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‘This whole Ice Age thing is getting old.

You know what I could go for?

Global warming.’





CONTENTS

I

Contents

Summary III

Zusammenfassung V

1 Introduction 1

1.1 Concepts of thermal tolerance and functional entities 1

1.2 Inhabitation of the Southern Ocean 3

1.3 Systemic adaptations to the cold 3

1.4 Mitochondrial adaptation and stenothermality 4

1.5 The cellular energy budget 5

1.6 Cellular homeostasis and ion regulation 6

1.7 Proton leak 6

1.8 Functions for UCPs in ectotherms 8

1.9 Concept of this thesis 9

2 Methods 11

2.1 Animals 11

2.2 Analyses by nuclear magnetic resonance techniques 13

2.3 Respiration 14

2.4 Cell isolation 16

2.5 Inhibitors 16

2.6 Molecular Biology 17

2.6.1 Protein isolation, gel electrophoresis and western blot analysis 17

2.6.2 RNA-Isolation 17

2.6.3 Characterisation of UCP2 18

2.6.4 Construction of probes and sequence determination 18



CONTENTS

II

2.6.5 Quantification of protein specific mRNA 19

2.7 Statistical analysis 19

3 Publications 21

I Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and
31P-MRS 23

II Thermal sensitivity of cellular energy budgets in Antarctic fish hepatocytes 35

III Are mitochondrial uncoupling proteins involved in thermal acclimation of polar

and temperate fish? 63

IV Oxygen limited thermal tolerance in fish? Answers obtained by nuclear magnetic

resonance techniques 99

4 Discussion 119

4.1 Systemic thermal tolerance 119

4.2 Cellular thermal tolerance 124

4.3 Thermally induced molecular adaptations 127

4.4 Conclusions 129

5 References 135

Danksagung 145



SUMMARY

III

Summary

In the light of climate change, scenarios of global warming and their implications for

organisms and ecosystems, the physiological mechanisms that define thermal sensitivity and

limit thermal tolerance have gained a wider interest. In an integrative approach, this thesis set

out to address thermal tolerance in temperate, sub-Antarctic and Antarctic fish examining its

functions, limits and mechanistic links between the organismic, cellular and molecular level. 

At the organismic level, the role of oxygen in limiting thermal tolerance of the

Antarctic eelpout Pachycara brachycephalum was investigated in in vivo nuclear magnetic resonance

(NMR) experiments during gradual warming from 0 to 13°C. The effects of temperature on

respiration, blood flow, energy metabolism, intracellular pH regulation, and tissue oxygenation

were studied under normoxia and hyperoxia. Under normoxia, thermal tolerance was limited

by the capacities of the circulatory system supplying oxygen to the tissues. Hyperoxia alleviates

oxygen uptake and reduces costs of ventilation and circulation, which were mirrored in lower

oxygen consumption rates than under normoxia, especially at higher temperatures. Yet

additional oxygen could not shift or widen windows of thermal tolerance, probably due to

further secondary limiting processes like thermally induced changes in membrane

composition.

At a lower level of organismic complexity, thermal sensitivity of energy allocation to

protein, DNA/RNA and ATP synthesis and ion regulation was studied in the cellular energy

budgets of hepatocytes isolated from P. brachycephalum and sub- and high-Antarctic

notothenioids. Organismic thermal limitations proved not to be reflected at the cellular level.

Provided with sufficient oxygen and metabolic substrates cellular energy budgets remained

stable over the investigated temperature range, widely surpassing the thermal tolerance

windows of the whole organism. These findings corroborate the idea that capacity limitations

of the organismic level are constricting thermal tolerance and support the recent concept of a

systemic to molecular hierarchy, in which the most complex systemic level ultimately defines

thermal tolerance.

At the molecular level, temperature sensitive expression of mitochondrial uncoupling

proteins (UCP) was studied during warm and cold acclimation of P. brachycephalum and the

temperate common eelpout Zoarces viviparus, respectively, to investigate the role of this protein

in the adaptive plasticity of mitochondrial energy metabolism. Associated with a general

mitochondrial proliferation during cold acclimation in Z. viviparus, protein and mRNA

expression levels of UCP2 increased in liver and muscle tissue. During warm acclimation in P.

brachycephalum, UCP2 expression was also increased but in contrast to otherwise relatively
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stable mitochondrial capacities. Increased levels of UCP2 may be necessary to regulate high

mitochondrial membrane potentials resulting from unchanged capacities in the warm, thus

preventing formation of reactive oxygen species. These findings may be indicative of an

alternative way of mitochondrial warm adaptation in Antarctic fish.

In conclusion, the data presented here demonstrate that thermal tolerance of the

various levels of organisation in fish differ when studied on their own, but in a complex

organism are in mutual control of each other, with the highest organisational level showing the

highest thermal sensitivity. Within a narrow thermal window, slow warm acclimation of the

individual appears possible even in stenothermal Antarctic fish, which in an integrated

response of all levels of organisational complexity may shift towards an alternative

eurythermal mode of life, thus increasing aerobic scope and windows of thermal tolerance.
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Zusammenfassung

Physiologische Mechanismen, die die Temperaturtoleranz eines Organismus

bestimmen, haben vor dem Hintergrund von Klimawandel, globaler Erwärmung und ihren

Auswirkungen auf Organismen und Ökosysteme an Bedeutung gewonnen. In der

vorliegenden Arbeit wurde daher in einem umfassenden Ansatz die Funktion von an der

Temperaturtoleranz beteiligten Prozessen und deren Grenzen an borealen, subantarktischen

und hochantarktischen Fischarten untersucht. Dabei wurde der Schwerpunkt auf die

mechanistischen Verbindungen zwischen den organismischen, zellulären und molekularen

Ebenen gelegt.

Auf der organismischen Ebene wurde die Rolle von Sauerstoff in der Limitierung der

Temperaturtoleranz mit Hilfe von in vivo Kernspinresonanzexperimenten während einer

schrittweisen Erwärmung von 0 auf 13°C an der antarktischen Aalmutter Pachycara

brachycephalum untersucht. Temperatureffekte auf Respiration, Blutfluss, Energiestoffwechsel,

intrazelluläre pH-Regulation und Gewebeoxygenierung wurden dabei unter normoxischen

und hyperoxischen Bedingungen studiert. Unter Normoxie war die Temperaturtoleranz durch

die Kapazität des Herz-Kreislauf-Systemes in der Sauerstoffversorgung limitiert. Hyperoxie

erleichtert die Sauerstoffaufnahme und reduziert die Kosten von Ventilation und Herz-

Kreislauf-System, was sich in einem verringerten Sauerstoffverbrauch vor allem unter

erhöhten Temperaturen widerspiegelte. Zusätzlicher Sauerstoff konnte allerdings die

Temperaturtoleranzfenster weder verschieben noch erweitern, was darauf hinweist, dass

nachfolgende Prozesse wie z. B. temperaturinduzierte Veränderungen von

Membraneigenschaften auf die Temperaturtoleranz wirken.

Auf zellulärer Ebene wurde der Effekt von Temperatur auf die Energieverteilung im

zellulären Energiebudget anhand der zentralen Prozesse ATP-, Protein-, und RNA-Synthese

sowie Ionenregulation in isolierten Leberzellen von P. brachycephalum und sub- und

hochantarktischen Notothenoiden untersucht. Zelluläre Energiebudgets blieben über den

gesamten untersuchten Temperaturbereich stabil, sofern die Zellen mit ausreichend Sauerstoff

und Metaboliten versorgt wurden. Das Temperaturtoleranzfenster auf zellulärer Ebene war

somit bei weitem größer als auf organismischer Ebene. Diese Befunde unterstützen die

Theorien, dass Kapazitätslimitierungen auf systemischer Ebene die Temperaturtoleranz

einschränken und eine Hierarchie von systemischer zu molekularer Ebene besteht.

Auf molekularer Ebene wurde die temperaturabhängige Expression mitochondrialer

Entkopplerproteine (UCP) nach Akklimatisation in P. brachycephalum und der borealen
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Aalmutter Zoarces viviparus untersucht, um Hinweise auf eine Beteiligung dieses Proteins an der

Anpassungsfähigkeit des mitochondrialen Energiestoffwechsels zu finden. Im Einklang mit

einer generellen mitochondrialen Proliferation in der Kälte konnte auch eine erhöhte mRNA-

und Proteinexpression von UCP2 in Leber- und Muskelgewebe von Z. viviparus gefunden

werden. Im Gegensatz dazu war bei der antarktischen Aalmutter die Expression bei

gleichbleibender mitochondrialer Kapazität in der Wärme erhöht. Dieser erhöhte UCP Spiegel

könnte zur Regulation eines hohen mitochondrialen Membranpotentiales nötig sein, das aus

den unveränderten mitochondrialen Kapazitäten in der Wärme resultiert und somit der

Bildung reaktiver Sauerstoffverbindungen entgegenwirkt. Diese Strategie deutet auf einen

alternativen Weg mitochondrialer Wärmeanpassung in antarktischen Fischen hin.

Zusammenfassend kann gesagt werden, dass die Temperaturtoleranz der

verschiedenen Organisationsebenen eines Organismus sich unterscheiden, wenn man sie

separat betrachtet. Im Zusammenspiel des gesamten Organismus beeinflussen sie sich jedoch

gegenseitig, werden aber letztendlich durch die höhere Sensitivität der höchsten

Organisationsebene limitiert. In einem engeren Temperaturfenster erscheint auch eine

längerfristige Wärmeakklimation auf Individuenebene in stenothermen antarktischen Fischen

möglich. Unter moderaten Akklimationsbedingungen könnten sie alternativ zur Eurythermie

über eine gemeinsame Reaktion aller Organisationsebenen aerobic scope und

Temperaturtoleranzfenster vergrößern.
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1 Introduction

During the last decade, the physiological mechanisms that define thermal sensitivity

and limit thermal tolerance have gained wider interest in the context of climate change and its

implications for organisms and ecosystems. The main focus of this thesis shall lie in the

investigation of the mechanisms of thermal tolerance and their underlying energetic limitations

of Antarctic fish, as the cold and stable Antarctic environment has led to adaptations making

Antarctic fish species particular susceptible to thermal stress.

1.1 Concepts of thermal tolerance and functional entities

Ectothermal organisms cannot actively regulate their body temperature and are hence

subject to temperature effects that influence and limit all physical and biochemical processes

in their cells. Even simple unicellular ectotherms cannot adjust their metabolic performance to

the whole range of temperatures found in the environment and more complex organisms are

found to be even more thermally sensitive: the rise in complexity from unicellular eukaryotes

to the metazoa has led to a gain in performance but also to an increase in metabolic rate and

oxygen demand and hence to a greater thermal sensivity. Thus, the conventions of thermal

tolerance are an issue of general importance to all ectothermal species, in particular to the

more complex organisms.

Especially in the light of global warming, the significance of thermal tolerance

becomes evident, as can be witnessed in thermally induced shift in zooplankton species

(Southward et al., 1995) or the decline of cod stocks in the warming North Sea (O'Brien et al.,

2000). Shelford (1931) was the first to develop a general theoretical model depicting

consecutive stages of tolerance of ectothermal organisms towards abiotic factors, which in the

following has been modified by several authors (Southward, 1958; Weatherley, 1970; Jones,

1971). It was finally refined with particular respect to the role of oxygen and decline of aerobic

scope (the capacity of aerobic metabolic energy provision) in thermal tolerance (Pörtner,

2001). A number of recent studies have defined critical temperature thresholds for annelids

(Sommer et al., 1997), sipunculids (Zielinski and Pörtner, 1996), crustaceans (Frederich and

Pörtner, 2000) and fish (Van Dijk et al., 1999), which were associated with a drastic increase in

oxygen demand and (where measured) declined aerobic scopes. Based on these insights, the

current model relates to a thermally induced decline in aerobic scope as measure for thermal

tolerance (for review, see Pörtner, 2001). Oxygen limitation sets in prior to functional failure

and it appears that organismic thermal tolerance is defined by the capacity limitations of the

most complex organisational level, namely the oxygen supply mediated by the circulatory (i.e.
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cardio-vascular) system (Pörtner, 2002b; Lannig et al., 2004). Earlier authors have suggested

that once the circulatory system’s limits are exceeded or oxygen consumption of the

distributive mechanisms themselves becomes overly high, oxygen supply may become

increasingly hampered and consequently the organism’s aerobic scope would decline

(Weatherley, 1970; Jones, 1971). Thermal tolerance appears therefore closely connected to

oxygen demand, and Pörtner and coworkers (Frederich and Pörtner, 2000) termed the

temperatures above and below which aerobic scope declines as upper and lower pejus

temperatures (Tp II and Tp I; cf. figure 1). The pejus range, characterised by a declining aerobic

scope, extends until the onset of anaerobic metabolism, which is marked by the critical

temperatures Tc I and Tc II, and beyond which survival is no longer possible (Zielinski and

Pörtner, 1996; Sommer et al., 1997). In contrast to the long-term ecological tolerance range

that is likely to be reflected by optimal aerobic scope between Tp I and Tp II, physiological

tolerance also extends into the pejus range, in which short-term survival is still possible but

energy too limited to support high activity, growth and reproduction. Therefore, the threshold

temperatures Tp between the optimum and pejus range presumably denote species-specific

ecological and geographical distribution boundaries (Pörtner, 2001).
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     Figure 1: Model of oxygen limited thermal tolerance (after Frederich and Pörtner, 2000).

According to the theory of symmorphosis (Taylor and Weibel, 1981) and the concept of a

systemic to molecular hierarchy of thermal tolerance (Pörtner, 2002b), an organism is fine-

tuned to yield a functional entity, which is optimally adjusted to the energetic needs and

supplies in a particular environment. Although in part adaptable to changing (seasonal)
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environmental conditions, functional capacities of all systemic levels are thought not to be

expressed in excess of the direct environmental needs, which are framed by the upper and

lower pejus temperatures.

The environmental demands to metabolism may vary throughout the laditudinal cline

and with them the size of the thermal tolerance windows. Cold stenotherm fish are observed

to possess rather narrow thermal tolerance windows and are not able to support life functions

at higher temperatures. In eurythermal temperate fish, ‘envelopes’ of thermal tolerance are

wider but nonetheless mark the species-specific range of temperatures in which the organisms

can survive (Brett and Groves, 1979). In Antarctic fish species, low and stable temperatures

and high oxygen availability have led to adaptations, which are expressed by low metabolic

rates associated with reduced capacities of oxygen supply, which makes these fish

exceptionally sensitive to changing temperatures. These effects will be discussed in detail in

the following chapters.

1.2 Inhabitation of the Southern Ocean

Radiation of the recent teleostei (bony fish) into the Southern Ocean began about 25

mio years ago in the early Miocene (Anderson, 1994; Arntz et al., 1994), when the polar

Antarctic climate began to stabilise. The opening of the Drake Passage some 35 mio years ago

had led to the forming of the circumpolar current and the Antarctic convergence and had

isolated the water masses of the Southern Ocean from the surrounding seas, favouring the

development of a stable cold-stenotherm Antarctic ecosystem, in which the constantly low

water temperatures only range between –1.86°C and 1.0°C (Olbers et al., 1992).

1.3 Systemic adaptations to the cold

Ectothermal organisms consequently have had to adjust their life strategies to the

environmental conditions of the Antarctic ecosytem. Like many species in the Arctic, most

Antarctic fish species produce antifreeze proteins (AFPs) and glycoproteins (AFGPs), to

protect their body fluids, which are hypoosmotic to sea water, from freezing (DeVries, 1971;

Fletcher et al., 2001). These are peptides of various molecular masses (Schneppenheim and

Theede, 1982; Schrag et al., 1987) that adsorb to forming ice crystals, thus they prevent further

growth and cause thermal hysteresis.

Low environmental temperatures generally lead to increased viscosity, which has direct

consequences for most vital processes, among others membrane fluidity, enzymatic function,

blood circulation and gas diffusion. To maintain cell membrane fluidity, the content of

unsaturated fatty acids and the ratio of phosphatidyl ethanolamine to phosphatidyl choline
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(PE:PC) are frequently increased in the cold (Hazel, 1995), a process known as homeoviscous

adaptation (Sinensky, 1974; Moran and Melani, 2001). Because of low metabolic rates and

high oxygen solubility in the cold, Antarctic fish can afford to possess lower hematocrits than

fish of lower latitudes to reduce blood viscosity (Egginton, 1997). In the case of the white-

blooded Antarctic icefishes (Channichthyidae), red blood cells containing hemoglobin are even

completely absent (Di Prisco, 2000). A resulting reduction in the oxygen carrying capacity of

the blood is tolerable only because of increased physical solubility of oxygen in the blood and

cytosol in the cold, and on the other hand, because of the passive and sluggish mode of life,

which is also mirrored in a higher oxygen affinity of the remaining hemoglobin (Wells and

Jokumsen, 1982; Sidell, 1998). Moreover, in comparison to fish that possess hemoglobin,

icefish hold higher heart and blood volumes as well as increased mitochondrial densities

(Sidell, 1991; O'Brien and Sidell, 2000; O'Brien et al., 2003). Under stress free conditions, even

some of the Antarctic fish species that normally rely on respiratory pigments, can survive

without them (Di Prisco, 2000). High viscosity at cold temperatures leads to decreased

diffusion processes in the cytosol, affecting gas and metabolite transport to the mitochondria

(Sidell, 1991). In combination with cold induced decreases in enzyme activities, this will

ultimately result in a reduction of available energy and oxygen, consequently energy demand

and metabolic rate would have to be lowered. To maintain physiological functions and prevent

functional hypoxia, adjustments of metabolism to cold are therefore necessary, some of which

involve mitochondrial proliferation.

1.4 Mitochondrial adaptation and stenothermality

Mitochondrial densities are found to be temperature dependent, cold adapted species

display higher mitochondrial densities than species from temperate areas (Dunn et al., 1989)

and mitochondrial proliferation in terms of number, size and cristae surface can be observed

in the course of cold acclimation experiments (Johnston and Dunn, 1987; St-Pierre et al.,

1998; Guderley and St-Pierre, 2002). High mitochondrial densities in the cold are

advantageous as they enhance the oxidative capacities of an organism and shorten diffusion

distances between the capillaries and mitochondria (Archer and Johnston, 1991). Additionally,

frequently observed increased lipid contents ease diffusion, transport and storage of oxygen,

which diffuses in lipids 4 to 5 times faster than in the cytosol (Sidell, 1991; 1998).

Yet, a drawback of high mitochondrial densities is a resulting elevated energy demand

and, as a consequence, an elevated standard metabolic rate (SMR). Scholander et al. (1953) and

Wohlschlag (1960) found remarkably higher metabolic rates in polar fish species at low

temperatures, than expected from metabolic rates of tropical fish extrapolated to the same low
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temperatures. Their observations led to the hypothesis of metabolic cold adaptation (MCA),

which on the basis of recent findings has been controversially discussed, first of all by Holeton

(1974) and Clarke (Clarke, 1983; 1991; 1993), and disproved for the high-Antarctic

notothenioids (Clarke and Johnston, 1999). Today, it is widely believed, that MCA is only

weakly expressed in Antarctic fish and that complete cold compensation is not reached

(Hardewig et al., 1998).

This may in part be due to the fact that elevated metabolic rates, resulting from

mitochondrial proliferation and increased energy consumption due to proton leakage rates

over the inner mitochondrial membrane (which will be discussed in detail below) are

compensated for (Pörtner, 2001). Compensation can be accomplished by modifications of

membrane properties (Miranda and Hazel, 1996; Pörtner et al., 1998; Logue et al., 2000).

Furthermore, mitochondrial enzymes of some cold-adapted fish display higher activation

energies (Hardewig et al., 1999a; Pörtner et al., 1999a; Pörtner et al., 2000). Thus, metabolic

rates at low temperatures can be kept on a level, which would be predicted by extrapolation of

metabolic rates of temperate fish with lower mitochondrial densities. Still, the trade-off of this

kind of cold adaptation can result in an increased temperature sensitivity, which becomes

manifest in the stenothermality of these animals (Pörtner et al., 1999b). Once the enzymes’

high activation energies are provided by elevated environmental temperatures, metabolic rate

and thus metabolic energy consumption in these animals will rise substantially, hereby limiting

the tolerable thermal range. Stenothermality hence can be considered a direct consequence of

cold adaptation.

1.5 The cellular energy budget

Cells exposed to suboptimal conditions face stress in terms of distribution of

metabolic resources, consequently the energy available for cellular maintenance and

proliferation has to be carefully allocated to those metabolic processes, which are of eminent

importance for cell survival. In other words, energy distribution in the cell has to follow some

sort of hierarchy under stress conditions to secure the longest possible sustainment of basic

cellular functions. Atkinson (1977) suggested that there is a hierarchy in ATP consuming

processes, which in accordance with their functional importance show different sensitivities

towards a reduction of the cellular energy load. He felt that ‘there is a hierarchy of such

processes in terms of their responses to the value of the energy charge. Energy-storing

sequences, such as the syntheses of polysaccharides or fat, should be most sensitive to a

decrease in energy charge. Biosynthesis of structural macromolecules should be next, and

activities that are essential for maintenance of life should be able to function at lower values of
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energy charge’. According to that notion, a situation of reduced energy (i.e. ATP) availability,

which can be due to a shortage either in substrate or oxygen availability, first the metabolic

processes related to growth and reproduction are down-regulated, then the processes of

cellular maintenance, including ion pumps and exchangers that maintain ionic homeostasis (or

enantiostasis, as it is rather called in ectotherms). It is yet questionable, whether in the intact

cell these energy shifts occur as a reaction to a reduction in energy charge or to prevent a

decrease in energy charge and it is an intriguing question as to how these shifts are in fact

elicited.

1.6 Cellular homeostasis and ion regulation

As mentioned above, in the pejus range between Tp and Tc, first metabolic limitations

become effective, not only influencing growth and reproduction (Pörtner et al., 2001) but

possibly also cellular homeostasis, for example ion regulation (Van Dijk et al., 1999). Ion

regulation and pH regulation in particular are very important in ectothermal organisms, which

have to maintain intra- and extracellular buffering capacities over a wide range of

temperatures. The imidazole moieties of the amino acid histidine play a central role in

intracellular pH regulation, as they are the only functional groups with a pK within the

physiological range (pK’= 6.92). According to the α -stat hypothesis by Reeves (1972),

intracellular pH (pHi) is regulated following the shift of imidazole pK with temperature

(-0.015 to –0.020 pH • °C-1). This prevents changes in imidazole dissociation status and thus

conserves the ionisation status of proteins in all cellular compartments. First thought to

completely rely on passive mechanisms, temperature dependent intracellular pH regulation

was found to also involve active mechanisms, which were then included into the theory

(Reeves, 1985; Cameron, 1989). The differential contributions of active and passive

mechanisms appear to depend on the degree of eury- or stenothermality of an organism – the

more eurythermal an organism, the more active processes are involved in pH regulation

(Sartoris and Pörtner, 1997; Van Dijk et al., 1997), presumably to render the animal more

flexible in its reaction towards changing temperatures (Pörtner et al., 1998; Sartoris et al.,

2003a).

1.7 Proton leak

Adaptive flexibility towards temperature changes is not only of great importance in

cellular homeostasis but also and especially so within the mitochondria. As has been laid out

above, thermal tolerance is closely connected to oxygen demand and mitochondria constitute

the primary cellular oxygen consumers (only 10% of cellular SMR can be attributed to non-
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mitochondrial respiration) and therefore. In this light, it is interesting to notice that all

mitochondria are characterised by a basal level of uncoupling of the oxidative

phosphorylation, which further increases oxygen demand. This apparently wasteful process

called proton leak might have a regulative function and contribute to mitochondrial adaptive

flexibility, which shall be discussed in this chapter.

Proton leak appears to be largely insensitive to changes in cellular energy charge

(Buttgereit and Brand, 1995) and is rather a function of membrane potential instead (Brand et

al., 1999; Brand, 2000). Proton leak reactions and the ATP synthase compete for the same

driving force, the mitochondrial electrochemical proton gradient, which is built up as electrons

are passed down the respiratory chain and which constitutes the primary energy source for

cellular ATP synthesis (cf. figure 2: (a)). Therefore, not all of the energy available in the

electrochemical gradient is coupled to ATP synthesis. Some is consumed by leak reactions, in

which protons pumped out of the matrix are able to pass back into the mitochondria through

proton conductance pathways in the inner membrane, which circumvent the ATP synthase.

These non-productive proton conductance pathways are physiologically important and

comprise 15-25% of the standard metabolic rate (SMR) in isolated mammalian tissues and

cells, 30% in rat hepatocytes, 50% in resting perfused rat muscle, 34% working perfused rat

muscle, and 20-40% of basal metabolic rate in rats (Brand et al., 1994; Brand et al., 1999), and

about 10% of mitochondrial respiration in isolated liver mitochondria of the notothenioid

Lepidonotothen nudifrons (Hardewig et al., 1999a). Basal leak rates might be accomplished by

proteins like the adenine nucleotide translocase (ANT), the transhydrogenase, the

glutamate/aspartate antiporter and the dicarboxylate carrier (Skulachev, 1999; Wojtczak and

Wiecedilckowski, 1999; Pörtner et al., 2000; Jackson, 2003). Additionally, there is some

evidence for regulatory modulation of leak rates in resting and working perfused rat muscle,

indicating that the contribution of proton leak declines at higher metabolic rates, when flux

through the ATP synthase must increase (Rolfe and Brand, 1996; Rolfe et al., 1999).

Controlled dissipation of the electrochemical proton gradient has been first observed

in the brown adipose tissue (BAT) of mammals. It is mediated by the first known uncoupling

protein (UCP1) (Nicholls et al., 1978), homologues of which have more recently been found

in ectotherms, amongst others in fish (Stuart et al., 1999; Liang et al., 2003). They all belong to

the family of mitochondrial membrane transporter proteins (Walker, 1992) and provide a

channel for protons to flow back into the matrix (figure 2).
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Figure 2: Schematic overview of oxidative phosphorylation and proposed UCP function. The oxidation of

reducing equivalents generated during substrate oxidation in the Krebs-cycle or β-oxidation of fatty acids in

the complex I, III and IV leads to the separation of protons and electrons. Protons are pumped out of the
mitochondrial matrix into the intermembrane space, whilst electrons are passed down the complexes of the
respiratory chain (a) or can be passed on molecular oxygen to form superoxide (b) (see text for further
explanations). Membrane potential builds up over the inner mitochondrial membrane, which is primarily used
to produce ATP by the FOF1-ATPase but which is also dissipated as heat by the basal proton leak and
mediated by UCP.

The various roles of UCP homologues have been widely discussed, with particular

respect to their implications for energy metabolism. While UCP1 is widely accepted as a

mediator of proton leak in mammalian brown adipose tissue (Klingenberg and Echtay, 2001;

Klingenberg et al., 2001), the functional significance of its homologues is still under dispute.

UCP1 acts in thermogenesis in the brown adipose tissue, but the widespread occurrence of its

homologues in many tissues and all four eukaryotic kingdoms (Laloi et al., 1997;

Jarmuszkiewicz et al., 1999; Jarmuszkiewicz et al., 2000; Vianna et al., 2001) suggests a more

central role for UCPs in metabolic regulation. Further speculations as to the function of UCP

have been nourished by the fact that UCP (and proton leak) have been reported to be

stimulated by various metabolites and proteins as ROS (Echtay et al., 2002), coenzyme Q

(Klingenberg et al., 2001), retinoids (Rial et al., 1999) and fatty acids. The latter observation led

to the protonophore theory (not depicted in figure 2), in which UCP transport the anionic

form of fatty acids (FFA-) out of the mitochondrial matrix, which diffuse back through the

membrane in their protonated form as FFA-H (for further information, refer to Lowell, 1996;

Ricquier and Bouillaud, 2000).

1.8 Functions for UCPs in ectotherms

UCP are unlikely to be involved in thermoregulation in fish and other water breathing

ectotherms; due to the high thermal capacity of water any heat that is produced is instantly

lost over the gills. In their habitats, fish can experience wide fluctuations of ambient water

temperature throughout the year and they have to adjust their metabolic energy supply

according to the thermally induced energy demand. Uncoupling protein homologues in

ectotherms might thus be involved in metabolic processes related to thermal adaptation rather
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than thermoregulation. In mammals and birds, UCP1, UCP2 and UCP3 show temperature

sensitive expression and their levels increase upon cold exposure (Ricquier and Kader, 1976;

Raimbault et al., 2001; Simonyan et al., 2001; Vianna et al., 2001) and it is conceivable that

expression levels of ectothermal UCP are also dependent on temperature.

Skulachev (Skulachev, 1998) suggested a protective function for mammalian UCP2 in

the prevention of reactive oxygen species (ROS) formation by controlled mild uncoupling, a

theory also supported by other authors (Brand, 2000; Pecqueur et al., 2001; Richard et al.,

2001). Mitochondrial ROS tend to form especially under conditions of high membrane

potential or high protonmotive force, when respiration slows and electrons accumulate on

ubiquinone (Q) (cf. figure 2: (b)), which increases the steady state concentrations of its

reduced form, ubisemiquinone (QH•). Electrons leaking from ubisemiquinone could react

with molecular oxygen to produce superoxide, which in turn produces other ROS. Mitigating

proton motive force, uncoupling could lessen the reductive tension in the system and thus

lower ROS production. Provided with the ability to control both ATP synthesis and ROS

production via uncoupling by UCP, an organism would be able to more freely modulate its

basal metabolic rate, making it more flexible towards changing environmental conditions and

energetic demands (as has been described in Bishop and Brand, 2000). Consequently, by

temperature sensitive control of expression and function of a putatively regulative protein like

UCP (Medvedev et al., 2001; Pecqueur et al., 2001), animals would possess a means of thermal

adaptation on the molecular level, helping it avoid modifying the suite of proteins of the

respiratory chain.

