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Detecting heteroskedasticity in nonparametric
regression using weighted empirical processes

Justin Chown1 and Ursula U. Müller2

Abstract. Heteroskedastic errors can lead to inaccurate statistical conclusions if they are
not properly handled. We introduce a test for heteroskedasticity for the nonparametric re-
gression model with multiple covariates. It is based on a suitable residual-based empirical
distribution function. The residuals are constructed using local polynomial smoothing. Our
test statistic involves a “detection function” that can verify heteroskedasticity by exploit-
ing just the independence-dependence structure between the detection function and model
errors, i.e. we do not require a specific model of the variance function. The procedure is
asymptotically distribution free: inferences made from it do not depend on unknown pa-
rameters. It is consistent at the parametric (root-n) rate of convergence. Our results are
extended to the case of missing responses and illustrated with simulations.

Keywords: heteroskedastic nonparametric regression, local polynomial smoother, missing at
random, transfer principle, weighted empirical process

2010 AMS Subject Classifications: Primary: 62G08, 62G10; Secondary: 62G20, 62G30.

1. Introduction

When analysing data, it is common practice to first explore the options available using
various data plotting techniques. For regression models, a key tool is to construct a plot of
the model residuals in absolute value against fitted values. If there is only one covariate, we
can use a plot of the residuals in absolute value against that covariate. This technique helps
determine whether or not theoretical requirements for certain statistical procedures are sat-
isfied, in particular whether or not the variation in the errors remains constant across values
of the covariate. This is an important assumption, which we want to examine more closely.
We will therefore consider the model with constant error variance σ2

0, the homoskedastic
model

Y = r(X) + σ0e.

The function r is the regression function and σ0 a positive constant. We consider a re-
sponse variable Y , a covariate vector X and assume that X and the random variable e are
independent, where e has mean equal to zero and variance equal to one.
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2 J. CHOWN AND U.U. MÜLLER

When the variation in the data is not constant across the covariate values the het-
eroskedastic model is adequate:

(1.1) Y = r(X) + σ(X)e.

Here σ(·) is a scale function with E[σ2(X)] = σ2
0. Model (1.1) contains the homoskedastic

regression model as a (degenerate) special case with σ ≡ σ0, a constant function. In order
to be able to discriminate between both models we assume that σ(·) is non-constant in the
heteroskedastic case, i.e. it varies with the values of the covariates X.

Testing for heteroskedasticity is of great importance: many procedures lead to incon-
sistent and inaccurate results if the heteroskedastic model is appropriate but not properly
handled. Consider model (1.1) with a parametric regression function, e.g. linear regression

with r(X) = ϑ>X. The ordinary least squares estimator ϑ̂ of the parameter vector ϑ, which
is constructed for the homoskedastic model, will still be consistent under heteroskedasticity.
However it will be less accurate than a version that puts more weight on observations (X, Y )
with small variance σ2(X) (and less weight when the variance is large). The estimated vari-

ance of ϑ̂ will be biased if the model is in fact heteroskedastic and testing hypotheses based
on ϑ̂ may lead to invalid conclusions.

The relationship between the homoskedastic and the heteroskedastic models can be ex-
pressed in terms of statistical hypotheses:

H0 : ∃ σ0 > 0, σ(·) = σ0 a.e. (G),

Ha : σ(·) ∈ Σ.

Here G is the distribution function of the covariates X and Σ = {σ ∈ L2(G) : σ(·) >
0 and non-constant a.e.(G)} is a space of scale functions. The null hypothesis corresponds
to the homoskedastic model and the alternative hypothesis to the heteroskedastic model.
Rejection of the null hypothesis would imply that sufficient statistical evidence is gathered
in the data to declare the homoskedastic model inappropriate.

Tests for heteroskedasticity are well studied for various regression models. Glejser (1969)
forms a test using the absolute values of the residuals of a linear regression fitted by ordinary
least-squares. White (1980) constructs an estimator of the covariance matrix of the ordinary
least-squares estimator in linear regression and proposes a test based on this estimator. Cook
and Weisberg (1983) derive a score test for a parametric form of the scale function of the
errors in a linear regression. Eubank and Thomas (1993) study a test for heteroskedastic-
ity, which is related to the score test, for the nonparametric regression model with normal
errors. Dette and Munk (1998) and Dette (2002) also consider nonparametric regression.
Dette and Munk create tests based on an approximation of the variance function; in the
2002 paper Dette proposes a residual-based test using kernel estimators. This approach is
extended to the case of a partially linear regression by You and Chen (2005) and Lin and
Qu (2012). Dette, Neumeyer and Van Keilegom (2007) construct a test for a parametric
form of a scale function of the errors from a nonparametric regression using a bootstrap ap-
proach. Dette and Hetzler (2009) construct a test for a parametric form of a scale function
of a heteroskedastic nonparametric regression using an empirical process. These approaches
either require strict modelling of the scale function, but are consistent at the “parametric”
root-n rate of convergence, or favour more parsimonious modelling conditions but converge
at a slower rate. This means a trade-off between modelling conditions and how much data
is required for meaningful statistical inference.
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In contrast to some of the above articles we will not require a specific (parametric)
model for the unknown variance function. Our approach is new in that our proposed test
statistic for the nonparametric regression model converges at the root-n rate. Moreover, we
allow X to be multivariate, which is also new. The tests proposed by Dette (2002) for the
nonparametric regression model are probably closest to our approach. However, Dette only
considers the case where X is univariate and his tests converge with rates slower than root-n.

The tests introduced in this article are inspired by Koul, Müller and Schick (2012), who
develop tests for linearity of a semiparametric regression function for fully observed data and
for a missing data model. These approaches are in the spirit of Stute (1997), who studies
a test for a parametric regression against nonparametric alternatives and, in particular, of
Stute, Xu and Zhu (2008), who propose a related test suitable for high-dimensional covari-
ates. The test statistics are based on weighted empirical distribution functions. The form
of these statistics is strikingly simple and their associated limiting behaviour is obtained by
considering the related weighted empirical process.

We consider detecting heteroskedasticity (represented by the non-constant scale function
σ(·)) by using some (non-constant) “detection function” ω(·) in the space Σ. To explain the
idea, we consider the weighted error distribution function

E
[
ω(X)1[σ(X)e ≤ t]

]
, t ∈ R.

If the null hypothesis is true, we can write

E
[
ω(X)1[σ0e ≤ t]

]
= E

[
E
[
ω(X)

]
1[σ0e ≤ t]

]
, t ∈ R.

Here we have also used that under the null hyptothesis the covariates X and the errors
σ(X)e = σ0e are independent. This motivates a test based on the difference between the
two quantities (which is zero only under H0), i.e. on

E
[{
ω(X)− E

[
ω(X)

]}
1[σ0e ≤ t]

]
, t ∈ R.

We can estimate the outer expectation by its empirical version, which yields a test based on

Un(t) = n−1/2

n∑
j=1

{
ω(Xj)− E

[
ω(Xj)

]}
1[σ0ej ≤ t], t ∈ R.

This is a process in the Skorohod space D(−∞,∞). To move this process to the more
convenient space D[−∞,∞], we define the familiar limit Un(−∞) = 0 and the limit

Un(∞) = n−1/2

n∑
j=1

{
ω(Xj)− E

[
ω(Xj)

]}
.

Since the variance of Un(∞) equals the variance of ω(X) it is clear the asymptotic distribution
of supt∈R |Un(t)| will depend on Var{ω(X)}, which is not desirable for obtaining a standard
distribution useful for statistical inference. Therefore, we standardise Un(t) and obtain the
weighted empirical process

Sn(t) = n−1/2

n∑
j=1

Wj1[σ0ej ≤ t], t ∈ R,
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with weights

(1.2) Wj =
ω(Xj)− E

[
ω(Xj)

]√
Var[ω(Xj)]

=
ω(Xj)− E

[
ω(Xj)

]√
E
[{
ω(Xj)− E

[
ω(Xj)

]}2] , j = 1, . . . , n.

The process Sn cannot be used for testing because it depends on unknown quantities. Our
final test statistic Tn will therefore be based on an estimated version of Sn with the errors
estimated by residuals ε̂j = Yj − r̂(Xj), j = 1, . . . , n, from a sample of n i.i.d. random
variables (X1, Y1), . . . , (Xn, Yn). Here r̂ is a suitable estimator of the regression function. In
this article we assume a nonparametric regression model and estimate the unknown smooth
regression function r using a nonparametric function estimator; see Section 2 for details.

