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Chapter 1

Introduction

The increasing complexity of the microwave components and antennas in wireless
terrestrial and satellite based communications, as well as in radar and remote sens-
ing applications, demands new levels of efficiency and accuracy of the software tools
utilized for their design and validation. Tight specifications concerning performance,
miniaturization, short production time and low costs represent continuous challenges
in the development of the corresponding simulation/optimization algorithms. More-
over, a microwave device often contains geometrical features that vary in size from
a tiny fraction of a wavelength to hundreds or even thousands of wavelengths, thus
rendering the implementation of the required computer-aided design (CAD) tools
even more challenging.

Approaches to improve the efficiency of the 3-D electromagnetic (EM) field
solvers include the model order reduction (MOR) [1], [2], [3], [4] applied to the
finite element method (FEM) or finite difference (FD) method, the multilevel fast
mulipole algorithm (MLFMA) [5], [6] and the adaptive integral method (AIM) [7]
applied for the fast solution of integral equations discretized by the method of mo-
ments (MoM), sub-grid and conformal techniques [8] used in the FD formulation of
EM problems. Typical electromagnetic simulations using single method 3-D field
solvers - usually based on FEM, FD or MoM - provide high flexibility but often
prove impractical for the design/optimization of real-world microwave devices, even
if the aforementioned acceleration techniques are considered. Fast algorithms like
the mode-matching (MM) method [9], [10], [11], [12] and the boundary integral -
resonant mode expansion (BI-RME) [13], [14] represent efficient alternatives but
ultimately at the expense of flexibility.

A simple procedure of combining different algorithms for the analysis of a com-
plex device is the domain decomposition - the structure under investigation is divided
into building blocks, and each building block is separately computed with the most
efficient method. In a last step, the individual scattering matrices are combined to
yield the generalized scattering matrix (GSM), therefore the simulation algorithms
involved in the domain decomposition are required to be full-wave. Combining dif-
ferent techniques while retaining their advantages and largely removing their disad-
vantages is also referred as hybridization [15]. The procedure dramatically enhances
the simulation efficiency even in the worst case scenario, i.e. a 3-D field solver is
employed to calculate each block. To illustrate this, consider a computational do-
main discretized into N unknowns and divided into M regions of N/M unknowns.
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The overall complexity of MoM 1 is now O
(
M · (N/M)2

)
= O

(
N2/M

)
, or M

times smaller than the single domain computation. In the FEM and FD models
the propagation of the waves takes place through a numerical grid. A small phase
error in the field is usually committed in this mode of field propagation [16], [17].
This error is cumulative, thus the larger the computational domain the larger the
calculation error. As a consequence, the mitigation of the phase error is automat-
ically accomplished by the domain decomposition through the minimization of the
problem size.

The numerical methods presented in this work are designed to be used in a
comprehensive hybrid CAD tool [18] applying the domain decomposition approach.
They are intended for the calculation of those building blocks for which the fast
mode-matching/2-D finite element technique cannot be applied. The algorithms
introduced here are doubly higher order, that is higher order basis functions [19],
[20] are considered for current/field modeling whereas geometry discretization is
performed with triangular/tetrahedral elements of higher polynomial degree.

A numerical method based solely on integral equations is presented in Chap-
ter 2. Here, the electric field integral equation (EFIE) is enforced at conducting
surfaces, whereas the dielectric bodies are handled by the PMCHWT 2 approach
[16], [21], [22], [23], hitherto applied mainly to plane wave scattering problems. The
technique of [24], [25], [26] is extended in the present work by including homoge-
neous dielectrics and the use of higher order methods. Moreover, the use of same
(frequency independent) basis functions at the ports and at the conducting surfaces
is facilitated by the introduction of a new formulation that exhibit none of the dis-
advantages noted in [24], [25], [26], thus yielding an algorithm independent on the
modal excitation. Special attention is given to bodies of revolution (BoR) for which
novel higher order basis functions are constructed.

The finite element - boundary integral (FE-BI) simulation of arbitrary passive
microwave devices is presented in Chapter 3, and represents one step further concern-
ing the flexibility of the structures that can be efficiently calculated. Finite elements
are used to characterize the arbitrarily shaped, possibly anisotropic/inhomogeneous,
domains. The algorithm [27], hitherto applied for free-space plane wave scattering, is
extended here to truncate the computational domain of radiating structures. In con-
trast to classical FE-BI formulations [28], [29], the calculation of boundary integrals
involving the surface divergence of n̂ × f terms 3 is avoided here, thus instabilities
associated with artificial line charges are avoided. Model order reduction (MOR)
techniques are applied for the efficient calculation of the wide-band frequency re-

1The algorithm complexity is the number of required floating point operations. Algorithm com-
plexity of MoM is of the order of N2 [16], where N is the number of unknowns.

2Named after Poggio, Miller, Chew, Harrington, Wu and Tsai, who were among the first to
investigate it.

3n̂ is the surface normal unit vector and f represents a normally continuous (div-conforming)
basis function.
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sponse. Moreover, the passive reduced-order interconnect macro-modeling analysis
(PRIMA) based MOR technique [3], [30] is extended for the treatment of structures
with frequency dependent (inhomogeneous cross-section) waveguide ports, whereas
the well-conditioned asymptotic waveform evaluation (WCAWE) algorithm [4], [31]
is modified to allow multiple right-hand sides (modal excitations).

Rectangular cavities loaded with arbitrarily shaped conductors and and/or di-
electric bodies (see Fig. 4.2) are useful key building blocks for the design of many
common types of microwave components [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45], such as compact filters for terrestrial and space applications, cf. e.g.
[32, 33, 34], or broad-band transitions [46]. Efficient approaches specialized to rect-
angular cavities include the boundary integral - resonant mode expansion (BI-RME)
method [14] and the state-space integral equation method [43]. Although fast, the
technique of [14] is limited to rectangular cavities loaded with radially symmetric
insets whereas the approach presented in [43] can treat only metallic boxes loaded
with cylindrical dielectrics. A novel method for the simulation of rectangular cavi-
ties loaded with conductors and/or dielectrics of arbitrary shape is thus presented
in Chapter 4. Finite elements are employed to characterize the inhomogeneous and
arbitrarily shaped material in the cavity, while integral equations deal with the neces-
sary boundary conditions. The present algorithm extends the known finite element -
boundary integral formulation at radiators/scatterers [27] to shielded environments.
All boundary integrals involving rectangular cavity Green’s functions are efficiently
evaluated utilizing the Ewald transform [47, 48, 49]. There are mainly two factors
responsible for the efficiency of this approach. First, due to the separation of the
Green’s functions into static series (zero frequency limit), whose convergence is en-
hanced with the help of the Ewald transform, and an already convergent dynamic
series (higher frequency correction), the most computationally intensive part of the
algorithm is performed only once in a frequency sweep. Secondly, as a consequence
of the use of the cavity Green’s functions, only a small portion of the computational
domain must be discretized, thus drastically reducing the number of unknowns.

The efficiency and validity of the present algorithms are demonstrated by nu-
merous numerical examples. General conclusions are drawn in the last chapter.





Chapter 2

Integral equation analysis of

general waveguide structures

2.1 Introduction

This chapter presents the free-space integral equation (IE) analysis of general waveg-
uide multiport structures (Fig. 2.1) including homogeneous dielectrics. The electric
field integral equation (EFIE) is enforced at conducting surfaces, whereas the di-
electric bodies are replaced by equivalent sources with the help of the equivalence
principle formulated via the PMCHWT 1 method. The integral equations are solved
by the method of moments (MoM) to yield the surface current densities and other
parameters of interest like the modal scattering matrix, radiated far fields, etc.

The PMCHWT method [21], [22], [16], [23], hitherto applied mainly to scattering
problems, is extended here to yield a stable (resonance-free) algorithm when dealing
with dielectric loaded multiports. The technique of [24], [25], [26] is further extended
by the inclusion of homogeneous dielectrics and the use of higher order methods.
Moreover, the use of same (frequency independent) basis functions at the ports and
at the conducting surfaces is facilitated by the introduction of a new formulation
that exhibit none of the disadvantages noted in [24], [25], [26], thus yielding an
algorithm independent on the modal excitation. Special attention is given to bodies
of revolution (BoR) for which novel higher order basis functions are constructed.

The described method yields the generalized admittance and scattering matrices
of the structure under investigation. This allows the convenient combination with
other powerful techniques, such as the hybrid mode-matching/finite-element tech-
niques [15], for the effective further combination with common elements, e.g. irises,
steps, transitions, etc., which yields the desirable high flexibility for the efficient
analysis/optimization of structures like antennas, filters, diplexers, etc

As a further enhancement, the presented technique is fully higher order, i.e. the
electric and magnetic sources are modeled by higher polynomial order basis func-
tions while curved surfaces are discretized by second or third order curved triangles.
Moreover, hierarchical divergence-conforming basis functions, are derived from hi-
ererchal curl-conforming functions which are presented in the finite element method
(FEM) literature (e.g. [20]).

1Named after Poggio, Miller, Chew, Harrington, Wu and Tsai, who were among the first to
investigate it.
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Since many waveguide structures (especially antennas) exhibit rotational sym-
metry (e.g. dielectric loaded conical horn antennas, paraboloidal reflectors, etc.),
special attention is given to bodies of revolution (BoR). Novel higher order BoR ba-
sis functions are constructed whereas the body’s generatrix is discretized by higher
degree spline curves.

2.2 MoM formulation

The problem depicted in Fig. 2.1 is formulated, in this section, with the help of mixed
potential integral equations that are further discretized by MoM. A new formulation,
finally stated in (2.66) in matrix form, is derived in this section. This new approach
removes the drawbacks noted in [24], [25], [26], hence permitting the use of same
(frequency independent) basis functions at the ports and at the conducting surfaces,
thus yielding an algorithm independent on the number/type of waveguide modes.

Fig. 2.1 shows he geometry of a general multiport structure. An arbitrarily
shaped cavity containing a number of prerfect electric conductors (PEC) and homo-
geneous dielectric bodies is fed by n waveguides through n apertures designated as
Sp,1, Sp,2, ..., Sp,n. The cavity may be closed or open, that is, it may have an aperture
through which it can radiate into the free space.

S1

S2

Sn

dielectric body

dielectric body

PEC body

Waveguide 1

Waveguide 2

Waveguide n

Figure 2.1: Multiport structure, original problem.

The equivalence principle [50, 51, 52, 53] will be first used at the port apertures.
Accordingly, the structure under investigation is divided into two regions [26],[25]:
Regions I and II, as shown in Fig. 2.2. Region I is further divided in n sub-
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n̂

n̂

n̂

n̂

n̂

Region I

Region I

Region II

dielectric

dielectric

PEC

S2

S1

−J1,−M1

J1, M1

n̂

Jn, Mn

Region II
−Jn,−Mn

Sn

J2

J3

J3

J3

n̂

S3

S3

J3

Region I

Sp,1 Sp,2

Sp,n

Mp,1

−Mp,2

Mp,2

−Mp,n

Mp,n

−Mp,1

Figure 2.2: Multiport structure, equivalent problem.

regions corresponding to the n waveguides connected to the multiport structure.
Region I and region II are separated by a (fictitious) infinitely thin perfectly electric
conductor (PEC) of surface Sp = Sp,1 + Sp,2 + ... + Sp,n. In order to maintain the
original problem, magnetic current densities MP = E × n̂, of equal magnitude
and opposite sign are introduced on both sides of the surface Sp, which restores
the continuity of the tangential electric field on the surface Sp. Here, n̂ is the
ports unit normal vector directed from region I towards region II, and MP =
{MP,i, i = 1, 2, ..., n}.

The continuity of the tangential magnetic field on the surface Sp reads

HI
tan = HII

tan, (2.1)

where HI
tan is the tangential magnetic field on the region I side of Sp, and HII

tan

represents the tangential magnetic field on the region II side of Sp. Moreover

Hinc
tan + HI

tan(−Mp) = HII
tan(MP ,J,M), (2.2)

where Hinc
tan, HI

tan(−Mp) and HII
tan(MP ,J,M) are the incident magnetic field tan-

gential to Sp in region I, the linear operator for the scattered tangential magnetic
field in region I (the field generated by the magnetic current density −Mp in region
I) and the linear operator for the scattered tangential magnetic field in region II
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(the field generated by the magnetic current density MP , electric current density J
and magnetic current density M in region II), respectively. Furthermore, we have

Hinc
tan = HI

tan(MP ) + HII
tan(MP ,J,M), (2.3)

since HI and HII are linear operators.

The magnetic current density MP is approximated by set of NP linearly inde-
pendent basis functions MP = {MP,i, i = 0...NP }

MP =
NP∑
i=1

viMP,i, (2.4)

where vi are unknown expansion coefficients for the magnetic current density on the
surface Sp = Sp,1 + Sp,2 + ... + Sp,n.

Introducing a set of NP linearly independent test functions {Ti, i = 1 . . . NP }
and taking the inner product of equation (2.3), while considering the expansion
(2.4), yields:

⟨
Ti,Hinc

tan

⟩
=

⟨
Ti,

NP∑
i=1

vjHI
tan(MP,j)

⟩
+

⟨
Ti,

NP∑
i=1

vjHII
tan(MP,j ,J,M)

⟩
, (2.5)

or in matrix notation: [
Iinc

]
= (
[
Y I
]
+
[
Y II

]
) [V ] , (2.6)

where [
Iinc

]
i
=
⟨
Ti,Hinc

⟩
, (2.7a)[

Y I
]
ij

=
⟨
Ti,HI

tan(MP,j)
⟩
, (2.7b)[

Y II
]
ij

=
⟨
Ti,HII

tan(MP,j ,J,M)
⟩
, (2.7c)

[V ]i = vi. (2.7d)

The computation of the excitation vector
[
Iinc

]
and admittance matrices

[
Y I
]

and
[
Y II

]
will be detailed in the next sections. Once

[
Iinc

]
,
[
Y I
]

and
[
Y II

]
are

known, the system (2.6) can be solved for [V ], and the magnetic current densities
MP at the ports are found by replacing the coefficients vi back into (2.4).

2.2.1 Computation of the admittance matrix of region I

The transversal electric and magnetic fields, in an z-directed infinitely long waveg-
uide, are [54]
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Etan(r) =
∑

i

c+
i e−iβzei(r) +

∑
i

c−i eiβzei(r),

Htan(r) =
∑

i

Yic
+
i e−iβz · ẑ × ei(r) −

∑
i

Yic
−
i eiβz · ẑ × ei(r),

(2.8)

where r, c+
i , c−i , Yi, ei ẑ, i, β are the position vector, the amplitude of the for-

ward wave, the amplitude of the reflected wave, the characteristic modal admit-
tance, waveguide eigenvectors, unit vector pointing in the positive direction of axis
z, imaginary number and the waveguide propagation constant, respectively. The
eigenvectors are presumed to satisfy the orthonormality relation∫

Sp

em(r)en(r)dS = δmn, (2.9)

with δmn being the Kronecker delta function.

Without loss of generality one can consider that the port surfaces Sp are placed
at the z = 0 plane. Let us consider a forward (towards Sp) propagating modal field
in the form

Etan =
∑

i

ainc
i e−iβzei, (2.10)

Htan =
∑

i

Yia
inc
i e−iβz · ẑ × ei. (2.11)

As Sp are perfect conducting surfaces, the fields are totally reflected, thus giving

Einc
tan (r ∈ Sp) = 0, (2.12)

Hinc
tan (r ∈ Sp) = 2

∑
i

Yia
inc
i · ẑ × ei. (2.13)

Expanding MP in a modal series

MP =
∑

i

a−i ei, (2.14)

yields the total tangential fields at region I side of the ports

EI
tan(r ∈ Sp) =

∑
i

a−i ei, (2.15)

HI
tan(r ∈ Sp) = 2

∑
i

Yia
inc
i · ẑ × ei −

∑
i

Yia
−
i · ẑ × ei, (2.16)
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where a−i are unknown amplitudes to be determined. From (2.15) we get

Mp = EI × n̂ =
∑

i

a−i ei × n̂. (2.17)

The above relation is multiplied with ej × n̂ and integrated over Sp, yielding∑
k

vk

∫
Sp

MP,k · ei × n̂ · dS =
∑

i

a−i

∫
Sp

ei × n̂ · ej × n̂ · dS. (2.18)

Due to the orthonormality of the eigenvectors (2.9), the amplitudes a−i can be ex-
tracted from the previous equation, giving

a−i =
∑

j

vj

∫
Sp

ei × n̂ · MP,j · dS︸ ︷︷ ︸
Aij

=
∑

j

vjAij . (2.19)

Replacing (2.19) in the expression of the transverse magnetic field from (2.16) yields

HI = 2
∑

i

Yia
inc
i · n̂ × ei︸ ︷︷ ︸

Hinc

+
∑

i

Yi · n̂ × ei

∑
j

vj

∫
Sp

n̂ × ei · MP,j · dS︸ ︷︷ ︸
HI(MP )

. (2.20)

Testing the above equation with the functions {Tk} (see previous section), we get⟨
Tk,HI

⟩
= 2

∑
i

Yia
inc
i ⟨Tk, n̂ × ei⟩

+
∑

i

Yi ⟨Tk, n̂ × ei⟩
∑

j

vj

∫
Sp

n̂ × ei · MP,j · dS. (2.21)

Finally, the expressions for the waveguide region admittance matrix and modal
excitation matrix are, respectively[

Y I
]

= [A]
[
Y W

]
[B] , (2.22)[

Iinc
]

= 2ainc
i [A]

[
Y W

]
, (2.23)

where

[A]ki = ⟨Tk, n̂ × ei⟩ , (2.24)

[B]in = ⟨MP,n, n̂ × ei⟩ , (2.25)[
Y W

]
= diag [Yi] . (2.26)
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2.2.2 Computation of the admittance matrix of region II

Until now, the equivalent problem at the ports has been formulated in terms of
equivalent magnetic sources, which preserve the continuity of the tangential electric
field at port apertures, while the tangential magnetic field continuity on Sp has been
enforced through the boundary equation (2.3).

The surface equivalence principle is further used to describe the homogeneous
dielectrics in region II. Fig. 2.3(a) depicts a homogeneous dielectric body. Region
1 represents the free space of permittivity ε0 and permeability µ0, while region 2
denotes the interior of the body characterized by the relative permittivity εr and
relative permeability µr. The fields in region 1 are E1, H1, whereas E2, H2 denote
the fields throughout region 2. Using the surface equivalence principle, the original
problem depicted in Fig. 2.3(a) will be replaced by equivalent sources that replicate
the original fields in both regions.

ε0εr

n̂
ε0
µ0

µ0µr

E2, H2

E1, H1

(a) The original problem.

ε0

n̂
ε0
µ0

µ0

E1, H1

E2 = 0, H2 = 0

J1 = n̂ × H1 M1 = E1 × n̂

(b) The exterior problem.

ε0εr

µ0µr
ε0εr

µ0µr

n̂

E1 = 0, H1 = 0

E2, H2

J2 = (−n̂) × H2 M2 = E2 × (−n̂)

(c) The interior problem.

Figure 2.3: The equivalence principle.

The exterior problem, as shown in Fig. 2.3(b), is constructed by defining electric
and magnetic sources

J1 = n̂ × H1, (2.27)

M1 = E1 × n̂, (2.28)

and placing them, just outside, on the bounding surface of the body. Here n̂ is
the surface outward normal unit vector. These sources produce the fields E1, H1

throughout region 1 and null fields in region 2. Because null fields are produced in
region 2, medium 2 can be filled with the same material (ε0, µ0) as region 1 without
changing E1 and H1. Thus, the sources J1 and M1, radiating in free space, replicate
the fields throughout region 1, or, the exterior part of the original problem in Fig.
2.3(a) has been replaced by the equivalent problem depicted in 2.3(b).

A second equivalence is now needed to describe the interior problem. Again,
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equivalent sources are introduced as

J2 = (−n̂) × H2, (2.29)

M2 = E2 × (−n̂) , (2.30)

and placed, just inside, on the boundary of the original scatterer, as shown in Fig.
2.3(c). J2 and M2 replicate the fields in region 2 and produce zero fields in region
1, hence, region 1 can be filled with the constitutive material of medium 2, without
perturbing E2 and H2. Thus, the newly introduced sources radiate in the infinite
homogeneous space of parameters εrε0, µrµ0.

The tangential continuity of the electric and magnetic fields at the interface
between the dielectric and the free space reads

J2 = −J1 (2.31)

and
M2 = −M1, (2.32)

which brings us to the situation in Fig. 2.2, where electric and magnetic current
densities of equal magnitude and opposite sign are used to replace the dielectrics in
region II.