1.9 Concept of this thesis

The objective of this thesis is to apply an integrative approach to the above-described

mechanisms of thermal tolerance in temperate, sub-polar and polar fish, with special attention

to mechanistic links between systemic, cellular and molecular levels. The thesis will center

around three questions, which focus on the existence of thermally induced capacity limitations

at various levels of organisational complexity and the connections among them.

1. Is thermal tolerance limited by oxygen availability at the whole organismic

level?

This part of the thesis was designed to investigate the hypothesis of an oxygen limited

thermal tolerance in fish (Pörtner, 2001). By use of flow-through respirometry, in vivo

31P-NMR spectroscopy and MRI, the effects of temperature on energy metabolism,

intracellular pH, blood-flow and tissue oxygenation were investigated under normoxia
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and hyperoxia. The key question of this suite of experiments was whether additional

oxygen could improve oxygen supply to mitochondria and thus shift or widen the

windows of thermal tolerance in the Antarctic eelpout Pachycara brachycephalum.

2. Are potential organismic limitations reflected at the cellular level?

On a lower level of organismic complexity, experiments were designed to test Atkins’

hypothesis of a hierarchy in energy consuming processes in the cell (Atkinson, 1977),

with particular respect to thermally induced energetic constraints in cellular

metabolism. Using specific inhibitors of some key metabolic processes of the cell,

thermal tolerance and possible shifts in energy allocation due to energetic limitations

were investigated in hepatocytes of high- and sub-Antarctic notothenioid fishes.

3. Is cellular energy metabolism able to adapt to thermal stress? A case study of

temperature sensitive expression of the uncoupling protein 2, which is putatively

involved in the regulation of proton leak. Proton leak comprises a substantial fraction

of the cellular energy budget and may be of kinetic relevance to the elasticity of the

mitochondrial energy metabolism (Brand, 2000). Members of the uncoupling protein

family bear high similarities between each other and all include the identical signal

sequences of the mitochondrial transporter family (Walker, 1992), suggesting a well-

conserved and central function in metabolism. On the molecular level, this study

aimed to characterise UCP2 and examine UCP2 expression in response to acclimation

to borderline temperatures in the temperate and sub-Antarctic eelpouts Zoarces viviparus

and Pachycara brachycephalum.
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2 Methods

2.1 Animals

All fish species used in the experiments for publication I-III belonged to the order

Perciformes. For publication I and II and the intra-familial comparison in publication III, the

physiology of two closely related members of the family Zoarcidae (eelpouts), the Antarctic

eelpout Pachycara brachycephalum (publication I-III) and the temperate common eelpout Zoarces

viviparus (publication III) was investigated. The zoarcids comprise some 220 mostly benthic

species and have originated in the Eocene about 50 million years ago in the Northern Pacific,

from where they radiated from the Pacific abyssal into temperate and polar waters. To date,

they are spread worldwide from deep-sea habitats into the shallow waters of boreal coasts. Z.

viviparus (max. size about 50cm total length) lives in shallow waters from 0-40m in an area

from the English Channel in the South into the Irish Sea, the North Sea and the Baltic and

along the Norwegian coast into the Northeast Atlantic, the White Sea and the Barents Sea. It

is ovoviviparous and feeds on gastropods, chironomids, crustaceans, eggs and fry of fishes.

The bathydemersal P. brachycephalum occurs circum-Antarctic in deep waters from 200-1800m

and feeds on mussels, gastropods, amphipods and polychaetes (Gon and Heemstra, 1990;

Anderson, 1994). Like the majority of zoarcids, P. brachycephalum is oviparous.

Eurythermal common eelpouts Z. viviparus from the Baltic Sea were caught during

summer 2001 in the Kieler Förde. Fish were kept at 13 ‰ salinity, and were acclimated to

2.0 ± 0.5 °C (cold-acclimated) or 10.5 ± 0.5 °C (habitat temperature) for at least 2 months.

Antarctic eelpouts (P. brachycephalum) were caught close to the Antarctic Peninsula during the

cruise ANT XVIII of the German research vessel “POLARSTERN” in March 2000 near

Deception Island using baited traps at a depth of 475 m and during cruise ANT XIX in

April/May 2001 at a depth of 500 m close to King George Island. Water temperature was

0.4°C at a salinity of 34.5 ‰. Until the start of the experiments in June 2000, the fish were

first kept in aquaria onboard RV POLARSTERN, then transferred to and kept at the Alfred

Wegener Institute (Bremerhaven, Germany) in well-aerated sea-water of 0.0 ± 0.5 °C (habitat

temperature) and 5.0 ± 0.5 °C (warm-acclimated) at 32-34 ‰ salinity for at least 2 months. All

fish were kept under a 12:12-h light-dark cycle and were fed live shrimps ad libitum once a

week. Feeding was terminated 7 days prior to experimentation to ensure that standard

metabolic rate (SMR) was measured.

Fish used for the experiments in publication II were of the deepwater Antarctic family

Artedidraconidae and the family Nototheniidae, which occur from the high latitudes of the

Southern Hemisphere into coastal Antarctic regions and range between 15 and 30cm total
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length. Both families belong to the sub-order Notothenioidei, which comprise most of the

fish species described in the Southern Ocean (Gon and Heemstra, 1990). Members of the

Nototheniidae are mostly benthic with some pelagic and cryopelagic exemptions, the absence

of a swim bladder in this family is compensated for by lipids and low mineral content of the

bones, leading to near neutral buoyancy. The sub-Antarctic benthopelagic species

Lepidonotothen larseni occurs from 45°S-70°S in depths between 30 and 550m around the

Antarctic Peninsula, the Scotia Arc and the sub-Antarctic Islands. It mainly feeds on krill,

hyperiid amphipods and mysids. The high Antarctic species Trematomus eulepidotus, T. pennellii

and T. bernacchii are all demersal and occur in a depth range from shallow waters (mainly T.

eulepidotus) to about 700m between 60°S and 78°S from the Antarctic continental shelf to

South Orkney (T. eulepidotus, T. bernacchii) and the Scotia Arc (T. pennellii). They feed on

polychaetes, amphipods, gastropods, copepods and fish eggs. T. lepidorhinus is a bathydemersal

nototheniid and can be found in depths of 200-800m on the inner slope of the Southern

ocean and the Antarctic shelf except the Antarctic Peninsula in the high latitudes from 60°S-

78°S. It feeds on amphipods, copepods, polychaetes and mysids.

The representative of the demersal Artedidraconidae, Artedidraco orianae, can be found

in depths of 80-800m on the sublittoral and continental shelf of East Antarctica (Ross Sea,

South Victoria Land, Weddell Sea) from 66°S-77°S. It feeds mainly on gammaridean

amphipods, with substantial amounts of errant polychaetes and rarely also on isopods.

All Notothenioidei were caught in bottom trawls and semi pelagic trawls between

November 2003 and January 2004 on cruise ANT XXI/2 of RV POLARSTERN. Fish of the

sub-Antarctic nototheniid species Lepidonotothen larseni were caught off Bouvet Island

(54°30,22 S; 003°14,37 E), the remaining species Artedidraco orianae (Artedidraconidae), and the

trematomid nototheniids Trematomus lepidorhinus, T. eulepidotus, T. bernacchii and T. pennellii in the

eastern Weddell Sea. Until experimentation, fish were maintained onboard the vessel in an air-

conditioned container equipped with aquaria and aerated recirculated natural seawater at 0.5 ±

1.0°C for 2-3 weeks to ensure they were in good health. Fish were not fed prior to the

experiments, which were all carried out in the laboratories onboard.
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Trematomus eulepidotus

Zoarces viviparus

Artedidraco orianae

Trematomus lepidorhinus

Trematomus pennellii

Lepidonotothen larseni

Trematomus bernacchii

Pachycara brachycephalum

Figure 3: Fish species used in the experiments (Antarctic species taken from Gon & Heemstra (1990), picture

of Z. viviparus drawn by J. Ulleweit)

2.2 Analyses by nuclear magnetic resonance techniques

Experiments were conducted using a 4.7 T magnet with a 40cm horizontal wide bore

and actively shielded gradient coils. Inside the magnet, non-anaesthetized animals were placed

in a cylindrical flow-through perspex chamber of approx. 300ml volume, in which they could

move without restraint. The fish remained inside the magnet throughout the whole

experiment (for up to 9 days). A 5 cm 1H-31P-13C surface coil, directly placed under the animal

chamber, was used for excitation and signal reception. To monitor temperature and oxygen
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concentration of in- and outflowing water, fluoroptic temperature and oxygen sensors were

installed directly upstream and downstream of the animal chamber inside the magnet.

Seawater was supplied to the chamber hydrostatically out of a 50l thermostatted reservoir.

Water flow could be controlled to ±1ml between 2 and 500ml*min-1. Oxygen partial pressure

(PO2) in the reservoir was adjusted by a gas-mixing pump.

Two experimental series were carried out, one under normoxia (PO2: 20,3 to 21,3kPa)

and one under hyperoxia (PO2: 45 kPa). Temperature in both series was increased between 0

and 15°C by 1°C*12 hrs-1. Before experimentation, fish were left inside the experimental setup

for at least 24 hours to recover from handling stress, as evidenced from control 31P-NMR

spectra. Respiration measurements were carried out during a three-hour period prior to each

increase in temperature. Experiments under normoxia and hyperoxia were carried out

alternately, in order to smoothen out potential effects of aquarium captivity on oxygen

consumption (Saint-Paul, 1988). In vivo 31P-NMR spectra (see publication I for details) were

acquired continuously throughout the whole experiment to measure changes in intracellular

pH (pHi) represented by the position of the signal of inorganic phosphate (Pi), relative to

phosphocreatine (PCr) as an internal standard. The spectra were corrected for temperature

and intracellular ion concentrations of marine organisms according to Bock et al. (2001).

Alternating with spectroscopy, a flow weighted MR imaging method (see publication I)

was applied to examine blood flow in the Aorta dorsalis. In the images obtained, blood vessels

were picked manually and changes in the ratio of signal intensity over noise intensity were

used to determine relative changes in blood flow. Signal intensities of regions of interest (ROI)

in the fish were put in proportion to those of ROIs of the same position in a blank image.

To monitor oxygen supply to white muscle and liver, we applied a T2* weighted

gradient echo MR sequence for blood oxygenation level-dependent (BOLD, see publication I)

contrast magnetic resonance imaging (Ogawa et al., 1990). In this method, the different

magnetic properties of oxyhemoglobin (which is diamagnetic) and deoxyhemoglobin

(paramagnetic) are used to account for changes within the ratio of oxy:deoxyhaemoglobin and

thus overall blood oxygenation level.

2.3 Respiration

Whole animal respiration was measured simultaneously to the NMR experiments using

fluoroptic sensors (optodes) connected to the water in- and outflow of the NMR animal

chamber described below. For the measurements, the water flow through the animal chamber

was reduced depending on animal size and temperature, such that the animals depleted oxygen
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concentrations by 10 to 15%. Optodes were calibrated to the respective temperature and

oxygen consumption was calculated as follows:

˙ M O2
=

∆PO2
× βO2

× ˙ V 

W

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
O

M&  : oxygen consumption rate [µmol•g fw-1•h-1]

∆PO2 : difference in partial pressure between in- and outflowing water [kPa]

βO2    : oxygen capacity of water [µmol•l-1•kPa-1]
˙ V      : flow rate [l•h-1]

W     : animal weight [g]

In addition to the NMR experiments a parallel experimental series was run with five

animals kept in a 50l tank under normoxic and hyperoxic conditions, respectively.

Temperature treatment was identical to the one in the NMR experiments (see below).

Respiration frequency was counted at each temperature and video recordings were stored on a

VHS video system for later analysis of the gill opercular width. The product of ventilatory

frequency and amplitude (i.e. opercular width) delivered a qualitative proxy for ventilatory

effort.

Measurements of cellular respiration were carried out in two parallel setups consisting

of Perspex respiration chambers that could be volume adjusted between 300-1500 l and

temperature controlled by a thermostat. Respiration was measured using micro-optodes,

connected to a laptop computer. 300 l of cell solution were spun down shortly and 200 l of

the medium exchanged for fresh medium. The cells were then resuspended and put into the

respiration chambers. The chambers were sealed airtight and a micro-optode was inserted

through the lid. Blank respiration was recorded for 20min, then the optode was withdrawn

and inhibitor stock solution was added to the suspension with a microlitre glass syringe. After

reintroduction of the micro-optode, respiration was recorded for 40min. The cells were

removed, the respiration chambers washed twice with distilled water and 70% ethanol and a

new experiment run with fresh cells and a different inhibitor. Cell solutions were diluted to 1,5

• 107 cells • ml-1 and kept on ice on a shaking desk throughout the experiments. Respiration

rates were calculated to nmol O2 • 106 cells-1 • min-1 and respiration in the presence of an

inhibitor was calculated as a percent fraction of its respective blank respiration to account for



METHODS

16

potential deterioration of cell quality over time. Cell viability was checked after the last run and

always higher than 90%.

2.4 Cell isolation

Hepatocytes were isolated following a protocol modified after Mommsen et al.

(Mommsen et al., 1994). Fish were anaesthetised (0,5g MS-222/l); the liver was carefully

excised and transferred into a Petri dish on ice with 4ml/ g freshweight of solution 1 (see

publication II for formulation). Fish were killed afterwards by a cut through the spine and

removal of the heart. To remove blood, the liver was washed by perfusion of the Vena cava

hepatica in vitro with ice-cold solution 1, until no more blood cells were visible in the drain.

Then, the liver was perfused on ice via the Vena cava with 2ml /g fw. ice-cold collagenase

solution and gently massaged for about 10 minutes. Peritoneal tissue was removed, the rest

finely chopped and gently shaken on ice for about 60 minutes, until total disintegration of the

tissue. The solution was then filtered through a 250 m mesh-size gaze. Hepatocytes were

collected by gentle centrifugation and washed repeatedly by centrifugation in solution 1 + 1%

BSA, until the lipid phase and all erythrocytes were removed. Cells were stored at 0°C on a

shaking desk. Cell titres were assessed in a Fuchs-Rosenthal haemocytometer dish and viability

of cells was determined by Trypan blue exclusion (>95%). Total protein content was

measured according to Bradford (Bradford, 1976). Samples of cell solution were frozen in

liquid nitrogen, stored at –80°C and broken up by ultra sound treatment before analysis.

2.5 Inhibitors

Cycloheximide was used to inactivate peptidyl transferase activity of the ribosomal 60S

subunit (i.e. to inhibit protein synthesis; for concentrations used, see publication II). To

estimate the energetic needs of the Na+/K+-ATPase, ouabain was used. Actinomycin D was

administered to block RNA and DNA synthesis. To inhibit mitochondrial ATP synthesis

(FoF1-ATPase), cells were incubated with oligomycin. In a set of preliminary experiments the

minimum concentrations of inhibitors sufficient for maximum reduction of oxygen

consumption were determined, since it has been shown that overdoses of inhibitors can lead

to an overestimation of the particular metabolic process due to side effects and even to cell

death (Wieser and Krumschnabel, 2001). Due to potential cross reactivity, inhibitors were

never used in combination with each other.
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2.6 Molecular Biology

2.6.1 Protein isolation, gel electrophoresis and western blot analysis

Membrane enrichments were prepared from about 100 mg of frozen tissue by

disruption with a hand homogenizer using ice-cold homogenisation buffer (see publication III

for formulation). Cellular debris was removed by low-speed centrifugation and the membranes

were pelleted from the supernatant crude extract by final high-speed centrifugation.

Membrane pellets were resuspended in a minimum volume of homogenisation buffer. Total

protein was measured using the method of Bradford (Bradford, 1976) and a BSA standard.

Protein samples were separated by polyacrylamide gel electrophoresis (PAGE) under

denaturing conditions (Laemmli, 1970). A prestained marker was used for the determination

of molecular size. After electrophoresis, the proteins were transferred to nitrocellulose

membranes; the obtained blots were then stained with Ponceau S to control for equal loading

and successful transfer (Sambrook et al., 1989). After de-staining blots were blocked in a

blocking buffer containing dry-milk (see publication III). A monoclonal rabbit anti-human

UCP2 antibody was used for immunodetection and blots were incubated under agitation with

the primary antiserum diluted in blocking buffer. Following a series of washes, blots were

incubated with mouse anti-rabbit antibody conjugated to horseradish peroxidase. Antibody

binding was visualized by chemiluminescence, detected and quantified with a cooled CCD-

camera system. Normal rabbit serum was substituted for primary antibodies to assess non-

specific immunoreactivity. Membrane preparations were used to determine the optimal

concentration ratio for antigen over primary and secondary antibody. For quantification, a

protein concentration was used in a range, where the signal changed linearly with antibody

binding.

2.6.2 RNA-Isolation

Animals were anaesthetized (0,5g MS-222/l) before being killed. Samples of different

tissues were quickly removed, placed in sterile tubes and frozen immediately in liquid nitrogen.

Until used for RNA or protein isolation, the samples were stored at -80°C.

For the preparation of cDNA, mRNA was obtained from total RNA isolated from

frozen tissue. The RNA was quantified spectrophotometrically in triplicate samples at 260nm.

A260/A280 ratios were always >1.9. Formaldehyde agarose gel electrophoresis according to

Sambrook (1989) was used to verify the integrity of the RNA.
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2.6.3 Characterisation of UCP2

Fragments of the UCP2 gene were isolated by means of reverse transcription followed

by PCR (RT-PCR). Primers were designed using highly conserved regions of published

sequences of the carp and zebra fish UCP2 gene (Stuart et al., 1999) as a reference. Reverse

transcription was performed with Superscript RT and the reverse primer 2 (for all primer

details, refer to table 1 in publication III) using mRNA as templates (see publication III for a

detailed description). For the amplification of the resulting single strand cDNA, forward

primer 1 was used in combination with the reverse primer 2 in a PCR reaction resulting in a

440-nucleotide fragment. The procedure was repeated with a second set of primers (primers

3/4) to yield a fragment of 550 nucleotides. Primers were designed on the basis of conserved

regions of the published UCP2 sequence for D. rerio.

The cDNA was amplified with Taq-Polymerase, the obtained PCR fragments prepared

for cloning and purified by gel electrophoresis. After cloning, plasmids were isolated from

overnight cultures. To verify the presence and size of inserts, the isolated plasmids were

analysed by restriction digestion with EcoRI. For each fragment, the DNA sequences of

positive clones were determined for both strands and sequences were analysed by alignment.

The full-length cDNA was determined by means of the RACE technique (rapid amplification

of cDNA ends). The isolated cDNA fragments were used to design 3’ RACE forward primers

and 5’ RACE reverse primers with sequences identical for both eelpout species (primers 5-9).

Cloning, sequencing and assembly of the RACE fragments was performed following the same

protocols as outlined above, yielding the full-length cDNA sequence of UCP2 for P.

brachycephalum and Z. viviparus. The cDNA sequences have been submitted to Genbank and can

be obtained under the following accession numbers: Genbank AY625190 (ZvUCP2);

Genbank AY625191 (PbUCP2). Analyses of the deduced amino acid sequences of

hydrophilicity after van Heijne and Kyte-Doolittle were carried out to locate putative

transmembrane helices. Additionally, phylogenetic analysis was performed by the construction

of a phylogenetic tree from the deduced amino acid sequences and a number of published

sequences of UCP homologues (see publication III).

2.6.4 Construction of probes and sequence determination

For the construction of species-specific probes for Z. viviparus and P. brachycephalum

cDNA clones for the UCP2 gene and β-actin were isolated using RT-PCR. Reverse

transcription was performed following the protocol outlined above with the reverse primer 11,

again using mRNA as templates. The cDNA was amplified as outlined above, using primer 10
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and 11 in a PCR reaction resulting in a 137-nucleotide fragment. The primer pair was designed

within a given region of 150 bp that was identical in both species.

A 215bp cDNA fragment of the β-actin gene from both organisms was isolated from

an existing fragment of 377bp (cf. Lucassen et al., submitted) with essentially the same

protocol using primer pair 12/13. All fragments were purified by gel electrophoresis and then

cloned in Escherichia coli.

2.6.5 Quantification of protein specific mRNA

For RNA quantification, ribonuclease protection assays (RPA) were performed. Total

RNA was hybridized simultaneously to antisense probes for UCP2 and β-actin, in case of liver

RNA, or UCP2 and 18S-rRNA, for muscle RNA, respectively. Probes were synthesized by in

vitro transcription with T7 or T3 RNA Polymerase with the plasmids containing the

respective cDNA fragments (described above). For 18S-rRNA, a commercial plasmid

containing a highly conserved 80bp fragment was used. All probes were labelled with α-32P

uridine 5´-triphoshate. To equalize protected fragment intensities, specific radioactivities were

used for UCP2, β-actin and 18S-RNA; the probes were always prepared freshly and purified

by PAGE under denaturing conditions (see publication III). The DNA templates were

removed prior to electrophoresis by DNase I treatment.

After hybridisation, the RNA:RNA hybrids were treated with RNase and co-

precipitated with yeast RNA. The RNA was dissolved in loading dye and separated by

denaturing PAGE. After drying of the gel, radioactivity was detected and quantified with a

phosphorous storage image system.

2.7 Statistical analysis

Data in publication I were examined for significant differences between normoxic and

hyperoxic experimental series by a one-factorial analysis of covariance (ANCOVA) and a

post-hoc Student-Newman-Keuls test. Within each experimental series, specific segments

were compared by a paired sample contrasts analysis. Slopes were compared to one another

using an f-test. Regressions and squared correlation coefficients were calculated using Sigma

Plot 2000.

For publication II, statistical analyses of differences within cellular respiration rates

and among and between inhibited proportions of total respiration were carried out.

Differences between control and elevated respiration rates were determined by t-tests. To test

for temperature sensitivity of the specific inhibited proportions of total respiration, data were
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arcsin transformed and Spearman Rank correlations and one-way analyses of variance

(ANOVA) were performed. Furthermore, differences between inhibitor sensitive respiration

at control and elevated temperatures were determined by t-tests, which were also applied to

test for differences of the total means (within the range of 0-15°C) of inhibitor sensitive

respiration between the investigated species.

Statistical analyses of differences among treatments in publication III were performed

by t-tests. All differences were considered significant if P < 0.05. If not stated otherwise, all

data are presented as values ± standard error of the mean (SEM).
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Mark, F. C., C. Bock, and H. O. Pörtner. Oxygen lim-
ited thermal tolerance in Antarctic fish investigated by MRI
and 31P-MRS. Am J Physiol Regul Integr Comp Physiol 283:
R1254–R1262, 2002. First published August 8, 2002;
10.1152/ajpregu.00167.2002.—The hypothesis of an oxygen-
limited thermal tolerance was tested in the Antarctic teleost
Pachycara brachycephalum. With the use of flow-through
respirometry, in vivo 31P-NMR spectroscopy, and MRI, we
studied energy metabolism, intracellular pH (pHi), blood
flow, and oxygenation between 0 and 13°C under normoxia
(PO2: 20.3 to 21.3 kPa) and hyperoxia (PO2: 45 kPa). Hyper-
oxia reduced the metabolic increment and the rise in arterial
blood flow observed under normoxia. The normoxic increase
of blood flow leveled off beyond 7°C, indicating a cardiovas-
cular capacity limitation. Ventilatory effort displayed an ex-
ponential rise in both groups. In the liver, blood oxygenation
increased, whereas in white muscle it remained unaltered
(normoxia) or declined (hyperoxia). In both groups, the slope
of pHi changes followed the alpha-stat pattern below 6°C,
whereas it decreased above. In conclusion, aerobic scope
declines around 6°C under normoxia, marking the pejus
temperature. By reducing circulatory costs, hyperoxia im-
proves aerobic scope but is unable to shift the breakpoint in
pH regulation or lethal limits. Hyperoxia appears beneficial
at sublethal temperatures, but no longer beyond when cellu-
lar or molecular functions become disturbed.

aerobic scope; heat stress; thermal tolerance limits; magnetic
resonance imaging; magnetic resonance spectroscopy

FISH AND INVERTEBRATES endemic to the Antarctic Ocean
live in a physically very stable and well-defined envi-
ronment. Very low temperatures between �1.9 and
�1°C and excellent oxygen availability at low meta-
bolic rates have led to physiological features that re-
flect adaptation to the permanent cold. To reduce blood
viscosity, most Antarctic fish hold only low numbers (7)
or are completely devoid [Channichthyidae (6)] of red
blood cells. High levels of lipid and mitochondrial num-
bers result in improved oxygen diffusion and shorter
cytosolic diffusion distances (42, 43). As a consequence
of the high degree of cold temperature specialization,
Antarctic fish are greatly restricted in their biogeo-
graphic distribution and are strongly confined to their
environment, indicated by a low tolerance to heat (44).

Address for reprint requests and other correspondence: H. O.
Pörtner, Alfred-Wegener-Institut für Polar- und Meeresforschung,
Ökophysiologie, Postfach 12 01 61, D-27515 Bremerhaven, F.R.G.
(E-mail: hpoertner@awi-bremerhaven.de).

Stenothermality therefore appears to be the direct con-
sequence of being highly adapted to the extreme envi-
ronmental conditions of the Southern Ocean (34). How-
ever, the physiological mechanisms limiting thermal
tolerance are still under dispute and several models of
temperature tolerance have been introduced (47, 52).

On the basis of Shelford’s law of tolerance (41), the
recent work of Zielinski and Pörtner (57), Sommer et
al. (45), van Dijk et al. (50), and Frederich and Pörtner
(11) led to the concept of an oxygen-limited thermal
tolerance. As most clearly visible in the spider crab
Maja squinado (11), limits of thermal tolerance during
both heating and cooling are indicated by a set of low
and high pejus temperatures (Tp). Tps denote the be-
ginning of decreased oxygen supply to an organism
resulting in a drop in its aerobic scope and hence a
reduction of scopes for activity, and possibly for growth
and reproduction. In the pejus range between Tp and
the critical temperature Tc, animals still can survive,
but only under the above mentioned restrictions until
Tc is reached, characterized by the onset of anaerobic
metabolism (for review, see Ref. 29). In ecological
terms, Tp is therefore of great importance, as it may be
found close to the temperature limits of biogeographi-
cal distribution.

It is hence conceivable that thermal tolerance limits
relate to the loss of balance between O2 demand and
supply. On the warm side, for instance, high mitochon-
drial densities as found in Antarctic species may result
in greater energy losses due to proton leak (15, 33, 34),
which, with rising temperature, would soon lead to a
situation in which oxygen demand surpassed oxygen
availability. Limited oxygen availability to tissues
might be the first manifestation of thermal intolerance
and lead to lower optimum temperatures (35) before
heat-induced damage at lower levels of complexity, i.e.,
organ or cellular functions, contributes to heat death of
an animal (29, 30).

As a contribution to an understanding of the physi-
ological basis of temperature-dependent biogeography
in the light of global warming, we tested the hypothesis
that oxygen limitation is the first line in a hierarchy of
thermal tolerance limits in Antarctic fish (29). The key
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question is whether additional oxygen has a significant
impact on thermal tolerance and how such an effect
may become visible. In the context of earlier findings of
Tcs in temperate and Antarctic zoarcids, Zoarces
viviparus and Pachycara brachycephalum (50), we
chose the Antarctic eelpout Pachycara brachyceph-
alum as an experimental animal. Members of the fish
family Zoarcidae are cosmopolitan and thus constitute
good model organisms for a comparison of Antarctic
fish to closely related species from temperate waters.

MATERIAL AND METHODS

Animals. Antarctic eelpouts (Pachycara brachycephalum)
were caught in March 2000 near Deception Island (Antarc-
tica) using baited traps at a depth of 475 m. Water temper-
ature was 0.4°C at a salinity of 34.5‰. Fish were 24–30 cm
in size and weighed 36–74 g. Until the start of the experi-
ments in June 2000, the fish were kept in aquaria onboard
RV Polarstern and at the Alfred Wegener Institute (Bremer-
haven) at ambient temperatures of 0 � 0.5°C and a salinity
of 32.5‰. Fish were fed fresh shrimp ad libitum fortnightly
and starved 8 days before experimentation to ensure that
standard metabolic rate (SMR) was measured. Experiments
were carried out between June and November 2000.

Experimental protocol. Experiments were conducted using
a 4.7-T magnet with a 40-cm horizontal wide bore and ac-
tively shielded gradient coils (Bruker Biospec 47/40 DBX
System). Inside the magnet, nonanesthetized animals were
placed in a cylindrical flow-through Perspex chamber (Riet-
zel) of �300 ml vol (15-cm long, 7-cm wide, and 6 cm in
height), in which they could move without restraint (Fig. 1).
The fish remained inside the magnet throughout the whole
experiment (for up to 9 days). A 5 cm 1H-31P-13C surface coil,
directly placed under the animal chamber, was used for
excitation and signal reception. To monitor temperature and
oxygen concentration of in- and outflowing water, fluoroptic
temperature (Polytec) and oxygen sensors (Comte) were in-
stalled directly upstream and downstream of the animal
chamber inside the magnet. Seawater was supplied to the

chamber hydrostatically out of a 50-liter reservoir, the tem-
perature of which could be controlled to �0.1°C by means of
cryostats (Lauda). Water flow could be controlled to �1 ml
between 2 and 500 ml/min. PO2 in the reservoir was adjusted
by a gas-mixing pump (Wösthoff).

