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On the method of probability weighted moments in regional

frequency analysis

Jona Lilienthal ˚, Paul Kinsvater and Roland Fried

Abstract

In regional flood frequency analysis it is of interest to estimate high quantiles of a local river
flow distribution by gathering information from similar stations in the neighborhood. E. g., the
popular Index Flood (IF) approach is based on an assumption termed regional homogeneity,
which states that the quantile curves of those stations only differ by a site-specific factor, the
so-called index flood, and it is assumed that the station’s distribution is known up to some
finite-dimensional parameter. In this context the method of probability weighted moments (or
equivalently L-moments) is most popular for parameter estimation. While the observations
often can be regarded as independent in time, a challenge arises from the fact that river flows
from nearby stations are strongly dependent in space. To the best of our knowledge, none of the
approaches from the literature based on the IF-model and on L-moments is able to take spatial
dependence adequately into account. Our goal is to fill this gap. We present asymptotic theory
that does not ignore inter-site dependence, which, for instance, allows to evaluate estimation
uncertainty. As an application of this theory, a test procedure to check for regional homogeneity
under index-flood assumptions is given and reviewed in a simulation study.

1 Introduction

Probability weighted moments have been introduced by Greenwood et al. (1979). Since then
they have attracted a lot of attention in environmental science, for instance, in flood frequency
analysis, where it is of interest to estimate high quantiles of river flow distributions.
Let F be a continuous distribution function on R with finite mean and let X1, . . . , Xn denote a
sample of i.i.d. observations from F . The k-th probability weighted moment (PWM) βk of F ,
k P N0, and its sample version β̂k,n are defined by

βk “

ż

R
x ¨ F kpxq dF pxq and β̂k,n “

ż

R
x ¨ F kn pxq dFnpxq “

1

n

n
ÿ

i“1

Xi ¨ F
k
n pXiq, (1)

respectively, with Fn denoting the empirical distribution of the sample. Hosking (1990) proved
that every distribution with finite first moment is uniquely determined by its sequence of prob-
ability weighted moments pβkqkPN0 . In case of a parametric family F “ Fϑ, ϑ P Θ Ă Rp, some
finite number of PWMs is enough in order to determine the parameter θ. As a typical example
we consider the family of generalized extreme value (GEV) distribution functions

Gµ,σ,ξpxq “ exp

˜

´

„

1` ξ
x´ µ

σ

´1{ξ
¸

, 1` ξ
x´ µ

σ
ą 0,

˚Corresponding author. Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44221 Dort-
mund, Germany. E-mail: lilenthal@statistik.tu-dortmund.de.
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with parameters ϑ “ pµ, σ, ξq1 P R ˆ R` ˆ R called location, scale and shape, respectively. If
we assume that ξ ă 1, we can apply the so-called method of PWMs: Hosking et al. (1985)
showed that the parameter vector ϑ “ φpβq of the GEV is uniquely determined by the first
three PWMs β “ pβ0, β1, β2q of Gϑ, where φ is implicitly defined through an equation system.
Even more, if ξ ă 1{2 holds, Hosking et al. (1985) proved asymptotic normality of the canonical

estimator θ̂n “ φpβ̂nq computed from sample PWMs β̂n “
´

β̂0,n, β̂1,n, β̂2,n

¯1

.

In some applications, where we observe variables at many sites j P t1, . . . , du of a region with
site-specific distributions Fj , it is of interest to combine information in order to estimate a
target distribution, say, F “ F1. These pooling methods are based on certain assumptions
called regional homogeneity. As an important example, the so-called Index Flood (IF) method
(Dalrymple, 1960) considers the homogeneity hypothesis

H0,IF : F´1
j “ sj ¨G

´1
ϑ for all j “ 1, . . . , d, (2)

where sj “ spFjq for some factor s (e.g. population mean or any location parameter) and where
Gϑ is a given parametric distribution with ϑ unknown (e.g. the GEV distribution).
Nowadays the most popular estimation method in regional flood frequency analysis considers
assumption (2) and applies the method of PWMs for parameter estimation (Hosking and Wallis,
2005). However, satisfactory results proving asymptotic normality of such regional estimators
based on PWMs and consistency of related tests of homogeneity (Hosking and Wallis, 2005,
Chap. 4.3) have not been available so far. We are going to present a new limit theorem that
allows us to fill these gaps. Our limit theorem enables us to estimate the variability of regional
PWM estimators consistently, without relying on parametric dependence models or re-sampling
schemes.
The remainder of this article is organized as follows. Section 2 presents a new central limit
theorem for sample PWMs in a regional setting. As an immediate consequence, asymptotic
theory for regional estimation by the method of TL-moments is provided in Section 3. We
particularly focus on a new test of regional homogeneity and study its finite-sample properties
by simulation in Section 4. All technical details are deferred to an appendix.

