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Summary

The algorithmic challenges have changed in the last decade due to the rapid growth of the
data set sizes that need to be processed. New types of algorithms on large graphs like social
graphs, computer networks, or state transition graphs have emerged to overcome the problem
of ever-increasing data sets. In this thesis, we investigate two approaches to this problem.
Implicit algorithms utilize lossless compression of data to reduce the size and to directly

work on this compressed representation to solve optimization problems. In the case of graphs
we are dealing with the characteristic function of the edge set which can be represented
by Ordered Binary Decision Diagrams (OBDDs), a well-known data structure for Boolean
functions. We develop a new technique to prove upper and lower bounds on the size of OBDDs
representing graphs and apply this technique to several graph classes to obtain (almost)
optimal bounds. A small input OBDD size is absolutely essential for dealing with large graphs
but we also need algorithms that avoid large intermediate results during the computation. For
this purpose, we design algorithms for a specific graph class that exploit the encoding of the
nodes that we use for the results on the OBDD sizes. In addition, we lay the foundation on the
theory of randomization in OBDD-based algorithms by investigating what kind of randomness
is feasible and how to design algorithms with it. As a result, we present two randomized
algorithms that outperform known deterministic algorithms on many input instances.
Streaming algorithms are another approach for dealing with large graphs. In this model, the

graph is presented one-by-one in a stream of edge insertions or deletions and the algorithms
are permitted to use only a limited amount of memory. Often, the solution to an optimization
problem on graphs can require up to a linear amount of space with respect to the number of
nodes, resulting in a trivial lower bound for the space requirement of any streaming algorithm
for those problems. Computing a matching, i. e., a subset of edges where no two edges are
incident to a common node, is an example which has recently attracted a lot of attention in
the streaming setting. If we are interested in the size (or weight in case of weighted graphs)
of a matching, it is possible to break this linear bound. We focus on so-called dynamic graph
streams where edges can be inserted and deleted and reduce the problem of estimating the
weight of a matching to the problem of estimating the size of a maximum matching with a
small loss in the approximation factor. In addition, we present the first dynamic graph stream
algorithm for estimating the size of a matching in graphs which are locally sparse. On the
negative side, we prove a space lower bound of streaming algorithms that estimate the size of
a maximum matching with a small approximation factor.
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1. Introduction and Overview

Less is sometimes more. This saying has a lot of interpretations and it had nothing to do
with computer science in the first place. But if we try to apply it to the current development
of theoretical computer science we see that there are at least two new interpretations that we
present here to motivate the topic of this thesis.

Data is everywhere The continuous progress of networking has lead to a new kind of data:
The emergence of massive graphs, for example the internet graph or social networks, changed
the requirement on (graph) algorithms. Classically efficient algorithms with polynomial or
even linear running time cannot be used on such graphs without incurring infeasible running
times or memory requirements. These graphs are not only becoming even larger by embedding
sensors, software, and electronics in everything, which is also known as Internet of Things,
but also the velocity of the data is increasing more and more. Small devices such as embedded
systems or network routers need to analyze and process incoming data but do not have enough
memory to store information on every single data package. The computations also have to be
done immediately when the data arrives. The kind of algorithms which are necessary in this
scenario are usually called data stream algorithms. Streaming algorithms realize the “Less is
sometimes more” paradigm in the context of Big Data analysis by using a small amount of
space to maintain a summary or a sketch of the data.

Keep it all The massive size of the data in the data stream setting is often caused by the
immense number of generators or users. Often, a lone data package yields no significant
information by itself. We may be only interested in general properties of the entire data
set, which may allow us to produce and analyze a rough aggregation or summary of the data
instead. In terms of the type of solutions in streaming algorithms, we consider approximations
and estimations which are neither optimal or exact nor succeeding all the time. While this
phenomenon is inevitable for most streaming algorithms, and indeed sometimes even desirable,
there nevertheless exist applications where we need an exact or optimal algorithm even when
facing very large inputs. Examples include verification where it is crucial to have exact or
optimal algorithms. A different line of research focuses on storing datasets implicitly, for
instance via a function, in the hope of getting a more compact representation. Implicit
algorithms operating in this model have no direct access to the data and are limited to using
the implicit representation. In some cases, an implicit representation of the data set, as well
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2 Chapter 1. Introduction and Overview

as the implicit representation of every intermediate result of the algorithm, is smaller than
the explicit one. Perhaps unsurprisingly, not all datasets can be compressed by a significant
amount. Thus, implicit algorithms are rather a heuristic approach to deal with massive
inputs. Here, “Less is sometimes more” means that we use compression to deal with very
large inputs. It also means that we use a small amount of space but in the sense of a compact
representation of the entire data.

The Main Problem Due to the limitations of both mentioned models, the complexity of
problems is increasing compared to classical computation models. In particular, easy problems
which can be solved in polynomial time and space may not be feasible for implicit or streaming
algorithms. For instance, a lot of graph problems which are known to be in the complexity
class P become PSPACE-complete if the inputs are given in an implicit representation (e. g.,
see [46]) which is a significant increase in terms of complexity. Therefore, we focus on a
classical and easy problem that can still be computed in the limited models: We investigate
the problem of computing or approximating matchings in graphs. A matching in a graph
G = (V,E) where V is the set of nodes and E ⊆ V × V is the set of edges is a subset
of E where no two edges have a node in common. A disjoint pairing of nodes has a lot
of applications, for instance for assigning advertisers to display slots, finding partners in a
social network, or for scheduling jobs on a set of machines. Matchings have already been
investigated for both implicit algorithms and streaming algorithms. In particular, there is a
lot of current work on matchings in the streaming framework.
In order to present the results of this thesis, we first describe the two aforementioned

frameworks in more detail. Then we give a brief overview on the contribution of this thesis
in the areas of implicit algorithms and streaming algorithms. Last but not least, we explain
the structure of the thesis and mention the publications that this thesis is based on and the
contribution of the author to these publications.

1.1. Implicit Algorithms

A way to implicitly store a binary encoded object O ∈ {0, 1}n is to use the characteristic
function χO of O which is defined by χO(i) = 1 iff Oi = 1. This function can be represented
by known data structures for Boolean functions. We use so-called Ordered Binary Decision
Diagrams (OBDDs) introduced by Bryant [25] to represent χO. For an overview of the
representation of Boolean function by OBDDs and other data structures we refer to the book
by Wegener [128]. The reason for choosing OBDDs is that on the one hand OBDDs allow a
significant reduction in the representation size for Boolean functions while supporting several
so-called functional operations efficiently. Among these are equality testing, conjunction or
disjunction of two Boolean functions, or counting the number of inputs evaluating to 1. All
algorithms presented in this thesis are graph algorithms. A graph G = (V,E) consists of a set
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of nodes V and a set of edges E ⊆ V × V representing connections between the nodes. Then
the implicit representation of the graph is the characteristic function of the edge set. Several
graph problems, for instance maximum flow [57, 115], topological sorting [131], connectivity
[51], minimum spanning tree [15], and maximum matching [18] can be solved by OBDD-based
algorithms using mainly functional operations. The complexity of OBDD-based algorithms
is measured in the number of functional operations and the number of input bits of the used
functions. However, the actual running time of the algorithms (and functional operations)
is determined by the OBDD sizes of the used functions. Thus, keeping both number of
functional operations and number of input bits which is a rough measure for the worst-case
OBDD size as small as possible is the overall goal in designing implicit algorithms.

1.2. Graph Stream Algorithms

In a graph data stream, the input graph is defined by a data stream which in this thesis
consists of insertions and deletions of edges. A recent survey by McGregor [95] gives a
comprehensive overview on the state of the art in graph streaming. Henzinger, Raghavan,
and Rajagopalan [59] were the first to consider graph problems in the streaming model. Many
streaming algorithms on graphs are in the semi-streaming model where the space usage is up
to logarithmic factors proportional to the number of nodes in the graph. Graph problems are
often intractable when only sublinear space with respect to the number of nodes is permitted
(for instance, see [45]). Computing or approximating a matching in a data stream has recently
gained a lot of attention [1, 9, 29, 28, 36, 42, 44, 53, 63, 73, 74, 80, 81, 133]. Some of these
works break the linear space requirement which is inherently necessary whenever the output is
a matching by estimating the size of the maximum matching instead. Depending on whether
the stream also consists of edge deletions, the complexities (in terms of required space) of the
matching problems can vary. Therefore, the posed challenges are also different depending on
the model and the problem. In insertion-only streams, it is an open question what the best
approximation factor smaller or equal than 2 is with O(|V | polylog |V |) space if we want to
compute a matching. With edge deletions even |V |ε approximation factors need Ω(|V |2−3ε)
space [9]. The problem of estimating the maximummatching size is less well understood. Even
in the insertion-only streams, it is unknown whether it is possible to estimate the matching
size with sublinear space in general graphs. We conclude this section by a quote of an entry
in the list of open problems for sublinear algorithms [93] which was suggested by Andrew
McGregor and which was the initial motivation for investigating matchings in data streams:

Consider an unweighted graph on N nodes defined by a stream of edge insertions
and deletions. Is it possible to approximate the size of the maximum cardinality
matching up to constant factor given a single pass and o(N2) space? Recall that a
factor 2 approximation is easy in O(N logN) space if there are no edge deletions.
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1.3. Organization and Results

As a general rule, every chapter begins with a brief summary of the content. If the chapter
contains new results, then there is also a section on related work and on the contributions of
the results in the context of previous works.

Chapter 2 In order to lay the foundations for the results and related work, we introduce the
necessary notions and results in the area of graph classes, OBDDs, probability theory, graph
streaming, and communication complexity.

Chapter 3 We show how to use the adjacency matrix of a graph to analyze the size of the
OBDD representing the graph. Then we apply this technique to several graph classes such as
(unit) interval graphs, (bi)convex graphs, trees, and more. For these graphs, the crucial point
is to find a labeling of the nodes such that the neighborhood of a node has some structural
properties. We show upper bounds on the OBDD size as well as lower bounds where a lower
bound is the worst-case OBDD size for some graph from the class. For all graph classes we
show optimal or up to logarithmic factors optimal upper bounds on the OBDD size. We also
present a maximum matching algorithm for unit interval graphs where we exploit the labeling
of the nodes to get a simple algorithm using only O(logN) functional operations. Then we
present a coloring algorithm for interval graphs and unit interval graphs using O(log2N)
functional operations that colors the nodes of the graph with a minimum amount of colors
while two adjacent nodes cannot have the same color.

Chapter 4 In order to design simple implicit algorithms with a small number of functional
operations, we investigate the uses of randomization in OBDD-based algorithms by construct-
ing OBDDs for random functions. In general, a function where the function values are chosen
randomly is not representable by an OBDD of small size. Thus, we use random functions
where the function values are not completely independent but k-wise independent. Infor-
mally, this means that the distribution of at most k function values behaves as in the case
of complete independence. We show that there is a sharp separation between 4-wise random
functions and 3-wise random functions. While the former has an exponentially large lower
bound of 2Ω(n), the latter can be represented by OBDDs of size O(n) where n is the number
of input bits. We also give an OBDD construction of so-called almost k-wise independent
random functions that are “close” to k-wise independent random functions measured by some
distance parameter ε. The resulting OBDD size is O((nk)2/ε). Altogether, this gives a clear
picture of the landscape of random functions which can be presented by OBDDs of small size.
In the algorithmic part, we present a randomized minimum spanning tree (MST) algorithm
and a randomized maximal matching algorithm. The MST algorithm has no proven guarantee
on the number of functional operations and it is more an example how to use randomization
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to design an OBDD-based algorithm. On the other hand, the matching algorithm is not
only simple but we can also prove an upper bound of O(log3N) on the expected number of
functional operations. The matching algorithm is currently the best implicit algorithm with
respect to both the number of used input variables (3 logN) and the number of functional
operations.

Chapter 5 For an experimental evaluation we have implemented all OBDD-based algorithms
presented in this thesis and the implicit maximum matching algorithms by Bollig, Gillé, and
Pröger [18]. The maximum matching algorithms can outperform the well-known explicit
matching algorithm by Hopcroft and Karp on some instances. But in general the experi-
ments show that decreasing the number of functional operations does not necessarily improve
the running time and can even be contra-productive. Especially the maximal matching algo-
rithm by Bollig and Pröger [20] with O(log4N) functional operations is much worse than an
algorithm by Hachtel and Somenzi [57] with O(N logN) functional operations. Comparing
the algorithm by Hachtel and Somenzi with our randomized maximal matching algorithm
shows that the randomized algorithm is better on sparse graphs which makes it also possi-
ble to run the randomized algorithm on some sparse real-world instances where the other
algorithm exceeds the memory limitation. The coloring algorithm for interval graphs is not
feasible even on small instances whereas the maximum matching algorithm on unit interval
graphs outperforms an explicit algorithm.

Chapter 6 As mentioned before, it is an open problem how to estimate the size of a maximum
matching in a graph stream. However, for some special cases, for instance for locally sparse
graphs with edge insertions only [44] or randomly ordered streams [74], it is possible to get
an approximation on the matching size. Given an algorithm A that can estimate the size
of a maximum matching with approximation factor λ, we present an algorithm that can
estimate the weight of an optimal weighted matching up to an O(λ4) factor using roughly the
same space as A. This reduction works in every streaming model and is only limited by the
requirements of A. We also extend a recent estimation algorithm by Esfandiari et al. [44] for
locally sparse graphs in insertion-only streams to the case of edge deletions. We also prove
a space lower bound of Ω(N1−ε) for every streaming algorithm that estimates the matching
size with approximation factor 1 +O(ε).

1.4. Publications and Contribution of the Author

The content of this thesis is based on the following publications:

• Chapter 3 and parts of Chapter 5 are based on [52]
Gillé, M. OBDD-based representation of interval graphs. In Proceedings of the 39th
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Workshop on Graph-Theoretic Concepts in Computer Science (WG) (2013), pp. 286–
297. Best Student Paper Award.

• Chapter 4 and parts of Chapter 5 are based on:
Bury, M. Randomized OBDD-based graph algorithms. In Proceedings of the 22nd
International Colloquium on Structural Information and Communication Complexity
(SIROCCO) (2015), To appear. Best Student Paper Award.

• Parts of Chapter 5 are based on [18]:
Bollig, B., Gillé, M., and Pröger, T. Implicit computation of maximum bipar-
tite matchings by sublinear functional operations. Theoretical Computer Science 560
(2014), 131–146.

The experimental evaluation in this paper was mainly done by the author.

• Chapter 6 is based on:
Bury, M., and Schwiegelshohn, C. Sublinear Estimation of Weighted Matchings
in Dynamic Data Streams. In Proceedings of the 23rd Annual European Symposium
(ESA) (2015), To appear.

Both authors contributed equally to this publication.



2. Preliminaries

This chapter contains the necessary notions, tools, and known results that we need for the
next chapters. First, we give a brief overview of some notations we will use in this thesis.
Then we start by presenting graph theoretic concepts including graph classes whose implicit
representation size we are going to investigate. In Section 2.3, we define OBDDs formally, give
some lower bound techniques for the size of an OBDD representing a Boolean function, and
show how OBDDs and so-called functional operations can be used for optimization algorithms.
Section 2.4 gives an introduction in probability spaces and random variables as a foundation
for our randomized algorithms. Known results and techniques for streaming algorithms are
given in Section 2.5 while Section 2.6 presents space lower bound techniques for streaming
algorithms in terms of communication complexity.

2.1. Notation

The sets of all natural and real numbers are denoted by N and R, respectively. For a, b ∈ R
we denote by [a, b] and (a, b) the closed interval of real numbers x ∈ R such that a ≤ x ≤ b

and the open interval of real numbers such that a < x < b, respectively. Accordingly, (a, b]
and [a, b) denote the half-open intervals. In all cases, the numbers a and b are called endpoints
of the interval where a is the left endpoint and b is the right endpoint. We denote the set of
Boolean functions f : {0, 1}n → {0, 1} by Bn. Let (x0, . . . , xn−1) = x ∈ {0, 1}n be a binary
number of length n and |x|2 :=

∑n−1
i=0 xi · 2i the value of x. For any natural number l ∈ N,

let [l]2 denote the corresponding binary number of l, i. e., |[l]2|2 = l. For two binary numbers
x, y ∈ {0, 1}n we denote by x ⊕ y the binary number resulting from computing the bitwise
exclusive or of x and y. Further, we denote by [x, y] ∈ {0, 1}2n the concatenation of the two
vectors. The vector of length n where all entries are zero (one) is denoted by 0n (1n). We
denote the set {1, . . . , n} by [n]. In asymptotic running times and space requirements we
use Õ(f(n)) to hide factors polylogarithmic in f(n). We say that an event occurs with high
probability if the probability of the event is at least 1− o(1).

2.2. Graphs

For the sake of clarity, we start with some formal definitions of graphs.

7



8 Chapter 2. Preliminaries

Definition 2.2.1 (General Graphs).

• A directed (undirected) graph G = (V,E) consists of a finite set of nodes V and a set E
of ordered (unordered) pairs of nodes called edges.

• A weighted graph G = (V,E,w) is a directed or undirected graph with an additional
weight function w : E → R that assigns a weight to each edge.

• A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′).

• For a subset U ⊆ V of nodes we denote the set of edges containing only nodes from U

by E(U) ⊆ E and say that U induces the subgraph G(U) = (U,E(U)) on G.

If nothing else is stated a graph G = (V,E) is undirected and we denote the number of nodes
by N , i. e., |V | = N .

Definition 2.2.2. Let G = (V,E) be a graph.

• Two nodes u, v ∈ V are called adjacent iff e = {u, v} ∈ E. In this case, the edge e is
called incident to u and v.

• The degree degE(v) of a node v ∈ V is the number of edges incident to v.

• The neighborhood N(v) of a node v ∈ V is the set of adjacent nodes, i. e., N(v) =
{u ∈ V | {u, v} ∈ E}.

• A sequence P = (v1, . . . , vl) of pairwise distinct nodes is a path if
{v1, v2}, . . . , {vl−1, vl} ∈ E. The length of P is the number l − 1 of the edges of P .
If also {vl, v1} ∈ E then C = (v1, . . . , vl, v1) is called a cycle and the length of C is l.

• A chord of a path P (cycle C) is an edge between two nodes of P (C) that is not an
edge of the path (cycle). A path (cycle) with no chord is called chordless.

• G is connected if for all u, v ∈ V with u 6= v, there is a path (u = v1, . . . , vl = v) in G.

• G is called acyclic if there exists no cycle in the graph.

Definition 2.2.3. Let G = (V,E) be a directed graph.

• G is called symmetric if (u, v) ∈ E ⇔ (v, u) ∈ E holds for all all u, v ∈ V .

• The indegree d−(v) and outdegree d+(v) of a node v ∈ V is the number of edges in E of
the form (u, v) and (v, u), respectively.

• G is rooted at a node v ∈ V if d−(v) = 0 and there is a path to every node in V starting
in v.

• A node v ∈ V is called a sink if d+(v) = 0.
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The adjacency matrix or adjacency lists are two possible ways to represent a graph G = (V,E)
explicitly. Let V = {v0, . . . , vN−1}. In an adjacency matrix A ∈ {0, 1}N×N the entry aij is
equal to 1 if {vi, vj} ∈ E and 0 otherwise. In the adjacency list representation we have a list
Li containing all the neighbors of the node vi for every 0 ≤ i ≤ N − 1. The space usage of
an adjacency matrix is Θ(N2) whereas the adjacency list representation needs Θ(|E| logN)
space.
Regarding counting of graphs we have to be careful whenever two graphs are essentially the

same. In this case we say that the graphs are isomorphic which is formally defined as follows.

Definition 2.2.4 (Isomorphic Graphs). Two graphs G = (V1, E1) and H = (V2, E2) are
isomorphic (G ∼ H) if there is a bijection l : V1 → V2 such that for all u, v ∈ V1 it is
{u, v} ∈ E1 if and only if {l(u), l(v)} ∈ E2.

2.2.1. Graph Classes

Based on the definitions of the last section we define some graph classes which we will later
investigate in terms of their OBDD size. Most of the definitions and results are taken from
[23]. We start with two important classical graph classes: trees and bipartite graphs.

Definition 2.2.5 (Tree). A graph G = (V,E) is called a tree if G contains no cycle and is
connected. Nodes with degree 1 in a tree are called leaves.

Trees have been studied extensively and there are several characterizations and properties of
them. Here we mention only those that are important for the rest of the thesis.

Proposition 2.2.6 ([23]).

• A connected graph G is a tree if and only if G has N − 1 edges.

• Every tree with more than one node has at least two leaves.

Definition 2.2.7 (Bipartite Graph). A graph G = (V,E) is called bipartite if the node set
can be partitioned into two sets V = A∪B such that for every edge {u,w} ∈ E it holds either
u ∈ A and v ∈ B or u ∈ A and v ∈ B, i. e., two nodes from the same set A or B must not be
adjacent. For a bipartite graph partitioned into A and B we also write G = (A,B,E).

Bipartite graphs can also be characterized as the graphs without cycles of odd length which
implies that trees are always bipartite. The next few graph classes are instances of so-called
intersection graphs where every node represents a set and the adjacency relation between
nodes is equivalent to the intersection relation between the corresponding sets.
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Definition 2.2.8 (Intersection Graph). Let S = {S1, . . . , SN} be a family of sets. The
intersection graph GS = (V,E) of S is a graph with one node vi ∈ V for each set Si where
two nodes are adjacent whenever the two corresponding sets have a nonempty intersection,
i. e., the edge set is defined by

E = {{vi, vj} | i 6= j and Si ∩ Sj 6= ∅}.

We call S an intersection model of GS .

We start with a simple family of sets, namely intervals.

Definition 2.2.9 ((Unit) Interval (Bi)Graph). A (unit) interval graph is an intersection
graph that has an intersection model consisting of (unit length) intervals on a straight line.
A bipartite graph G = (A,B,E) is an (unit) interval bigraph if every vertex can be assigned
to a (unit length) interval on the real line such that for all u ∈ A and v ∈ B : {u, v} ∈ E iff
the corresponding intervals intersect.

Note that a (unit) interval bigraph is not a bipartite interval graph in general since the
intervals in A or B can intersect.

Straight lines in Euclidean space can be another family of sets of an intersection graph,
i. e., two nodes are adjacent if and only if their corresponding lines are crossing. Restricted
straight lines can be used to characterize so-called permutation graphs which we define next.

Definition 2.2.10 ((Bipartite) Permutation Graph). A graph is a permutation graph if it
has an intersection model consisting of line segments whose endpoints lie on two parallel lines.
A graph is a bipartite permutation graph if it is both bipartite and a permutation graph.

An interesting property of bipartite permutation graphs is that they admit an order of A and
an order of B such that the neighborhood of every node from A (B) is consecutive in the
order of B (A). This kind of order is interesting in itself.

Definition 2.2.11 (Properties of Node Orders). Let G = (A,B,E) be a bipartite graph.
An order ≺A of A in G has the adjacency property if for each node u ∈ B the neighborhood

N(u) ⊆ A of u consists of nodes that are consecutive in the order ≺A.
An order ≺A of A in G has the enclosure property if for each pair u, v ∈ B such that

N(u) ⊂ N(v) the set N(v) \N(u) consists of nodes that are consecutive in the order ≺A.
A strong order is a labeling of A and a labeling of B such that for all {ai, bj} ∈ E and
{ai′ , bj′} ∈ E, where ai, ai′ ∈ A and bj , bj′ ∈ B, if i < i′ and j′ < j, then {ai, bj′} ∈ E and
{ai′ , bj} ∈ E.
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Theorem 2.2.12 ([121]). Let G = (A,B,E) be a bipartite graph. Then the following state-
ments are equivalent:

• G is a bipartite permutation graph.