Two experimental series were carried out, one under nor-
moxia (PO2: 20.3–21.3 kPa) and one under hyperoxia (PO2: 45
kPa). Temperature in both series was increased between 0
and 15°C by 1°C/12 h. Before experimentation, fish were left
inside the experimental setup for at least 24 h to recover from
handling stress, as evidenced from control 31P-NMR spectra.
Respiration measurements were carried out during a 3-h
period before each increase in temperature. Here, the water
flow through the animal chamber was reduced from 300 to 3
ml/min (depending on animal size and temperature), such
that the animals depleted oxygen concentrations by 10–15%.
Experiments under normoxia and hyperoxia were carried out
alternately to smooth out potential effects of aquarium cap-
tivity on oxygen consumption (MO2) (39). In vivo 31P-NMR
spectra [sweep width: 5,000 Hz; flip angle: 45° (pulse shape:
bp 32; pulse length 100 �s); repetition time (TR): 1.0 s; 600
scans; duration: 10 min; size: 4 kilobytes] were acquired
continuously throughout the whole experiment to measure
pHi and its changes represented by the position of the signal
of Pi, relative to phosphocreatine (PCr) as an internal stan-
dard. The spectra were corrected for temperature and intra-
cellular ion concentrations of marine organisms according to
Ref. 4.

Alternating with spectroscopy, a flow-weighted MR imag-
ing method (Fig. 1) was applied to examine blood flow in the
Aorta dorsalis [similar to Ref. 3, using the following param-
eters: matrix, 128 � 128; field of view, 4 � 4 cm; 5 slices at 2
mm each; sweep width, 50,000 Hz; flip angle, 45° (using a
hermite pulse of 2,000 �s); TR, 100 ms; echo time (TE), 10 ms;
acquisition time, 1 min; 2 averages]. In the images obtained,
blood vessels were picked manually and changes in the ratio
of signal intensity over noise intensity were used to deter-
mine relative changes in blood flow. To correct for movements
of the fish inside the chamber, the position of the animal in
relation to the excitation profile of the surface coil was taken

Fig. 1. Schematic view of a specimen of
P. brachycephalum inside the experi-
mental chamber (adapted from Ref. 4).
Left: a typical flow-weighted MR image
is depicted, its orientation indicated by
the line (S-S�) crossing the animal’s
trunk region (1, aorta dorsalis; 2, vena
cava posterior; 3, stomach; 4, dorsal
muscle; 5, spine; 6, tail). Right: a T2*
weighted MR image [blood oxygen-
ation level dependent (BOLD)] of the
same anatomic position (1, dorsal
white muscle; 2, spine; 3, blood vessels;
4, stomach; 5, liver; 6, tail).
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into account. For better comparability of the data obtained
from different fish, baseline corrections were applied to indi-
vidual data. Signal intensities of regions of interest (ROI) in
the fish were put in proportion to those of ROIs of the same
position in a blank image.

To monitor oxygen supply to white muscle and liver, we
applied a T2* weighted gradient echo MR sequence for blood
oxygenation level-dependent (BOLD) contrast MRI (27) [ma-
trix, 128 � 128; field of view, 4 � 4 cm; 5 slices at 2 mm each;
sweep width, 50,000 Hz; flip angle, 11° (pulse shape, sinc3;
pulse length 2,000 �s); TR, 100 s; TE, 40 ms; acquisition
time, 4 min; 4 repetitions; 2 averages]. In this method, the
different magnetic properties of oxyhemoglobin (which is
diamagnetic) and deoxyhemoglobin (paramagnetic) are used
to account for changes within the ratio of oxy:deoxyhemoglo-
bin and thus overall blood oxygenation level (Fig. 1).

In addition to the NMR experiments, a parallel experimen-
tal series was run with five animals kept in a 50-liter tank
under normoxic and hyperoxic conditions, respectively. Tem-
perature treatment was identical to the one described above.
Respiration frequency was counted at each temperature and
animals were filmed using a VHS video system for later
analysis of the gill opercular width, carried out using the
public domain NIH Image program (available at http://rsb.
info.nih.gov/nih-image/). The product of ventilatory fre-
quency and amplitude (i.e., opercular width) delivered a
qualitative proxy for ventilatory effort.

Statistics. Data were examined for significant differences
between normoxic and hyperoxic experimental series by a
one-factorial analysis of covariance (ANCOVA) and a post
hoc Student-Newman-Keuls test (Super ANOVA, Abacus
Concepts); the level of significance was P � 0.05. Within each
experimental series, specific segments were compared by a
paired sample contrasts analysis (Super ANOVA). Slopes
were compared with one another using an f-test. Again, a P �
0.05 was considered significant. Regressions and squared
correlation coefficients were calculated using Sigma Plot
2000 (SPSS). All values are presented as means � SE.

RESULTS

As evidenced from control 31P-NMR spectra, han-
dling stress elicited by the introduction of the fish into
the setup resulted in a slight reduction of PCr/Pi ratios
from which the fish recuperated within 1–2 h. For the
remaining time of the control period and throughout
the whole of the experiment, there was no detectable
change in the levels of high-energy phosphates (data
not shown), which is commonly accepted as a sign of
animal well being (4, 26). As could be seen from MR
imaging, fish remained calm and only rarely moved
inside the animal containers (data not shown), similar
to the behavior the fish show in our aquariums, where
they tend to hide in narrow plastic tubes.

MO2 under control conditions (normoxia, 0–1°C)
equivalent to standard metabolic rate (SMR) was in
accordance with published data for Antarctic eelpouts
(50, 53, 55) and did not differ significantly from hyper-
oxic control MO2. With rising temperature, MO2 of
Pachycara brachycephalum followed a typical expo-
nential function under normoxia (Fig. 2B). However,
exposure to hyperoxia and warmer temperatures re-
sulted in a more linear increase in MO2, reflecting a
strong reduction of the exponential increment observed
under normoxic conditions. The two patterns of MO2

differed significantly above 8°C, from where the need
for oxygen under normoxia increasingly exceeded the
level of MO2 under hyperoxia. The Q10 between 2 and
12°C was 3.40 � 0.55 and 2.63 � 0.48 for normoxia and
hyperoxia, respectively (means � SE).

These findings were also reflected in the blood flow
through the main dorsal blood vessel (Aorta dorsalis) of
the fish (Fig. 2C). Although blood flow generally
seemed to increase with rising temperature under both
normoxic and hyperoxic conditions, it was only under
normoxia that it rose steadily up to 6°C and reached
levels significantly higher than under control condi-
tions (as indicated by the asterisks in Fig. 2C). During
warming above 7°C, no further increase in blood flow
occurred. In contrast, blood flow under hyperoxia did
not increase significantly, but remained fairly constant
regardless of the temperature applied.

In both groups, the increase in ventilatory frequency
was virtually identical over the range of temperatures,
with a tendency toward a slightly lesser increment
above 8°C under hyperoxia (data not shown). The same
observation holds for ventilatory amplitude above 5°C.
Below 5°C, opercular movement was too feeble under
hyperoxia to be accurately measured (�1 mm), result-
ing in a significant difference between hyperoxia and
normoxia below 5°C (data not shown). Ventilatory ef-
fort (Fig. 2A) hence showed an exponential incline with
rising temperature slightly lower under hyperoxia
(with a statistically significant difference in relation to
normoxia only for 3 and 4°C, however).

BOLD contrast in white muscle (Fig. 3A), depicting
blood oxygenation levels, did not change significantly
with increasing temperature under normoxia, al-
though there was a slight trend of decreasing oxygen-
ation at higher temperatures. In the hyperoxic series,
BOLD contrast showed a pronounced decrease be-
tween 5 and 6°C, with tissue oxygenation levels being
significantly lower between 6 and 13°C than between 0
and 5°C. In the liver, however, tissue oxygenation
levels displayed a nonsignificant trend to increase with
temperature in both experimental series. This trend
was somewhat more pronounced under hyperoxia
(Fig. 3B).

White muscle pHi under normoxia at 0°C was 7.41 �
0.02, whereas pHi values in the hyperoxic group were
somewhat higher at low temperatures (Fig. 4). We did
not observe significant differences in temperature-de-
pendent pHi changes between hyperoxia and nor-
moxia. In both groups, pHi regulation followed a pat-
tern close to the one predicted by the alpha-stat
hypothesis, however, only below 6°C. Whereas the hy-
pothesis predicts that rising temperature should cause
an acidification of �0.017 pH units/°C (36, 37), we
found a slope of 	pH/°C of �0.012 units (R2 0.89) under
normoxia and �0.015 units/°C (R2 0.98) under hyper-
oxia, respectively. Above 6°C, pH regulation followed a
significantly different pattern with a 	pH of �0.004
units/°C (R2 0.51) for the normoxic and �0.007 units/°C
(R2 0.75) for the hyperoxic series. In general, the de-
crease of pHi with rising temperature appeared slightly
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larger under hyperoxia than under normoxia; however,
the differences in slope were not significant.

All fish died around 13°C, independent of the oxygen
concentration. There was no obvious difference be-
tween hyperoxia and normoxia, possibly also due to the
greater influence of interindividual variability on ther-
mal tolerance compared with oxygen concentration.
Shortly before death (�30 min), there was a pro-
nounced drop in white muscle pHi. This was consis-
tently observed in all the animals included in the
study.

DISCUSSION

Oxygen and the cardiovascular and ventilatory sys-
tems. Fanta et al. (10) showed that ventilation frequen-
cies of Antarctic fish (Notothenia sp., Trematomus sp.)
decrease under hyperoxia, an effect that has been re-
ported for various marine and freshwater fish species
(2, 14). This stands in opposition to our observations in
Pachycara brachycephalum, where ventilation fre-
quency did not differ between normoxia and hyperoxia.
Instead, ventilation amplitude was reduced under hy-
peroxia, although significantly only at slightly elevated
habitat temperatures between 3 and 4°C. Even though
ventilation frequency might be lowered in some species
and the PO2 difference between blood and water rises,
it is commonly found that arterial PO2 rises in propor-
tion to the PO2 of the medium under hyperoxia due to
increased oxygen availability (46, 48, 56). O2 can pas-
sively enter the blood via the gills and the skin; even
under normoxia, up to 35% of the total amount of
oxygen consumed at rest in the Antarctic eelpout Rhig-
ophila dearborni can be attributed to cutaneous uptake
(53). Hyperoxia thus alleviates the workload required
for sufficient oxygen supply to tissues and at the same
time increases the scope for active oxygen uptake and,
in consequence, aerobic scope.

Because oxygen solubility is elevated at low temper-
atures, icefish (Channichthyidae) resort to O2 trans-
port in solely physical solution and can afford to aban-
don the use of respiratory pigments like hemoglobin
(6). Sluggish benthic zoarcids and nototheniids that
still rely on hemoglobin only do so at very low hemat-
ocrit levels between 10 and 18% [P. brachycephalum:
13%, personal observation; R. dearborni: 10.5 � 3.0%
(53); Nototheniids: 10–18% (7)], thus reducing blood
viscosity, which again lowers the costs of blood circu-
lation. At low temperatures, physically dissolved oxy-
gen can constitute up to 30% of the total amount of
blood oxygen and much of the improved O2 supply

Fig. 2. Ventilatory effort (A), oxygen consumption (B; MO2), and
arterial blood flow in the Aorta dorsalis (C) of P. brachycephalum
under normoxia and hyperoxia with rising temperature. A: ventila-
tory effort as the product of ventilatory frequency and amplitude.
Effort increased exponentially with rising temperature in both
groups. As indicated by the horizontal line, it was significantly lower
under hyperoxia between 3 and 4°C (n 
 4 or 5). Normoxia: f 

(�6.94 � 7.64)�(11.69 � 4.68) �exp(0.18 � 0.03 �x); R2 
 0.98. Hy-
peroxia: f 
 (�7.40 � 5.89)�(8.29 � 3.09) �exp(0.20 � 0.03 �x); R2 

0.99. B: as indicated by the horizontal line, MO2 above 8°C was
significantly different between normoxia and hyperoxia. Under nor-
moxia, MO2 showed a large exponential increment, which could not
be detected under hyperoxia (n 
 3–7 for the normoxic and n 
 3–6
for the hyperoxic series, unless indicated otherwise). Normoxia: f 

(0.80 � 0.13) �exp(0.08 � 0.04 �x)� (0.0002 � 0.0014) �exp(0.74 �
0.48 �x); R2 
 0.96. Hyperoxia: f 
 0.47�(0.13 �x); R2 
 0.99. C:
arterial blood flow, as derived from flow-weighted MR images. Under
normoxia, blood flow increased during warming to 7°C, and it re-
mained constant and significantly elevated above that temperature-
(depicted by *). Blood flow under hyperoxia remained fairly constant.
The black line indicates the temperature area between 8 and 13°C, in
which blood flow differed significantly between both experimental
series (n 
 3–6 for the normoxic and n 
 4–6 for the hyperoxic series,
unless indicated otherwise). Line fits indicate an overall trend within
the data sets.
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Fig. 3. White muscle (A) and liver (B) tissue oxygenation under
normoxia and hyperoxia with rising temperature, as derived from
BOLD contrast of T2* weighted MR images. A: under normoxia,
white muscle tissue oxygenation levels remained constant with ris-
ing temperature, whereas in the hyperoxic series oxygenation levels
between 6 and 13°C were significantly lower than below 6°C (*) (n 

2 or 3 for the normoxic and n 
 2–5 for the hyperoxic series). Line fits
indicate an overall trend within the data sets. B: in both experimen-
tal series there was a trend in liver tissue oxygenation levels to
increase with rising temperature. This trend appeared to be more
pronounced under hyperoxia, although individual oscillations were
large (n 
 2 for the normoxic and n 
 3–5 for the hyperoxic series,
unless indicated otherwise). Normoxia: f 
 0.81� 0.09 �x; R2 
 0.32.
Hyperoxia: f 
 0.85� 0.13 �x; R2 
 0.52.

under hyperoxia occurs by enhancing the levels of
physically dissolved oxygen.

Good oxygen availability and a stable, cold-steno-
thermal environment support low energy turnover life-
styles in Antarctic fish, not least via the reduction of
the energy cost of cardiovascular and ventilatory work.
If the capacity of ventilation and circulation is adjusted
accordingly low, these fish become stenothermal,
meaning that a temperature-induced rise in metabolic
oxygen requirements cannot adequately be met by ox-
ygen delivery through ventilation and the cardiovascu-
lar system. A decline in aerobic scope would therefore
be the first consequence of thermal stress elicited by
environmental warming.

Extending from earlier considerations by Jones (19),
a decline in whole animal aerobic scope likely marks

the temperature at which oxygen delivery capacities
fall back behind the rising energy demand of cardio-
vascular and other aerobic tissues such as liver. Ven-
tilatory and circulatory organs might therefore be
among the first to be affected by progressive oxygen
limitations, which in consequence lead to a vicious
circle of an ever-increasing oxygen deficiency (11).
While ventilation and blood circulation are sped up to
augment oxygen supply, ventilatory and especially cir-
culatory musculature consume most of the delivered
oxygen themselves, and thus only exacerbate the defi-
cit by further increasing MO2. Evidently, the cost of
circulation explains much of the exponential rise in
MO2 observed under normoxia (Figs. 2 and 3), which is
frequently found in fish respiration experiments (1, 50,
55). This is indirectly supported by observations by van
Ginneken et al. (51), who found MO2 to increase under
hypoxia in tilapia (Oreochromis mossambicus). Start-
ing from a fractional cost of 30% of SMR for ventilation
and circulation in a resting fish (18), an increasing part
of the SMR will have to be accredited to ventilation and
especially circulation at high temperatures and
thereby contribute to the loss in aerobic scope.

The increase and subsequent plateau in blood flow
with rising temperature under normoxia indicate a
cardiovascular capacity limitation above 7°C, resulting
in a mismatch in oxygen delivery and demand. This
leads to a drop in aerobic scope, suggesting the 7°C
threshold to be a Tp (11), when blood flow becomes
limited by the insufficient capacity of the heart to
overcome frictional resistance within the vascular sys-
tem. As under this situation of rising thermal stress
fish cannot further upregulate hemoglobin oxygenation

Fig. 4. White muscle intracellular pH (pHi) values derived from in
vivo 31P-NMR spectra of the Antarctic eelpout P. brachycephalum.
At temperatures below 6°C, pHi regulation in normoxic and hyper-
oxic animals followed an alpha-stat pattern with a 	pH of �0.012
units/°C (R2 
 0.89) for the normoxic and �0.015 units/°C (R2 
 0.98)
for the hyperoxic experimental series, respectively. Beyond 6°C, 	pH
was �0.004 units/°C (R2 
 0,51) for the normoxic and �0.007
units/°C (R2 
 0.75) for the hyperoxic series, indicating a different
pattern of pH regulation. In both cases, the increment of the function
below 6°C was significantly different from the slope above 6°C (n 

5–7 for the normoxic and n 
 4 or 5 for the hyperoxic series, unless
indicated otherwise).
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or blood PO2 levels, oxygen extraction (i.e., 	PO2 be-
tween arterial and venous PO2s) is increased to meet
the rising requirements for oxygen. Venous PO2 drops,
reflecting a worsening of oxygen supply to the heart in
fish, as pointed out by Pörtner et al. (31) for the cod,
Gadus morhua. Finally, a Tc is reached, which by
definition (57) marks the onset of anaerobic metabo-
lism and complete loss of aerobic scope (see Ref. 29).
Our data set, however, which focused on an evaluation
of Tps, is not suitable to identify a distinct Tc. Van Dijk
et al. (50) chose succinate in liver tissue as a reliable
indicator of Tc in their experiments on P. brachyceph-
alum, which were carried out onboard RV Polarstern
shortly after animal capture. The authors found Tc to
be situated around 9°C, which was the same tempera-
ture at which MO2 was maximal. At this temperature,
the animals lost balance and died. In our study, these
processes likely occurred �13°C. This indicates that
stress levels in the animals might have been higher in
van Dijk’s experiments than in ours, owing to the
nature of experimental conditions onboard the re-
search vessel.

The data obtained under hyperoxia indicate that
additional oxygen can lower cardiovascular costs and
thereby overall MO2. This perception is strongly sup-
ported by the blood flow data (Fig. 2, B and C). While
under normoxia, blood flow gradually increased until it
reached a steady level above 7°C; it remained fairly
constant under hyperoxia after a small increment be-
tween 1 and 4°C. In consequence, circulation did not
breach the line above which it became counterproduc-
tive, i.e., consuming more oxygen than it could deliver.
It can therefore be expected that under hyperoxia, MO2
would display a more prolonged exponential phase and
should support survival at higher temperatures than
under normoxia. These findings are in accordance with
a suggested hierarchy of thermal tolerance, where re-
duction in aerobic scope is the “first line of sensitivity”
affected by thermal stress, giving way to the next set of
limiting factors (29, 30). These factors are thus far
unexplained in the eelpout but lead to death at �13°C.
Reduced O2 demand and blood flow under hyperoxia at
elevated temperatures suggest an enhanced functional
reserve to the animal. This reflects an enhanced aero-
bic scope or upward shift in Tp, which must be consid-
ered significant. Yet a beneficial effect of O2 on Tc is not
clear, likely because Tc and, furthermore, molecular
limits, coincide.

Tissue oxygenation. For further support of the above
conclusions we monitored tissue oxygenation changes
in white muscle and liver by applying BOLD imaging.
However, various physiological and physical effects
can differentially influence BOLD contrast. Only with
adequate consideration of these effects will interpreta-
tion of these data become possible. Physiologically,
BOLD contrast reflects the ratio of oxy- and deoxy-
hemoglobin, which depends on PO2 and temperature,
as well as Bohr and Root effects. The latter can be
excluded in sedentary and benthic Antarctic fish (54),
whereas the former would contribute to a drop in
BOLD contrast during a potential heat-induced extra-

cellular acidosis. This appears unlikely to explain the
drop in BOLD contrast during hyperoxia compared
with normoxia, as such a metabolic acidosis would be
more severe during normoxia. A change in hematocrit
can influence signal baseline as well (24) and evoke a
rise in BOLD contrast regardless of the tissue, in line
with a rise in hemoglobin-borne oxygen. Antarctic no-
tothenioid teleosts are theoretically able to enhance
hematocrit via release of sequestered erythrocytes
from the spleen (9); it is unknown whether this occurs
in zoarcids. Again, this predicted pattern contradicts
the drop in BOLD contrast observed in white muscle,
especially during hyperoxia vs. normoxia and thus
appears unlikely. Finally, tissue perfusion rates are
positively correlated with BOLD contrast (21) and the
ratio of metabolic rate over blood flow (MRO2/BF) is
negatively correlated to R2* (1/T2*), as recently shown
for brain by Hyder et al. (17). Thus a rise in tissue
perfusion would lead to a rise in BOLD contrast, sim-
ilar to a rise in hemoglobin oxygenation. On the phys-
ical side, in relying on T2* weighted MR imaging,
BOLD contrast is strongly influenced by T2, local inho-
mogeneities of the magnetic field (22), dissolved molec-
ular oxygen (20, 28), and other paramagnetic ions and
molecules, all of which elicit a decrease in BOLD con-
trast. Especially liver tissue is known for its low T1 and
T2 values due to its dense matrix and high concentra-
tions of paramagnetic ions (25), and BOLD contrast
changes may thus appear more pronounced in this
tissue compared with other tissues with the same
change in oxygenation.

Nonetheless, Lebon et al. (23) and Semple et al. (40)
have shown for both human muscle and liver tissue
that changes in T2* weighted MR images can be attrib-
uted to changes in blood oxygenation levels. Overall,
application of BOLD contrast techniques should con-
stitute a helpful in vivo tool to at least qualify if not
quantify tissue oxygenation changes.

In the present study, field homogeneity was good
(Fig. 1) and no differences between BOLD contrast
under normoxia and hyperoxia were observed at con-
trol temperatures. Environmental hyperoxia is hence
not likely to directly influence tissue oxygenation lev-
els, as a consequence of reduced blood flow and venti-
lation rate (18). Despite increased O2 demand during
normoxic warming, blood oxygen levels in muscle tis-
sue (Fig. 3A) remained constant throughout the exper-
iments. Maintenance of aerobic scope at increased
SMR would require a rise in blood PO2 to maintain the
balance between demand and supply. A moderate drop
in PO2 may in fact occur, concealed by the maintenance
of T2*, owing to the flow dependence of BOLD contrast.
As a corollary, the maintenance or fall of blood PO2 in
the light of increased organismic and cellular oxygen
demand and blood flow indicates less aerobic flexibility.

Interestingly, we found a significant decline in mus-
cle oxygenation above 5°C under hyperoxia, starting
from O2 levels similar to those under normoxia. The
reduction in blood oxygenation evidently was not com-
pensated for by an increase in blood flow. Even if a
significant effect of blood flow on BOLD contrast oc-
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curs, these interpretations hold. The lower levels of
blood flow under hyperoxia (Fig. 2C) likely cause the
decrease in blood oxygenation in the muscle tissue and
reflect the lower whole animal O2 demand.

When measuring white muscle tissue PO2 invasively
with microelectrodes, Fanta et al. (10) found decreas-
ing muscle oxygenation under hyperoxia in one noto-
thenioid species. However, even within the same ge-
nus, this was not a general response to elevated oxygen
levels. It thus needs to be emphasized that blood oxy-
genation in white muscle, which is metabolically rela-
tively inactive at rest, does not reflect oxygen supply to
central aerobic organs such as the liver. Here (Fig. 3B)
we found that tissue oxygenation was inclined to in-
crease with rising temperature, a trend slightly more
prominent under hyperoxia than under normoxia. It is
conceivable that visceral blood oxygenation levels in-
crease during warming to meet rising metabolic oxygen
demands (8), this possibly being a trade-off at the
expense of reduced blood supply to the less active
muscular tissue (18). At unchanged levels of blood flow,
this scheme might be more pronounced under hyper-
oxia. Moreover, as a consequence of the relatively low
signal intensity in liver tissue (see above), any changes
in BOLD contrast will appear more dramatic than, for
instance, in muscle tissue. In conclusion, our data
imply that oxygenation levels can be increased or re-
main unchanged in more vital organs such as liver
when oxygen supply to muscle is reduced.

pHi regulation. Initial values of white muscle pHi
under normoxia at 0°C (7.41 � 0.02) were very similar
to the 7.43 � 0.06 obtained by Van Dijk et al. (50) using
the homogenate method (32) and to the values found by
Bock et al. (4) by NMR measurements in the same
species at the same temperature. Hyperoxia-induced
reduction of ventilatory effort at low ambient temper-
atures can evoke a respiratory acidosis, due to the
accumulation of CO2 in the blood (14). This can be
compensated for within 2–3 days by a subsequent
active uptake of HCO3 via the gill HCO3

�/Cl� ex-
changer (5, 16). Resulting elevated bicarbonate levels
in the blood affect the mechanisms of pHi regulation,
again most likely HCO3

�/Cl� exchangers and HCO3 /
Na� cotransporters (12), thereby explaining the higher
initial pHi values under hyperoxia.

Evidently, the decline in aerobic scope suggested to
occur beyond 5–6°C parallels a shift in the pattern of
temperature-dependent pHi regulation, indicated by
the distinct break around 5°C. The fact that this pat-
tern remains more or less unchanged under hyperoxia
leads to the conclusion that it matches the normoxic
pejus threshold but is not influenced by oxygen avail-
ability. A possible cause for this shift in pH regulation
might be in the thermal sensitivity of ion channels or a
change in the relationship between membrane perme-
ability and compensatory ion exchange. Thermal inac-
tivation of ion transport (e.g., Na�/H�, Cl�/HCO3 ex-
changer, H�-ATPase) is very likely not yet involved,
owing to the steady-state nature of temperature-de-
pendent pHi values reached. The slightly steeper
slopes under hyperoxia may relate to the elevated

blood bicarbonate levels but do not significantly shift
the break temperature.

As pointed out by Sommer et al. (45), alpha-stat
regulation of pHi in a marine invertebrate was re-
stricted to a temperature window between the Tc lim-
its. The data obtained here for P. brachycephalum
indicate that already the normoxic Tp correlates with a
shift in pH regulation. This is also consistent with the
data provided by van Dijk et al. (50), who found a
deviation from alpha-stat pHi regulation between 3
and 6°C in P. brachycephalum but located Tc close to
9°C (see above). Overall, the parallel events in oxygen
metabolism and acid-base regulation confirm previous
applications of the symmorphosis concept (49) to the
limits of thermal tolerance, i.e., that the functional
properties and capacities of several physiological sys-
tems are set to be optimal between the highs and lows
of ambient temperatures and may thus show limita-
tions or changes at similar levels of ambient tempera-
tures (30; see Ref. 38 for endotherms).

In conclusion, under normoxia, a putative reduction
of the aerobic scope, which coincides with a break in pH
regulation around 5°C, can be made out between 6 and
7°C and is reflected in limited capacity of the circula-
tory system to enhance arterial blood flow. Our find-
ings suggest that improved oxygen availability dimin-
ishes the effects of thermal stress by reducing the
energy costs associated with oxygen distribution in the
organism. High ambient oxygen levels will also help
when oxygen demand is on the verge of exceeding
oxygen availability as it is set by the functional capac-
ity of the cardiocirculatory system. Although hyperoxia
likely improves aerobic scope during thermal stress
and may thereby widen the tolerance window delim-
ited by the Tps, the temperature dependence of pH
regulation remains largely unaffected, likely due to
fixed thermal properties of membranes or ion exchange
mechanisms. This indicates that once the oxygen lim-
itation of thermal tolerance has been alleviated, as
shown by the uniform pattern of arterial blood flow
under hyperoxia, further restrictive mechanisms at
cellular or molecular levels may become effective. In
general, our findings confirm that in vertebrates sev-
eral processes are responsible for setting thermal tol-
erance limits, all of which seem tightly intertwined.
Further work is necessary to elucidate the factors that
restrict temperature tolerance once oxygen limitation
is suspended; these may be located on a lower func-
tional, i.e., cellular level (30). Overall, the capacity of
Antarctic fish to adapt to climate-induced temperature
changes appears very small. Oxygen-limited windows
of thermal tolerance are narrow in this group and
reflect its high sensitivity to current and, possibly,
future scenarios of warming in Antarctic waters (13).

We thank R. M. Wittig, who provided the excellent laboratory
conditions for both conducting the NMR experiments as well as for
data analysis. B. Klein provided and maintained the fish used in
these experiments.
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Abstract

Oxygen demand elicited by the main cellular energy consumers was examined in isolated

hepatocytes of sub-Antarctic and high-Antarctic notothenioid and zoarcid (Pachycara

brachycephalum) fish with respect to the role of cellular metabolism in co-defining thermal

tolerance. The relative proportions of energy allocated to protein and RNA/DNA synthesis,

ion regulation and ATP synthesis were quantified between 0 and 15°C by analysis of inhibitor

sensitive cellular respiration. In all investigated species, protein synthesis constituted 25-37%,

RNA synthesis 24-35%, Na+/K+-ATPase 40-45% and mitochondrial ATP synthesis 57-65%

of total respiration. The sub-Antarctic nototheniid Lepidonotothen larseni displayed lower cellular

protein synthesis rates but somewhat higher active ion regulation activities than its high-

Antarctic confamilials, as is typical for more eurythermal species. Assumed thermal optima

were mirrored in minimized overall cellular energy demand. Onset of thermal stress indicated

by elevated energy turnover became visible between 3 and 0°C as well as beyond 6°C in the

sub-Antarctic L. larseni and P. brachycephalum; whereas the high-Antarctic species displayed

progressively rising respiration rates during warming with a cellular energetic minimum at 0°C.