In the case of perfectly conducting scatterers the boundary conditions read

Etan = n̂ × E = 0, (2.33)

on its surface, yielding

J1 = n̂ × H1, (2.34)

M1 = 0 (2.35)

for the exterior problem, while no interior problem exists due to the impenetrability
of a perfectly conducting body.

Returning to the case of Fig. 2.2, on each dielectric surface Si we have

n̂ ×
[
EII (J) + EII (M) + EII (MP )

]
= −M, (2.36)

−n̂ ×
[
−Ein (J) − Ein (M)

]
= M, (2.37)

n̂ ×
[
HII (J) + HII (M) + HII (MP )

]
= J, (2.38)

−n̂ ×
[
−Hin (J) − Hin (M)

]
= −J, (2.39)

where EII ,HII and Ein,Hin represent the field operators in region II and interior
dielectric regions, respectively.

Different MoM formulations are found by choosing different combinations of
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(2.36) - (2.39) :

PMCHWT:

(2.36) + (2.37)

(2.38) + (2.39)
(2.40)

Mueller:

(2.36) − εr(2.37)

(2.38) − µr(2.39)
(2.41)

CFIE:

α(2.36) + (1 − α) (2.38)

α(2.37) + (1 − α) (2.39)
(2.42)

EFIE:

(2.36)

(2.37)
(2.43)

MFIE:

(2.38)

(2.39)
(2.44)

The PMCHWT formulation [21], [22] is named after Poggio, Miller, Chew, Harring-
ton, Wu and Tsai, who were among the first to investigate it. Both PMCHWT
and Mueller [55] formulations combine interior and exterior equations. The com-
bined field integral equation (CFIE) represents linear combinations of the electric
field integral equation (EFIE) and magnetic field integral equation (MFIE). The
combinations are performed separately for the exterior and interior regions and the
parameter α ∈ [0, 1] is chosen a priori. One easily remarks that the CFIE degenerates
into EFIE or MFIE if α = 1 or α = 0, respectively. Using MoM to solve the EFIE or
MFIE formulations is known to be prone to internal resonance problems [16], [28],
[6], i.e. the algorithm breaks in the vicinity of the internal resonant frequencies of
the conducting cavity formed by the boundary surface of the dielectric. All other
formulations (PMCHWT, Mueller and CFIE) are resonance-free when discretized by
MoM. When the CFIE is discretized with identical basis functions for both electric
and magnetic sources, special testing procedures must be carried out [6], in order
to catch the singular behavior of the integral operators, yielding an undesired fea-
ture: Line charges are introduced and line integrals must be evaluated to account for
these charges. PMCHWT and Mueller formulations do no exhibit this drawback.
PMCHWT is more attractive than Mueller in terms of practical implementation
[23], when direct linear solvers are used, while a variation of the Mueller formula-
tion, called N-Mueller [56], leads to a well-conditioned matrix equation suitable for
iterative solving.

The PMCHWT formulation shall be further considered for dielectrics, since di-
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rect equation solvers are used here. Thus, from (2.36) - (2.39) and (2.40), one gets[(
EII + Ein

)
(J) +

(
EII + Ein

)
(M) + EII (MP )

]
tan

= 0, (2.45a)[(
HII + Hin

)
(J) +

(
HII + Hin

)
(M) + HII (MP )

]
tan

= 0. (2.45b)

Back to Fig. 2.2, in case of conducting bodies, the boundary conditions read

[
EII (J) + EII (M) + EII (MP )

]
tan

=

n̂ × MP on port

0 otherwise
EFIE (2.46)

[
HII (J) + HII (M) + HII (MP )

]
tan

= J × n̂ MFIE (2.47)

Only one of the equations (2.46), (2.47) is sufficient to model the conducing parts
of the structure, or a linear combination in form of α EFIE +(1 − α) MFIE may be
employed to yield the CFIE. When MFIE is enforced on open conducting surfaces,
line charges accumulate on the boundary of the surface. Line integrals must be then
calculated to account for these charges, rendering the MFIE an unsuitable choice.
Since MFIE is part of CFIE, neither of these two formulations shall be used when
dealing with open conducting bodies. EFIE does not exhibit this limitation, hence
it can be safely considered for both open and closed conductors.

Summarizing the equations for region II, we have[(
EII + Ein

)
(J) +

(
EII + Ein

)
(M) + EII (MP )

]
tan

= 0 on dielectric,
(2.48a)[(

HII + Hin
)
(J) +

(
HII + Hin

)
(M) + HII (MP )

]
tan

= 0 on dielectric,
(2.48b)[

EII (J) + EII (M) + EII (MP )
]
tan

= 0 on PEC,

(2.48c)[
EII (J) + EII (M) + EII (MP )

]
tan

= n̂ × MP on port.
(2.48d)

The scattered fields E(J,M) and H(J,M) can be convenientely expressed as func-
tions of two linear operators L and K [6]

E (J) = −ηβLβ (J) , (2.49a)

E (M) = −Kβ (M) , (2.49b)

H (J) = Kβ (J) , (2.49c)

H (M) = − 1
ηβ

Lβ (M) , (2.49d)
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with

Lβ (S;x) = ikβ

∫∫
S

Gβ

(
r, r′

)
x
(
r′
)
dS′ − ∇

ikβ

∫∫
S

Gβ

(
r, r′

)
∇′x

(
r′
)
dS′, (2.50a)

Kβ (S;x) = ∇×
∫∫

S
Gβ

(
r, r′

)
x
(
r′
)
dS′ =

∫∫
S
∇Gβ

(
r, r′

)
× x

(
r′
)
dS′, (2.50b)

where

Gβ

(
r, r′

)
=

e−ikβ |r−r′|

4π |r − r′|
(2.51)

is the free space Green function, β denotes the homogeneous unbounded medium
where the operators are evaluated , ηβ is the characteristic impedance of the re-
spective medium and r, r′ are the observation and source points, respectively. With
these considerations, (2.48) becomes[(

ηIIL
II + ηinLin

)
(J) +

(
KII + Kin

)
(M) + KII (MP )

]
tan

= 0, (2.52)[
−
(
KII + Kin

)
(J) +

(
1

ηII
LII +

1
ηin

Lin

)
(M) +

1
ηII

LII (MP )
]

tan

= 0, (2.53)

[
ηIIL

II (J) + KII (M) + KII (MP )
]
tan

=

{
−n̂ × MP on port

0 on PEC
(2.54)

Making the notation

KII
tan (MP ) ≡

{
KII

tan (MP ) + n̂ × MP on port

KII
tan (MP ) otherwise

, (2.55)

i.e. the port boundary condition in the in the EFIE (2.54) is incorporated in the
KII (MP ) operator. Equation (2.54) can be considered a special case of (2.52), with
vanishing M, Lin and Kin. Therefore the EFIE will not be explicitely stated.

Similarly to the port expansion (2.4), the electric and magnetic current densi-
ties in region II are approximated by linearly independent basis functions {Ji, i =
1...NJ} and {Mi, i = 1...NM}, respectively. Thus

J =
NJ∑
i=1

uiJi, (2.56)

M =
NM∑
i=1

wiMi. (2.57)

The testing procedure of (2.52), (2.53) will be carried out with the same basis
functions used in (2.56) and (2.57). The use of identical test and expansion functions
is usually referred as Galerkin testing.
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Taking the inner products of (2.52) with {Ji, i = 1...NJ}, and of (2.53) with
{Mi, i = 1...NM}, yields

⟨
Jm,

NJ∑
n=1

(
ηIIL

II + ηinLin
)
(Jn)

⟩

+

⟨
Jm,

NM∑
n=1

(
KII + Kin

)
(Mn)

⟩

+

⟨
Jm,

NP∑
n=1

KII (MP,n)

⟩
= 0, for m = 1 . . . NJ , (2.58a)

−

⟨
Mm,

NJ∑
n=1

(
KII + Kin

)
(Jn)

⟩

+

⟨
Mm,

NM∑
n=1

(
1

ηII
LII +

1
ηin

Lin

)
(Mn)

⟩

+

⟨
Mm,

NP∑
n=1

1
ηII

LII (MP,n)

⟩
= 0, for m = 1 . . . NM . (2.58b)

In matrix notation:

[
RJJ

]
[U ] +

[
RJM

]
[W ] +

[
P JM

]
[V ] = 0, (2.59)[

RMJ
]
[U ] +

[
RMM

]
[W ] +

[
PMM

]
[V ] = 0, (2.60)

or, in a more compact form[ [
RJJ

] [
RJM

][
RMJ

] [
RMM

]]︸ ︷︷ ︸
[R]

[
[U ]

[W ]

]
︸ ︷︷ ︸

[X]

+

[ [
P JM

][
PMM

]]︸ ︷︷ ︸
[P ]

[V ] = 0. (2.61)

The matrix equation

[R] [X] + [P ] [V ] = 0 (2.62)

represents the coupling between the unknown electric and magnetic current densi-
ties in region II (matrix [X]) and the unknown port current density (matrix [V ]).
Moreover

[X] = − [R]−1 [P ] [V ] . (2.63)
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The inner product matrices are given by[
RJJ

]
mn

=
⟨
Jm,

(
ηIIL

II + ηinLin
)
(Jn)

⟩
, (2.64a)[

RJM
]
mn

=
⟨
Jm,

(
KII + Kin

)
(Mn)

⟩
, (2.64b)[

RMJ
]
mn

=
⟨
Mm,

(
−KII − Kin

)
(Jn)

⟩
, (2.64c)[

RMM
]
mn

=
⟨
Mm,

(
1

ηII
LII +

1
ηin

Lin

)
(Mn)

⟩
, (2.64d)[

P JM
]
mn

=
⟨
Jm, KII (MP,n)

⟩
, (2.64e)[

PMM
]
mn

=
⟨
Mm,

1
ηII

LII (MP,n)
⟩

, (2.64f)

[U ]m = um, (2.64g)

[W ]m = wm. (2.64h)

The total magnetic field in region II is

HII(MP ,J,M) = HII(MP ) + HII(J) + HII(M).

Testing the previous equation with the same set of basis {Ti, i = 1 . . . NP } as (2.5),
gives⟨

Ti,HII(MP ,J,M)
⟩

=
⟨
Ti,HII(MP )

⟩
+
⟨
Ti,HII(J)

⟩
+
⟨
Ti,HII(M)

⟩
. (2.65)

Observing that
⟨
Ti,HII(MP ,J,M)

⟩
=
[
Y II

]
[V ], the following matrix equation

holds [
Y II

]
[V ] =

[
FMM

]
[V ] +

[[
GMJ

] [
GMM

]]︸ ︷︷ ︸
[G]

[
[U ]

[W ]

]
︸ ︷︷ ︸

[X]

.

Replacing [X] from (2.63) and removing [V ], we get the final expression for
[
Y II

]
[
Y II

]
=
[
FMM

]
− [G] [R]−1 [P ] , (2.66)

where the involved matrices are[
FMM

]
mn

=
⟨
Tm,HII(MP,n)

⟩
= − 1

ηII

⟨
Tm, LII (MP,n)

⟩
, (2.67a)[

GMJ
]
mn

=
⟨
Tm,HII(Jn)

⟩
=
⟨
Tm, KII (Jn)

⟩
, (2.67b)[

GMM
]
mn

=
⟨
Tm,HII(Mn)

⟩
= − 1

ηII

⟨
Tm, LII (Mn)

⟩
, (2.67c)
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and a notation similar to (2.55) is assumed, that is

KII
tan (J) ≡

{
KII

tan (J) + n̂ × J on port

KII
tan (J) otherwise

. (2.68)

Another expression for the admittance matrix
[
Y II

]
can be obtained by taking

into consideration the linearity of the HII operator together with the magnetic field
boundary condition at the ports [26], [25]

n̂ × HII(r) = J(r) ∀ r ∈ Sp. (2.69)

Then
NP∑
n=1

vn

⟨
Tm,HII(MP,n,J,M)

⟩
=

NJ∑
k=1

uk ⟨Tm,Jk × n̂⟩ (2.70)

or, if matrix notation is used, we have[
Y II

]
[V ] = [Q] [U ] , (2.71)

where

[Q]mn = ⟨Tm,Jn × n̂⟩ . (2.72)

More convenient is to determine
[
Y II

]
as a function of already available matrix

[X] from (2.63). This can be accomplished by zero-padding the matrix [Q], yielding

[
Y II

]
[V ] =

[
[Q] [0]

] [ [U ]

[W ]

]
︸ ︷︷ ︸

[X]

= −
[
[Q] [0]

]
[R]−1 [P ] [V ] . (2.73)

Finally [
Y II

]
= −

[
[Q] [0]

]
[R]−1 [P ] . (2.74)

The formulations (2.66) and (2.74) are theoretically equivalent, but numerically
different. In (2.66) and (2.67) the magnetic field operator matrices

[
FMM

]
,
[
GMJ

]
and

[
GMM

]
must be calculated, while formulation (2.74) needs only the computation

of the inner products matrix [Q]. This renders formulation (2.66) slightly more
computationally intensive than (2.74). However, a closer look to (2.74) reveals an
undesired feature: If the testing functions {Ti} are identical to the electric current
density basis functions {Ji}, the testing procedure will fail for [Q], because its self
elements do always vanish, that is ⟨Jm,Jm × n̂⟩ = 0, as it represents the inner
product of two spatially orthogonal vectors. This problem was also noted in [26]
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and [25], as well as in [6] where the authors solve the CFIE for a homogeneous
dielectric body and use Rao-Wilton-Glisson (RWG) basis functions [57] to model
both electric and magnetic current densities. The new formulation (2.66) overcomes
this limitation.

2.3 Basis functions

The rationales behind the choice of the basis functions are discussed in this section.
Hierarchical divergence-conforming basis functions are derived, in a simple manner,
from curl conforming higher order basis functions. For the case of bodies of revolu-
tion, novel bases of higher polynomial order are constructed along its generatrix.

2.3.1 Basis functions for triangular patches

The first step in the implementation of the boundary integral formulation is the
discretization of the geometry of the structure under consideration, procedure called
meshing, i.e. the division of the boundary of the structure into a number of surface
elements on which the basis functions will be later defined.

The triangular mesh element is by far the most flexible element when complex,
arbitrarily shaped, geometries need to be investigated. Moreover, curved geometries
must be considered. Meshes composed of first order (flat) triangular patches cannot
accurately model curved boundaries in a reasonable manner. Accurate modeling of
curved surfaces demand an increases in the number of mesh elements resulting in
the (sometimes unneeded) increase in the number of basis functions used for current
density representation which, in turn, unnecessarily increases the computational
effort. Moreover, higher order basis functions would make no sense in conjunction
with very dense meshes as the number of unknowns can be extremely large.

Accurate meshes of minimal size require the use of higher order curved triangles.
While curved patches introduce some additional computational complexity, their
use is totally justified. Thus, an efficient implementation should use flat elements
on the planar parts of the geometry, while curved triangles should model curved
boundaries. Parametric triangles up to the third polynomial order are utilized in
the implementation of the present MoM algorithm.

Another crucial step in the discretization of the integral equations is the selec-
tion of the basis and test functions. Divergence conforming basis functions, i.e.
vector functions that preserve the continuity of the normal component of the cur-
rent densities at the mesh edges, are the most suitable for the discretization of the
inner product involving the EFIE operator L. In case of non divergence-conforming
functions, the continuity equations demand the presence of line charges at the mesh
edges, which usually cause inconsistencies and anomalies in the solution.

The most popular triangular-patch divergence conforming functions are the ones
introduced by Rao, Wilton and Glisson (RWG) [57]. Due to their constant diver-
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gence, the RWG are zero order bases, i.e. the divergence is modeled by a zero order
polynomial.

Higher order functions are often preferred due to their improved convergence
properties. Much of the development of higher order functions has been done by the
FEM comunity [58], [20], [59], as for the divergence-conforming basis we note those
introduced by Graglia et al [19] (interpolatory) and Cai et al [60] (hierarchical) for
triangular patches, and Kolundzija [23],[61] for quadrilateral elements (hierarchical).

The computational efficiency of the Kolundzija functions increases as their or-
der increases, making them suitable for patches whose electrical dimensions are
relatively large. Electrically large patches must be themselves of high geometric or-
der(e.g. spline or NURB surfaces), in order to accurately model curved boundaries,
thus augmenting the computational effort, while some geometries contain details
not suitable for coarse meshing. These two drawbacks and the lack of robust higher
order quadrilateral meshing tools render the Kolundzija basis somehow less attrac-
tive for this work. Numerical experiments have been performed with quadrilaterals
basis. While very accurate results have been obtained, the computation time did
not come close to expectations, mainly due to the bad quality of the quadrilateral
mesh constructed from a triangular mesh, using triangle recombination.

Regarding the triangular basis functions of Graglia [19] and Cai [60], functions up
to polynomial order of two have been used to analyse a large number of structures.
The interpolatory basis of Graglia [19] were found to have better convergence.

The interpolatory basis have the advantage of excellent linear independence, but
in the same time they share the drawback of being non-hierarchical, i.e. the p-th
order basis set is totally different from the lower order sets, thus mixing different
orders within the same mesh (p-adaptation), while still preserving normal continuity,
is impossible.

In the case of the hierarchical functions, the basis of order p − 1 represent a
subset of the basis of order p, hence p-adaptation can be used. Hierarchical curl
conforming basis (basis that preserve tangential continuity) defined on triangles are
widely used in FEM calculations [20], [62]. Divergence conforming functions can
be simply constructed starting from the curl conforming ones by taking the cross
product with the triangle’s normal unit vector

Fdiv = n̂ × Fcurl, (2.75)

where Fdiv and Fcurl are the divergence and curl conforming basis, respectively.

2.3.2 Basis functions at the ports

The currents densities J and M in (2.56) and (2.57) are approximated by the inter-
polatory or hierarchical basis outlined earlier. The expansion of the port magnetic
current density (2.4) can be performed using the same basis only if formulation (2.66)
is used, as explained in Section 2.2.2. A choice that raises no difficulties with both
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(2.66) and (2.74) formulations, is the use of the port eigenvectors as basis functions
in (2.4). Since the magnetic current density must satisfy M = E × n̂, an obvious
choice is

MP =
NP∑
i=1

vi (ei × n̂) , (2.76)

where ei are the electric eigenvectors of the port.

2-D FEM computed eigenvectors can be employed if ports are arbitrarily shaped.
First order basis expansions of the electric potential throughout the FEM calcula-
tion yield divergenceless eigenvectors. Although there are no difficulties associated
with the FEM calculation itself, the MoM algorithm needs the divergence of the
port magnetic current density. In this case, we are left with the formulation (2.66)
in conjuction with triangular patch basis for the modeling of the port magnetic cur-
rent density, as formulation (2.74) yields a singular

[
Y II

]
matrix if the same basis

approximate both electric and magnetic current densities (see Section 2.2.2).

2.3.3 Basis functions for bodies of revolution (BoR)

The surface of a body of revolution (BoR) is generated by revolving a plane curve
around an axis (e.g. z axis). The surface and coordinate system of a BoR are shown
in Fig. 2.4. Here ϱ, ϕ and z are the usual cylindrical coordinates and t is the length
variable along the surface generatrix.

The discretization of a BoR resumes to the discretization of its generatrix. Thus,
the generating curve of the body is divided into linear or curved segments along
t. The problems outlined in the case of triangular surface meshes are valid here
too. Briefly, accurate modeling of the generatrix demands the use of higher order
curved segments, whereas accurate and efficient modeling of the sources require the
corresponding basis functions are of higher order along t.

The surface current density on a BoR can be can be separated in t-directed and
ϕ-directed components, and due to the rotational invariance of Maxwell’s equations,
Fourier series expansion of the azimuthal variation of each component can be per-
formed [63]. Although linear basis are usual for the modeling of t-directed current
densities, higher order polynomial functions are introduced here for improving con-
vergence. Therefore, on each segment sn, the t component of the current densities
can be expanded in terms of:
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Figure 2.4: BoR coordinate system.

fk
n (u ∈ [0, 1]) =


u on s+

n and k = 1

1 − u on s−n and k = 1

u − uk on s±n and k > 1

0 otherwise

(2.77)

The junction functions f1
n (u) have a linear variation from zero, at the end point

of segment s+
n or s−n , to unity, at the opposite end point. They are used to ensure

the current continuity at the segments interface, hence, the basis defined on two or
more adjacent segments must be combined into doublets or multiplets. The segment
or interior higher order functions fk

n (u), k > 1 vanish at both segment ends, hence
they do not participate at the continuity of the junction currents, their role is to
improve the current density representation within the segment.