• G admits an order of A that has the adjacency and the enclosure property.

• G admits a strong order.

We will see that ordering nodes and characterizing the neighborhood of a node with respect
to the order is important for some upper bounds for the representation size. Therefore, we
investigate additional graph classes whose definition is based on the above order properties.

Definition 2.2.13 ((Bi)Convex Graph). A bipartite graph G = (A,B,E) is convex if there
is an order of either A or B that fulfills the adjacency property.
A bipartite graph G = (A,B,E) is biconvex if there is an order of A and B that fulfills the

adjacency property.

We finish this subsection with cographs and two graph classes which are defined by node
weights and form interesting subclasses of permutation graphs and bipartite permutation
graphs. Figure 2.1 gives an overview of the intersection relationships between the classes
defined here (see [23]).

Definition 2.2.14 (Cograph). A graph G = (V,E) is a cograph if G contains no induced P4,
i. e., a path of length 3 on 4 nodes.

Definition 2.2.15 (Threshold Graph). A graph G = (V,E) is a threshold graph if there is a
real number T (the threshold) and for every node v ∈ V there is a real weight wv such that:
{u, v} ∈ E if and only if wu + wv ≥ T .

Definition 2.2.16 (Chain/Difference Graph). The graph G = (V,E) is a chain graph (or a
difference graph) if there is a real number T and for every node v ∈ V there is a real weight
wv with |wv| ≤ T such that {u, v} ∈ E if and only if |wv − wu| ≥ T .
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Figure 2.1.: Inclusion map of the defined graph classes. The arrangement of the classes reflects their representation size from Chapter
3 (see also Fig. 3.1).
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2.2.2. Counting Graphs

Since we are interested in the representation size of graphs, we also want to prove some space
lower bounds in terms of the worst case representation size of a graph coming from a graph
class C. Regarding bit complexity, counting is a simple but powerful technique to prove lower
bounds: The number of necessary bits to represent K distinct objects is lower bounded by
logK since b bits can represent at most 2b different objects. In Section 2.3, we will see how
the counting argument also works for lower bounds of the size of OBDDs representing graphs.
At a first glance, in order to count graphs we could fix a node set V = {v0, . . . , vN−1} of size

N , enumerate all graphs on V and count the number of graphs with are from a graph class C.
The main issue is that we count isomorphic graphs separately but for a lower bound we want
to treat isomorphic graphs as the same graph. Therefore, we have to count the number of
different equivalence classes [G] := {H | G ∼ H with H ∈ C} of graphs G = (V,E) with size
N . These two methods are known as counting labeled graphs and counting unlabeled graphs,
respectively. We restrict this exposition to known results (or slight adaptations) about the
graph classes we are interested in and give no detailed introduction in the topic of graph
counting. We refer to [58] for an in-depth survey.
Lower bounds on the number of unlabeled graphs from a graph class would suffice to get

lower bounds for the representation size. However, in classical graph counting there are often
asymptotic exact expressions for the number of graphs, i. e., the number of graphs divided
by the expression converges to 1. One of the first asymptotic formulas was given by Otter in
1948 for counting trees.

Theorem 2.2.17 ([109]). The number of unlabeled trees T (N) of size N satisfies

lim
N→∞

T (N)
CαN ·N−5/2 = 1

for constants C and α.

For interval graphs Gavoi and Paul [50] showed a lower bound of 2Ω(N logN) which we use to
show a lower bound for convex graphs.

Theorem 2.2.18 ([50]). The number I(N) of labeled interval graphs is
22N logN−N log logN−O(1). The number of unlabeled interval graphs of size N is at least
I(N)/N ! which is at least 2N logN−o(N logN).

We show that 2N logN−o(N logN) is also a lower bound for the number of unlabeled convex
graphs. The proof idea is from [123]. However, for the author of this thesis it was unclear
whether they considered labeled or unlabeled graphs which is why we reformulate the proof
here.
Theorem 2.2.19 (Similar to [123]). The number CONV (2N,N) of unlabeled convex graphs
with partition sizes |A| = 2N and |B| = N is 2Ω(N logN).
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Proof. We show that there is a surjective mapping φ from the set of labeled convex graphs to
the set of labeled interval graphs. In addition, we show that for two non-isomorphic interval
graphs there are two non-isomorphic convex graphs which are mapped to the two interval
graphs under φ. This implies that CONV (2N,N) is at least 2N logN−o(N logN) by Theorem
2.2.18.
We start with the mapping from the labeled convex graphs into the set of all labeled interval

graphs. Let G = (V,E) be a convex graph. V is partitioned into A of size 2N and B of size
N and w.l.o.g. A has the adjacency property, i.e., there exists an order �A for the nodes in
A such that for all u ∈ B the neighborhood N(u) consists of nodes that are consecutive in
�A. W.l.o.g. assume that there are no isolated nodes and A = {a1, . . . , a2N} where ai � aj

iff i < j. Let φ(G) = (V ′, E′) be a graph with

V ′ = B and E′ = {{v, u} | N(v) ∩N(u) 6= ∅}.

We represent each node u ∈ B by an interval [lu, ru] where lu and ru is the smallest index
of a neighbor of u and the largest index of a neighbor with respect to the order �A of A,
respectively. Clearly, this is an interval representation of φ(G) concluding that φ(G) is an
interval graph.
Now let H = (V,E) be an interval graph with an interval representation I = {[lv, rv] | v ∈

V }. W.l.o.g. we assume that all endpoints of the intervals in I are distinct, i. e., I has 2N
different endpoints (see, e. g., [98] for a transformation if there are common endpoints). For
every endpoint e we create a node ae and define A to be the union of these nodes. Let B = V

and E = {{v, ae} | v ∈ B, ae ∈ A and e ∈ [lv, rv]}. Then G = (A,B,E) is a convex graph
with the sorted sequence of endpoints as the order for A which has the adjacency property.
Furthermore, it holds that φ(G) = H which means that φ is surjective.
Now, we show that for two non-isomorphic interval graphs GI and GI′ with interval rep-

resentation I = {[li, ri] | i ∈ {1, . . . , N}} and I ′ = {[l′i, r′i] | i ∈ {1, . . . , N}} there are
two non-isomorphic convex graphs G and G′ such that φ(G) = GI and φ(G′) = GI′ . Let
G = (A,B,E) and G′ = (A′, B′, E′) be the convex graphs from the construction above, i.e.

A = {up | p is endpoint in I},
B = {1, . . . , N},
E = {{i, up} | i ∈ B, up ∈ A and p ∈ [li, ri]}

A′ = {u′p | p is endpoint in I ′},
B′ = {1, . . . , N},
E′ = {{i, u′p} | i ∈ B′, u′p ∈ A′ and p ∈ [l′i, r′i]}

Assume that G and G′ are isomorphic, i.e. there exists a bijective mapping π : A∪B → A′∪B′
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such that the edge relation is preserved, i.e. {i, up} ∈ E iff {π(i), π(up)} ∈ E′. W.l.o.g.
π(i) ∈ A′ and π(up) ∈ B′ for all i ∈ B and up ∈ A. Otherwise, we can add a node uall to
A and a node wall to B that are adjacent to all nodes from B and A, respectively (including
the new nodes). Repeat this for A′ and B′. If G and G′ are isomorphic then the new graphs
are also isomorphic (just add uall → u′all and wall → w′all to the mapping). If the new graphs
are isomorphic then the node uall and the node wall have to be mapped to u′all and w′all,
respectively, because no other nodes have the same degrees of |B|+ 1 and |A|+ 1. Therefore,
the mapping induced on the nodes A ∪ B is a bijection to A′ ∪ B′ and preserves the edge
relation. Thus, G and G′ are also isomorphic. Therefore, we can split π into two bijections
π1 : B → B′ and π2 : A→ A′. But then for every i 6= j, i, j ∈ {1, . . . , N} we have

[li, ri] ∩ [lj , rj ] 6= ∅ ⇔ ∃up ∈ A : p ∈ [li, ri] and p ∈ [lj , rj ]
⇔ {i, up} ∈ E and {j, up} ∈ E
⇔ {π1(i), π2(up)} ∈ E′ and {π1(j), π2(up)} ∈ E′

⇔ [l′π1(i), r
′
π1(i)] ∩ [l′π1(j), r

′
π1(j)] 6= ∅

which can not be true since GI and GI′ are not isomorphic. Therefore, G and G′ are also not
isomorphic which completes the proof.

Since in interval bigraphs both sides can use the same set of intervals, the lower bounds for
interval graphs can be easily applied to interval bigraphs.

Theorem 2.2.20. The number BI(N,N) of unlabeled interval bigraphs with a size of N for
both partitions is 2Ω(N logN).

The next theorems summarize known results for counting the remaining graph classes: (bi-
partite) permutation graphs, threshold graphs, and chain graphs.

Theorem 2.2.21 ([13]). The number P (N) of unlabeled permutation graphs of size N is
2Ω(N logN).

Theorem 2.2.22 ([112]). For N ≥ 2, the number BP (N) of unlabeled connected bipartite
permutation graphs of size N is given by

BP (N) =


1
4

(
C(N − 1) + C(N/2− 1) +

( N
N/2
))

if N is even,
1
4

(
C(N − 1) +

( N−1
(N−1)/2

))
otherwise

where C(N) := 1
N+1

(2N
N

)
is the N -th Catalan number.

Theorem 2.2.23 (Chapter 17.2 in [91]). The number of unlabeled threshold graphs with
maximum clique size k is

(N−1
k−1

)
. This implies that the number TH(N) of unlabeled threshold

graphs is 2N−1.
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Theorem 2.2.24 ([111]). The number CH(N) of unlabeled chain graphs of size N is 2N−2 +
2bN/2c−1.

2.2.3. Matchings

The computation of a matching in a graph is a fundamental and intensively studied problem
in graph theory. Lovász and Plummer [88] dedicate an entire book to the theory of matchings
which illustrates the importance and complexity of matchings. We start with the formal
definitions of different matching variants which we are investigating in this thesis.

Definition 2.2.25 (Matchings). Let G = (V,E) be a graph. A set of edges M ⊆ E is called
a matching if no two edges of M have a node in common, i. e., if it holds for all e, e′ ∈ M
with e 6= e′ that e∩ e′ = ∅. A node is called matched (with respect to M) if it has an incident
edge in M and free (with respect to M) otherwise.
M is called maximal matching if there is no edge e ∈ E such thatM ∪e is a matching. M is

called maximum matching if there is no matching with larger cardinality. In a weighted graph
G = (V,E,w) the weight of a matching M is the sum of the edge weights, i. e., w(M) :=∑
e∈M w(e). M is called maximum weighted matching if for all matchings M ′ the weight

w(M ′) is at most w(M).

One combinatorial approach to compute a maximum matching is to successively find a
maximal set of so-called augmenting paths with respect to a current matching M : An M -
augmenting path for a matching M is a path where the edges belong alternatingly to M and
not to M and the path starts from and ends in a free node. By replacing the matching edges
with the non-matching edges on the augmenting path, we can increase the matching size by
one. Eventually, a matching is a maximum matching if and only if there exists no augmenting
path in the graph [61]. In 1973, Hopcroft and Karp [61] gave the best known algorithm for
computing a maximum matching in bipartite graphs with a running time of O(|E|

√
N) which

is based on finding augmenting paths. Edmonds [41] extended this result to general graphs
with running time O(N4) which was improved by Micali and Vazirani [100] to O(|E|

√
N).

Using an algebraic point of view, Mucha and Sankowski [102] showed that a maximum
matching can be computed in time O(Nω) where ω < 2.3731 is the exponent of the best
known matrix multiplication algorithm. A key notion for algebraic matching algorithms is
the Tutte matrix of the graph.

1The famous algorithm by Coppersmith and Winograd [34] with running time O(n2.376), which was the
best bound for over twenty years, was recently improved several times: First in 2012 by Stothers [122] to
O(n2.3737), then by Williams [130] to O(n2.3729), and, finally, by Le Gall [48] to O(n2.3728).
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Definition 2.2.26 (Tutte Matrix). Let G = (V,E) be a graph with V = {v0, . . . , vN−1}.
The Tutte matrix TG of G is a N ×N matrix with entries

tij =


xij if {vi, vj} ∈ E and i < j,

−xij if {vi, vj} ∈ E and j < i,

0 otherwise

where xij are indeterminates.

Tutte [124] showed that a graph G has a perfect matching, i. e., a matching of size N/2, if
and only if the determinant of TG, which is a polynomial in the indeterminates, is not equal
to 0. Lovász [87] generalized this result by relating the rank of the Tutte matrix to the size
of a maximum matching.

Theorem 2.2.27 (Lovász [87]). Let G = (V,E) be a graph with a maximum matching M
and Tutte matrix TG. For an assignment w ∈ R|E| to the indeterminates of TG we denote
the matrix by TG(w) where the indeterminates are replaced by the corresponding assignment
in w. Then we have

max
w
{rank(TG(w))} = 2 · |M |.

In order to calculate the maximum of the rank, Lovász [87] also showed that the rank of
the matrix where the indeterminates are replaced by random numbers uniformly drawn from
{1, . . . , R} is equal to maxw{rank(TG(w))} with probability at least 1− |E|/R.

Theorem 2.2.28 (Lovász [87]). Let G = (V,E) be a graph and r ∈ R|E| be a random vector
where each coordinate is uniformly chosen from {1, . . . , R} with R ≥ |E|. Then we have

rank(TG(r)) = max
w
{rank(TG(w))}

with probability at least 1− |E|/R.

2.3. OBDD-Based Graph Representation and Algorithms

Let G = (V,E) be a directed graph with node set V = {v0, . . . , vN−1} and edge set E ⊆ V ×V .
Here, an undirected graph is interpreted as a directed symmetric graph. Implicit algorithms
are working on the characteristic function χE ∈ B2n of E where n = dlogNe is the number
of bits needed to encode a node of V and χE(x, y) = 1 if and only if (v|x|2 , v|y|2) ∈ E. The
question is how χE can be represented in a compact way such that it is still possible to operate
on this compact representation to solve classical graph problems.
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Figure 2.2.: Two π-OBDDs representing the function GT (x, y) with GT (x, y) = 1 if and only
of |x|2 > |y|2 with a good variable order π = (x1, y1, x0, y0) and a bad variable
order π = (x0, x1, y0, y1).

The Data Structure: Ordered Binary Decision Diagrams

In order to deal with Boolean functions, Ordered Binary Decision Diagrams (OBDDs) were
introduced by Bryant [25] to get a compact representation of not too few Boolean functions
and also to support several functional operations efficiently.

Definition 2.3.1 (Ordered Binary Decision Diagram (OBDD)).
Order. A variable order π on the input variables X = {x0, . . . , xn−1} of a Boolean function

f ∈ Bn is a permutation of {0, . . . , n− 1}. We slightly abuse notation and often write π as a
sequence of variables instead of indices (see, e. g., Fig. 2.2).
Representation. A π-OBDD is a directed, acyclic and rooted graph G with two sinks

labeled by the constants 0 and 1. Each inner node is labeled by an input variable from X

and has exactly two outgoing edges labeled by 0 and 1. Each edge (xi, xj) has to respect the
variable order π, i. e., π−1(i) < π−1(j). The π-OBDD is called complete if every variable is
tested on each path, i. e., for every variable xi there is a node labeled by xi on each path.
Evaluation. An assignment a ∈ {0, 1}n of the variables defines a path from the root

to a sink by leaving each xi-node via the ai-edge. A π-OBDD G represents f if for every
a ∈ {0, 1}n the defined path ends in a sink with label f(a).
Complexity. The size of a π-OBDD G, denoted by size(G), is the number of nodes in

G. The π-OBDD size of a function f is the minimum size of a π-OBDD representing f . The
OBDD size of f is the minimum π-OBDD size over all variable orders π. The width of G is the
maximum number of nodes labeled by the same input variable. The OBDD width (complete
OBDD width) of f is the minimum width of an (complete) OBDD representing f .

In the following we describe a list of important operations on Boolean functions which we will
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use in this thesis and give the time requirements in the case of OBDDs (see, e. g., Section 3.3 in
[128] for a detailed list). Let π be a fixed variable order on the variable setX = {x0, . . . , xn−1}.
Let f and g be Boolean functions in Bn on the variables X and let Gf and Gg be π-OBDDs
representing f and g, respectively.

1. Negation: Given Gf , compute a π-OBDD for the function f ∈ Bn. Time: O(1)

2. Replacement by constant: Given Gf , an index i ∈ {0, . . . , n − 1}, and a constant
ci ∈ {0, 1}, compute a π-OBDD for the subfunction f|xi=ci where the variable xi is
replaced by the constant ci. Time: O(size(Gf ))

3. Equality test: Given Gf and Gg, decide whether f and g are equal. Time: O(1)
in most implementations (when using so-called Shared OBDDs, see [128]), otherwise
O(size(Gf ) + size(Gg))

4. Satisfiability: Given Gf , decide whether f is not the constant function 0. Time: O(1)

5. Satisfiability count: Given Gf , compute |f−1(1)|. Time: O(size(Gf ))

6. Synthesis: Given Gf and Gg and a binary Boolean operation ⊗ ∈ B2, compute a
π-OBDD representing the function h ∈ Bn defined as h := f ⊗ g. Time: O(size(Gf ) ·
size(Gg))

7. Quantification: Given Gf , an index i ∈ {0, . . . , n − 1} and a quantifier Q ∈ {∃, ∀},
compute a π-OBDD representing the function h ∈ Bn defined as h := Qxi : f where
∃xi : f := f|xi=0 ∨ f|xi=1 and ∀xi : f := f|xi=0 ∧ f|xi=1. Time: see replacement by
constant and synthesis

In the rest of the thesis quantifications over k Boolean variables Qx1, . . . , xk : f are denoted by
Qx : f , where x = (x1, . . . , xk). The following operation (see, e. g., [117]) is useful to reverse
the edges of a given graph: For a directed graph χE(x, y) we want to compute χE(y, x) which
represents the edge set {(v|y|2 , v|x|2) | (v|x|2 , v|y|2) ∈ E} consisting of the reverse edges of E.

Definition 2.3.2. Let k ∈ N, ρ be a permutation of {1, . . . , k} and f ∈ Bkn be defined on
Boolean variable vectors x(1), . . . , x(k) of length n. The argument reordering Rρ(f) ∈ Bkn

with respect to ρ is defined by Rρ(f)(x(1), . . . , x(k)) := f(x(ρ(1)), . . . , x(ρ(k))).

This operation can be computed by renaming the variables and repairing the variable order
using 3(k − 1)n functional operations [19].

Discussion: What are the Parameters of Interest for our Algorithms?

Since we are interested in designing algorithms using OBDDs and functional operations, we
have to think about the running time of these algorithms. As we can see in the above listing
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of operations, the running time of such algorithms depends on the actual size of the OBDDs
which are used for a functional operation during the computation. Therefore, there are two
main factors influencing the running time of such algorithms: the number of functional opera-
tions and the size of the OBDDs which are used for the operations. In general, it is difficult to
prove a good upper bound on the running time because we have to know a good upper bound
on the size of every OBDD used as an input for an operation which is very difficult except
for very structured graphs [131, 20, 18]. Note that to enable the functional operations to be
efficient we have to use the same variable order for the OBDDs. But computing the optimal
variable order for a function is known to be NP-hard for both general OBDDs [21] and com-
plete OBDDs [16]. In addition, if the size of the OBDD representing the input graph is large,
any implicit algorithm using this OBDD is likely to have an inadequate running time. Beside
the variable order, the labeling of the nodes (which is independent from the variable order)
is another optimization parameter with huge influence on the input OBDD size. For OBDDs
representing state transitions in finite state machines, Meinel and Theobald [97] showed that
there can be an exponential increase of the OBDD size from a good labeling to a worst-case
labeling. Nevertheless, a small input OBDD size, i. e., a good labeling of the nodes for some
variable order, does not guarantee a good performance of the implicit algorithm since the
sizes of the intermediate OBDDs do not have to be small. Indeed, an exponential blowup
from input to output size is possible (see, e. g., [117, 15]).
It may seem that the OBDD size is more important than the number of functional oper-

ations. Unfortunately, that is not the case. There seems to be a trade-off: The number of
operations is an important measure of difficulty [14] but decreasing the number of operations
often results in an increase of the number of variables of the used functions. Since the worst
case OBDD size is exponentially large in the input variables (see next subsection), the num-
ber of variables should be as small as possible. This trade-off was also empirically observed.
For instance, an implicit algorithm computing the transitive closure that uses an iterative
squaring approach and a polylogarithmic number of operations is often inferior to an implicit
sequential algorithm, which needs in worst case a linear number of operations [14, 60].

Characterizing Minimal OBDDs and the OBDD Size of Basic Functions

A general upper bound of the π-OBDD size for every function f ∈ Bn and every variable
order is (2 + o(1)) · 2n/n due to Breitbart et al. [24]. It is also easy to see that the π-OBDD
size is bounded from above by O

(
n ·min{|f−1(1)|, |f−1(0)|}

)
. These bounds imply that the

worst case OBDD size representing the characteristic function χE ∈ B2n of the edge set of a
graph is at most O(min{N2/ logN, |E| logN}).
Recall that f|xπ(0)=aπ(0),...,xπ(i−1)=aπ(i−1) denotes the subfunction where xπ(j) is replaced by

the constant aπ(j) for 0 ≤ j ≤ i − 1. The function f depends essentially on a variable xi iff
f|xi=0 6= f|xi=1. A characterization of minimal π-OBDDs due to Sieling and Wegener [120]
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can often be used to bound the OBDD size.
Definition 2.3.3. Let f, g ∈ Bn. The functions f and g are equal if f(x) = g(x) for all
x ∈ {0, 1}n. Otherwise, they are called different. For a sequence of functions (f1, . . . , fl) for
some l ≥ 1, the number of different functions is the cardinality of the set {fi | i ∈ {1, . . . , l}}.
Examples of such a sequence are the possible subfunctions of f where a fixed number of
variables are replaced by constants or the functions represented by OBDDs of size at most s.

Theorem 2.3.4 ([120]). Let f ∈ Bn and for all i = 0, . . . , n − 1 let si be the number of
different subfunctions that result from replacing all variables xπ(j) with 0 ≤ j ≤ i − 1 by
constants and which essentially depend on xπ(i). Then the minimal π-OBDD representing f
has si nodes labeled by xπ(i), i. e., the minimal π-OBDD has size

∑n−1
i=0 si.

If we can bound the width of complete π-OBDDs Gf and Gg, there is an easy bound on
the size of the OBDD Gh resulting from the synthesis h := f ⊗ g. This lemma is known by
folklore (see, e. g., [131]).

Lemma 2.3.5. Let f, g ∈ Bn and let ⊗ be a Boolean operation. If there exist complete π-
OBDDs for f and g which have on level i (1 ≤ i ≤ n) at most sf,i and sg,i nodes, respectively,
then there exists a π-OBDD for f ⊗ g which has on level i at most sf,i · sg,i nodes.

Some of our lower bounds also hold for so-called Free Binary Decision Diagrams (FBDDs)
also known as Read-Once Branching Programs which were introduced by Masek [92] and are
a more general computational model than OBDDs. In an FBDD every variable can also only
be read once on a path from the root to a sink but the edges do not have to respect a global
variable order. Lower bound techniques for FBDDs have to take into account that the order
can change for different paths. The following property due to Jukna [70] can be used to show
good lower bounds for the FBDD size.