2 Limit theorem for sample PWMs

Let X “ pX1, . . . , Xdq
1 be a d-dimensional random vector whose continuous marginal distribu-

tion functions are denoted by Fjpxq “ PpXj ď xq, j “ 1, . . . , d. In the applications we will
consider river flow observations from d different measurement stations, where each margin Fj
represents a station’s local flow distribution. We stress out that we do not assume the com-
ponents to be independent. Let K P N be fixed. The first K PWMs of Fj are denoted by
βj “ pβ0,j , β1,j , . . . , βK´1,jq

1, where

βk,j “

ż

R
x ¨ F kj pxq dFjpxq, k “ 0, 1, . . . ,K ´ 1 and j “ 1, . . . , d.

All these local PWM vectors are summarized in β “ pβ11, . . . ,β
1
dq P RdK .

Suppose that Xi “ pXi,1, . . . , Xi,dq
1, i “ 1, . . . , n, denote independent copies of X, where i is

interpreted as a time index and with t1, . . . , nu covering the observation period. However, when
considering observations from different river stations, it is unlikely that the observation period
is (almost) the same for all d sites. Let n “ n1 ě n2 ě . . . ě nd denote the local sample lengths,
which are rearranged by length for ease of representation. A more appealing scenario is that
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we observe a scheme

X1,1, X2,1, X3,1, X4,1, X5,1, . . . , Xn,1,
Xa2`1,2, Xa2`2,2, Xa2`3,2, . . . , Xn,2,

. . .
...

Xad`1,d, Xad`2,d, . . . , Xn,d,

(3)

with aj “ n ´ nj and where each row contains only observations from the same station. It is
important to account for the structure of the scheme in order to be able to capture properly
the dependence between local estimates of probability weighted moments. For the asymptotic
results we let n Ñ 8 and we assume that nj{n Ñ rj P p0, 1q in order to account for possibly
very different local sample lengths, i.e., we set nj “ tnrju.
The sample version of βk,j computed from those observations is given by

β̂k,j “ β̂k,j,rj ,n “

ż

R
x ¨ F kj,aj`1:npxq dFj,aj`1:npxq “

1

nj

nj
ÿ

i“1

Xaj`i ¨ F
k
j,aj`1:npXaj`iq,

where Fj,`:m is the empirical distribution function of Xj,`, Xj,``1, . . . , Xj,m. Sample counterparts
of βj P RK and β P Rd¨K are denoted by

β̂j,rj ,n “
´

β̂0,j , . . . , β̂K´1,j

¯1

and β̂r,n “
´

β̂11,r1,n, . . . , β̂
1
d,rd,n

¯1

, (4)

respectively, where r “ pr1, . . . , rdq highlights the dependency on scheme (3).

Theorem 1. Suppose that Xi, i ě 1, is a sequence of independent copies of X “ pX1, . . . , Xdq
1,

whose PWMs are summarized in the vector β P Rd¨K and with

E
”

XjF
k
j pXjqX`F

m
` pX`q

ı

ă 8 for all 1 ď j, ` ď d and 0 ď k,m ă K.

Suppose further that supxPR |xtFjpxqp1´ Fjpxqqu
w| ă 8 for all j “ 1, . . . , d and some w P

r0, 1{2q. Then, for fixed r P p0, 1qd and nÑ8, we have that

?
n
´

β̂r,n ´ β
¯

D
ÝÑ N p0, Σrq ,

where the limiting variance matrix Σr P RdKˆdK is provided in Appendix A.

Theorem 1 and a consistent estimator Σ̂r,n of Σr (see Appendix A) allow us to develop asymp-
totically consistent methods for regional frequency analysis, which is summarized in the next
two sections.

3 Limit theorems for sample TL-moments and estimation of
GEV parameters

L-moments λk “ λkpF q, k P N, as defined by Hosking (1990) turn out to be useful summary
statistics of heavy-tailed distributions F , since their existence requires only a finite first mo-
ment and because they are interpretable analogously to summary statistics based on classical
product moments µk “

ş

xk dF pxq, for instance, with λ1, λ2, and τ3 “ λ3{λ2 representing loca-
tion, dispersion, and skewness of F , respectively. More generally, practitioners from hydrology
nowadays consider so-called Trimmed L-moments (TL-moments)

λ
ps,tq
k “

1

k

k´1
ÿ

i“0

p´1qi
ˆ

k ´ 1

i

˙

E pXk`s´i:k`s`tq
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of F , with s, t P N0 interpreted as left- and right-trimming parameters, respectively, and λ
p0,0q
k “

λk. X1:n ď . . . ď Xn:n denote order statistics of a random sample of size n drawn from F . It
is known that every TL-moment can be represented as a linear combination of a finite number
of PWMs, provided F has finite mean. This fact, by referring to Theorem 1, allows us toderive
central limit theorems for sample TL-moments and related methods easily.

3.1 At-site statistics

Throughout this paper we will assume that F has finite mean. The TL-moment of F of order
k P N with trimming s, t P N0 is known to satisfy

λ
ps,tq
k “

k`s`t´1
ÿ

i“0

z
ps,tq
k´1,i βi “ pz

ps,tq
k´1 q

1

β,

with β “ pβ0, . . . , βk`s`t´1q
1

being the vector of the first k ` s ` t PWMs of F and z
ps,tq
k´1 “

pz
ps,tq
k´1,0, . . . , z

ps,tq
k´1,k`s`t´1q

1

being a coefficient vector with components

z
ps,tq
k,i “

k!pk ` s` t` 1q!

pk ` 1qpk ` sq!pk ` tq!
p´1qs`k`i

ˆ

k ` t

i` s

˙ˆ

k ` i

k

˙

.