When σ(·) ≡ σ0 is a constant function (the null hypothesis is true), we expect the
estimated process to behave like Sn(t) and exhibit a standard limiting behaviour. However,
if σ(·) is non-constant (the alternative hypothesis is true), the residuals ε̂j will estimate
σ(Xj)ej 6= σ0ej (and the weights Wj and the errors σ(Xj)ej will not be independent). We
expect the estimated process will show a different limiting behaviour in this case. Note that
our test exploits just the independence–dependence structure between the covariates and the
errors.

The choice of the weights, i.e. of the detection function ω, is important to guarantee that
the tests are powerful: it is clear that ω must be non-constant to detect heteroskedasticity.
If the alternative hypothesis is true, it will be advantageous to have weights that are highly
correlated with the scale function σ to increase the power of the test. We give reasons for
this behaviour at the end of Section 2, where we also construct weights based on an estimate
σ̂(·) of σ(·).

We are interested in both the case when all data are completely observed, the “full
model”, and the case when responses Y are missing at random (MAR), the “MAR model”.
Here the observed data can be written as independent copies (X1, δ1Y1, δ1), . . . , (Xn, δnYn, δn)
of a base observation (X, δY, δ), where δ is an indicator which equals one if Y is observed
and zero otherwise. Assuming that responses are missing at random means the distribution
of δ given the pair (X, Y ) depends only on the covariates X (which are always observed),
i.e.

P (δ = 1|X, Y ) = P (δ = 1|X) = π(X).

This implies that Y and δ are conditionally independent given X. Assuming that responses
are missing at random is often reasonable; see Little and Rubin (2002, Chapter 1). Working
with this missing data model is advantageous because the missingness mechanism is ignor-
able, i.e. π(·) can be estimated. It is therefore possible to draw valid statistical conclusions
without auxiliary information, in contrast to the model with data that are “not missing at
random” (NMAR). Note how the MAR model covers the full model as a special case with
all indicators δ equal to 1, hence π(·) ≡ 1.

In this article, we will show that our test statistics Tn, defined in (2.1) for the full
model, and Tn,c, defined in (3.1) for the MAR model, may be used to test for the presence
of heteroskedasticity. The subscript “c” indicates that our test statistic Tn,c uses only the
completely observed data; i.e. we use only observations (X, Y ) where δ equals one, called the
complete cases. In particular, we use only the available residuals ε̂j,c = Yj − r̂c(Xj), where
r̂c is a suitable complete case estimator of the regression function r. Demonstrating this will
require two steps. First, we study the full model and provide the limiting distribution of the
test statistic Tn under the null hypothesis in Theorem 1. Then we apply the transfer principle
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for complete case statistics (given in Koul et al. 2012) to adapt the results of Theorem 1 to
the MAR model.

Since residuals can only be computed for data (X, Y ) that are completely observed,
the transfer principle is useful for developing residual-based statistical procedures in MAR
regression models. Our proposed (residual-based) tests are asymptotically distribution free.
This means that inference based on the limiting distribution of the test statistic does not
depend on parameters of the underlying distribution. The transfer principle guarantees,
in this case, that the test statistic and its complete case version have the same limiting
distribution (under a mild condition), i.e. one can simply omit the incomplete cases and
work with the same quantiles as in the full model, which is desirable due to its simplicity.

This article is structured as follows. Section 2 contains the statement of the test statistic
and the asymptotic results for the full model. Section 3 extends the results of the full model
to the MAR model. Simulations in Section 4 investigate the performance of these tests.
Technical arguments supporting the results in Section 2 are given in Section 5.

2. Completely observed data

We begin with the full model and require the following standard condition (which guar-
antees good performance of nonparametric function estimators):

Assumption 1. The covariate vector X is quasi-uniform on the cube [0, 1]m; i.e. X has
a density that is bounded and bounded away from zero on [0, 1]m.

As in Müller, Schick and Wefelmeyer (2009), we require the regression function to be in
the Hölder space H(d, γ), i.e. it has continuous partial derivatives of order d (or higher) and
the partial d-th derivatives are Hölder with exponent γ ∈ (0, 1]. We estimate the regression
function r by a local polynomial smoother r̂ of degree d. The choice of d will not only depend
on the number of derivatives of r, but also on the dimension m of the covariate vector. (We
will need more smoothness if m is large.) We write F and f for the distribution function
and the density of the errors σ0e which will have to satisfy certain smoothness and moment
conditions.

In order to describe the local polynomial smoother, let i = (i1, . . . , im) be a multi-index
and I(d) be the set of multi-indices that satisfy i1 + . . . + im ≤ d. Then r̂ is defined as the

component β̂0 corresponding to the multi-index 0 = (0, . . . , 0) of a minimiser

β̂ = arg min
β=(βi)i∈I(d)

n∑
j=1

{
Yj −

∑
i∈I(d)

βiψi

(
Xj − x
cn

)}2

w

(
Xj − x
cn

)
,

where

ψi(x) =
xi11
i1!
· · · x

im
m

im!
, x = (x1, . . . , xm) ∈ [0, 1]m,

w(x) = w1(x1) · · ·wm(xm) is a product of densities and cn is a bandwidth. The estimator
r̂ was studied in Müller et al. (2009), who provide a uniform expansion of an empirical
distribution function based on residuals

ε̂j = Yj − r̂(Xj), j = 1, . . . , n.

The proof uses results from a crucial technical lemma, Lemma 1 in that article (written as
Lemma 1 in Section 5), which gives important asymptotic properties of r̂. We will use these
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properties in Section 5 to derive the limiting distribution of our test statistic, which is based
on a weighted version of the empirical distribution function proposed by Müller et al. (2009).

For the full model, the test statistic is given as

(2.1) Tn = sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣∣
with

(2.2) Ŵj =

{
ω(Xj)−

1

n

n∑
k=1

ω(Xk)

}/[
1

n

n∑
m=1

{
ω(Xm)− 1

n

n∑
k=1

ω(Xk)

}2
]1/2

, ω ∈ Σ,

for j = 1, . . . , n. The term in absolute brackets of (2.1) is an approximation (under H0) of
the process Sn(t) from the Introduction, now with the standardised weights Wj from (1.2)

replaced by empirically estimated weights Ŵj. Recall that ω must be a non-constant function,
i.e. ω ∈ Σ, which is crucial to guarantee that the test is able to detect heteroskedasticity.

We arrive at our main result, the limiting distribution for the test statistic Tn in the fully
observed model.

Theorem 1. Let the distribution G of the covariates X satisfy Assumption 1. Suppose
the regression function r belongs to the Hölder space H(d, γ) with s = d + γ > 3m/2;
the distribution F of the error variable σ0e has mean zero, a finite moment of order ζ >
4s/(2s − m) and a Lebesgue density f that is both uniformly continuous and bounded; the
densities w1, . . . , wm are (m+2)−times continuously differentiable and have compact support
[−1, 1]. Let cn ∼ {n log(n)}−1/(2s). Let the null hypothesis hold. Then

Tn = sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣∣
with Ŵj specified in (2.2) above, converges in distribution to supt∈[0,1] |B0(t)|, where B0 de-
notes the standard Brownian bridge.

The proof of Theorem 1 is given in Section 5. We note the distribution of supt∈[0,1] |B0(t)|
is a standard distribution, whose upper α-quantiles bα can be calculated using the formula

α = P

(
sup
t∈[0,1]

∣∣B0(t)
∣∣ > bα

)
= exp

(
− 2b2

α

)
,

i.e. bα = (logα−1/2)1/2; see page 37 of Shorack and Wellner (2009). For example, the critical
value of a 5% level test is approximately 1.224.