Sub-Antarctic fish showed signs of cold-eurythermy and appear to live close to their lower

limit of thermal tolerance, while high-Antarctic notothenioids show high degrees of energetic

efficiency at 0°C. All cellular preparations maintained energy budgets over a wide thermal

range, supporting the recent concept that thermal limits are set by oxygen and associated

energy limitations at the whole organism level.
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Introduction

Fish of the perciform suborder Notothenioidei comprise most of the fish species living in the

Southern Ocean (Gon and Heemstra, 1990). They began to radiate into Antarctic waters in

the early Tertiary, gradually adapting to the progressive cooling, which set in after the opening

of the Drake passage and the formation of the circumpolar current some 25 mio years ago

(Eastman, 1993; Arntz et al., 1994). The further South into high-Antarctic waters some of

these species diversified, the more they specialized on the permanent cold through unique

adaptations at molecular, cellular and systemic levels (Kock, 1992; Detrich, 1997; Pörtner et

al., 2005). Eventually, this even led to the loss of respiratory proteins in the white blooded

Channichthyidae (Di Prisco, 2000). The downside of this high degree of cold-specialisation

was the development of cold-stenothermy, mirrored by increased mitochondrial densities at

uncompensated capacities (Johnston et al., 1998; D'Amico et al., 2002; Lucassen et al., 2003)

combined with reductions in hematocrit (Egginton, 1997b) and cardiovascular output

(Egginton, 1997a). Specialisation forced most of these species to lead a sluggish lifestyle.

Extreme stenothermy also made them very susceptible to stress induced by warming, with

upper thermal limits around 6°C in Trematomus bernacchii, T. hansoni and T. borchgrevinki (Somero

and DeVries, 1967).

The first line of thermal limitation in animals is mirrored in the onset of functional

hypoxia at the organismic level, followed by a hierarchical sequence of systemic to molecular

stress events (Pörtner, 2002). Some of these principles have also been confirmed in Antarctic

fish. For example, oxygen demand in increasing hyperthermia soon exceeds the capacity of

oxygen supply and finally drives the animal into anaerobic metabolism (e.g. van Dijk et al.

1999). Findings obtained in a recent study of sub-Antarctic eelpouts (Mark et al., 2002) were

in line with the suggested hierarchy in the processes defining thermal limits and elaborated a

key role of the circulatory system in setting thermal tolerance, firstly by ensuring oxygen

supply, secondly by contributing to oxygen demand through enhanced circulatory work at

high temperatures. Oxygen demand is also generated at the cellular level. However, the

potential changes in cellular processes and their oxygen demand upon cooling or warming and

the resulting contributions of the various cellular processes to whole animal thermal

intolerance have not yet been addressed.

Therefore, the present study sets out to investigate the potential role of cellular

processes in thermal limitation. As cells exposed to suboptimal conditions may face a shift in

the distribution of metabolic resources, analysis of the energy available to various processes of

cellular maintenance and proliferation may provide a sensitive measure of environmental

and/or thermal stress. Atkinson (1977) suggested that there is a hierarchy in ATP-consuming
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processes, which in accordance with their functional importance show different sensitivities

towards a reduction of the cellular energy load. This study aims to investigate temperature

dependent energy allocation to the most important metabolic processes in hepatocytes of the

highly thermally sensitive notothenioids. Energy allocation to protein synthesis, RNA/DNA

synthesis, ion regulation (Na+/K+-ATPase), and ATP synthesis was examined with respect to

thermally induced shifts and preferences in cellular energy allocation and the potential

existence of threshold temperatures that might contribute to thermal tolerance limits of the

whole organism.
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Materials and methods

Animals

All fish used for the analysis of the energy budgets belonged to the perciform suborder of

Notothenioidei and were caught in bottom trawls and semi-pelagic trawls between November

2003 and January 2004 on cruise ANT XXI/2 of the German research vessel Polarstern. Fish

of the sub-Antarctic nototheniid species Lepidonotothen larseni (17.1±2.0cm; 34.3±13.5g) were

collected off Bouvet Island (54°30,22 S; 003°14,37 E), high-Antarctic notothenioid, Artedidraco

orianae (Artedidraconidae; 14.8±1.3cm; 30.0±6.5g), and the trematomid nototheniids

Trematomus lepidorhinus (15.1±4.8cm; 45.6±31.8g), T. eulepidotus (21.1±2.7cm; 100.0±50.9g), T.

bernacchii (23.3cm; 131.0g) and T. pennellii (21.7±3.2cm; 143.1±62.3g) were collected in the

eastern Weddell Sea. Until experimentation, fish were maintained onboard the vessel in an air-

conditioned container equipped with aquaria and aerated recirculated natural seawater at 0.5 ±

1.0°C for 2-3 weeks. Fish that did not demonstrate good health over this period were not used

in the experiments. Fish were not fed prior to the experiments, which were all carried out in

the laboratories onboard.

A second suite of experiments to record cellular respiration rates of hepatocytes of the sub-

Antarctic eelpout Pachycara brachycephalum was conducted previously in the thermal range of 0

to 21°C. These experiments were carried out at the Alfred Wegener Institute between

December 2001 and March 2002. Fish used in these experiments were caught at a depth of

500m close to King George Island (Antarctic Peninsula) during the cruise ANT XIX of

Polarstern in April/May, 2001. Fish were transferred to the institute and kept in well-aerated

water of 0.0 ± 0.5 °C at 32-34 ‰ salinity until experimentation.

Preparation of cellular isolates

Hepatocytes were isolated following a protocol modified after Mommsen et al. (1994). Fish

were anaesthetised in MS-222 (3-Amino-benzoic-methanosulfonate, 0,5g/l); the liver was

carefully excised and transferred into a Petri dish on ice with 4ml/g fresh weight of solution 1

(Hank’s Medium without magnesium (to prevent blood clotting), containing: glucose: 5,6mM;

KCl: 5mM; NaHCO3: 4mM; Na2HPO4: 0,3mM; NaCl: 240mM; KH2PO4: 0,4mM; HEPES:

10mM; pH 7,4). Fish were killed afterwards by a cut through the spine and removal of the

heart. Blood was removed from the liver by perfusion of the Vena cava hepatica with ice-cold

solution 1, until no more blood cells were visible in the drain. Then, the liver was perfused on

ice via the Vena cava with 2ml /g fw. ice-cold collagenase solution (solution 3: solution 1 + 1%

BSA + 750U*ml-1 collagenase type IV) and gently massaged for about 10 minutes. Peritoneal

tissue was removed, the rest finely chopped and gently shaken on ice for about 60 minutes,
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until total disintegration of the tissue. The solution was then filtered through a 250 m mesh-

size gaze. Hepatocytes were collected by gentle centrifugation (4 min at 60g) and washed

repeatedly by centrifugation (2 min at 60g) in solution 2 (solution 1 + 1% BSA), until the lipid

phase and all erythrocytes were removed. Cells were stored in solution 4 (solution 2 + 5mM

glucose and 2mM MgSO4) at 0°C on a shaking desk. Cell titres were assessed in a Fuchs-

Rosenthal haemocytometer dish and viability of cells was determined by Trypan blue

exclusion (>95%). Total protein content was measured according to Bradford (1976). Samples

of cellular suspensions were frozen in liquid nitrogen, stored at –80°C and broken up by

ultrasound treatment before analysis (4min at 0°C).

Respiration and inhibitors

Cells from about 5-10g liver tissue were freshly isolated each day. When necessary, several

animals of the smaller species were pooled to collect enough liver fresh mass. Cellular

suspensions were diluted to 15*106 cells * ml-1 and kept under constant shaking on ice in

solution 4 throughout the experiments. Measurements were carried out in duplicates in two

parallel setups consisting of Perspex respiration chambers (Ranks Brothers, Cambridge, UK)

that could be volume adjusted between 300-1500 l and temperature controlled by a

thermostat (Lauda, Königshofen, Germany). Respiration was measured using micro-optodes

and the TX system of PreSens (PreSens GmbH, Regensburg, Germany), connected to a

laptop computer (Compaq Armada 500) via a MacLab system running the Chart 5.0 software

(ADInstruments, Caste Hill, Australia).

300 l of the cell suspension were spun down briefly (1min, 60g, 0°C) and 200 l of the

supernatant exchanged with fresh ice-cold solution 4. The cells were then resuspended and

transferred into the respiration chambers. The chambers were sealed airtight and a micro-

optode was inserted through the lid. Blank respiration was recorded for 20min, then the

optode was withdrawn and inhibitor stock solution was added to the suspension with a

microlitre glass syringe (Hamilton, Bonaduz, Switzerland). After reintroduction of the micro-

optode, respiration was recorded for 40min. The cells were removed and respiration chambers

washed twice with distilled water and 70% ethanol. A new experiment was run with fresh cells

and a different inhibitor. Respiration rates were calculated and cellular respiration in the

presence of an inhibitor was quantified in relation to its respective control rate to account for

potential deterioration of cell quality over time. Cell viability was checked after the last run and

was always found to be >90%.
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The following inhibitors were used:

Cycloheximide was used at a concentration of 100 M to inactivate peptidyl transferase activity

of the ribosomal 60S subunit (i.e. to inhibit protein synthesis, (Wieser and Krumschnabel,

2001; Langenbuch and Pörtner, 2003)). To estimate the energetic needs of Na+/K+-ATPase,

ouabain was used at a concentration of 6,67mM (Pannevis and Houlihan, 1992;

Krumschnabel et al., 1994a). Actinomycin D was administered at a concentration of 100nM to

block RNA and DNA synthesis (Smith and Houlihan, 1995). To inhibit mitochondrial ATP

production (FoF1-ATPase), cells were incubated with 10 g/ml oligomycin (Gamper and

Savina, 2000).

All inhibitors were dissolved in DMSO, preliminary experiments had shown that DMSO

addition of <5% of the total assay volume did not affect respiration rates. In a preliminary set

of experiments we determined the minimum concentrations of inhibitors sufficient for

maximum reduction of oxygen consumption, since it has been shown that overdoses of

inhibitors can lead to overestimates of the particular metabolic process due to side effects and

even to cell death (Wieser and Krumschnabel, 2001). Due to possible cross reactivity,

inhibitors were never applied in combination.

Statistical analysis

Statistical analyses of differences between total cellular respiration rates and differences

between inhibited fractions of total respiration were carried out using Prism 4.0a and InStat

3.0b (GraphPad Software, Inc.). Differences between control and elevated respiration rates in

the warm were determined by t-tests and considered significant if P < 0.05.

To test for the temperature sensitivity of each cellular process identified by its specific

inhibitor, data were arcsin transformed and analysed through Spearman Rank correlations and

one-way analyses of variance (ANOVA). Furthermore, differences between inhibitor sensitive

respiration at control and elevated temperatures were determined by t-tests, which were also

applied to test for differences of the total means (within the thermal range of 0-15°C) of

inhibitor sensitive respiration between investigated species.

Again, differences were considered significant if P < 0.05.  If not stated otherwise, all data are

presented as values ± standard error of the mean (SEM).
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Results

Respiration

Oxygen consumption rates of isolated hepatocytes between 0 and 15°C were between 0.1 and

0.7 nmol O2 * 106 cells-1 * min-1 in all examined species (figure 1 & 2). In contrast to the high-

Antarctic species, the sub-Antarctic notothenioid L. larseni showed the lowest rates of cellular

oxygen consumption between 3 and 6°C (figure 1A). The sub-Antarctic P. brachycephalum

displayed a similar pattern, lowest rates of oxygen consumption were around 3°C and rose

upon warming as well as cooling (figure 2). These species were the only to show an increase in

oxygen consumption upon cooling from 3 to 0°C. In the high-Antarctic species (figure 1B-E),

lowest rates were found at 0°C, cellular rates were significantly higher at all temperatures than

at 0°C. The increases in oxygen consumption followed variable patterns in each species: In T.

eulepidotus hepatocytes (figure 1B) there was a steady increase in respiration rates with

temperature with a tendency to level off between 12 and 15°C. Cells obtained from T. pennellii

showed a more moderate increase up to 9°C, followed by a steep increment to rates of oxygen

consumption similar to those of T. eulepidotus above 9°C (figure 1C). Oxygen demand of T.

lepidorhinus hepatocytes rose during warming to 6°C (figure 1D) and remained constant

thereafter. In T. bernacchii cellular respiration also rose and levelled off beyond 6°C (figure 1E),

while in A. orianae hepatocytes oxygen consumption peaked at 12°C (figure 1F). Yet, in these

two species the picture is incomplete due to insufficient availability of tissue samples.

Energy budgets

Within the cellular energy budgets, the largest oxygen consumers of the cell (RNA, protein

and ATP synthesis, ion regulation) more or less uniformly claimed the same fraction of

available oxygen over the entire investigated temperature range (figure 1). In all investigated

species, mean cycloheximide sensitive respiration constituted 25-37%, mean actinomycine

sensitive respiration 24-35%, mean ouabain sensitive respiration 40-45% and mean

oligomycine sensitive respiration accounted for 57-65% (cf. table 1). By measuring the

oligomycin sensitive fraction of total respiration, ATP-synthesis was accounted for.

Oligomycin sensitive respiration is a cue for mitochondrial efficiency and degree of coupling,

measured by the P/O ratio (moles of ATP produced per moles of O2 consumed). Subtracting

oligomycin sensitive respiration from total respiration yields an indirect measure of processes

like proton leak and non-mitochondrial respiration, which on average accounted for 35-43%

in the hepatocytes of the species investigated here.

In Trematomus eulepidotus we found a significant decrease in cycloheximide sensitive respiration

with increasing temperature (figure 1B).
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In parallel to an increase in cellular respiration, the energy budget of the sub-Antarctic species

Lepidonotothen larseni (figure 1A) displayed significant reductions in cycloheximide, actinomycin

D and ouabain sensitive respiration while oligomycine sensitive respiration was elevated

between 3 and 0°C (67%, cf. table 1).

Differences in functional rates

Mean inhibitor sensitive fractions over the thermal range of 0 to 15°C showed further

differences between sub- and high-Antarctic fish species (figure 3): cycloheximide sensitive

respiration was significantly lower in hepatocytes of the sub-Antarctic L. larseni than in the

high Antarctic trematomid species T. eulepidotus, T. pennellii and T. bernacchii (it was also lower in

T. lepidorhinus, but not significantly so). In contrast, the ouabain sensitive fraction of

hepatocyte total respiration displayed a trend towards higher levels than in the high Antarctic

trematomids in the range of 0-15°C.
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Discussion

The aim of this study was to elaborate temperature dependent energy allocation to key

metabolic processes in the cell. It was based on the question whether warm temperatures

would elicit disturbances in cellular energy allocation that might contribute to whole organism

thermal intolerance, especially so in the thermally most sensitive high-Antarctic notothenioids.

Cellular respiration

Hepatocyte oxygen consumption was very similar in all investigated species, ranging from 0.1

nmol O2* min-1*106 cells-1 at low temperatures to a maximum of about 0.7 nmol O2* min-1*106

cells-1 in T. pennellii at 15°C (figure 1 & 2). This is in line with respiration data recorded in

hepatocytes from a variety of fish species (Antarctic Lepidonotothen kempi (Langenbuch and

Pörtner, 2003); goldfish: (Krumschnabel et al., 1994b); temperate zoarcids (Z. viviparus): Mark

(unpubl.)). Moreover, hepatocytes of goldfish and trout measured at 20°C and 15°C,

respectively, show respiration rates (0.4 and 0.6 nmol O2* min-1*106 cells-1, respectively

(Krumschnabel et al., 2001)) similar to those of the high Antarctic trematomids at 15°C. At

the cellular level this observation confirms the absence of metabolic cold adaptation in these

notothenioid species, as has been argued by Clarke & Johnston (1999) based on a literature

survey of oxygen consumption data from whole animals.

Within the range of experimental temperatures, it becomes evident that cellular

respiration does not necessarily increase upon warming. Metabolic processes are not always

exponentially linked to temperature, Q10 may fluctuate and can adopt higher values towards

temperature extremes (Haschemeyer and Mathews, 1982) or warming may only then result in

elevated respiration rates. Within the cellular oxygen consumption data presented in this study,

we found clear evidence of species-specific patterns of cellular respiration, which will likely

influence whole organism thermal sensitivity. Hepatocytes of the sub-Antarctic species L.

larseni appeared to have the lowest energetic requirements between 3 and 6°C, below and

above which cellular oxygen consumption rose. This indicates a rise in metabolic energy

turnover in the liver in the cold, pointing to an energetic optimum (i.e. a temperature range of

minimal energetic costs) for the organism at temperatures significantly higher than 0°C (figure

1A). In fact, specimens of L. larseni were caught off Bouvet Island (54°30,22 S; 003°14,37 E),

which is located within the oscillations of the Southern boundary of the Antarctic Polar front.

Thus, water temperatures are influenced by both the cold waters of the Southern Ocean and

the warmer waters of the South Atlantic and are bound to vary both annually and seasonally.

Water temperatures at the time of the catch ranged around 0.6°C. This relatively warm
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temperature contrasts values of –1.0 to -1.8°C found in the Weddell Sea, where the high-

Antarctic notothenioids were caught.

Observations of an energetic optimum are corroborated by the cellular oxygen

consumption data recorded for the Antarctic eelpout Pachycara brachycephalum (figure 2), which

showed a similar pattern with lowest oxygen consumption at 3°C. In sub-Antarctic conditions

around the Antarctic peninsula, this species is frequently found, yet in the high Antarctic, P.

brachycephalum only occurs in warmer sub-Antarctic deep-water layers at temperatures above

0°C (R. Knust, AWI, pers. comm.). Accordingly, the eelpout as well as L. larseni probably live

close to their lower ecophysiological limits in sub- or deep Antarctic waters. Consequently,

they may be more cold eurythermal than the high-Antarctic cold stenotherms.

Different patterns of thermal responses could also be observed within the five

remaining high Antarctic notothenioid species of Trematomus and Artedidraco (figure 1B-F): In

T. eulepidotus there was a steady increase in cellular respiration with temperature with a

tendency to level off between 12 and 15°C, possibly indicating the onset of a limitation of

hepatic metabolic capacity just above 12°C. In contrast, hepatocytes of T. pennellii showed a

dramatic 2- to 3-fold increase in respiration rate towards the warm end of the investigated

thermal range. This drastic increment reflects an over-proportional rise in metabolic costs,

which is still covered by the capacity of cellular energy production, indicated by unchanged

energy budgets. T. lepidorhinus neither showed a steady rise in cellular oxygen consumption, nor

an abrupt increment. In the light of unchanged energy budgets, this species may be the least

thermally sensitive. For T. bernacchii and A. orianae, data are insufficient but indicate limited

metabolic capacities at higher temperatures (figure 1E-F). These patterns may reflect different

and specific thermal sensitivities of the different species and calls for the respective

investigations at the whole animal level.

Cellular energy budgets

Methodological considerations

Interpretation of inhibitor data is often problematic and error prone and therefore any such

energy budgets will have to be interpreted with adequate precaution. The choice of the

medium used to measure cellular respiration is of eminent importance as is the concentration

of the inhibitor. This has convincingly been shown in the work of Wieser and Krumschnabel

(2001), who demonstrated for trout and goldfish hepatocytes that cellular respiration increased

up to five-fold and the relative fraction of protein synthesis rose considerably in free amino

acid enriched Leibovitz (L-15) medium as compared to Hank’s balanced salt solution. The

authors also provided evidence for cycloheximide to inhibit far more metabolic processes than
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just protein synthesis when applied in overly high concentrations. Generally, by directly or

indirectly affecting further metabolic processes, inhibitors will always act somewhat unspecific

and the actual share of a particular metabolic process is overestimated. For example, we

treated RNA/DNA synthesis and protein synthesis as discrete processes, which they are not:

once mRNA synthesis is inhibited, protein synthesis will also decrease to some extent, due to

a lack of new transcripts. Moreover, we did not account for Ca2+-ATPase or proton leak, the

first of which comprises up to 10% of total cellular respiration in rat thymocytes (Buttgereit

and Brand, 1995) and the latter about 10% of maximum mitochondrial respiration in isolated

liver mitochondria of the notothenioid Lepidonotothen nudifrons (Hardewig et al., 1999),

respectively.

Still, cycloheximide, actinomycin D and ouabain sensitive respiration can add up to more than

100% of total cellular respiration, which is indicative of secondary inhibition of dependent

processes. As a consequence, cellular energy budgets compiled by the use of inhibitors cannot

claim to represent absolute contributions of the examined metabolic processes but can

provide an idea of the fraction of energy allocated to a specific process and how energy

allocation may change qualitatively with a change in experimental conditions like temperature.

Bearing all of this in mind and following a strict protocol, it is still possible to analyse

thermally induced changes in the inhibitor sensitive fractions of total cellular respiration and

gain valuable insights into cellular energy metabolism. In fact, the overall stability of the

energy budgets regardless of temperature and despite large changes in cellular oxygen

consumption provides indirect support for the validity of our measurements and the data

analyses carried out.

Variability in energy budgets

Mean values of the data collected for the four inhibitors (cf. table 1) were in line with inhibitor

sensitive fractions of respiration observed in fish cells by other authors: in the six species

examined the mean cycloheximide sensitive respiration was 25-37% (Krumschnabel et al.,

1994a; Krumschnabel et al., 1997; Smith et al., 2001; Wieser and Krumschnabel, 2001;

Langenbuch and Pörtner, 2003), mean actinomycin D sensitive respiration 24-35% (rat cells:

Buttgereit and Brand, 1995; fish cells: Smith and Houlihan, 1995; Casey et al., 2002), mean

ouabain sensitive respiration 40-45% (Krumschnabel et al., 1994a; Krumschnabel et al., 1994b;

Krumschnabel et al., 2001), and mean oligomycin sensitive respiration 57-64% (Gamper and

Savina, 2000).

The variability patterns observed in cellular respiration were only in part reflected in

the energy budgets, which proved to be rather stable and temperature insensitive.
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In the sub-Antarctic species L. larseni, cycloheximide sensitive respiration appeared reduced

below 6°C, indicating lower levels of protein synthesis in the cold in this species. At 3°C

actinomycin D sensitive respiration appeared reduced, which may have consequences for

RNA/DNA synthesis. Ouabain sensitive respiration is significantly reduced at 0°C when

compared to 6°C and higher and indicates a potential shift in ion regulation processes.

Alternatively, an unexplained ATP consuming process rose and caused the respective

reduction in the share of protein and RNA synthesis or ion exchange in the energy budget.

According to the theory of a hierarchy of ATP-utilizing processes first brought forward by

Atkinson (1977) and corroborated by Buttgereit & Brand (1995) and Wieser & Krumschnabel

(2001), protein synthesis is the process most sensitive to a change in ATP supply and will

decrease first when a cell’s energy charge is reduced, followed by macromolecule

(RNA/DNA) synthesis and then by ion regulation. In our cells, protein synthesis may be

decreased due to increased energy demand by other, unidentified processes. This conclusion is

supported by a rise in oligomycine sensitive respiration (i.e. ATP synthesis rate) and an overall

increase in cellular respiration at 0 and 3°C to avoid a drop in energy charge. Judging from the

stable cellular energetic conditions observed by NMR spectroscopy in alive specimens of P.

brachycephalum by Mark et al. (2002) during warming, there is most likely no drop in energy

charge in the cells of all species used in this study, especially as the isolated cells are not

constricted by systemic limitations.

In the high-Antarctic notothenioids, cellular energy budgets displayed different

characteristics: in T. eulepidotus hepatocytes (figure 1B), we found a significant decrease in

cycloheximide-sensitive respiration with rising temperature, possibly indicating the onset of a

cellular metabolic capacity limitation. This limitation may lead to the predominant use of

cellular ATP supply by baseline cellular functions, i.e. ion exchange. In the other species, no

significant changes in cellular energy metabolism could be observed. It is astounding to find so

few signs for a shift in ATP-consuming processes in the cells, even though they have been

warmed to temperatures far beyond the survival range of the whole organisms (Somero and

DeVries, 1967). Thus, although showing signs of energetic optima at rather low temperatures,

the restrictive mechanisms limiting whole organism thermal tolerance cannot be operative at

the cellular level in these Antarctic and sub-Antarctic notothenioids.

When comparing total cycloheximide and ouabain sensitive respiration among the

nototheniids in the range from 0 to 15°C (figure 3), cycloheximide sensitive respiration was

significantly higher in most of the high-Antarctic notothenioids than in the sub-Antarctic

species, while ouabain sensitive respiration was significantly lower. This bias in energy

allocation indicates that the stenothermal high Antarctic notothenioids presumably possess
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greater protein synthesis capacities than the eurythermal sub-Antarctic species but lower

capacities of active ion regulation.

Storch and coworkers (Storch et al., submitted) observed higher protein synthesis capacities in

the cold eurythermal Antarctic eelpout P. brachycephalum as compared to the warm eurythermal

common eelpout Zoarces viviparus, and other authors found evidence for cold compensated

protein synthesis in high-Antarctic fish (Smith and Haschemeyer, 1980) and sea urchin

embryos (Marsh et al., 2001). Furthermore, several studies investigating pH and ion regulation

in eurythermal and stenothermal fish (Pörtner and Sartoris, 1999; Bock et al., 2001; Sartoris et

al., 2003a) found the greater part of pH regulation in eurythermal fish to be dependent on

active processes like regulation via Na+/K+-ATPase, while in stenothermal fish less costly

passive processes prevailed. Our data for protein synthesis rates in the sub-Antarctic

nototheniid L. larseni on the one hand and for Na+/K+-ATPase rates on the other are

consistent with these findings for eurythermal fish and mark this species down as a more

eurythermal species in comparison to the stenothermal high-Antarctic species.

Conclusions

Provided with sufficient energy and oxygen, cells can survive and maintain metabolic

functions within a far wider thermal window than the more complex organisms from which

they originate (cf. Somero and DeVries, 1967). Apart from small changes in energy allocation

in cycloheximide and oligomycin sensitive respiration in the sub-Antarctic notothenioid

species L. larseni, there were no distinct shifts in energy allocation over the investigated

thermal range, nor did we identify any threshold temperatures beyond which abrupt changes

in energy budget occurred. Energetic limitations to thermal tolerance must therefore be set at

the organismic level. Here they occur through a mismatch in oxygen supply and demand,

provoking a progressive reduction in aerobic scope (Pörtner et al., 2004). Accordingly, our

present findings indirectly support the concept of oxygen limited thermal tolerance (Pörtner,

2001, 2002). In an earlier study in the sub-Antarctic eelpout P. brachycephalum (Mark et al.,

2002), we found evidence for a limitation in functional capacity of the cardio-vascular system,

which has subsequently also been observed in cod (Sartoris et al., 2003b; Lannig et al., 2004)

and rainbow trout (Farrell and Clutterham, 2003), in line with earlier findings by Heath (1973).

The cod studies by Lannig, Sartoris and coworkers revealed the primary limiting role of the

cardio-vascular system: Over a wide thermal range arterial oxygen partial pressure remained

constant, while venous oxygen partial pressure decreased steadily from a maximum at the

animals’ optimal temperature towards both the cold and warm ends of the thermal range.

Under progressively increasing thermal stress, cardio-vascular capacities are not sufficient to
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provide full aerobic scope and tissue oxygen extraction leaves venous blood increasingly

oxygen depleted, eventually culminating in cellular oxygen limitation. Moreover, many fish

species lack coronary circulation and rely on the venous oxygen reserve for myocardial oxygen

supply (Farrell, 1993), thus only exacerbating the dilemma.

These considerations are consistent with the concept of a hierarchy of systemic to

molecular processes contributing to thermal limitation in a complex organism (cf. Pörtner,

2002; Pörtner et al., 2004). The most sensitive process with respect to thermal tolerance is

supposed to be set at the highest levels of organisational complexity. In fish, cardio-vascular

more than ventilatory performance appears to be the bottleneck of thermal tolerance,

although the various levels of organisation have evolved into a complex organism, in which

the capacities of systemic to molecular processes closely match. Taylor and Weibel (1981)

developed the concept of symmorphosis, which states that the functional capacities of

individual components are designed to suit the higher unit, i.e. the organism. Furthermore, the

concept indicates that an organism’s functional capacities are never expressed in excess of its

direct environmental needs. At the cellular level, one might thus find a wider thermal tolerance

once the constraints at the higher levels of organisational complexity are no longer operative.