Let Zps,tq “ pz
ps,tq
0 , . . . ,z

ps,tq
m´1q

1

denote the linear mapping such that λps,tq “ Zps,tqβ with λps,tq “

pλ
ps,tq
1 , . . . , λ

ps,tq
m q1. For ease of notation we suppress the sample length n in the notation of the

estimators, i.e., β̂ “ β̂n. The first m sample TL(s, t)-moments λ̂ps,tq “ pλ̂
ps,tq
1 , . . . , λ̂

ps,tq
m q

1

and
the corresponding covariance matrix are given by

λ̂ps,tq “ Zps,tqβ̂, Varpλ̂ps,tqq “ Zps,tqVarpβ̂qpZps,tqq
1

.

Recall that nVarpβ̂q
P
Ñ Σ for n Ñ 8 and some matrix Σ. From Theorem 1 and the delta

method we obtain for nÑ8

?
n
´

λ̂ps,tq ´ λps,tq
¯

D
ÝÑ N

´

0, Zps,tqΣpZps,tqq
1
¯

.

So far we have introduced TL-moments as summary statistics of distributions without restrict-
ing to any parametric family. In practice, however, one usually assumes that F “ Fϑ for some
unknown parameter vector ϑ P Θ Ă Rp. Relationships between TL-moments and the distri-
bution parameters are employed, which allows us to estimate these parameters by plugging in
sample TL-moments into the formulas.
More specifically, let gps,tq : Rm ÞÑ R

p be a differentiable function that maps the first m TL(s, t)-
moments of Fϑ onto its parameter vector ϑ. From the delta method, for ϑ̂ “ gps,tqpλ̂ps,tqq and
nÑ8, we immediately obtain that

?
n
´

ϑ̂´ ϑ
¯

D
ÝÑ N

´

0, A
ps,tq

λps,tq
Zps,tqΣpZps,tqq

1

pA
ps,tq

λps,tq
q
1
¯

, (5)

where A
ps,tq
λ “ B

Bλg
ps,tqpλq P Rpˆm denotes the Jacobi matrix of gps,tq evaluated at λ P Rm.

Relationships between GEV parameters and TL(0,0)-moments (resp. TL(0,1)-moments) with

corresponding matrices A
ps,tq

λps,tq
are summarized in Appendix C.

In flood frequency analysis we are usually not interested in the estimation of parameters but
in quantiles q̂ “ pq1, . . . , qkq

1

. Suppose that hpqq “ pF´1
ϑ pq1q, . . . , F

´1
ϑ pqkqq

1 is differentiable in
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ϑ and let Bϑ P Rpkˆp denote the corresponding Jacobi matrix. Again, from the delta method
and for nÑ8, we obtain

?
n pq̂ ´ qq

D
ÝÑ N

´

0, BϑA
ps,tq

λps,tq
Zps,tqΣpZps,tqq

1

pA
ps,tq

λps,tq
q
1

B
1

ϑ

¯

. (6)

Considering again the GEV(µ, σ, ξ) family with quantile function hpqiq “ F´1
ϑ pqiq “ µ´ σ

ξ p1´

p´ logpqiqq
´ξq, the matrix Bϑ “ pB

pq1q
ϑ , . . . , B

pqkq
ϑ q

1

is given row-wise by

B
pqiq
µ,σ,ξ “

¨

˚

˝

1
p´ logpqiqq

´ξ´1
ξ

σpξ´1´p´ logpqiqq
´ξplogp´ logpqiqq`ξ

´1qq

ξ

˛

‹

‚

.

3.2 Joint estimation at multiple stations

We switch to a regional scale by considering multivariate observations as given in scheme (3).
Recall that β̂r “ β̂r,n from (4) contains sample PWMs of all d marginal distributions Fj involved
in scheme (3). In analogy to (4), the vector of all sample TL(s, t)-moments is denoted by

λ̂
ps,tq
r “ λ̂

ps,tq
r,n “

´

pλ̂
ps,tq
1,r1,n

q1, . . . , pλ̂
ps,tq
d,rd,n

q1
¯1

with population counterpart λps,tq “
´

pλ
ps,tq
1 q1, . . . , pλ

ps,tq
d q1

¯1

P Rmd. By Theorem 1, the delta

method and for nÑ8 we obtain that

?
n
´

λ̂
ps,tq
r ´ λps,tq

¯

D
ÝÑ N

´

0, Z̃ps,tqΣrpZ̃
ps,tqq

1
¯

,

with Σr being defined in Appendix A and with block-diagonal matrix

Z̃ps,tq “ diagpZps,tq, Zps,tq, . . . , Zps,tqq “

¨

˚

˚

˚

˚

˝

Zps,tq 0 . . . 0

0 Zps,tq
...

...
. . .