Remark 1 (power of the test). To derive the power of the test under local alterna-
tives of the form σn∆ = σ0 +n−1/2∆, ∆ ∈ Σ we use Le Cam’s third lemma. This result states
that a local shift ∆ away from the null hypothesis results in an additive shift of the asymptotic
distribution of Tn; see e.g. page 90 of van der Vaart (1998). The shift is calculated as the
covariance between Tn and log(dFn∆/dF ) under H0. Here Fn∆(t) = P

(
{σ0 +n−1/2∆(X)}e ≤

t
)
. A brief sketch gives

E

[
Tn log

(
dFn∆

dF

)]
= E

[
n−1/2

n∑
j=1

{
Wj1

[
σ0ej ≤ t

]}{
n−1/2∆(Xj)

f ′(σ0ej)

f(σ0ej)

}]
+ op(1)
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= E(W∆)

∫ t

−∞

f ′(s)

f(s)
F (ds) + op(1)

= f(t)E(W∆) + op(1).

Hence, under a contiguous alternative Ha, the distribution of the test statistic Tn limits to
supt∈[0,1] |B0(t) + {f ◦ F−1(t)}E(W∆)|, writing F−1 for the quantile function of F .

Since the weights in our test statistic are standardised, only the shape of ω may have an
effect on the behaviour of the statistic – location and scale have no influence. From Remark
1, we find the power of our test increases with E(W∆). So it can be expected that our test
will perform best when ω is a linear transformation of the scale function σ. This suggests
simply using an estimator σ̂ of the scale function σ in order to obtain a powerful test. We
expect that this will not change the asymptotic distribution of the test statistic under the
null hypothesis.

We have studied this more closely, assuming that σ is in the same Hölder class as r,
that is, σ ∈ H(d, γ). Then we can estimate σ by a local polynomial estimator σ̂(x) =
{r̂2(x)− r̂2(x)}1/2. Here r̂2 is a local polynomial estimate of the second conditional moment
E(Y 2|X) of Y given X, which is defined in the same way as r̂, but with Yj replaced by Y 2

j .
Our estimated weights are then given by

(2.3) W̃j =

{
σ̂(Xj)−

1

n

n∑
k=1

σ̂(Xk)

}/[
1

n

n∑
m=1

{
σ̂(Xm)− 1

n

n∑
k=1

σ̂(Xk)

}2
]1/2

for j = 1, . . . , n. Using similar Donsker class arguments as in the proofs of Theorem 1
and Lemma 2 in Section 5, it is straightforward but lengthy to verify that the asymptotic
statements from Theorem 1 continue to hold for this choice of weights. We therefore omit
the proofs. The formal result is given in Theorem 2 below. The last part of Theorem 2
concerning the power of the test follows from Remark 1.

Theorem 2. Suppose the assumptions of Theorem 1 are satisfied with, additionally, the
error variable σ0e having a finite moment of order greater than 8s/(2s − m). Assume the
alternative hypothesis restricts σ(·) to the Hölder class H(d, γ), with H(d, γ) as in Theorem
1. Then, under the null hypothesis,

T̃n = sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

W̃j1
[
ε̂j ≤ t

]∣∣∣∣
with W̃j specified in (2.3) above, converges in distribution to supt∈R |B0(t)|, where B0 de-

notes the standard Brownian bridge, and T̃n is asymptotically most powerful for detecting
alternative hypotheses of the form σ0 + n−1/2∆d(·), where ∆d ∈ H(d, γ).

3. Responses missing at random

We now consider the MAR model. The complete case test statistic is given by

Tn,c = sup
t∈R

∣∣∣∣N−1/2

n∑
j=1

δjŴj,c1
[
ε̂j,c ≤ t

]∣∣∣∣, with ε̂j,c = Yj − r̂c(Xj).(3.1)

Here N =
∑n

j=1 δj is the number of complete cases and Ŵj,c denotes the weights from equa-

tion (2.2) in the previous section, which are now constructed using only the complete cases.
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The estimator r̂c is the complete case version of r̂; i.e. the component β̂c,0 corresponding to
the multi-index 0 = (0, . . . , 0) of a minimiser

β̂c = arg min
β=(βi)i∈I(d)

n∑
j=1

δj

{
Yj −

∑
i∈I(d)

βiψi

(
Xj − x
cn

)}2

w

(
Xj − x
cn

)
,

which is defined as in the previous section, but now also involves the indicator δj.
The transfer principle for complete case statistics (Koul et al., 2012) states that if the

limiting distribution of a statistic in the full model is L(Q), with Q the joint distribution
of (X, Y ), then the distribution of its complete case version in the MAR model will be
L(Q1), where Q1 is the conditional distribution of (X, Y ) given δ = 1. The implication holds
provided Q1 satisfies the same model assumptions as Q. For our problem this means that Q1

must meet the assumptions imposed on Q by Theorem 1. It is easy to see how this affects
only the covariate distribution G. Due to the independence of X and e, the distribution Q
of (X, Y ) factors into the marginal distribution G of X and the conditional distribution of
Y given X, i.e. the distribution F of the errors σ0e. This means we can write Q = G ⊗ F .
The MAR assumption implies that e and δ are independent. Hence the distribution F of
the errors remains unaffected when we move from Q to the conditional distribution Q1 given
δ = 1, and we have Q1 = G1 ⊗ F , where G1 is the distribution of X given δ = 1. Thus,
Assumption 1 about G must be restated; we also have to assume the detection function ω is
square-integrable with respect to G1.

Assumption 2. The conditional distribution G1 of the covariate vector X given δ = 1
is quasi-uniform on the cube [0, 1]m; i.e. it has a density that is bounded and bounded away
from zero on [0, 1]m.

The limiting distribution L(Q) of the test statistic in the full model in Theorem 1 is
given by supt∈[0,1] |B0(t)|, i.e. it does not depend on the joint distribution Q of (X, Y ) (or on
unknown parameters). This makes the test particularly interesting for the MAR model, since
the limiting distribution of the complete case statistic L(Q1) is the same as the distribution
of the full model statistic, L(Q1) = L(Q), i.e. it is also given by supt∈[0,1] |B0(t)|. Combining
these arguments already provides proof for the main result for the MAR model.

Theorem 3. Let the null hypothesis hold. Suppose the assumptions of Theorem 1 are
satisfied, with Assumption 2 in place of Assumption 1, and let ω ∈ L2(G1) be positive and
non-constant. Write

Ŵj,c =

{
δjω(Xj)−

1

N

n∑
k=1

δkω(Xk)

}/[
1

N

n∑
m=1

{
δmω(Xm)− 1

N

n∑
k=1

δkω(Xk)

}2
]1/2

and ε̂j,c = Yj − r̂c(Xj). Then

Tn,c = sup
t∈R

∣∣∣∣N−1/2

n∑
j=1

δjŴj,c1
[
ε̂j,c ≤ t

]∣∣∣∣
converges in distribution to supt∈[0,1] |B0(t)|, where B0 denotes the standard Brownian bridge.

This result is very useful: if the assumptions of the MAR model are satisfied it allows us
to simply delete the incomplete cases and implement the test for the full model; i.e. we may
use the same quantiles.
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Remark 2. Following the discussions above and preceding Theorem 2 in the previous
section, we can construct estimated weights based on complete cases as follows. The second
conditional moment of Y given X can be estimated by a complete case estimator r̂2,c, which
is computed in the same way as r̂c, but now with Yj replaced by Y 2

j . Hence, σ̂c(·) = {r̂2,c(·)−
r̂2
c (·)}1/2 is a consistent complete case estimator of ω(·) = σ(·) (which optimises the power

of the test). The complete case version of the test statistic T̃n is

T̃n,c = sup
t∈R

∣∣∣∣N−1/2

n∑
j=1

δjW̃j,c1
[
ε̂j,c ≤ t

]∣∣∣∣,
where the weights W̃j,c are complete case versions of W̃j; see (2.3). The transfer principle

then implies that the results of Theorem 2 continue to hold for T̃n,c, i.e. T̃n,c tends under
the null hypothesis in distribution to supt∈[0,1] |B0(t)| and is asymptotically most powerful for
detecting smooth local alternatives.

4. Simulation results

A brief simulation study demonstrates the effectiveness of a hypothesis test using the
test statistics given above for the full model and the MAR model.

Example 1: testing for heteroskedasticity with one covariate. For the simulations
we chose the regression function as

r(x) = 2x+ 3 cos(πx)

to preserve the nonparametric nature of the model. The covariates were generated from a
uniform distribution and errors from a standard normal distribution: Xj ∼ U(−1, 1) and
ej ∼ N(0, 1) for j = 1, . . . , n. Finally, the indicators δj have a Bernoulli(π(x)) distribution,
with π(x) = P (δ = 1|X = x). In this study, we use a logistic distribution function for
π(x) with a mean of 0 and a scale parameter of 1. As a consequence, the average amount of
missing data is around 50%, ranging between 27% and 73%. We work with d = 1, the locally
linear smoother, sample sizes 50, 100, 200 and 1000, and bandwidths cn ∼ {n log(n)}−1/4.