2.4 Matrix element evaluation

Since the regular integrals involved in the present formulation are evaluated without
any difficulty using Gaussian quadrature rules, the calculation of the corresponding
singular integrals is briefly discussed here.

In the case of triangular meshes, a very popular method is the singularity extrac-
tion technique [64]. Unfortunately it cannot be applied to curved triangles, so we
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turn out attention to more general singularity handling procedures, i.e. the singu-
larity cancellation method [65], [66], [67], [68]. Probably the most popular numerical
cancellation technique is the one known as the Duffy method [69]. It can handle
singularities of order R−1, which makes it suitable for the calculation of singular
or near singular potential integrals, i.e. integral involving the L operator (equation
(2.50a)). However it has two drawbacks. First, it produces an angular variation
about the singular point in the resulting integrand, and second, it does not work
well for the near-singular case [65]. The algorithms developed by Khayat and Wilton
[65], [66] overcome the disadvantages of the Duffy method. The hypersingular in-
tegrals involving the K operator (see (2.50b)) are evaluated as Cahchy’s principal
value integrals, hence only the near-singular case is of interest. In a similar manner
with the singular potential integrals case, numerical cancellation methods were de-
veloped in [67] and [68], to handle near-singularities of order R−2. Details for the
singularity cancellation method are presented at Appendix A.

For the case of axially symmetric bodies, the use of curved segments demands
the development of a new singularity integration procedure. The thin wire ker-
nel singularity handling algorithm [70] is extented at Appendix B to calculate the
corresponding singular integrals involved in the BoR formulation.

2.5 Symmetry walls

Many structures to be analyzed have one or two symmetry planes, thus only 1/2
or 1/4 of the geometry can be discretized resulting in dramatic savings of both
memory consumption and CPU time. Since the complexity of the MoM algorithm
is of order N2 (N is the number of unknowns), the introduction of one symmetry
plane theoretically improves the overall performance by a factor of four. Considering
two symmetry planes would yield a theoretical reduction of sixteen times of both
computation time and required memory.

images

sources

electric magnetic

(a) Electric wall.

images

sources

electric magnetic

(b) Magnetic wall.

Figure 2.5: Electric and magnetic sources and symmetry walls.
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In practice, the improvement almost matches the theoretical expectations be-
cause the images of the current sources must be integrated and added to the final
result too. Depending on the excitation, a certain symmetry plane can translate
into an electric or a magnetic wall, thus the sign of the images must be correctly
taken into account as shown in Fig. 2.5.

2.6 Calculation of the scattering matrix

Once the magnetic current densities at the port(s) have been determined, the am-
plitude of the reflected wave at the port’s plane can be computed with the help of
equation (2.15), yielding

c−i =

a−i for i ̸= j

a−i − ainc
i for i = j

(2.78)

Using the above relation and (2.19), gives the modal scattering matrix in the form

sij = −
M∑

m=1

Aimvmj − δij , (2.79)

with M being the total number of modes and ainc
i has been assumed to be unity.

The eigenvector normalization in form of relation (2.9) has been considered so
far. The scattering matrix elements, relative to the power normalization∫

Sp

[Ei (ϱ) × Hj (ϱ)] n̂p = δij , (2.80)

are given as a function of sij and the modal admittances

Sij =
√

Yi√
Yj

sij . (2.81)

Another way to calculate the global scattering matrix (GSM) is to first determine
the generalized admittance matrix (GAM). From the network theory we know that
the modal currents and the modal voltages are related by the relation

Im =
∫

Sp

hmHtandS =
M∑

m=1

M∑
n=1

YmnVn, (2.82)

where hm, Htan, Vn and Im are the magnetic modal eigenvectors, total tangential
port magnetic field, modal voltages and modal currents, respectively.

Now considering a single mode excitation with Vn = 1 and all other modes
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shorted, one can “invert” the previous equation, yielding

Ymn =
√

Ym√
Yn

∫
Sp

hmHn,tandS =
√

Ym√
Yn

∫
Sp

hmJndS, (2.83)

where Hn,tan and Jn are the total tangential port magnetic field due to n-th eigen-
mode and the port electric current due to n-th eigenmode, respectively. In the
previous expression the power normalization (2.80) has been considered. Once the
GAM is known, the GSM is calculated by

[S] = 2 ([I] + [Y ])−1 − [I] , (2.84)

with [I] being the identity matrix.

2.7 Calculation of the far field

Once the unknown coefficients in (2.4), (2.56) and (2.57) are determined using (2.6)
and (2.63), the scattered electric field in the far region can be computed as the su-
perposition of the radiated (far) fields due to electric and magnetic current densities:

EJ (r) = −ik0η0

∫∫
S

G0

(
r, r′

)
J
(
r′
)
dS′

+
η0

ik0
∇
∫∫

S
G0

(
r, r′

)
∇′J

(
r′
)
dS′, (2.85)

EM (r) = −∇×
∫∫

S
G0

(
r, r′

)
M
(
r′
)
dS′. (2.86)

Under the far field assumptions [24], the fields become

Efar,J (r) = ik0η0
e−ik0r

4πr
r̂ × r̂ × ΠJ (r) , (2.87a)

Efar,M (r) = ik0
e−ik0r

4πr
r̂ × ΠM (r) , (2.87b)

where
ΠΛ (r) =

∫
S
Λ
(
r′
)
eik0r̂r′dS′, (2.88)

with Λ standing for J or M, r̂ and r′ are the unit vector field point in spherical
coordinate system and source point, respectively.

In case of linearly polarized fields, Ludwig’s third definition [71] extracts the
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co-polar (reference) and cross-polar far field components, as follows

Efar
cp (r, ϕ, θ) = ûp1Efar (r, ϕ, θ) =

(
θ̂ sinϕ + ϕ̂ cos ϕ

)
Efar (r, ϕ, θ) , (2.89a)

Efar
xp (r, ϕ, θ) = ûp2Efar (r, ϕ, θ) =

(
θ̂ cos ϕ − ϕ̂ sinϕ

)
Efar (r, ϕ, θ) , (2.89b)

where {r, ϕ, θ} represents the spherical coordinate system and
{

r̂, θ̂, ϕ̂
}

are the cor-
responding unit vectors.

In case of circularly polarized fields the right-hand and left-hand components are
[72]

Efar
rh (r, ϕ, θ) =

e−iϕ

√
2

(
θ̂ − iϕ̂

)
Efar (r, ϕ, θ) (2.90a)

Efar
lh (r, ϕ, θ) =

e−iϕ

√
2

(
θ̂ + iϕ̂

)
Efar (r, ϕ, θ) . (2.90b)

Now, the co-polar field is represented by the desired (right-hand or left-hand) com-
ponent while the undesired component represents the cross-polar field.

2.8 Numerical examples

2.8.1 Dielectric loaded conical horn antennas

Dielectric loaded conical horns are known to have low cross-polarization over a wide
band of frequencies. Being relatively easy to fabricate they are used as an alternative
to corrugated horns, especially at small wavelengths. Fig. 2.6 shows the geometry
of a conical horn loaded with a dielectric cone [73].

Two techniques have been used to analyze the structure:

• MoM-BoR: This method uses the specialized BoR basis functions defined in
Section 2.3.3. The antenna is considered to be excited by the fundamental
TE11 mode, thus only 1n, n > 1 eigenmodes can be excited anywhere in the
structure, because of the axial symmetry of the antenna. Consequently, the
Fourier number M will take the values M = ±1, as all basis having M ̸=
±1 are orthogonal to any 1n waveguide mode, thus having no influence in
the computation. In other words, the fundamental TE11 generates current
distributions whose Fourier series representation contains only the m = ±1
terms.

• MoM-patch: The general MoM algorithm, with basis functions defined on
triangular patches [19] are used to approximate the unknown current densities.
The curvature of the horn requires a higher order triangular mesh (Fig. 2.7)
for the accurate modeling of the geometry.
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ϵr

L

d
D2 D1

Figure 2.6: Conical dielectric loaded horn [73]: d = 26 mm, L = 301.1 mm, D1 = 154
mm, D2 = 129.5 mm, ϵr = 1.13.

(a) Translucent view. (b) Higher order mesh.

Figure 2.7: Conical dielectric loaded horn.
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Fig. 2.8 shows the the normalized co- and cross-polar far field plots in the
45°plane, obtained by the two MoM algorithms previously mentioned, and those
calculated in [73]. Good agreement among the results is observed.
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Figure 2.8: Normalized far field of the horn in Fig. 2.6, ϕ = 45◦, f = 10.5 GHz.

In order to reduce the computational burden, only 1/4 of the antenna has been
meshed (Fig. 2.7(b)), since two symmetry planes are available. Although the use of
symmetry walls greatly improves the overall performance of the method, it is still
clearly outperformed by the more specialized BoR implementation by roughly one
order of magnitude.

Another example is a metalized dielectric loaded horn antenna [73], shown in Fig.
2.9. The inner dielectric core is surrounded by a dielectric layer with a metalized
outer surface. A matching section is used at the throat of the horn in order to
minimize the reflection. A 3D snapshot and the mesh of a quater of the structure
are shown in Fig. 2.10.

The computed co- and cross-polar far field plots for ϕ = 45◦ at f = 9 GHz are
compared, in Fig. 2.11, with the results obtained in [73].

2.8.2 Dielectric covered corrugated horn antenna

Fig. 2.12 shows a corrugated horn [74], with the aperture covered by a protecting
dielectric material. The radius of the feeding waveguide and aperture are 5.6 mm
and 34.4 mm, respectively. The dielectric covering is 4.65 mm thick and its relative
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Figure 2.9: Conical metalized dielectric loaded horn [73]: d = 23 mm, D1 = 90 mm,
D2 = 70 mm, L1 = 111 mm, L2 = 158 mm, L3 = 180 mm,L4 = 200 mm, ϵr1 = 1.8,
ϵr2 = 1.4.

(a) 3D view. (b) Higher order mesh.

Figure 2.10: Conical metalized dielectric loaded horn.
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Figure 2.11: Normalized far field of the horn in Fig. 2.9, ϕ = 45◦, f = 9.5 GHz.

permittivity is ϵr = 2.28. The coordinates of the corrugations are presented as
axial-radial pairs in [74].

Two approaches were employed to model the antenna:

• BoR: The whole antenna is modeled by MoM-BoR algorithm

• BoR-MM: The corrugated sections are modeled by mode matching (MM) and
only the aperture and the outer geometry are computed by the MoM-BoR
algorithm.

In Fig. 2.14(a), far field cuts obtained by the computation of the entire struc-
ture using MoM-BoR, are compared with the measurements available in [74]. Fig.
2.14(b) shows the relative far fields calculated by the combined MoM and mode-
matching methods, plotted against the same measurements. The calculated and
measured reflection coefficients are shown in Fig. 2.13. In all cases, measurements
and computations agree very well. We also note that the MoM-BoR combined with
mode-matching performs about five times faster than the simulation using MoM-
BoR alone.

2.8.3 Dielectric loaded rectangular horn antenna

A pyramidal horn [75] is shown in Fig. 2.15. It has an input matching section
formed by five rectangular-to-rectangular waveguide steps, while a dielectric loaded
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(a) 3D view
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(b) BoR generatrix.

Figure 2.12: Dielectric covered corrugated horn antenna [74].
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Figure 2.13: Return loss of the horn in Fig. 2.12.

(ϵr = 2.2) rectangular waveguide is further connected to the pyramidal taper.
Two building blocks have been considered in the simulation model. One block

is formed by the input steps and the rectangular-to-rectangular approximation of
the horn’s taper, computed by the mode matching method, whereas the remaining
block is represented by the dielectric loaded waveguide, calculated by MoM.

Since the antenna has two symmetry planes only 1/4 of it has been discretized,
as shown in Fig. 2.16(b). Both interpolatory [19] and hierarchical basis functions
[20] were employed, giving identical results.

Fig. 2.17 shows good agreement between MoM calculations and the measure-
ments from [75]. We note the slight asymmetry of the measured cross-polar pattern;
probably a consequence of small differences in the permittivity of the two dielectric
slabs.

2.8.4 Dielectric resonator antennas

The geometry of a truncated tetrahedron dielectric resonator antenna [76], mounted
on a ground plane, is shown in Fig. 2.18(a). The truncated tetrahedron dielectric
has the relative permittivity ϵr, equilateral base and top, with sidelengths LL and
LU , respectively, and height h. The excitation of the antenna is a z directed wire
probe coupled to a coaxial SMA connector. The wire probe is perpendicular to the
ground plane and is located on the x axis at wx.
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(a) Measurements and full BoR simulation.
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(b) Measurements and BoR-MM simulation.

Figure 2.14: Far field of the horn in Fig. 2.12, at f = 22.5 GHz.
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Figure 2.15: Dielectric loaded rectangular horn antenna [75].
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(a) 3D view. (b) Mesh of a quater of antenna.

Figure 2.16: Dielectric loaded rectangular horn antenna [75].
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Figure 2.17: Far field of the horn antenna in Fig. 2.15 at f = 6 GHz.
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Three different antenna configurations have been measured in [76] and analyzed
here using MoM. In a first configuration, the truncated tetrahedral dielectric block
is actually a prism (identical base and top), secondly, the base is larger than the
top, while the in the last configuration the top is larger than the base.

LL

LU

y
z

h

ground plane

x

wx

wL

2rP

(a) Geometry. (b) Mesh.

Figure 2.18: Truncated tetrahedron dielectric resonator antenna [76].

Fig. 2.19 shows the measured and computed S11 for the three geometries men-
tioned earlier. While very good agreement between measurement and calculation is
observed in Fig.s 2.19(a) and 2.19(b), the computed return loss in Fig. 2.19(c) can
be declared satisfactory.

The difference between experiment and theory in Fig. 2.19(c) can arise from the
fact that the dimensions of the ground plate are not specified in [76], while a per-
fectly conducting, square screen (λmax ×λmax) has been chosen in the MoM model.
Here λmax represents the maximum free space wavelength in the corresponding fre-
quency sweep. Moreover, it was found that the geometry of the ground plane has
considerable influence on the reflection coefficient for the case of Fig. 2.19(c), but
has little influence on the remaining two cases.

The mesh used in the calculation contains first order triangular patches on the
planar surfaces of the model and second order triangles to accurately model the wire
probe and the coaxial port. Higher order interpolatory [19] and hierarchical basis
functions [20] have been used, yielding indistinguishable results.

2.8.5 Dielectric resonator filter

A filter [32] composed of four aligned resonators, coupled by rectangular irises, is
shown in Fig. 2.20(a). The inputs of the filter are represented by steps from a WR75
waveguide to a 6.91 mm × 9 mm rectangular waveguide.

The analysis has been carried out by dividing the filter into building blocks.
Thus, each rectangular cavity resonator have been analyzed by MoM while the
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Figure 2.19: Return loss of the dielectric resonator antenna in Fig. 2.18.
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input waveguide steps and the irises were calculated by mode-matching. Finally, the
individual scattering matrices are combined yielding the global scattering matrix of
the filter.

A higher order mesh [Fig. 2.20(b)], composed of second order triangular patches
on the cylindrical dielectrics and first order(flat) triangles on the cavity walls, has
been employed. Higher order hierarchical basis function [20] were used for the cur-
rent density modeling.

The calculated reflection and transmission coefficients are compared, in Fig.
2.21(a) and Fig. 2.21(b), with measurements available in [32]. There is some dis-
agreement between theoretically obtained curves and the measured data, a fact that
can be attributed to small errors in the construction of the filter, as pointed out in
[32].

(a) Translucent view. (b) Resonator mesh.

Figure 2.20: Rectangular cavity dielectric resonator filter [32].
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Figure 2.21: S-parameters of the filter in Fig. 2.20(a).





Chapter 3

Hybrid FE-BI simulation of

arbitrary microwave structures

3.1 Introduction

A technique based solely on integral equations was presented in the previous chap-
ter. This method, however, cannot be applied to anisotropic/inhomogeneous bodies.
Moreover, the efficiency of the numerical algorithm drops with rising material per-
mittivity/permeability because: First, it requires very fine meshing to account for
rapidly varying fields at dielectric’s surface, thus increasing the number of unknowns,
and second, higher order quadrature rules must be considered to accurately integrate
the rapidly varying kernels, thus increasing the evaluation time of the corresponding
integrals.

Differential equation techniques, like the finite element method (FEM), have
none of the aforementioned drawbacks. However, unlike integral equation methods,
they do not satisfy the Sommerfeld’s radiation conditions, therefore the truncation
of the computational domain must be accompanied by the imposition of proper
boundary conditions. In turn, these boundary conditions can be naturally enforced
via integral equations (IE) formulated in the free space.

This chapter presents a hybrid finite element - boundary integral (FE-BI) method
for the analysis of arbitrary microwave structures. Finite elements are used to char-
acterize the arbitrarily shaped, possibly inhomogeneous, domains. The boundary
conditions, at the ports, are imposed by the matching of the modal and interior
fields, thus yielding a full-wave algorithm. For radiating structures, an advanta-
geous algorithm [27], hitherto applied for free-space plane wave scattering, is em-
ployed to formulate the radiation boundary conditions. In contrast with classical
FE-BI formulations, the calculation of boundary integrals involving the divergence
of n̂ × f terms 1 is not required here, thus no instabilities associated with artificial
line charges are present.

Model order reduction (MOR) techniques are applied here and a new procedure is
given for the treatment of frequency-dependent (inhomogeneous cross-section) ports
within the MOR framework. Due to the incompatibility, with the MOR formalism,
of the exact formulation (via integral equations) of the required radiation boundary

1n̂ is the surface normal unit vector and f represents a normally continuous (div-conforming)
basis function.
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Figure 3.1: General waveguide structure.

conditions, absorbing boundary condtions (ABC) are used to truncate the com-
putational domain, when the MOR procedure is applied to unbounded (radiating)
structures.

However, both ABC and IE radiation conditions are introduced in the general
formulation of the presented algorithm, thus allowing, for instance, the use of IE
in the critical regions of a given structure whereas ABCs may be employed on the
remaining radiating parts.

At the end of the chapter several examples are presented, in order to demonstrate
the validity and the efficiency of the present approach.

3.2 Statement of the problem

Figure 3.1 shows the geometry of the investigated structure. An arbitrarily shaped
cavity of volume V is connected to N waveguides through N planar ports of cross
section SP,1,SP,2,..., SP,N . The cavity may radiate through arbitrarily shaped, pla-
nar or non-planar, apertures(s) of surface SR ∪ SA . Perfect electric conductors of
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surface SPEC , perfect magnetic conductors of surface SPMC , imperfectly conduct-
ing surfaces SZ and inhomogeneous materials of permittivity ¯̄ϵr (r) and permeability
¯̄µr (r), may all be present within V .

The Maxwell’s equations, for a source-free region, read

∇× E = −iω ¯̄µH, (3.1a)

∇× H = iω¯̄ϵE, (3.1b)

∇ · ¯̄ϵE = 0, (3.1c)

∇ · ¯̄µH = 0. (3.1d)

Eliminating the magnetic field from (3.1a) and (3.1b) yields the homogeneous
wave equation for the electric field, that is

∇× ¯̄µ−1
r ∇× E − k2

0
¯̄ϵrE = 0, (3.2)

The electric field E satisfies the following boundary conditions

n̂ × E = 0 on SPEC , (3.3a)

n̂ · ¯̄ϵrE = 0 on SPMC , (3.3b)

n̂ × E = ηZ n̂ × n̂ × H on SZ , (3.3c)

n̂ × E = η0n̂ × n̂ × H on SA, (3.3d)

n̂ × E+ = n̂ × E− on SR and SP . (3.3e)

Similarily, the magnetic field obeys

∇× ¯̄ϵ−1
r ∇× H − k2

0
¯̄µrH = 0, (3.4)

and is subject to the boundary conditions

n̂ × H = 0 on SPMC , (3.5a)

n̂ · ¯̄µrH = 0 on SPEC , (3.5b)

n̂ × H = − 1
ηZ

n̂ × n̂ × E on SZ , (3.5c)

n̂ × H = − 1
η0

n̂ × n̂ × E on SA, (3.5d)

n̂ × H+ = n̂ × H− on SR and SP . (3.5e)

Here ηZ is the intrinsic impedance of the imperfect conductor, η0 is the intrinsic
impedance of the free space and E+,H+ and E−,H− represent, respectively, the
tangential fields at the boundary of V and just inside V and the tangential fields at
the boundary of V and just outside V . The radiating port has been divided into a
surface SR, on which the radition conditions are formulated via integral equations,
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and a surface SA on which the first order absorbing boundary conditions (3.3d),
(3.5d) are imposed.