0 . . . Zps,tq

˛

‹

‹

‹

‹

‚

.

Similarly, under the assumption that Fj “ Fϑj for j “ 1, . . . , d, with block-diagonal matrices

Ãps,tq “ diagpA
ps,tq
λ1

, . . . , A
ps,tq
λd
q and B̃ “ diagpBϑ1 , . . . , Bϑdq taken into account, one can easily

obtain the joint limiting distribution of parameter and quantile estimators for all d stations.

4 Test of regional homogeneity

When considering observations from multiple stations, e.g. scheme (3), in flood frequency
analysis mostly the Index Flood assumption H0,IF stated in (2) is applied in order to decrease
the estimation variability. However, while a moderate amount of heterogeneity of the group may
still lead to an overall improvement compared to local estimation (Lettenmaier et al., 1987),
strong heterogeneity typically leads to a severe bias, which again increases the overall estimation
error. It is thus important to be able to identify serious sources of heterogeneity. We are going
to introduce a statistical test that proves to be advantageous in several aspects to competitive
procedures from the literature.
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4.1 Test statistic

Suppose that we have observed scheme (3) with site-specific distribution functions Fj “ Fϑj
and that Fϑj “ Gµj ,σj ,ξj is the GEV distribution function with parameters ϑj “ pµj , σj , ξjq

1.
In this case hypothesis (2) is equivalent to

δ1 “ . . . “ δd with δi “
σi
µi

and ξ1 “ . . . “ ξd. (7)

Let ϑ̂r “ ϑ̂r,n “ pµ̂1, σ̂1, ξ̂1, . . . , µ̂d, σ̂d, ξ̂dq
1 denote an estimator of local parameters obtained

from scheme (3). We apply the TL(s, t)-moment estimator ϑ̂r of ϑ from Section 3. Let g denote
the map ϑ ÞÑ pδ1, ξ1, . . . , δd, ξdq

1 with corresponding Jacobi-matrix C “ B
Bϑgpϑq. Again, from

the delta method, we immediately obtain that

?
n
´

gpϑ̂rq ´ gpϑq
¯

D
ÝÑ N p0, Γrq with Γr “ CÃps,tqZ̃ps,tqΣrpCÃ

ps,tqZ̃ps,tqq1

as nÑ8. In order to evaluate hypothesis H0,IF , which is equivalent to R ¨ gpϑq “ 0 with

R “

¨

˚

˚

˚

˝

1 0 ´1 0 ¨ ¨ ¨ 0 0 0
0 1 0 ´1 ¨ ¨ ¨ 0 0 0
...

. . .
...

0 ¨ ¨ ¨ 1 0 ´1

˛

‹

‹

‹

‚

,

we propose a Wald-type test statistic

Tn “ n
´

R gpϑ̂rq
¯1

pR Γ̂r R
1

q´1pR gpϑ̂rqq.

Under H0,IF , for n ÝÑ 8 and under the assumptions of Theorem 1, we have that Tn
D
ÝÑ χ2

2pd´1q,

while under fixed alternatives we have Tn
P
Ñ8.

4.2 Simulation study

To check the capability of the proposed homogeneity test a small simulation study is conducted
at a nominal level of α “ 5%. The data is generated from d “ 6 dependent stations with
different local sample lengths (we refer to scheme (3)), with margins Fj “ GEV pµj , σj , ξjq and,
for simplicity, with Gumbel-Hougaard copula Cβ and dependence parameter β “ 1.5.
Table 1 summarizes the particular choice of GEV parameters and local sample lengths. Note
that assumption H0,IF from (2) is satisfied only if σ̃ “ 30 and ξ̃ “ 0.3. We conducted
10 000 independent replications of the experiment for each scenario on the grid pσ̃, ξ̃q P
t24.0, 25.5, 27.0, . . . , 36.0u ˆ t0.10, 0.15, 0.20, . . . , 0.50u. These values are consistent with our
experience from real data applications. Corresponding rejection rates of the Wald type test
statistic with Σr estimated by the check-version Σ̌r,n from Appendix A.2 are summarized in
Figure 1.
The left panel of Figure 1 depicts the test’s rejection rate for a maximal sample length of
n “ 100. The type-I-error of the test, i.e. when σ̃ “ 30 and ξ̃ “ 0.3, is 7.39% with a standard
error of roughly 0.26%. We observe that our proposed method captures deviations from H0,IF

in all possible directions and therefore, our test seems to be a suitable procedure for testing the
Index Flood assumption H0,IF from 7.
Lastly, a closer look at the type-I-error rate is taken in Figure 1, right panel. There the rejection
rate under the null is depicted as a function of n. The plot indicates that the empirical level
approaches the nominal level of 5% with increasing sample length n.
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station µ σ ξ length

1 10 5 0.3 1.0n
2 20 10 0.3 0.85n
3 30 15 0.3 0.70n
4 40 20 0.3 0.70n
5 50 25 0.3 0.85n