In order to investigate the level and power of the test in the full model and in the MAR
model, we consider the following scale functions:

σ0(x) = 1, σ1(x) = 0.4 + 4x2,

σ2(x) =
e2 − 5

e2 − 1
+ 4

ex

e− e−1
and σ3(x) = 1 + 15

|x|√
n
.

The constant scale function σ0 allows for the (5%) level of the test to be checked. The
simulations based on (non-constant) scale functions σ1, σ2 and σ3 give an indication of the
power of the test in different scenarios. In particular, we consider the power of the test
against the local alternative σ3.

The power of the test is maximised if ω equals the scale function σ (or is a linear transfor-
mation of σ), as explained at the end of Section 2. We constructed estimated weights based
on the assumption that σ1, σ2 and σ3 are all continuously differentiable and their derivatives
satisfy a Hölder condition. This allows us to construct suitable local-constant estimators,
which we use in our weights. The bandwidth is chosen automatically by the function loess in
R. We chose σ̂ as the the square root of the variance estimate at each value of the covariate;
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Figure 1. Scatter plots of absolute valued residuals. Each plot also shows
the underlying scale function and a kernel smoothed estimate of the scale
function.

see Remark 1 in Section 2 and the discussion following it. The critical value for the 5% level
of each test is approximately 1.224.

As an illustration, we generated a random dataset of size 100 for each scenario. A scatter
plot of the residuals (in absolute value) from the nonparametric regression is given for each
dataset (Figure 1). The plots also show the underlying scale functions in black (solid line)
and estimated scale functions in red (dashed line).

To check the performance of our test we conducted simulations of 1000 runs. Table 1
shows the test results using Tn (fully observed data) and Tn,c (missing data). The figures
corresponding to the null hypothesis (σ0) show Type I error rates near the desired 5%. The
results for the test using Tn,c are more conservative than the results for full model based on
Tn.
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Test for heteroskedastic errors
Tn Tn,c

n 50 100 200 1000 50 100 200 1000
σ0 0.054 0.050 0.047 0.033 0.046 0.045 0.037 0.023
σ1 0.565 0.979 1.000 1.000 0.098 0.511 0.969 1.000
σ2 0.141 0.643 0.993 1.000 0.031 0.160 0.595 1.000
σ3 0.079 0.190 0.364 0.724 0.007 0.047 0.128 0.287

Table 1. Simulated level (σ0 figures) and power for Tn and Tn,c.

We now consider the power of each test. The figures corresponding to σ1 and σ2 each
show the procedure Tn to perform well at moderate and larger sample sizes. Using Tn,
we rejected the null hypothesis 100% (σ1) and 99.3% (σ2) of the time for samples of size
200. Similar results were obtained for the test using Tn,c, but they are (as expected) less
impressive. For the figures corresponding to σ3, both test procedures have difficulty rejecting
in small samples. Using Tn, we rejected the null hypothesis 72.4% of the time for samples of
size 1000, but only 7.9% of the time for samples of size 50. Again, the results are similar for
missing data. In conclusion, each test performs well and the procedures Tn and Tn,c proposed
in this article appear particularly promising for detecting heteroskedasticity.

It seems the test is affected by the amount of smoothing used to construct the regression
function estimator. If the data are under-smoothed, the regression estimate is attempting
to explain too much of the model (the errors as well as the underlying regression function).
In this case the estimate shows a large variation and residuals will have smaller than ex-
pected magnitudes. The test will then be conservative because the residual-based empirical
distribution function will have lighter tails than if more smoothing were used. However,
if the data are over-smoothed then the regression estimate does not explain enough of the
model. In this case the estimate has a large bias and residuals will have larger than expected
magnitudes. The test will then be liberal because the residual-based empirical distribution
function will have heavier tails than it would have if less smoothing were used. Since the
bandwidth is cn = c{n log(n)}−1/4, we considered constants c between 1.5 (chosen so that
c100 ≈ 1/3) and 2.5. Using only a multiplier of 1.5 for each sample size produced similar
results to those of Table 1 above, but they were more conservative (due to under-smoothing
the regression function). Using only a multiplier of 2.5 for each sample size yielded figures
similar to those of Table 1, but they were more liberal (due to over-smoothing the regression
function).

Example 2: testing for heteroskedasticity with two covariates. Throughout this
example we work with the regression function

r(x1, x2) = 2x1 − x2 + 3ex1ex2 ,

which again preserves the nonparametric nature of the study. The covariates X1 and X2 are
each independently generated from a uniform distribution on the interval [−1, 1]. As above
we generate the model errors from a standard normal distribution. We do not consider
missing data, because we expect the conclusions to mirror those of the first simulation
study. Here we are interested in the differences in performance of our test Tn, for the full
model, when we select different weights. We work with d = 3, the locally cubic smoother,
and bandwidths cn = c{n log(n)}−1/8. The level of the test is 5% as in Example 1 above.



12 J. CHOWN AND U.U. MÜLLER

Test for heteroskedastic errors
σ0 σ1 σ2

n ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

100 0.002 0.008 0.005 0.707 0.146 0.240 0.808 0.179 0.287
200 0.003 0.009 0.006 1.000 0.520 0.963 1.000 0.524 0.971
500 0.009 0.016 0.021 1.000 0.977 1.000 1.000 0.989 1.000

1000 0.036 0.040 0.045 1.000 1.000 1.000 1.000 1.000 1.000

Table 2. Simulated level (σ0 figures) and power for Tn regressing on two covariates.

For the simulations we use three scale functions: σ0 ≡ 1, σ1(x1, x2) = 0.5 + 5x2
1 + 5x2

2 and
σ2(x1, x2) = 0.5 + 5x2

1 + 5x2
2 + 2.5(x1x2)2. Our weights are constructed based on detection

functions ω1 = σ1, ω2(x1, x2) = 1+cos{(π/2)(x1 +x2)} and ω3 is an estimated scale function
similar to the procedure in the first example. We choose the constant in the bandwidth cn
of the locally cubic smoother to be c = 5 for the two cases of known (fixed) weights (ω1 and
ω2) and c = 4 for the case of estimated weights (ω3). The estimated weights are based on a
kernel smoothing of the squared residuals of each nonparametric regression and also require
choosing a bandwidth (dn). A practical choice is one that minimises the asymptotic mean
squared error. We choose a product of tricubic kernels with a single bandwidth dn = 3n−1/6

(see, for example, Härdle and Müller, 2000), which is different from the bandwidths used for
the locally cubic smoother.

From the discussion above it is clear that ω1 = σ1 will provide the largest power for
detecting σ1 but not necessarily for detecting σ2. The choices ω2 and ω3 will then illustrate
the test performance when we choose (or guess) some reasonable non-constant detection
function and when we use an estimator of the scale function to increase the power of the
test.

We conducted simulations consisting of 1000 runs, now using sample sizes 100, 200, 500
and 1000. The results are displayed in Table 2. The figures in the left panel (σ0 ≡ 1)
corresponding to the test level (5%) show the tests are all highly conservative and only reach
adequate levels at samples of size 1000. Nevertheless, when we consider the figures in the
remaining panels, corresponding to the powers of each test, we find considerable differences
between the tests. It is clear that testing using ω1 = σ1 provides the best results in the second
column referring to σ1 (best weights). Since σ1 and σ2 are similar in shape, the results for
the test based on ω1 = σ1 are also quite convincing when σ2 is the underlying scale function
(third column). Testing using ω3 (estimated weights) provides comparable results to those
of ω1. The only notable difference between the two procedures occurs when the sample size
is small (100 observations). Here we find the test using ω1 gives powers 0.707 (σ1) and 0.808
(σ2) while the test using ω3 only gives powers 0.240 (σ1) and 0.287 (σ2). This difference in
behavior is expected.

