds in correlation with observed 

toxicity is a handicap in terms of concrete characterization of toxic processes in this haptophyte, 

and is currently a limiting factor in all studies involving this organism.  After the spectrum of 

compounds produced by P. parvum is identified and chemically characterized, studies involving 

this haptophyte can become less speculative and more toxicological in nature.   

 Understanding the complex ecology of P. parvum is a task that will require understanding 

not only of toxicity, but also the metabolic basis behind this.  Techniques such as microarrays as 

a screening tool for relevant genes are useful in identifying which pathways are regulated.  Once 

relevant pathways are identified, molecular methods such as fluorescent microscopy may help to 

identify i.e. localization of enzyme or protein activity.  Knowing where active cellular processes 

are localized would help to understand the physiological phenomena.  The work in this thesis 

represents an initial incorporation of this interdisciniplary approach, and will provide the 

framework for researchers working with P. parvum to further investigate the relationship 
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between toxicity, genes and gene products, as well as to develop a better understanding of the 

ecology of this haptophyte.  Mitigation of harmful algal blooms requires both precise molecular 

genomic as well as ecological knowledge of triggers and environmental factors that catalyze 

these events.  Interdisciplinary approaches are the most effective way to gain this knowledge, 

and will no doubt greatly contribute to future understanding of the complex ecology of P. 

parvum. 
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