6 60 σ̃ ξ̃ 1.0n

Table 1: Parameters of the marginal distributions used in the simulation study. The σ̃ and ξ̃
parameters are allowed to vary in order to simulate different grades of deviation.
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A Estimation of the variance matrix Σr

The limiting variance matrix Σr “ limnÑ8Var
´?

n
´

β̂r,n ´ β
¯¯

from Theorem 1 is defined

block-wise by

lim
nÑ8

Cov
´?

n
´

β̂j,rj ,n ´ βj

¯

,
?
n
´

β̂`,r`,n ´ β`

¯¯

“
minprj , r`q

rj ¨ r`
¨ CovpZj , Z`q P RKˆK

and where Zj “ pZ0,j , Z1,j , . . . , ZK´1, jq
1, j “ 1, . . . , d, are random vectors defined through

Zk,j “ Xj ¨ F
k
j pXjq `

ż

R
x ¨ k ¨ F k´1

j pxq ¨ 1pXj ď xq dFjpxq. (8)

In words, empirical probability weighted moments are asymptotically jointly normal with lim-
iting variance matrix obtained from that of the variables defined in (8).

A.1 Empirical estimator of Σr

Suppose that we have collected an observation scheme given in (3). In practice the variance
matrices CovpZj ,Z`q can be consistently estimated by their sample analogues: Let

Ẑi,k,j “ Xi,j ¨ F
k
j,aj`1:npXi,jq `

1

nj

nj
ÿ

`“1

X`,j ¨ k ¨ F
k´1
j,aj`1:npX`,jq ¨ 1pXi,j ď X`,jq (9)

and Ẑi,j “ pZi,0,j , Zi,1,j , . . . , Zi,K´1,jq
1, i “ aj`1, . . . , n. For 1 ď j, `,ď d, the covariance matrix

CovpZj ,Z`q is estimated by the empirical covariance matrix of the sample

!´

Ẑmaxpaj ,a`q`1,j , Ẑmaxpaj ,a`q`1,`

¯

, . . . ,
´

Ẑn,j , Ẑn,`

¯)

.

The resulting estimator of Σr is denoted by Σ̂r,n and is called empirical estimator.

Corollary 2. Under the assumptions of Theorem 1 and for nÑ8 we have that Σ̂r,n
P
ÝÑ Σr.

A.2 A parametric modification on the block diagonal

In typical applications we will assume that the margins Fj “ Gϑj are known up to some finite
dimensional parameters ϑj . For instance, considering the GEV family Gϑ, Hosking et al. (1985)
derived a parametric expression for the local covariance matrices CovpZj ,Zjq “ VarpZjq “
Σpϑjq, j “ 1, . . . , d, involved in Σr. We thus may wish to replace the local part of Σ̂r by

parametric estimates V̂arpZjq “ Σpϑ̂jq, where ϑ̂j are consistent estimates of ϑj , e.g., TL-
moment estimators of GEV parameters. The modified estimator of Σr is denoted by Σ̌r,n.
Unsurprisingly, the check-version, which is also a consistent estimator of Σr, is way more efficient
than the empirical estimator, especially when the sample length n ď 100 is small. However, Σ̌r,n
is not necessarily a valid covariance matrix, contrary to Σ̂r,n. The mixture of non-parametric
and parametric parts involved in the check-version produces negative eigenvalues in some cases.
In the simulation study reported in Section 4.2 we observed negative eigenvalues in about 1%
of the repetitions.
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B Proofs of Theorem 1 and Corollary 2

For sake of readability the proofs are given for d “ 2. The derivation for arbitrary dimensions
d ě 2 can be established at the cost of a more complex notation but without additional technical
difficulties. Even more, we assume the same beginnings and different end points, that is,
we compute the statistics purely from the variables X1, . . . , Xtnr1u and Y1, . . . , Ytnr2u, where
pXi, Yiq, i ě 1, is a sequence of independent and identically distributed bivariate vectors with
margins F pxq “ PpXi ď xq and Gpyq “ PpY ď yq, respectively. The corresponding first
K probability weighted moments of F and G are denoted by α “ pα0, α1, . . . , αK´1q

1 and
β “ pβ0, β1, . . . , βK´1q

1, respectively, and we let γ “ pα1,β1q1 P R2K . We set

α̂k,r1,n “
1

tnr1u

tnr1u
ÿ

i“1

Xi ¨ F
k
tnr1upXiq and β̂k,r2,n “

1

tnr2u

tnr2u
ÿ

i“1

Yi ¨G
k
tnr2upYiq

with Fn1 (resp. Gn2) denoting the empirical distribution function of the sample X1, . . . , Xn1

(resp. Y1, . . . , Yn2). All these components are collected in α̂r1,n, β̂r2,n and γ̂r,n “ pα̂
1
r1,n, β̂

1
r2,nq

1.

Proof of Theorem 1.