When we consider the test using ω2, we see a considerable decrease in power at smaller
sample sizes. At 200 observations, the tests using ω1 and ω3 already have powers at or near
1.000, but the test using ω2 only gives powers 0.520 (σ1) and 0.524 (σ2). Only at very large
sample sizes are all three testing procedures similar. In conclusion, we find the test using an
arbitrary non-constant weight function is useful but will normally be outperformed by the
test using estimated weights that attempt to optimise the power of the test. All three test
procedures are fairly conservative.



TESTING FOR HETEROSKEDASTICITY 13

5. Technical details

In this section we present the proof of Theorem 1 and some auxiliary results. As explained
earlier, it suffices to consider the full model and the test statistic Tn. Our approach consists
of two steps. Our first step will be to use Theorem 2.2.4 in Koul’s 2002 book on weighted
empirical processes to obtain the limiting distribution of an asymptotically linear statistic
(i.e. a sum of i.i.d. random variables) that is related to Tn. Then we review some results from
Müller, Schick and Wefelmeyer (2009), who propose local polynomial smoothers to estimate
a regression function of many covariates. Using these results, we will show that the statistic
Tn and the asymptotically linear statistic are indistinguishable for large samples, i.e. they
have the same limiting distribution.

The asymptotically linear statistic, which is an empirical process related to Tn, is defined
similarly to Tn as

(5.1) sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}∣∣∣∣,
where σ0ej is the unobserved “model error” from the null hypothesis and W1, . . . ,Wn are
the standardised weights given in (1.2). We will now demonstrate that the requirements for
Koul’s theorem are satisfied. The asymptotic statement is given afterwards in Corollary 1.

Theorem 2.2.4 of Koul (2002) states that

ζn(t) = n−1/2

n∑
j=1

Dj

{
1
[
Cj ≤ t

]
−K(t)

}
D−→ ξ

{
B0 ◦K(t)

}
, t ∈ R, as n→∞,

where B0 is the standard Brownian bridge in the Skorohod space D[0, 1], independent of a
random variable ξ. The roles of his random variable Cj and the square integrable random
variable Dj, which are assumed to be independent, are now played by σ0ej and Wj, j =
1, . . . , n. The distribution function K corresponds to our error distribution function F and
is assumed to have a uniformly continuous Lebesgue density. The random variable ξ from
above comes from Koul’s requirement that∣∣∣∣ 1n

n∑
j=1

D2
j

∣∣∣∣1/2 = ξ + op(1) for some positive r.v. ξ.

Here we work with Wj, in place of Dj, with E(W 2
j ) = 1. Therefore, by the law of

large numbers, n−1
∑n

j=1W
2
j = 1 + op(1) and, using the continuous mapping theorem,

|n−1
∑n

j=1 W
2
j |1/2 = 1 + op(1), i.e. ξ ≡ 1. Hence we have

n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}
D−→ B0 ◦ F (t), t ∈ R, as n→∞.

Taking the supremum with respect to t ∈ R, the right-hand side becomes supt∈R |B0 ◦
F (t)| = supt∈[0,1] |B0(t)|, which specifies the asymptotic distribution of the asymptotically
linear statistic (5.1). Note that Koul’s theorem also provides the limiting distribution for a

shifted version ζ̂n of ζn that involves random variables Z1, . . . , Zn. Since we only need the
simpler result for ζn, we do not need to verify the more complicated assumptions regarding
the Zj’s. This shows the conditions of Theorem 2.2.4 in Koul (2002) are indeed satisfied.
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We will formulate this result as a corollary. Since we only require the weights to be square-
integrable functions of Xj with E(W 2

j ) = 1, we will not require the explicit form (1.2).

Corollary 1. Consider the homoskedastic nonparametric regression model Y = r(X)+
σ0e. Assume the distribution function F of the errors has a uniformly continuous Lebesgue
density f that is positive almost everywhere. Further, let Wj be a square integrable function
of Xj satisfying E(W 2

j ) = 1, j = 1, . . . , n. Then

sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}∣∣∣∣ D−→ sup
t∈[0,1]

|B0(t)|, as n→∞,(5.2)

where B0 denotes the standard Brownian bridge.

For our second step, we will show that Tn and the asymptotically linear statistic (5.1)
are asymptotically equivalent. To begin we rewrite Tn, using the identity (under H0) ε̂ =
Y − r̂(X) = σ0e− r̂(X) + r(X), as

sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣∣ = sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

Ŵj1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]∣∣∣∣.
We will first consider the shift in the indicator function from t to t+ r̂ − r, which comes in
because Tn involves an estimator r̂ of the regression function.

Consider now the Hölder space H(d, γ) from Section 2, i.e. the space of functions that
have partial derivatives of order d that are Hölder with exponent γ ∈ (0, 1]. For these
functions we define the norm

‖h‖d,γ = max
i∈I(d)

sup
x∈[0,1]m

∣∣Dih(x)
∣∣+ max

i∈I(d)
sup

x, y∈[0,1]m, x6=y

|Dih(y)−Dih(x)|
‖x− y‖γ

,

where ‖v‖ is the Euclidean norm of a real-valued vector v and

Dih(x) =
∂i1+···+im

∂xi11 · · · ∂ximm
h(x), x = (x1, . . . , xm) ∈ [0, 1]m.

Write H1(d, γ) for the unit ball of H(d, γ) using this norm.
These function spaces are particularly useful for studying local polynomial smoothers r̂

as defined in Section 2. Müller et al. (2009) make use of these spaces to derive many useful
facts concerning regression function estimation using local polynomials. We will use some of
their results to prove Theorem 1; see Lemma 1 below.

Lemma 1 (Lemma 1 of Müller, Schick and Wefelmeyer, 2009). Let the local
polynomial smoother r̂, the regression function r, the covariate distribution G and the error
distribution F satisfy the assumptions of Theorem 1. Then there is a random function â
such that, for some α > 0,

P (â ∈ H1(m,α))→ 1,(5.3)

sup
x∈[0,1]m

∣∣r̂(x)− r(x)− â(x)
∣∣ = op(n

−1/2).(5.4)

We now use these results to show the difference between the asymptotically linear statistic
(5.1) and an empirical process related to the shifted version of Tn (called R1 in Lemma 2
below) are asymptotically negligible. Note: an unweighted version of that difference is
considered in the proof of Theorem 2.2 of Müller, Schick and Wefelmeyer (2007).
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Lemma 2. Let the null hypothesis hold. Suppose the assumptions of Theorem 1 on r̂, r,
G and F are satisfied. Let Wj be a square integrable function of Xj satisfying E[W 2

j ] <∞,

j = 1, . . . , n. Then supt∈R |R1| = op(n
−1/2), where

R1 =
1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− 1[σ0ej ≤ t]− F

(
t+ r̂(Xj)− r(Xj)

)
+ F (t)

}
.

If, additionally, E[Wj] = 0, j = 1, . . . , n, then supt∈R |R2| = op(n
−1/2), where

R2 =
1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F (t)

}
.

Proof. In the following we will write, for any function g from [0, 1]m to R, ‖g‖x,∞ =
supx∈[0, 1]m |g(x)| and, for any function h from R to R, ‖h‖t,∞ = supt∈R |h(t)|. We begin by
noting that the assumptions of Lemma 1 are satisfied. Hence, by property (5.3) of Lemma
1, there is a random function â which approximates r̂− r and therefore still depends on the
data D = {(X1, Y1), . . . , (Xn, Yn)}. Also there is an α > 0 such that P (â ∈ H1(m,α)) → 1.
We will first show an auxiliary statement, namely that the (simpler) class of functions

F =

{
(X, σ0e) 7→ W

{
1
[
σ0e ≤ t+ a(X)

]
− F

(
t+ a(X)

)}
: t ∈ R, a ∈ H1(m,α)

}
is G⊗ F–Donsker. To prove this, it suffices to verify Dudley’s entropy integral condition:∫ ∞

0

√
logN[ ]

(
(ε,F, L2(G⊗ F )

)
dε <∞

(see Theorem 2.5.6 of van der Vaart and Wellner, 1996). Here N[ ](ε,F, L2(G ⊗ F )) is the
number of brackets of length no greater than ε required to cover F and L2(G ⊗ F ) is the
L2–norm with respect to the measure G ⊗ F . Bracketing numbers are a measure of the
amount of entropy residing in the class F.