Definition 2.3.6. A function f ∈ Bn with input variables X = {x0, . . . , xn−1} is called r-
mixed if for all V ⊆ X with |V | = r the 2r assignments to the variables in V lead to different
subfunctions.

Lemma 2.3.7 ([70]). The FBDD size of a r-mixed function is bounded below by 2r − 1.

An important variable order is the interleaved variable order which is defined on vectors of
length n where the variables with the same significance are tested one after another.

Definition 2.3.8. Let x(1), . . . , x(k) ∈ {0, 1}n be k input variable vectors of length n. Let π
be a permutation of {0, . . . , n− 1}. Then

πk,n = (x(1)
π(0), x

(2)
π(0), . . . , x

(k)
π(0), . . . , x

(1)
π(n−1), . . . , x

(k)
π(n−1))

is called k-interleaved variable order for x(1), . . . , x(k). If π = (n− 1, . . . , 0) then we say that
the variables are tested with decreasing significance.
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It is well known that the OBDD size of the equality function EQ(x, y) and greater than
function GT (x, y) with EQ(x, y) = 1 ⇔ |x|2 = |y|2 and GT (x, y) = 1 ⇔ |x|2 > |y|2 is linear
in the number of input bits for an interleaved variable order with decreasing significance (see,
e. g., [128]) and it is also possible to construct the representing OBDDs for these functions in
linear time. We illustrate this by means of another simple function, which we will use later
on: The inner product IPn(x, y) =

⊕n−1
i=0 xi ∧ yi of two binary vectors x, y ∈ {0, 1}n. Let π

be a 2-interleaved variable order for x, y and w.l.o.g. let π = (x0, y0, . . . , xn−1, yn−1). Define
bj :=

⊕j
i=0 xi ∧ yi for 0 ≤ j ≤ n − 1. If we know the value of bj for some j, we can easily

extend it to the value of bj+1 by reading the pair (xj+1, yj+1) since bj+1 = bj ⊕ (xj+1 ∧ yj+1).
Thus, the π-OBDD representing IPn has size O(n) and width 2 (see Fig. 2.3). Notice that
the π-OBDD size is also O(n) if we replace an input vector, e. g., y, by a constant vector
c ∈ {0, 1}n. Many such auxiliary functions which are often used in implicit algorithms, e. g.,
the equality or the greater than function, and multivariate threshold functions, which we
will define in Section 3.3.1, have a compact representation for the interleaved variable order
with decreasing significance. Thus, choosing this variable order in OBDD-based algorithms
is common practice. Another advantage of an interleaved variable order is that the argument
reordering operation from Definition 2.3.2 does not result in an increase of the representation
size. Bollig [17] improved a result by Sawitzki [116] and showed the following.

Theorem 2.3.9 ([17]). Let n, k ∈ N, ρ be a permutation of {1, . . . , k} and let f ∈ Bkn be
defined on k Boolean variable vectors x(1), . . . , x(k) of length n. Let πk,n be a k-interleaved
variable order for x(1), . . . , x(k) and Gf be a complete πk,n-OBDD of width w representing
f . Then a πk,n-OBDD GRρ(f) for the argument reordering Rρ(f) can be constructed in time
O(2kwkn log(2kwkn)) and space O(2kwkn). Furthermore, the width of GRρ(f) is bounded by
2k−1w.

Lower Bounds for the Size of OBDDs Representing χE

As we have seen earlier in this chapter, the OBDD size is an important measure of complexity.
Therefore, we also need some tool to prove lower bounds for the OBDD size of certain graph
classes. In order to achieve this, Nunkesser and Woelfel [107] used a counting argument
which works as follows: Wegener [128] showed that OBDDs of size s can represent at most
sns(s + 1)2s/s! different functions f ∈ Bn. It is also clear that each element in the set of
unlabeled graphs of size N from a graph class G need to be represented by a different function.
Thus, counting unlabeled graphs gives a lower bound on the size of OBDDs representing such
graphs.
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Figure 2.3.: Two π-OBDDs with π = (x0, y0, . . . , xn−1, yn−1) for the functions IP6(x, y) where
y is replaced by the constant vector (1, 0, 1, 1, 0, 1) and IP2(x, y).

Lemma 2.3.10 ([107]). Let G be a graph class and let NG(N) be the number of unlabeled
graphs of size N from G. Let s : N→ R be a function. If

lim
N→∞

s2sdlogNes(s+ 1)2s

s! ·NG(N) < 1

then there are graphs of size N0 ∈ N which cannot be represented by OBDDs of size s(N0) or
less where the nodes are labeled by dlogNe bits for every N ∈ N.

Notice that a lower bound of the OBDD size of a graph class does not mean that the OBDD
size of every graph from this class is bounded below by this value. In the following corollary
we explicitly calculate the lower bounds for some typical values of NG .

Corollary 2.3.11. The size of OBDDs representing graphs from a graph class G is bounded
from below by

Ω(N/ logN) if NG = 2Ω(N) and

Ω(N) if NG = 2Ω(N logN).

Proof. It is known that log s! ≥ s log(s/e). Thus, s2sdlogNes(s + 1)2s/s! can be bounded
from above by 2s log s+s log logN+O(s). If NG = 2Ω(N) and s(N) ≤ c1N/ logN we have

2s log s+s log logN+O(s)−Ω(N) ≤ 2c1N+o(N)−Ω(N)

which is smaller than 1 for large N and c1 small enough. Therefore, the OBDD size is bounded
from below by Ω(N/ logN). Similarly, for NG = 2Ω(N logN) and s(N) ≤ c2N we have

2s log s+s log logN+O(s)−Ω(N logN) ≤ 2c2N logN+O(N log logN)−Ω(N logN)
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Algorithm 1 TransitiveClosure(R(x, y))
Input: Boolean function R(x, y) ∈ B2n
Output: Transitive closure R∗(x, y) of R(x, y)
R∗(x, y) = R(x, y)
for i = 0 to n do

R∗(x, y) = ∃z : R∗(x, z) ∧R∗(z, y)
end for
return R∗(x, y)

which is smaller than 1 for large N and c2 small enough which implies a lower bound of
Ω(N).

Warm Up: Basic Implicit Algorithms

Now we have the foundations to start with some simple OBDD-based algorithms. For the sake
of code readability, we use |x|2 = |y|2 and |x|2 > |y|2 to denote EQ(x, y) and GT (x, y) in our
algorithms. Furthermore, by |x|2 > c (|x|2 = c) for some constant c we denote the function
GT (x, y)|y=[c]2 (EQ(x, y)|y=[c]2) where the y-variables are replaced by constants corresponding
to the binary number [c]2 of c.
We slightly abuse the notation and denote by f(x, y) the function over the input variables

x, y and not the evaluation of the function on input x and y. For instance, R∗(x, y) = . . .

in Algorithm 1 means that we assign a new function to R∗(x, y) and not just updating one
function value. Now, let R(x, y) ∈ B2n be a Boolean function. R(x, y) can be seen as a binary
relation R on the set {0, 1}n with xR y ⇔ R(x, y) = 1. The transitive closure of this relation
is the function R∗(x, y) with R∗(x, y) = 1 if and only if there is a sequence x = x1, . . . , xl = y

with R(xi, xi+1) = 1 for all i = 1, . . . , l−1. For instance, let R(x, y) = χE(x, y)∨ (|x|2 = |y|2)
be the function that returns 1 if and only if there is an edge between v|x|2 and v|y|2 or
|x|2 = |y|2. Then it is R∗(x, y) = 1 iff the nodes v|x|2 and v|y|2 are in the same connected
component. The transitive closure can be computed implicitly by O(n2) functional operations
using the so-called iterative squaring or path doubling technique (see Algorithm 1).
Let O(x, y) represent a total order ≺ on the input bit strings, i. e., O(x, y) = 1⇔ x ≺ y (e. g.,
O(x, y) = 1 ⇔ |x|2 ≤ |y|2). Since ≺ is a total order, the input bit strings can be sorted in
ascending order according to ≺. Let EO(x, l) = 1 iff x is in the |l|2-th position in this sorted
sequence. Similar to the transitive closure, it is known (see, e. g., [118]) that EO(x, l) can be
computed using O(n2) functional operations (see Algorithm 2).

Implicit Matching Algorithms

The implicit maximum flow algorithm by Hachtel and Somenzi in [57] uses the following
maximal matching heuristic: The general idea is to iteratively add edges to the current
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Algorithm 2 EnumerateOrder(O(x, y))
Input: Total order O(x, y) ∈ B2n
Output: EO(x, l) with EO(x, l) = 1 iff the rank of x is |l|2 in the ascending order
B Compute the pairs of direct successors
DS(x, y) = O(x, y) ∧ ∃z : O(x, z) ∧O(z, y)
B EOi(x, y, l) = 1 iff |l|2 ≤ 2i and the distance between the position of x
B and y is equal to |l|2
EO0(x, y, l) = ((|l|2 = 0) ∧ (|x|2 = |y|2) ∨ ((|l|2 = 1) ∧DS(x, y)))
B Divide and conquer approach: If 2i−1 < |l|2 ≤ 2i then there has to be
B an intermediate bit string z with distance 2i−1 to x and |l|2 − 2i−1 to y
for i = 1 to n do

EOi(x, y, l) = ((|l|2 ≤ 2i−1) ∧ EOi−1(x, y, l)) ∨
[
(2i−1 < |l|2 ≤ 2i) ∧

∃l1, z : EOi−1(x, z, 2i−1) ∧ EOi−1(z, y, l1) ∧ (|l1|2 + 2i−1 = |l|2)
]

end for
B Compute the rank according to the distance to the first element
EO(x, l) = ∃z : EOn(z, x, l) ∧ ∃z′ : O(z′, z)
return EO(x, l)

matching until this matching is maximal. A building block of this heuristic is a priority
function which is used to break symmetries and selects edges in parallel which are added to
the current matching (see Algorithm 3). The priority function Π(x, y, z) : {0, 1}3n → {0, 1} is
defined by Π(x, y, z) = 1 iff y ≺x z where ≺x is a total order of {0, 1}n for every x ∈ {0, 1}n.
It is possible that ≺x does not depend on x at all and is always the same total order.

Hachtel and Somenzi use two different priority functions: Π1(x, y, z) = 1 iff y < z and
Π2(x, y, z) = 1 iff |y⊕x|2 < |z⊕x|2. Since Π2 makes use of the possibility to choose different
orders based on x, it is more likely that the chosen edges have different endpoints and the
number of iterations is smaller than with Π1. But in general, if many nodes choose the same
node in a lot of iterations, then the heuristic has a poor performance. For example, using Π1

on a complete bipartite graph results in Ω(N) iterations because only O(N) edges are deleted
at the end of the loop. Nevertheless, the number of variables on which a function in this
algorithm depends is independent of the underlying priority function and is at most 3 logN .
In contrast to this heuristic, Bollig and Pröger [20] gave a OBDD-based maximal matching

algorithm using O(log4N) functional operations. However, the number of variables increases
to 6 logN . This algorithm is based on the parallel maximal matching algorithm by Kelsen
[78]. Note that the number of functional operations was decreased at the cost of an increase
in the number of used variables. In order to improve the quality of the maximal matching,
the authors also paired the heuristic by Hachtel and Somenzi with a strategy of Karp-Sipser
[77] where edges incident to nodes with degree 1 are always added to the matching. Whenever
there is no such node, a random edge is added to the matching. Instead of selecting a single
random edge, Bollig and Pröger decided to do one round of the Hachtel and Somenzi heuristic.
In terms of maximum matching, Bollig, Gillé, and Pröger [18] gave two implicit algorithms:



26 Chapter 2. Preliminaries

Algorithm 3 Implicit maximal matching algorithm [57]
Input: χA, χB, χE of a bipartite Graph G = (A,B,E) with V = A ∪B
Output: χM where M is a maximal matching
χM (x, y) = 0
B Direct the edges from A to B
χE(x, y) = χE(x, y) ∧ χA(x) ∧ χB(y)
while χE(x, y) 6= 0 do

B For every x ∈ A choose smallest outgoing edge according to Π(x, y, z)
P (x, y) = χE(x, y) ∧ ∃z : χE(x, z) ∧Π(x, z, y)
B For every y ∈ B choose smallest incoming edge according to Π(x, y, z)
Q(x, y) = P (x, y) ∧ ∃z : P (z, y) ∧Π(y, z, x)
B Add edges to current matching
χM (x, y) = χM (x, y) ∨Q(x, y)
χM (x, y) = χM (x, y) ∨ χM (y, x)
Matched(x) = ∃y : χM (x, y)
B Delete edges incident to matched nodes
χE(x, y) = χE(x, y) ∧Matched(x) ∧Matched(y)

end while
return χM (x, y)

One is a classic augmenting path based algorithm like the algorithm by Hopcroft and Karp and
the other is based on a so-called push-relabel technique. The authors also wanted to minimize
the number of functional operations and showed that the algorithms need O(N3/4 log5/2N)1

and O(N2/3 log3.375N)1 functional operations, respectively, and the number of variables is
max{3 logN,MV (N)} and max{4 logN,MV (N)}, respectively, where MV (N) denotes the
number of variables used by the maximal matching subroutine.
Table 2.1 summarizes the implicit matching algorithms regarding functional operations

and numbers of variables. The dependency on the maximal matching subroutine for the
algorithms from [18] is also highlighted. All the aforementioned algorithms need a bipartite
graph as input. We note that all maximal matching algorithms working on bipartite graphs
can be generalized to arbitrary graphs by decomposing the graph into a logarithmic number of
bipartite graphs [78] resulting in a logarithmic blowup in the number of functional operations.

Implicit Algorithms and Parallel Algorithms

Known ideas or techniques from parallel algorithms are often used in implicit algorithms with
a small number of functional operations. For an overview on the theory of parallel algorithms,
we refer to the book by Greenlaw, Hoover, and Ruzzo [54]. Sawitzki [116, 118] showed that
all problems which are decidable by polynomially many processors using polylogarithmic
time (i. e., which are in the complexity class NC) are computable by an implicit algorithm
using a polylogarithmic number of functional operations on a logarithmic number of Boolean

1They used the algorithm from [20] as the maximal matching subroutine.
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Functional Operations Variables

Maximal Matching

Hachtel, Somenzi [57] O(N logN) 3 logN
Bollig, Pröger [20] O(log4N) 6 logN

Karp-Sipser Variant [20] O(N logN) 3 logN

Maximum Matching

Bollig, Gillé, Pröger [18] Õ(N1/2+c ·MO(N) +N1−c) max{3 logN,MV (N)}
Bollig, Gillé, Pröger [18] Õ(N2/3 ·MO(N)) max{4 logN,MV (N)}

Table 2.1.: Comparison of the implicit matching algorithms with respect to the number of
functional operations and the number of variables. Here, MV (N) is the number
of variables andMO(N) is the number of operations used by the implicit maximal
matching subprocedure.

variables. This is a structural result and does not lead to either an efficient transformation
of parallel algorithms into implicit algorithms or a guarantee that implicit algorithms using
a polylogarithmic number of functional operations perform well in practice (as seen in the
discussion about the transitive closure computation). We will further discuss this result in
Chapter 4 where we introduce randomization in implicit algorithms.

2.4. Probability Spaces and Random Variables

Randomization is a powerful tool for designing efficient algorithms. Usually the number of
used random bits is not restricted. However, in certain cases a small representation of the used
random bits is necessary, e. g., for derandomization [3, 89], hashing [26, 40] or in space bounded
computation models such as streaming [6]. Let X0, . . . , Xm−1 be binary random variables.
Here, we focus on binary random variables but the definitions can be easily extended to
general random variables with finite range. Formally, a binary random variable is a function
X : S → {0, 1} where S is a set of possible outcomes of a random experiment. S is also
called sample space. This means for a definition of a random variable, we have to assign a
value X(s) to every possible input s ∈ S. The randomness is now given by a probability
distribution over the sample space that assigns a probability Pr [s] to every s ∈ S. We write
Pr [X = i] for probability of the event that X(s) = i, i. e., formally it is Pr [{s | X(s) = i}].

If X0, . . . , Xm−1 are completely independent, then we have no chance to get a better repre-
sentation than storing them all because there are 2m possible outcomes. Therefore, we need
some kind of limited independence to be able to get a succinct representation of our random
variables.
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Definition 2.4.1 ((Almost) k-wise Independence). Let X0, . . . , Xm−1 be binary random
variables. These variables are called k-wise independent with k ≤ m if and only if for all
0 ≤ i1 < . . . ik ≤ m− 1 and for all l1, . . . , lk ∈ {0, 1}

Pr [Xi1 = l1 ∧ . . . ∧Xik = lk] = 2−k

and they are called (ε, k)-wise independent iff∣∣∣Pr [Xi1 = l1 ∧ . . . ∧Xik = lk]− 2−k
∣∣∣ ≤ ε.

Ifm is a power of 2, the random variables can be seen as function values of a Boolean function.
Formally, we define the notion of a random function whose OBDD size is investigated in
Chapter 4.

Definition 2.4.2 ((Almost) k-wise Independent Function). For r, n ∈ N let S = {0, 1}r and
m = 2n. A random function f : S → Bn maps an element s from the sample space S which
is drawn uniformly at random to a Boolean function f(s). We will use the notation fs for
the Boolean function f(s).
A random function f : S → Bn is called k-wise ((ε, k)-wise) independent if the random

variables X0(s) := fs(0n), . . . , Xm−1(s) := fs(1n) are k-wise ((ε, k)-wise) independent.

In the next subsection, we give constructions of (almost) k-wise independent random variables.
But first, we want to present results to bound sums of dependent random variables. Let
X =

∑m−1
i=0 Xi be a sum of k-wise independent variables with k ≥ 2. We can easily verify

that Var [X] =
∑m−1
i=0 Var [Xi]: The covariance Cov [Y,Z] between two random variables Y

and Z is defined by E [Y · Z]−E [Y ]·E [Z]. If Y and Z are independent, then the covariance is
0. It is known that Var

[∑m−1
i=0 Xi

]
=
∑m−1
i=0 Var [Xi]+2 ·

∑m−1
i=0

∑
j>i Cov [Xi, Xj ] (see, e. g.,

[101]) where the sum of covariances is 0 if the variables are pairwise independent. Therefore,
if we can bound the variance of every Xi we can use Chebyshev’s inequality to bound X.

Theorem 2.4.3 (Chebyshev). Let X =
∑m−1
i=0 Xi be a sum of k-wise independent variables

with k ≥ 2. Then it is

Pr [|X −E [X]| ≥ δ] ≤ Var [X]
δ2 =

∑m−1
i=0 Var [Xi]

δ2 .

Another kind of limited independence is the so-called negatively correlation of random vari-
ables.

Definition 2.4.4 (Negatively Correlated Variables). Boolean random variablesX0, . . . , Xm−1

are called negatively correlated if for every subset S ⊆ {0, . . . ,m− 1} it holds

Pr [∧i∈SXi = 1] ≤
∏
i∈S

Pr [Xi = 1].
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Fortunately, negative correlation does not increase the distribution tails of the sum of the
variables compared to the case of complete independence. Therefore, Panconesi and Srini-
vasan [110] were able to extent the famous Chernoff-Hoefding bounds to negatively correlated
random variables. This gives us a strong tool to bound deviation from expectation.

Theorem 2.4.5 ([110]). If the random variables X0, . . . , Xm−1 ∈ {0, 1} are negatively corre-
lated, then for X =

∑m−1
i=0 Xi, and 0 < δ < 1 we have

Pr [X < (1− δ)E [X]] ≤ eδ2E[X]/2.

Constructions of k-wise Independent Random Variables

The so-called BCH scheme introduced by Alon, Babai, and Itai [3] is a construction of k-wise
independent random variables X0, . . . , X2n−1 ∈ {0, 1} that only needs bk/2cn+1 independent
random bits and works as follows: Let r0 ∈ {0, 1} be a random bit, r(j) ∈ {0, 1}n for 1 ≤ j ≤ l
with l ∈ N be uniformly random row vectors, and the row vector r =

[
r0, r

(1), . . . , r(l)
]
∈

{0, 1}ln+1 be the concatenation of the vectors. For 1 ≤ i ≤ 2n − 1 define

Xi = IPln+1
(
r,
[
1, [i]2 , [i]

3
2 , . . . ,

[
i2l−1

]
2

])
where i2j−1 for j = 1, . . . , l is computed in the finite field GF (2n). This scheme generates
(2l + 1)-wise independent random bits [3]. This construction is optimal in the sense that
it is known that the construction of k-wise independent random variables needs at least
log

(∑bk/2c
i=1

(2n
i

))
≈ nk/2 random bits [30]. For constant k this means that the size of the

sample space is polynomial in the number of random variables which is particularly useful in
derandomization. In order to reduce the number of random bits even more and in particular
get a polynomially large sample space for k ∈ O(n), Naor and Naor [104] introduced the notion
of (ε, k)-wise independence and gave a construction together with Alon et al. [4] which uses
only O(logn + log k + log 1

ε ) random bits. Savický [114] focused on a simple representation
of the variables and gave a random Boolean formula of size O(n log2 k log 1

ε ) and depth 3
representing (ε, k)-wise independent random variables.

Instead of minimizing the number of random bits, another line of research focuses on the
trade-off between the evaluation time of one random variable, i. e., the time needed to compute
the value of one random variable, and the space requirement. Siegel [119] showed that if a
k-wise independent function h : F→ F with finite field F needs evaluation time t < k then the
space usage is at least |F|1/t. Thus, for constant time and non constant k every function based
construction needs at least |F|δ space for some constant δ > 0. However, Christiani and Pagh
[31] circumvent this trade-off by looking for so-called k-wise independent generators which
produce random variables one after another. This implies that they allow only sequential
access to the sequence of random variables instead of random access as in Siegel’s lower
bound. Table 2.2 summarizes known constructions of (almost) k-wise independent random
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Construction Time Space Seed Length Range Comment

k-wise RVs

BCH [3] O(k) O(k) bk/2c+ 1 {0, 1}

Polynomials [67, 129] O(k) O(k) k F

Expander Hashing [119] O(1) O(2εn) O(k) F Probabilistic

Exp. + Multipoint [31] O(1) - Õ(k) F Sequential access

(ε, k)-wise RVs

Several Methods [104, 4] O(k) - O(log nk
ε ) GF(d) d prime

Boolean Formula [114] O(1) - O(n log2 k log 1
ε ) {0, 1} Depth 3, parallel time

Table 2.2.: Besides the Boolean formula, all constructions operate in a finite field F (which
is not necessarily identical to the range) with |F| ≥ 2n and it is assumed that
arithmetic operations in finite fields can be done in constant time. In the case
of k-wise random variables, seed length and space is measured in the number of
elements of F, i. e., a factor log |F| away from the number of bits. A hyphen (-) in
the space column means that the space usage is in the same order of magnitude
than the seed length.

variables.

2.5. Dynamic Graph Streaming

Another approach to deal with massive graphs is to process the graph in the data stream
model where for instance the edges arrive one by one and only a limited amount of memory
can be used. Henzinger, Raghavan, and Rajagopalan [59] were the first considering graph
problems in the streaming model. Typically the space usage should be sublinear with respect
to the input size but most of the recent work designing streaming algorithms on graphs use the
semi-streaming model [45, 103] where O(N polylogN) space is permitted. This has become
the model of choice because it turned out that most problems are intractable if only sublinear
space is allowed [59] whereas many problems can be solved using almost linear space (with
respect to the number of nodes). For an overview of graph streaming algorithms, e. g., for
connectivity or minimum spanning tree, we refer to the recent survey by McGregor [95]. It
is also possible to investigate a stream where edges can not only be inserted but also deleted.
More formally, the so-called dynamic graph streams, which were introduced by Ahn, Guha,
and McGregor [2], are defined as follows.
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Definition 2.5.1 (Dynamic Graph Stream). A dynamic graph stream of a weighted, undi-
rected graph G = (V,E) consists of a sequence s1, s2, . . . st of edge updates to any initially
empty graph, where si ∈ (V ×V,R+, {−1, 1}) and −1 and 1 signify deletion and insertion. A
stream is called consistent if there exists a deletion operation (e, w,−1) in between any two
insertion operations (e, w, 1) and no deletion operation (e, w,−1) of an edge occurs if (e, w)
is not contained in the current set of edges.