Let α̃r1,n, β̃r2,n and γ̃r,n “ pα̃
1
r1,n, β̃

1
r2,nq

1 be defined analogously to the hat-versions but with
Ftnr1u and Gtnr2u replaced by their true counterparts F and G, respectively. We write

?
n pγ̂r,n ´ γq “ Qr,n `∆r,n, (10)

where Qr,n “
?
n pγ̃r,n ´ γq and ∆r,n “

?
n pγ̂r,n ´ γ̃r,nq. The remainder of the proof is

organized in the following three steps:

a) Verify that Qr,n
D
ÝÑ Qr, where the limit is a zero mean normally distributed random

vector and show that the convergence holds jointly with that of the weighted empirical
processes Ur1,n and Vr2,n defined below.

b) Show that ∆r,n “ Rr,n ` oPp1q for n Ñ 8, where all components of Rr,n can be rep-
resented as continuous functionals of either Ur1,n or Vr2,n. Verify that Rr,n converges
weakly towards a zero mean normally distributed random vector Rr.

c) Conclude that (10) is asymptotically normal with mean zero and compute the limiting
variance matrix Σr “ VarpQr `Rrq.

Step a) Let Ur1,n and Vr2,n be `8r0, 1s-valued processes defined by

Ur1,npuq “
1?
n

řtnr1u

i“1 t1pF pXiq ď uq ´ uu

tup1´ uquw
and Vr2,npvq “

1?
n

řtnr2u

i“1 t1pGpYiq ď vq ´ vu

tvp1´ vquw

for u, v P r0, 1s. These are called weighted empirical processes and their weak convergence is
studied, e.g., in Genest and Segers (2009, Appendix G) and Kojadinovic and Naveau (2015,
Appendix B) in a more general context. The weighting is needed for step b) of the proof in
order to be able to express the components of Rr,n as continuous functionals of the empirical
processes. Without loss of generality let r1 ď r2 and note that

Wr,n “ pUr1,n,Vr2,nq “ pUr1,n,Vr1,nq ` p0,Vr2,n ´ Vr1,nq

9



is a sum of two independent processes with Vr2,n´Vr1,n
D
“ Vr2´r1,n. By the continuous mapping

theorem and by Genest and Segers (2009, Th. G.1), both summands on the right-hand side of
the previous equation converge weakly in p`8r0, 1sq2 towards centered Gaussian processes and,
by independence of the summands, also does Wr,n. Let Wr denote the limiting process.
In almost the same manner we can write

?
n pγ̃r,n ´ γq as a sum of two independent random

vectors, where weak convergence of both summands towards centered normal distributions easily
follows from the central limit theorem for sums of i.i.d. random vectors. The limit is denoted
by
?
n pγ̃r,n ´ γq

D
Ñ Qr. In fact, weak convergence of Wr,n and that of

?
n pγ̃r,n ´ γq holds

jointly as a random element in p`8r0, 1s2q ˆR2K . The only thing left to verify is that the finite
dimensional convergence holds, which again follows from the central limit theorem for sums of
i.i.d. random vectors.

Step b) Let Rr,n “ pS
1
r1,n,T

1
r2,nq

1 with Sr1,n “ pS0,r1,n, . . . , SK´1,r1,nq
1,

Sk,r1,n “
1

r1

ż

R
x ¨ k ¨ F k´1pxq ¨ Ur1,npF pxqq ¨ tF pxqp1´ F pxqquw dF pxq

and analogously define Tr2,n but with pr1, F,Uq replaced by pr2, G,Vq. In order to show that
∆r,n “ Rr,n ` oPp1q for nÑ8, it suffices to consider each component separately by proving

?
n pα̂k,r1,n ´ α̃k,r1,nq “ Sk,r1,n ` oPp1q

for each k “ 0, . . . ,K ´ 1 and analogously for the β-components. But this follows from (C.9)
in the proof of Proposition C.2 in Kojadinovic and Naveau (2015).
Let ϕk : `8r0, 1s Ñ R, k “ 0, . . . ,K ´ 1, be defined by

ϕkpgq “

ż

R
x ¨ k ¨ F k´1pxqtF pxqp1´ F pxqquw ¨ gpF pxqq dF pxq

and note that Sk,r1,n “ ϕkpUr1,nq. Since supxPR
ˇ

ˇx ¨ k ¨ F k´1pxqtF pxqp1´ F pxqquw
ˇ

ˇ ă 8 by
assumption, it follows that ϕk is a continuous map. Similarly we can define continuous maps
ψk, k “ 0, . . . ,K ´ 1, such that Tk,r2,n “ ψkpVr2,nq. Bringing things together we conclude that

Rr,n “ ΨpWr,nq
D
Ñ ΨpWr,nq “ Rr, where Ψ : p`8r0, 1sq2 Ñ R2K with

Ψpf, gq “ pϕ0pfq, . . . , ϕK´1pfq, ψ0pgq, . . . , ψK´1pgqq
1

is continuous. Since each component of Rr,n is a sum of i.i.d. zero-mean random variables with
existing second moments, we conclude that the limit is a zero-mean normal distribution.