We will proceed similarly to the proof of Lemma A.1 of Van Keilegom and Akritas (1999)
and find a suitable function of ε that satisfies the above integral condition concerning the
the bracketing numbers N[ ](ε,F, L2(G ⊗ F )). Let ε > 0. Since functions in F are sums
of two terms, we will show the first space F1 = {(X, σ0e) 7→ W1[σ0e ≤ t + a(X)] : t ∈
R, a ∈ H1(m,α)} satisfies the integral condition above. The proof for the second space F2

is similar and therefore omitted. By Theorem 2.7.1 of van der Vaart and Wellner (1996) it
follows, for some positive constant K, that nr = N[ ](ε

2/(2‖f‖t,∞E[W 2]), H1(m,α), ‖·‖x,∞) ≤
exp{Kε−(2m)/(m+α)}. Let al1 ≤ au1, . . . , alnr ≤ aunr be the functions defining the nr brackets
for H1(m,α) based on the ‖ · ‖x,∞–norm. It then follows for the brackets ali ≤ aui to satisfy
E[W 2{aui(X)− ali(X)}] ≤ ε2/(2‖f‖t,∞), i = 1, . . . , nr.

The random variable W can be either positive–valued or negative–valued. We can then
construct brackets for R based on this information and the nr brackets for a as follows.
For every fixed t ∈ R and i = 1, . . . , nr, we have, writing W− = W1[W < 0] and W+ =
W1[W ≥ 0],

W−1
[
σ0e ≤ t+ aui(X)

]
≤ W−1

[
σ0e ≤ t+ a(X)

]
≤ W−1

[
σ0e ≤ t+ ali(X)

]
and

W+1
[
σ0e ≤ t+ ali(X)

]
≤ W+1

[
σ0e ≤ t+ a(X)

]
≤ W+1

[
σ0e ≤ t+ aui(X)

]
.
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Now define Fli(t) = F (t+ ali(X)) for the conditional probability that σ0e is at most t+
ali(X) given the covariatesX. Further, let tlij1 , for j1 = 1, . . . , O(ε−2), partition R∪{−∞,∞}
into segments having Fli–probability at most ε2/(4E[W 2]). Similarly, define Fui(t) = F (t +
aui(X)) and let tuij2 , for j2 = 1, . . . , O(ε−2), partition R ∪ {−∞,∞} into segments having
Fui–probability at most ε2/(4E[W 2]). Hence, we obtain the following bracket for t: t−lij1 ≤
t ≤ t+uij2 , where t−lij1 is the largest tlij1 that is less than or equal to t and t+uij2 is the smallest
tuij2 that is larger than or equal to t.

We will now show the brackets for F1 are given by

W−1
[
σ0e ≤ t+uij1 + aui(X)

]
+W+1

[
σ0e ≤ t−lij1 + ali(X)

]
≤ W1

[
σ0e ≤ t+ a(X)

]
≤ W−1

[
σ0e ≤ t−lij1 + ali(X)

]
+W+1

[
σ0e ≤ t+uij2 + aui(X)

]
.

The squared length of the proposed brackets above is equal to

E

[(
W−

{
1
[
σ0e ≤ t−lij1 + ali(X)

]
− 1
[
σ0e ≤ t+uij2 + aui(X)

]}
+W+

{
1
[
σ0e ≤ t+uij2 + aui(X)

]
− 1
[
σ0e ≤ t−lij1 + ali(X)

]})2
]

= E
[
W 2
{
1[W < 0] + 1[W ≥ 0]

}{
1
[
σ0e ≤ t+uij2 + aui(X)

]
− 1
[
σ0e ≤ t−lij1 + ali(X)

]}]
= E

[
W 2
{
Fui
(
t+uij2

)
− Fli

(
t−lij1
)}]

,

which is bounded by

E
[
W 2
{
Fui(t)− Fli(t)

}]
+
ε2

2
.

Consider the first term. Since the distribution function F has a bounded density function
f , the inequality above for E[W 2{aui(X)− ali(X)}2] implies

E
[
W 2{Fui(t)− Fli(t)}

]
≤ ‖f‖t,∞E

[
W 2{aui(X)− ali(X)}

]
≤ ε2

2
.

Hence, the L2(G⊗F )–lengths of our proposed brackets are bounded by ε as desired. It then
follows, for every ε > 0, that the number of brackets is at most O(ε−2 exp{Kε−(2m)/(m+α)})
and, for ε > 1, one bracket suffices. Therefore, we can choose appropriate positive constants
C1 and C2 to find∫ ∞

0

√
logN[ ]

(
ε,F1, L2(G⊗ F )

)
dε =

∫ 1

0

√
logN[ ]

(
ε,F1, L2(G⊗ F )

)
dε ≤ C1 + C2

m+ α

α
.

Since α > 0, the bound above is finite and Dudley’s entropy integral condition holds. This
shows the class F1 is G⊗F–Donsker, which combined with the statement for F2 implies the
class F is G⊗ F–Donsker.

It follows from Corollary 2.3.12 of van der Vaart and Wellner (1996) that empirical
processes ranging over the Donsker class F are asymptotically equicontinuous, i.e. we have,
for any ϕ > 0,

(5.5) lim
κ↓0

lim sup
n→∞

P

(
sup

{f1, f2∈F : Var(f1−f2)<κ}
n−1/2

∣∣∣ n∑
j=1

{
f1(Xj, σ0ej)− f2(Xj, σ0ej)

}∣∣∣ > ϕ

)
= 0.
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We are interested in the case that involves the approximation â in place of a, where the
corresponding class of functions is, in general, no longer Donsker (and the equicontinuity
property does not hold). However, we can assume that â is in H1(m,α), which holds on
an event that has probability tending to one. This together with the following negligibility
condition on the variance guarantees that the extended class of processes involving â is also
equicontinuous. To prove that variance condition, we fix the function â by conditioning on
the observed data D. The variation of a function from the extension of F, i.e. now involving
â instead of a, is equal to

Var
[
W
{
1
[
σ0e ≤ t+ â(X)

]
− 1[σ0e ≤ t]− F

(
t+ â(X)

)
+ F (t)

} ∣∣∣D]
= E

[
W 2
{
1
[
σ0e ≤ t+ â(X)

]
− 1[σ0e ≤ t]− F

(
t+ â(X)

)
+ F (t)

}2
∣∣∣∣D]

= E
[
W 2
{
1
[
σ0e ≤ t+ â(X)

]
− 21

[
σ0e ≤ min{t, t+ â(X)}

]
− 21

[
σ0e ≤ t+ â(X)

]
F
(
t+ â(X)

)
+ 21

[
σ0e ≤ t+ â(X)

]
F (t)

+ 1[σ0e ≤ t] + 21[σ0e ≤ t]F
(
t+ â(X)

)
− 21[σ0e ≤ t]F (t)

+ F 2
(
t+ â(X)

)
− 2F

(
t+ â(X)

)
F (t) + F 2(t)

} ∣∣∣D]
= E

[
W 2

{
F
(
t+ â(X)

)
− F

(
min{t, t+ â(X)}

)
+ F (t)− F

(
min{t, t+ â(X)}

)
−
{
F
(
t+ â(X)

)
− F (t)

}2
} ∣∣∣∣D]

= E

[
W 2

{
F
(

max{t, t+ â(X)}
)
− F

(
min{t, t+ â(X)}

)
−
{
F
(

max{t, t+ â(X)}
)
− F

(
min{t, t+ â(X)}

)}2
} ∣∣∣∣D],

which is bounded by

E
[
W 2
{
F
(

max{t, t+ â(X)}
)
− F

(
min{t, t+ â(X)}

)} ∣∣∣D]
≤ ‖f‖t,∞E

[
W 2
(

max{t, t+ â(X)} −min{t, t+ â(X)}
) ∣∣D]

= ‖f‖t,∞E
[
W 2
∣∣â(X)

∣∣ ∣∣D]
≤ ‖f‖t,∞E

[
W 2
]
‖â‖x,∞

= op(1),

i.e. the variance is asymptotically negligible. Here we used ‖â‖x,∞ = op(1); see page 961 of
the proof of Lemma 1 in Müller et al. (2009). Hence we have asymptotic equicontinuity and
therefore

sup
t∈R

∣∣∣∣ 1n
n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ â(Xj)

]
− 1[σ0ej ≤ t]− F

(
t+ â(Xj)

)
+ F (t)

}∣∣∣∣ = op(n
−1/2).
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We now decompose R1 from the first assertion as the sum of

1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ â(Xj)

]
− 1[σ0ej ≤ t]− F

(
t+ â(Xj)

)
+ F (t)

}
and

1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)}
(5.6)

− 1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ â(Xj)

]
− F

(
t+ â(Xj)

)}
.