We always assume our input streams to be consistent. This model is similar to, but weaker
than, the full turnstile update model where the input is a vector x and the stream consists of
additive updates of the vector’s entries. The difference is that while in the turnstile update
model the weights of an edge can change arbitrarily with each update, in this model an edge
(e, w) must be first deleted (e, w,−1) before getting reinserted with the desired weight.
Of course, problems in the dynamic graph stream can be much harder than in the insertion-

only model and, indeed, algorithms for dynamic graph streams need completely new tech-
niques. Graph sketching [2] utilizes the well studied theory on random linear projections which
arises in the context of dimensionality reduction, e. g., the famous Johnson-Lindenstrauss
Lemma [68] and estimating statistics in data streams [103]. We say that a sketch is linear
if the sketches of two vectors or matrices can be added to get the sketch of the sum of the
vectors or matrices. Due to the linearity of the sketches mentioned above, it is mainly a
matter of addition and subtraction of sketches to deal with insertions and deletions of edges.
But nothing comes without a price. In the remaining section we cover the basic ideas and
strengths of graph sketching but also show where the main obstacles lie.
The general approach of graph sketching is to summarize edge sets via a small linear sketch.

These edge sets typically consist either of the entire set of edges, for instance by interpreting
the adjacency matrix as an N2-dimensional vector, or the neighborhood of a single node, that
is a column or row of the adjacency matrix. The main goal of the graph sketches is to sample
edges uniformly at random from the summarized set of edges. For instance, our algorithms in
Chapter 6 require randomly chosen edges and randomly chosen neighbors. Such random edges
can be maintained in a stream under edge deletions by employing so-called `0 sampling. The
`p-norm of a d-dimensional vector x = (x1, . . . , xd) ∈ Rd is defined as `p(x) =

(∑d
i=1 |xi|p

)1/p
.

For p = 0, we have `0(x) = |{i : xi 6= 0}| (if we define 1/0 to be 1) and define `00(x) := `0(x).

Definition 2.5.2 (`p-Sampling). An (ε, δ) `p-sampler for non-zero x ∈ Rd returns ⊥ with
probability at most δ and otherwise returns a random i ∈ [d] with probability in the range[(1− ε)|xi|p

`pp(x) ,
(1 + ε)|xi|p

`pp(x)

]
.

An algorithm for `0-sampling is due to Jowhari, Saglam, and Tardos [69].

Lemma 2.5.3. Let δ > 0. There exist linear sketch based algorithms for (0, δ) `0-sampling
of a vector x ∈ Rd using O(log2 d · log(1/δ)) bits of space.
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Since we focus on matching algorithms, it might now be tempting to consider the following
maximal matching algorithm for a dynamic graph stream: We summarize the neighborhood
of each node via an `0-sampler and attempt to perform a local parallel matching algorithm
due to Israeli and Itai [66]. The main idea is to compute matchings consecutively on the
subgraph induced by the free nodes and subsequently delete all edges incident to matched
nodes. There are two problems with this algorithm: First, multiple queries to the same sketch
of a node’s neighborhood do not yield independent adjacent nodes and while linear sketches
may be combined through addition, it is not possible to use a small space-sketch to query an
entry and subsequently delete it to query the remaining entries. Essentially this limits us to
querying every `0-sampler at most once and the space complexity of our algorithms is roughly
the number of randomly chosen edges. Second, how can we obliviously maintain the set of
edges contained in an induced subgraph? The strength of the sketches as pointed out, e. g.,
in [2] is to sample edges from any cut of the graph. A cut defined by a partitioning of the
nodes (A, V \ A) for A ⊆ V is the set of edges that are incident to a node in S and a node
V \A. Now, consider the following neighborhood vector av ∈ RN2 for each node v ∈ V :

av,(u,w) =


1 if u = v and {v, w} ∈ E

−1 if w = v and {v, u} ∈ E

0 otherwise

Now, let (A, V \A) define a cut in the graph. Then
∑
v∈A av ∈ RN2 is a vector whose non-zero

entries correspond to the edges in the cut and whose sketch can be easily computed if we have
linear sketches of every av. The entries corresponding to edges in the subgraph induced by A
cancel out such that the edges in the cut remain. However, this trick can not be used to get
a sketch of the subgraph induced by a set of nodes.
Beside sampling of edges, sketches can also be used to recover a graph if the graph is sparse

enough.

Definition 2.5.4 (k-Sparse Recovery Sketch). A k-sparse recovery sketch of a vector x ∈
R
d can recover min{k, `0(x)} non-zero entries of x such that each sampled entry is chosen

uniformly at random.

Here, it is sufficient to think of a k-sparse recovery sketch as O(k polylog k) `0-samplers
requiring O(k polylog k polylog d) space. For an overview of recovery sketches, we refer to the
work of Barkay, Porat, and Shalem [12].
As stated in Theorem 2.2.27 and 2.2.28, the rank of the Tutte matrix, where the indetermi-

nates are replaced by random values from {1, . . . , R}, is equal to twice the size of a maximum
matching with probability at least 1 − |E|/R. In general, calculating the rank of an N ×N
matrix in a dynamic data stream is hard and requires at least Ω(N2) space [33]. However,
the following weaker rank decision problem can be decided in a stream using O(k2 log2 N

δ )
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space with probability at least 1− δ [33].

Definition 2.5.5 (Rank Decision). Given a positive integer k and a stream over updates
to a matrix A, an algorithm for the rank decision problem outputs 1 if rank(A) ≥ k and 0
otherwise.
Replacing the indeterminates independently by random values needs Ω(N2) random bits
which would be infeasible for a graph streaming algorithm. Nisan [106] showed that any
randomized algorithm that uses space S (excluding the random bits) and R completely in-
dependent random bits can be modified to a O(S logR) space algorithm using O(S logR)
completely independent random bits. The difference of the probability of correctness be-
tween the two algorithms is negligible (exponentially small in S).

Theorem 2.5.6 (Nisan PRG [106], informal). Any randomized algorithm running in space
S and using R random bits may be converted into one that uses only O(S logR) random bits
and runs in space O(S logR).

We cannot directly apply this result to a streaming algorithm maintaining the Tutte matrix.
Since each entry of the matrix can be arbitrarily updated over the stream, we have to use the
same random value each time we update an entry. This would not only result in Ω(N2) random
bits but also Ω(N2) space. However, if the random values are aggregated by an operation
that is commutative, then we can apply Nisan’s result on a sorted stream, where the entries
belonging to a random value occurred en bloc, to get a streaming algorithm which works on
a sorted stream with small amount of randomness. Since the operation is commutative the
output of the algorithm is the same on an unsorted stream. This idea was formalized and
proven by Indyk [65] and we rephrase it here for dynamic graph streams and matrices.

Theorem 2.5.7 ([65]). Let S be a stream of edge insertions and deletions of the form si ∈
D := (V × V, {−1, 1}) and f : D × {0, 1}L → R

d×d′ be a function with L, d, d′ ∈ N. Let A be
an algorithm that does the following:

1. Initialize O by the d × d′ matrix containing only 0 and initialize wi,j ∈ {0, 1}L with L
independent random bits for all 1 ≤ i, j ≤ N and i 6= j.

2. For each update ((i, j), u) set O = O + f(((i, j), u), wi,j).

3. Output A(S) = O.

Note that A uses O(L ·N2) random bits overall. Assume that the entries of O can be stored
using B bits and that f can be computed by an algorithm using O(C + L) space. Then there
is an algorithm A′ outputting A′(S) using only O((C + L+ d · d′ ·B) · log(LN)) random bits
and space and it holds A(S) = A′(S) with high probability.

The rank decision algorithm by Clarkson and Woodruff [33] maintains a k × k matrix M =
H ′ ·A ·H ′′ where A is the N ×N input matrix and H ′ and H ′′ are some appropriately chosen
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random matrices. Since this is a linear operation on A, updating an entry of A can be modeled
by the function f as in Theorem 2.5.7. Clarkson and Woodruff showed that each entry of M
can be stored using O(log(N/δ)) bits if the entries in A need O(logN) bits and each update
can be computed in O(k2 log(N/δ)) space. The number of random bits is O(k log(N/δ)).
Combining everything, we get the following theorem.

Theorem 2.5.8. Let S be a dynamic graph stream of a graph G = (V,E). There is an
O(k2 log2N) space streaming algorithm that can decide whether the maximal rank of the Tutte
matrix TG is at least k with high probability.

Proof. In Theorem 2.2.28 we choose each entry of the random assignment r ∈ R|E| uniformly
at random from {1, . . . , N3} such that rank(TG(r)) = maxw{rank(TG(w))} with probability
at least 1 − |E|/N3 ≥ 1 − 1/N . Using Theorem 2.5.7 with the rank decision algorithm by
Clarkson and Woodruff [33], i. e., L = O(k log(N/δ)), C = O(k2 log(N/δ)), d = d′ = k, and
B = O(log(N/δ)), we get a streaming algorithm that can decide in O(k2 log2(N/δ)) space
whether rank(TG(r)) ≥ k with probability at least 1 − δ. Setting δ = 1/N gives the desired
result.

Another useful streaming result from numerical linear algebra is due to Kane, Nelson, and
Woodruff [72] who showed that `0(x) of a N -dimensional vector x can be (1± ε) estimated in
dynamic streams using O( 1

ε2 logN(log 1
ε +log log(M))) space, whereM is the sum of absolute

values of the vector in the stream. We assume M ≤ 2Nc with a constant c for graph streams,
resulting in O( 1

ε2 log2N) bits of space.

Theorem 2.5.9 ([72]). Let S be a dynamic graph stream of a graph G = (V,E). Let the
length of S be bounded by 2Nc. Let x ∈ RN be a vector whose entries are arbitrarily updated
on an edge insertion/deletion and every coordinate xi is polynomially bounded in N . Then
there is an algorithm estimating `0(x) within a (1± ε) factor using O( 1

ε2 log2N) space.

2.6. Communication Complexity

In 1979, communication complexity was introduced by Yao [132] as a measure of the amount
of communication that is needed to evaluate a function whose input is distributed among
several parties. Communication complexity is a powerful tool to show space lower bounds for
algorithms, e. g., in data streams as we see next, or to prove lower bounds on the size of data
structures, e. g., OBDDs [128]. The book on communication complexity by Kushilevitz and
Nisan [83] gives a good introduction into the topic and presents many more applications. Here,
we focus on the relationship between communication complexity and space in a streaming
algorithm. For this, assume that we have two players, usually called Alice and Bob, who
want to evaluate a function f : X × Y → {0, 1} where Alice gets the input x ∈ X, Bob the
input y ∈ Y . Alice is allowed to send a single message to Bob who has to output the value
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of f(x, y). How many communication bits are necessary to achieve that Bob can output the
correct answer? Of course, the answer depends on the function f but it also depends on
the actual model of communication which we are using. Here, we are only interested in the
randomized communication complexity which we now define formally using the notation of
the book by Kushilevitz and Nisan [83]. We also refer to the book for an overview of the
different kinds of communication models and for lower and upper bounds on the complexity
of some functions for these models.

Definition 2.6.1 (Randomized One-Way Communication Complexity). Let f : X × Y →
{0, 1} be a function. In a randomized communication protocol P Alice and Bob have access
to the inputs x ∈ X and y ∈ Y and random bit strings rA and rB, respectively, where the
random bit strings are chosen independently from some probability distributions. We say
that P computes the function f with error δ if the output of the protocol P (x, y) is not equal
to f(x, y) with probability at most δ < 1/2 for every pair (x, y) ∈ X×Y . The communication
cost of P is the maximum number of bits communicated over every choice of x, y, rA, and rB.
We denote the randomized one-way communication complexity of f by Rδ(f) which is defined
as the minimum cost of a randomized communication protocol computing f with error δ.

As an easy example of space lower bounds for streaming algorithms, we show an Ω(N2)
lower bound for deciding whether a graph contains a perfect matching. This proof is similar
to a proof by Feigenbaum et al. [45]. We need a communication problem which is used
quite often for lower bounds: The index function IND : {0, 1}n × [n] → {0, 1} is defined by
IND(x, i) = xi, i. e., Alice gets a vector x ∈ {0, 1}n and Bob gets an index i and has to output
the value of xi. It is well known that Rδ(IND) = Ω(n) for any constant δ [82]. Now, we want
to reduce the index problem to the perfect matching problem. Let x ∈ {0, 1}N2 and i ∈

[
N2]

be an input for the index problem. The vector x can be interpreted as an adjacency matrix
of a bipartite graph G = (A,B,E) with |A| = |B| = N . Bob’s index i describes exactly one
pair (a, b) ∈ A×B. Let A be a randomized streaming algorithm that decides whether there is
a perfect matching in a graph with constant probability. Now, in the reduction Alice inserts
the edges represented by the input x into the stream and runs A on this part of the stream.
Then she sends the state of the algorithm (described by the memory content of A) to Bob.
For every a′ ∈ A \ {a} Bob adds an edge {a′, va′} and an edge {b′, ub′} for every b′ ∈ B \ {b}
(see Figure 2.4). Now, it is easy to see that there is a perfect matching in the graph if and
only if the graph contains the edge {a, b} which means that xi = 1. Therefore, the message
size and with it the space usage of A has to be at least Ω(N2).

Recently, another well studied communication problem [11, 126, 49], the Boolean Hidden
Matching Problem (BHM), was used in streaming lower bounds for algorithms approximating
the size of the maximum matching and the max-cut, i. e., a cut of maximal size [44, 75].
BHM is defined as follows: Let n ∈ N be even. Alice gets a vector x ∈ {0, 1}n, Bob a
perfect matching M on the coordinates [n] of x and a bit string w ∈ {0, 1}n/2. This means
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n− 1 n n n− 1

A B

a

b

a′

va′ b′ ub′?

Figure 2.4.: Reduction from the index problem to perfect matching. Alice’ input vector cor-
responds to the edges between A and B and Bob’s index defines the pair of nodes
(a, b). The only possible perfect matching can consist of the thick edges and the
possible edge between a and b.

M = {(i1, j1), . . . , (in/2, jn/2)} with
⋃n/2
l=1{il, jl} = [n]. The matching induces a bit string of

length n/2 defined by z = (xi1 ⊕ xj1), . . . , (xin/2 ⊕ xjn/2). Alice and Bob get the promise that
either z = w or z = w where z is the coordinate-wise negation of the bits of z. Alice can send
one message and Bob has to decide whether z = w or z = w. Intuitively, BHM can be solved
by the following randomized protocol: Alice sends Θ(

√
n) randomly chosen bits of x to Bob.

Using the birthday paradox, it is possible to show that with constant probability Alice sends
both bits of at least one pair, say (xi1 ⊕ xj1). Due to the promise, Bob knows that either
w1 = xi1 ⊕ xj1 or w1 = (xi1 ⊕ xj1) and can correctly output the answer.
Here, we will use the more general Boolean Hidden Hypermatching Problem investigated

by Verbin and Yu [126].

Definition 2.6.2 (Boolean Hidden Hypermatching Problem [126]). In the Boolean Hidden
Hypermatching Problem BHHt,n, Alice gets a boolean vector x ∈ {0, 1}n with n = 2kt
for some k ∈ N and Bob gets a perfect t-hypermatching M on the n coordinates of x,
i. e., each edge has exactly t coordinates, and a string w ∈ {0, 1}n/t. We denote the
Boolean vector of length n/t given by (

⊕
1≤i≤t xM1,i , . . . ,

⊕
1≤i≤t xMn/t,i

) by Mx where
(M1,1, . . . ,M1,t), . . . , (Mn/t,1, . . . ,Mn/t,t) are the edges of M . It is promised that either
Mx ⊕ w = 1n/t or Mx ⊕ w = 0n/t. The problem is to return 1 in the first case and 0
otherwise.

The idea of the upper bound also works for BHHt,n which gives a randomized protocol
with O(n1−1/t) bits of communication. Verbin and Yu [126] showed that this protocol is
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asymptotically optimal by presenting a lower bound of Ω(n1−1/t) for the randomized one-way
communication complexity for BHHt,n. Note that for t = 2 the problem BHHt,n is the
Boolean Hidden Matching Problem.

Theorem 2.6.3 ([126]). The randomized one-way communication complexity R1/3(BHHt,n)
of BHHt,n when n = 2kt for some integer k ≥ 1 is Ω(n1−1/t).





3. OBDD Sizes of Graph Classes and
Applications

In this chapter, we investigate the OBDD size of graphs coming from one of the following
graph classes: (unit) interval graphs, trees, bipartite permutation graphs, (bi)convex graphs,
chain graphs, and threshold graphs. In Section 3.1, we give an overview of the related work
regarding graph representations by OBDDs and OBDD-based algorithms. Section 3.2 starts
with an overview of the results on the OBDD size of graphs presented in this section. In the
first subsection 3.2.1 we present a new technique which enables us to show upper and lower
bounds of the OBDD size for graphs with a fixed variable order. In subsection 3.2.2, 3.2.3,
3.2.5, and 3.2.6, we apply this technique to the aforementioned graph classes where we can
show asymptotically optimal bounds or bounds that are optimal up to a logN factor. In the
last Section 3.3, we design an OBDD-based algorithm for computing a maximum matching
algorithm on unit interval graphs and a graph coloring algorithm for interval graphs.

3.1. Related Work and Contribution

The first question one should consider when investigating the OBDD size of graphs is the
number of bits used for labeling the nodes of the graph. Obviously, dlogNe bits are necessary
to label N distinct nodes. However, increasing the number of bits can lead to a smaller
representation size by OBDDs. Nunkesser and Woelfel [107] used dlogNe bits for encoding the
nodes of cographs and showed that the OBDD size is bounded by O(N logN) whereas Meer
and Rautenbach [96] use c · logN bits for some constant c > 1 to improve the representation
size to O(N). More precisely, Meer and Rautenbach [96] investigated graphs with bounded
clique-width or tree-width. They showed that the OBDD size is O(logN) for graphs with
bounded tree-width and O(N) for cographs where each node is labeled by c · logN bits for
a constant c > 1. In addition, they gave an upper bound of O(N) for graphs with bounded
clique-width where the nodes have encoding length of O(N).

Here, we use the minimal amount of bits to label the nodes of a graph because we are
not only interested in a small representation size but also in algorithms working on OBDDs
representing the graphs. As we know from the previous chapter, the worst-case OBDD size
is exponentially large in the number of variables which is why we want to keep this number
as small as possible. Another problem with a larger domain for the node labels is that it also

39
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possibly increases the size of the data structure storing the valid labels which is often needed
in implicit algorithms. This means that for the node set V of a graph G = (V,E) we have
to have a function χV : {0, 1}l → {0, 1} which maps a valid encoding x ∈ {0, 1}l to 1 and an
invalid encoding to 0 where l is the length of the encodings of the nodes. If the encodings
get more complicated, the space needed for χV increases. Here, we use the simple function
χV (x) = 1 if and only if |x|2 < N which has a small OBDD size of O(n). Once we have
fixed the number of bits for the encodings, we have to compute a good labeling for the nodes
that minimizes the OBDD size. As discussed in the previous chapter, we use the interleaved
variable order with decreasing significance in order to have small OBDDs for our auxiliary
functions. But even for a fixed variable order, the computational complexity of computing
the best node labeling is unknown. For a restricted case where it is only allowed to permute
the order of the bits of a given encoding, Bollig [16] showed that it is NP-hard to compute
the best labeling.
Beside the OBDD size of cographs, Nunkesser and Woelfel [107] also showed that interval

graphs can be represented by OBDDs of size O(N3/2/ log3/4N) and unit interval graphs with
OBDD sizeO(N/

√
logN). We know that the size of an OBDD representing an arbitrary graph

is O(N2/ logN). For bipartite graphs they were able to show a lower bound of Ω(N2/ logN).
In addition, they proved a lower bound of Ω(N) for general interval graphs, Ω(N/ logN) for
unit interval graphs, and Ω(N/ logN) for cographs. We introduce a new technique to show
upper and lower bounds of the OBDD size for a fixed variable order which enables us to
improve the bounds of Nunkesser and Woelfel for interval graphs to O(N logN) and for unit
interval graphs to O(N/ logN). The key idea for this technique is to identify subfunctions of
the characteristic function χE by submatrices of a special adjacency matrix where the rows
and columns are sorted with respect to the variable order. The advantage of this perspective is
that we can count the number of different submatrices instead of dealing with subfunctions.
This is often much easier because we can use the structure of the adjacency matrix, e. g.,
for (unit) interval graphs [98], and the neighborhood of the nodes to recognize patterns in
these submatrices. Applying this technique to trees, bipartite permutation graphs, biconvex
graphs, chain graphs, and threshold graphs give us an asymptotically optimal upper bound
on the OBDD size of O(N/ logN). For convex graphs we get an upper bound of O(N logN).
The lower bounds of Ω(N) for convex graphs and Ω(N/ logN) for the other graphs can be
obtained by using the counting results from Section 2.2. Independently, Takaoka, Tayu, and
Ueno [123] also investigated the size of bipartite permutation graphs and biconvex graphs.
They also used our technique to achieve an upper bound of O(N/ logN) with a matching
lower bound of Ω(N/ logN). Similarly to the proof of the upper bound for interval graphs by
Nunkesser and Woelfel, they were able to show an O(N3/2/ log3/4N) bound on the OBDD size
for permutation graphs and convex graphs. In addition to the small OBDD size, our labeling
of the nodes is easy to compute and often coincides in some way with the orders known from
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the graph classes in Section 2.2. On the negative side, we show that there is a distribution on
interval graphs such that with constant probability the OBDD size is Ω(N logN) if we use
our labeling and variable order. This means that any further improvement towards the Ω(N)
lower bounds needs either a different labeling or another variable order.
In terms of implicit OBDD-based graph algorithms, Hachtel and Somenzi [57] were one of

the first using OBDDs to solve an optimization problem on graphs, namely the maximum flow
problem in 0-1-networks. They were able to solve instances up to 1036 edges and 1027 nodes
in reasonable time. Sawitzki [115] described another implicit algorithm for the same problem,
which uses O(N log2N) functional operations. The algorithm by Hachtel and Somenzi was
generalized to maximum weighted matchings in bipartite graphs [55] and to a relaxation of
matchings, called semi-matching, in bipartite graphs [56]. Since implicit algorithms approach
a problem in a different way, designing implicit algorithms for optimization problems can
give new insights into the problems. For instance, Gentilini, Piazza, and Policriti [51] devel-
oped the notion of spine-sets in the context of implicit algorithms for connectivity related
problems. Aiming for a small number of functional operations, implicit algorithms using a
polylogarithmic number of operations were designed for instance for topological sorting [131],
maximal matching [20] and minimum spanning tree [15]. We present two implicit algorithms
for (unit) interval graphs: A maximum matching algorithm for unit interval graphs using only
O(logN) functional operations and a coloring algorithm for interval graphs using O(log2N)
functional operations where we color the nodes such that all adjacent nodes have different
colors and the number of used colors is minimal. The matching algorithm takes advantage of
the information given by the labels of the nodes. Furthermore, we were able to compute the
transitive closure of a unit interval graph using only O(logN) operations instead of O(log2N)
operations, which are needed in general. In order to implement this algorithm efficiently, we
have to extend a known result due to Woelfel [131] to the interleaved variable order with de-
creasing significance for constructing OBDDs representing multivariate threshold functions.
These are functions of the form

∑k
j=1wj · |x(j)|2 ≥ T for Boolean vectors x(j), weights wj ,

and threshold T . For the coloring algorithm we show how to get a total order on the right
endpoints (given that the labels of the nodes respect the order of the left endpoints) and how
to compute a minimal coloring of the nodes by using these orders based on a optimal greedy
algorithm [108]. To the best of the author’s knowledge, this is the first time that the labeling
of nodes is used to speed up an implicit algorithm for a large graph class and to improve the
number of functional operations.