Referring to Fig. 3.1, we define, similarly to [27], the solution spaces for the
electric field E, magnetic field H, electric current density J and magnetic current
density M, respectively, as

WE = {a ∈ H (curl, V ) |n̂ × a = 0 on ΓPEC} , (3.6a)

WH = {a ∈ H (curl, V ) |n̂ × a = 0 on ΓPMC} , (3.6b)

TH =
{
a ∈ Span {n̂ × b|∂V } |b ∈ WH

}
, (3.6c)

TE =
{
a ∈ Span {n̂ × b|∂V } |b ∈ WE

}
, (3.6d)

where ∂V represents the boundary of V .

3.3 Formulation

Different formulations are possible, depending on which of the equations (3.2) and/or
(3.4) are used, and on how the required boundary conditions, at the surface SR, are
imposed. In the E-J formulation, the starting point is (3.2) and the unknowns, as the
name suggests, are the electric field and the tangential magnetic field (electric current
density). Employing (3.4) yields the H-M formulation, where the unknowns are the
magnetic field and the tangential electric field (magnetic current density). The E-
J formulation uses the magnetic field integral equation (MFIE) in the boundary
integrals resulted from the Galerkin testing of (3.2) and the electric field integral
equation (EFIE) as an additional equation. In the H-M formulation, the EFIE
is present in the boundary integrals and the MFIE is required as an independent
equation. Combining both (3.2) and (3.4) yields the E-H formulation [27]. One can
also discretize (3.2) and (3.4), and use the EFIE and MFIE, respectively, to account
for the boundary conditions at SR. A last possibility is the use of any of the wave
equations plus the combined field integral equation (CFIE). We call these last three
formulations E-EFIE, H-MFIE and E/H-CFIE, respectively.

E-EFIE and H-MFIE are known to bear the risk of internal resonance breakdown
[29], [77], whereas E-J, H-M, E-H and E/H-CFIE formulations are free of internal
resonance effects [27]. An undesired feature of the E/H-CFIE is that it requires the
calculation of boundary surface integrals involving the divergence of curl-conforming
basis functions [29]. Regarding the E-H formulation, one observes that it yields twice
as many unknowns, compared to all other formulations. As a consequence, the E-J
and H-M formulations will be further considered.

The solution process is greatly simplified when dealing with a closed, non radi-
ating structure, or if absorbing boundaries are exclusively used to account for the
radiation conditions. In this case, the formulations outlined above would reduce to
either an electric field (3.2) or magnetic field (3.4) formulation.
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The E-J formulation is presented in this section. Since the derivation of the H-M
formulation is similar to that of E-J, we only state the final equations of the H-M
formulation.

We begin by testing (3.2) with a set of linearly independent functions WE ∈ WE ,
yielding∫

V

(
∇× WE ¯̄µ−1

r ∇× E − k2
0W

E¯̄ϵrE
)
dV︸ ︷︷ ︸

IV

−
∫

∂V

(
n̂ × WE × ¯̄µ−1

r ∇× E
)
dS︸ ︷︷ ︸

IS

= 0,

(3.7)

where n̂ is the unit vector normal to ∂V . Considering that

¯̄µ−1
r ∇× E = −ik0η0H, (3.8)

and the boundary conditions (3.3), the surface integral in (3.7) is developed to

IS = −ik0η0

[∫
SZ

n̂ × WEHdS︸ ︷︷ ︸
IZ

+
∫

SA

n̂ × WEHdS︸ ︷︷ ︸
IA

+
∫

SP

n̂ × WEHdS︸ ︷︷ ︸
IP

+
∫

SR

n̂ × WEHdS︸ ︷︷ ︸
IR

]
.

(3.9)

Integrals IZ and IA account, respectively, for the incorporation of the impedance
boundary conditions (3.3c) and absorbing boundary conditions (3.3d). They can be
further developed to

IZ =
1
ηZ

∫
SZ

n̂ × WE · n̂ × EdS, (3.10)

IA =
1
η0

∫
SA

n̂ × WE · n̂ × EdS. (3.11)

The third integral in (3.9) is taken over the port surface SP . The magnetic field
tangential to SP is given by the modal magnetic eigenvectors hi, in the form

H (r ∈ SP ) =
NP∑
i

IP,i · hi, (3.12)
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where the scalars IP,i denote the amplitude of the eigenvectors. Thus, IP becomes

IP =
∫

SP

n̂ × WE
NP∑
i

IP,i · hidS =
NP∑
i

IP,i

∫
SP

n̂ × WE · hidS. (3.13)

The evaluation of IR is more complicated since it involves the exact (integral
equation) formulation of the radiating boundary conditions. The magnetic field,
produced by electric and magnetic sources, can be written as (see Chapter 2)

H = H (S;J) + H (S;M)

= −1
2
n̂ × J + K (S;J) − 1

η0
L (S;M)

= −1
2
n̂ × J + K (S;J) +

1
η0

L (S; n̂ × E) ,

(3.14)

where the linear operators K and L have been already defined in (2.50). Introducing
the expression of the magnetic field into (3.9), gives

IR = − 1
2

∫
SR

n̂ × WEn̂ × JdS

+
∫

SR

n̂ × WEK (SR;J) dS

− 1
η0

∫
SR

n̂ × WEL (SR;M) dS.

(3.15)

Taking into account the expressions of the surface integrals IZ , IA, IP and IR,
(3.7) becomes ∫

V

(
∇× WE ¯̄µ−1

r ∇× E − k2
0W

E¯̄ϵrE
)
dV

+ ik0
η0

ηZ

∫
SZ

n̂ × WEn̂ × EdS

+ ik0

∫
SA

n̂ × WEn̂ × EdS

− ik0η0

2

∫
SR

n̂ × WEn̂ × JdS

+ ik0η0

∫
SR

n̂ × WEK (SR;J) dS

− ik0

∫
SR

n̂ × WEL (SR;M) dS

= −ik0η0

NP∑
i

IP,i

∫
SP

n̂ × WE · hidS.

(3.16)
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A second equation is obtained by enforcing the EFIE on SR, that is

− n̂ × n̂ × [E (SR;J) + E (SR;M)]

= n̂ × n̂ ×
[
η0L (SR;J) + K (SR;M) − 1

2
n̂ × M

]
= n̂ × M,

(3.17)

and testing it with a basis set TH ∈ TH , yielding

1
2

∫
SR

TH n̂ × MdS +
∫

SR

THK (SR;M) dS + η0

∫
SR

THL (SR;J) dS = 0. (3.18)

Now, we add (3.16) and (3.18), but before the addition is performed, (3.18) is
multiplied with −ik0η0, in order to ensure the symmetry of the resulting equation.
Thus, we get the the governing equation of the E-J formulation

∫
V

(
∇× WE ¯̄µ−1

r ∇× E − k2
0W

E¯̄ϵrE
)
dV

+ ik0
η0

ηZ

∫
SZ

n̂ × WE · n̂ × EdS + ik0

∫
SA

n̂ × WE · n̂ × EdS

− ik0η0

2

∫
SR

TH n̂ × MdS − ik0η0

∫
SR

THK (SR;M) dS − ik0

∫
SR

TEL (SR;M) dS

− ik0η0

2

∫
SR

TEn̂ × JdS + ik0η0

∫
SR

TEK (SR;J) dS − ik0η
2
0

∫
SR

THL (SR;J) dS

= −ik0η0

NP∑
i

IP,i

∫
SP

TEhidS.

(3.19)

In a similar manner, the H-M formulation is derived starting with (3.4), and
enforcing the MFIE on SR. The result reads∫

V

(
∇× WH¯̄ϵ−1

r ∇× H − k2
0W

H ¯̄µrH
)
dV

+
ik0ηZ

η0

∫
SZ

n̂ × WH · n̂ × HdS + ik0

∫
SA

n̂ × WH · n̂ × HdS

− ik0

2η0

∫
SR

TH n̂ × MdS +
ik0

2η0

∫
SR

THK (SR;M) dS + ik0

∫
SR

THL (SR;J) dS

+
ik0

2η0

∫
SR

TEn̂ × JdS +
ik0

2η0

∫
SR

TEK (SR;J) dS − ik0

η2
0

∫
SR

TEL (SR;M) dS

=
ik0

η0

NP∑
i

IP,i

∫
SP

THeidS.

(3.20)
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3.4 Numerical implementation

The reduction of (3.19) or (3.20) to a linear equation system is presented in this
section. A drawback of the present algorithm is that it yields a fully populated block
in the coefficient matrix. This fully populated sub-matrix is the direct result of the
formulation of the radiation boundary conditions via integral equations. Moreover,
there is no technique that can efficiently solve a linear equation system involving
a coefficient matrix with both sparse and full blocks. To eliminate this drawback
and take advantage of the sparsity of the FEM matrix, a simple domain splitting is
perfomed.

In order to numerically solve (3.19) or (3.20), the electric and magnetic fields
and the electric and magnetic current densities are approximated by, respectively

E (r) =
NE∑
i=1

EiWE (r) , (3.21a)

H (r) =
NH∑
i=1

HiWH (r) , (3.21b)

J (r) =
NJ∑
i=1

Jin̂ × WH (r) =
NJ∑
i=1

JiTH (r) , (3.21c)

M (r) =
NM∑
i=1

Min̂ × WE (r) =
NM∑
i=1

MiTE (r) , (3.21d)

where WE ∈ WE and WH ∈ WH are curl-conforming basis functions and TE ∈ TE

and TH ∈ TH are divergence-conforming functions.

Replacing the expansions (3.21) into (3.19) or (3.20), yields the following matrix
equation ( [

Y V V
] [

Y V S
][

Y SV
] [

Y SS
] )( [

IV
][

IS
] ) =

( [
Y V P

]
0

)
(3.22)

In the following, expressions for the matrix elements of (3.22) will be given for
the E-J formulation only, as those of the H-M formulation can be derived in a similar
manner.

Submatrix [Y ]V V represents the interactions between the basis functions in V ,
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excluding the radiating port SR, or

[
Y V V

]
mn

=
∫

V

(
∇× WE

m
¯̄µ−1

r ∇× WE
n − k2

0W
E
m

¯̄ϵrWE
n

)
dV

+ ik0
η0

ηZ

∫
SZ

n̂ × WE
m · n̂ × WE

n dS

+ ik0

∫
SA

n̂ × WE
m · n̂ × WE

n dS,

for WE
m ∈ V − SR and WE

n ∈ V − SR.

(3.23)

Submatrix
[
Y V S

]
represents the interactions between the basis functions interior to

V and those nonvanishing on SR:

[
Y V S

]
mn

=
∫

V

(
∇× WE

m
¯̄µ−1

r ∇× WE
n − k2

0W
E
m

¯̄ϵrWE
n

)
dV,

for WE
m ∈ V − SR and WE

n ∈ SR.

(3.24)

Submatrix
[
Y SS

]
incorporates, exclusively, the boundary interactions on SR. It can

be further decomposed into four submatrices as follows:

[
Y SS

]
=

( [
Y MM

] [
Y MJ

][
Y JM

] [
Y JJ

] ) . (3.25)

Submatrix
[
Y MM

]
involves the self interactions of the magnetic current densities

M as well as the self interactions of the electric fields on SR. Thus, it is given by

[
Y MM

]
mn

=
∫

V

(
∇× WE

m
¯̄µ−1

r ∇× WE
n − k2

0W
E
m

¯̄ϵrWE
n

)
dV

− ik0

∫
SR

TE
mL

(
SR;TE

n

)
dS, for WE

m ∈ SR and WE
n ∈ SR.

(3.26)

Submatrices
[
Y MJ

]
and

[
Y JM

]
incorporate the interactions between the magnetic

and electric current densities and vice-versa, or

[
Y MJ

]
mn

= − ik0η0

2

∫
SR

TE
mn̂ × TH

n dS + ik0η0

∫
SR

TE
mK

(
SR;TH

n

)
dS. (3.27)

From the symmetry of (3.19), one observes that[
Y JM

]
=
[
Y MJ

]T
. (3.28)

Matrix
[
Y JJ

]
represents the self interactions between the electric current densities.
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It reads [
Y JJ

]
mn

= −ik0η
2
0

∫
SR

THL (SR;J) dS. (3.29)

Finally, matrix
[
Y V P

]
relates to the modal excitation. Its elements are

[
Y V P

]
mp

= −ik0η0

∫
SP

TE
mhpdS. (3.30)

The solution to (3.22) involves a partially full and partially sparse matrix. Namely,[
Y V V

]
,
[
Y V S

]
and

[
Y SV

]
are sparse, whereas matrix

[
Y SS

]
is completely populated.

The use of iterative methods to solve (3.22) might be an option. However, a direct
solver for sparse linear equation systems can be used if (3.22) is simply rewritten as[

Y V V
] [

IV
]
+
[
Y V S

] [
IS
]

=
[
Y V P

][
Y SV

] [
IV
]
+
[
Y SS

] [
IS
]

= 0,
(3.31)

yielding[
IS
]

=
([

Y SV
] [

Y V V
]−1 [

Y V S
]
−
[
Y SS

])−1 [
Y SV

] [
Y V V

]−1 [
Y V P

]
,[

IV
]

=
[
Y V V

]−1 ([
Y V P

]
−
[
Y V S

] [
IS
])

.

(3.32)

Examinning (3.32), one observes that matrix products involving
[
Y V V

]−1 are re-
quired. Therefore, the factorization of

[
Y V V

]
is performed once, and it is later

used to calculate the required products, via a linear system solution of the form[
Y V V

]
[X] = [B].

The solution to (3.22) yields the unknown expansion coefficients, i.e. the matri-
ces

[
Y V
]

and
[
Y S
]
. Once these coefficients are found, they can be replaced back

into (3.21) to give the electric or magnetic fields in V and the electric and mag-
netic currents densities on SR. Other quantities of practical interest, like scattering
parameters and far-field radiation patterns, can be then determined.

3.5 Calculation of the scattering matrix

Since the E-J formulation yields the electric field in V , the generalized impedance
matrix (GIM) of the multiport system can be convenientely computed as [78]

[Z]ij =
∫

SP

eiEjdS =
∫

SP

n̂ × hiEjdS

= −
∫

SP

n̂ × EjhidS = −
∑

j

∫
SP

hiTE
j dS,

(3.33)
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where ei and hi represent the electric and magnetic port’s eigenvectors, respectively.
In matrix form, (3.33) becomes

[Z] =
[
Y PV

] [
IV
]
,[

Y PV
]

=
1

ik0η0

[
Y V P

]T
,

(3.34)

with
[
IV
]

given in (3.32).
Similarly to the E-J formulation, the H-M formulation naturally yields the gen-

eralized admittance matrix (GAM) of the structure.
Finally, the S-matrix can be determined from the generalized impedance matrix

or from the generalized admittance matrix

[S] = ([Z] + [I])−1 ([Z] − [I]) ,

[S] = ([I] + [Y ])−1 ([I] − [Y ]) ,
(3.35)

respectively. [I] represents the identity matrix.

3.6 Model order reduction (MOR)

Model order reduction is a process in which the number of unknowns, in a discrete
mathematical representation of a problem, is drastically decreased while still main-
taining accuracy. Thus, instead of solving a discrete problem having N degrees of
freedom, one formulates an equivalent problem of order Q, with Q ≪ N .

Two MOR techniques are briefly presented in this section. The first method is
based on the PRIMA (passive reduced-order interconnect macromodeling analysis)
algorithm [3], [30]. However, PRIMA requires the ports to be frequency independent.
A simple procedure that eliminates this drawback is given. The second method
makes use of the well-conditioned asymptotic waveform evaluation (WCAWE) [4],
[31] that is modified here to allow multiple right-hand sides (i.e. waveguide modes).

For a general structure containing frequency dependent materials, the impedance
or admittance matrix can be cast in the form

[X] = [L (k0)]
H ([G (k0)] − k2

0 [C (k0)] − k0 [D]
)−1 [B (k0)] . (3.36)

Here, [G] and [C] are the usual FEM matrices, given by

[G (k0)]mn =
∫

V
∇× WE

m
¯̄α (k0)∇× WE

n ,

[C (k0)]mn =
∫

V
WE

m
¯̄β (k0)WE

n dV,

(3.37)

with
{

¯̄α, ¯̄β
}

=
{
¯̄µ−1

r , ¯̄ϵr

}
for the electric field formulation, and

{
¯̄α, ¯̄β

}
=
{
¯̄ϵ−1
r , ¯̄µr

}
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in the case of the magnetic field formulation. Matrix [D] relates to the impedance
surfaces and/or surfaces with absorbing boundary conditions, [X] stands for [Y ] or
[Z], [L]H and [B] are derived from

[
Y PV

]
and

[
Y V P

]
, respectively. [L]H denotes

the hermitian of [L].
In order to find the frequency response of a given multiport, one has to solve the

linear system (3.36) for every different value of k0 in a frequency range. This can
be a very time consuming procedure if the number of required frequency points is
high. Model order reduction (MOR) can be applied to (3.36) to yield a dramatic
decrease of the calculation time.

3.6.1 PRIMA based MOR

The PRIMA algorithm [3] requires a matrix equation that can be cast in the form

[X] = [L]H ([G] + κ [C])−1 [B]

= [L]H ([I] − δ [A])−1 [R] ,
(3.38)

where δ = κ − κ0 and κ0 is the expansion frequency (chosen in the middle of the
frequency range); [L] and [B] are now frequency independent, and

[A] = ([G] + κ0 [C])−1 [C] ,

[R] = ([G] + κ0 [C])−1 [B] .
(3.39)

One observes that (3.36) can be cast in the form of (3.38) only if

• frequency independent materials are considered,

• no impedance and/or ABC surfaces are present,

• the ports are frequency independent.

The first two requirements translate to

[X] = [L (k0)]
H ([G] − k0 [C])−1 [B (k0)] . (3.40)

Whereas the first aforementioned restriction cannot be removed, a procedure that
eliminates the second drawback is given in [3]. Briefly, instead of working with one
of the wave equations for the electric or magnetic field, the Maxwell’s equations
represent the starting point, and both field and flux are unknown quantities. The
procedure yields an equation of the form (3.38), if the ports are freqeuncy indepen-
dent. The number of unknowns is apparently doubled compared to the case when
only the field represents the unknown quantity. However, by tanking into account
the connections between the tangentially continuous finite element space (used to
approximate the field) and the normally continuous finite element space (used to
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approximate the flux), the number of unknowns is the same as for the formula-
tion that uses the homogeneous wave equation. Moreover, the Maxwell’s equations
based PRIMA requires the assembly of the same matrices used in the wave equation
formulation [3].

The issue of frequency dependent (inhomogeneous cross section) ports is ad-
dressed here. In this respect we approximate the fields tangential to the port as
follows

Etan,Htan =
∑

i

vifi, (3.41)

where fi represent frequency independent vector functions and vi are unknowns
coefficients. By matching, at each frequency in a sweep, the modal fields with the
expansion (3.41), we get ∑

i

vifi =
∑

j

IP,jxj . (3.42)

Here IP,j are known modal amplitudes and xj represent the transverse modal electric
or magnetic eigenvectors. Testing (3.42) with fi yields the unknown coefficients vi

[v] = [P ]−1 [T ] [IP ] , (3.43)

with
[P ]ij =

∫
SP

fi · fjdS (3.44)

and
[T ]ij =

∫
SP

fi · xjdS. (3.45)

With these considerations (3.40) becomes

[X] = [T (k0)]
H [P ]H ([G] − k0 [C])−1 [P ] [T (k0)] , (3.46)

and the PRIMA based model order reduction is now applied to

[X] = [P ]H ([G] − k0 [C])−1 [P ] . (3.47)

3.6.2 WCAWE based MOR

While being very robust, the PRIMA method is restricted to the model order reduc-
tion of systems involving frequency independent materials. The asymptotic wave-
form evaluation has no such restrictions but, in its original form, the process is
inherentely ill conditioned, i.e. the process stagnates, that is, increasing the order q

of the reduced model above some threshold does not necessarily increase accuracy as
the moments slowly become linearly dependent. The Galerkin asymptotic waveform
evaluation (GAWE) [79] and its multipoint version [80] increase the bandwidth of
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approximation. The breakthrough is represented by the introduction of the well-
conditioned asymptotic waveform evaluation (WCAWE), by Slone et al [4], [31]. In
WCAWE, the moment generating process is modified in such a manner that the
linear independence among moments is ensured.