We have already shown the first term is op(n
−1/2), uniformly in t ∈ R. By property (5.4)

of Lemma 1, An = ‖r̂ − r − â‖x,∞ = op(n
−1/2). The decomposition of Wj into W−

j + W+
j ,

j = 1, . . . , n, yields the following bounds for the weighted indicator functions, for each
j = 1, . . . , n:

W−
j 1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
≤ W−

j 1
[
σ0ej ≤ t− An + â(Xj)

]
,

W−
j 1
[
σ0ej ≤ t+ â(Xj)

]
≥ W−

j 1
[
σ0ej ≤ t+ An + â(Xj)

]
,

W+
j 1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
≤ W+

j 1
[
σ0ej ≤ t+ An + â(Xj)

]
.

and
W+
j 1
[
σ0ej ≤ t+ â(Xj)

]
≥ W+

j 1
[
σ0ej ≤ t− An + â(Xj)

]
.

This implies that we can find a bound for (5.6) by calculating

1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)}
− 1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ â(Xj)

]
− F

(
t+ â(Xj)

)}
=

1

n

n∑
j=1

W−
j

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− 1
[
σ0ej ≤ t+ â(Xj)

]}
+

1

n

n∑
j=1

W+
j

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− 1
[
σ0ej ≤ t+ â(Xj)

]}
− 1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
≤ 1

n

n∑
j=1

W−
j

{
1
[
σ0ej ≤ t− An + â(Xj)

]
− F

(
t− An + â(Xj)

)}
− 1

n

n∑
j=1

W−
j

{
1
[
σ0ej ≤ t+ An + â(Xj)

]
− F

(
t+ An + â(Xj)

)}
+

1

n

n∑
j=1

W−
j

{
F
(
t− An + â(Xj)

)
− F (t+ An + â(Xj)

)}
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+
1

n

n∑
j=1

W+
j

{
1
[
σ0ej ≤ t+ An + â(Xj)

]
− F

(
t+ An + â(Xj)

)}
− 1

n

n∑
j=1

W+
j

{
1
[
σ0ej ≤ t− An + â(Xj)

]
− F

(
t− An + â(Xj)

)}
+

1

n

n∑
j=1

W+
j

{
F
(
t+ An + â(Xj)

)
− F

(
t− An + â(Xj)

)}
− 1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
=

1

n

n∑
j=1

{
W+
j −W−

j

}{
1
[
σ0ej ≤ t+ An + â(Xj)

]
− F

(
t+ An + â(Xj)

)}
− 1

n

n∑
j=1

{
W+
j −W−

j

}{
1
[
σ0ej ≤ t− An + â(Xj)

]
− F

(
t− An + â(Xj)

)}
+

1

n

n∑
j=1

{
W+
j −W−

j

}{
F
(
t+ An + â(Xj)

)
− F

(
t− An + â(Xj)

)}
− 1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
=

1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t+ An + â(Xj)
]
− F

(
t+ An + â(Xj)

)}
− 1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t− An + â(Xj)
]
− F

(
t− An + â(Xj)

)}
+

1

n

n∑
j=1

∣∣Wj

∣∣{F(t+ An + â(Xj)
)
− F

(
t− An + â(Xj)

)}
− 1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
.

Hence, the first assertion follows from showing

sup
t∈R

∣∣∣∣ 1n
n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t+ An + â(Xj)
]
− F

(
t+ An + â(Xj)

)}
(5.7)

− 1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t− An + â(Xj)
]
− F

(
t− An + â(Xj)

)}∣∣∣∣ = op(n
−1/2),

(5.8) sup
t∈R

1

n

n∑
j=1

∣∣Wj

∣∣{F(t+ An + â(Xj)
)
− F

(
t− An + â(Xj)

)}
= op(n

−1/2)
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and

(5.9) sup
t∈R

∣∣∣∣ 1n
n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}∣∣∣∣ = op(n
−1/2).

Beginning with (5.7), since the random variables |W1|, . . . , |Wn| are square integrable,
the class of functions

F+ =

{
(X, σ0e) 7→ |W |

{
1
[
σ0e ≤ t+ a(X)

]
− F

(
t+ a(X)

)}
: t ∈ R, a ∈ H1(m,α)

}
is also G ⊗ F–Donsker. Therefore the asymptotic equicontinuity property holds for em-
pirical processes ranging over F+, i.e. (5.5) holds with F+ in place of F. However, rather
than investigating the situation where â is limiting toward zero, as we did above, we will
consider two sequences of real numbers {sn}∞n=1 and {tn}∞n=1 satisfying |tn − sn| = o(1),
which corresponds to the case of random sequences t ± An conditional on the data D.
Analogously to the calculations following (5.5), we consider the variation condition under
the norm in (5.5), now for the function (X, σ0e) 7→ |W |{1[σ0e ≤ tn + a(X)} − 1[σ0e ≤
sn + a(X)]− F (tn + a(X)) + F (sn + a(X)), which is equal to

Var
[
|W |

{
1
[
σ0e ≤ tn + a(X)

]
− 1
[
σ0e ≤ sn + a(X)

]
− F

(
tn + a(X)

)
− F

(
sn + a(X)

)}]
= E

[
W 2

{
F
(

max{tn + a(X), sn + a(X)}
)
− F

(
min{tn + a(X), sn + a(X)}

)
−
{
F
(

max{tn + a(X), sn + a(X)}
)
− F

(
min{tn + a(X), sn + a(X)}

)}2
}]

.

This is bounded by

E

[
W 2

{
F
(

max{tn + a(X), sn + a(X)}
)
− F

(
min{tn + a(X), sn + a(X)}

)}]
≤ ‖f‖t,∞E

[
W 2
]∣∣tn − sn∣∣.

Since the bound above is o(1), equicontinuity now implies, for any a ∈ H1(m,α) and se-
quences of real numbers {sn}∞n=1 and {tn}∞n=1 satisfying |tn − sn| = o(1),

sup
t∈R

∣∣∣∣ 1n
n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ tn + a(Xj)
]
− F

(
tn + a(Xj)

)}
− 1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ sn + a(Xj)
]
− F

(
sn + a(Xj)

)}∣∣∣∣ = op(n
−1/2).

As before we may assume that â belongs to H1(m,α). Now conditioning on D and letting
Tn = t+ An and Sn = t− An, which now satisfies |Tn − Sn| = 2An = op(1), we find

Var
[
|W |

{
1
[
σ0e ≤ Tn + â(X)

]
− 1
[
σ0e ≤ Sn + â(X)

]
− F

(
Tn + â(X)

)
− F

(
Sn + â(X)

)} ∣∣∣D]
≤ 2‖f‖t,∞E

[
W 2
]
An.



TESTING FOR HETEROSKEDASTICITY 21

Since An = op(1), in the same way as before, with Tn and Sn conditional on D playing
the roles of tn and sn above, the negligibility condition on the variance is satisfied. This
combined with the fact that F+ is a Donsker class (and the corresponding class of processes
is equicontinuous) therefore implies that (5.7) is satisfied.

Turning our attention now to (5.8), we find that n−1
∑n

j=1 |Wj| is consistent for E|W |, and

we have E|W | ≤ E1/2[W 2] <∞. Since both |Wj| and F (t+An+ â(Xj))−F (t−An+ â(Xj))
are positive-valued for each j = 1, . . . , n, we can find a bound for (5.8) by calculating

sup
t∈R

1

n

n∑
j=1

∣∣Wj

∣∣{F(t+ An + â(Xj)
)
− F

(
t− An + â(Xj)

)}
≤ 2‖f‖t,∞An

1

n

n∑
j=1

∣∣Wj

∣∣.
Since An = op(n

−1/2) by Lemma 1 and since n−1
∑n

j=1 |Wj| is consistent for E|W |, we obtain

for the bound above to also be op(n
−1/2), i.e. (5.8) holds.

We can bound the left-hand side of (5.9) by ‖f‖t,∞Ann−1
∑n

j=1 |Wj|. Using again An =

op(n
−1/2) and the consistency of n−1

∑n
j=1 |Wj|, this bound is op(n

−1/2). Therefore (5.9)

holds, which concludes the proof of the first assertion that ‖R1‖t,∞ = op(n
−1/2).