3.2. OBDD Size of Graphs

We start with a summary visualized in Fig. 3.1 where we reuse the inclusion map of the graph
classes in Fig.2.1 and illustrate our results regarding the OBDD sizes of the graph classes.
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3.2.1. The π-ordered Adjacency Matrix

In order to bound the size of a Boolean function f by using Theorem 2.3.4, we have to count
different subfunctions of f . We present a way to count the subfunctions of the characteristic
function χE of the edge set of a graph using the adjacency matrix of the graph. This can
give us a better understanding what a subfunction looks like in the graph scenario and get a
more graph theoretic approach to subfunctions. The adjacency matrix of graphs from special
graph classes (e. g., for interval graphs) yields structural properties which we use to bound
the size of the π-OBDD. So if we use the knowledge about the structure of the adjacency
matrix for a fixed labeling to bound the number of different subfunctions for a variable order
π, then we can show an upper and/or lower bound on the π-OBDD size.
The rows (columns) of an adjacency matrix correspond to the x-variables (y-variables) of

χE(x, y). We can sort the rows of the adjacency matrix according to a variable order π by
connecting the i-th row to the input x with

∑n−1
l=0 xπ(l) · 2n−1−l = i, i. e., we let the l-th

x-variable in π have significance 2n−1−l to sort the rows. This can be done analogously to
sort the columns. Thus, the variable order π defines a permutation of the rows and columns
of the adjacency matrix resulting in a new matrix which we call π-ordered adjacency matrix.

Definition 3.2.1 (π-Ordered Adjacency Matrix). Let G = (V,E) be a graph and π2,n be
a 2-interleaved variable order for the characteristic function χE . The π-ordered adjacency
matrix Aπ of G is defined as follows: aij = 1 iff χE(x, y) = 1 with

∑n−1
l=0 xπ(l) · 2n−l−1 = i and∑n−1

l=0 yπ(l) · 2n−l−1 = j.

Notice that the π-ordered adjacency matrix is equal to the “normal” adjacency matrix where
the rows and columns are sorted by the node labels iff the variables in π are sorted with
decreasing significance. The π-ordered adjacency matrix gives us a visualization of the sub-
functions in terms of blocks of the matrix. We focus here on interleaved variable orders which
means that in every prefix of the order the number of tested x-variables and y-variables differs
at most by one. As a consequence, the blocks from the next definition are almost quadratic
but the definitions can be easily generalized to arbitrary variable orders.

Definition 3.2.2 (Blocks). Let n ∈ N and A be a 2n × 2n matrix. For 0 ≤ k1, k2 ≤ n

with k2 ∈ {k1 − 1, k1}, 0 ≤ i ≤ 2k1 − 1, and 0 ≤ j ≤ 2k2 − 1 the block Bk1,k2
i,j of A is

defined by the submatrix of size 2n−k1×2n−k2 which is formed by the intersection of the rows
i · 2n−k1 , . . . , (i + 1) · 2n−k1 − 1 and the columns j · 2n−k2 , . . . , (j + 1) · 2n−k2 − 1. If k1 = k2

we denote Bk1,k2
i,j by Bk1

i,j .

Recall Theorem 2.3.4 that we want to count the number of different subfunctions which result
from replacing the first i variables according to the variable order by constants. We will see
later that for an upper bound it is enough to consider only the case when i is even, i. e., the
number of replaced x- and y-variables is exactly i/2. Now, we can observe that the block
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B
i/2
|α|2,|β|2 represents the function table of the subfunction which results from replacing the x-

variables by α ∈ {0, 1}i/2 and the y-variables by β ∈ {0, 1}i/2. Therefore, counting the number
of different blocks Bi/2

|α|2,|β|2 is equivalent to counting the number of different subfunctions. For
an upper bound it is sufficient to bound the number of different subfunctions from above but
for a lower bound we also have to ensure that the subfunctions are essentially dependent on
the next variable. Since replacing the next variable by a constant is equivalent to halve the
corresponding block, we can relate the dependency on a variable to a notion of a symmetric
block which we define next.

Definition 3.2.3 (Symmetric Block). Let 0 < k1 ≤ n, 0 ≤ k2 < n with k2 ∈ {k1− 1, k1} and
0 ≤ i ≤ 2k1 − 1, 0 ≤ j ≤ 2k2 − 1. A block Bk1,k2

i,j of a π-ordered adjacency matrix is called
symmetric if

• Bk1+1,k2
2i,j = Bk1+1,k2

2i+1,j if k1 = k2 or

• Bk1,k2+1
i,2j = Bk1,k2+1

i,2j+1 if k2 = k1 − 1

and asymmetric otherwise.

Now, we can formally prove the relationship between subfunctions and blocks.

Lemma 3.2.4. Let G = (V,E) be a graph and π2,n be a 2-interleaved variable order for the
characteristic function χE. Let sk1,k2 for 0 < k1 ≤ n, 0 ≤ k2 < n, and k2 ∈ {k1−1, k1} be the
number of different subfunctions of χE which results from replacing all variables xπ(k) with
0 ≤ k ≤ k1 and all variables yπ(k) with 0 ≤ k ≤ k2 by constants and which essentially depend
on xπ(k1+1) if k1 = k2 or yπ(k1) if k2 = k1 − 1. Then sk1,k2 is equal to the number of different
and asymmetric blocks Bk1,k2

i,j .

Proof. Let k1 and k2 be arbitrary but fixed with 0 < k1 ≤ n, 0 ≤ k2 < n, and k2 ∈ {k1−1, k1}.
By the definition of the π-ordered adjacency matrix Aπ, we know that χE(x, y) = 1 if and
only if aij = 1 with i =

∑n−1
l=0 xπ(l) · 2n−l−1 and j =

∑n−1
l=0 yπ(l) · 2n−l−1. Now, for α ∈

{0, 1}k1 , β ∈ {0, 1}k2 let f|α,β : {0, 1}n−k1 ×{0, 1}n−k2 → {0, 1} be the subfunction of f := χE

where xπ(0), . . . , xπ(k1−1) are replaced by αk1−1, . . . , α0 and yπ(0), . . . , yπ(k2−1) are replaced by
βk2−1, . . . , β0. Then we have f|α,β(x, y) = 1 if and only if aij = 1 with

i =
k1−1∑
l=0

αl2n−k1+l +
n−1∑
l=k1

xπ(l)2n−l−1 = |α|2 · 2n−k1 +
n−1∑
l=k1

xπ(l)2n−l−1 and

j =
k2−1∑
l=0

βl2n−k2+l +
n−1∑
l=k2

yπ(l)2n−l−1 = |β|2 · 2n−k2 +
n−1∑
l=k2

yπ(l)2n−l−1.

This means submatrix formed by the intersection of the rows with number |α|2·2n−k1 , . . . , |α|2·
2n−k1 +2n−k1−1 = (|α|2 +1) ·2n−k1−1 and the columns with number |β|2 ·2n−k2 , . . . , (|β|2 +
1) · 2n−k2 − 1 is the function table of f|α,β. By definition, this submatrix is equal to the
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Figure 3.2.: The π-ordered adjacency matrix of a unit interval graph with π = (2, 1, 0) and the
framed blocks B2,1

0,0 , B
2,1
1,0 , B

2,1
2,0 , B

2,1
3,0 , B

2,1
0,1 , B

2,1
1,1 , B

2,1
2,1 and B2,1

3,1 which correspond to
the subfunctions where x2, y2, and x1 are replaced by constants.

block Bk1,k2
|α|2,|β|2 . A subfunction f|α,β is essentially dependent on the next variable, if the two

subfunctions where this variable is replaced by either 0 or 1 are different. This next variable is
xπ(k1+1) if k1 = k2 and yπ(k1) if k2 = k1− 1. In the first case the subfunctions are f|[α,0],β and
f|[α,1],β whereas in the second case they are f|α,[β,0] and f|α,[β,1]. In terms of blocks, this means
that either the blocks Bk1+1,k2

i1,j
, Bk1+1,k2

i2,j
with i1 = |[α, 0]|2 = 2i and i2 = |[α, 1]|2 = i1 + 1 or

Bk1,k2+1
i,j1

, Bk1,k2+1
i,j2

with j1 = |[β, 0]|2 = 2j and j2 = |[β, 1]|2 = j1 + 1 corresponding to these
subfunctions have to be different which is exactly the definition of an asymmetric block.

For instance, say that the variables are tested with decreasing significance. Then aij = 1
iff χE(x, y) = 1 with

∑n−1
l=0 xl · 2l = |x|2 = i and

∑n−1
l=0 yl · 2l = |y|2 = j, i. e., the π-ordered

adjacency matrix Aπ of G is the standard adjacency matrix where the labeling of the columns
and rows is ordered by the node labels. Fig. 3.2 illustrate that for every k each subfunction of
f where the first k bits (according to π2,n) are replaced by constants corresponds to a block
of this adjacency matrix.
Bollig and Wegener [22] use a similar approach to visualize subfunctions of a storage access

function by building a matrix whose columns and rows are sorted according to the variable
order and correspond to variables (not assignments as in our π-ordered matrix). Notice that
Aπ is not the communication matrix which is often used to show lower bounds of the OBDD
size. For the communication matrix the variable order is split in two parts, the first k variables
and the last 2n − k variables, and the rows and columns correspond to assignments to the
first k variables and last 2n− k variables, respectively.
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3.2.2. OBDD Size of (Unit) Interval Graphs

Now, we use the π-ordered adjacency matrix and count the number of different blocks to
improve the bounds of the OBDD size of interval graphs from O(N3/2 log3/4N) [107] to
O(N logN). We also use a simpler labeling of the nodes. A characterization of the adjacency
matrix of a (unit) interval graph has been shown by Mertzios [98] who introduced a normal
interval representation. Here, it is sufficient to get the same structure by sorting the intervals
according to their left endpoint.

Theorem 3.2.5. Let π2,n be the interleaved variable order with decreasing significance and
G = (V,E) be an interval graph with N := |V | nodes. The π2,n-OBDD size of χE can be
bounded above by O(N logN).

Proof. Let f := χE , 1 ≤ k ≤ n and sk be the number of different subfunctions f|α,β of f where
α ∈ {0, 1}k is an assignment to the variables xn−1, . . . , xn−k and β ∈ {0, 1}k is an assignment
to the variables yn−1, . . . , yn−k, respectively. The number of different subfunctions where the
variables xn−1, . . . , xn−k and yn−1, . . . , yn−k−1 are replaced by constants can be bounded by
2 · sk because one additional variable can at most double the number of subfunctions.
We label the nodes according to their position in the sorted sequence of interval left end-

points (as for example in Fig. 3.2). Recall that the interleaved variable order with decreasing
significance means that ai,j is one if and only if interval i intersects interval j. Now, notice
that if ai,j is zero for j > i, i. e., interval j has a larger left endpoint than interval i and does
not cut interval i, then no interval j′ > j with a larger left endpoint can cut interval i. Thus,
for every column i ∈ {0, . . . , N − 1}, the sequence (ai+1,i, . . . , aN−1,i) is zero or starts with a
continuous sequence of ones followed by only zeros, i. e., there exists a j such that ak,i = 1
for i < k ≤ j and ak,i = 0 for k > j.

From Lemma 3.2.4 we know that every subfunction f|α,β corresponds to a block of Aπ. Let
β = 0k and |α|2 ≥ 1, i. e., we consider the blocks Bk

|α|2,0 of size 2n−k × 2n−k (see Fig. 3.3).
As we observed, every column of Aπ has at most one possible changing position c such that
ac,i = 1 and ac+1,i = 0 (below the diagonal). We say that a changing position c is inside a
block if ac,i is in the block. Looking at the sequence (Bk

1,0, . . . , B
k
2k−1,0) of blocks, this fact

implies that a block Bk
i,0 can only form a new block, i. e., all previous blocks in the sequence

are different to this block, if there is a changing position in one column inside of Bk
i,0 or inside

the block Bk
i−1,0. Of course, this holds for any assignment β ∈ {0, 1}k. Therefore, every

changing position can induce at most two different blocks. Thus, we can bound the number
of different blocks by two times the number of possible changing positions which is at most
the number of columns of a block, i. e., 2 · 2n−k. Since the graph is symmetric and the blocks
containing the diagonal can only add 2k additional distinct blocks, we can bound the overall
number of different blocks by O(2n−k · 2k + 2k) = O(2n) and thus sk = O(2n). Summing this
up over all possible values of k we get O(2n · n) = O(N logN) as an upper bound on the size
of the π-OBDD.
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Figure 3.3.: Possible adjacency matrix with 8 nodes and framed subfunctions f|α,β with β =
0k, |α|2 ≥ 1, and k = 2.

In the case of unit interval graphs we close the gap between Ω(N/ logN) and O(N/
√

logN) by
using the π-ordered adjacency matrix to get a better upper bound of O(N/ logN). Nunkesser
and Woelfel [107] showed that sk can be bounded from above by min{O(2k), 22n−k} which
leads to an OBDD size of O(N/

√
logN). We improve the bound for large values of k but

for the sake of completeness we also show the O(2k) bound by using the π-ordered adjacency
matrix. However, the ideas for the proof of the O(2k) bound are similar to [107].

Theorem 3.2.6. Let π2,n be the interleaved variable order with decreasing significance and
G = (V,E) be a unit interval graph with N := |V | nodes. The π2,n-OBDD size of χE can be
bounded above by O(N/ logN).

Proof. Again, let f := χE and sk be the number of different subfunctions f|α,β of f where
α is an assignment to the variables xn−1, . . . , xn−k and β is an assignment to the variables
yn−1, . . . , yn−k, respectively. As we have seen in the last proof, the number of different
subfunctions where the first k x-variables and k+ 1 y-variables are replaced by constants can
be bounded by 2 · sk.
We label the nodes according to their interval left endpoints. Let |α|2 > |β|2. We know that

f|α,β corresponds to the block Bk
|α|2,|β|2 of the π-ordered adjacency matrix of G. Let cj > j be

the changing position (as in the proof of Theorem 3.2.6) of column j, i. e., the position (row)
below the diagonal such that acj ,j = 1 and acj+1,j = 0. If the entries of the column below the
diagonal are all 0 or all 1 then we set cj = j and cj = N − 1, respectively. Recall that the
intervals are labeled according to their left endpoint. Since G is a unit interval graph, this is
equivalent to labeling them according to their right endpoints, i. e., if j > i, then interval j
starts and ends after interval i. This implies that the sequence c0, . . . , cN−1 is monotonically
increasing, i. e., c0 ≤ c1 ≤ . . . ≤ cN−1. Now, for a fixed β, let Bk

|α1|2,|β|2 , . . . , B
k
|αl|2,|β|2 with

|α1|2 < . . . < |αl|2 be the distinct blocks among all blocks of the form Bk
•,|β|2 . Since the

sequence of ci is monotonically increasing, for every β′ with |β′|2 > |β|2 all non-constant
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blocks Bk
|α′|2,|β′|2 have to satisfy |α′|2 ≥ |αl|2 which means there cannot be more than 2 · 2k

different blocks Bk
|α|2,|β|2 with |α|2 > |β|2. Since the matrix is symmetric and there are 2k

blocks on the diagonal, we can bound the overall number of different blocks by 5 · 2k.
For bounding the number of blocks for large k, we observe that every column of a block

Bk
|α|2,|β|2 with |α|2 > |β|2 consists of a beginning sequence of ones of length l ≥ 0 and an

ending sequence of zeros of length C − l, where C = 2n−k is the number of rows and columns
of the block. Let l1, . . . , lC be the lengths of the beginning sequence consisting of ones of
every column in the block Bk

|α|2,|β|2 . We know that the sequence l1, . . . , lC is monotonically
increasing, i. e., l1 ≤ l2 ≤ . . . ≤ lC . How many different blocks of this form can be constructed?
We can construct such a block by drawing C numbers between 0 and C and sorting them,
i. e., it is equivalent to drawing C numbers out of {0, . . . , C} with repetition, where order does
not matter. The number of C-combinations with repetition is equal to

((C+1)+C−1
C

)
=
(2C
C

)
and this can be bounded above by 22C . Since G is symmetric, this is also a bound on the
number of different blocks above the diagonal. The omitted blocks on the diagonal can be
constructed in a similar way: At first, the diagonal of these blocks is zero and the blocks are
symmetric. Below the diagonal the blocks also consist of a sequence of ones probably followed
by a sequence of zeros. So the number of different blocks is bounded above by the number
of different blocks, which are not on the diagonal, i. e., by 22C . Hence, for C = 2n−k we can
bound sk above by 3 · 22n−k+1 . Therefore, the OBDD size is at most

n−1∑
k=0

min{5 · 2k, 3 · 22n−k+1} ≤ 5 ·
n−logn+1∑

k=0
2k + 3 ·

n−1∑
k=n−logn+2

22n−k+1

≤ 5 · 2n−logn+2 + 3 · 22logn−1 · (logn− 2)
= O(N/ logN) +O(

√
N · log logN)

= O(N/ logN).

The difference between unit and general interval graphs is that in general interval graphs
there is no dependence between the columns of the π-ordered adjacency matrix, which will
be important for our lower bound, while in unit interval graphs, the row number of the last
1-entry in a column is increasing from left to right. The proofs of the upper bounds suggest
that the number of blocks Bk

i,j with a changing position roughly determines the number of
OBDD nodes labeled by xn−k−1. We know that every layer of the OBDD, i. e., every set of
OBDD nodes labeled by the same variable, has size O(N) which means that there have to
be Ω(n) layers of the OBDD of size Ω(N) to show a lower bound of Ω(N logN). Explicitly
constructing a worst-case interval graph with OBDD size of Ω(N logN) is difficult because
Ω(n) layers correspond to Ω(n) values of k and, since the block Bk

i,j results from dividing a
block Bk−1

i′,j′ , many dependencies have to be considered to ensure that Ω(N) blocks are different
for all the possible values of k.
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Figure 3.4.: Random interval graph where only R is generated randomly

In order to overcome these dependencies, we look at a random interval graph and compute
the expected value of the number of different blocks for Ω(n) values of k. Intuitively, in the
worst-case the lengths of the 1-sequences of the columns are uniformly distributed such that
there are many blocks with a small number of changing positions inside which maximizes the
possibility that there are many different blocks. Choosing an appropriate distribution on the
set of interval graphs, we show that the expected number of different blocks with one changing
position is Ω(N) for Ω(n) values of k. Due to the linearity of expectation, the expected value
of the sum of the number of different blocks over all values of k is Ω(Nn) = Ω(N logN), i. e.,
there is an interval graph whose OBDD size is also Ω(N logN). Since we also have an upper
bound of O(N logN), we can show even more: If we draw a random interval graph from our
distribution, then the size of the OBDD is Ω(N logN) with constant probability.

Theorem 3.2.7. The worst-case π2,n-OBDD size of an interval graph is Ω(N logN) where
the nodes are labeled according to the interval left endpoints and π2,n is an interleaved variable
order with decreasing significance. Furthermore, there is a (nontrivial) distribution on the set
of interval graphs such that the probability is Ω(1) that the OBDD size is at least Ω(N logN).

Proof. We describe a random process to generate an interval graph where the adjacency
matrix is constant except the N/2 × N/2 lower left submatrix which we denote by R (see
Fig. 3.4). For this, we choose the length of the 1-sequence of column j for all 0 ≤ j ≤ N/2−1
uniformly at random from {N/2− j, . . . , N − 1− j} and for all N/2 ≤ j ≤ N − 1 the length
of column j is equal to N − 1 − j. As a result, the length of the 1-sequence of each column
within R is uniformly distributed in {1, . . . , N/2}.
Let G = (V,E) be a random interval graph generated by the above process and f := χE .

Let 1 ≤ k ≤ n and sk be the number of different subfunctions f|α,β of f where α ∈ {0, 1}k

is an assignment to the variables xn−1, . . . , xn−k and β ∈ {0, 1}k is an assignment to the
variables yn−1, . . . , yn−k, respectively, and f|a,b is essentially dependent on xn−k−1. We show
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that the expected value of sk with n/2 + 1 ≤ k ≤ (3/4)n is Ω(2n) = Ω(N). Therefore, there
has to be an interval graph with π2,n-OBDD size Ω(N logN).
We known that k induces a grid in R consisting of 2n−k×2n−k blocks. At first, we calculate

the expected number of blocks with exactly one changing position. The probability that a
fixed block of size L× L with L ≤ 2n/2−1 has exactly one changing position is

L∑
i=1

L− 1
2n−1 ·

(
1− L− 1

2n−1

)L−1
≥ L · (L− 1)

2n−1 ·
(

1− L

2n−1

)L−1

≥ L · (L− 1)
2n−1 ·

(
1− 2n/2

2n−1

)2n/2−1−1

≥ L · (L− 1)
2n−1 · e−1.

Let n/2 + 1 ≤ k ≤ (3/4)n be fixed. Since we have 2k−1 · 2k−1 blocks of size 2n−k × 2n−k in R,
the expected value of the number of blocks with exactly one changing position is at least

1
2e · 2

k−1 · 2k−1 · 2n−k · (2n−k − 1)
2n = 1

8e · 2
k · (2n−k − 1) = Ω(2n).

Now, we have to ensure that these blocks correspond to different subfunctions which are also
essentially dependent on xn−k−1, i. e., these blocks have to be asymmetric. Due to the one
changing position in each block, this is always the case. Blocks Bk

i,j and Bk
i′,j with exactly

one changing position and i 6= i′ clearly correspond to different subfunctions because they are
in the same block column. But blocks Bk

i,j and Bk
i′,j′ with j 6= j′, i. e., from different block

columns, do not have to be different. By replacing some columns of the matrix by constants,
we ensure that this also holds. Consider the case k = (3/4)n, i. e., the finest grid of R made
by 2n−k × 2n−k blocks with n/2 + 1 ≤ k ≤ (3/4)n. For every block column 0 ≤ j ≤ 2k − 1
we fix the first k columns of Bk

i,j with 0 ≤ i ≤ 2k − 1 such that they represent the binary
number [j]2 of the column index. Thus, we have that blocks Bk

i,j and Bk
i′,j′ with j 6= j′ are

always different. Since we looked at the finest grid, this also holds for smaller values of k
because every larger block is equal to a union of small blocks. The probability that a block
contains exactly one changing position is smaller than before, since we fix some columns. For
k = (3/4)n the number of fixed columns is (3/4)n and in each k → k − 1 step this number is
doubled, i. e., for n/2 + 1 ≤ k ≤ (3/4)n the number of “free” columns is

2n−k − 2(3/4)n−k · (3/4)n = 2n−k − 2(3/4n−k+log((3/4)n)) = Ω(2n−k)

for n large enough. Replacing L = 2n−k by Ω(2n−k) in the calculation of the expectation does
not change the asymptotic behavior. Thus, the expected number of blocks with exactly one
changing position remains Ω(2n) for every n/2 + 1 ≤ k ≤ (3/4)n.