The optimum of maximum cellular energy efficiency is still set to within the thermal range of

the whole organism. Once organismic oxygen supply to cells by the cardio-vascular system

declines, cellular hierarchies of energy allocation become effective and lead to reductions in

the scopes for growth and reproduction, then in cellular maintenance metabolism (DNA

synthesis and ion homeostasis) and ultimately to cell death.
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Figure 1
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figure 2
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figure 3



PUBLICATION II

60

table 1
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figure legends

figure 1

Cellular respiration (left) and energy budgets (right) in the temperature range between 0 and

15°C. In the energy budgets, inhibitor sensitive respiration is depicted as follows: black:

cycloheximide sensitive respiration (protein synthesis); white: actinomycin D sensitive

respiration (RNA/DNA synthesis); dark grey: ouabain sensitive respiration (Na+/K+-ATPase);

and light grey: oligomycine sensitive respiration (FOF1-ATPase). Asteriks indicate cellular

respiration rates significantly different from values at 0°C (P<0.05), # indicates cellular

respiration rates significantly different from values at 3°C (P<0.05). a: significant decrease in

oligomycin sensitive respiration from 0 to 15°C (T. eulepidotus); b: ouabain sensitive respiration

significantly lower than at 6 – 15°C  (L. larseni); n.d.: not determined; n=2-8, all values given as

means ± standard error of the mean (SEM), where applicable.

figure 2:

Cellular respiration of hepatocytes of the Antarctic eelpout Pachycara brachycephalum in the

thermal range between 0 and 21°C; n=3-6; all values given as means ± standard error of the

mean (SEM). # indicates cellular respiration rates significantly different from values at 3°C

(P<0.05).

figure 3:

Mean cycloheximide and ouabain sensitive cellular respiration as measured between 0 and

15°C in the nototheniid species. Asteriks indicate cellular respiration values in the high-

Antarctic nototheniids significantly different from the sub-Antarctic L. larseni (P<0.05), all

values given as means ± standard error of the mean (SEM).

table 1:

Inhibition of cellular respiration rates by the four inhibitors used, presented as percent

fractions of total respiration rates as in the energy budgets in figure 1. --: not determined; n=2-

8, all values given as means ± standard error of the mean (SEM), where applicable.
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Abstract

Uncoupling proteins (UCP), especially UCP2, may play a role in the temperature dependent

setting of energy turnover in animals and their mitochondria. Therefore, the genes and

expression of UCP2 were investigated in the Antarctic eelpout Pachycara brachycephalum and a

temperate confamilial species, the common eelpout Zoarces viviparus. UCP2 full-length cDNA

was amplified from liver and muscle using RT-PCR and rapid amplification of cDNA ends

(RACE). The UCP2 gene consists of 1906bp in P. brachycephalum and of 1876bp in Z. viviparus.

Both genes contain open reading frames of 939bp, encoding 313 amino acids, with 98 and

99% identity, respectively. Protein sequences of zoarcid UCP2 are closely related to fish and

mammalian UCP2. For analysis of temperature dependent expression common eelpouts were

cold-acclimated from 10°C to 2°C and Antarctic eelpouts were warm-acclimated from 0°C to

5°C. Identical cDNA probes for both species were developed to investigate UCP2 mRNA

expression, and protein expression levels were detected by Western Blot in the enriched

membrane fraction. During cold-acclimation in Z. viviparus, mRNA levels increased by a factor

up to 2.0, protein levels increased up to 1.5, in line with mitochondrial proliferation during

cold-acclimation. In Antarctic eelpout, however, UCP2 levels rose upon warm acclimation, by

a factor up to 2.0 (mRNA) and 1.6 (protein), respectively. The data indicate an important role

for UCP2 expression in thermal adaptation of fish. A function of UCP2 in controlling the

mitochondrial membrane potential to balance ROS formation and ATP production during

thermal stress is discussed.



PUBLICATION III

67

Introduction

Since the discovery of the first uncoupling protein (UCP1) in mammalian brown adipose

tissue (BAT) (36), the various roles of UCPs have been widely discussed, with particular

respect to their implications for energy metabolism. Uncoupling proteins (UCPs) belong to

the family of mitochondrial membrane transporter proteins (59) and provide a channel for

protons, which flow back in after having been pumped out of the mitochondrial matrix by the

enzymes of the electron transport chain. By so dissipating the electrochemical proton gradient,

which drives mitochondrial ATP synthesis over the FoF1-ATPase, UCPs mediate the so-called

proton leak over the inner mitochondrial membrane (22, 38) and influence aerobic ATP

formation of the cell.

UCP1 is restricted to mammalian BAT and has a clear role in thermoregulation in hibernators

and small mammals, generating heat by the dissipation of membrane potential. Over the last

few years, a variety of homologues of UCP1 have been identified in placental and non-

placental mammalian tissues (5, 11, 21, 35), suggesting a more central role for the UCP family

in metabolism. The specific functions of the different UCP isoforms, however, are not clear.

Up to now, research has concentrated mainly on mammalian UCPs, focussing on obesity and

ageing, but UCP homologues can be found in birds (42, 57, 58), plants (16, 24, 30), protists

(20) and fungi (19), and thus have been shown to appear in all four eukaryotic kingdoms.

Stuart and coworkers (56) identified homologues of the mammalian uncoupling protein 2 in

cDNA libraries of zebrafish (Danio rerio) and carp (Cyprinus carpio). Recently, a partial sequence

of UCP2 isolated from red sea bream (Pagrus major) liver tissue was published by Liang et al.

(27), thereby substantiating that UCP2 is common among fish.

It is unlikely that UCPs of most water breathing ectotherms have a role in thermoregulation:

Because of the high thermal capacity of water, any metabolic heat is instantly lost over the

gills. Only in tuna red muscle, some heat is conserved inside the body, eg. by retia mirabilia

systems (55). In their habitats, fish can experience wide fluctuations of ambient water

temperature throughout the year, and as the rate of their metabolic reactions follows

temperature passively, they have to adjust metabolic energy supply according to energy

demand (cf. 15, 40). Assuming a central position in energy metabolism, UCP2 in ectotherms

might thus be involved in metabolic processes related to thermal adaptation rather than

thermoregulation.

In mammals and birds, UCP1, UCP2 and UCP3 show temperature sensitive expression and

their levels increase upon cold exposure (42, 45, 50, 58). Although ectothermal UCP2 might
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have a function different from that of mammals and birds, it is conceivable that its expression

level is also dependent on temperature.

Very little is known about the temperature sensitivity of UCP expression and in vivo

physiological regulation of the gene in ectotherms (protists: 18). In part this is due to the

historical focus on mammalian UCPs. With this study we investigate a putative role for UCP

in temperature adaptation of two closely related members of the ubiquitous fish family

Zoarcidae from different thermal habitats, the eurythermal common eelpout (Zoarces viviparus)

from the Baltic Sea and the stenothermal Antarctic eelpout (Pachycara brachycephalum) from

Antarctic waters. White muscle and liver were chosen as tissues for the identification of UCP2

homologues and the studies of their temperature dependent expression. These tissues have

been widely examined with special regard to thermal adaptation in ectotherms in a number of

recent studies (13, 14, 25, 26, 28), which therefore provide a good basis for the evaluation of

results presented in this study. In the sluggish benthic zoarcids, white muscle tissue is

hypometabolic and does not show large alterations of its characteristics with temperature,

while liver is a metabolically very active organ and over a temperature range can undergo large

changes in size and function, for example when serving as a lipid depot. With UCP expression

examined in tissues of high and low metabolic activity of a temperate eurythermal and a cold

adapted fish, after cold or warm acclimation, this study is based on a broad range of

physiological preconditions and is the first to provide detailed insight into temperature

dependent expression of fish UCP2.
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Materials and methods

Animals

Eurythermal common eelpouts Z. viviparus from the Baltic Sea (mass: 100.9g ± 35.3 g) were

caught during summer 2001 in the Kieler Förde. Fish were kept at 13 ‰ salinity, and were

acclimated to 2.0 ± 0.5 °C (cold-acclimated) or 10.5 ± 0.5 °C (habitat temperature) for at least

2 months. Benthic Antarctic eelpouts, P. brachycephalum, were caught at a depth of 500 m close

to King George Island (Antarctic Peninsula) during the cruise ANT XIX of the German

research vessel “Polarstern” in April/May, 2001. Fish (mass: 58.9g ± 7.3g) were transferred to

Bremerhaven and kept in well-aerated water of 0.0 ± 0.5 °C (habitat temperature) and

5.0 ± 0.5 °C (warm-acclimated) at 32-34 ‰ salinity for at least 2 months. All fish were kept

under a 12:12-h light-dark cycle and were fed shrimps ad libitum once a week. Feeding was

terminated 7 days prior to experimentation.

RNA-Isolation

Animals were anaesthetized with MS-222 (3-Amino-benzoic-methanosulfonate, 0.5 g/l)

before being killed. Samples of different tissues were quickly removed, placed in sterile 1.5 ml

tubes and were frozen immediately in liquid nitrogen. Until used for RNA or protein isolation,

the samples were stored at -80°C.

For quantitative isolation of total RNA from frozen tissue the peqgold TriFast kit (Peqlab

Biotechnologie GmbH, Erlangen, Germany) was used. For the preparation of cDNA, total

RNA was isolated with the RNeasy kit, and mRNA was isolated using the Oligotex mRNA kit

(both kits from Qiagen, Hilden, Germany). The TriFast protocol gave slightly higher yields

and could easily be scaled up for larger amounts of tissue, whereas the faster RNeasy protocol

was preferred for cDNA construction. The RNA was quantified spectrophotometrically in

triplicate samples. A260/A280 ratios were always >1.9. Formaldehyde agarose gel electrophoresis

according to Sambrook (49) was used to verify the integrity of the RNA.

Characterisation of the UCP2 genes

Fragments of the UCP2 gene were isolated by means of reverse transcription followed by

PCR (RT-PCR). Primers were designed using the MacVector 7.0 program package (Oxford

Molecular Ltd., Oxford, UK), using highly conserved regions of published sequences of the

carp and zebra fish UCP2 gene (56) as a reference. Reverse transcription was performed with

Superscript RT (Invitrogen, Karlsruhe, Germany) and the reverse primer 2 (for all primer
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details, see table 1) using mRNA as templates. The components were incubated for 1 h at

37 °C in 20 mM Tris/HCl, pH 8.4, 50 mM KCl, 10 mM DTT and 2.5 mM MgCl2. For the

amplification of the resulting single strand cDNA, forward primer 1 was used in combination

with the reverse primer 2 in a PCR reaction resulting in a 440-nucleotide fragment (cf. figure

1). The procedure was repeated with a second set of primers (primers 3/4, cf. table 1) to yield

a second fragment of 550 nucleotides. The design of primers followed the suggestions of the

MacVector primer design software on the basis of the UCP2 sequence for D. rerio, which were

then compared with conserved regions of other vertebrate UCP2 sequences.

The cDNA was amplified with Taq-Polymerase (Invitrogen, Karlsruhe, Germany) with

1.5 mM MgCl2, 1 min denaturation at 94°C, 1 min annealing at 59°C and 1 min elongation at

72°C. After amplification within 30 cycles a final prolonged elongation step of 8 min at 72°C

was introduced to prepare the PCR fragments for cloning. All fragments were purified by gel

electrophoresis and eluted with the Qiaquick gel extraction kit (Qiagen, Hilden, Germany).

For cloning of the fragments, the TOPO TA Cloning kit (Invitrogen, Karlsruhe, Germany)

was used according to the manual. After separation of some clones plasmids were isolated

from overnight cultures using the Qiaprep Spin Miniprep kit (Qiagen, Hilden, Germany). To

verify the presence and size of inserts, the isolated plasmids were analysed by restriction

digestion with EcoRI. For each fragment, the DNA sequences of positive clones were

determined for both strands by MWG Biotech (Ebersberg, Germany) using an automatic

sequencer. Sequences were analysed by alignment in MacVector and a BLAST search in NCBI

(http://www.ncbi.nlm.nih.gov/BLAST/). The full-length cDNA was determined by means of

the RACE technique (rapid amplification of cDNA ends), using the RLM-RACE kit

(Ambion, Austin, Texas, USA) according to the manual. The isolated cDNA fragments were

used to design 3’ RACE forward primers and 5’ RACE reverse primers with sequences,

identical for both eelpout species, and giving access to RACE fragments with a sufficient

overlap to the first set of cDNA clones (cf. figure 1). Sequences of the RACE primers are

listed in table 1 (no. 5-9).

Cloning and sequencing of the fragments was done following the same protocols as outlined

above. Sequences were assembled in MacVector to yield the full-length cDNA sequence of

UCP2 for P. brachycephalum and Z. viviparus. The cDNA sequences have been submitted to

Genbank and can be obtained under following accession numbers: Genbank AY625190

(ZvUCP2); Genbank AY625191 (PbUCP2). To locate putative transmembrane helices,

analyses of hydrophilicity after van Heijne and Kyte-Doolittle were carried out using the

MacVector program package, which was also used for analysis of phylogenetic relationships

within a number of UCP homologues.
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Construction of probes

For the construction of species-specific probes for Z. viviparus and P. brachycephalum cDNA,

clones for the UCP2 gene and β-actin were isolated using RT-PCR. Reverse transcription was

performed following the protocol outlined above with the reverse primer 11, again using

mRNA as templates. The cDNA was amplified as outlined above, using forward primer 10 in

combination with the reverse primer 11 in a PCR reaction resulting in a 137-nucleotide

fragment. Primers were designed with the MacVector program package, within a given region

of 150 bp that was identical in both species.

A 215bp cDNA fragment of the β-actin gene from both organisms was isolated from an

existing fragment of 377bp (position 161-372, cf. ref. 28) with essentially the same protocol

using primer 12 as forward primer and primer 13 as reverse primer (cf. table 1). All fragments

were purified by gel electrophoresis and eluted with the Qiaquick gel extraction kit (Qiagen,

Hilden, Germany), and then cloned using the TOPO TA Cloning kit (Invitrogen, Karlsruhe,

Germany).

Quantification of UCP2 mRNA

Ribonuclease protection assays (RPA) were performed with the RPA-III kit from Ambion

(Austin, USA). Total RNA (10 g) was simultaneously hybridized at 42 °C to antisense probes

for UCP2 (UCP2) and β-actin (ACT-B), in case of liver RNA, or UCP2 and 18S-rRNA (18-S),

for muscle RNA, respectively. Probes were synthesized by in vitro transcription with T7 or T3

RNA Polymerase (Invitrogen, Karlsruhe, Germany) with the plasmids, containing the

respective cDNA fragments (described above).  For 18S-rRNA, a commercial plasmid

containing a highly conserved 80bp fragment (pTRI RNA 18S, Ambion, Austin, Texas, USA)

was used. All probes were labelled with α-32P uridine 5´-triphoshate (Amersham Biosciences,

Freiburg, Germany). To equalize protected fragment intensities, a specific radioactivity of 570

Ci/mmol was used for UCP2, 45 Ci/mmol for ACT-B and 0.1 Ci/mmol for 18S, respectively.

The probes were always prepared freshly and purified by polyacrylamide gel electrophoresis

(PAGE) under denaturing conditions (8 M urea, 5 % acryl amide gel with 1xTBE running

buffer; (49)) using a vertical slab apparatus (Protean II xi, Bio-Rad, München, Germany). The

DNA templates were removed prior to electrophoresis by DNase I treatment (Invitrogen,

Karlsruhe, Germany).

The RPA was optimized according to manufacturers’ instructions with an RNaseA/T1

dilution of 1:50. After RNase treatment the RNA:RNA hybrids were co-precipitated with
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yeast RNA. The RNA was dissolved in 6 l loading dye and separated by denaturing PAGE

(8 M urea, 5 % acryl amide gel with 1xTBE running buffer). The size of the protected

fragments corresponded to the size of the cloned PCR fragments. All probes were tested in

separate lines to ensure that no background bands interfered with another probe. Primary

assays have been performed to ensure the specificity of the signal by means of unrelated

RNA; concentration serials were used to determine the amount of probe needed for a linearly

correlated signal. After drying the gel radioactivity was detected and quantified with a

phosphorous storage image system (FLA-5000; Fuji, Tokyo, Japan) and the AIDA software

package (raytest, Straubenhardt, Germany).

Protein isolation, gel electrophoresis and Western blot analysis

Membrane enrichments were prepared from frozen tissue (about 100 mg) by disruption with a

hand homogenizer in 15 vol. ice-cold buffer (50 mM imidazole, pH 7.4, 250 mM sucrose,

1 mM EDTA, 200 g/ml PMSF (phenyl methylsulfonyl fluoride), protease inhibitor cocktail

(P-2714, Sigma-Aldrich, Deisenhofen, Germany), 0.1% Na+-desoxycholate). Cellular debris

was removed by low-speed centrifugation (1020 g for 10 min at 0°C). The membranes were

pelleted from the supernatant (crude extract) by final high-speed centrifugation (40 min,

200,000 g at 4°C). The membrane pellets were resuspended in a minimum volume of

homogenisation buffer (~ 1/5 of the starting volume). The supernatant (cytosolic proteins)

was kept for comparison. Total protein was measured using the method of Bradford (1) and a

BSA standard.

Protein samples (50 g for liver, 22.2 g for muscle) were separated by polyacrylamide gel

electrophoresis (PAGE) under denaturing conditions (23), using a vertical mini-slab apparatus

(Bio-Rad, München, Germany) and a 12 % gel. As heating of the samples has led to high

molecular mass aggregates in previous experiments, the samples were mixed with Laemmli´s

buffer and applied directly to the gel without boiling. For the determination of molecular size,

a prestained marker was used (Bio-Rad, München, Germany). After electrophoresis, the

proteins were transferred to nitrocellulose membranes (0.2 m, Sartorius, Göttingen,

Germany) using a trans-blot cell (Bio-Rad, München, Germany) according to the

manufacturer´s protocol. Blots were stained with Ponceau S to control for equal loading and

successful transfer (49). After de-staining blots were blocked in Blotto (5 % non-fat dry milk

in Tris-buffered Saline with 0.1% (v/v) Tween, TBST, pH 7.4) for 1 h at room temperature. A

monoclonal rabbit anti-human UCP2 antibody was used (UCP23-S; Alpha Diagnostic

International, San Antonio, TX, USA) for immunodetection. The blots were incubated under
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agitation with primary antiserum diluted in Blotto (1:2500) at 4°C over night. Following a

series of washes with TBST, blots were incubated with mouse anti-rabbit antibody conjugated

to horseradish peroxidase (1:2500, diluted in Blotto; Amersham Biosciences, Freiburg,

Germany) for 1 h at 37°C. Antibody binding was visualized by the ECL-system (Amersham

Biosciences, Freiburg, Germany). Chemiluminescence was detected and quantified with a

cooled CCD-camera system (LAS-1000; Fuji, Tokyo, Japan) and the AIDA software package

(raytest, Straubenhardt, Germany). Normal rabbit serum (Pierce, Rockford, IL, USA) was

substituted for primary antibodies to assess non-specific immunoreactivity. Membrane

preparations were used to determine the optimal concentration ratio for antigen over primary

and secondary antibody. For quantification, a protein concentration was used in a range,

where the signal changed linearly with antibody binding.

Statistical analysis

Statistical analyses of differences among treatments by t-tests were carried out using Prism

4.0a (GraphPad Software, Inc.). Differences were considered significant if P < 0.05. All data

are presented as values ± standard deviation (SD), unless stated otherwise.

Results

UCP2 sequence and protein specifications

RT-PCR using the primer pairs 1/2 and 3/4 yielded the expected 440bp and 550bp fragments,

respectively. Completion of the sequences by RACE using the specific 3’ forward primers 5, 6,

7 and the specific 5’ backward primers 8, and 9 (see table 1 and figure 1) resulted in a number

of overlapping fragments, which were assembled to receive the complete sequence of the

transcripts. In P. brachycephalum, the UCP2 transcript consists of 1906bp; the gene of Z.

viviparus is somewhat shorter and consists of 1876bp. Both genes contain an open reading

frame of 939bp, encoding 313 amino acids. The complete transcript sequences are 95%

identical, the coding regions 98% (925/939bp), and the deduced protein sequences are 99%

identical with only two exchanged amino acids in 313 (P.b./Z.v.: Phe259Leu and Thr311Ile)

(cf. figure 2). The three mitochondrial transporter protein signature motifs found in all

members of the mitochondrial transporter protein family (59) are present in P. brachycephalum

and Z. viviparus UCP2 (cf. figure 2) and identical to the motifs found in rat UCP2 and the three

known fish UCP2s (27, 56). The zoarcid UCP2 consists of three repeated motifs of about

100bp, each containing two membrane helices, again typical for this protein family. Six

putative membrane helices (predicted by MacVector and www.predictprotein.org) are

indicated in figure 2. Interestingly, three of the predicted helix structures (Network Protein
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Sequence Analysis, (3)) are situated directly in front of the mitochondrial transporter protein

signature motifs (Swiss Institute of Bioinformatics, www.isb-sib.ch/; www.predictprotein.org)

and overlap into the motifs by two amino acids each (cf. figure 2). The total protein sequence

of zoarcid UCP2 is 77% identical to rat UCP2 (85% similarity) and 75-79% to those of

zebrafish (D. rerio), carp (C. carpio) and red sea bream (P. major) (85-87% similarity). The

phylogenetical reconstruction in figure 3 depicts the close relationship to carp and zebrafish

UCP2 proteins and to the mammalian UCP2s. The encoding cDNA regions bear 73-75%

similarity to carp and zebrafish cDNA and 71% similarity to rat UCP2 cDNA, while the

complete transcripts bear 47-50% similarity to carp and zebrafish cDNA and 34% to rat

cDNA.

Temperature dependent UCP expression

Z. viviparus were acclimated to 2 °C and 10.5 °C over a period of at least two months. The

confamilial cold-adapted P. brachycephalum were acclimated to 0°C and 5°C, respectively.  Total

RNA was isolated from muscle and liver. Total RNA concentrations in liver and muscle were

comparable to earlier results (14, 28) and did not change significantly during acclimation. Also,

liver sizes did not change during acclimation. Specific expression of the UCP2 genes was

determined using ribonuclease protection assays (RPA) and the probes with identical

sequences in both species. Figure 4 depicts a typical autoradiography of an RPA of UCP2

mRNA expression in the liver of cold and warm acclimated common eelpout, Z. viviparus.

UCP2 mRNA expression was detected with the 137bp UCP2 probe relative to the expression

of β-actin (215bp probe), and expression levels were normalised to the particular habitat

temperatures of the fish. During cold acclimation, relative expression levels in Z. viviparus liver

tissue rose two-fold from 1.0±0.34 at 10°C to 2.07±0.56 at 2°C (figure 5A), while they were

increased in muscle tissue by a factor 1.5 (1.0±0.05 to 1.55±0.19) (figure 5B). In contrast, in

the Antarctic eelpout P. brachycephalum, a 2-fold increment was detectable after warm

acclimation in muscle (1.0±0.16 to 1.98±0.15), and a less pronounced increment in liver

(1.0±0.09 at 0°C to 1.33±0.20 at 5°C) (figures 6A and 6B). All increases were statistically

significant (p<0.05).

To determine, whether these increments in transcript levels have led to functional shifts, the

respective protein levels were quantified with monoclonal antibodies raised against the human

UCP2 protein. Figure 6 represents a typical Western Blot of liver protein extracts of Z.

viviparus and P. brachycephalum acclimated to extreme and habitat temperatures. The antibody

was able to specifically cross-react with a single prominent protein band of 37 kDa, which is in
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good agreement to the predicted size of the deduced amino acid sequence (33,4 kDa), and

could be enriched in the membrane fraction.

UCP2 protein expression levels in Z. viviparus liver tissue rose during cold acclimation by a

factor of 1.45 (1.0±0.07 at 10°C to 1.45±0.01 at 2°C, figure 5C), and increased in muscle

tissue by a factor of 1.3 (1.0±0.14 to 1.28±0.07) (figure 5D). In the Antarctic eelpout P.

brachycephalum, we found protein levels to increase during warm acclimation to 5°C by a factor

1.6 (1.0±0.13 at 0°C to 1.58±0.001 at 5°C) in liver (figure 5C). Therefore, protein expression

levels were in line with mRNA expression levels, differences in expression were all significant,

although not quite as prominent as on mRNA level. Protein levels in P. brachycephalum muscle

were only barely detectable, possibly due to lower affinity of the antibody to the UCP of

Antarctic eelpout and/or too low UCP2 concentrations in the white muscle tissue. These data

had therefore to be excluded.

It should be noted that data presented here were normalised to visualise the differences

between organs and species, thus the graphs in figure 5 do not represent actual concentrations

but normalised ratios. In P. brachycephalum, constitutive UCP2 mRNA levels were up to 6.5

times lower than in Z. viviparus, in muscle even more so than in liver (data not shown). This is

also reflected at the protein level (cf. figure 6), although interspecies comparisons using

antibodies have to be analysed with care.
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Discussion

Molecular adaptations to low temperature

In this study, we were able to identify an uncoupling protein homologous gene in muscle and

liver tissue of the two zoarcid species P. brachycephalum and Z. viviparus. Gene and associated

protein were found to belong to the mitochondrial transporter protein family, showing highest

similarities to fish and mammalian homologues of UCP2, and therefore were designated

zoarcid UCP2.

Independent of the used algorithm, the zoarcid proteins are clustered together with the

cyprinid and the mammalian UCP2 in the phylogenetic tree (figure 3). These UCP2 form a

branch together with the mammalian UCP3. Interestingly, the UCP2 fragment (224 amino

acids) from Pagrus major seems to be less related to the other fish UCP2 than the mammalian

UCP3, even if the tree reconstruction was limited to the P. pagrus fragment. Therefore, it

remains questionable, whether this picture is due to the missing N- and C-termini of the P.

pagrus protein. Alternatively, further isoform(s) have to be postulated for fish.

Its high degree of identity (99%) within the zoarcids and considerable similarity to fish and

mammalian UCP2 (>85%) suggest that UCP2 has been much conserved over evolutionary

timescales and therefore holds a position of significant importance in cellular energy

metabolism. These findings are in line with similarly high degrees of conservation in other

functionally important genes like citrate synthase, cytochrome-c oxidase (28) and Na+/K+-

ATPase and Na+/H+ exchanger (29) in teleosts and other vertebrates. The two amino acid

exchanges observed (P.b./Z.v.: Phe259Leu and Thr311Ile) may play a significant role in cold

adaptation of the protein. According to the secondary structure model, the first is located in a

variable loop sequence on the matrix side between the two helices of repeat 3, the latter close

to the C-terminal end on the cytosolic side of the protein (figure 2). For cold-adapted proteins

a reduction of hydrophobicity and improved solvent interactions with a more hydrophilic

surface have been postulated (7, 32), which support increased structural flexibility at lower

temperature. Whereas Thr311 is in line with these assumptions, the Phe259 in the postulated

loop of the cold-adapted protein is thought to reduce the flexibility of this loop and increase

hydrophobicity, and may therefore have been introduced for different reasons. Yet, identical

amino acid sequences do not necessarily bring about identical properties in the entire protein:

the work by Fields and Somero on A4-lactate dehydrogenase of gobys and notothenioids has

shown that alternative conformational structures of identical amino acid sequences

(conformers) can lead to different thermal sensitivities of the native proteins and thus be a

means of temperature adaptation (8-10). To date, it remains unclear whether similar
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conclusions can be drawn for membrane bound proteins, and further functional and structural

studies are clearly necessary for a clearer picture.

Temperature dependent UCP2 expression and function

UCP2 expression in fish is clearly temperature dependent; in this study we found a general up-

regulation with temperature adaptation beyond habitat temperature in the stenothermal

Antarctic and the eurythermal common eelpout. Up-regulation includes both mRNA and

protein expression levels.

After cold acclimation, UCP levels have been reported to show enhanced expression in

endothermic animals like mammals and birds (33, 58), and UCP2 mRNA increases after cold

acclimation in chicken (42). Higher levels of UCP can simply be the result of an overall

increase in mitochondrial capacity frequently found during cold acclimation (12, 54), either by

mitochondrial proliferation (be it in number, volume or cristae surface area), or by changing

the biochemical properties of particular enzymes (4). Mitochondrial proliferation involves

enhanced expression of aerobic enzymes such as cytochrome-c oxidase and its respective

RNA (39). For Z. viviparus, there is clear evidence for mitochondrial proliferation in the cold,

the key enzyme of the electron transport chain, cytochrome-c oxidase has been found to

increase at both message and functional levels in muscle after cold acclimation (14). Activity

levels of liver citrate synthase were also enhanced in the cold (28), implying a general

augmentation of mitochondrial capacity following cold adaptation. This is corroborated by

our findings for Z. viviparus, in which UCP2 message and protein levels were up-regulated

significantly upon cold acclimation.

In the warm, one would expect a corresponding reduction of mitochondrial capacity, thus

enhancing temperature tolerance by reducing mitochondrial maintenance costs (39). This is

the case in Z. viviparus, and in isolated mitochondria of winter flounder Pleuronectes americanus

acclimated from 0°C to 9°C, Rosenberger and Ballantyne (48) observed reduced proton leak

in the warm. Yet winter flounder is a seasonally cold adapted fish, comparable to Z. viviparus.

Both increase their mitochondrial capacities and thus proton leakage or UPC2 protein levels,

respectively, in the cold, while the Antarctic eelpout P. brachycephalum adapted to the cold on

evolutionary timescales and hence has to be considered permanently cold adapted. In contrast

to extremely stenothermal high Antarctic fish, some of which cannot survive temperatures

exceeding 6°C (53), the thermal tolerance range of the Antarctic eelpout, however, is

somewhat wider. Upon warming, its cardiovascular capacity can be increased within a thermal

window of 0 to 7°C, where first limitations of aerobic capacity set in (31). These findings

suggest that P. brachycephalum is not an extreme stenotherm and may be able to in part adapt to
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higher temperatures than nowadays found in Antarctic waters by accordingly adjusting its

metabolism.

However, when acclimating Antarctic eelpout P. brachycephalum to 5°C, Lannig et al. (26) found

only small decreases in hepatosomatic index, mitochondrial protein content and ATP

synthesis or proton leakage capacities in the liver. In the present study, UCP2 expression

during warm acclimation in the Antarctic eelpout did also not follow the general pattern of

mitochondrial down regulation in the warm; mRNA and protein levels were increased instead.