We will now prove the second assertion that ‖R2‖t,∞ = op(n
−1/2). In the same way

as above, we will incorporate the approximation â to separate the stochastic process into
two parts and then argue each part is negligible at the n−1/2 rate of convergence. The main
difference between the proof technique used above, where we additionally required separating
the process using the decomposition of the weights into their respective positive and negative
components, and the technique used now comes from one remainder term: we now require
that the random variables W1, . . . ,Wn each have mean zero, which allows us to use the
central limit theorem in combination with the result ‖â‖x,∞ = op(1). This means we can
write R2 as

R2 =
1

n

n∑
j=1

Wj

{
F
(
t+ â(Xj)

)
− F (t)

}
+

1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
=

1

n

n∑
j=1

Wj

{
F
(
t+ â(Xj)

)
− F (t)− E

[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]}
+ E

[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]( 1

n

n∑
j=1

Wj

)

+
1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
.

This shows that ‖R2‖t,∞ is bounded by three terms:

(5.10) sup
t∈R

∣∣∣∣ 1n
n∑
j=1

Wj

{
F
(
t+ â(Xj)

)
− F (t)− E

[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]}∣∣∣∣,
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(5.11) sup
t∈R

∣∣∣∣E[F(t+ â(X)
)
− F (t)

∣∣∣D]∣∣∣∣∣∣∣∣ 1n
n∑
j=1

Wj

∣∣∣∣,
and the third term is the left–hand side of (5.9), which we have already shown is op(n

−1/2).
From the arguments above, it follows for the class of functions

F2 =

{
X 7→ W

{
F
(
t+ a(X)

)
− E

[
F
(
t+ a(X)

)]}
: t ∈ R, a ∈ H1(m,α)

}
to be G–Donsker. Therefore, empirical processes ranging over F2 are asymptotically equicon-
tinuous as in (5.5), but now without σ0e and with F2 in place of F. As before, we can assume
that â belongs to H1(m,α). We will now show the variance condition is satisfied for the
function X 7→ W{F (t + â(X))− F (t)− E[F (t + â(X))− F (t) |D]}. This variance is equal
to

E
[
W 2
{
F
(
t+ â(X)

)
− F (t)

}2 ∣∣∣D]+ E
[
W 2
]
E2
[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]
− 2E

[
W 2
{
F
(
t+ â(X)

)
− F (t)

} ∣∣∣D]E[F(t+ â(X)
)
− F (t)

∣∣∣D],
and is bounded by

2E
[
W 2
]{
F
(
t+ ‖â‖x,∞

)
− F (t)

}2

≤ 2‖f‖2
t,∞E

[
W 2
]
‖â‖2

x,∞.

Since we have already used that ‖â‖x,∞ = op(1), the bound above is op(1), i.e. the variance is
asymptotically negligible. This combined with equicontinuity implies that the term in (5.10)
has rate op(n

−1/2), as desired.
Finally we can bound (5.11) by

‖f‖t,∞‖â‖x,∞
∣∣∣∣ 1n

n∑
j=1

Wj

∣∣∣∣.
The central limit theorem combined with E[Wj] = 0 j = 1, . . . , n, gives | 1

n

∑n
j=1 Wj| =

Op(n
−1/2). Since ‖â‖x,∞ = op(1) this shows that the bound above, and also (5.11), is of order

op(n
−1/2). This completes the proof of the second assertion that ‖R2‖t,∞ = op(n

−1/2). �

Using the results of Lemma 2, we will now show that the test statistic Tn and the
asymptotically linear statistic above are asymptotically equivalent. This will imply the
limiting distribution of Tn is the same as that of the asymptotically linear statistic (5.1),
which we have already investigated; see Corollary 1.

Proof of Theorem 1. Consider the asymptotically linear statistic from (5.1),

n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}
,

with Wj given in (1.2). It follows, by the arguments preceding Corollary 1, for this statistic
to have the limiting distribution B0 ◦ F (t), where B0 is the Brownian bridge. We will now
show that

(5.12) sup
t∈R

∣∣∣∣ 1n
n∑
j=1

Ŵj1
[
ε̂j ≤ t

]
− 1

n

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}∣∣∣∣ = op(n
−1/2).
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Combining the above, the desired statement of Theorem 1 concerning the limiting distribu-
tion of the test statistic Tn follows, i.e.

Tn = sup
t∈R

∣∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣∣ D−→ sup
t∈[0,1]

|B0(t)|,

It follows from
∑n

j=1 Ŵj = 0 that we can decompose the difference in (5.12) into the following

sum of five remainder terms: R1 + R3 + R4 − R5 − R6, where R1 and R2 (which is part of
R3) are the remainder terms of Lemma 2, and where the other terms are defined as follows,

R3 =

(
Var[ω(X1)]

1
n

∑n
j=1{ω(Xj)− 1

n

∑n
k=1 ω(Xk)}2

)1/2

R2,

R4 =

((
Var[ω(X1)]

1
n

∑n
j=1{ω(Xj)− 1

n

∑n
k=1 ω(Xk)}2

)1/2

− 1

)

×

(
1

n

n∑
j=1

Wj

{
1
[
σ0e ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)})
,

R5 =

(
Var[ω(X1)]

1
n

∑n
j=1{ω(Xj)− 1

n

∑n
k=1 ω(Xk)}2

)1/2(
1

n

n∑
j=1

Wj

)

×
(

1

n

n∑
j=1

{
1
[
σ0e ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)})
,

and

R6 =

(
Var[ω(X1)]

1
n

∑n
j=1{ω(Xj)− 1

n

∑n
k=1 ω(Xk)}2

)1/2(
1

n

n∑
j=1

Wj

)

×
(

1

n

n∑
j=1

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F (t)

})
.

It remains to show supt∈R |Ri| = op(n
−1/2), i = 1, 3, . . . , 6, which will conclude the proof.

The statement for i = 1 holds true by the first part of Lemma 2. Note that the assumptions
of both statements of Lemma 2 are satisfied for our choice of weights W1, . . . ,Wn. The
statement for i = 3 follows from the second statement of the same lemma regarding R2 and
and from the fact that the first quantity of R3 is a consistent estimator of one.

To show supt∈R |R4| = op(n
−1/2), we only need to demonstrate that

(5.13) sup
t∈R

∣∣∣∣ 1n
n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)}∣∣∣∣ = Op(n
−1/2),

because the first term of R4 both does not depend on t and is asymptotically negligible.
To verify (5.13), combine the statement for R1 with the limiting result (5.2) from Corollary
1 for the asymptotically linear statistic, which shows n−1

∑n
j=1Wj{1[σ0ej ≤ t] − F (t)} =

Op(n
−1/2), uniformly in t ∈ R.
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Now consider R5 and remember that both Corollary 1 and the first statement of Lemma
2 cover the special case where all of the weights are equal to one, i.e. (5.13) holds with
Wj = 1, j = 1, . . . , n. Therefore, the third term of R5 is Op(n

−1/2), uniformly in t ∈ R. It
is clear for the product of the first and second terms of R5 to be op(1). It then follows that
supt∈R |R5| = op(n

−1/2).
We find that supt∈R |R6| is bounded by

sup
t∈R
|f(t)|

(
Var[ω(X1)]

1
n

∑n
j=1{ω(Xj)− 1

n

∑n
k=1 ω(Xk)}2

)1/2

×
(

sup
x∈[0, 1]m

∣∣â(x)
∣∣+ sup

x∈[0, 1]m

∣∣r̂(x)− r(x)− â(x)
∣∣)∣∣∣∣ 1n

n∑
j=1

Wj

∣∣∣∣.
The second term in the bound above is a consistent estimator of one. As in the proof of
Lemma 2, we use supx∈[0, 1]m |â(x)| = op(1) and supx∈[0, 1]m |r̂(x)−r(x)−â(x)| = op(1), e.g. see
property (5.4) of Lemma 1. Hence, the third term in the bound above is op(1). We can apply
the central limit theorem to treat the fourth quantity and find it is Op(n

−1/2). Combining
these findings yields the bound above is op(n

−1/2). This implies supt∈R |R6| = op(n
−1/2). �
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