However, the algorithms presented in [4], [31] consider a single exciation, i.e. a
single waveguide mode. In order to allow multiple right-hand sides (modal excita-
tions), the algorithm of [4], [31] is modified as follows. First, for a given order Q,
the moments are independently generated for each waveguide mode p, yielding:

[Vp] = col [vp,1, vp,2, . . . , vp,Q] . (3.48)

The procedure is repeated for all modes p = 1 . . . P . In a second phase, a matrix
[V ]N×P ·Q is formed as

[V ] = col [V1, V2, ..., VP ]

= col

v1,1, v1,2, ..., v1,Q︸ ︷︷ ︸
V1

, v2,1, v2,2, ..., v2,Q︸ ︷︷ ︸
V2

, . . . vP,1, vP,2, ..., vP,Q︸ ︷︷ ︸
VP

 ,
(3.49)

and when a matrix Vp is added to V , its columns are orthonormalized to all the
columns of the previously added Vp matrices, using the Gram-Schmidt process.

Once the moment matrix [V ]N×P ·Q , P · Q ≪ N is constructed, the frequency
response (impedance/admittance matrix) can be calculated cf. [4].

3.7 Calculation of the far field

For radiating structures, that is structures having SR ̸= 0, the far-field is produced
by the electric and magnetic current densities flowing on the surfaces SR and SA,
that is

Efar,J (r) = ik0η0
e−ik0r

4πr
r̂ × r̂ × ΠJ (r) ,

Efar,M (r) = ik0
e−ik0r

4πr
r̂ × ΠM (r) ,

(3.50)

where
ΠΛ (r) =

∫
SR+SA

Λ
(
r′
)
eik0r̂r′dS′, (3.51)

and Λ stands for J = n̂×H or M = −n̂×E, r̂ and r′ are the unit vector field point
in spherical coordinate system and source point, respectively.
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3.8 Numerical examples

Several examples are presented here. All computations have been performed on a
Dual Core 2, 2.5 GHz PC with 4GB RAM.

3.8.1 Cylindrical cavity dielectric resonator filter

Fig. 3.2(a) shows a cylindrical cavity dielectric resonator filter. The radius and
height of the cavity are 16.5 mm and 20.07 mm, respectively. The input/output
ports of the filter are represented by standard SMA coaxial connectors, placed at a
hight of 9.9 mm from the cavity’s bottom. The inner conductors of the two coaxial
connectors have a length of 5.2 mm and are further connected to 2.7 mm × 0.5 mm
× 8.9 mm conducting strips. The strips are bent at 18◦ and 28◦ angles. Dielectric
pucks with ϵr = 38, 9.655 mm radius and 7.06 mm height, are placed on the same axis
with the cavity housing, at 6.35 mm from the cavity’s bottom. The two cylindrical
cavities are connected by a 19.05 mm × 20.07 mm rectangular aperture.

The filter has been discretized using tetrahedrons of polynomial order of two,
as depicted in Fig. 3.3. Second order hierarchal basis functions were employed for
field modeling, resulting in a discrete problem with 97836 unknowns. The PRIMA
model order reduction technique has been used for a fast evaluation of the S-matrix.
The total computation time was 20 second for 2000 frequency points. The calculated
reflection and transmission coefficients agree very well with measurements, as shown
in Fig. 3.4.

An notable feature of this filter is that one can easily implement transmission
zeros (one below and one above the passband) by simply orienting the feeding strips
in the same direction, as shown in Fig. 3.2(b), and therefore changing the sign of the
coupling. Fig. 3.5 plots the computed S-parameters of the modified filter against
the ones of the original design; no distortion in the passband is observed.

3.8.2 Microstrip filters

It is well-known that transmission zeros in the insertion loss of microwave filters can
be accomplished by cross-coupling, i.e. electromagnetic coupling between nonadja-
cent resonators. A compact implementation of transmission zeros in filters realized
in microstrip technology can be obtained if the resonators are printed on different
substrates, thus cross-coupling between nonadjacent resonators is introduced in ad-
dition to the normal signal path of the filter [81]. A simple three layer structure that
implements a transmission zero above the pass-band, has been designed in [81] and
is shown in Fig. 3.6(a). The two substrates are separated by a foam of low dielectric
permittivity (ϵr = 1.07).

A delta gap source is employed to excite the filter, in the numerical method
presented in [81]. However, a more realistic port model is often required. Therefore,
we use, in the present algorithm, a coaxial port having the inner conductor tapped
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(a) Feeding strips in opposite directions.

(b) Feeding strips in the same direction.

Figure 3.2: Cylindrical cavity dielectric resonator filter.
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(a) Vertical section.

(b) Horizontal section.

Figure 3.3: Dielectric resonator filter, mesh view.
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Figure 3.4: Measured vs computed S-parameters of the filter in Fig. 3.2(a).
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Figure 3.5: S-parameters of the filters in Fig. 3.2(a) (dotted line) and Fig. 3.2(b)
(continuous line).
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to the input and output strips. The dimensions of the coaxial port are those of
a coaxial K-connector: 0.15 mm inner radius, 0.99 mm outer radius and a relative
permittivity of 5. Finite conductivity (copper, σ = 58 ·106S/m) has been considered
for the metallic resonator strips and the box. The two dielectric substrates have a
loss tangent of 0.005.

The structure has been discretized using third order (second order complete)
hierarchal basis functions yielding 122430 unknowns. The algorithm has been accel-
erated by a fast frequency sweep implemented via WCAWE. Fig. 3.6(b) compares
the calculated reflection and transmission coefficients (obtained in less than half a
minute) with measurements available in [81].

Besides of cross-coupling, introducing transmission zeros in the frequency re-
sponse of a microwave filter can be accomplished by the use of dual-mode resonators.
Very compact, dual-mode microstrip filters can be realized due to the fact that each
dual-mode resonator can be used as a doubly tunned resonant circuit, thus the
number of resonators for a given degree of the filter is reduced by half [82].

Two dual-mode, open-loop, microstrip filters, designed in [82], are presented
in Fig.3.7(a) and 3.8(a). A loading element is tapped onto the open loop. The
modal resonant characteristic of the filter can be changed by varying the geometry
of the loading element. The input and output of the filters are implemented using
two coaxial SMA connectors (0.635 mm inner radius, 2.05 outer radius and relative
permittivity of 2.05) having the inner conductor soldered to the input and output
strips.

Although the measurements in [82] were performed on open, possibly radiating
structures, the FEM simulation model considers the filters are placed in conducting
boxes. The frequency response of the two filters, shown in Fig. 3.7(b) and 3.8(b),
was obtained, again, applying a fast frequency sweep via WCAWE. The number of
unknowns was 98426 and 83542 for the filter in Fig. 3.7 and the one in Fig. 3.8,
respectively. In both cases, the simulation time (500 frequency points) was less than
30 seconds.

A microstrip low-pass filter [2] is shown in Fig. 3.9(a). This time, the excitation
is done in terms of microstrip modes, calculated using the transverse-longitudinal-
field (TLF) [83], [17] 2D finite element formulation. The computational domain is
truncated with the help of first order absorbing boundary conditions (ABC). The
ABC surfaces are placed at a distance of 100 mil from the top and sides of the
bounding box of the filter. The modified (field-flux) PRIMA algorithm, presented
in Section 3.6.1, was used to obtain a reduced order model of the filter. Second
order hierarchical basis functions are used to approximate the fields, yielding 74123
unknowns. The computed S-parameters are plotted against measurements, in Fig.
3.9(c). The calculation time, for 500 frequency points, was less than 20 seconds.

The band-pass microstrip filter shown in Fig. 3.10, initially built and measured in
[84], has been calculated in [85] by taking into consideration an anisotropic substrate
having ¯̄ϵr = diag (3.45, 5.12, 3.45). The S-parameters of the filter, obtained using
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(a) 3D view.
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(b) Measured vs. computed S-parameters.

Figure 3.6: Cross-coupled, boxed microstrip filter [81].
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(a) 3D view.
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(b) Measured vs. computed S-parameters.

Figure 3.7: Dual-mode microstrip filter with a transmission zero above the pass
band [82].
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(a) 3D view.
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(b) Measured vs. computed S-parameters.

Figure 3.8: Dual-mode microstrip filter with a transmission zero below the pass
band [82].



3.8. Numerical examples 63

l1

l2

l3

l2

l1

w2

w4

w2

w2

w3

w3

w1

w1

(a) Geometry. (b) Mesh.

2 4 6 8 10 12 14 16 18 20
Frequency [GHz]

-70

-60

-50

-40

-30

-20

-10

0

S 
[d

B
]

S
11

 - computed

S
21

 - computed

S
21

 - measured

(c) Measured vs. computed S-parameters.

Figure 3.9: Low-pass microstrip filter [2]. Dimensions [mils]: l1 = 65, l2 = 45,
l3 = w1 = 25, w2 = 60, w3 = 15, w4 = 125. Substrate: h = 25 mil, ϵr = 9.2.
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the present approach, are plotted versus measurements [84] and calculations [85]
for the case of isotropic substrate [Fig. 3.11(a)] and anisotropic substrate [Fig.
3.11(b)], respectively. The MOR procedure, applied to the initial discrete system of
131720 unknowns, yielded a reduced order model with only ten degrees of freedom.
Less than one minute and a half was needed to calculate the frequency response
of the filter in 300 frequency points, most of the time being spent in the model
order reduction. The fundamental mode of the microstrip port, calculated by the
transverse-longitudinal-field (TLF) 2-D FEM approach [17], was employed to excite
the structure.
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(b) Front view.

Figure 3.10: Band-pass microstrip filter [84], [85]. Dimensions [mm]: h = 0.6,
b = 11 · h, w = 1.36, s = 0.34, d = 30.8.

3.8.3 Dielectric loaded horn antenna

A last numerical example is presented in this section. The dielectric loaded rectan-
gular horn antenna, described in Fig. 2.15, has already been computed at Chapter
2 using integral equations, and is now recalculated by the finite element - boundary
integral (FE-BI) method.

Here too, the taper of the horn was computed by the mode matching method
while only the dielectric loaded part (see Fig. 3.12) has been modeled by the FE-
BI algorithm. The S-matrices of the two parts were combined to find the global
scattering matrix of the antenna and the modal excitation at the input of the FE-
BI section. The far fields were computed in a last step. The radiating surface SR

is represented by the horn aperture and its outer geometry. Second order basis
functions yielded 26508 interior (volume) unknowns, 3456 electric current density
unknowns and 660 magnetic current density unknowns. The calculated far field
patterns are in very good agreement with the measurements, as depicted in Fig.
3.13. The calculation time of about 40 seconds per frequency point compares well
with MoM that needed roughly 30 seconds for one frequency point. However, the
performance is expected to diminish with a rising number of boundary unknowns.
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(a) Computed S-parameters vs. measurements [84], isotropic substrate ϵr = 3.45.
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(b) Computed S-parameters vs. computed S-parameters from [85], anisotropic sub-
strate.

Figure 3.11: S-parameters of the filter in Fig. 3.10.
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Figure 3.12: 3-D mesh view of the dielectric loaded rectangular horn.
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Figure 3.13: Measured and computed radiation patterns at 6 GHz.



Chapter 4

Hybrid FE-BI simulation of

boxed structures

4.1 Introduction

Although very flexible, the methods presented in the previous two chapters share a
common characteristic, that is the whole computational domain must be discretized.
However, more efficient algorithms can be designed when dealing with structures for
which the Green’s functions are known (e.g. layered media, rectangular and spherical
cavities etc.). In this case, the specialized Green’s function is used to describe the
electromagnetic behavior of the structure, whereas only those geometric parts that
do not obey the Green’s function formalism are meshed.

Rectangular cavities loaded with arbitrarily shaped conductors and and/or di-
electric bodies (see Fig. 4.2) are useful key building blocks for the design of many
common types of microwave components [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45], such as compact filters for terrestrial and space applications, cf. e.g.
[32, 33, 34], or broad-band transitions [46].

Hitherto reported approaches specialized to rectangular cavities include the bound-
ary integral - resonant mode expansion method [14] and the state-space integral
equation method [43] but ultimately exhibit limited flexibility as they merely allow
radially symmetric insets or cylindrical dielectrics in rectangular boxes.

This chapter presents a hybrid finite-element boundary-integral (FE-BI) method
formulated in a rectangular cavity environment. Finite elements are employed to
characterize the inhomogeneous and arbitrarily shaped material in the cavity, while
integral equations deal with the necessary boundary conditions. The present al-
gorithm extends the known finite element - boundary integral formulation at ra-
diators/scatterers [27] to shielded environments. All boundary integrals involving
rectangular cavity Green’s functions are efficiently evaluated utilizing the Ewald
transform [47, 48, 49]. The described method yields the generalized admittance or
scattering matrices, respectively, of the structure under investigation.

The major advantage of the present approach is the high efficiency, because:
First, due to the separation of the Green’s functions into static series (zero frequency
limit), whose convergence is enhanced with the help of the Ewald transform, and fast
convergent dynamic series (higher frequency correction), the most computational
intensive part of the algorithm is performed only once in a frequency sweep, and
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second, as a consequence of the use of the cavity Green’s functions, only a small
portion of the computational domain must be discretized, thus drastically reducing
the number of unknowns.

Numerical examples, including rectangular and cylindrical cavity combline fil-
ters and dielectric resonator filters, are given to demonstrate the accuracy and the
efficiency of the present approach.

4.2 Expressions for scattered fields

In a general cavity of volume VC and boundary surface SC , the scattered electric
and magnetic fields due to electric and magnetic sources, can be expressed in mixed
potential form [77]

E (S;J; r) = −ik0η0

∫
S

¯̄GAJ
(
r′
)
dS′ − iη0

k0
∇
∫

S
gv∇′J

(
r′
)
dS′, (4.1a)

E (S;M; r) =
1
2
n̂ × M (r) − V P

∫
S

¯̄GEMM
(
r′
)
dS′, (4.1b)

H (S;J; r) = −1
2
n̂ × J (r) + V P

∫
S

¯̄GHJJ
(
r′
)
dS′, (4.2a)

H (S;M; r) = − ik0

η0

∫
S

¯̄GFM
(
r′
)
dS′ − i

k0η0
∇
∫

S
gw∇′M

(
r′
)
dS′, (4.2b)

where ¯̄GA and ¯̄GF are the vector potential dyadic Green’s functions, gv and gw are
the scalar potential Green’s functions and ¯̄GEM and ¯̄GHJ represent the Green’s
function for the electric field due to magnetic current densities and the Green’s
function for the magnetic field due to electric current densities, respectively. The
notations i, k0 and η0 denote the imaginary part, free space wavenumber and free
space characteristic impedance, respectively. V P means Cauchy’s principal value.

The potential Green’s functions for the electric field, in the Lorentz gauge, obey

∇2 ¯̄GA

(
r, r′

)
+ k2

0
¯̄GA

(
r, r′

)
= −¯̄Iδ

(
r − r′

)
, (4.3a)

n̂ × ¯̄GA

(
r ∈ SC , r′

)
= 0, (4.3b)

∇2gv

(
r, r′

)
+ k2

0gv

(
r, r′

)
= −δ

(
r − r′

)
, (4.3c)

gv

(
r ∈ SC , r′

)
= 0, (4.3d)

while the following relations hold for the potential Green’s functions for the magnetic
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field, also in the Lorentz gauge

∇2 ¯̄GF

(
r, r′

)
+ k2

0
¯̄GF

(
r, r′

)
= −¯̄Iδ

(
r − r′

)
, (4.4a)

n̂ ×∇× ¯̄GF

(
r ∈ SC , r′

)
= 0, (4.4b)

∇2gw

(
r, r′

)
+ k2

0gw

(
r, r′

)
= −δ

(
r − r′

)
, (4.4c)

n̂ · ∇gw

(
r ∈ SC , r′

)
= 0. (4.4d)

The field Green dyads are related to the potential dyads [86], [13] by

¯̄GEM

(
r, r′

)
= ∇× ¯̄GF

(
r, r′

)
, (4.5a)

¯̄GHJ

(
r, r′

)
= ∇× ¯̄GA

(
r, r′

)
, (4.5b)

and the reciprocity relations

¯̄GEM

(
r, r′

)
=
[

¯̄GHJ

(
r′, r

)]T
, (4.6a)

¯̄GHJ

(
r, r′

)
=
[

¯̄GEM

(
r′, r

)]T
, (4.6b)

hold too.

4.3 Rectangular cavity Green’s functions

The solution to equations (4.3) and (4.4) is usually given in terms of infinite series
of cavity eigenfunctions [86], [87]. Poisson summation formula can be applied to the
eigenfunction expansion [88], yielding a solution in terms of image series.

It can be shown [86], [89], [90], [47] that, in the case of rectangular cavity filled
with homogeneous and isotropic medium, the potential Green’s function dyads are
diagonal dyads, whereas the field Green’s functions are antidiagonal dyads, i.e.

¯̄GA,F =

 Gxx
A,F 0 0

0 Gyy
A,F 0

0 0 Gzz
A,F

 (4.7)

¯̄GEM,HJ =

 0 Gxy
EM,HJ Gxz

EM,HJ

Gyx
EM,HJ 0 Gyz

EM,HJ

Gzx
EM,HJ Gzy

EM,HJ 0

 (4.8)

Since the field Green’s functions can be derived from the vector potential Green
dyads via (4.5a) and (4.5b), we concentrate on the computation of ¯̄GA, ¯̄GF and gv,
gw.

Considering the axis system in Fig. 4.1, the eigenfunction expansion of the
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Figure 4.1: Rectangular cavity coordinate system.

scalars gv, gw and of any term of the dyadics ¯̄GA and ¯̄GF , can be expressed in the
form [89], [90]:

Gss
A,F =

1
abc

∞∑
m,n,p=0

αmnpfm

(
kmxx, kmxx′) gn

(
knyy, knyy

′)hp

(
kpzz, kpzz

′) ,

gv,w =
1

abc

∞∑
m,n,p=0

αmnpfm

(
kmxx, kmxx′) gn

(
knyy, knyy

′)hp

(
kpzz, kpzz

′) ,

(4.9)

where s stands for x, y or z, and fm · gn · hp represents the mnp cavity eigenmode,
given in Table C.1 (see Appendix C). The modal coefficients in (4.9) are given by

αmnp = ϵmϵnϵp
1

k2
mnp − k2

0

, (4.10)

where

ϵi = 1 + δ0i,

kmnp =
√

k2
mx + k2

ny + k2
pz,

kmx =
mπ

a
, kny =

nπ

b
, kpz =

pπ

c
,

(4.11)

with δ standing for the Kronecker delta symbol.
Applying the Poisson summation formula [88] to the modal expansion (4.9),
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yields the image series representation of the rectangular box Green functions in the
form [90], [91]

Gss
A =

1
4π

∞∑
m,n,p=−∞

7∑
i=0

Ass
i

e−ik0Ri,mnp

Ri,mnp
, (4.12a)

gv =
1
4π

∞∑
m,n,p=−∞

7∑
i=0

Vi
e−ik0Ri,mnp

Ri,mnp
, (4.12b)

Gss
F =

1
4π

∞∑
m,n,p=−∞

7∑
i=0

F ss
i

e−ik0Ri,mnp

Ri,mnp
, (4.12c)

gw =
1
4π

∞∑
m,n,p=−∞

7∑
i=0

Wi
e−ik0Ri,mnp

Ri,mnp
, (4.12d)

where s stands for x, y or z, Ai, Vi, Fi and Wi denote the sign of the i-th image
(Tab. C.3 and Tab. C.4). The distance to the i-th image is given by

Ri,mnp =
[
(Xi + 2ma)2 + (Yi + 2nb)2 + (Zi + 2pc)2

] 1
2
. (4.13)

There are, for each mnp term, two sets of four images that sum up in the expansions
(4.12), as shown in Fig. C.1 and Fig. C.3 for, respectively, ¯̄GA and gv and Fig. C.2
and Fig. C.4 for ¯̄GF and gw, in Appendix C. The position and sign of the eight
images are summarized in Tab. C.3 for electric sources and Tab. C.4 for magnetic
sources, also in Appendix C.

4.4 Green’s functions evaluation via Ewald transform

The modal series (4.9) represent an infinite summation of cavity eigenmodes, thus,
they automatically satisfy the boundary conditions at cavity walls. They exhibit fast
convergence if the source-observer distance is far from the singular behavior of the
Green’s function, while thousands or tens of thousands of terms are needed to achieve
convergence in the near-singular and singular regions. Contrary to the modal series,
the image series (4.12) sums up rational terms that resemble the singular behavior
of the Green’s function, thus yielding good convergence in the case of small source-
observer distances. The disadvantage of the image series is the slow convergence if
the observation point is far from the source point.

As neither the modal or image series are suitable for a numerical implementation,
the Ewald method [48], [49] is further employed to yield series representations that
need a reasonable number of terms to achieve convergence.