Among investigated mitochondrial properties, only UCP2 levels appear to be significantly up-

regulated. One might ask whether this pattern is adaptive or indicates a pathological change in

response to heat stress. Up-regulated message and protein levels on the one hand might

suggest the potential for higher mitochondrial proton leak rates in warm acclimated P.

brachycephalum. However, proton leakage rates of isolated mitochondria remained more or less

unchanged upon warm acclimation (26). The reason for the discrepancy between increased

UCP levels and seemingly constant proton leak rates after warm acclimation might be located

in homeoviscous adaptation (60), according to which a cold adapted membrane should be

more fluid than a warm adapted membrane, when measured at the warm acclimation

temperature and above (61). The more fluid a membrane becomes, the less restricted and

hence more active are membrane bound proteins like cytochrome c oxidase (62). The same

might apply to UCP2, and consequently cold adapted (0°C) mitochondria should show higher

proton leak rates per mg protein than warm acclimated (5°C) mitochondria, when measured at

the warm acclimation temperature. In this line of thought, the observation that proton leak

rates of cold adapted mitochondria are comparable to those of warm acclimated, when

measured at 5°C, suggests higher UCP protein levels in the warm, which have been found in

this study (cf. figure 5).

On the other hand, only marginally down regulated mitochondrial capacities in the warm (see

above) lead to the question, whether mitochondria lack the adaptive plasticity to fully

compensate for warming to 5°C in this species and proton leak is used to control a partly

unbalanced increase in energy turnover during warming. In captivity, Pachycara brachycephalum

can survive for years at these temperatures and still display positive growth (pers.

observation), but may only do so at the expense of elevated metabolic costs and reduced

growth and reproduction rates.
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Functional role of UCP 2

UCP2 appears to play a prominent role in thermal adaptation in fish, but the general function

of fish UCP2 remains still speculative - why would an ectothermal animal tolerate such an

apparently wasteful process as proton leak if not used for thermogenesis?

UCP1 is an accepted mediator of proton leak and in this function decouples the respiratory

chain, dissipating membrane potential (44). For the other homologues, this function is less

well established. In endothermal animals further mitochondrial anion carriers appear to be

involved in proton leak, such as the adenine nucleotide translocase (ANT)(63), the

glutamate/aspartate antiporter and the dicarboxylate carrier (51) as well as the

transhydrogenase (17, 41). They may all play a role in proton leakage and can contribute at

least to its basal rates.

Potential for higher proton leak rates in warm acclimated Antarctic eelpouts point to increased

membrane potentials, which may build up in the warm. On top of the other abovementioned

processes, UCP2 may act as a ‘safety valve’ for membrane potential, either with a regulative

(by controlling ATP synthesis) or protective function, preventing production of reactive

oxygen species (ROS). Skulachev (52) was one of the first to suggest a role for mammalian

UCP2 in the prevention of ROS formation by mild uncoupling, a theory that was adopted by

a number of authors (2, 37, 43). The cold adapted Antarctic eelpout might not be able to

adapt entirely during warm acclimation and, as a consequence, its mitochondrial capacities

might remain too high in the warm, exceeding ATP demand or supply of oxygen as final

acceptor of electrons in the respiratory chain. That would lead to a high membrane potential

and high reducing capacities in the respiratory chain, conditions which facilitate ROS

formation. By cutting the electrochemical gradient short, UCP2 could ameliorate the situation

– at the cost of increased mitochondrial energy consumption. This protective process at the

mitochondrial level may therefore become detrimental during further warming by demanding

a large fraction of the organism’s oxygen budget.

In a parallel study of the two eelpout species with comparable acclimation temperatures to the

present study (0 and 5°C for P. brachycephalum and 12 and 6°C for Z. viviparus), Heise et al. (26)

found patterns of oxidative stress parameters to correspond to our observed levels of UCP2

expression: ROS production might have increased in P. brachycephalum in the warm and in Z.

viviparus in the cold, indicating that elevated levels of UCP-2 might well be a reaction towards

oxidative stress (6), but neither P. brachycephalum nor Z. viviparus appear to have been able to

fully compensate for elicited thermal stress and ROS formation by increasing levels of UCP2.

In a more regulative fashion, UCP2 levels might also be increased in the warm to enhance the

plasticity of mitochondrial energy metabolism. It is conceivable that P. brachycephalum,
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belonging to the globally distributed Zoarcidae, has kept some features of its eurythermal

confamilials, which - within certain limits - it can revert to upon warming. It may switch to a

more eurythermal metabolic mode, keep high mitochondrial capacities and regulate them by

controlled uncoupling for the sake of spontaneous ATP supply. Although being energetically

more expensive, it may be quicker and easier to either transcriptionally (34) or translationally

(37) regulate a single protein like UCP2 instead of the suite of proteins of the electron

transport chain, especially under stress conditions, when flexibility of energy supply is needed.

A further indication of a regulative function has been published by Brand and coworkers (46,

47): In mammalian resting skeletal muscle they found proton leak rates to be higher than in

working muscle. It is possible that by regulating the degree of mitochondrial coupling, UCP

controls both ATP synthesis and the prevention of ROS formation; the more flexible

mitochondrial metabolism has to be, the higher the rate of control. By increasing UCP levels,

switching from cold-stenothermality to cold-eurythermality thus may be accomplished in

animals lacking the necessary adaptive mitochondrial adaptability, provided they stay within

the limits set by oxygen supply to the mitochondria. Flexibility of mitochondrial energy

metabolism might therefore be closely linked to UCP expression, which is in line with a

theory brought forward by Hardewig et al. (13), who assumed that ‘proton leakiness may be

lower in mitochondria from Antarctic fish than in temperate fish mitochondria’. Although we

found native UCP2 levels to be somewhat lower in Pachycara brachycephalum than in Zoarces

viviparus (cf. figure 6), there is still no evidence to unambiguously prove this hypothesis and

further investigation is needed.

Conclusion

To our knowledge, this is the first study to demonstrate temperature dependent UCP2

expression in fish at transcript and protein levels, possibly even the first such study in

ectothermic vertebrates.

Upon cold and warm acclimation, we found two different phenomena. Following cold

acclimation, there was a general up-regulation of UCP2 expression levels in the common

eelpout Z. viviparus, in line with evidence for cold-induced mitochondrial proliferation

provided by earlier studies (13, 26, 28). During warm acclimation of the cold-adapted

Antarctic eelpout P. brachycephalum, UCP2 expression underwent as yet undocumented

changes; in muscle and liver tissue we found a putatively regulative increase in UCP2 levels,

both at message and protein levels, while other enzymes involved in mitochondrial energy

metabolism such as cytochrome-c oxidase and citrate synthase have been reported to remain

constant (or even slightly decrease in activity) upon warming (26).
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Our findings are in line with the hypothesis that UCP2 holds an important position within

mitochondrial energy metabolism of ectotherms, and especially during thermal stress may

function as a regulative protein, controlling the mitochondrial membrane potential to balance

ROS formation and ATP production. There is, however, no evidence for a change in baseline

mitochondrial proton leakage upon enhanced UCP2 expression. Further work should

therefore focus on a functional characterisation of UCP homologues within mitochondria. It

remains to be investigated whether an evolutionary conservation of function can be found

within this protein family, which is indicated by its widespread occurrence in the eukaryotic

kingdom.
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Figure legends

Table 1: A list of all primers used in this study

figure 1: Schematic overview of the Z. viviparus UCP2 cDNA. The open reading frame is

shaded in dark grey, the 5’ and 3’ untranslated regions in lighter grey. The arrows indicate the

positions of the primers used (see material section).

figure 2: Alignment of UCP2 peptide sequences of the two zoarcids P. brachycephalum and Z.

viviparus, carp (C.carpio) and zebrafish (D. rerio) and rat (R. norvegicus). Amino acid exchanges are

highlighted in grey, exchanges between P. brachycephalum and Z. viviparus are additionally

marked with an asterisk. Solid boxes indicate signature motifs of the mitochondrial

transporter protein family, dashed boxes depict putative transmembrane helices.

figure 3: Phylogenetic reconstruction of the fish uncoupling proteins in relation to the

mammalian isoforms. The tree was calculated using the Neighbour Joining method (best tree;

tie breaking = Systematic; Distance: Poisson-correction; Gaps distributed proportionally) with

the invertebrate Chaenorhabditis elegans protein (NM_073013), related to the mammalian UCP4

isoforms, as outgroup. The proteins from P. brachycephalum and Z. viviparus group with all other

known fish proteins, and are closest related to the mammalian UCP2. The position of the red

sea bream (Pagrus major) UCP2 (AF487341) is questionable, since its sequence is not complete.

Accession numbers of the respective genes: Homo sapiens UCP1: U28480; UCP2: U82819;

UCP3: U84763; UCP4: AF110532; UCP5: AY358099. Rattus norvegicus UCP1: M11814; UCP2:

AB006613; UCP3: AB006614; UCP4: AJ300162. Sus scrofa UCP2: AF036757; UCP3:

AF095744. Danio rerio UCP2: AJ243250. Cyprio carpio UCP2: AJ243486.

figure 4: Ribonuclease protection assay of liver RNA samples of Z. viviparus, acclimated to 2°C

and 10°C. Each lane was run with 10 g RNA, lanes 1-3 represent triplicates of pooled RNA

(n=5). The size of the protected beta actin fragment was 215bp, the length of the UCP2

fragment was 137bp.

figure 5: UCP2 mRNA and protein expression levels in liver and muscle of the two zoarcids P.

brachycephalum (Pb) and Z. viviparus (Zv), acclimated to 0 and 5°C and 10 and 2°C, respectively.

A: mRNA expression in liver. B: mRNA expression in muscle. C: protein expression in liver.

D: protein expression in muscle. *: significantly different from Zv. 10°C; #: significantly

different from Pb. 0°C, (P=0.05). Error bars represent standard deviation (SD).
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figure 6: Western Blot detection of UCP2 in enriched mitochondrial fractions from liver of

the two zoarcids P. brachycephalum and Z. viviparus, acclimated to 0 and 5°C and 10 and 2°C,

respectively. Each lane contained 50 g of protein pooled from five individuals, lanes were run

in duplicates. The UCP2 antibody bound to a protein band of approximately 37kDa.
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Abstract

In various phyla of marine invertebrates limited capacities of both ventilatory and circulatory performance were found to set
the borders of the thermal tolerance window with limitations in aerobic scope and onset of hypoxia as a first line of sensitivity to
both cold and warm temperature extremes. The hypothesis of oxygen limited thermal tolerance has recently been investigated in
fish using a combination of non-invasive nuclear magnetic resonance (NMR) methodology with invasive techniques. In contrast
to observations in marine invertebrates arterial oxygen tensions in fish were independent of temperature, while venous oxygen
tensions displayed a thermal optimum. As the fish heart relies on venous oxygen supply, limited cardio-circulatory capacity is
concluded to set the first level of thermal intolerance in fish. Nonetheless, maximized ventilatory capacity is seen to support
circulation in maintaining the width of thermal tolerance windows. The interdependent setting of low and high tolerance limits
is interpreted to result from trade-offs between optimized tissue functional capacity and baseline oxygen demand and energy
turnover co-determined by the adjustment of mitochondrial densities and functional properties to a species-specific temperature
range. At temperature extremes, systemic hypoxia will elicit metabolic depression, thereby widening the thermal window
transiently sustained especially in those species preadapted to hypoxic environments.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction: a role for hypoxia in thermal
limitation?

The physiological mechanisms setting thermal tol-
erance and defining thermal sensitivity have recently
come into focus due to rising interest in the effects of
climate change on organisms and ecosystems. In this
context, the question has regained interest whether
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limitations in oxygen availability or supply are in-
volved in thermal limitation. Early evidence collected
in marine invertebrates (annelids and sipunculids)
demonstrated a transition to anaerobic metabolism
(including mitochondrial anaerobiosis) at both cold
and warm temperature extremes (Zielinski and
Pörtner, 1996; Sommer et al., 1997), later on
confirmed in crustaceans (Frederich and Pörtner,
2000) and molluscs, i.e. bivalves, gastropods and
cephalopods (Pörtner and Zielinski, 1998; Pörtner
et al., 1999; Peck et al., 2002; Sokolova and Pörtner,
2003). Studies in a sipunculid (Sipunculus nudus,
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Zielinski and Pörtner, 1996) and the spider crab
(Maja squinado, Frederich and Pörtner, 2000) in-
vestigated the pattern of coelomic fluid/haemolymph
oxygen tensions in relation to warming and/or cool-
ing and demonstrated development of hypoxia which
preceded the onset of anaerobic metabolism towards
both cold and warm temperature extremes. A tem-
perature dependent optimization of oxygen supply
capacity was visible in the form of maximized arterial
PO2 within a limited temperature range, equivalent to
the window of mean temperatures in the natural en-
vironment (Frederich and Pörtner, 2000). Limitation
of both ventilatory and circulatory capacities towards
thermal extremes was found to explain these patterns
of body fluid oxygenation (Zielinski and Pörtner,
1996; Frederich and Pörtner, 2000).
Such a restriction of optimized oxygen supply to

a limited thermal window demonstrated that temper-
ature extremes are suitable to induce hypoxia in the
organism despite ample oxygen supply from the en-
vironment. Work on temperate invertebrates and their
populations in a latitudinal cline demonstrated a shift
of oxygen dependent thermal thresholds depending on
the ambient climate regime and winter or summer sea-
sons (Sommer et al., 1997; Sommer and Pörtner, 1999,
2002). Inclusion of Antarctic marine invertebrates in
this picture revealed very narrow windows of thermal
tolerance in these organisms, in a temperature range
just above freezing. An early transition to “heat” in-
duced anaerobiosis between 2 and 6 ◦C seen in bi-
valves reflected the permanently low temperatures of
Antarctic seas (Pörtner et al., 1999; Peck et al., 2002).
The work of Zielinski and Pörtner (1996), Sommer

et al. (1997), Pörtner et al. (1999) and Frederich and
Pörtner (2000) in marine invertebrates led to the
concept of oxygen-limited thermal tolerance, which
suggests that towards cold or warm extremes progres-
sively inadequate oxygen supply and thus, decreasing
body fluid oxygen levels finally lead to temperature
induced anaerobiosis. Terminology was applied by
adopting the one used in Shelford’s law of tolerance
(Shelford, 1931). In the spider crab Maja squinado,
early limits of thermal tolerance during both heating
and cooling were indicated by a set of low and high
peius temperatures (Tp), which denote the beginning
of insufficient oxygen supply to an organism, or in
other words, the onset of mildly hypoxic conditions
associated with a progressive loss in aerobic scope.

This transition occurs in fully oxygenated environ-
ments. The point of transition where increasing in-
ternal hypoxia at more extreme temperatures finally
leads into anaerobiosis, was termed critical tempera-
ture, Tc (Frederich and Pörtner, 2000).
Evidently, adaptations to ambient temperature and

oxygen levels were found closely related in the ma-
rine invertebrate species studied. The question arose
early on whether the concept of an oxygen limita-
tion of thermal tolerance is applicable to (aquatic)
vertebrates, especially marine teleost fish. Initial ev-
idence demonstrated that the indicator of mitochon-
drial anaerobiosis, succinate, accumulated in liver of
North Sea eelpout, Zoarces viviparus, during heat
stress (Van Dijk et al., 1999). Particularly in fish,
however, further study of temperature dependent oxy-
gen limitation (or vice versa, oxygen limited thermal
tolerance) proved difficult, firstly due to more lim-
ited hypoxia tolerance and stress resistance of most
fish compared to invertebrates and secondly due to
limited accumulation of anaerobic mitochondrial end
products like succinate, especially in bulk tissues
like white muscle. To monitor the onset of tempera-
ture induced hypoxia, particularly the early stages of
transition from normoxic to hypoxic conditions, and
in order to overcome these constraints, non-invasive
whole animal experiments or, alternatively, a combi-
nation of non-invasive and invasive techniques proved
useful. Obtaining the respective evidence in fish was
supported by recent developments in the non-invasive
techniques of nuclear magnetic resonance imaging
and spectroscopy (MRI and MRS) and their appli-
cability to unrestrained, non-anaesthetized aquatic
animals. The present study is intended to review these
accomplishments and the available information on
thermal limitation in (marine) fishes. From a wider
perspective, it also examines to what extent hypoxia
induced hypometabolism may support survival at
thermal extremes. The respective findings are in line
with the results obtained in invertebrates and suggest
that thermal limitations in oxygen supply occur in
fish, however, with an emphasis on a limiting role for
circulation rather than ventilation. These comparative
analyses have thus supported and are in line with
a unifying conceptual framework of the physiologi-
cal principles setting thermal tolerance windows and
of the key mechanisms of thermal adaptation and
limitation (Pörtner, 2001, 2002a,b).
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2. Methodological developments

Over the last 2 decades magnetic resonance spec-
troscopy (MRS) and magnetic resonance imaging
(MRI) techniques have extensively been used to study
hypoxia with its immediate and drastic effects on cel-
lular energy metabolism and acid-base regulation. In
vivo experiments were carried out in invertebrates like
lugworms (Kamp et al., 1995), mussels (Tjeerdema
et al., 1991; Shofer et al., 1998, Shofer and Tjeerdema,
1998) or prawns (Raffin et al., 1988; Thébault and
Raffin, 1991) and fish. However, the latter were anaes-
thetized and restrained during early studies. Various
review articles about NMR applications in compar-
ative physiology already exist in the literature (e.g.
Ellington and Wiseman, 1989; Van den Thillart and
Van Waarde, 1996). Our emphasis in this review is
on the contribution of MRS and MRI combined with
invasive techniques to studies of temperature hypoxia
interactions, in the context of testing the concept of
oxygen limited thermal tolerance in fish.
The early NMR investigations of the effects of envi-

ronmental hypoxia on fish muscle energy metabolism
started by Van den Thillart et al. (1989a). They de-
veloped a flow through probe for in vivo 31P-NMR
spectroscopy in a 9.4 T vertical NMR spectrometer
(Van den Thillart et al., 1989b). The set-up allowed
long term online recordings of energy metabolism in
muscle of carp, tilapia and goldfish during anoxia and
hypoxia by means of 31P-NMR spectroscopy. Data
recordings at 10min intervals were characterized by
high signal to noise ratios. Control values indicated by
a high phosphocreatine to inorganic phosphate ratio
(PCr/Pi) were reached after 2 h and did not change sig-
nificantly over an experimental period of 8 h. Hypoxia
induced a rapid decline in the PCr/Pi ratio accompa-
nied by a drop in intracellular pH (Van den Thillart
et al., 1989a). Return to normoxic control conditions
occurred within 3 h in carp as well as in goldfish. Be-
sides the determination of high energy phosphate con-
centrations, of inorganic phosphate and of intracellu-
lar pH, free ADP concentrations were calculated from
the equilibrium of creatine kinase (Van Waarde et al.,
1990) and provided insight into the functional cou-
pling of phosphocreatine utilisation and glycolysis in
these three species in vivo. Nevertheless, the animals
had to be anaesthetized prior to experimentation and
were fixed in a vertical position inside the probe, lim-

iting experiments to more robust fish species like carp
or eel.
Blackband and Stoskopf (1990) reported the first

combined MR imaging and spectroscopy studies in
marine, albeit anaesthetized, fish. They focusedmainly
on the feasibility of NMR experiments with marine an-
imals and did not describe any dynamic observations
or metabolic patterns. Eight years later, Borger et al.
(1998) reported in vivo 31P-NMR experiments with
common carp using a similar approach as the one de-
scribed by van den Thillart. However, this time the fish
was placed in a horizontal MR scanner at a magnetic
field strength of 7 T. These experiments investigated
the combined effects of temperature (acclimation as
well as rapid change) and hypoxia on fish energy
metabolism over several hours with a temporal resolu-
tion of minutes. These in vivo 31P-NMR observations
confirmed a negative correlation between temperature
and intracellular pH in fish muscle in accordance with
the alphastat pH regulation hypothesis developed by
Reeves (1972). However, these experiments again in-
volved the shortcomings of pre-experimental anaes-
thesia and fixation of the animal. Such experiments
preclude long term analyses (for days or even weeks)
especially of delicate organisms like polar animals or
of animals displaying some of their normal physiolog-
ical activities under resting conditions.
The shortcomings involved in studies of anaes-

thetized or immobilized animals were finally over-
come when MRI and MRS experiments were success-
fully carried out in non-anaesthetized, unrestrained
marine teleosts like benthic zoarcids (eelpout) or de-
mersal gadids like Atlantic cod (Bock et al., 2001;
Mark et al., 2002; Sartoris et al., 2003a,b). The ex-
perimental set-up (Fig. 1) allowed long term MRS
and MRI experiments for more than 8 days. Polar
organisms like Antarctic eelpout (Pachycara brachy-
cephalum) were studied under controlled and stable
conditions allowing extensive physiological moni-
toring with high localized and temporal resolutions.
Animals were not even anaesthetized prior to ex-
perimentation, thereby excluding possible long-term
effects of narcotics (Iwama et al., 1989). The fish
usually recovered from handling stress within 1 h.
Excellent resting conditions were reflected by ex-
tremely high and constant PCr/Pi ratios and stable
intracellular pH values. The fish was free to move in-
side the chamber, but were imperturbable even during
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Fig. 1. (A) Experimental set-up for in vivo NMR and MR studies of un-anaesthetized and un-restrained fish (adapted from Bock et al.,
2001). The animal is positioned inside the chamber with slide barriers parallel to a NMR surface coil, ensuring the mobility of the fish. (B)
Water was continuously supplied from a temperature controlled water reservoir (minimum 50 l, TR1) by hydrostatic pressure. Temperature
stability in the chamber and reservoirs was ±0.5 ◦C as confirmed by continuous T-measurements (TC, TR1, TR2).

periods of MR scanner sounds; therefore MR im-
ages were obtained with high anatomical resolution
allowing for localized MR spectroscopy of differ-
ent organs (Bock et al., 2001, 2002a). For example,
Fig. 2 depicts perfectly localized in vivo 1H-NMR
spectra obtained in embryos of the North Sea eelpout
Z. viviparus.
This methodology proved applicable to demersal,

more mobile fish. Fig. 3 presents a stack plot of in
vivo 31P-NMR spectra from North Sea cod Gadus
morhua during hypoxia and recovery. The time inter-
val was 5min between each spectrum. Under control
conditions, only NMR signals from the high-energy
phosphates PCr and ATP could be detected, inorganic
phosphate signals did not even reach noise levels, in-
dicating minimal activity levels and undisturbed rest-
ing conditions of the fish. Onset of hypoxia resulted in
an immediate increase of inorganic phosphate levels
at the expense of phosphocreatine. Values returned to
control levels within 15min of post-hypoxic recovery
(Fig. 3). In the meanwhile, this technology has been
developed even further to allow online study of tis-
sue energetics of unrestrained swimming cod in swim

tunnels fed through the NMR system (Pörtner et al.,
2002; Bock et al., 2002b).

3. Evidence for temperature induced hypoxia in
fish

In fish, heart rate and both ventilation frequency and
amplitude have frequently been reported to increase in
association with a temperature-induced rise in oxygen
consumption in order to compensate for elevated oxy-
gen demand by progressively enhanced oxygen sup-
ply (Barron et al., 1987; Graham and Farrell, 1989;
Mark et al., 2002). According to the concept of oxy-
gen limited thermal tolerance (see Section 1) onset
of thermal limitation should be elicited by limited ca-
pacity of oxygen supply mechanisms to match oxy-
gen demand beyond low or high peius temperatures
(Tp, see above), thereby eliciting a drop in aerobic
scope. In NMR experiments monitoring of blood flow
changes by a flow weighted MR imaging sequence
was combined with localized 1H-NMR spectroscopy
in the North Sea eelpout Z. viviparus at different tem-
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Fig. 2. Anatomical MR image of a pregnant specimen of the North Sea eelpout Zoarces viviparus. Localized in vivo 1H-NMR spectra
obtained in two voxels are presented on the right. Metabolites in spectrum (A) originated from embryonic fish, whereas almost no signal
(except for residual water) arose in spectrum (B) where no embryo was present (after Bock et al., 2002a).

peratures. Progressive warming resulted in increased
arterial and venous blood flow until it remained un-
changed despite a continued rise in oxygen demand
(Van Dijk et al., 1999; Zakhartsev et al., 2003). Above
a critical temperature invasive work reported succi-
nate accumulation in liver (Van Dijk et al., 1999). In
the MR studies a sudden drop in blood flow was ob-
served and lactate accumulation in the white muscle
of the fish was detected in localized 1H-NMR spectra
(Fig. 4). Lactate as an anaerobic end product is a more
indirect marker for cellular hypoxia than succinate.
It nonetheless indicates that critical metabolic condi-

tions were reached at this temperature; consequently,
the animal died.
These findings already indicated closely coordi-

nated adaptation to ambient temperature and oxygen
levels as derived for the marine invertebrates. In con-
sequence, Zakhartsev et al. (2003) studied the tem-
perature dependence of the critical oxygen tension
(Pc) in eelpout, Z. viviparus. The Pc was determined
as the oxygen tension below which the rate of oxygen
consumption fell below the regulated value when the
animal was exposed to progressive hypoxia. Zakhart-
sev et al. reported that the Pc rose linearly depending
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Fig. 3. Stack plot of in vivo 31P-NMR spectra collected in Atlantic cod G. morhua during normoxia (front), hypoxia and post-hypoxic
normoxia (after Bock et al., 2002a). Time resolution between spectra was 5min. Note the drastic decrease of phosphocreatine and increase
of inorganic phosphate under hypoxia. Switching to normoxia caused values to return to control levels within 15min.

on water temperature and would reach normoxic
levels at those temperatures where Van Dijk et al.
(1999) had found the critical temperature and onset
of mitochondrial anaerobiosis.
Mark et al. (2002) tested whether temperature in-

duced hypoxia was alleviated by ambient hyperoxia in
the Antarctic eelpout P. brachycephalum. They mon-
itored the effects of temperature on oxygen demand,
ventilatory effort and blood flow at normoxic and hy-
peroxic oxygen levels (Fig. 5). Under normoxia arte-
rial blood flow rose distinctly between 0 and 7 ◦C. It

Fig. 4. (A) Axial views of flow weighted MR images of eelpout (Zoarces viviparus) from the North Sea at different temperatures. Blood
flow in vessels, visible as bright spots, increased with temperature (see arrows). At a water temperature of 22 ◦C blood flow dropped
abruptly after 19 h accompanied by an increase of lactate (Lac) in localized 1H-NMR spectra from white muscle, indicating that the
critical temperature was reached. (B) Development of arterial blood flow between 10 and 22 ◦C showed an early increment but no further
rise despite increased oxygen demand. Similar to observations in Antarctic eelpout (Fig. 5) and in cod (Lannig et al., 2004) transition to
saturated blood flow velocity is interpreted to reflect the peius temperature which indicates onset of a loss in aerobic scope. In Z. viviparus,
Tp was found at 14 ◦C while the critical temperature was reached at 22 ◦C, in line with earlier observations of succinate accumulation
(Van Dijk et al., 1999; modified after Bock et al., 2002a and unpublished).