Let X be the OBDD size of an interval graph randomly drawn from our construction.
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From Theorem 3.2.5 we know that X = O(N logN) with probability 1. We proved that
E [X] = Ω(N logN). Now, we can use the reverse Markov inequality (see Theorem A.2.2 in
the appendix) that says that for δ > 0 the probability that X is larger than (1− δ) ·E [X] is
at least Ω(δ).

The upper bound for interval graphs can be easily adapted to interval bigraphs.

Theorem 3.2.8. Let π2,n be the interleaved variable order with decreasing significance and
G = (A,B,E) be an interval bigraph with N := |A|+ |B| nodes. The π2,n-OBDD size of χE
can be bounded above by O(N logN) and the worst-case OBDD size of χE is at least Ω(N).

Proof. We label the nodes from A by 0, . . . , |A| − 1 according to their left interval endpoint
and the nodes from B by |A|, . . . , |A|+ |B| − 1 also according to their left interval endpoint.
The π-ordered adjacency matrix consists of a matrix U where the rows correspond to nodes
from A and the columns correspond to nodes from B, the transpose UT of U and two complete
0 matrices. We divide U into two part U1, U2 such that U1 + U2 = U . Every entry uij where
the interval corresponding to the i-the row in U has a smaller left endpoint than the interval
corresponding to the j-the column in U belongs to U1. Similarly, in U2 we put every entry
uij where the interval corresponding to the i-the row in U has a larger left endpoint than
the interval corresponding to the j-the column in U . This separation defines a clear cut of
the matrix U similar to the diagonal of the adjacency matrix of an interval graph. Now, we
can apply the same analysis as for interval graphs separately to U1 and U2 getting an upper
bound of O(N) on the number of different blocks for every k. Since there are only 2k blocks
containing entries of both matrices U1 and U2, this gives us the desired bound of O(N logN).
The number of unlabeled interval bigraphs is bounded from below by 2ω(N logN) (Theorem
2.2.20). Applying Corollary 2.3.11, gives a lower bound of Ω(N) for the worst-case OBDD
size of χE .

3.2.3. OBDD Size of Bipartite Permutation Graphs

In the next sections, we take advantage of the neighborhood structure of some graph classes
to show good upper bounds on the OBDD size of the graphs as in the case of (unit) interval
graphs. We show an upper bound of O(N/ logN) for bipartite permutation graphs in a
similar way to unit interval graphs by using the strong order property from Theorem 2.2.12.
Actually, we use an order with the so-called forward-convex property due to Lai and Wei [84]
which coincides with the strong order if there is no isolated node. A forward-convex labeling
of a bipartite graph G = (A,B,E) is a labeling of A and B such that the order on A induced
by the labeling fulfills the adjacency property and for every pair of nodes bj , bj′ ∈ B it holds
that if j < j′ then first(bj) ≤ first(bj′) and last(bj) ≤ last(bj′) where first(b) and last(b)
denotes the index of the first and last element of A, respectively, which is adjacent to b.
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Theorem 3.2.9. Let π2,n be the interleaved variable order with decreasing significance and
G = (A,B,E) be a bipartite permutation graph with N := |A| + |B| nodes. The π2,n-OBDD
size of χE can be bounded above by O(N/ logN) and the worst-case OBDD size of χE is at
least Ω(N/ logN).

Proof. Consider the π-ordered adjacency matrix where we adapt the labeling from the
forward-convex labeling of the graph while all nodes in A have smaller labels than all nodes
in B. The matrix consists of a matrix U where the rows correspond to nodes from A and
the columns correspond to nodes from B, the transpose UT of U and two complete 0 ma-
trices. Then for bj ∈ B we know that first(bj) and last(bj) is the first and last row, re-
spectively, containing a 1 in the j-th column of U . Due to the forward-convex property,
we also have that the sequence of “first” rows

(
first(b0), . . . , first(b|B|−1)

)
and “end” rows(

last(b0), . . . , last(b|B|−1)
)
are monotonically increasing. For a fixed k, we look at the differ-

ent blocks contained in the U submatrix of the π-ordered adjacency matrix. For a fixed j,
let (i1, . . . , is) be the indices of the different blocks of the form Bk

•,j . Every changing position
can cause at most two different blocks. Therefore, if s ≥ 4 then there has to be at least one
changing position in Bk

i3,j . This means that the sequence of first or last rows is increasing
within the columns of Bk

•,j by an additive term of at least 2n−k. Thus, there can only be at
most O(2k) different blocks because otherwise the elements of one sequence would be greater
than 2n.

Every bipartite permutation matrix can be described by two monotone sequences of the first
and last rows of the columns. This also holds for every block Bk

•,•. In the proof of the upper
bound for unit intervals we have shown that there are at most 22n−k+1 monotone sequences
of the form (a1, . . . , a2n−k) with 0 ≤ ai ≤ 2n−k for every i. Since here we have two monotone
sequences, the number of different blocks is bounded from above by

(
22n−k+1

)2
= 22n−k+2 .

Similarly as for unit interval graphs, summing up everything gives us a O(N/ logN) upper
bound on the π2,n-OBDD size of χE .
For the lower bound, we know from Theorem 2.2.22 that the number BP (N) of unlabeled

bipartite permutation graphs of size N is given by

BP (N) =


1
4

(
C(N − 1) + C(N/2− 1) +

( N
N/2
))

if N is even,
1
4

(
C(N − 1) +

( N−1
(N−1)/2

))
otherwise

where C(N) := 1
N+1

(2N
N

)
is the N -th Catalan number. Since

(n
k

)
≥ (nk )k, we have BP (N) =

2Ω(N). Using Corollary 2.3.11, this implies that the worst-case OBDD size is bounded from
below by Ω(N/ logN).
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Figure 3.5.: A tree with a breadth first search labeling and the corresponding adjacency matrix

3.2.4. OBDD Size of Trees

An easy upper bound of trees is O(N logN) because the number of edges is linear and the
size of OBDDs is bounded by O(n · |χ−1

E (1)|) = O(|E| logN). To improve this bound, we want
to label the nodes of the tree such that the neighborhood restricted to nodes with a larger
labeling is consecutive. In addition, we want that for two nodes vi and vi′ with i′ > i the
largest label of the neighbors is increasing. For this, we root the tree at an arbitrary node and
label this node by 0. Now, every node gets a label which is corresponding to the visit time
of the node in a breadth first search starting in the root node. This means that the children
of a node vi get consecutive labels greater than i. This property allows us to apply similar
arguments as for unit interval graphs to obtain an upper bound of O(N/ logN). The counting
result by Otter (Theorem 2.2.17) implies that this upper bound is also asymptotically optimal.

Theorem 3.2.10. Let π2,n be the interleaved variable order with decreasing significance and
G = (V,E) be a tree with N nodes. The π2,n-OBDD size of χE can be bounded above by
O(N/ logN). The worst-case OBDD size of χE is at least Ω(N/ logN).

Proof. Let Aπ be the π-ordered adjacency matrix of G where the nodes are labeled as de-
scribed above: We root the tree at an arbitrary node and each node gets the label that
corresponds to the visit time in a breadth first search starting in the root. For a fixed k and
β ∈ {0, 1}n−k, we look at the blocks of the form Bk

|α|2,|β|2 with |α|2 > |β|2. We know that the
neighborhood of every node restricted to larger labels is consecutive due to the BFS labeling.
Since G is a tree, such neighborhoods of two different nodes vi and vi′ are disjoint and if i′ > i

the labels of the children of vi are smaller than the labels of the children of vi′ (see Fig. 3.5).
Let Bk

|αmax|2,|β|2 be the non-zero block Bk
|α|2,|β|2 with the largest value of α. The structure of

the labels implies that the blocks Bk
|α|2,|β′|2 with |β′|2 > |β|2 and |αmax|2 > |α|2 > |β′|2 are

completely 0. This means we can only have at most O(2k) different blocks below the diagonal.
Since the matrix is symmetric and the diagonal is part of exactly 2k blocks, we have O(2k)
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Figure 3.6.: A biconvex graph and the matrix U of the adjacency matrix with indices jf = 3
and jl = 4

different blocks in total. For large k, we can also use the bound for the number of different
monotone sequences (α1, . . . , α2n−k) with 0 ≤ αi ≤ 2n−k for every i which is 22n−k+1 : The
largest neighbor (with respect to the labeling) of node vi (restricted to neighbors with larger
label than i) is strictly increasing with ascending i if such a neighbor exists. Recall that these
neighborhoods are disjoint. This means we can represent a block of the matrix by a monotone
sequence (α0, . . . , α2n−k−1) where αi is the largest neighbor of node vi within the block. If such
a neighbor does not exist we set αi = max{αi′ | i′ < i and vi′ has a neighbor in the block}
(assume that v0 has a neighbor in the block otherwise set α0 = 0). This gives us an upper
bound of O(22n−k+1) which implies the O(N/ logN) bound of the OBDD size.
For the lower bound on the OBDD size of trees, we can use the result by Otter (Theorem

2.2.17) stating that there are at least 2Ω(N) unlabeled trees together with Corollary 2.3.11 to
show that the worst-case OBDD size is at least Ω(N/ logN).

3.2.5. OBDD Size of (Bi)Convex Graphs

Recall that the definition of a convex graph G = (A,B,E) says that w.l.o.g. A fulfills the
adjacency property, which means that nodes can be ordered such that the neighborhood of
every node u ∈ B is consecutive in this order. If we label the nodes from A according to this
order, then each row in the matrix U , where the rows correspond to nodes from A and the
columns correspond to nodes from B, has at most two changing positions. As we have seen
in one of the last subsections, the actual adjacency matrix of G consists of two 0 submatrices,
U , and UT . Now, we can use the same proof idea as for interval graphs with 2 instead of 1
changing positions for every column.
Using the counting results from Theorem 2.2.19 we know that there are at least 2Ω(N logN)

unlabeled convex graphs with Θ(N) nodes. Plugging this into Corollary 2.3.11, we get a lower
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bound of Ω(N). This gives us the following result.

Theorem 3.2.11. Let π2,n be the interleaved variable order with decreasing significance and
G = (A,B,E) be a convex graph with N := |A|+ |B| nodes. The π2,n-OBDD size of χE can
be bounded above by O(N logN). The worst-case OBDD size of χE is at least Ω(N).

In a biconvex graph G = (A,B,E) there is also an order of the nodes from B such that every
neighborhood of a node from A is consecutive in this order. Now, if we label the nodes in B
according to this order, we have that both rows and columns of the adjacency matrix have at
most two changing positions. As for bipartite permutation graphs, we look at the sequence
of first rows (first(b0), . . . , first(b|B|−1) and last rows (last(b0), . . . , last(b|B|−1). Since the
neighborhoods of every node from A and B are consecutive in the corresponding order of A
and B, there are indices 0 ≤ jf ≤ |B| − 1 and 0 ≤ jl ≤ |B| − 1 such that

first(bj) ≥ first(bj′) for 0 ≤ j < j′ ≤ jf ,

first(bj) ≤ first(bj′) for jf ≤ j < j′ ≤ |B| − 1,

last(bj) ≥ last(bj′) for 0 ≤ j < j′ ≤ jl, and

last(bj) ≤ last(bj′) for jl ≤ j < j′ ≤ |B| − 1.

Fig. 3.6 shows an example of a biconvex graph and the values of these indices. This property
was also observed by Lai and Wei [84] who used this to split the graph into two chain graphs
and one bipartite permutation graph. Here, we directly use the sequence to bound the OBDD
size of a biconvex graph. We can apply the same arguments as in the proof for bipartite
permutation graphs for each possible pair of the four monotone sequences: If we have four
or more different blocks of the form Bk

•,j for a fixed j then the values of at least one of the
two sequences have to increase or decrease by an additive term of at least 2n−k. This means
that there cannot be more than O(2k) different blocks because otherwise the elements of a
sequence would be too large or too small.
Since bipartite permutation graphs are biconvex, we can bound the number of unlabeled

biconvex graphs by the number of unlabeled bipartite permutation graphs. Thus, we get also
a lower bound of Ω(N/ logN).

Theorem 3.2.12. Let π2,n be the interleaved variable order with decreasing significance and
G = (A,B,E) be a biconvex graph with N := |A|+ |B| nodes. The π2,n-OBDD size of χE can
be bounded above by O(N/ logN). The worst-case OBDD size of χE is at least Ω(N/ logN).

3.2.6. OBDD Size of Threshold and Chain Graphs

Bounding the size of an OBDD representing a chain or threshold graph is easy with the tools
which we have developed in the last subsections. Recall that in both graph classes we have a
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Figure 3.7.: A chain graph with parameter T = 4 and the corresponding adjacency matrix
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Figure 3.8.: A threshold graph with parameter T = 4 and the corresponding adjacency matrix

node weight wv for every v ∈ V and two nodes u and v are adjacent if and only if wu+wv ≥ T
(threshold graph) or |wu − wv| ≥ T (chain graph) for a real number T . We label the nodes
according to their rank in the ascending order of node weights, i. e., for vi, vj ∈ V with i < j

we have wvi ≤ wvj . As before, we look at the column of the adjacency matrix corresponding
to a fixed node vj . In the case of threshold graphs, we observe the following property: Let
i > j which means wvi ≥ wvj . Let first(vj) be the first row in the column of vj such that
the entry is 1. If such a row does not exist, we set first(vj) = N . Since the node weights
are increasing with larger node indices, we have aij = 1 for all first(vj) ≤ i ≤ N − 1 with
i 6= j and aij = 0 otherwise (see Fig. 3.8). Furthermore, since wvj′ ≥ wvj for every j′ > j, if
wvj + wu ≥ T holds, then it is also wvj′ + wu ≥ T which implies that first(vj′) ≤ first(vj).
Overall, we have first(v0) ≥ first(v1) ≥ . . . ≥ first(vN−1) and we can use similar arguments
as before to bound the OBDD size by O(N/ logN).
In the case of chain graphs, the value |wvj −wvi | is increasing in i for a fixed j < i because
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wvj ≤ wvi . This means that first(v0) ≤ first(v1) ≤ . . . ≤ first(vN−1) where here first(vj)
is the first row greater than j in the column of vj such that the entry is 1 (see Fig. 3.7). Every
entry after the first(vj)-th row in the column of vj is 1. Again, this gives us an upper bound
of O(N/ logN) on the OBDD size.
A matching lower bound for the OBDD representation of chain and threshold graphs can

be easily obtained by using the counting results from Theorem 2.2.24 and 2.2.23 that the
number of unlabeled chain and threshold graphs of size N is bounded from below by 2Ω(N).

Theorem 3.2.13. Let π2,n be the interleaved variable order with decreasing significance and
G = (V,E) be a threshold graph with N nodes. The π2,n-OBDD size of χE can be bounded
above by O(N/ logN). The worst-case OBDD size of χE is at least Ω(N/ logN).

Theorem 3.2.14. Let π2,n be the interleaved variable order with decreasing significance and
G = (V,E) be a chain graph with N nodes. The π2,n-OBDD size of χE can be bounded above
by O(N/ logN). The worst-case OBDD size of χE is at least Ω(N/ logN).

3.3. OBDD-Based Algorithms on Interval Graphs

In this section, we want to develop a maximummatching algorithm on unit interval graphs and
a coloring algorithm on unit and general interval graphs. Before we start with the algorithms,
we have to investigate a special function class, which we will use in our algorithms, so-called
multivariate threshold functions. This function class was first investigated in [131] to analyze
the running time of an implicit topological sorting algorithm on grid graphs. Woelfel [131]
looked at the OBDD size of these functions for the interleaved variable order with increasing
significance, i. e., just the reverse of our variable order. Hosaka et al. [62] showed that the
difference of the OBDD sizes for this two orders is at most n − 1. We can show that an
OBDD using our variable order is not only small but can also be constructed efficiently which
is important in view of the implementation.

3.3.1. Constructing OBDDs for Multivariate Threshold Functions

We start with the definition of multivariate threshold functions.

Definition 3.3.1 ([131]). A Boolean function f : {0, 1}kn → {0, 1} with k input variable
vectors x(1), . . . , x(k) ∈ {0, 1}n of length n is called k-variate threshold function, if there exist
a threshold T ∈ Z and W ∈ N and weights w1, . . . , wk ∈ {−W, . . . ,W} such that

f(x(1), . . . , x(k)) = 1⇔
k∑
j=1

wj · |x(j)|2 ≥ T.

The set of k-variate threshold functions f ∈ Bkn with weight parameter W is denoted by
TWk,n.
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Woelfel [131] showed that there exists an OBDD representing a multivariate threshold function
f ∈ TWk,n of size O(k2Wn) and such an OBDD can be constructed efficiently. Our proof for
our variable order is similar to his proof: It is sufficient to look at the carry values of the sum∑k
j=1wj · |x(j)|2 − T and, especially, at the carry value generated at the position with the

most significance. Reading the bits with increasing significance, Woelfel showed that after
each bit it is enough to store a number with absolute value O(kW ) to compute the carry
values. Here, we show that the influence of input bits with lower significance is small such
that we can also bound the number which we have to store after each bit while we read the
bits with decreasing significance.

Theorem 3.3.2. Let f ∈ TWk,n be a k-variate threshold function with weight parameter W ∈ N
and πk,n be the k-interleaved variable order where the variables are tested with decreasing
significance. Then we can construct a πk,n-OBDD representing f with width O(kW ) and size
O(k2Wn) in time O(k2Wn).

Proof. Similar to the proof in [131], we choose T0, . . . , Tn−1 ∈ {0, 1} and Tn ∈ Z such that
−T =

∑n
i=0 Ti · 2i. Notice that the Ti are unique, and that T0, . . . , Tn−1 are the n least

significant coefficients of |T | in binary representation and Tn is the number of times that we
need to add 2n in order to make up for the missing coefficients in this binary representation.
The function value of f is determined by the sign of S := −T +

∑k
j=1wj · |x(j)|2 =

∑n−1
i=0 (Ti+∑k

j=1wj · x
(j)
i ) · 2i + Tn · 2n. Now, we represent S in the same way as T , i. e., we define

S0, . . . , Sn−1 ∈ {0, 1} and Sn ∈ Z as the unique coefficients satisfying S =
∑n
i=0 Si · 2i. We

want to compute Si step-by-step: Notice that Si results from adding Ti +
∑k
j=1wj · x

(j)
i and

the carry value which is generated at position i− 1, and taking the remainder of the division
of this sum by two. In particular, Si is only influenced by factors of 2j for j ≤ i, and it holds
that for 0 ≤ i ≤ n− 1

Si :=
(
ci−1 + Ti +

k∑
j=1

wjx
(j)
i

)
mod 2 and

ci :=
⌊(

ci−1 + Ti +
k∑
j=1

wjx
(j)
i

)
/2
⌋

with c−1 = 0. Finally, we compute Sn = cn−1 + Tn. Now, we have f(x(1), . . . , x(k)) = 1 ⇔
cn−1 ≥ −Tn, i. e., it is sufficient to compute the ci values.

We rewrite the ci to have them in a more convenient form. Notice that for m,n ∈ N and
x ∈ R it holds that

⌊bxc+m

n

⌋
=
⌊
x+m

n

⌋
(see, e. g., [79]). So we have
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c1 =

c0 + T1 +
k∑
j=1

wjx
(j)
1

 /2


=

T0 +
k∑
j=1

wjx
(j)
0

 /2
+ T1 +

k∑
j=1

wjx
(j)
1

 /2


=

T0 +
k∑
j=1

wjx
(j)
0

 /2 + T1 +
k∑
j=1

wjx
(j)
1

 /2


=

T0 +
k∑
j=1

wjx
(j)
0

 /4 +

T1 +
k∑
j=1

wjx
(j)
1

 /2
 .

Let c′i =
Ti+

k∑
j=1

wjx
(j)
i

2n−i . Applying the above observation iteratively, we have

cn−1 =
⌊
n−1∑
i=0

c′i

⌋
.

According to our variable order, we have to compute c′i backwards from n − 1 to 0. This
is possible because each c′i only depends on i. We describe an algorithm that is divided into
phases. In each phase, the algorithm is in a state Q, reads all k bits of the input variable
vectors of the same significance and changes the state depending on the former state and the
read bits. After phase i, the algorithm has the correct sum of the summands from n − 1
to i. Notice that the bits with lesser significance can only add a value to S with bounded
absolute value, so if the accumulated sum has a large enough absolute value, then we can
already decide which sign S has.
Let us start with phase n − 1 and state Q = 0. In phase 1 ≤ i ≤ n − 1 we compute the

value of c′i by reading x(1)
i , . . . , x

(k)
i :

1. If c′i +Q ≥ −Tn + (kW + 1)/2n−i then change into the accepting state Qacc.

2. If c′i +Q < −Tn − (kW + 1)/2n−i then change into the rejecting state Qrej .

3. Otherwise update the state Q = c′i +Q and go to phase i− 1.

In phase 0 we compute c′0 and accept iff bc′0 +Qc ≥ −Tn.
If we reach phase 0 then the output is correct due to our above observations. So we have to

show that we correctly accept/reject within phase i with 1 ≤ i ≤ n− 1. For i = 0, . . . , n− 1
it is |c′i| ≤ kW+1

2n−i because Ti ∈ {0, 1} and all weights are bounded by W and therefore

∣∣∣∣∣
i∑
l=0

c′l

∣∣∣∣∣ ≤
i∑
l=0

kW + 1
2n−l = kW + 1

2n−i
i∑
l=0

1
2l ≤

kW + 1
2n−i · 2 = kW + 1

2n−i−1 .
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I. e., if in phase i it is either c′i+Q ≥ −Tn+ (kW + 1)/2n−i or c′i+Q < −Tn− (kW + 1)/2n−i,

then we know that
⌊
n−1∑
i=0

c′i

⌋
≥ −Tn or

⌊
n−1∑
i=0

c′i

⌋
< −Tn respectively. So our algorithm works

correctly.
Based on this algorithm, the construction of the πk,n-OBDD is easy: Assume that we

update the state immediately after reading an input variable. Then each state is represented
by an OBDD node labeled by the variable which the algorithm will read next. The states
for accepting and rejecting are represented by the sinks. The edges correspond to the state
transition of the algorithm. If we are not in an accepting or rejecting state, we know that the
state value is between −Tn − kW+1

2n−i−1 and −Tn + kW+1
2n−i−1 − 1. We also know that |c′i| ≤ kW+1

2n−i ,
i. e., the values computed in phase i have to be between

−Tn −
kW + 1
2n−i−1 −

kW + 1
2n−i and − Tn + kW + 1

2n−i−1 − 1 + kW + 1
2n−i .

So all values are in the interval I = [−Tn − 3
2
kW+1
2n−i−1 ,−Tn + 3

2
kW+1
2n−i−1 ). The denominator of

c′i is an integer, i. e., only at most 2n−i · |I| = O(kW ) values of I are possible during the
computation. Therefore, we have an OBDD width of O(kW ) and overall an OBDD size of
O(k2Wn). The construction algorithm is straightforward and has a running time which is
linear to the OBDD size.

The proof of Theorem 3.3.2 also showed that the complete OBDD width is bounded by
O(kW ). A binary synthesis of two functions with complete-OBDD width w1 and w2 has a
complete-OBDD width of at most w1 · w2 [117]. Since the complete OBDD size is an upper
bound on the general OBDD size, we can compute a sequence of O(1) binary synthesis of
multivariate threshold functions efficiently using the interleaved variable order with decreasing
significance if k and W are constants.

We use the arithmetic notation in our algorithm instead of the functional notation
whenever we use multivariate threshold functions or simple combination of multivariate
threshold functions, e. g., we denote the conjunction of the multivariate threshold functions
f(x, y) = 1⇔ |x|2 − |y|2 ≥ 1 and g(x, y) = 1⇔ |y|2 − |x|2 ≥ −1 by |x|2 − |y|2 = 1.