We begin by splitting the Green function (generically named Ψ below) into static
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(zero frequency limit) and dynamic parts

Ψ = Ψimg
sta︸ ︷︷ ︸

static

+
(
Ψmod − Ψmod

sta

)
︸ ︷︷ ︸

dynamic

, (4.14)

where Ψimg
sta , Ψmod and Ψmod

sta are the static image series, modal series and static
modal series, respectively.

The zero frequency limit of Ψ reads

Ψimg
sta = lim

k0→0

 1
4π

∞∑
m,n,p=0

7∑
i=0

Si
e−ik0Ri,mnp

Ri,mnp


=

1
4π

∞∑
m,n,p=−∞

7∑
i=0

Si
1

Ri,mnp
.

(4.15)

The dynamic term in (4.14) becomes

Ψmod
dyn = Ψmod − lim

k0→0
Ψmod

=
1

abc

∞∑
m,n,p=0

βmnpfm

(
kmxx, kmxx′) gn

(
knyy, knyy

′)hp

(
kpzz, kpzz

′) ,

βmnp = ϵmϵnϵp
k2

0

k2
mnp

(
k2

mnp − k2
0

) .
(4.16)

The dynamic series in (4.16) has a rate of decay proportional to k4
mnp, therefore it

is clear that the static parts are responsible for the poor overall convergence.

The general form of the image series (4.12) is

Ψimg =
1
4π

∞∑
m,n,p=0

7∑
i=0

Si
e−ikRi,mnp

Ri,mnp
, (4.17)

and its static limit reads

Ψimg
sta =

1
4π

∞∑
m,n,p=−∞

7∑
i=0

Si
1

Ri,mnp
. (4.18)

Using the identity

1
R

=
2√
π

∫ ∞

0
e−R2t2dt =

2√
π

∫ E

0
e−R2t2dt +

2√
π

∫ ∞

E
e−R2t2dt, (4.19)
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one can rewrite (4.18) as

Ψimg
sta =

1
2π

√
π

∞∑
m,n,p=0

7∑
i=0

Si

∫ E

0
e−R2t2dt︸ ︷︷ ︸

Ψ1

+
1

2π
√

π

∞∑
m,n,p=0

7∑
i=0

Si

∫ ∞

E
e−R2t2dt︸ ︷︷ ︸

Ψ2

(4.20)

The functions Ψ1 and Ψ2 are evaluated to [47], [48]

Ψ1 =
1

abc

∞∑
m,n,p=0

γmnpfm

(
kmxx, kmxx′) gn

(
knyy, knyy

′)hp

(
kpzz, kpzz

′) , (4.21a)

Ψ2 =
1
4π

∞∑
m,n,p=−∞

7∑
i=0

Si
erfc (Ri,mnpE)

Ri,mnp
, (4.21b)

γmnp = ϵmϵnϵp
e−

k2
mnp

4E2

k2
mnp

, (4.22)

where erfc is the complementary error function.

The parameter E ∈ [0,∞) in (4.21) and (4.22) is called splitting parameter and
its value must be established a priori. If E = 0, Ψ1 vanishes and Ψimg = Ψ2 becomes
a pure image series. If E → ∞, the situation is reversed: Ψ2 vanishes and Ψimg = Ψ1

is a pure modal series. There is no straight-forward method to determine a value of
E that yields optimal overall convergence, although the formula

E =

(
π2

1
a2 + 1

b2
+ 1

c2

a2 + b2 + c2

) 1
4

, (4.23)

is suggested in [92] and will be adopted here as well.

With the potential Green functions brought to a convergent form, the field
dyadics ¯̄GEM and ¯̄GHJ can be obtained from (4.5a) and (4.5b)

¯̄GEM = ∇× ¯̄GF =


0 −∂Gyy

F
∂z

∂Gzz
F

∂y
∂Gxx

F
∂z 0 −∂Gzz

F
∂x

−∂Gxx
F

∂y
∂Gyy

F
∂x 0

 , (4.24)
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¯̄GHJ = ∇× ¯̄GA =


0 −∂Gyy

A
∂z

∂Gzz
A

∂y
∂Gxx

A
∂z 0 −∂Gzz

A
∂x

−∂Gxx
A

∂y
∂Gyy

A
∂x 0

 . (4.25)

Like in the case of potential Green’s functions, the field Green’s functions are ex-
pressed as sums of dynamic and static series, i.e.

¯̄GEM =
(

¯̄Υmod − ¯̄Υmod
sta

)
︸ ︷︷ ︸

dynamic

+ ¯̄Υimg
sta︸ ︷︷ ︸

static

= ¯̄Υdyn︸ ︷︷ ︸
dynamic

+ ¯̄Υ1︸︷︷︸
static modal

+ ¯̄Υ2︸︷︷︸
static image

.
(4.26)

Taking the derivative of Ψ2 in (4.21), with respect to u = x, y, z, we get

Υ u
2 =

∂Ψ2

∂u
= −

∞∑
m,n,p=−∞

7∑
i=0

Siu

(
erfc (ERi,mnp)

4πR3
i,mnp

+
e−E2R2

i,mnp

2π
√

πR2
i,mnp

)
, (4.27)

yielding the following expressions for the static image series of ¯̄GEM :

Υxy
2 = −

∞∑
m,n,p=−∞

7∑
i=0

F yy
i ΥZi+2pc

2 , (4.28a)

Υyx
2 =

∞∑
m,n,p=−∞

7∑
i=0

F xx
i ΥZi+2pc

2 , (4.28b)

Υxz
2 =

∞∑
m,n,p=−∞

7∑
i=0

F zz
i Υ Yi+2nb

2 , (4.28c)

Υzx
2 = −

∞∑
m,n,p=−∞

7∑
i=0

F xx
i Υ Yi+2nb

2 , (4.28d)

Υyz
2 = −

∞∑
m,n,p=−∞

7∑
i=0

F zz
i ΥXi+2ma

2 , (4.28e)

Υzy
2 =

∞∑
m,n,p=−∞

7∑
i=0

F yy
i ΥXi+2ma

2 . (4.28f)

The dynamic and static modal series of ¯̄GEM have the same generic form like
(4.16) and (4.21a), with fm, gn and hp presented in Tab. C.2 in Appendix C. The
dyadic ¯̄GHJ is determined with the help of the reciprocity relations (4.6).
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4.5 Formulation

As the goal is the simulation of arbitrarily loaded rectangular cavities, the question
that arises is: What method shall be used to model the fields inside penetrable
bodies ? A first thought that comes to mind is the algorithm described in Chap-
ter 2. Let aside the fact that only homogeneous bodies can be handled, a closer
look to the EFIE-PMCHWT method reveals a major drawback when formulated
for boxed structures. There are two equivalent problems in the EFIE-PMCHWT
formulation. The exterior problem considers the whole space (the whole cavity in
our case) filled with a material having k1 = k0

√
ϵext
r µext

r . In turn, the formulation
of the interior problem fills the whole space (also the whole cavity in our case) with
a homogeneous material having now k2 = k0

√
ϵint
r µint

r . Now, one clearly observes
that the convergence rate of the dynamic modal series in (4.16) drastically dimin-
ishes with a rising k0. But the interior equivalent problem fills the cavity with some
k2 > k0, thus thousands or even tens of thousands of cavity modes might be needed
to reach convergence if, for instance, a high permittivity dielectric is present. In
other words, the equivalent interior problem of the PMCHWT formulation might
yield an overmoded rectangular cavity, thus drastically diminishing the convergence
of the Green’s functions. A numerical implementation of the EFIE-PMCHWT al-
gorithm for boxed environments has been programmed. It was found that, indeed,
its efficiency drops almost quadratically with rising material constants.

The next attempt was to formulate the fields inside penetrable bodies via volume
integral equations (VIE), discretized by Schaubert-Wilton-Glisson (SWG) basis [93],
or in conjunction with the solenoidal basis functions developed by Mendes et al [94],
[95], [96], [97]. Although there is no theoretical difficulty in formulating the VIE
inside a boxed environment, the discretization of the 3-D polarization currents asso-
ciated with the VIE yields fully populated matrices. The numerical implementation
of the VIE revealed the fact that the solenoidal basis of Mendes [94], [95], [96] yield
faster convergence rates than the SWG basis. The algorithm works well if materials
with small permittivity/permeability are analyzed, but a drastic augmentation of
the number of unknowns is experienced if hight permittivity/permeability scatterers
are present.

On the other side, differential equation based methods, like the Finite Element
Method (FEM) [16], [29], [98], exhibit no difficulties if high permittivity/permeability
materials are encountered. Moreover, sparse linear equation systems are involved in
their numerical discretization. Therefore, the FEM is a good candidate to handle
high permittivity/permeability materials. However, the mesh termination, in the
case of FEM, must be accompanied by the fulfillment of the required boundary con-
ditions [29]. These boundary conditions can be incorporated via integral equations,
formulated in the region exterior to the material body. Hence, the combination of
the finite element method with integral equation techniques appears to be the best
choice.
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Figure 4.2 shows the geometry of a general boxed structure. A rectangular
cavity of dimensions a× b× c, loaded with arbitrarily shaped conductors and pene-
trable bodies, is connected to n waveguides through n planar ports of cross section
Sp,1, Sp,2, ..., Sp,n. The total port surface is designated as SP ≡

∑N
i=1 Sp,i; VD and

SD represent, respectively, the volume and the boundary surface of the penetrable
(possibly inhomogeneous) bodies and SC denotes all conducting surfaces outside VD.

In conformity with the equivalence principle, electric current densities J = n̂ ×
H are introduced on SC , while electric current densities J and magnetic current
densities M = E × n̂ are employed on the surface SD. The port cross section
SP is covered with a perfectly conducting sheet, and magnetic current densities
MP = E × n̂p are introduced in the usual way [26] [24], in order to preserve the
continuity of the tangential electric field; with n̂p being the unit normal vector to
SP and pointing outwards.

Mp,2

Mp,n

a

Sp,n

Sp,2

Sp,1
b

J

J

c

Mp,1

SD

J

M SC

SC

Figure 4.2: Boxed structure with arbitrary loadings.

Inside the source-free region VD the electric field satisfies the homogeneous wave
equation

∇× ¯̄µ−1
r ∇× E − k2

0
¯̄ϵrE = 0,

n̂ × E = 0 on ΓPEC ,
(4.29)

where ΓPEC denotes any perfectly conducting surface in VD and ¯̄ϵr, ¯̄µr denote,
respectively, the relative permittivity and relative permeability dyads.

Similarly, inside the source-free region VD, the magnetic field satisfies the homo-
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geneous wave equation

∇× ¯̄ϵ−1
r ∇× H − k2

0
¯̄µrH = 0,

n̂ × ¯̄ϵ−1
r ∇× H = 0 on ΓPEC .

(4.30)

Using the terminology of [27], the solution spaces for the electric field E, magnetic
field H, electric current density J and magnetic current density M, are defined,
respectively, as:

WE = {a ∈ H (curl, VD) |n̂ × a = 0 on ΓPEC} , (4.31a)

WH = {a ∈ H (curl, VD)} , (4.31b)

TH =
{
a ∈ Span {n̂ × b|SD

} |b ∈ WH
}

, (4.31c)

TE =
{
a ∈ Span {n̂ × b|SD

} |b ∈ WE
}

. (4.31d)

Through a Galerkin testing procedure, the boundary value problems in (4.29)
and (4.30) will be transformed into variational problems, using two different formu-
lations:

• The E-J formulation: The starting point is (4.29). The unknowns are the
electric field and the electric current density (tangential magnetic field).

• The H-M formulation: The starting point is (4.30). The unknowns are the
magnetic field and the magnetic current density (tangential electric field).

4.5.1 The E-J formulation

Testing (4.29) with the solution space of the electric field and using the divergence
theorem and Maxwell’s equations, yields∫

VD

(
∇× WE ¯̄µ−1

r ∇× E − k2
0W

E¯̄ϵrE
)
dS + ik0η0

∫
SD

n̂ × WEH = 0. (4.32)

A second equation is obtained by enforcing the boundary conditions for the electric
field, and testing it with the solution space of J, i.e. TH , yielding

−
∫

S
TH n̂ × n̂ × [E (SD + SC ;J) + E (SD;M) + E (SP ;MP )] dS

=

0 on SC∫
SD

TH n̂ × M dS on SD

,

(4.33)

where the total electric field has been written as a superposition of individual electric
fields produced by electric and magnetic sources in VC .

Now, (4.32) and (4.33) are added together as each of them can be recovered by
letting WE = 0 or TH = 0, but before the addition is performed (4.33) is multiplied
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with ik0η0 in order to ensure the symmetry of the resulting equation. This procedure
can be regarded as an extension to boxed environments excited by apertures of the
E-J formulation presented in [27] for the free-space case.

4.5.2 The H-M formulation

Similarly to the E-J formulation, we start by testing (4.30) with the solution space
WH of the magnetic field, yielding

∫
VD

∇× WH¯̄ϵ−1
r ∇× H − ik0

η0

∫
SD

n̂ × WHE = 0. (4.34)

This is an equation in H (that also includes the tangential magnetic field J = n̂×H),
M and MP , tested with the solution space of H. Two additional equations are
obtained by enforcing the boundary conditions for the magnetic field on SD, and for
the electric field on SC∫

S
TE n̂ × n̂ × [H (SD + SC ;J) + H (SD;M) + H (SP ;MP )] dS

=
∫

SD

TE n̂ × J dS on SD (MFIE),
(4.35)

∫
S
TH n̂ × n̂ × [E (SD + SC ;J) + E (SD;M) + E (SP ;MP )] dS

= 0 on SC (EFIE).
(4.36)

This is one of the differences between the E-J and the H-M formulations: In
the E-J formulation the MFIE is used in the boundary integral resulted from the
testing of (4.29) and the EFIE represents an additional equation, while in the H-M
formulation the EFIE is replaced in the boundary integral resulted from the testing
of (4.30) while both MFIE (on SD) and EFIE (on SC) are employed as additional
equations. This choice, in the H-M formulation, is a consequence of the fact that SC

might be an open surface, case which would render numerical difficulties in enforcing
the MFIE on SC (see Chapter 2).

Again, (4.34), (4.35) and (4.36) can be added together, as each of them can be
recovered back by simply letting WH = 0, TE = 0 or TH (r ∈ SC) = 0. The MFIE
in (4.35) is scaled by ik0

η0
and the EFIE in (4.36) is scaled by − ik0

η0
before the adition

is performed. Again,the method outlined above can be viewed as an extension to
shielded environments excited by apertures of the H-M formulation presented in [27]
for the free-space case.

We must point out that there is no computational advantage of the E-J formu-
lation over the H-M formulation or vice versa. However, both approaches have been
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numerically implemented, the E-J formulation is used for calculation whereas the
H-M algorithm is optionally employed for cross-checking.

4.6 Basis functions and matrix assembly

A numerical solution requires discrete approximations of the spaces WE , WH , TE

and TH defined in (4.31). The electric field (space WE) and the magnetic field
(space WH) require curl-conforming discretizations, whereas the electric and mag-
netic current densities demand div-conforming discretizations for TH and TE . One
observes that TE and TH can be obtained from WE and WH . Consequently, defin-
ing appropriate discretizations for WE and WH will automatically ensure proper
approximations of the spaces TE and TH . Among the most popular basis functions
are the ones defined in [19] (interpolatory) and [20] (hierarchical). In this chapter,
the hierarchical basis from [20], up to mixed polynomial order of three are employed
to discretize WE and WH . Hierarchical basis functions were chosen here rather
than the interpolatory ones because they allow p-adaptation, i.e. the mixing of ba-
sis functions of different orders within the same mesh. Tetrahedral and triangular
elements of maximum polynomial order of two are used to represent the volume VD

and the surfaces SD and SC , respectively.
Thus, the electric and magnetic fields are approximated as series of curl-conforming

basis functions

E (r) =
NE∑
i=1

EiWE (r) , (4.37)

H (r) =
NH∑
i=1

HiWH (r) , (4.38)

while the electric and magnetic current densities are expanded using div-conforming
basis functions

J (r) =
NJ∑
i=1

Jin̂ × WH (r) =
NJ∑
i=1

JiTH (r) , (4.39)

M (r) =
NM∑
i=1

Min̂ × WE (r) =
NM∑
i=1

MiTE (r) . (4.40)

Regarding the port current densitiy MP , a propper choice is [26], [24]

MP (r) =
NP∑
i=1

Vihi (r) =
NP∑
i=1

Viei (r) × n̂, (4.41)

where ei and hi represent the 2-D port’s electric and magnetic eigenvectors, respec-
tively.
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[
Y V V

]
(sparse)

[
Y SV

]
(sparse)

[
Y SS

]

[
Y V S

]

(full)

(sparse)

Figure 4.3: FE-BI matrix structure.

The approximations (4.37) - (4.41) yield a matrix equation of the form[
Y FEBI

] [
UV
]

=
[
U I
]
, (4.42)

where
[
UV
]

holds the unknown expansion coefficients in (4.37)-(4.41), and
[
U I
]

is
the excitation vector.

The structure of matrix
[
Y FEBI

]
is shown in Fig. 4.3. The sparse matrix[

Y V V
]

contains the interactions involving the interior basis only, while
[
Y V S

]
and[

Y SV
]

=
[
Y V S

]T , also sparse, represent the interactions between the interior and
the boundary basis. The full matrix

[
Y SS

]
incorporates exclusively the boundary

interactions.

4.7 Determination of the admittance matrix

In order to take advantage of the sparse structure of matrices
[
Y V V

]
,
[
Y V S

]
and[

Y SV
]
, we rewrite the linear equation system (4.42) as follows[

Y V V
] [

W V
]
+
[
Y V S

] [
V S
]

= 0,[
Y SV

] [
W V

]
+
[
Y SS

] [
V S
]

=
[
Y SP

] [
V P
]
,

(4.43)

yielding [
V S
]

=
([

Y SS
]
−
[
Y SV

] [
Y V V

]−1 [
Y V S

])−1 [
Y SP

] [
V P
]
. (4.44)

Above [Y ]SP is the matrix that accounts for the interactions between the surface
electric and magnetic current densities (on SD + SC) and port current densities (on
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SP ).

The generalized admittance matrix (GAM) elements are given by [78]

[Y ]ij =
∫

SP

hiHjdS, (4.45)

where hi is the port’s i-th magnetic eigenvector, and Hj denote the total magnetic
field produced by exciting the j-th magnetic eigenvector while all the remaining
modes are short circuited.

The total magnetic field inside the cavity can be expressed as

H = H (SP ,MP ) + H (SD + SC ,J) + H (SD,M) . (4.46)

To obtain the GAM, we consider a single mode excitation while all the other
modes are short-circuited. Repeating this assumption for each mode and testing the
total magnetic field in (4.46) with the ports magnetic eigenvectors, yields the GAM

[Y ] =
[
Y A
]([

Y PP
]
+
[
Y PS

] ([
Y SS

]
−
[
Y SV

] [
Y V V

]−1 [
Y V S

])−1 [
Y SP

]) [
Y A
]
,

[
Y A
]

= diag
(

1√
Yi

)
,

(4.47)

where Yi is the admittance of the i-th port eigenmode,
[
Y PS

]
represents the inter-

actions between the port current densities and the electric and magnetic currents
densities on SD + SC and [

Y PP
]
mn

= ⟨hm,H (MP,n)⟩ (4.48)

Once the GAM is known, the global scattering matrix (GSM) is calculated using

[S] = 2 ([I] − [Y ])−1 − [I] , (4.49)

where [I] is the identity matrix.

We note that, as a consequence of the submatrix decomposition performed in
(4.43), two linear systems need to be solved: first, corresponding to the product[
Y V V

]−1 [
Y V S

]
involving the sparse matrix

[
Y V V

]
and second, a fully populated

matrix system whose size is given by the number of boundary unknowns. Iterative
or direct algorithms, specialized for sparse matrices, may be used for the first case,
while solving the full matrix system of the second case is not a major inconvenience,
since the number of boundary unknowns is usually much smaller than the number
of interior unknowns.
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4.8 Evaluation of the boundary integrals

The boundary integrals involved in the evaluation of
[
Y SS

]
can be written in a

generic form

I =
∫

S

∫
S

f (r) · G · g
(
r′
)
dS′dS, (4.50)

where f and g are vector or scalar functions and G denotes a scalar potential Green’s
function or any term of the dyadic Green’s function. Considering the splitting in
(4.14) and the expressions of (4.21), I is expanded to

I =
∫

S

∫
S

f (r) · Gsta · g
(
r′
)
dS′dS

+
∫

S

∫
S

f (r) · Gmod
dyn · g

(
r′
)
dS′dS

=
∫

S

∫
S

f (r) · Gimg
sta · g

(
r′
)
dS′dS︸ ︷︷ ︸

I1

+
∫

S

∫
S

f (r) · Gmod
sta · g

(
r′
)
dS′dS︸ ︷︷ ︸

I2

+
∫

S

∫
S

f (r) · Gmod
dyn · g

(
r′
)

︸ ︷︷ ︸
I3

dS′dS.