Step c) From steps a) and b) we obviously obtain the joint asymptotic normality of Qr,n and
Rr,n. By the continuous mapping theorem we conclude that

?
n pγ̂r,n ´ γq

D
ÝÑ N p0, Σrq for nÑ8,

where Σr “ VarpQr `Rrq. The calculation of the variance matrix is a simple exercise since
each component of the random vector Qr,n ` Rr,n is a sum of i.i.d. random variables and
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Σr “ limnÑ8VarpQr,n `Rr,nq. E.g., we have that

lim
nÑ8

Cov
´?

npα̂k,r1,n ´ αkq,
?
npβ̂`,r2,n ´ β`q

¯

“ lim
nÑ8

Cov

¨

˝

?
n

tnr1u

tnr1u
ÿ

i“1

XiF
kpXiq `

1

r1
?
n

ż

xkF k´1pxq1pXi ď xq dF pxq,

?
n

tnr2u

tnr2u
ÿ

i“1

YiG
`pYiq `

1

r2
?
n

ż

y`G`´1pyq1pYi ď yq dGpyq

˛

‚

“
minpr1, r2q

r1 ¨ r2
¨ Cov

ˆ

X1F
kpX1q `

ż

xkF k´1pxq1pX1 ď xq dF pxq,

Y1G
`pY1q `

ż

y`G`´1pyq1pY1 ď yq dGpyq

˙

l

Proof of Corollary 2.

Let

Zi,k,x “ Xi ¨ F
kpXiq `

ż

R
xkF k´1pxq1pXi ď xq dF pxq,

Zi,`,y “ Yi ¨G
`pYiq `

ż

R
y`G`´1pyq1pYi ď yq dGpyq

for k, ` P N0, i “ 1, . . . ,m and m “ mintnr1, nr2u. We further let Ẑi,k,x (resp. Ẑi,`,y) be defined
analogue with F (resp. G) replaced by its empirical counterpart Ftnr1u (resp. Gtnr2u). We
denote by σ̃k,`,m (resp. σ̂k,`,m) the empirical covariance of the bivariate sample pZi,k,x, Zi,`,yq,

i “ 1, . . . ,m (resp. pẐi,k,x, Ẑi,`,yq, i “ 1, . . . ,m). From the strong law of large numbers we

immediately obtain that σ̃k,`,m
a.s.
Ñ CovpZ1,k,x, Z1,`,yq for nÑ8. It thus remains to show that

|σ̂k,`,m ´ σ̃k,`,m|
P
ÝÑ 0 for nÑ8. (11)

To make a long story short, (11) follows from the consistency of probability weighted moments
proven in Theorem 1, (C.12) in Kojadinovic and Naveau (2015) and from the consistency of the
empirical process Wr,n defined in the proof of Theorem 1. A detailed presentation is omitted
for the sake of brevity. l

C Re-parametrization of the GEV distribution by TL-moments

This section recaps the equation systems used to calculate GEV parameters from TL(0,0)- and
TL(0,1)-moments, respectively. We also present the corresponding Jacobi matrices involved in
formulas (5) and (6).

TL(0,0)

Let ϑ “ pµ, σ, ξq1 with ξ ă 1 and λ “ pλ1, λ2, λ3q
1 denote parameters and untrimmed L-moments

of a GEV distribution, respectively. Hosking et al. (1985) proved that ϑ “ φpλq, where φ is a
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bijective function implicitly defined by equation system
$

’

&

’

%

2¨3ξ´3¨2ξ`1
2ξ´1

“ λ3
λ2

σ “
λ2ξ

Γp1´ξqp2ξ´1q

µ “ λ1 `
σ
ξ p1´ Γp1´ ξqq

and with Γ denoting the gamma function. However, there is no explicit expression for φ as a
function of λ. Practitioners thus commonly replace the first line by

ξ “ ´7.859z ´ 2.9554z2, z “
2

3` λ3{λ2
´

log 2

log 3

based on a second order polynomial approximation in order to obtain an explicit solution.
Accordingly the Jacobi matrix A˚ “ B

Bλφpλq involved in the asymptotic distribution of L-
moment estimators is approximated by that of the explicit solution. For the latter we obtain