3.3.2. Maximum Matching on Unit Interval Graphs

Let G = (V,E) be a unit interval graph where the nodes are labeled according to the sorted
sequence of left endpoints. Our maximummatching algorithm is based on a simple observation
that was also used in a parallel algorithm for this problem [32]: Assume that the unit interval
graph is connected (otherwise this observation holds for every connected component). Then
we have {vi, vi+1} ∈ E for i = 0, . . . , N − 2. Assume that there is an i ∈ {0, . . . , N − 2} such
that {vi, vi+1} 6∈ E, then due to the connectivity there has to be another interval with left
endpoint left of vi or right of vi+1, which intersects both intervals vi and vi+1. The length of
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this interval would be larger than 1 which is a contradiction.
Algorithm 4 uses the characteristic function of the set of nodes besides the characteristic

function χE . This is important if the number of nodes is not a power of two and we have
assignments to the input variables which do not represent a node. Since we label our nodes
according to their left endpoints, we have that the characteristic function of the node set is
equal to f(x) = 1⇔ |x|2 < N .

Algorithm 4 Implicit maximum matching algorithm for unit interval graphs
Input: Unit interval graph χE
Output: Matching χM

B Compute path graph
χ−→
E

(x, y) = χE(x, y) ∧ (|y|2 − |x|2 = 1)
B Compute set of starting nodes
First(z) = (|z|2 < N) ∧ ∀x : χ−→

E
(x, z)

B Compute set of reachable nodes
S(z) = ∃z′ : χ−→

E
(z, z′)

Reachable(x, y) = (|x|2 ≤ |y|2) ∧ ∀z : (|x|2 ≤ |z|2 < |y|2)⇒ S(z)
Reachable(x, y) = Reachable(x, y) ∧ (|x|2 < N) ∧ (|y|2 < N)
B Compute matching
F (x) = ∃z, d : First(z) ∧Reachable(z, x) ∧ (|x|2 − |z|2 = 2|d|2)
M(x, y) = χ−→

E
(x, y) ∧ F (x)

χM (x, y) = M(x, y) ∨M(y, x)
return χM (x, y)

At first, the algorithm computes a directed path graph, i. e., a union of paths, which is
a subgraph of the input graph and consists of the edges (x, y) with |x|2 − |y|2 = 1. For
every connected component this path consists of all nodes within the component, as we
have seen above. In general, maximum matchings on vertex disjoint paths can be computed
with O(log2N) functional operations [20]. Here, we know that every path P consists of a
consecutive sequence of nodes, i. e., P = (vi, . . . , vk) for 0 ≤ i ≤ k ≤ N − 1. We can use
this information to lower the number of functional operations: We compute the set of nodes
which are starting nodes of the paths. Then we want to compute the connected components
of the graph. Usually, this is done by computing the transitive closure, which needs O(log2N)
operations. Again, we can do it better: Two nodes x and y of the unit interval graph are
connected iff every node z with |x|2 ≤ |z|2 < |y|2 has a successor, i. e., there is an edge
(v|z|2 , v|z|2+1) ∈ −→E . Having this information, we can compute the matching by adding every
second edge of a path to the matching beginning with the first edge. To compute this set of
edges on general paths, the distance of every node to the first node has to be computed. This
can be done by an iterative squaring approach with O(log2N) functional operations [20]. We
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can easily determine the set of edges by comparing the difference of two node labels due to
the structure of the paths.

Theorem 3.3.3. Algorithm 4 computes a maximum matching for unit interval graphs using
O(logN) functional operations.

Proof. As we have seen in the beginning of this subsection, every connected component has al-
ways a path which consists of consecutive nodes and visits every node in this component. The
algorithm computes such paths and constructs a maximum matching of each path. Clearly,
the union of these matchings is a maximum matching of the complete graph.
The number of functional operations is determined by the lines 2-4 where we use quantifica-

tions over O(logN) variables. Otherwise, there is only a constant number of operations.

3.3.3. Implicit Coloring of Interval Graphs

Coloring refers to the task to color the nodes of a graph using the least number of colors, such
that all adjacent nodes have different colors. In the case of interval graphs, there is an easy
greedy coloring algorithm: Sort the set of endpoints of the intervals (i. e., the set consists of
both left and right endpoints) in ascending order. At the beginning all colors are on a stack.
Then color the intervals sequentially by traversing the sorted list and using the first color
available on the stack when the current element is a left endpoint. As soon as we visit a right
endpoint, we push the used color onto the top of the stack. This greedy algorithm is optimal
and can be implemented to run in linear time by determining the order without sorting [108].
The parallel algorithm in [134] assigns weights to the endpoints and computes prefix sums
to simulate the stack. In our implicit algorithm we can do the simulation in a more direct
manner: We call two intervals Ii = [ai, bi] and Ij = [aj , bj ] related iff bi < aj and Ij is the first
interval with the same color as Ii in the greedy algorithm. The following easy observation
helps us to compute this “related” relation implicitly.

Observation 3.3.4. The intervals Ii = [ai, bi] and Ij = [aj , bj ] are related iff the number of
right endpoints r with bi < r < aj is equal to the number of left endpoints l with bi < l < aj

and for all intervals Ij′ = [aj′ , bj′ ] with bi < aj′ < aj the number of right endpoints r with
bi < r < aj′ is not equal to the number of left endpoints l with bi < l < aj′

The first property in the observation ensures that the intervals get the same color by the
greedy algorithm while the second property means that there is not another interval with
a smaller left endpoint with the same color. Now, in the case of unit intervals we want
to show how we can compute a function RELATED(x, y), which is 1 iff the intervals I|x|2
and I|y|2 are related. The general case is discussed later in this section. As before, the
intervals are labeled according to their left endpoints. Let RE(x, y, l) = 1 iff |x|2 ≤ |y|2
and the number of right endpoints between b|x|2 and a|y|2 is equal to |l|2. Similarly, let
LE(x, y, l) = 1 iff |x|2 ≤ |y|2 and the number of left endpoints between b|x|2 and a|y|2 is equal
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to |l|2. Let χE(x, y) be the characteristic function of the edge set of a unit interval graph
G = (V,E) and χEc(x, y) the characteristic function of the edge set of the complement graph,
i. e., Ec = {(u, v) | u 6= v and (u, v) 6∈ E}. Then we can compute RE(x, y, l) and LE(x, y, l)
in the following way:

H1(x, y, z) = (|x|2 ≤ |z|2 < |y|2) ∧ χEc(z, y)
RE(x, y, l) = (|x|2 ≤ |y|2) ∧[

∃z : H1(x, y, z) ∧ (|z|2 − |x|2 = |l|2) ∧ ∃z′ : H1(x, y, z′) ∧ (|z′|2 > |z|2)
]

H2(x, y, z) = (|x|2 < |z|2 ≤ |y|2) ∧ χEc(x, z)
LE(x, y, l) = (|x|2 ≤ |y|2) ∧[

∃z : H2(x, y, z) ∧ (|y|2 − |z|2 = |l|2) ∧ ∃z′ : H2(x, y, z′) ∧ (|z′|2 < |z|2)
]
.

The right endpoint of an interval I|z|2 is greater than or equal to b|x|2 and less than a|y|2 iff
|x|2 ≤ |z|2 < |y|2 and I|z|2 does not intersect I|y|2 . Since we are dealing with unit interval
graphs, if for some z with |x|2 ≤ |z|2 < |y|2 the intervals I|z|2 and I|y|2 do not intersect, then
this also holds for all z′ with |x|2 ≤ |z′|2 < |z|2. I. e., the maximal value of |z|2 − |x|2 over all
z with the above property is equal to the number of right endpoints between b|x|2 and a|y|2
and, therefore, we compute the function RE(x, y, l) correctly. Similar arguments show that
LE(x, y, l) is computed correctly, too. Together with Observation 3.3.4, we can compute the
function RELATED(x, y) as follows:

RELATED(x, y) = ∃l : RE(x, y, l) ∧ LE(x, y, l) ∧
∃z, l′ : (|z|2 < |y|2) ∧RE(x, z, l′) ∧ LE(x, z, l′)

Now, we have to compute the sequence of related intervals, which is nothing more than the
transitive closure of the related relation. This can be computed with O(log2N) functional
operations. Finally, we have to assign a color to each interval, such that all intervals in a
sequence of related intervals are getting the same color. In order to do this, we compute an
order on the sequences of related intervals and assign the colors to the sequences according
to that order by using the EnumerateOrder procedure from Section 2.3. The order on the
sequences is given by the order on the minimal interval number within the sequences. Putting
all together, Algorithm 5 computes a coloring on a unit interval graph.

Theorem 3.3.5. Algorithm 5 computes a coloring of a unit interval graph using the minimal
number of colors and O(log2N) functional operations.

Proof. That the output is a coloring with the minimal number of colors follows directly from
correctness of the greedy algorithm. The number of functional operations is dominated by
the TransitiveClosure and EnumerateOrder procedures. As we have seen in Section 2.3,
both procedures need O(log2N) functional operations.
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Algorithm 5 Implicit coloring algorithm for unit interval graphs
Input: Unit interval graph (χE , χV )
Output: Coloring COLOR(x, l) with COLOR(x, l) = 1 iff I|x|2 has color |l|2
B Complement graph
χEc(x, y) = χV (x) ∧ χV (y) ∧ χE(x, y) ∧ (|x|2 6= |y|2)
B Auxiliary functions to compute the number of right/left endpoints
B between two intervals
H1(x, y, z) = (|x|2 ≤ |z|2 < |y|2) ∧ χEc(z, y)
H2(x, y, z) = (|x|2 < |z|2 ≤ |y|2) ∧ χEc(x, z)
B Number of right endpoints between b|x|2 and a|y|2

RE(x, y, l) = (|x|2 ≤ |y|2) ∧[
∃z : H1(x, y, z) ∧ (|z|2 − |x|2 = |l|2) ∧ ∃z′ : H1(x, y, z′) ∧ (|z′|2 > |z|2)

]
B Number of left endpoints between b|x|2 and a|y|2

LE(x, y, l) = (|x|2 ≤ |y|2) ∧[
∃z : H2(x, y, z) ∧ (|y|2 − |z|2 = |l|2) ∧ ∃z′ : H2(x, y, z′) ∧ (|z′|2 < |z|2)

]
B Compute related intervals
RELATED(x, y) = ∃l : RE(x, y, l) ∧ LE(x, y, l) ∧

∃z, l′ : (|z|2 < |y|2) ∧RE(x, z, l′) ∧ LE(x, z, l′)
B Compute set of intervals with the same color
SAMECOLOR(x, y) = TransitiveClosure(RELATED(x, y) ∨ (|x|2 = |y|2))
B Order these sets
FIRST (x) = ∃x′ : SAMECOLOR(x′, x) ∧ (|x′|2 < |x|2)
COLORORDER(x, y) = ∃x′, y′ : SAMECOLOR(x′, x) ∧ FIRST (x′) ∧

SAMECOLOR(y′, y) ∧ FIRST (y′) ∧ (|x′|2 < |y′|2)
B Assign the colors
COLOR(x, l) = EnumerateOrder(COLORORDER(x, y))
return COLOR(x, l)

The only difference between the unit interval and the general case is the computation of the
functions LE and RE (this is the only place where we need the unity property). What we
actually need is an order on the sequence of right endpoints to compute RE and an order
on the left endpoints of the intervals to compute LE (and in the case of unit intervals both
orders are the same). Assuming that we label the intervals according to their left endpoints,
we only need to compute the order on the right endpoints. Let EO(x, y) be this order, i. e.,
EO(x, y) = 1 iff b|x|2 ≤ b|y|2 . Assume that the left endpoints of the intervals are the integers
0, . . . , N − 1. Recall the structure of the adjacency matrix of an interval graph from section
3.2.2: We know that the interval with left endpoint i ∈ {0, . . . , N − 1} has a maximal value j
such that Ii and Ik intersect for all i ≤ k ≤ j. Therefore, the right endpoint of Ii has to be in
[j, j+ 1). Let j and j′ be the maximal values such that Ii intersects all Ik with i ≤ k ≤ j and
Ii′ intersects all Ik with i′ ≤ k ≤ j′, respectively. If j < j′ (j > j′), then bi < bi′ (bi > bi′).
If j = j′, then we can break ties arbitrary (e. g., bi ≤ bi′ iff i ≤ i′). Now, we can compute
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EO(x, y) as follows:

H(x, y, x′, y′) = (|x|2 ≤ |x′|2) ∧ (|y|2 ≤ |y′|2) ∧ χE(x, x′) ∧ χE(y, y′)
EO(x, y) = ∃x′, y′ : H(x, y, x′, y′) ∧ (|x′|2 < |y′|2 ∨ (|x′|2 = |y′|2 ∧ |x|2 < |y|2)) ∧

∃x′′, y′′ : H(x, y, x′′, y′′) ∧ ((|x′′|2 > |x′|2) ∨ (|y′′|2 > |y′|2))

Notice that this order on the right endpoints does not have to be the same order on the original
right endpoints. But, as we have shown, there is an interval representation of the graph, such
that the left and right endpoints are ordered according to labels of the nodes and EO(x, y),
respectively. Finally, we have to compute EEO(x, l) = EnumerateOrder(EO(x, y)) and,
with it, we get RE(x, y, l) for general interval graphs:

H1(x, y, z) = EO(z, x) ∧ EO(z, y) ∧ χEc(z, y)
RE(x, y, l) = (|x|2 < |y|2) ∧ [∃z, l1, l2 : H1(x, y, z) ∧ EEO(x, l1) ∧

EEO(z, l2) ∧ (|l2|2 − |l1|2 = |l|2) ∧ ∃z′ : H1(x, y, z′) ∧ EO(z, z′)
]

Since all additional operations are dominated by the EnumarateOrder procedure, we get the
same result as for unit intervals.

Theorem 3.3.6. Algorithm 5 with the modified computation of RE(x, y, l) outputs a coloring
of an interval graph using the minimal number of colors and O(log2N) functional operations.





4. Randomized OBDD-Based Algorithms

In this chapter, we introduce the new concept of randomized OBDD-based algorithms. In the
first section, we start with an overview of related work regarding results on the OBDD size
of random functions. We also discuss known explicit randomized algorithms that use random
bits which are not completely independent. In Section 4.2, we investigate the OBDD size
of random functions where the function values are subject to limited independence, namely
the well known notion of k-wise independence. Then we give a construction of a random
OBDD representing a random function which exhibits pseudorandom properties also known
as almost k-wise independence. In Section 4.4, we briefly discuss the extension of Sawitzki’s
structural result on the relation between OBDD-based algorithms and parallel algorithms
to the randomized setting. Finally, we present randomized OBDD-based algorithms for the
maximal matching problem and for the minimum spanning tree problem.

4.1. Related Work and Contribution

Recall that a random function f : S → Bn over a sample space S induces 2n random vari-
ables X0(s) := fs([0]2), . . . , X2n−1(s) = fs([2n − 1]2) and we say that f is (almost) k-wise
independent if the random variables are (almost) k-wise independent. If we want to use f in
an OBDD-based algorithm, we need an efficient OBDD construction of fs for every s ∈ S. In
particular, this implies that fs has to be representable by an OBDD of small size for every
s ∈ S. But, obviously, if the function values are completely independent, i. e., k = 2n, then
the OBDD (and even the more general FBDD) size of fs is exponentially large with an over-
whelming probability [127]. Kabanets [71] constructed simple Boolean functions which are
hard for FBDDs by using (almost) k-wise independent random functions with k = Θ(n) and
showed that the probability tends to 1 as n grows that the size is Ω(2n/n). In terms of upper
bounds, we have seen in Section 2.4 that (ε, k)-wise independent functions can be represented
by Boolean formulas of size O(n log2 k log 1

ε ) [114].
Small probability spaces as k-wise independent random variables can also be used for a suc-

cinct representation of a random string of length 2n, e. g., in streaming algorithms [6], or for
derandomization [3, 89]. The randomized parallel algorithms from [3, 89] compute a maximal
independent set (MIS) of a graph using only pairwise independent random variables (k = 2).
An independent set is a set of nodes where no two nodes are adjacent. These algorithms can
also be used to compute a maximal matching. The computation of a MIS has been exten-
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sively studied in the area of distributed algorithms [10, 86]. In the distributed setting a set of
processors can exchange messages over channels. The communication network is modeled as
a graph where the nodes correspond to the processors and the possible communication chan-
nels are represented by edges. An optimal randomized distributed MIS algorithm that uses
completely independent random bits was presented in [99] where the time and bit complexity
(bits per channel) is O(logN). Using completely independent random bits, Israeli and Itai
[66] gave a randomized parallel algorithm computing a maximal matching in time O(logN).
In Section 4.2, we show that the OBDD and FBDD size for k-wise independent functions

with k ≥ 4 is at least 2Ω(n+log(p′)) with p = Pr [fs(x) = 1] and p′ = 2p(1 − p). We give an
efficient construction of OBDDs for 3-wise independent random functions which is based on
the known construction of 3-wise independent random variables using BCH-schemes [3] from
Section 2.4. In Section 4.3, we investigate a simple construction of a random OBDD which
generates almost k-wise independent random functions and has size O((kn)2/ε). Reading the
actual value of the i-th random bit is an evaluation of the function on input i which can be
done in O(n) time, i. e., the time is independent of both k and ε. This construction can be
used as a distribution on graphs representable by OBDDs of small size what enables us to
use it as an input distribution for our implicit algorithm in the experimental evaluation in
Chapter 5. In Section 4.4, we start with the extension of Sawitzki’s result [116, 118] on the
equivalence of parallel algorithms and implicit algorithms to the randomized setting. We show
that randomized parallel algorithms are equivalent to randomized implicit algorithms. Then
we continue with a discussion how to use random functions in OBDD-based algorithms and
what are the strengths and weaknesses of this model. Motivated by this discussion, we see
that we can design a simple randomized OBDD-based algorithm for computing a minimum
spanning tree in a weighted graph by using the well-known randomized algorithm by Karger,
Klein, and Tarjan [76] which runs in expected linear time. Nevertheless, we cannot give a
small bound on the number of functional operations and we leave it to Chapter 5 to see
whether it can outperform the known deterministic algorithm by Bollig [15] using O(log3N)
functional operations. Then we present a simple randomized maximal matching algorithm
that uses only O(log3N) functional operations in expectation and functions with at most
3 logN variables. As we know from Section 2.3, this is better than the algorithms by Hachtel
and Somenzi [57] with O(N logN) operations and 3 logN variables as well as the algorithm
by Bollig and Pröger [20] with O(log4N) operations and 6 logN variables. This algorithm
can easily be extended to the MIS problem and can be implemented as a parallel algorithm
using O(logN) time in expectation or as a distributed algorithm with O(logN) expected
time and bit complexity. To the best of the author’s knowledge, this is the first (explicit or
implicit) maximal matching algorithm that does not need any knowledge about the graph
(like size or node degrees) while only using pairwise independent random variables.
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4.2. OBDD Size of k-Wise Independent Random Functions

We start with an upper bound on the OBDD size of 3-wise independent random functions
using the BCH scheme by Alon, Babai, and Itai [3]: For a random vector r =

[
r0, r

(1)
]

with r0 ∈ {0, 1} and r(1) ∈ {0, 1}n and for 1 ≤ i ≤ 2n − 1, the BCH scheme defines
Xi = IPn+1 (r, [1, [i]2]) which are 3-wise independent random variables. We want to give
a construction of a 3-wise independent random function f : S → Bn such that for every s ∈ S
the OBDD representing fs can be efficiently constructed. We cannot use the BCH scheme di-
rectly because we need 2n random variables for the random function whereas the BCH scheme
defines only 2n−1 variables. However, adding the variable X0 = r0 = IPn+1 (r, [1, [0]2]) yields
the desired construction what is easy to prove directly.

Lemma 4.2.1. Let r =
[
r0, r

(1)
]
∈ {0, 1}n+1 be a random vector. For 0 ≤ i ≤ 2n − 1 the

random variables defined by
Xi = IPn+1 (r, [1, [i]2])

are 3-wise independent.

Proof. Let Yi = IP (r(1), [i]2) = Xi ⊕ r0. Due to [3] we know that three variables Xi, Xj , Xk

with non-zero indices are independent. LetX0, Xi, Xj be three arbitrary and random variables
with i 6= j, i 6= 0, and j 6= 0. For every choice of b1, b2, b3 ∈ {0, 1}, we have

Pr [X0 = b1, Xi = b2, Xj = b3] = Pr [X0 = b1 | Xi = b2, Xj = b3] ·Pr [Xi = b2, Xj = b3]

= Pr [X0 = b1 | Xi = b2, Xj = b3] · 1
4

= 1
4 ·Pr [Y0 = b1 | Yi = b2, Yj = b3, r0 = 0] ·Pr [r0 = 0]

+1
4 ·Pr

[
Y0 = b1 | Yi = b2, Yj = b3, r0 = 1

]
·Pr [r0 = 1]

= 1
8

where the last equality follows from the fact that Y0 = 0 and either b1 = 0 or b1 = 0. Since
Pr [X0 = b1] = Pr [r0 = b1] = 1/2 the probability Pr [X0 = b1, Xi = b2, Xj = b3] is equal to
Pr [X0 = b1] ·Pr [Xi = b2] ·Pr [Xj = b3].

Now, it is straightforward to use this as a 3-wise independent random function and to give
an efficient OBDD construction for every choice of the random vector r.
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Algorithm 6 RandomFunc(x, n)
Input: Variable vector x of length n ∈ N
Output: 3-wise independent function fr(x)

Let r0, . . . , rn be n+ 1 independent random bits
fr(x) =

⊕n−1
i=0 (ri ∧ xi)⊕ rn

return fr(x)

Theorem 4.2.2. Let ε > 0, n ∈ N, p be a probability with 0 < p ≤ 1/2, and let π be a
variable order on the variables {x0, . . . , xn−1}.

1. We can construct a π-OBDD representing a 3-wise independent function f : S → Bn

with S = {0, 1}n+1 in time O(n) such that for every x ∈ {0, 1}n

Prr∈{0,1}n+1 [fr(x) = 1] = 1/2,

and the size of the π-OBDD representing fr is O(n) with width 2 for every r ∈ {0, 1}n+1.

2. We can construct a π-OBDD representing a 3-wise independent function f : S → Bn

with S = {0, 1}t(n+1) where t = d− log p − log εe in time O( n
p·ε) such that for every

x ∈ {0, 1}n

p ≤ Prr∈{0,1}n+1 [fr(x) = 1] ≤ (1 + ε) · p,

and the size of the π-OBDD representing fr is bounded above by O( n
p·ε) for every r ∈

{0, 1}n+1.

Proof. 1. This is an easy implication of the construction from Lemma 4.2.1 which says
that for random r = (r0, . . . , rn) ∈ {0, 1}n+1 the random variables Xi(r) = IP (r, [1, [i]2])
for 0 ≤ i ≤ 2n − 1 are 3-wise independent and Pr [Xi = 1] = 1/2 for every i. We define
fr(x) = X|x|2(r) (see Algorithm 6). As described in the preliminaries, the function IP (x, y)
can be represented by an OBDD of width 2 and size O(n) when one input vector is replaced
by a constant. The construction of the OBDD is straightforward (see, e. g., Fig. 2.3) and can
be done in time O(n).