(4.51)

4.8.1 Modal series integration

Now, observe that the functions involved in the modal series (4.16) and (4.21a)
can be completely separated relative to the source and observation points (see also
Tables C.1 and C.2), that is

fm

(
kmxx, kmxx′) gn

(
knyy, knyy

′)hp

(
kpzz, kpzz

′)
= Fmnp (kmxx, knyy, kpzz) F ′

mnp

(
kmxx′, knyy

′, kpzz
′) ,

(4.52)

yielding(
I2

I3

)
=

1
abc

∞∑
mnp=0

[(
γmnp

βmnp

)∫
S

f (r) Fmnp (kmxx, knyy, kpzz) dS

·
∫

S
g
(
r′
)
F ′

mnp (kmxx, knyy, kpzz) dS′
]
.

(4.53)
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Making the notations

Vmnp =
∫

S
f (r) Fmnp (kmxx, knyy, kpzz) dS, (4.54)

V′
mnp =

∫
S

g
(
r′
)
F ′

mnp (kmxx, knyy, kpzz) dS′, (4.55)

we rewrite the sum (4.53) in the form(
I2

I3

)
=

1
abc

∞∑
mnp=0

[(
γmnp

βmnp

)
Vmnp · V′

mnp

]
. (4.56)

Here, Vmnp and V′
mnp are frequency independent integrals, therefore they are com-

puted only once in a frequency sweep and stored for later use.

4.8.2 Image series integration

Integral I1 in (4.51) involves the image series of the Green’s function. Replacing
(4.21b) and (4.27) in the expression of I1 in (4.51), yields

I1 =
1
4π

∫
S

∫
S

f (r)

( ∞∑
mnp=−∞

Si
erfc (Ri,mnpE)

Ri,mnp

)
· g
(
r′
)
dS′dS

=
1
4π

∫
S

dSf (r)
∞∑

mnp=−∞
Si

∫
S

dS′ erfc (Ri,mnpE)
Ri,mnp

g
(
r′
)
,

(4.57)

if potential Green’s functions are involved, and

I1 =
∫

S

∫
S

f (r)
∞∑

m,n,p=−∞

7∑
i=0

Siu

(
erfc (ERi,mnp)

4πR3
i,mnp

+
e−E2R2

i,mnp

2π
√

πR2
i,mnp

)
g
(
r′
)
dS′dS

=
∫

S
dSf (r)

∞∑
m,n,p=−∞

7∑
i=0

Siu

∫
S

dS′

(
erfc (ERi,mnp)

4πR3
i,mnp

+
e−E2R2

i,mnp

2π
√

πR2
i,mnp

)
g
(
r′
)
,

(4.58)

in the case of field Green’s functions.
One observes, from (4.56) - (4.58), that singularities and near-singularities may

occur exclusively in the evaluation of the source (inner) integrals involving the image
series of the Green’s functions in (4.57) and (4.58). The order of singularity is 1

R

in (4.57), thus any of the transformations 1-4 in Table A.1 may be employed to
annihilate the singularity. The source integrals in (4.58) are hypersingular, i.e.
the order of singularity is 1

R2 . Hypersingular integrals, involving the field Green’s
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functions, are computed in principal value sense plus a residue term, i.e.∫
S

¯̄GEM,HJ

(
r, r′

)
f
(
r′
)
dS′ =

1
2
n̂ (r) × f (r)

+ P.V.

∫
S

¯̄GEM,HJ

(
r, r′

)
f
(
r′
)
dS′,

(4.59)

with P.V. standing for integration in principal value sense. For the accurate eval-
uation of (4.58), one must still pay attention to the near-singular cases. When
near-singularities occur, the R2RA transformation (Table A.1) should be used to
regularize the integrand.

The calculation of image series related integrals is much more time consuming
than the ones involving the modal series, hence, one is interested in having as few
as possible terms in the static image series of the Green’s function.

The evaluation of the complementary error function, involved in the static Green’s
function series, is a computationally intensive operation, especially if observing that
it is needed in double integration loops. Fortunately, erfc is a bounded function, thus
lookup tables can be conveniently employed, yielding a dramatic reduction in the
calculation time of the frequency independent integrals involving the image series.

The image series related boundary integrals are frequency independent, hence
they need to be calculated only once in a frequency sweep. This is one of the major
advantages of the present approach: The most time consuming part of the algorithm
is performed only once and reused in subsequent calculations.

4.9 Numerical examples

Several numerical examples of practical interest are presented in this section, in
order to demonstrate the accuracy and efficiency of the present algorithm. Further
information, like the unknown count and timing, will be given. In this respect one
needs to specify that all the calculations have carried out on a PC with 2.5 GHz
Dual Core II, 6 MB L2 cache CPU, running a 64 bit OS. The calculations are
fully parallelized using the OpenMP standard [99] implemented in the GNU C++
compiler.

4.9.1 Coaxial combline resonator

The first example is represented by a rectagular waveguide loaded with a conducting
(re-entrant) coaxial resonator [100], as shown in Fig. 4.4. The coaxial resonator has
been discretized into 44 second order triangular patches (Fig. 4.5), and hierarchical
basis up to polynomial order of 2 were employed for current density modeling. This
setup yielded 228 electric unknowns. The number of magnetic port unknowns is 20,
resulted from a prescribed maximum cutoff frequency of 10 GHz.
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h1 h2 h3b

(a) Side view.

a

r1

r2

r3

(b) Top View.

Figure 4.4: Re-entrant combline resonator [100]. Dimensions [mm]: a = 58.166,
b = 29.883, r1 = 7.62, h1 = 20.2692, r2 = 6.3754, h2 = 15.1384, r3 = 3.8608,
h3 = 20.32.

The calculation of the static boundary integrals needed 6 seconds and the total
computation time, for 100 frequency points, was about 11 seconds. The present
structure has been built and measured in [100]. Fig. 4.6 shows both the experimental
and the calculated curves of the S21 parameter. Excellent agreement between the
numerical calculation and measured data is observed.

(a) Geometry. (b) Mesh.

Figure 4.5: Resonator in Fig. 4.4.

4.9.2 Dielectric loaded waveguide

Fig. 4.8 shows a standard WR-90 waveguide (22.86 × 10.16 mm) loaded with two
dielectric cylinders (ϵr = 13.6) [40]. The cylinders are offset from the propagation
axis by d1 and d2.

For testing purposes, two simulations models of the structure have been consid-
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Figure 4.6: S21 vs. frequency for the resonator in Fig. 4.4.
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Figure 4.7: Cross section of the dielectric loaded waveguide [40]. Schematic front
view. Dimensions [mm]: a = 22.86, b = 10.16, h = 8, ϕ = 2.
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ered. The mesh of the first model is presented in Fig. 4.8(a). Here, the two identical
cylinders are meshed with second order curved tetrahedral elements. The mesh of
the second model is shown in 4.8(b). Now, the dielectric cylinders have been en-
closed in a larger dielectric cylinder having the relative dielectric permittivity equal
to unity (phantom dielectric).

In the first model, the higher order mesh is formed by 118 tetrahedral elements
and 278 triangular faces. Second order basis functions yielded 576 volume unknowns
and 408 and 392 surface unknowns for the electric and magnetic current densities,
respectively. When the phantom enclosure is considered, the mesh is composed of
674 tetrahedra and 1442 triangle on the boundary surface. The second order basis
functions gave 3984 volume unknowns and 782 and 758 surface unknowns, for the
electric and magnetic current densities, respectively.

The static parts of the algorithm needed about 25 seconds, for the first model,
and less than one minute for the second model. The calculation of the scattering
matrix consumed less than one second for the first simulation and about 4 second
when the phantom dielectric is taken into account.

The S-parameters of the fundamental rectangular waveguide mode H10 are
shown in Fig. 4.9. Excellent agreement between computations and measurements
[40] is observed.

(a) Without coating. (b) With phantom coating.

Figure 4.8: Mesh models of dielectric loaded waveguide.

4.9.3 Combline filters

A more complex structure is the 4-resonator combline filter shown in Fig. 4.10. The
filter operates in the evanescent H10 rectangular waveguide mode. The input and
output are coaxial SMA ports, having the inner conductor tapped to the circular
posts.
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Figure 4.9: Transmission coefficient of the dielectric loaded waveguide in Fig. 4.7,
d1 = 3.5 mm and d2 = 8 mm.

Two different models have been used for analysis. The filter is first divided
into two building blocks. One building block is formed by the feeding rectangular
cavity, while one of the mid-resonators represents the second block. Each structure is
computed separately and their S-matrices are combined yielding a matrix S1 of half
of the filter. As the structure is symmetric with respect to the propagation direction,
a second matrix S2 is calculated by mirroring S1. The global scattering matrix is
then found by connecting S1 and S2. The mesh models, for this simulation, are
shown in Fig. 4.11. The feeding resonator and the mid-resonator were discretized
by 364 and 83 second order triangles, respectively. A denser mesh is needed for the
first block, in order to accurately model the inner conductor of the coaxial port.
The order of the hierarchical basis functions was set as follows: First order basis on
the inner conductor of the coaxial port, second order basis on the rest of the feeding
resonator and third order on the middle post resonator. This yielded a total of
1654 unknowns for the feed and 882 unknowns for the second block. The maximum
cutoff was set to 20 GHz, resulting in 13 modes at the rectangular port and only
the fundamental TEM mode at the the coaxial ports. The computation time, using
this model, was 120 seconds for 200 frequency points. Very good agreement is noted
between computations and experimental data, as shown in Fig. 4.12(a).

Another simulation was performed by considering a single block, formed by the
the whole filter. The mesh density and cutoff frequency settings were kept the
same as before, thus giving more than 4000 electric current density unknowns and
only a single mode per port. The time consumption was about 18 minutes for 200
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(a) Side view.

(b) 3D view.

Figure 4.10: Coaxial feed combline filter. Dimensions [mm]: a = 22.816, b = 21.729,
l1 = 10.4005, l2 = 30.78358, l3 = 34.034, h = 4.5, h1 = 20.35, h2 = 19.96, SMA:
rin = 0.635, rout = 2.05, ϵr = 2.05.
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(a) Feed resonator. (b) Mid-resonator.

Figure 4.11: Coaxial feed combline filter mesh

frequency points. This is normally expected, since the algorithm complexity is of
order N2, with N being the number of unknowns. The computed S parameters are
shown in 4.12(b) versus the measured ones, and again, very good agreement between
measurement and calculation is observed. The mesh of this simulation model, as
well as the calculated normalized electric current density, are shown in Fig. 4.13.
Two graphical representation of the current densities are presented: One plot at f =
2 GHz (Fig. 4.13(b)), while the other plot shows the current density distribution
in the resonance region of the filter. Referring to Fig. 4.13, the left side port is
considered to be excited.

Another example is the combline filter of [42]. The filter is formed by 5 cascaded
cylindrical resonators connected, via irises, to the input/output ports.

The analysis has been carried out, again, by first dividing the structure into
building blocks. Here, the first and the last posts have identical dimensions, while
the three middle cylinders are also identical (see [42]). As a consequence, only two
loaded cavities need to be simulated. A cavity of dimensions 8×10.16×7.8 [mm] has
been chosen for both building blocks, and additional lengths are compensated by
empty rectangular waveguides. The meshes are formed by 89 and 95 second order
patches yielding 945 and 1008 third order hierarchical basis, respectively. The input
waveguide steps were calculated by mode matching. Finally, the modal scattering
matrix of the filter is obtained by cascading the scattering matrices of each building
block.

The filter has been analyzed in [42], using the BI-RME (Boundary Integral -
Resonant Mode Expansion) algorithm. Fig. 4.14 presents the reflection and trans-
mission coefficients of the fundamental H10 rectangular waveguide mode. Good
agreement between the present approach and the BI-RME method is observed.

To demonstrate the flexibility of the present method, an optimization example
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(a) Multi-block simulation.
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(b) Single-block simulation.

Figure 4.12: S-parameters of the combline filter in Fig. 4.10.
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(a) Mesh model.

(b) Current distribution at f = 2.0 GHz.

(c) Current distribution at f = 2.3 GHz.

Figure 4.13: Mesh model and normalized current density distribution(
10 log10

|J|
|Jmax|

)
of the single block simulation of the combline filter in Fig. 4.10.
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Figure 4.14: S-parameters of the combline filter of [42].

is further presented. A folded combline filter, composed of 6 cylindrical cavities, is
shown in Fig. 4.15. The filter is excited through SMA coaxial ports having the inner
conductor connected to a circular disc. Each cylindrical cavity is loaded with two
stacked cylindrical posts with a circular hole on top. Tuning screws are also fitted
on the top of the resonating cavities. The cavities are connected to each other via
rectangular irises. A wire cross coupling, between the first and the last resonators,
is added, in order to introduce transmission zeros.

Resonators 1 and 6 and resonators 2 and 5 have identical geometries. Cavities
3 and 4 are also identical with the exception of the port placement. Thus, in the
simulation model, only cavities 1, 2, 3 and 4 are used as building blocks. Each
cavity is enclosed by its bounding box. The geometry of each building block is then
meshed with second order triangular patches. The final mesh is formed by removing
all triangles that are placed on the walls of the bounding box. The resulted mesh
models are shown in Fig. 4.16. Each building block is simulated separately. Finally,
the scattering matrix of the filter is found by cascading the individual S-matrices of
each building block.

All the geometrical dimensions of the filter, except the cavities radii and heights,
were set as optimization variables. S11 < −20 dB in the pass band and S21 < −35
dB in the stop bands, were prescribed as optimization goals and the response in
Fig. 4.17 was obtained after an overnight run. For comparison, the free-space
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Figure 4.15: Cylindrical cavity combline filter.

(a) Cavity 1 and 6. (b) Cavity 2 and 5. (c) Cavities 3 and/or 4.

Figure 4.16: Mesh models of the cylindrical cavity combline filter in Fig. 4.15.
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Figure 4.17: S-parameters of the combline filter in Fig. 4.15.

MoM algorithm, presented in the previous chapter, needed about 10 hours only to
analyse the structure in 100 frequency points. This example clearly demonstrates
the efficiency of the present approach and the fact that the method is not restricted
to rectangular geometries only.

4.9.4 Canonical ridged waveguide filter

The schematic layout of a ridged waveguide filter [101] is shown in Fig. 4.18. It
is formed by the cascade of ridged waveguide cavities, arranged in two separate
rows and coupled by rectangular waveguides operating in the evanescent H10 mode.
The two rows are coupled to each other by rectangular irises. The excitation is
accomplished by standard coaxial SMA connectors with the inner conductor tapped
to one of the ridges. If the filter needs to be integrated in a high-density packaging
architecture, the structure can be built employing low-temperature cofired ceramics
(LTCC) technology [101].

Because there are two symmetry planes, two building blocks were used to carry
out the simulation. One block is contains the SMA connector, and has one coaxial
port and two rectangular ports. The second block is formed by the remaining ridged
cavity and has three rectangular ports. Each block is calculated separately yielding
the scattering matrices S1 and S2. S1 and S2 are cascaded with respect to the
common coupling port yielding a matrix S3. A matrix S4 is then obtained, by
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Figure 4.18: Canonical ridged waveguide filter [101]. Dimensions [mm]: a = 45.72,
b = 20.32, w = 24, h1 = 4.14, t = 2.54, wc1 = 8, ws2 = 10.86, dr1 = 43.02,
dr2 = 24.34, de1 = 41.80, de2 = 11.77, dc1 = 20.83, ds2 = 20.08, lt = 9.45,
yt = 4.12, ϕt = 1.06. Input SMA connectors: ϕext = 4.11, ϕint = 1.27, ϵr = 1.98.
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(a) Insertion and transmission loss.
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(b) Wideband frequency response.

Figure 4.19: S parameters of the canonical ridged waveguide filter in Fig. 4.18.
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mirroring S3 relative to the port formed by the three irises. Finally, S3 and S4

are connected to yield the scattering matrix of the whole filter. The structure is
mostly formed by planar faces, therefore there is no need for higher order patches,
except for the modeling of the inner conductor of the coaxial ports. Hierarchical
basis functions up to the polynomial order of three were used for electric current
modeling. The number of unknowns was 1374 for the first block and 875 for the
second block. The analysis needed about 160 seconds to find the response of the
filter in 200 frequency points. The calculated reflection and transmission coefficients
are compared with measured data in Fig. 4.19(a) and Fig. 4.19(b).

4.9.5 Coaxial to rectangular waveguide transition

The transition [46] is shown in Fig. 4.20. The inner conductor of the coaxial con-
nector penetrates into the rectangular waveguide and is terminated with a circular
disc. The dielectric material of the coaxial port is also extended to form a coating
for the inner wire probe. Two tuning screws are placed on the bottom of the cavity
for matching purposes.

In the simulation model, additional to the inner conductor coating, a phantom
dielectric coating having ϵr = 1 is considered to enclose the circular disc (see Fig.
4.21). The structure has been meshed by tetrahedral/triangular elements of polyno-
mial order of two. First order basis functions for the modeling of both volume field
and surface current densities turned out to be sufficient for reaching convergence.
The computed reflection coefficient is plotted, in Fig. 4.22, against the one measured
in [46].

4.9.6 Dielectric resonator filters

A dielectric resonator filter [45] is presented in Fig. 4.23. It has two coaxial rods
representing the ports; the two ring shaped dielectric cylinders (relative permittivity
of 38) are coupled to each other through a rectangular waveguide below cutoff.

The structure was divided into two building blocks: The coaxial feed and the
dielectric resonator. First order (linear) basis functions, defined on triangles of poly-
nomial order of two, were used to model the current densities on the excitation rod.
The dielectric cylinder has been meshed by second order tetrahedral/triangular ele-
ments. Second order functions were employed to model the interior (volume) fields,
and linear functions have been used to model the tangential fields. The number of
unknowns was for the dielectric resonator 2698 volume unknowns and 2×366 surface
unknowns. The calculation time was 40 seconds for the frequency independent part
and less than 1.5 seconds for the S-matrix calculation. The computed transmission
coefficient is plotted in Fig. 4.25 against measured results of [45]. The peak at 6.6
GHz was reported in [45] as a measurement error.

Another dielectric resonator filter [43] is shown in Fig. 4.26. The filter is formed
by the cascade of four resonating rectangular cavities connected to each other via
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Figure 4.20: Coaxial to rectangular waveguide transition [46].
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(a) Overall mesh. (b) Mesh cross sec-
tion.

Figure 4.21: Coax to rectangular waveguide transition mesh.
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Figure 4.22: Coax to rectangular waveguide transition return loss.
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Figure 4.23: Coaxial feed dielectric resonator filter [45]. Dimensions are expressed
in millimeters.
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Figure 4.24: Tetrahedral mesh model of the ring shaped dielectric resonator of the
filter in Fig. 4.23.
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Figure 4.25: Transmission loss of the filter in Fig. 4.23.
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rectangular irises. The excitation is realized through standard WR-90 (22.86×10.16
mm) rectangular waveguides. Each cavity is loaded with a high permittivity (ϵr =
50) dielectric cylinder which is supposedly mounted on a phantom dielectric support
(ϵr = 1) of height 3.25 mm. The geometrical dimensions of the structure are given
in Table 4.1.

Figure 4.26: Dielectric resonator filter [43] - translucent view.

width[mm] height[mm] length[mm]
Cavity 1 11. 9 7.7
Cavity 2 11 9 10.4
Cavity 3 11 9 10.4
Cavity 4 11. 9 7.7
Iris 1 6.08 4.43 0.5
Iris 2 4.85 5.27 0.5
Iris 3 6.08 4.43 0.5

radius[mm] height[mm] ϵr

Resonators 2.55 2.3 50

Table 4.1: Geometrical dimensions of the filter in Fig. 4.26.

Each resonating cavity has been computed by the present algorithm, whereas
the input waveguide steps and the coupling irises have been modeled by the mode
matching technique. The global scattering matrix of the filter is finally obtained by
cascading the individual scattering matrices of its building blocks. The geometric
modeling of the cylindrical pucks has been performed by second order triangular
patches. Third order basis functions were employed to model the volume fields
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(b) Wideband frequency response.

Figure 4.27: S parameters of the filter in Fig. 4.26.
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inside the dielectric resonators and the tangential fields on the resonator’s boundary
surface. About 45 seconds were spent in the calculation in the frequency independent
part. About 1.5 seconds per frequency point were needed to evaluate the S matrix.
The computed S - parameters of the fundamental rectangular waveguide mode are
plotted, in Fig. 4.27(a) and Fig. 4.27(b) against the ones obtained by the BI-RME
algorithm in [43].