reached a plateau above 7 ◦C, possibly due to a limita-
tion of heart and/or vascular capacity. In contrast, ex-
periments carried out under hyperoxia (PO2 = 45 kPa,
∼2-fold normal O2 tension) did not cause a significant
rise in blood flow in the Aorta dorsalis, in line with
an alleviation of temperature induced oxygen shortage
by hyperoxia. At elevated temperatures this effect was
also clear from significantly lower oxygen consump-
tion rates under hyperoxia than seen under normoxia.
In fact, hyperoxia alleviated the “typical” exponen-
tial increase in oxygen consumption with temperature,
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Fig. 5. Ventilatory effort (a), oxygen consumption (b) and blood flow (c) of Antarctic eelpout P. brachycephalum at different temperatures
and external oxygen levels. In contrast to ventilation and oxygen consumption blood flow levelled off at higher temperatures. Interestingly,
hyperoxia alleviated the effect of warming on systemic parameters (after Mark et al., 2002). The drop in oxygen consumption observed
under hyperoxia at high temperatures indicates reduced cost of circulation due to ample oxygen supply. In contrast to Z. viviparus, Tp
under normoxia was reached at about 7 ◦C in P. brachycephalum.
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very likely due to energy savings in the cardiocircula-
tory system due to enhanced oxygen availability. Ven-
tilatory effort under both treatments did not reveal a
significant effect of hyperoxia as it followed the same
exponential increment, regardless of ambient oxygen
levels.
These findings indicated that the Antarctic eelpouts

became hypoxic because of a temperature induced sys-
temic limitation of oxygen supply at rising oxygen
demand, which was alleviated by hyperoxia. At sim-
ilar ventilation rates higher oxygen consumption and
limited blood flow under normoxia on the one hand
and reduced oxygen consumption and blood flow at
elevated temperatures under hyperoxic conditions on
the other hand suggested that the cardiovascular rather
than the ventilatory system responds to changes in
systemic oxygen availability and may thus play a key
role in thermal tolerance in these Antarctic fish (Mark
et al., 2002). Nonetheless, although hyperoxia likely
widened the temperature range of available aerobic
scope in the Antarctic eelpout, it did not cause large
shifts of the limits of passive heat tolerance. A re-
cent treatment of thermal limits in various systematic
groups from prokaryotes via unicellular eukaryotes
to metazoa suggested a systemic to molecular hierar-
chy of thermal limitation with the narrowest windows
found at the highest levels of organisational complex-
ity (Pörtner, 2002a). At the same time, the concept of
symmorphosis indicates that the functional capacities
of individual components contributing to the perfor-
mance capacity of the higher unit, i.e. the organism,
are usually not expressed in excess. With respect to
the functional capacities setting thermal tolerance this
would mean that, once the limits at the highest level
are alleviated (in this case by hyperoxia), those at a
lower (i.e. cellular or molecular) level of complex-
ity may now predominate in limiting whole organism
thermal tolerance at a slightly but not hugely widened
window of thermal tolerance.
Studies carried out in Atlantic cod, G. morhua from

the North Sea and in rainbow trout, Oncorhynchus
mykiss, support a crucial role of the circulatory sys-
tem in thermal limitation and temperature dependent
aerobic scope and suggest that this may be a general
pattern in fish. Early data by Heath and Hughes (1973)
would also match this interpretation. They found that
heart rate in rainbow trout decreased at temperatures
above 24 ◦C, whereas ventilation remained virtually

unchanged until death of the animals occurred. In
cod implanted with micro-optodes in gill blood ves-
sels, Sartoris et al. (2003b) demonstrated that arte-
rial oxygen tensions (Pa,O2) remained unaffected by
progressive warming. However, venous oxygen ten-
sion (Pv,O2) dropped progressively during warming,
in line with limited cardiac rather than ventilatory per-
formance. It was concluded that in resting cod at el-
evated temperatures, circulatory performance cannot
fully compensate for excessive oxygen extraction from
the blood (Pörtner et al., 2001; Sartoris et al., 2003b).
Functionally, this pattern can seriously hamper my-
ocardial oxygen supply, as most teleost fish lack or
only possess a weak coronary circulation and hence
almost exclusively rely on the venous oxygen reserve
to provide the heart with oxygen (Farrell, 1993).
Farrell and Clutterham (2003) measured venous

oxygen tension in the ductus Cuvier of rainbow trout,
O. mykiss, during exercise at different acclimation
temperatures. They discussed that a specific threshold
Pv,O2 is required in fish in order to maintain suffi-
cient oxygen supply to the myocardium and support
cardiac output. Accordingly, a reduction in aerobic
scope is likely to result when a temperature depen-
dent decrease in venous oxygen tension (Pv,O2) sets
in. In line with these findings and with a limited tem-
perature window of optimum oxygen supply, Farrell
(2002) found maximum cardiac output of exercis-
ing salmonids within the optimal temperature range.
Similarly, cod make use of their full aerobic capacity
and use both the glycolytic and oxidative capacities
of their musculature to support endurance swimming
under ‘normal’ thermal conditions (Martinez et al.,
2003).
At constant levels of arterial oxygen tension (Pa,O2)

temperature dependent patterns of venous oxygen ten-
sion (Pv,O2) should therefore delineate the window of
thermal tolerance in fish in similar ways as previous
recordings of arterial oxygen tensions in a crustacean
(Frederich and Pörtner, 2000). In a combination of in-
vasive oxygen analyses and measurements of blood
flow by MRI, Lannig et al. (2004) found a decrease
in venous PO2 towards both sides of the thermal op-
timum. Resting heart rate in cod (G. morhua) rose
exponentially upon warming from 10 to 16 ◦C. How-
ever, arterial and venous blood flow rose only slightly
and did not compensate for the drop in venous PO2
in the warm. Hence, loss of optimized oxygen sup-
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ply to the heart and thus, decreased aerobic scope of
the whole organism seems to be the first limiting fac-
tor in these fish. The maintenance of arterial PO2 seen
during warming in cod is in line with an excess ca-
pacity of the ventilatory system for oxygen uptake, if
compared to oxygen distribution via circulation. How-
ever, arterial PO2 fell drastically above 16

◦C (Sartoris
et al., 2003b), presumably indicating the temperature
at which a minimum threshold Pv,O2 is reached in
cod with the result of cardiac failure and organismic
collapse.
As a corollary, the capacity of the teleost circula-

tory system likely becomes insufficient in the warm to
match the rising oxygen demand. The question then
arises how oxygen limitation develops in the cold. In
the cold, oxygen provision appears facilitated due to
high oxygen solubility in ambient water and body flu-
ids. Moreover, oxygen diffusion should be facilitated
in relation to oxygen demand as diffusion decreases
less with temperature than baseline metabolic costs
which are reflected in the level of standard metabolic
rate (Q10 of∼1.1 versus∼2–3). The data obtained un-
der hyperoxia in Antarctic eelpout (Mark et al., 2002)
suggest that enhanced oxygen availability as in cold
waters should allow for a reduction in the energy cost
of circulation and ventilation and thereby support the
reduction in metabolic rates typically seen in Antarctic
stenotherms. Energy savings are also supported by the
increasing importance of cutaneous uptake of O2 in the
cold, culminating in a 30% contribution of cutaneous
oxygen uptake to standard metabolic rate (SMR) in the
Antarctic icequab Rigophila dearbornii (Wells, 1986).
Low metabolic rates at enhanced oxygen solubility in
body fluids enable icefish (Chaennichthyidae) to sur-
vive without red blood cells that greatly contribute to
blood viscosity (Davison et al., 1997)—an alternative
way to cut cardiovascular costs at low temperatures.
Nonetheless, oxygen supply capacity becomes lim-

iting in temperate water breathers exposed to cold
temperatures, observed in cod (Lannig et al., 2004)
in similar ways as seen in a temperate crustacean
(Frederich and Pörtner, 2000) or in annelids and sipun-
culids (Zielinski and Pörtner, 1996; Sommer et al.,
1997). The drop in venous PO2 (in fish) or arterial
PO2 (in the crustacean) and the transition to anaer-
obic metabolism in the cold indicate a limited func-
tional capacity of oxygen supply mechanisms likely
elicited by cold induced slowing. Functional capacity

of oxygen supply mechanisms and the muscular tis-
sues involved falls below the one to cover metabolic
requirements at low ambient temperatures, thereby set-
ting the first limit to cold tolerance. The upregulation
of mitochondrial densities in the cold discussed be-
low indicates that loss in mitochondrial functional ca-
pacity contributes to the limited functional capacity
of cells and organs and is therefore compensated for
in the cold. Again, the symmorphosis concept would
predict that cold induced limitations in oxygen sup-
ply are likely to be closely followed by limitations in
the capacity of other systemic, cellular and molecular
functions such a general functional collapse of the or-
ganism occurs beyond but close to the limits set by in-
sufficient oxygen supply. These relationships warrant
further investigation.

4. Trade-offs in thermal adaptation setting
functional limits

The question arises which mechanisms cause ani-
mals and their oxygen supply systems to specialize on
a limited range of thermal tolerance which matches
the thermal range which a species usually experiences
in its natural habitat. In particular, invertebrates and
fish adapted to the stable temperatures of Antarctic
waters rely on narrow thermal windows. As oxygen
limitations set in at both sides of the temperature win-
dow it appears likely that mechanisms are involved
which define oxygen demand in relation to the capac-
ity of oxygen delivery by circulation and ventilation
such that tissue functional capacities (esp. of the heart)
are set to a level sufficient to match maximum oxy-
gen demand between the average highs and lows of
environmental temperatures. The responsible mecha-
nisms should also characterize the trade-offs involved
in thermal adaptation, i.e. they should explain why a
downward shift of the oxygen limited cold tolerance
threshold coincides with an increase in heat sensitivity
and vice versa.
The mitochondrial metabolic background of set-

ting both tissue and organismic functional capacity
and oxygen demand at various temperatures has con-
tributed to an understanding of the links between
low and high thermal limits and thus, the trade-offs
in thermal adaptation (Pörtner et al., 1998, 2000;
Pörtner, 2002a). In ectothermic species, especially
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fish a plethora of studies have identified mechanisms
of seasonal and latitudinal cold versus warm adapta-
tion which are suitable to modulate the capacity of
aerobic metabolism. As outlined above, a rise in aer-
obic capacity permits maintenance of cell functions
in the cold (for review Guderley, 1998; Pörtner et al.,
1998, 2001). Associated processes are rising enzyme
capacities (Crockett and Sidell, 1990; Guderley, 1990;
Lannig et al., 2003), increased mitochondrial or capil-
lary densities (Sisson and Sidell, 1987; Guderley and
Blier, 1988; Ressel, 2001), changes in mitochondrial
structure (Gaebel and Roots, 1989; St.-Pierre et al.,
1998) and/or alterations in membrane composition
(Miranda and Hazel, 1996; Logue et al., 2000). Mi-
tochondrial densities are found esp. large in pelagic
notothenioid fishes of the Antarctic, where densities
in red muscle result beyond 50% (Dunn et al., 1989).
Recent evidence indicates that the thermal adapta-
tion of marine invertebrates follows similar principles
(Sommer and Pörtner, 2002) which therefore appear
unifying in thermal adaptation.
In the context of the concept of oxygen limited

thermal tolerance, these mechanisms contribute to a
unidirectional shift of both low and high peius and
critical temperatures. Such a shift is associated with a
change in mitochondrial density, which drops as tem-
perature rises and increases as ambient temperature
falls. The main advantage of an increase in mitochon-
drial density and activity in the cold is an increase in
aerobic functional capacity. The associated increase in
the network of intracellular membrane lipids consti-
tutes a significant facilitation of intracellular oxygen
diffusion in the cold (Sidell, 1998; cf. Pörtner, 2002b).
In the cold, the improvement of aerobic energy pro-
duction also supports the capacities of ventilation and
circulation (Pörtner, 2001). As a consequence of ele-
vated mitochondrial densities, however, baseline oxy-
gen demand by mitochondria is enhanced, set by the
level of mitochondrial proton leakage. This will cause
earlier problems during warming, where associated
with a rise in other baseline costs the overall incre-
ment in oxygen demand can no longer be met by the
capacity of oxygen supply mechanisms. A trade-off
results between the compensation of functional capac-
ity in the cold and the resulting increase in baseline
oxygen demand which contributes to lower the limits
of heat tolerance. In this context, recent evidence in-
dicates that these mechanisms of cold adaptation are

likely modulated in Antarctic stenotherms in order
to minimize the cost of cold adaptation below the
one seen in cold adapted eurytherms (Pörtner et al.,
2000). Especially in temperate to high latitudes of
the Northern hemisphere several species are found
eurythermal and, thus, experience high costs of cold
adaptation (e.g. Sommer and Pörtner, 2002) associ-
ated with trade-offs in energy budget and their likely
ecological consequences (Pörtner et al., 2000, 2001,
2004). Such differences will also have their bearing
with respect to the sensitivity of animal species to
climate and associated temperature change.
The mechanistic and regulatory bases of the pro-

cesses setting thermal tolerance and defining thermal
adaptation as well as their integration into whole an-
imal functioning are still incompletely understood.
Thermal adaptation is linked to temperature depen-
dent gene expression, for example of key aerobic en-
zymes, as seen during seasonal as well as latitudinal
cold adaptation (e.g. Hardewig et al., 1999; Lucassen
et al., 2003). Rearrangements of aerobic metabolism
also occur with a shift to lipid accumulation and energy
storage (cf. Pörtner, 2002b, for review). The fine tun-
ing of these processes on a temperature scale or their
functional consequences at the whole animal level re-
main to be quantified and the regulatory signals to be
identified.
The mitochondrial trade-offs addressed above will

relate to changes in functional capacity and oxygen
demand of more or less all cells of the organism
and these patterns transfer to the next hierarchical
level, the functional capacity of tissues like the cardio-
vascular system and finally of the organism. Further
trade-offs apply at the organismic level, like for the
cardiovascular system of fish which supplies oxygen
to tissues on the one hand but on the other hand re-
lies on supply from residual oxygen in venous blood.
Therefore, it is cost-effectively designed to consume
rather small amounts of oxygen itself (Farrell and
Clutterham, 2003). This constraint limits the develop-
ment of functional capacity and may be the key rea-
son why in fish the circulatory system appears more
crucial in thermal limitation than the ventilatory sys-
tem. However, compared to invertebrates and higher
vertebrates, where cardiac supply is via arterial blood
or haemolymph, the excess ventilatory capacity ob-
served in fish may in fact be related to the unusual
pattern of venous oxygen supply to the fish heart. This
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Fig. 6. Schematic model of oxygen limited thermal tolerance and
performance capacity in fish and other metazoa, set by the capacity
of oxygen supply mechanisms. (A) Functional reserves in oxygen
supply result as combined ventilatory and cardiac output (Q) and
are maximum at the upper pejus temperature Tp, before aerobic
scope becomes thermally limited (B). Maximum scope (∆max)
between resting and maximum output in oxygen supply is likely
correlated with the one in mitochondrial ATP generation such
that the functional capacity of the (ventilatory and circulatory)
muscles is co-defined by the capacity of mitochondria to produce
ATP which is limited by oxygen supply in vivo (C). Part of
this limitation is elicited by the temperature dependent rise in
oxygen demand by the cost of mitochondrial proton leakage which
is no longer available to ATP formation. Low ATP formation
capacity in the cold and high proton leakage in the warm contribute
to insufficient oxygen supply, loss of aerobic scope and finally,
transition to anaerobic metabolism (B). Maximum scope in ATP
generation at the upper Tp not only supports maximum capacity of
organismic oxygen supply by circulatory and ventilatory muscles,
but also an asymmetric performance curve of the whole organism
(D, after Angilletta et al., 2002) with optimal performance (e.g.
growth, exercise) again expected at the upper peius temperature
Tp. Here, functions are supported by both high temperatures and
optimum oxygen supply in relation to baseline oxygen demand.
As a trade-off in eurythermal cold adaptation (e.g. upper limits
constant, lower limits shifting to colder temperatures), standard

excess ventilatory capacity likely supports wider tol-
erance windows. Maximized arterial oxygen supply
regardless of temperature would help to prevent an
earlier drop in venous PO2 below critical values and
thus support the cardiovascular system in counteract-
ing thermal limitation. From this point of view, a co-
ordinated thermal limitation by integrated ventilatory
and circulatory capacities as observed in a crustacean
(Frederich and Pörtner, 2000) exists in teleosts as well;
however, limitation is first experienced by the circu-
latory system. The evolutionary constraint of venous
oxygen supply to the heart in fish leads to specific pat-
terns of temperature dependent oxygenation in arte-
rial versus venous blood. In conclusion and in similar
ways as in marine invertebrates, the integrated cardio-
vascular and ventilatory capacities of oxygen supply
to tissues appear as the first thermally sensitive func-
tional level that defines a fish’s thermal limits of bio-
geography.
The principle trade-offs leading to thermal opti-

mization of cellular and tissue function will not only
be valid for the circulatory system but for many tis-
sues and finally the intact organisms although details
and trade-offs at the tissue and organism levels need to
be investigated. These principle relationships between
temperature dependent capacities and limits of organ-
ismal performance have been summarized in Fig. 6
(based on studies across phyla, mostly in aquatic ec-
totherms such as sipunculids, annelids, crustaceans,
molluscs and fishes, cited above). Trade-offs as out-
lined above support optimized performance only
within a limited temperature window. Minimum and
maximum peius temperatures (Tp) delineate the first
level of thermal limitation and indicate onset of a loss
in aerobic scope, as the capacities of oxygen supply
(integrated capacities of circulation and ventilation)
become progressively unable to meet oxygen demand.
Once aerobic scope is reduced towards thermal ex-
tremes, critical temperature thresholds (Tc) delineate
the transition to an anaerobic mode of metabolism or

metabolism and, in consequence, aerobic exercise capacity may
increase in the cold (cf. Pörtner, 2002b), while temperature spe-
cific growth performance is reduced likely due to enhanced mito-
chondrial proton leakage (Pörtner et al., 2001). These contrasting
changes in exercise capacity vs. those in growth rate are indicated
by arrows in (D) (for further explanations, see text).
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passive tolerance. Extended exposure of animals to
temperatures above high or below low critical tem-
peratures finally leads to death of the animal unless
thermal acclimatization, i.e. a shift of Tc values occurs
(Zielinski and Pörtner, 1996; Sommer et al., 1997).
Limitation of survival is associated with a drop of the
cellular Gibb’s free energy change of ATP hydrolysis
to a low, possibly critical value (Zielinski and Pörtner,
1996). In accordance with a hierarchy of thermal tol-
erance limits, a failure in oxygen delivery system at
the whole-organism level occurs prior to a failure in
mitochondrial and then molecular functions, thereby
setting the ecologically relevant thermal tolerance
thresholds of the intact organism (Pörtner, 2002a).
Critical temperatures as discussed here border the

temperature range that permits performance on top
of baseline energy expenditure and are likely reached
before the onset of spasms (Zakhartsev et al., 2003)
which are traditionally used to define critical ther-
mal maxima (Lutterschmidt and Hutchison, 1997a,b).
Within the thermal tolerance window aerobic per-
formance increases with temperature to a maximum
and then decreases at higher temperatures yielding a
species-specific asymmetric bell shaped curve, which
shifts depending on thermal adaptation (Angilletta
et al., 2002). Fig. 6 predicts that optimum perfor-
mance occurs close to upper peius values linked to
the maximum scope for ATP formation by mitochon-
dria. The relationship between temperature depen-
dent growth rates and aerobic scope may follow this
pattern. Aerobic scope and growth rate were found
related in a population of cod (Claireaux et al., 2000).
Growth curves similarly shaped as in Fig. 6D were
found in invertebrates (Mitchell and Lampert, 2000;
Giebelhausen and Lampert, 2001) and in fish (Jobling,
1997). Moreover, protein synthesis rates will set the
pace for organismic growth. Recent findings indicate
that low blood oxygen tensions limit protein synthesis
rates as seen in feeding crabs (Mente et al., 2003),
thereby supporting the concept layed out in Fig. 6.

5. Temperature induced hypoxic
hypometabolism?

The question arises whether temperature induced
hypoxia and finally anaerobiosis at the edges of the
thermal tolerance window have consequences other

than reducing performance capacity of the organism.
In principle, all processes will become involved that
characterize survival strategies in hypoxia tolerant an-
imals mainly through metabolic depression and as-
sociated passive tolerance of adverse environmental
conditions as seen with respect to survival of turtles,
frogs or fish during winter cold (Jackson, this volume).
However, while transition to anaerobic metabolism
has been clearly demonstrated in the turtles or gold-
fish other hibernating animals may succeed to use
metabolic depression strategies while being fully aer-
obic. This is likely true for many hibernating am-
phibians and includes mammalian hibernators, where
at least the brain remains fully aerobic, despite ex-
tremely cold body temperatures (Bock et al., 2002c).
Passive hibernation is thus interpreted to be a strategy
which allows the animal to survive at minimal cost
and thereby escape from the costly mechanisms of
eurythermal cold adaptation outlined above (Pörtner,
2004). The factors and mechanisms eliciting metabolic
depression in excess of the one elicited by cold tem-
perature itself are currently unknown.
Heat induced hypoxia will also elicit such responses

which are likely beneficial to counteract the tem-
perature induced acceleration of baseline metabolic
costs. As the interdependence of thermal tolerance
and aerobic scope have only recently been discussed
as a unifying principle among animals (Pörtner, 2001)
these relationships have not been systematically in-
vestigated. However, invertebrate examples from the
intertidal zone where they may be exposed to midday
sunshine and heat, would most adequately illustrate
that extreme heat goes hand in hand with anaero-
bic metabolism and passive survival (Sokolova and
Pörtner, 2003) and thus very likely involves a
metabolic depression scenario which contributes to
energy savings and thereby extends the period during
which heat beyond the critical temperature can be
tolerated.

6. Ecological perspectives

Temperature and global climate patterns have fre-
quently been proposed as the most important fac-
tors governing marine zoogeography (Angel, 1991).
Compared with terrestrial fauna, marine organisms
cover larger ranges of geographical distribution and
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exhibit distinct latitudinal zonation more frequently,
especially in the near-shore environment where phys-
ical barriers prevent the migration of littoral species
(Pielou, 1979; Rapoport, 1994). Along the same lines
of thought identifying mechanisms of temperature
adaptation (Johnston and Bennett, 1996) and their
contribution to adjusting and limiting both cold and
heat tolerance are considered important in the light
of global warming (e.g. Wood and MacDonald, 1997;
Pörtner et al., 2001) and the associated shifts in
geographical distribution and/or physiological perfor-
mance of ectothermic animals (Pörtner et al., 2001).
The ecological relevance of the physiological prin-

ciples discussed in this chapter is emphasized by the
observation that in the spider crab,M. squinado, upper
and lower peius temperatures are more or less equiva-
lent to themean highs and lows of ambient temperature
in the natural environment of this species (Frederich
and Pörtner, 2000). This indicates that peius tempera-
tures are prime candidates to relate to temperature de-
pendent limits of geographical distribution. Due to the
recent nature of the concept of oxygen limited thermal
tolerance such patterns need to be investigated in more
metazoan taxa and species including vertebrates and
fish. The cellular and organismic principles of thermal
limitation and adaptation outlined here may be influ-
enced by overlying phylogenetic constraints of spe-
cific groups which may then contribute to modulate
oxygen dependent thermal limits. For example, en-
hanced sensitivity to the anaesthetizing effect of mag-
nesium reflects such a phylogenetic constraint in the
special case of marine reptant decapod crustaceans
(anurans and brachyurans). High magnesium levels in
the haemolymph of this group likely limit its capabil-
ity to adapt to extremely cold temperatures below 0 ◦C
by the mechanisms outlined above and, thereby, ex-
cludes them from the respective temperature regimes
in polar areas (Frederich et al., 2001). In contrast,
marine ectothermic teleosts exist at all temperatures
of the ocean. Although venous oxygen supply to the
heart is an evolutionary constraint in teleost fish, it
has not been found to limit cold adaptation capacity
or biogeography of the whole group. Nonetheless, this
constraint may limit the thermal range of individual
species according to the trade-offs discussed above.
Some evidence indicates that adjustment to cold

rather than warm temperatures is a more severe chal-
lenge for organismic physiology, in other words,

small temperature changes on the cold side of the
temperature spectrum may elicit larger effects than
similar temperature changes in the warm. For exam-
ple, warming by just 1 or 2 ◦C above ambient aver-
age temperatures will be fatal for extreme Antarctic
stenotherms (Pörtner et al., 1999). The cost of adap-
tation to the same degree of cooling appears much
larger at cold than at higher temperatures unless the
width of thermal windows is minimized (Pörtner et al.,
2000). This may be one reason for the impression that
true stenotherms in the marine realm may only be
found in polar esp. Antarctic cold (Pörtner, 2002a).
Moreover, the decrease in biodiversity of extant ma-
rine macrofauna towards high, esp. Northern latitudes
(Roy et al., 1998) may be due to the limited capacity
of species to adapt to low but unstable temperatures.
The picture is less clear for the southern hemisphere,
where temperature oscillations are less expressed.
However, a clear temperature dependent decrease in
crustacean biodiversity has been shown by Astorga
et al. (2003). The anaesthetizing effect of Mg2+ in
decapod crustaceans is progressively increased during
cooling and allows reptant decapods to live at 0 ◦C
but no longer at −1 to −1.9 ◦C. In earth history de-
creasing winter temperatures by about 4 ◦C were as-
sociated with mass extinctions of marine invertebrates
at the Eocene/Oligocene boundary despite constant
summer temperatures (Ivany et al., 2000). During cli-
mate change scenarios alleviation of winter cold may,
therefore, play a key role in changes of ecosystem
structure and functioning, esp. in Northern temper-
ate zones. As an example, in the North Sea, warmer
water species immigrate including both invertebrates
and fish (Hummel et al., 2001; Von Westernhagen
and Schnack, 2001) while cold-water species like
cod move further North (Fischer, 2002). Associated
changes in biodiversity will have to be investigated.
Although the contribution of physiological con-

straints and capacities to these patterns remains to be
clearly elaborated insight is only just emerging that
the physiological basis for such ecological patterns
may be associated with the width of the thermal toler-
ance window and its location on the temperature scale
(Pörtner, 2002a,b). Temperature dependent shifts in
geographical distribution may be related to the mis-
match phenomena elaborated above and may be due
to the limited phenotypic plasticity of the species in-
volved, i.e. the limited capacity to shift the window of



PUBLICATION IV

115

H.O. Pörtner et al. / Respiratory Physiology & Neurobiology 141 (2004) 243–260 257

oxygen limited thermal tolerance. A rising width of
the thermal tolerance window, especially in the cold,
was suggested to be associated with enhanced energy
turnover due to the cost of cold adaptation. These
relationships may elicit climate dependent trends in
lifestyles and, last not least, biodiversity in ecosys-
tems and will have to be considered in future analyses
of such patterns.
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4 Discussion

This thesis addresses the mechanisms of thermal tolerance in temperate, sub-polar and

polar fish. As laid out in the introductory chapter, the thesis consists of three main studies

(publication I to III), which examine thermal tolerance at the systemic, cellular and molecular

level, respectively. In this chapter, the most important results of publications I-III will be

revisited in brief and completed with some additional data, followed by an integrative

discussion of the patterns of thermal and energetic limitations observed at whole animal,

systemic and cellular levels and thermally induced adaptive processes at the molecular level.

They will be discussed in an attempt to address the question of where particular mechanisms

limiting thermal tolerance are located and how they are interlinked between the various levels

of organisational complexity.

4.1 Systemic thermal tolerance

In the experiments on the hypothesis of an oxygen limited thermal tolerance

(publication I), an alleviating influence of additional oxygen (ie. hyperoxia) on limits of

thermal tolerance was investigated at the systemic level in Pachycara brachycephalum. Animals

remained in a flow-through system under normoxia and hyperoxia, respectively, throughout

the experimental period, when temperature was increased by 1°C once every 12 hours.

Only some of the examined parameters showed a hyperoxia sensitive reaction during

warming, whilst others did not. Of the cardio-respiratory system (publication I, figure 2),

ventilatory effort (the product of ventilation frequency and amplitude) remained insensitive

towards oxygen concentration and showed similar exponential increments under both

normoxia and hyperoxia. Whole animal oxygen consumption rose with temperature under

both normoxia and hyperoxia, but displayed a much steeper, more exponential incline under

normoxia. Normoxic bloodflow increased steeply until about 7°C and then levelled off, while

hyperoxic bloodflow had lower starting levels and rose only slowly (and not significantly) up

to 7°C and from there on slightly decreased.

Ventilation frequency and amplitude did only react to temperature changes and not to

ambient or blood oxygen levels, the latter of which can only be assumed to have been higher

due to increased physically dissolved oxygen under hyperoxia (in case that blood PO2 is not

kept constant). Arterial oxygen contents have been reported to be nearly always close to

saturation in cod (Sartoris et al., 2003b; Lannig et al., 2004) and trout (Heath and Hughes,

1973), also during warming. At high temperatures above 24°C, Heath and Hughes (1973)

observed ventilation in trout to remain virtually unchanged while heart rate already decreased.

In the light of the recent oxygen limitation hypothesis, this excess ventilatory capacity suggests



DISCUSSION

120

that ventilation is regulated independent of the cardio-vascular system and, moreover, is less

sensitive to thermal extremes than the heart.

Although the picture of location, function and control of oxygen receptors in fish is

still incomplete and warrants further research, a number of studies have confirmed the

existence of branchial chemoreceptors in the gill arches of fishes. They monitor both internal

and external O2 concentrations and accordingly drive ventilation (Burleson and Smatresk,

1990a; b) and heart innervation (Reid et al., 2000; Sundin et al., 2000). Apparently, in Pachycara

brachycephalum ventilation frequency and amplitude was not adjusted to external oxygen

concentration, although ventilation volume has been reported to be greatly reduced during

hyperoxic exposure in catfish, cyprinids, salmonids and Antarctic notothenioids (Wood and

Jackson, 1980; Fanta et al., 1989; Takeda, 1990; Soncini and Glass, 2000). It is possible that

ventilatory effort was not sufficient as a proxy for all processes involved in ventilation. In

addition to the opercular pump, fish use the buccal pump to modify ventilation flow and

pressure independent of the opercular amplitude (Hughes, 1984) and thus water flow over the

gill arches could have been lower under hyperoxia without being accounted for.

Interestingly, in the trout, hyperoxia as well as hypoxia is associated with a marked

bradycardia, evoked by probably the same receptor on the first gill arch (Daxboeck and

Holeton, 1978), which corroborates the observed lower levels of blood-flow under hyperoxia.

In preventing the organism to be flushed with too much oxygen it may constitute a protective

function against oxidative stress (whilst under hypoxia, circulatory reduction can be a sign of

metabolic reduction). It is interesting to find this behaviour conserved in Pachycara

brachycephalum, as environmental hyperoxia is seldomly experienced by Antarctic fish.

In the fish circulatory system, the heart is situated far downstream on the venous side

and constitutes the last oxygen consumer before venous blood is replenished with oxygen in

the gills. In addition, three quarters of the teleost species lack a coronary circulation supplying

the myocard with blood (Farrell, 1993) and the heart has to exclusively rely on supply of

residual oxygen from venous blood. It is therefore designed to keep its costs low and consume

rather small amounts of oxygen (Farrell and Clutterham, 2003), which on the other hand sets

clear limitations to its functional capacities and may explain the particular thermal sensitivity

of the circulatory system in fish. Under thermal or physical stress (ie. exercise), first circulation

is increased to augment oxygen supply until the limits of cardio-vascular capacity are reached.

As a second step, further oxygen demand will then lead to an intensified oxygen extraction,

resulting in progressively reduced venous PO2 (Pv,O2) and aerobic scope of the animal, as has

been demonstrated for cod (Sartoris et al., 2003b; Lannig et al., 2004) and trout (Farrell and

Clutterham, 2003). Oxygen availability to the heart becomes thus more and more restrained,



DISCUSSION

121

until a critical Pv,O2, is reached, as suggested by Farrell and Clutterham (2003), and heart

function becomes hampered. Cardiac failure and organismic collapse are the consequence (see

publication IV for a more detailed discussion). Within the model of thermal tolerance (see

introduction) reaching of the limit of cardio-vascular capacity would correspond to Tp,

whereas the critical threshold Pv,O2, causing collapse, would correspond to Tc.