A “

¨

˝

1 a12 a13

0 a22 a23

0 a32 a33

˛

‚

with

a12 “
log p2q λ2 pΓ p1´ πq ´ 1q 2π ρ θ

Γ p1´ πq p1´ 2πq2
`
λ2 ψ0 p1´ πq pΓ p1´ πq ´ 1q ρ θ

Γ p1´ πq p1´ 2πq
´

λ2 ψ0 p1´ πq ρ θ

1´ 2π
`

Γ p1´ πq ´ 1

Γ p1´ πq p1´ 2πq

a13 “´
log p2q λ2

2 pΓ p1´ πq ´ 1q 2π`1 ρ ζ2

Γ p1´ πq p1´ 2πq2
´

2λ2
2 ψ0 p1´ πq pΓ p1´ πq ´ 1q ρ ζ2

Γ p1´ πq p1´ 2πq
`

2λ2
2 ψ0 p1´ πq ρ ζ

2

1´ 2π

a22 “´
log p2q λ2 π 2π ρ θ

Γ p1´ πq p1´ 2πq2
´
λ2 ρ θ pψ0 p1´ πq π ` 1q

Γ p1´ πq p1´ 2πq
´

π

Γ p1´ πq p1´ 2πq

a23 “
log p2q λ2

2 π 2π`1 ρ ζ2

Γ p1´ πq p1´ 2πq2
`

2λ2
2 ρ ζ2 pψ0 p1´ πq π ` 1q

Γ p1´ πq p1´ 2πq

a32 “´ 2λ3 p2 b κ λ3 ´ a λ3 ` 6 b κ λ2 ´ 4 b λ2 ´ 3 a λ2q ζ
3

a33 “2λ2 p2 b κ λ3 ´ a λ3 ` 6 b κ λ2 ´ 4 b λ2 ´ 3 a λ2q ζ
3

and with a “ ´7.859, b “ ´2.9554, κ “
log 2

log 3
,

ζ “ 1{pλ3 ` 3λ2q, θ “ p2ζ ´ 6λ2ζ
2q, η “ p2λ2ζ ´ κq, π “ bη2 ` aη, ρ “ 2bη ` a,

ψ0pxq “ Γ1pxq{Γpxq

TL(0,1)

Considering trimmed L-moments λp0,1q of a GEV distribution with parameters ϑ it is also
known that ϑ “ ψpλp0,1qq, where again ψ is implicitly defined by

$

’

’

’

&

’

’

’

%

5¨4ξ´12¨3ξ`9¨2ξ´2
3ξ´2ξ`1`1

“
9λ
p0,1q
3

4λ
p0,1q
2

σ “
2¨λ

p0,1q
2

3Γp´ξq¨p3ξ´2ξ`1`1q

µ “ λ
p0,1q
1 ` σ

ξ ´
σ¨Γp´ξq
p2ξ´2q´1

.
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In order to obtain an explicit solution, the first line can by replacement by a second order
polynomial approximation

ξ “ ´8.5674z ` 0.6760z2, z “
10

9

λ
p0,1q
2

2λ
p0,1q
2 ` λ

p0,1q
3

´
2 log 2´ log 3

3 log 3´ 2 log 4
.

The Jacobi matrix of ψ is approximated by

A “

¨

˝

1 a12 a13

0 a22 a23

0 a32 a33

˛

‚,

where

a12 “´

2λ
p0,1q
2 ψ0 p´πq

´

´2 b pζ ´ ηq
´

λ
p0,1q
2 ζ ´ κ

¯

´ a pζ ´ ηq
¯

` 2

3π p´2π`1 ` 3π ` 1q γ p´πq

´
2λ

p0,1q
2

`

log p3q ι 3π ´ log p2q ι 2π`1
˘

p1´ p2π ´ 2qπ γp´πqq

3π p´2π`1 ` 3π ` 1q2 γ p´πq

´
2 ι λ

p0,1q
2

3π2 p´2π`1 ` 3π ` 1q γ p´πq
´

log p2q ι λ
p0,1q
2 2π`1 ` 2 p2π ´ 2q

3 p´2π`1 ` 3π ` 1q

a13 “´
2λ

p0,1q
2

`

log p2q 2π`1 ρ´ log p3q 3π ρ
˘

p1´ p2π ´ 2q π γp´πqq

3π p´2π`1 ` 3π ` 1q2 γ p´πq

´
2λ

p0,1q
2 ρ pψ0p´πqπ ´ 2π logp2q ´ 1q

3π2 p´2π`1 ` 3π ` 1q γ p´πq

a22 “´

2λ
p0,1q
2 ψ0 p´πq

´

´2 b pζ ´ ηq
´

λ
p0,1q
2 ζ ´ κ

¯

´ a pζ ´ ηq
¯

` 2

3 p´2π`1 ` 3π ` 1q γ p´πq

´
2λ

p0,1q
2

`

log p3q ι 3π ´ log p2q ι 2π`1
˘

3 p´2π`1 ` 3π ` 1q2 γ p´πq

a23 “´
2λ

p0,1q
2

`

log p2q 2π`1 ρ´ log p3q 3π ρ
˘

3 p´2π`1 ` 3π ` 1q2 γ p´πq
´

2λ
p0,1q
2 ψ0 p´πq ρ

3 p´2π`1 ` 3π ` 1q γ p´πq

a32 “ι

a33 “´ ρ

and with a “ ´8.5674, b “ 0.6760, κ “
2 log 2´ log 3

3 log 3´ 2 log 4
,

θ “ 3pλ
p0,1q
3 ` 2λ

p0,1q
2 q, ζ “ 10{p3θq, η “ 20λ

p0,1q
2 {θ2, π “ bpλ

p0,1q
2 ζ ´ κq2 ` apλ

p0,1q
2 ζ ´ κq

ρ “ ´bηpλ
p0,1q
2 ζ ´ κq, ι “ 2bpζ ´ ηqpλ

p0,1q
2 ζ ´ κq ` apζ ´ ηq

ψ0pxq “ Γ1pxq{Γpxq
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