The next example is a folded dielectric resonator filter shown in Fig. 4.28. The
ports are represented by standard SMA connectors having the inner conductor con-
nected to a bent metal strip. The four cavities are coupled by rectangular irises with
rounded corners. Each loaded cavity represents a building block in the simulation
model. Using the present algorithm, the filter has been optimized for a return loss
> 15 dB in the 4.06-4.07 GHz frequency range.

Second order functions were applied to model the interior (volume) fields and the
tangential fields. The number of unknowns was 3698 volume unknowns together with
1553 electric and 735 magnetic surface unknowns, in the case of the input/output
cavities, and 3698 volume unknowns and 735 electric and 735 magnetic surface
unknowns in the case of the corner resonator. About 80 seconds were needed to
evaluate the frequency independent parts and less than 5 seconds per frequency
point in the calculation of the dynamic parts.

An own 3D finite element code has been applied for this structure in Fig. 4.28
for comparison purposes. Although a fast linear equation solver for sparse matrices
has been utilized, more than 30 seconds were needed for each frequency point. The
corresponding S-parameters are shown in Fig. 4.29.
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Figure 4.28: Folded dielectric resonator filter.
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Figure 4.29: S-parameters of the folded dielectric resonator filter.



Chapter 5

Conclusions

Three different algorithms, for the simulation of passive microwave components, are
presented in this work. All three methods are doubly higher order, that is, higher
order basis functions are used for current/field modeling whereas the geometry dis-
cretization is performed with curved triangular patches of higher polynomial degree.
In order to allow the combination with other powerful techniques, such as the hy-
brid mode-matching/finite-element, the presented algorithms are full-wave, i.e. they
yield the generalized admittance/scattering matrix of the structure under investi-
gation. Moreover, the presented methods were implemented in a comprehensive
software tool [18], for the CAD of passive microwave components and antennas.

The method of Chapter 2 is a pure integral equation technique. Here, the elec-
tric field integral equation (EFIE) is enforced at conducting surfaces, whereas the
dielectric bodies are handled by the PMCHWT method [21], [22], [16], [23], hitherto
applied mainly to plane wave scattering problems. The resulted integral equations
are discretized by the method of moments (MoM). A new formulation, finally given
by (2.66), is introduced in order to remove the drawback noted in [24], [25], [26].
This new procedure allows the use of identical types of (frequency-independent) ba-
sis functions for the modeling of both magnetic current densities at the waveguide
ports and electric current densities at the conducting parts of a multiport. Hence,
the algorithm complexity 1 is independent of the number/type of port modes. As
many passive microwave components exhibit rotational symmetry (e.g. conical horn
antennas, paraboloidal dish reflectors, etc.), special attention is given to bodies of
revolution (BoR), for which, novel higher order basis functions are constructed.

However, the MoM algorithm of Chapter 2 cannot be applied to inhomoge-
neous/anisotropic structures. The efficiency of the numerical algorithm also dimin-
ishes with rising material permittivity/permeability because: First, it requires very
fine meshing to account for rapidly varying fields at dielectric’s surface, thus in-
creasing the number of unknowns, and secondly, higher order quadrature rules must
be considered to accurately integrate the rapidly varying kernels associated to the
interior problem, thus increasing the evaluation time of the corresponding integrals.

The finite-element boundary integral (FE-BI) algorithm introduced in Chapter 3
not only removes the aforementioned disadvantages of MoM but also increases flex-
ibility by allowing anisotropic/inhomogeneous materials. Finite elements are used

1The number of required floating point operations.
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here to characterize the arbitrarily shaped, possibly inhomogeneous, domains. The
boundary conditions, at the waveguide ports, are imposed by the matching of the
modal and interior fields. The known finite element - boundary integral formulation
[27], is here extended for the analysis of multiport structures. In contrast to other
FE-BI formulations [28], [29], the calculation of boundary integrals involving the
surface divergence of n̂ × f terms 2 is avoided here, thus the instabilities associated
with the introduction of artificial line charges are completely removed. Furthermore,
model order reduction (MOR) techniques are applied for the expedient calculation
of the wide-band frequency response of a multiport. Due to the incompatibility, with
the MOR formalism, of the integral equation formulation of the radiation bound-
ary conditions, absorbing boundary conditions (ABC) are alternatively employed
to truncate the computational domain, when the MOR procedure is applied to un-
bounded (radiating) structures. Moreover, the PRIMA based MOR technique [3]
has been extended for the treatment of structures with frequency dependent (inho-
mogeneous cross-section) waveguide ports, whereas the WCAWE algorithm of [4],
[31] has been modified to allow multiple right-hand sides (port modes).

Both methods presented in Chapters 2 and 3 share a common characteristic, that
is the whole structure under analysis must be discretized. However, many building
blocks of microwave components of practical interest are composed of rectangular
cavities with small metallic and/or dielectric loadings. Therefore, a new hybrid
algorithm, that makes use of the rectangular box Green’s function was designed in
Chapter 4. Similarly to Chapter 3, the known finite element - boundary integral
formulation [27], is now extended to shielded environments. All boundary integrals
involving rectangular cavity Green’s functions are efficiently evaluated utilizing the
Ewald transform [47, 48, 49]. There are mainly two factors responsible for the
efficiency of this approach. First, due to the separation of the Green’s functions into
static series (zero frequency limit), whose convergence is enhanced with the help of
the Ewald transform, and an already convergent dynamic series (higher frequency
correction), the most computational intensive part of the algorithm is performed only
once in a frequency sweep. Second, as a consequence of the use of the cavity Green’s
functions, only a small portion of the computational domain must be discretized,
thus drastically reducing the number of unknowns.

The algorithm of Chapter 2 solves for the sources and has the advantage of
keeping the discretized domain at minimum, whereas its complexity is of the order
of N2, where N is the number of unknowns. In contrast, differential equation
techniques require a 3-D discretization of the electric or magnetic fields, but in
turn they have a complexity of the order of N and the advantage of very sparse
coefficient matrices. Furthermore, in the case of integral equation methods, the
Green’s function, given in closed form or determined to the machine’s precision,

2n̂ is the surface normal unit vector and f represents a tangentially continuous basis function.
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accounts for the propagation of the waves from a point A to a point B. In contrast, in
the FEM model the propagation takes place through a numerical grid. A small error
is usually introduced in this mode of field propagation [16], [17]. This error manifests
as a phase error in the field and is cumulative. This phase error can be mitigated by
increasing the grid density and/or by the use of higher order basis functions, thus the
motivation of using higher order bases throughout this work. An additional problem
is related to the truncation of the computational domain in differential equation
techniques. In the last two chapters, exact radiation conditions, at the truncation
boundary, are enforced via integral equations. In turn, the mesh truncation via
boundary integrals represents the bottleneck of both FE-BI algorithms of chapters
3 and 4, mainly due to the time spent in the evaluation the boundary integrals
and the presence of a fully populated block in the associated coefficient matrix. The
impact of the boundary integral formulation is less severe for the method of Chapter
4, as only a small portion of the computational domain is discretized. Absorbing
boundary conditions (ABC) are introduced in Chapter 3 as an alternative to the
boundary integral formulation. The ABCs are approximate boundary conditions,
hence a small amount of the field is artificially reflected back into the computational
domain, thus increasing the overall computation error. In turn, the ABCs have the
advantage of preserving the sparsity of the coefficient matrix and they fulfill the
MOR requirements.

It was found that the method of Chapter 2 is suitable for the analysis of ra-
diating structures composed of conducting and/or homogeneous dielectrics while
being outperformed by the FE-BI approach of Chapter 3 if arbitrarily shaped non-
radiating devices are investigated. The analysis of arbitrarily loaded rectangular
waveguides/cavities can be performed with any of the FEM-MOR or the special-
ized FE-BI algorithm of Chapter 4 as both methods are fast and equally accurate,
although we note that the shielded environment formulation requires less memory.
However, when arbitrarily shaped anisotropic/inhomogeneous structures must be
simulated, we are left with the algorithm presented in Chapter 3. In this last case,
ABCs can be used, as an alternative to boundary integrals, to truncate radiating
structures. The ABCs sacrifice some of the accuracy but in turn they are compatible
with the MOR formalism.

We end this chapter by stressing that a proper choice of numerical algorithms can
have a tremendous impact on the efficiency and accuracy of the simulation/optimization
of a passive microwave structures. Hybrid software tools [18] that employ the do-
main decomposition approach are usually orders of magnitude faster than their single
method counterparts.





Appendix A

Singularity cancellation method

Consider the projection of an observation point r on the plane of a source triangle
T , as in Fig A.1. The projected point divides T into three subtriangles T1, T2 and
T3, and a local coordinate system is formed for each subtriangle (shown only for T2

in Fig. A.1)
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Figure A.1: Subdivision of the source triangle into three triangles and subtriangle
local coordinate system.

We are interested in calculating integrals of the form∫∫
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where f and g are arbitrary vector or scalar functions, R represents source-observation
distance and n is a strictly positive integer. The above integrals are called singular
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if n = 1, and hypersingular if n > 1. The subtriangle integral Ik reads
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A double variable transformation

x′ → u,

y′ → v,

is introduced, yielding

Ik =
∫ vU

vL

∫ uU

uL

f
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)
g (R)

I (u, v)
Rn

dudv, (A.3)

which is regular and smooth, therefore can be efficiently evaluated using numerical
quadratures. Several variable transformations [65], [66], [67], [68], are presented in
table A.1. All except the last one are suitable for the calculation of the singular
potential integrals, while the last one is suitable for the evaluation of the near-
hypersingular field integrals.

When the source triangle is curved, the integrals are evaluated on the pla-
nar triangle tangential to the source triangle in the point

(
u0

1, u
0
2

)
, which is cho-

sen such as
∣∣r − r′

(
u0

1, u
0
2

)∣∣ = min. The minimization of |r − r′ (u1, u2)| is non-
trivial when higher order source triangles are considered. In the practical imple-
mentation of the algorithms from the present work the square distance function
[r − r′ (u1, u2)] · [r − r′ (u1, u2)] is minimized with the help of the GSL [102]. If the
projected point falls outside the source triangle then

(
u0

1, u
0
2

)
must be constrained

to one of triangle’s vertices or to one of triangle’s edges, yielding only one or two
subtriangles, respectively.
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no u v I (u, v) uL,U

vL,U

1 sinh−1 x√
y2+z2

y R sinh−1 y cotΦL,U√
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0,h
Asinh
2 x√
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√
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0,h
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)2
Radial
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4 ln tan Φ
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cosh u ln tan ΦL,U

2

|z|,z2 +
√

z2 + (h cosh u)2
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2 lnR R2
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2
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[
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]
R2RA
(radial2-angular)

Table A.1: Variable transformations in numerical cancellation method.





Appendix B

Singular integrals for bodies of

revolution

The double surface inner product integrals involving the L and K operators (see
Section 2.2.2 ) can be greatly simplified (with the expense of greater analytical
effort), when bodies of revolution are investigated. Considering the already defined
basis functions from Section 2.3.3, the product integrals become

IL,αβ
m,pq,rs = C1

∫
∆p

∫ 2π

0
Tα

m,p,q (t, ϕ)
∫

∆r

∫ 2π

0
Fβ

m,r,s

(
t′, ϕ′)G0

(
t, ϕ, t′, ϕ′) dϕ′dt′dϕdt,

−C2

∫
∆p

∫ 2π

0
∇Tα

m,p,q (t, ϕ)
∫

∆r

∫ 2π

0
∇′Fβ

m,r,s

(
t′, ϕ′)G0

(
t, ϕ, t′, ϕ′) dϕ′dt′dϕdt,

(B.1)

IK,αβ
m,pq,rs = − 1

2

∫
∆p=r

∫ 2π

0
Tα

m,p,q (t, ϕ)
[
n̂ × Fβ

m,p,s (t, ϕ)
]
dϕdt,

+
∫

∆p

∫ 2π

0
Tα

m,p,q (t, ϕ)
∫

∆r

∫ 2π

0
G1

(
t, ϕ, t′, ϕ′)× Fβ

m,r,s

(
t′, ϕ′) dϕ′dt′dϕdt.

(B.2)

Here ∆ is the domain of definition of the basis along the BoR generatrix, whereas
α and β stand for t and ϕ, respectively. After some analytic manipulations [63], the
integral (B.1) becomes

IL,tt
m,pq,rs =

∫
∆p

∫
∆r

[
C1f

q
pf ′s

r sin γp sin γ′
rG

m
2 + C1f

q
pf ′s

r cos γp cos γ′
rG

m
1

− C2
∂f q

p

∂t

∂f ′s
r

∂t′
Gm

1

]
dt′dt,

IL,tϕ
m,pq,rs =

∫
∆p

∫
∆r

[
iC1f

q
pf ′s

r sin γpG
m
3 dt′dt + imC2

∂f q
p

∂t
f ′s

r

1
ϱ′

Gm
1

]
dt′dt,

IL,ϕt
m,pq,rs =

∫
∆p

∫
∆r

[
−iC1f

q
pf ′s

r sin γ′
rG

m
3 dt′dt − imC2f

q
p

∂f ′s
r

∂t′
1
ϱ
Gm

1

]
dt′dt,

IL,ϕϕ
m,pq,rs =

∫
∆p

∫
∆r

[
C1f

q
pf ′s

r Gm
2 − m2C2f

q
pf ′s

r

1
ϱϱ′

Gm
1

]
dt′dt,

(B.3)
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and (B.2) is developed to

IK,tt
m,pq,rs = i

∫
∆p

∫
∆r

f q
pf ′s

r [ϱ cos γp sin γ′
r − ϱ′ sin γp cos γ′

r

+ (z − z′) sin γp sin γ′
r]G

m
6 dt′dt,

IK,tϕ
m,pq,rs =

∫
∆p

∫
∆r

f q
pf ′s

r {
[
(ϱ′ − ϱ) cos γp − (z′ − z) sin γp

]
Gm

5

+ 2ϱ′ sin γpG
m
4 }dt′dt,

IK,ϕt
m,pq,rs =

∫
∆p

∫
∆r

f q
pf ′s

r {
[
(z′ − z) sin γ′

r − (ϱ′ − ϱ) cos γ′
r

]
Gm

5

+ 2ϱ sin γ′
rG

m
4 }dt′dt,

IK,ϕϕ
m,pq,rs = i

∫
∆p

∫
∆r

f q
pf ′s

r (z′ − z)Gm
6 dt′dt.

(B.4)

The prime superscripts are used to indicate source quantities, ϱ, z, γ represent the
radial coordinate, axial coordinate and the angle made by the tangent to the segment
at the integration point with the axis of the body, respectively. The modal Green
functions Gm

∗ are given by

Gm
1 =

1
2

∫ π

0

e−ik0R

R
cos mθdθ, (B.5a)

Gm
2 =

Gm−1 + Gm+1

2
, (B.5b)

Gm
3 =

Gm−1 − Gm+1

2
, (B.5c)

Gm
4 = −1

2

∫ π

0

1 + ik0R

R
e−ik0R cos mθ sin2

(
θ

2

)
dθ, (B.5d)

Gm
5 = −1

2

∫ π

0

1 + ik0R

R
e−ik0R cos mθ cos θdθ, (B.5e)

Gm
6 = −1

2

∫ π

0

1 + ik0R

R
e−ik0R sin mθ sin θdθ. (B.5f)

While G4, G5 and G6 integrals are computed in Cauchy’s principal value sense,
extraction method is used to handle the singular and near-singular cases of G1.
Thus, we have

Gm
1 =

1
2

∫ π

0

[
e−ik0R

R
cos mθ − 1

R

]
dθ︸ ︷︷ ︸

Gm,reg
1

+
1
2

∫ π

0

1
R

dθ︸ ︷︷ ︸
Gm,sing

1

. (B.6)
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First integral in (B.6) is regular, so it can be calculated using gaussian quadrature
formulas. The second integral can be written as

Gm,sing
1 =

1
2

∫ π

0

dθ√
ϱ2 + ϱ′2 + (z − z′)2 − 2ϱϱ′ cos θ

. (B.7)

Making the notation α = π−θ
2 , we have

Gm,sing
1 =

1
R0

∫ π
2

0

dα√
1 − β2 sinα

, (B.8)

with
R0 =

√
(ϱ + ϱ′)2 + (z − z′)2, (B.9)

and

β =
2
√

ϱϱ′

R0
. (B.10)

The integral in (B.8) is recognized as the complete elliptic integral of first kind, thus

Gm,sing
1 =

1
R0

K (β) . (B.11)

The source integrals in (B.3) still contain an integrable logarithmic singularity (when
β = 1 or ϱ = ϱ′ and z = z′) that can be handled using the Ma, Rokhlin and Wandzura
scheme [103].

The BoR singularity handling procedure presented here completely differs from
the one in [63] and is not restricted to linear segments. Again, with the source
integrals regularized, the L and K related inner products in (B.3) and (B.4) are
evaluated using gaussian quadratures.





Appendix C

Modal functions and image sets

for the Green’s functions of a

rectangular box

G fm (x, x′) gn (y, y′) hp (z, z′)
Gxx

A cos x cos x′ sin y sin y′ sin z sin z′

Gyy
A sinx sin x′ cos y cos y′ sin z sin z′

Gzz
A sinx sin x′ sin y sin y′ cos z cos z′

gv sinx sin x′ sin y sin y′ sin z sin z′

Gxx
F sinx sin x′ cos y cos y′ cos z cos z′

Gyy
F cos x cos x′ sin y sin y′ cos z cos z′

Gzz
F cos x cos x′ cos y cos y′ sin z sin z′

gw cos x cos x′ cos y cos y′ cos z cos z′

Table C.1: Modal functions for potential Green’s functions.

G fm (x, x′) gn (y, y′) hp (z, z′)
Υxy

dyn,Υxy
1 cos x cos x′ sin y sin y′ −kz sin z cos z′

Υyx
dyn,Υyx

1 sinx sinx′ cos y cos y′ kz sin z cos z′

Υxz
dyn,Υxz

1 cos x cos x′ ky sin y cos y′ sin z sin z′

Υzx
dyn,Υzx

1 sinx sinx′ −ky sin y cos y′ cos z cos z′

Υyz
dyn,Υyz

1 −kx sinx cos x′ cos y cos y′ sin z sin z′

Υzy
dyn,Υzy

1 kx sinx cos x′ sin y sin y′ cos z cos z′

Table C.2: Modal functions for ¯̄GEM .
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i position Xi Yi Zi Axx
i Ayy

i Azz
i Vi

0 (+x′, +y′, +z′) (x − x′) (y − y′) (z − z′) +1 +1 +1 +1
1 (+x′, +y′,−z′) (x − x′) (y − y′) (z + z′) −1 −1 +1 −1
2 (+x′,−y′, +z′) (x − x′) (y + y′) (z − z′) −1 +1 −1 −1
3 (+x′,−y′,−z′) (x − x′) (y + y′) (z + z′) +1 −1 −1 +1
4 (−x′, +y′, +z′) (x + x′) (y − y′) (z − z′) +1 −1 −1 −1
5 (−x′, +y′,−z′) (x + x′) (y − y′) (z + z′) −1 +1 −1 +1
6 (−x′,−y′, +z′) (x + x′) (y + y′) (z − z′) −1 −1 +1 +1
7 (−x′,−y′,−z′) (x + x′) (y + y′) (z + z′) +1 +1 +1 −1

Table C.3: Basic image set parameters of the potential Green functions for electric
sources.

i position Xi Yi Zi F xx
i F yy

i F zz
i Wi

0 (+x′, +y′, +z′) (x − x′) (y − y′) (z − z′) +1 +1 +1 +1
1 (+x′, +y′,−z′) (x − x′) (y − y′) (z + z′) +1 +1 −1 +1
2 (+x′,−y′, +z′) (x − x′) (y + y′) (z − z′) +1 −1 +1 +1
3 (+x′,−y′,−z′) (x − x′) (y + y′) (z + z′) +1 −1 −1 +1
4 (−x′, +y′, +z′) (x + x′) (y − y′) (z − z′) −1 +1 +1 +1
5 (−x′, +y′,−z′) (x + x′) (y − y′) (z + z′) −1 +1 −1 +1
6 (−x′,−y′, +z′) (x + x′) (y + y′) (z − z′) −1 −1 +1 +1
7 (−x′,−y′,−z′) (x + x′) (y + y′) (z + z′) −1 −1 −1 +1

Table C.4: Basic image set parameters of the potential Green functions for magnetic
sources.
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