Blood flow is a measure of cardiac output, and in the experiments of publication I (cf.

publ. I figure 2) it reached a maximum at 7°C under both hyperoxia and normoxia, although

its overall level was much lower under hyperoxia. The distinctly lower perfusion under

hyperoxia indicates good oxygen supply to the tissues and it is astounding to find such a

substantial alleviation by hyperoxia, as the actual oxygen carrying capacity is only – if at all –

increased by a fraction. With a hematocrit of about 13, Pachycara brachycephalum (as most

Antarctic fish, cf. introduction) finds itself at the lower end of blood haemoglobin (Hb)

content in fish, which ranges between 30 and 150g /l (Urich, 1990). 1g Hb binds 1.34ml

oxygen, thus 30g Hb would hold about 40ml oxygen. At 0°C, fish blood contains about 10ml

physically dissolved oxygen per litre (at 760 Torr / 101,3kPa and an αO2 of 2.589 mol • l-1 •

Torr-1), which accounts for about 20% of the total oxygen content. Since arterial blood can be

considered saturated to 100% even under normoxia (see above), under hyperoxia only the

physically dissolved amount of oxygen increases (i.e. blood PO2). In the experiments of

publication I, a hypothetical two-fold rise in blood PO2 would cause physically dissolved

oxygen concentration to double from 10ml to 20ml per litre, an increase in total oxygen of

only 20% (which will become even smaller with rising temperature). Reduced blood flow

under hyperoxia indicates that the organism tries to compensate and keep its blood PO2 close

to normoxic levels. These considerations mirror the role of physically dissolved oxygen

(reflected in partial pressure) in being the key parameter driving diffusion. Higher water PO2

will also cause increased cutaneous respiration, thereby supporting further reductions in

circulatory work and associated oxygen consumption. Under resting conditions and normoxia,

cutaneous oxygen uptake can already comprise up to 35% of total respiration in the Antarctic

eelpout Rhigophila dearborni (Wells, 1986) and is likely increased under hyperoxia. Fish possess a

so-called ‘secondary circulation’ of low blood pressure and reduced hematocrit (Farrell, 1993),

which extends from the gills to skin, scales and peripheral organs and has a primarily nutritive

function but may be used for additional oxygen uptake and transport – especially of physically

dissolved oxygen. Synergistically, the reduced oxygen consumption of the ventilatory and

circulatory system likely contributes to lower total oxygen demand in a feedback reaction. This

may in particular be the case in a benthic fish like Pachycara brachycephalum, which exclusively

relies on active ventilation.
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Muscle tissue oxygenation (publication I, figure 3) decreased above 5 or 6°C under

both incubation regimes, slightly more pronounced under hyperoxia. Liver oxygenation rose

in both treatments, yet the effect was not as marked as the changes in muscle oxygenation and

individual oscillations were large. Although intracellular pH (publication I, figure 4) proved

hyperoxia sensitive in displaying higher initial pHi values due to a presumably hyperoxia-

induced respiratory acidosis and elevated bicarbonate levels in the blood (Gilmour and Perry,

1994), pHi regulation was not affected by hyperoxia. In both treatments, alpha-stat pHi

regulation ceased above 6°C – indicating that oxygen limitation may be the first, but not the

only factor regulating thermal tolerance. It is for example conceivable that thermally induced

modifications in membrane lipid domains around membrane-located proteins like those of

cellular ion regulation may be responsible for shifts in specific activity levels and in the

contributions of ion channels involved in pH regulation (homeoviscous adaptation: Wodtke,

1981; Hochachka and Somero, 2002). Moreover, temperature directly affects expression levels

of ion pumps: in Z. viviparus, Lucassen et al. (submitted) found Na+/K+-ATPase expression

and activity to increase in liver and gills during cold adaptation. Associated with shifts in

activity are often changes in blood plasma ion levels, which have been reported to occur upon

thermal acclimation in carp (Metz et al., 2003) and notothenioids (Guynn et al., 2002).

Especially in Antarctic notothenioids, they may lead to new steady states in blood plasma ion

contents, as Antarctic fish possess serum osmolarities nearly twice as high as temperate

teleosts (about 600 mOsm/kg opposed to 330 mOsm/kg; O'Grady and DeVries, 1982) and

accordingly show greater temperature dependent osmolality changes. Higher osmolalities are

accomplished by elevated Na+, K+ and Cl- levels and are thought to reduce the freezing point

of blood (Somero and DeVries, 1967) as well as the energetic costs of maintaining the ionic

gradient between blood and seawater in the cold. In the nototheniid Trematomus bernacchii,

warm-adaptation to 4°C leads to a decrease of serum osmolality to values comparable to

eurythermal temperate teleosts, associated with a two fold rise in Na+/K+-ATPase activity

(Guynn et al., 2002). This may affect pHi regulation and also appears feasible in P .

brachycephalum, although serum osmolalities (and changes therein) have never been studied in

that species and thus these speculations have to be considered hypothetical.

What elicits death of the animal under hyperoxia? During both treatments, the animals

displayed very similar behaviour; spontaneous activity could be monitored online by MR

imaging and was equally rare. At low temperatures, ambient oxygen concentration appeared to

secure adequate oxygen supply to the animals. Yet arterial blood-flow was not further

increased beyond 7°C under both normoxia and hyperoxia, although it would have been

possible at least under hyperoxia where levels of blood-flow were always considerably lower
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than under normoxia. Thus, the same breakpoint of blood-flow suggests failure of further

processes beyond a reduction of aerobic scope under normoxia that was considered a first line

of thermal sensitivity. Several scenarios as to the origin and location of a second line of factors

limiting thermal tolerance are feasible: as suggested, they might be located on a lower level of

organisational complexity and underlie nervous, hormonal or even cellular and molecular

control. With the data for cellular respiration and cellular energy budgets presented for

Pachycara brachycephalum and the Antarctic notothenioids in publication II, the latter two

limiting factors can be securely excluded. Once oxygen and metabolic substrate provision is

secured, cellular metabolism has been shown to function properly over a thermal range by far

surpassing that of the intact individual. Moran and Melani (2001) have demonstrated for

peripheral nerves of Arctic fish that their conduction properties begin to change only beyond

lethal temperatures of the animals, so thermally elicited nervous failure appears rather

improbable. A putative role for hormones is hard to define; moreover it is questionable

whether it would be sensible to cause death on a hormonal basis as long as systemic and

cellular parameters are still functional.

Within the context of the studies by Lannig et al. (2004), Sartoris et al. (2003b) and

Farrell and Clutterham (2003), the results presented here for normoxia clearly indicate an

oxygen limited thermal tolerance in fish. During warming, a progressive undersupply of

oxygen (and to some extent also for all other metabolic substrates) leads to an increasing

reduction of aerobic scope and finally to the onset of anaerobic metabolism. Although arterial

oxygen saturation might not be limiting, it is possibly a combination of insufficient circulatory

capacities on the one hand and insufficient blood volume and vascularisation on the other

hand that might prevent adequate oxygen supply to tissues and organs at high temperatures.

Lower costs of blood circulation and improved systemic oxygen supply under hyperoxia have

probably increased aerobic scope of the animals and therefore may even have shifted pejus and

critical temperatures. Yet, this was not observed, possibly due to the closely connected further

mechanisms of thermal tolerance discussed above.

Under normoxia and presumably also under hyperoxia, upper pejus temperatures for

Pachycara brachycephalum were supposedly located around 6°C, as this was the temperature

where blood-flow levelled off and muscle tissue oxygenation decreasing, indicating first

limitations of aerobic scope. Exact critical temperatures are hard to define, since in laboratory

studies they are affected by experimental design. Several variables can affect individual critical

temperatures, including rate of heating, duration of exposure to high temperature and

acclimation history of the specimens (Hochachka and Somero, 2002). This becomes obvious

when comparing experimental methodology and critical temperatures determined for P.
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brachycephalum in publication I with the respective parameters in the studies of Van Dijk et al.

(1999), who observed lower critical temperatures due to faster warming.

4.2 Cellular thermal tolerance

Based on the conclusions of publication I, publication II set out to investigate the

potential role of cellular processes in thermal limitation. Cellular respiration and energy

allocation to the four most important energy-consuming processes in the cell, RNA/DNA,

protein and ATP synthesis, as well as ion regulation by the Na+-K+-ATPase were examined in

isolated liver cells of Antarctic notothenioids fish between 0 and 15°C (publication II, figure

1). The fish species used for the experiments comprised the sub-Antarctic nototheniid

Lepidonotothen larseni, four high-Antarctic species of the gender Trematomus, and the high-

Antarctic Artedidraconid Artedidraco orianae (cf. figure 3). Results were complemented by

cellular respiration data recorded for Pachycara brachycephalum in previous experiments

(publication II, figure 3).

Sub-Antarctic and high-Antarctic cells displayed different respiration characteristics at

low temperatures, reflecting species-specific thermal optima in minimized overall cellular

energy demand. Cells of the sub-Antarctic notothenioid L. larseni and of P. brachycephalum

showed minimal oxygen consumption between 3 and 6°C, whilst cells of the high-Antarctic

species displayed a cellular energetic minimum at 0°C with progressively rising respiration

rates upon warming. In line with this finding, sub-Antarctic notothenioids possess lower

cellular protein synthesis and somewhat larger active ion regulation capacities than their high-

Antarctic confamilials (publication II, figure 2), which is typical for more eurythermal species

(Smith and Haschemeyer, 1980; Pörtner and Sartoris, 1999; Sartoris et al., 2003a; Storch et al.,

submitted).

Energy budgets remained by and large constant with first signs of changes in energy

allocations that may have been caused by cellular energetic restrictions in the sub-Antarctic

species L. larseni at low temperatures and the high-Antarctic species T. eulepidotus at elevated

temperatures. Parallel with a rise in cellular oxygen consumption below 3°C, actinomycin D

sensitive respiration was decreased at 0°C in L. larseni, reflecting decreased RNA and DNA

synthesis rates. In T. eulepidotus, a progressive decline in cycloheximide sensitive respiration

with rising temperatures could be observed and indicated decreasing protein synthesis rates

due to energy allocation to processes more important to cellular homeostasis like ion

regulation during warming (publication II, figure 1).

Maintenance of unchanged energy allocation over a wide range of temperatures in all

species supports the notion that thermal limits are set by oxygen availability and associated
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energy limitations of the whole animal level, whilst isolated cells are less thermally sensitive.

Wider windows of tolerance at even lower levels of complexity are also reflected in the work

of Somero and De Vries (1967), who found some enzymes of Trematomus bernacchii to show

linearly increasing activity up to 30°C but the intact animals to die beyond 6°C. Hepatocytes

of the sub-Antarctic species L. larseni and of P. brachycephalum showed signs of cold-

eurythermy. Their thermal optimum in relation to habitat temperature indicates that the

species may live close to their lower limit of thermal tolerance.

The focus of this study was on thermally induced shifts of energy allocation, and not

on shifts directly provoked by reductions in cellular energy status. Unlike in the experiments

of Buttgereit & Brand (1995) and Wieser & Krumschnabel (2001), where the authors reduced

cellular energy charge by stepwise titration with the inhibitor myxothiazol, which blocks the

electron transport chain by inhibiting complex III, the in vitro conditions of the medium used

for cell storage in publication II were chosen not to be limiting – neither in oxygen, nor in

metabolites. Oxygen levels were always above 4 kPa, which has been shown to be the

threshold extracellular PO2, below which cellular energy metabolism becomes limited in trout

hepatocytes (Pannevis and Houlihan, 1992). Intracellular critical PO2 are difficult to measure

and consequently rarely published. In canine red muscle cells, minimum intracellular PO2 for

maximal cytochrome turnover has been estimated to be 0,23 kPa (1.7 torr) and O2 becomes

effectively limiting at 0,04 to 0,07 kPa in these cells (Honig et al., 1992). At the whole animal

level it is even more difficult to examine whether cells are oxygen or substrate limited, because

one has to also account for the systemic constraints of substrate and oxygen supply. There

was probably no decrease in cellular energy charge in the experiments of publication I over a

wide thermal range, as is illustrated by the adenylate data presented in figure 4: beyond 6°C,

individual variability in ratios of high-energy phosphates increased, but generally ratios

remained stable until the very end of the experiments, when ATP and phosphocreatine (PCr)

concentrations collapsed virtually minutes before the animals died (cf. publication I). Yet a

second way of interpretation would be that constant concentrations of high-energy

phosphates have highest priority in cellular metabolism and ATP consumption is accordingly

adjusted to grant sufficient ATP provision to selected processes, again leading to a hierarchic

priority in those processes. Nonetheless, stable patterns of energy allocation during warming

illustrate that the isolated hepatocytes used in the experiments of publication II were not

limited in oxygen or metabolites, especially as they were free of the constraints imposed by a

complex organism.
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Figure 4: Ratios of concentrations of various high-energy phosphates under normoxia during warming. Levels

were comparable under hyperoxia. PCr: phosphocreatine; Pi: inorganic phosphate; γATP: ATP, as measured

from the signal of the γ-phosphate moiety. Data are presented as means±SD (unpublished data, taken from

MR spectroscopic experiments of publication I, see publ. I for further details).

As mentioned in publication III, the data presented by Lannig et al. (submitted) for membrane

bound cytochrome c oxidase activities after warm acclimation in P. brachycephalum suggested

effects of homeoviscous adaption of mitochondrial membranes for this particular protein.

Interestingly, thermally induced changes in membrane fluidity did not appear to play a

significant role in the isolated hepatocytes in publication II, in contrast to the conceivable

effects discussed above for systemic adaptation in Pachycara brachycephalum and in publication

III for UCP2 expression. Although effects of homeoviscous adaptation have been reported

for Na+-K--ATPase activity in erythrocytes of cold-acclimated trout (Raynard and Cossins,

1991), Na+-K--ATPase activity in the isolated cells of publication II did not appear to be
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influenced by these effects, which may be indicative of an absence or slow reaction times of

membrane adaptive processes during short-term warming (minutes to hours) and in isolated

cells.

4.3 Thermally induced molecular adaptations

Publication III investigated the adaptive capacities of mitochondrial uncoupling

protein 2 during warm and cold acclimation, respectively, in the Antarctic eelpout Pachycara

brachycephalum and the common eelpout Zoarces viviparus. Mitochondrial UCP2 was chosen for

the study because of its potential role in enhancing energetic plasticity of the mitochondria

during thermal acclimation. Objective of the study was to characterise zoarcid UCP2 cDNA

and, secondly, to examine mRNA and protein expression levels during thermal acclimation.

In muscle and liver tissue, well-conserved homologues of mammalian UCP2 could be

characterised in Pachycara brachycephalum and Zoarces viviparus with a high degree of identity

between each other and with further fish and mammalian UCP2, which is indicative of an

important function of UCP also in ectotherms. The proteins consist of 313 amino acids each

(publication III, figure 2), the complete cDNA sequences are depicted in figure 5.

 Upon warm acclimation from 0°C to 5°C, mRNA and protein expression increased in

Pachycara brachycephalum, which stands in contrast to Zoarces viviparous, where expression levels

rose during cold acclimation from 10°C to 2°C. In both muscle and liver tissue, similar

patterns of thermally sensitive expression of UCP2 could be observed (publication III, figure

5).

Higher levels of UCP after cold acclimation in Z. viviparus are most probably the result

of an overall increase in mitochondrial capacity frequently found during cold acclimation (St-

Pierre et al., 1998; D'Amico et al., 2002; Guderley and St-Pierre, 2002; Lannig et al.,

submitted). For Z. viviparus, there is clear evidence for mitochondrial proliferation in the cold,

cytochrome c oxidase has been found to increase at both message and functional levels in

muscle after cold acclimation (Hardewig et al., 1999b; Pörtner, 2002a), as well as activity levels

of liver citrate synthase (Lucassen et al., 2003). The significantly up-regulated UCP2 message

and protein levels upon cold acclimation in Z. viviparus corroborate these findings.

In the sub-Antarctic species P. brachycephalum, the picture was different: UCP2 mRNA

and protein expression increased upon warm acclimation, instead of showing the expected

decline. This species is apparently not able to sufficiently decrease its mitochondrial capacities

in the warm, which has been discussed in publication III in the light of the data presented by

Lannig et al. (submitted). Overly high mitochondrial capacities and turnover rates in the warm

might lead to high mitochondrial membrane potentials, which increase the risk of reactive
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oxygen species (ROS) formation. Increased levels of oxidative stress in warm acclimated P.

brachycephalum observed by Heise et al. (2004) are in line with this hypothesis. In acting as a

security valve, high levels of UCP2 could ‘take the edge off’ high membrane potentials and

thus minimise the risk of ROS formation. Therefore, enhancing expression levels of UCP2

would be a means on the molecular level to support mitochondrial adaptive plasticity during

thermal acclimation.
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Figure 5: Complete cDNA sequences of the UCP2 genes of P. brachycephalum and  Z. viviparus in 5’-3’
orientation. The black line depicts the open reading frame, they grey line the poly A signal sequence
(Proudfoot and Brownlee, 1976). The sequences can also be obtained from the Internet by the Genbank

a c c e s s i o n  n u m b e r s  A Y 6 2 5 1 9 0  ( Z v U C P 2 )  a n d  A Y 6 2 5 1 9 1  ( P b U C P 2 )
(www.ncbi.nlm.nih.gov/Genbank/index.html).
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4.4 Conclusions

This thesis investigated a number of aspects of thermal sensitivity and thermal

acclimation from the whole animal down to the molecular level, the most important of which

have been illustrated above. This section will provide an integrative synopsis of these results

followed by an outlook suggesting further possible research in this field.

On the ecological scale it is growth and reproduction, which define survival of a

species in a given thermal environment (provided living conditions are optimal) (Brett and

Groves, 1979). To secure species survival, animals are therefore confined to the thermal

optimum range depicted in figure 1. Growth and reproduction can only occur when surplus

energy is available (Pitcher and Hart, 1982; Wieser, 1986). When food availability and uptake

rates are high, energy is thus channelled into growth rather than locomotion (Boutilier, 1998).

In situations of limited energy availability or limited aerobic scope, growth has less priority in

energy allocation and hence growth and reproduction will be stopped first, followed by

reductions in activity and movements of the animal (Brett and Groves, 1979).

This is in line with the hypothesis of a hierarchy in ATP consuming processes in the

cell suggested by Atkinson (1977). In accordance with their functional importance, ATP

consuming processes show different sensitivities towards limitations in cellular energy

availability. The findings of Buttgereit & Brand (1995) and Wieser & Krumschnabel (2001)

support this notion. In rat thymocytes and fish hepatocytes, respectively, the authors inhibited

mitochondrial complexes III and IV and found decreasing sensitivity to cellular energy

limitation in the following metabolic processes: protein synthesis was most sensitive, followed

by RNA/DNA synthesis. Na+-cycling and Ca2+-cycling were less sensitive; the least sensitivity

was shown by proton leak and further unidentified ATP consumers. Thus, the hierarchies

proposed for whole animal thermal tolerance also become visible at the cellular level. Driven

by the hierarchies of cellular energy allocation, growth and reproduction are only found in the

optimum range at full aerobic scope and less sensitive processes like pHi regulation extend

into the pejus range of decreasing aerobic scope. In this light, the animal forms a functional

unity, in which energy metabolism is adjusted from molecular to systemic level. Ultimately, the

cellular level controls thermal tolerance, but the energetic restrictions leading towards a limited

thermal tolerance are not elicited by capacity limitations at the cellular but at a higher, systemic

level. The most complex, systemic level appears to be the most sensitive and in terms of

thermal tolerance, it is the cardio-vascular system that initiates limitation of aerobic scope in

fish. In accordance with the concept of symmorphosis (Taylor and Weibel, 1981), the cardio-

vascular system is found to be fine-tuned to function optimally under normal environmental
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conditions. At oxygen demands beyond, under-supply of oxygen caused by limited cardio-

vascular capacities evokes a hypoxia-induced limitation to energy turnover at the cellular level.

The consequences are shifts in cellular energy allocation that become manifest on all levels of

organisational complexity up to the final, ecological level. The fact that limitations appear first

at the systemic level is also in agreement with the concept of a systemic to molecular hierarchy

of thermal tolerance (publication IV; Pörtner, 2002b), in which the most complex

organisational level is also the most thermally sensitive, whilst thermal tolerance windows can

slightly increase towards lower levels of complexity – as has been observed for cellular thermal

tolerance in publication II.

Yet, there are exceptions to the rule, as has been demonstrated by the breakpoints in

blood-flow and pHi regulation in publication I, which were similar under normoxia and

hyperoxia and thus appeared independent of systemic oxygen supply. It has therefore to be

kept in mind that it may not exclusively be oxygen supply capacity that limits thermal

tolerance. Oxygen supply can only be considered the first line of sensitivity, behind which

others follow that are closely connected and integrate into tissue functional capacity (Pörtner,

2001). Under long-term acclimation, changes in membrane properties may for example play a

role, as has been suggested in publication I and III.

Acclimation of functional capacity compensates for thermal limitations. This appears possible

within phylogenetic limits, but it remains to be elucidated how they are defined and where

they are set. Many fish species undergo vast biochemical and systemic adaptations during

seasonal acclimatisation, yet it remains questionable, whether these adaptive abilities are lost or

still possible in Antarctic fish, where seasonal acclimatisation has not been needed for millions

of years. Systemic short-term reactions, such as variations of hematocrit, could immediately

alleviate limitations in oxygen supply: Decreasing blood viscosity during warming offers the

opportunity to improve oxygen provision by a rise in hematocrit, which is generally low in

Antarctic fish (partly because of high blood viscosity in the cold, cf. introductory chapter).

Erythrocytes are sequestered in the spleen of fish and can be released rather spontaneously in

situations of increased oxygen demand, also in Antarctic fish (Egginton and Davison, 1998).

Longer-term thermal adaptation leads to capacity increases of the cardio-vascular system due

to capillary growth, this has been observed during cold acclimation in carp (Johnston, 1982)

and is generally found during altitude acclimation and as a response to exercise in mammals

(Taylor and Weibel, 1981). Judging from the role that the cardio-vascular system plays in the

current picture of oxygen limited thermal tolerance in fish, a capacity increase would also

make sense at the warm end of the thermal tolerance range: increased vascularisation would

improve oxygen supply on the venous side and at the same time easen the workload of the
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circulatory system, in this way even reducing systemic oxygen demand. Improving the venous

oxygen reserve appears crucially important to secure myocardial oxygen supply – independent

of the existence of a coronary circulation. Myocardial function is dependent on venous oxygen

supply and to assure survival during thermal acclimation, venous oxygen levels must always

remain above a certain critical threshold of venous PO2 illustrated by Farrell (2002) and

examined by Farrell & Clutterham (2003).

Cold adaptation is also reflected on the cellular level by increased mitochondrial and

enzymatic capacities and a cold adapted RNA and protein synthesis machinery in Antarctic

fish and in sea-urchin embryos (Smith and Haschemeyer, 1980; Marsh et al., 2001; Storch et

al., submitted). However, warm acclimation has seldomly been investigated in Antarctic fish

and seems to cause problems in the Antarctic species Pachycara brachycephalum: The cardio-

vascular system appears to form the ‘bottleneck’ in thermal tolerance by limiting oxygen

supply during hyperthermia (cf. publication I) and it is currently not known, whether long-

term warm acclimation could lead to increased capacities of the cardio-vascular system. At

first sight, mitochondrial adaptation appears constrained in P. brachycephalum and can only

partly compensate for rising metabolic turnover during warming (publication III, Lannig et al.,

submitted). But this might also reflect an alternative way of warm adaptation specific for

Antarctic fish. As suggested in publication III, proteins like UCP2 might join the adaptive

processes at the molecular and protein levels to form an integrative mitochondrial adaptive

response, keeping elevated mitochondrial capacities to increase aerobic scope and shift to a

more eurythermal mode of life in the warm. By uncoupling of the mitochondrial membrane

potential UCP2 may assist mitochondrial adaption and in addition to changes in membrane

properties (see publication III) minimise the risk of ROS formation. In this light, it would be

very interesting to investigate how far this mode of adaptation can take P. brachycephalum or

Antarctic fish in general, which shall be discussed in the following.

Recently, Lowe et al. (2004) conducted warm-acclimation experiments with a high-

Antarctic notothenioid fish, Pagothenia borchgrevinki, which was acclimated from –1 to 4°C for

4-5 weeks. The authors found cytochrome c oxidase activity, lactate dehydrogenase activity

and swimming ability to rise and cardiac and aerobic scope increased, too. Thermal

performance breadth investigated in swim-tunnel experiments increased from 3 to 9°C. Warm

adaptation in notothenioids may hence not only lead to shifts to osmolarities typical for

eurythermal fish (see above; Guynn et al., 2002) but also to a more eurythermal mode of life

with increased capacities for exercise. This was previously considered impossible for

notothenioids (Eastman, 1993), Weinstein & Somero (Weinstein and Somero, 1998) had

reported maximal survival time of 4-5 weeks at 4°C for Trematomus bernachii and Trematomus
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newnesi. These results show that the adaptive capabilities to warmth of the so-called ‘extremely

stenothermal’ Antarctic fish have to be re-evaluated.

In a recently conducted ‘extremely’ long-term warming experiment with P .

brachycephalum, several specimens were kept at 6°C for several months (instead of weeks) and

then progressively warmed to 13°C over a period of two weeks. The fish survived for four

weeks (data not published). Compared to the results of publication I, where the animals died

after several hours at 12 to 13°C, this is preliminary evidence for increased heat tolerance and

maybe even shifts in threshold temperatures elicited by long-term acclimation to intermediate

temperatures in this species.

It has to be mentioned though, that members of the Zoarcidae are cosmopolitan and have

been able to adapt to cold-water habitats all around the world. In the Antarctic, zoarcids by

and large do not enter similarly cold water as the notothenioids, even in the high Antarctic.

Species of the sub-order Notothenioidei diversified in Antarctic waters and can be considered

extremely cold adapted, although some notothenioid species have been able to adapt to non-

Antarctic cold water habitats near New Zealand. Still, their overall warm-adaptation

capabilities may be less expressed than in Antarctic zoarcids.

In further experiments carried out by E. Brodte, growth maxima and food conversion

optima were found to be at 4°C in P. brachycephalum (E. Brodte, personal communication),

which is in line with minimum cellular oxygen consumption (cf. publication II, figure 3) and

constitutes a further sign that P. brachycephalum must be considered less cold adapted than

many notothenioids, with optimum temperatures beyond those commonly found in large

bodies of high-Antarctic surface waters. Though lower than at 4°C, growth was still present at

6°C, where in the experiments of publication I the characteristics of pHi regulation changed

after acute warming. This might be indicative of an adaptive response; unfortunately,

physiological parameters like pHi regulation were not measured to allow for a direct

comparison with the data presented in publication I to locate conceivable acclimation effects

and putative shifts of pejus temperatures. To shed some light on these processes, slow long-

term warming of P. brachycephalum and high-Antarctic notothenioids might be promising,

examining growth and changes in vascularisation as well as mitochondrial densities and

composition and enzymatic capacities over a range of temperatures. These findings could be

compared to adaptive mechanisms – and maybe also expression of potentially regulative

proteins like UCP2 – occurring during extreme warming in the eurytherm Z. viviparus, which

frequently undergoes seasonal acclimation.

In conclusion, the data presented in this thesis have shown that thermal tolerance of

the various levels of organisation in fish may differ if studied on their own but in a complex
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organism are in mutual control of each other, with the highest organisational level showing the

highest thermal sensitivity, as depicted in figure 6 (Pörtner, 2002b).

In a narrow window, warm acclimation appears possible also for Antarctic fish (figure 6), yet

the data are too few and insubstantial to support generalisations. Nonetheless, they indicate

that stenothermal fish species might not be as thermally limited as they appear on first sight. It

emerges that at least some Antarctic fish species could keep pace with a slow and moderate

warming of Antarctic waters, especially deep water species as P. brachycephalum that have

invaded high-Antarctic regions but avoid the cold surface waters and stay in warmer deep

water layers. Extremely cold-adapted fish like icefish (Channichthyidae), which – lacking

hemoglobin – are more dependent on cold and stable temperatures that ensure high oxygen

solubility (Wells et al., 1990; Di Prisco, 2000) will probably not be among those species. These

assumptions are clearly hypothetical and focus on the species level. With interdependent food

webs and inter-specific relationships, the ecological level proves even more sensitive and

complex and could accordingly be considered the ultimate level defining thermal tolerance

(figure 6; Pörtner et al., 2004). Thermally induced changes at the ecosystem level will thus be

much more dramatic and will evoke changes from re-arrangement of the inhabiting species to

a reorganisation of the complete ecosystem, which has not yet been studied in detail for

Antarctic ecosystems, but could have deleterious consequences for individual species (Fraser

and Hofmann, 2003; Schmitz et al., 2003; Winder and Schindler, 2004).

Figure 6: Scheme of the hierarchies and functional integrities of the organisational complexity levels as
proposed here for Antarctic fish. Adaptation upon warming may lead to an integrated response of all levels of
complexity, causing a shift from cold stenothermy to cold eurythermy. Associated decreased thermal
sensitivity could produce higher aerobic scopes and wider thermal tolerance windows.
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