2. We round the binary representation of p to t = d− log p− log εe decimal places and call
the result p′. Let p′1, . . . , p′t be the decimal places of p′. Then it holds p ≤ p′ ≤ p + 2−t ≤
(1 + ε)p. Let fr1 , . . . frt be t independent random functions which are drawn according to the
construction in 1. We can construct an OBDD which evaluates these functions simultaneously
on an input x and ends in the 1-sink iff (fr1(x), . . . , frt(x)) ≤ (p′1, . . . , p′t). Since a single
random function has width 2, this OBDD has size O(n · 2t) = O( n

p·ε). The probability that
(fr1(x), . . . , frt(x)) ≤ (p′1, . . . , p′t) is |(p′1, . . . , p′t)|2/2t = p′.

Can we also construct small OBDDs for k-wise independent random variables with k ≥ 4? The
BCH scheme needs multiplication in a finite field to generate k-wise independent variables with
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k ≥ 4 which is unlikely to be representable by OBDDs of small size because computing specific
bits of the result of a binary multiplication is already hard for OBDDs (see, e. g., [128]). In
the next theorem we show that for a fixed variable order π, every k-wise independent random
function with k ≥ 4 inherently has large π-OBDD size regardless of the used construction. In
order to show this we need a technical lemma that proves some properties of the subfunctions
of a k-wise independent function.

Lemma 4.2.3. Let f : S → Bn be a k-wise independent random function over a sample space
S with k ≥ 4 and Pr [fs(x) = 1] = p for all x ∈ {0, 1}n. Let π be a fixed variable order. For
s ∈ S, l ∈ [n], and α ∈ {0, 1}l let fs|α{0, 1}n−l → {0, 1} be the subfunction of fs where the first
l variables xπ(0), . . . , xπ(l−1) are fixed according to α, i.e. fs|α(z) = fs|x0=α0,...,xl−1=αl−1(z).
Further, let Cl be the number of collisions of the form fs|α = fs|α′ with α 6= α′, i. e.,

Cl :=
∣∣∣{(α, α′) | α, α′ ∈ {0, 1}l, α 6= α′, and fs|α = fs|α′

}∣∣∣
and Dl be the number of different subfunctions fs|α. This means

Dl :=
∣∣∣{[fs|α] | α ∈ {0, 1}l}∣∣∣

where
[
fs|α

]
:=
{
α′ ∈ {0, 1}l | fs|α = fs|α′

}
is the equivalence class of fα with respect to func-

tion equality. Then we have Dl ≥
2l√

2Cl + 1
and it holds

E [Cl] ≤
22l

2n−l · p′ and E [Dl] ≥
2l√

2 ·E [Cl] + 1
≥ 1√

2
2n·p′ 2l/2 + 1

2l

where p′ = 2p(1− p).

Proof. For the sake of simplicity we omit the index s of fs and write fα to denote fs|α. Now
we fix two different assignments α, α′ and define 2n−l random variables D(z) := Dα,α′(z) such
that D(z) = 1 iff fα(z) 6= fα′(z). Since the function values of the subfunctions are also k-wise
independent, we have for every z ∈ {0, 1}n−l

E [D(z)] = Pr [D(z) = 1] = 2p(1− p) := p′ and

Var [D(z)] = E
[
D(z)2

]
−E [D(z)]2 = E [D(z)]−E [D(z)]2 = p′(1− p′).

Let D =
∑
zD(z). By definition of D, we have Pr [fα = fα′ ] = Pr [D = 0] for a fixed pair

(α, α′) and the latter term can be bounded from above by the probability that the difference
between D and E [D] is at least E [D], i. e.,

Pr [D = 0] ≤ Pr [|D −E [D] | ≥ E [D]].
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Each random variable D(z) depends on two function values, i. e., these variables are k′ =
bk/2c-wise independent. Since k′ ≥ 2, we can use Chebyshev´s inequality (Theorem 2.4.3) to
get

Pr [|D − E [D] | ≥ E [D]] ≤ Var [D]
E [D]2

=
∑
z Var [D(z)]
(2n−l · p′)2 = 2n−l · p′ · (1− p′)

(2n−l · p′)2 ≤ 1
2n−l · p′ .

This implies that

E [Cl] ≤
(2l

2
)

2n−l · p′ ≤
22l

2n−l · p′ . (4.1)

Recall that [fα] := {α′ ∈ {0, 1}l | fα = fα′} is the equivalence class of fα with respect to
function equality which consists of the assignments α′ with fα = fα′ . Let Ml = maxα | [fα] |
be the random variable for the size of the largest equivalence class. Since every equivalence
class of size s ≥ 2 causes

(s
2
)
collisions and no collisions otherwise, we have

Cl ≥
Ml(Ml − 1)

2 ≥ (Ml − 1)2

2
⇔
√

2 · Cl + 1 ≥ Ml. (4.2)

Let α1, . . . , αDl ∈ {0, 1}l be representative assignments for the different equivalence classes.
Then it holds that

Dl∑
i=1
| [fαi ] | = 2l.

Therefore, we have Ml ·Dl ≥ 2l which is equivalent to Dl ≥ 2l/Ml (note that Ml ≥ 1). This
means that we can bound the expected value of Dl by

E [Dl] ≥ E
[

2l

Ml

]
≥ 2l

E [Ml]
(4.3)

≥ 2l

E
[√

2 · Cl + 1
] ≥ 2l√

2 ·E [Cl] + 1
(4.4)

≥ 2l
√

2 · 2l√
2n−l · p′

+ 1
= 1√

2
2n·p′ 2l/2 + 1

2l
(4.5)

where (4.3) is due to Jensen’s inequality (see Theorem A.2.4 in the appendix), (4.4) uses (4.2)
and Jensen, and (4.5) follows from (4.1).

Now, we can apply this lemma to show a lower bound on the expected π-OBDD size of a
k-wise independent random function.
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Theorem 4.2.4. Let f : S → Bn be a k-wise independent random function over a sample
space S with k ≥ 4 and Pr [fs(x) = 1] = p for all x ∈ {0, 1}n. Then, for a fixed variable order
π, the expected π-OBDD size of fs is bounded below by Ω(2n/3 · (p′)(1/3)) with p′ = 2p(1− p).

Proof. Recall that Dl is the number of different subfunctions fs|α defined as Dl :=∣∣∣{[fs|α] | α ∈ {0, 1}l}∣∣∣. We cannot just sum over the expected values of Dl to get a lower
bound of the OBDD size because we do not know whether the Dl pairwise different subfunc-
tions resulting from replacing the first l bits by constants are dependent on the next variable.
But for a fixed l, each of the Dl subfunctions needs one node in the OBDD representing fs
(but not necessarily labeled by the variable xπ(l+1)). Therefore, we can bound the expected
OBDD size from below by every choice of E [Dl]. Thus, we need a lower bound on E [Dl].
Due to Lemma 4.2.3 we have

E [Dl] ≥
1√

2
2n·p′ 2l/2 + 1

2l
.

For l = 1, the denominator is roughly 1/2. Now, increasing l results in an increase of the first
summand and in a decrease of the second summand. Thus, computing the value of l with√

2
2n·p′ 2

l/2 = 1
2l should give a large lower bound of E [Dl]:

√
2

2n·p′ 2
l/2 = 1

2l

⇔ 23l/2 =
√

2n−1 · p′

⇔ l = 1/3(n− 1 + log p′)

W.l.o.g. assume that l∗ = 1/3(n− 1 + log p′) is an integer. Then the expected π-OBDD size
is at least

1√
2

2n·p′ 2l
∗/2 + 1

2l∗
= 1

2
2l∗

= Ω(2n/3 · (p′)1/3).

The last theorem states that we should not use k-wise independent random functions in an
implicit algorithm with a fixed variable order and k ≥ 4. But it is still possible that for
every function fs there is a variable order π such that the π-OBDD representing fs is small.
But the following theorem shows that representing k-wise independent random functions with
k ≥ 4 is infeasible even for FBDDs. The general strategy of the proof of this is similar to the
proof as in Wegener’s analysis [127] where the OBDD size of completely independent random
functions is analyzed: We bound the probability pl that there is a set of l variables such
that the number of different subfunctions obtained by replacing these variables by constants
deviates too much from the expected value. Then we show that there is no such deviation
in any set of l variables with nonzero probability. While in [127] the function values are
completely independent and, therefore, the calculation can be done more directly and with
better estimations, we have to take a detour over the number of subfunctions which are equal
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(as in Lemma 4.2.3 and Theorem 4.2.4) and can only use Markov’s inequality to calculate the
deviation of the expectation. Furthermore, because of the independence, Wegener [127] was
able to do a more subtle analysis of the OBDD size by investigating the effects of the OBDD
minimization rules separately.

Theorem 4.2.5. Let f : S → Bn be a k-wise independent random function over a sample
space S with k ≥ 4 and Pr [fs(x) = 1] = p for all x ∈ {0, 1}n. Then, there is an s ∈ S such
that fs is an r-mixed function with r = Ω(n+ log(p′)) and p′ = 2p(1− p).

Proof. We prove that there is a function fs such that for all subsets of r variables, the 2r

assignments of these variables lead to different subfunctions. We start with a sketch of the
proof: First, we fix a set of l variables and prove an upper bound on the probability that the
number Cl of collisions fs|α = fs|α′ deviates by a factor of δl from the expectation µl. Then
we choose δl in such a way that the probability is smaller than 1 that there exists a set of l
variables where the number of collisions is greater than δl · µl. Now, we can condition on the
event that Cl ≤ δl ·µl for every choice of l variables: By means of Lemma 4.2.3 we calculate a
value of r such that Dr > 2r−1. Since Dr is an integer for every r, this implies that Dr = 2r.
Thus, all 2r possible subfunctions are different for all choices of r variables which concludes
the proof.
For a fixed set of l variables and a variable order whose set of first l variables coincides

with these variables, we know from Lemma 4.2.3 that the expected value of Cl is at most
22l

2n−l·p′ . Due to the dependencies, using Markov’s inequality is the best we can do to bound
the deviation from the expectation. Thus, for δl > 1 we have

Pr [Cl ≥ δl ·E [Cl]] ≤
1
δl
.

We have to distinguish
(n
l

)
possibilities to choose the l variables (and the corresponding

variable orders). Let δl := 2 ·
(n
l

)
. Then the probability that for all choices of l variables

Cl is less than δl · E [Cl] is bounded below by 1/2. Now, we condition on the event that
Cl < δl · E [Cl] for all sets of l variables. From Lemma 4.2.3 we know that Dl ≥ 2l√

2Cl+1

which is strictly greater than 2l√
2δl·E[Cl]+1

≥ 2l√
2δl· 22l

2n·p′+1
. Recall that we want to show that
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Dl > 2l − 1. Thus, it is sufficient to show that

2l√
2δl· 22l

2n·p′+1
≥ 2l − 1

⇔ 1 ≥ (1− 1
2l ) · (

√
2δl

2n·p′ · 2
l + 1)

⇔ 1 ≥
√

2δl
2n·p′ · 2

l + 1−
√

2δl
2n·p′ −

1
2l

⇐ 1
2l ≥

√
2δl

2n·p′ · 2
l

⇔ 1 ≥
√

2δl
2n·p′ · 2

2l

⇔
√

2n·p′
2δl ≥ 22l

⇔ (1/2)(n+ log(p′)− 1− log(δl)) ≥ 2l
⇔ (1/4)(n+ log(p′)− 1− log(δl)) ≥ l.

Notice that step 3 is not an equivalent transformation. Next, we need a known bound for the
binomial coefficient (see Lemma A.1.1 in the appendix):

log
(
n

l

)
≤ n ·H(l/n)

where H(x) = −x log(x)− (1− x) log(1− x) is the binary entropy function. Let l = ε · n for
some ε < 1/2. We want to maximize ε with

1
4(n+ log(p′)− 2−H(ε) · n) ≥ ε · n

⇔ 1
4(1 + log(p′)−2

n ) ≥ ε+ (1/4)H(ε)

Using 1
1− x ≤ 1 + 2x for 0 ≤ x ≤ 1/2 and log(1 + x) ≤ x for x ≤ 1, we have

ε+ H(ε)
4 = ε+ 1

4(ε log(1/ε) + (1− ε) · log(1/(1− ε)))

≤ ε+ 1
4(ε

√
1/ε+ log(1 + 2ε))

≤ ε+ 1
4(
√
ε+ 2ε)

≤ 7
4
√
ε.

Thus, if
√
ε ≤ 1

7 + 1
7 ·
( log(p′)− 2

n

)
⇔ ε ≤

(1
7 + 1

7 ·
( log(p′)− 2

n

))2
,

then it is 1
4(n + log(p′) − 1 −H(ε) · n) ≥ ε · n which implies that 2l√

2δl· 22l
2n·p′+1

≥ 2l − 1 with
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l = ε ·n. Since Dl >
2l√

2δl· 22l
2n·p′+1

this also implies that Dl > 2l− 1. Since a2− 2ab ≤ (a− b)2,

we can choose ε ∈ Ω
(
1− log(1/p′)

n

)
. Thus, there is an r-mixed function fs with r = ε · n =

Ω (n− log(1/p′)).

Due to Lemma 2.3.7, the last theorem gives us a lower bound of 2Ω(n+log(p′)) for the worst-case
size of an FBDD representing a k-wise independent random function with k ≥ 4.

Corollary 4.2.6. Let fs : S → Bn be a k-wise independent random function over a sample
space S with k ≥ 4 and Pr [fs(x) = 1] = p for all x ∈ {0, 1}n. Then, there is an s ∈ S such
that the FBDD size of fs is at least 2Ω(n+log(p′)).

4.3. Construction of Almost k-wise Independent Random
Functions

The gap between the OBDD size of 3-wise independent random functions and 4-wise indepen-
dent random functions is exponentially large. In order to see what kind of random functions
have an OBDD size which is in-between these bounds, we show that a construction of a
random OBDD of size O((nk)2/ε) generates (ε, k)-wise independent functions. The idea is
to use a top-down construction of a random OBDD with fixed complete width w where the
successors of each node are chosen uniformly at random within the set of nodes in the next
level. If the width w is large enough, the function values of k different inputs are almost
uniformly distributed because the paths of the k inputs in the OBDD are likely to be almost
independent.

Algorithm 7 Random OBDD Construction
Input: n ∈ N, 2 ≤ k ≤ 2n, ε > 0, and variable order π
w = nk(k − 1)/(2ε)
For every i ∈ {0, . . . , n− 1} let Li be a set of w nodes labeled by xπ(i).
Let Ln be the set containing the 0- and 1-sink
for i = 0 to n− 1 do

for Every node v ∈ Li do
Choose 0- and 1-successor of v independently and uniformly at random from Li+1.

end for
end for
Return Arbitrary node from L0 as root of the OBDD

Theorem 4.3.1. Let n ∈ N, 2 ≤ k ≤ 2n, and ε > 0. Let S = {0, 1}r with r =
O
(

(nk)2

ε · log nk
ε

)
be the set of random bits used by Algorithm 7. Then the random func-

tion f : S → Bn generated by Algorithm 7 is (ε, k)-wise independent and the OBDD size of
fs is O(n2k2

ε ) for every s ∈ S.
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Proof. First, we observe that the number of random bits needed by Algorithm 7 is O(w ·logw)
for each level and, therefore, O(nw logw) = O

(
(nk)2

ε · log nk
ε

)
in total. Recall that we have to

show that for every choice of k different inputs, the joint distribution is almost uniform. Let
a1, . . . , ak ∈ {0, 1}n be k different inputs and p be the probability that the function values of
fs on these inputs are b1, . . . , bk ∈ {0, 1}. For now, we assume that each pair of the inputs
a1, . . . , ak differ in at least one bit within the first n− 1 bits. Let P1, . . . , Pk be the paths of
a1, . . . , ak to the layer Ln−1, i. e., the paths end in a node labeled by xn−1. Let Di be the
event that for every pair of paths Pi1 , Pi2 with 1 ≤ i1 < i2 ≤ i the paths coincide within the
first ` nodes for some 1 ≤ ` ≤ n − 1 and they are disjoint in the last n − ` nodes. This also
means that they are ending in different nodes in layer Ln−1. Clearly, it is Pr [D1] = 1. Let
` ∈ [n − 1] be maximal such that there is an input from {a1, . . . , ai} which coincides with
ai+1 in the first ` bits. Conditioning on the event Di, the (`+ 1)-th edge of the path Pi+1 is
not used by any other path P1, . . . , Pi since otherwise ` was not maximal. Therefore, it holds
Pr [Di | Di−1] ≥

(
1− i−1

w

)n
and with it

Pr [Dk] =
k∏
i=2

Pr [Di | Di−1] ≥
k∏
i=2

(
1− i− 1

w

)n
.

We have

k∏
i=2

(
1− i− 1

w

)n
=

k∏
i=2

(
1− 1

w/(i− 1)

)(w/(i−1))·(i−1)n/w

≥ e−
n
w

∑k−1
i=1 i = e−

nk(k−1)
2w = e−ε ≥ 1− ε

for w = nk(k − 1)/(2ε). If all paths end in different nodes, then the function values of the k
inputs are independent and uniformly distributed, i. e.,

p ≥ Pr [fs(a1) = b1, . . . , fs(ak) = bk | Dk] ·Pr [Dk] = 2−k ·Pr [Dk] ≥ 2−k − ε

and

p ≤ 1−Pr [∃j : fs(aj) 6= bj ] ≤ 1−Pr [∃j : fs(aj) 6= bj | Dk] ·Pr [Dk]

= 1− (1− 2−k) ·Pr [Dk] ≤ 1− 1 + 2−k − ε+ ε · 2−k ≤ 2−k + ε.

Now, let a1, . . . , ak be arbitrary inputs. We group the inputs into k′ ≤ k sets A1, . . . , Ak′

where each set has at most two elements and if there are two inputs in a set then they are
identical in the first n−1 bits. Applying the same analysis as before for the paths P1, . . . , Pk′

of the inputs in A1, . . . , Ak′ gives a probability of at least 1−ε that they end in different nodes
in layer Ln−1. Now, the paths of the inputs are either ending in different nodes in layer Ln−1

or ending in the same node but the inputs differ in the last input bit. Note that there are
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at most two paths ending in the same node. Either way, the function values are independent
and uniformly distributed which completes the proof.

4.4. Randomized OBDD-Based Algorithms

We now turn towards the algorithmic part of this chapter. In the first subsection we present
the extension of Sawitzki’s structural result [116, 118] to the randomized setting. Then we
elaborate the strengths and weaknesses of randomized functions in OBDD-based algorithms.
Based on these considerations, we design randomized OBDD-based algorithms for the mini-
mum spanning tree and the maximal matching problem.

Extension of Sawitzki’s Structural Result to Randomized Algorithms

Only a small modification is necessary to extend Sawitzki’s simulation results from [116] and
[118] to show that the set of problems which can be solved by a randomized implicit algorithm
is equal to the set of problems solved by a randomized parallel algorithm. We do not give a
rigorous proof here because the differences are negligible compared to the complexity of the
original proof. Since we are focusing more on the practical part of OBDD-based algorithms,
we would not benefit of repeating the whole proof. Instead we sketch the main ideas including
our changes to extend them to randomized algorithms.
In [116], Sawitzki proposed a model for implicit algorithms called Symbolic Random Access

Machine (SRAM) that bundles registers representing Boolean functions together with a set
of functional operations which implicit algorithms typically are based on, e. g., the evalua-
tion of a function on a specific input, binary synthesis, and argument reordering. He showed
that an SRAM can be efficiently simulated by a parallel random access machine (PRAM)
which is the standard model for parallel computation (see, e. g., [54]). SRAMs are indepen-
dent of the underlying data structure for the Boolean functions. The simulation result was
used to show lower bounds on the number of functional operations by using results from the
P -completeness theory which says that so-called P -complete problems cannot be solved by
PRAMs in polylogN time and with polynomially many processors unless P = NC. Using the
simulation result, this also means that P -complete problems cannot be computed by SRAMs
(including OBDD-based algorithms) with polylogN functional operations and O(logN) vari-
ables. For the case of randomization, we add one symbolic operation to the SRAM model:
assign a random function r : {0, 1}l → {0, 1} with l = O(logN) to a symbolic register. Note
that the function values of r are completely independent. Constructing such functions with
a randomized PRAM is easy: Since the function table of r has only polynomial size, we
can use 2l processors that draw a random bit and write all function values in parallel. The
other way around, i. e., simulating a randomized parallel algorithm by a randomized OBDD-
based algorithm, is also simple: It is well known that (randomized) PRAMs can be simulated
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by circuits. The only difference between randomized PRAMs and deterministic PRAMs is
the set of input variables of the circuit. A deterministic circuit has only N input variables
whereas the random circuit has additional O(N c) random inputs for a constant c. Since we
can construct a random function r : {0, 1}l → {0, 1} with l = O(logN), we can set the input
variables correctly for the simulation in the same way as in [118].

What are Random Functions Good for in OBDD-Based Algorithms?

Let us start with the weaknesses of our model: The first and foremost obstacle is the con-
straint to use 3-wise independent or (ε, k)-wise independent random functions to have efficient
OBDD constructions of the random functions. The problem lies in the analysis of the algo-
rithms because limited independence can make a proof of good upper bounds on the number
of functional operations challenging. One ought to think that (ε, k)-wise independence is
statistically so close to k-wise independence that we can analyze an algorithm using k-wise
independence and then replace the random bits by (ε, k)-wise independent random bits with
a small additional error. Unfortunately, Alon, Goldreich, and Mansour [5] showed that (ε, k)-
wise independent random variables have a large statistical difference to k-wise independence
random variables. In particular, they showed a tight 2Θ(nk) · ε bound on the statistical dif-
ference which means that we cannot replace k-wise independence by (ε, k)-wise independence
obliviously without setting ε = 2−Θ(nk). Indeed, in applications of (ε, k)-wise independent
random variables, e. g., in [104], the ε has to be chosen in the order of 2−n·f(k) for some
function f(k). This only works whenever the construction has a log(1/ε) dependency on the
closeness parameter ε but not in our OBDD construction from Section 4.3.
Nevertheless, if we have a randomized OBDD-based algorithm but cannot prove that using

3-wise or (ε, k)-wise independent random functions leads to a small number of functional
operations, we can use them as a heuristic approach to have a simple randomized algorithm
but with no guarantee on the number of functional operations. Fortunately, there exist some
algorithms using pairwise independent random variables, e. g., for the MIS problem [3, 89].
But trying to adapt these algorithms for the implicit setting revealed another weakness of the
model: Our random construction misses the possibility to use different probabilities for the
inputs (which will be typically binary encoded nodes or edges). E. g., in one algorithm every
node v is marked with probability 1/deg(v). We will see how to simulate such a procedure
with random function where every function value is 1 with probability 1/2 and even without
computing or knowing the degree of the nodes.
But how does this simulation work? And what are the strengths of the random functions?

The answer is sampling subgraphs. In OBDD-based algorithms random functions are meant
for deleting edges or nodes with a fixed probability: Let f : S → B2n be a random function
over a sample space S. The inputs of fs(x, y) are two binary vectors of length n representing
nodes in a graph χE(x, y). Assume for the moment that fs(x, y) = fs(y, x), then χE(x, y) ∧
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Algorithm 8HeavyEdges(F (x, y), χE(x, y, d)): Compute the Set of Heavy Edges of a Graph
Input: Spanning forest F (x, y), weighted graph χE(x, y, d)
Output: Set of heavy edges H(x, y) with respect to F (x, y)
B Compute function P (x, y, s, t) that evaluates to 1 iff the edge (x, y)
B is on the (unique) path in F from s to t
P (x, y, s, t) = F (x, y) ∧ (s = x) ∧ (t = y)
repeat

P ′(x, y, s, t) = P (x, y, s, t)
Reach(s, t) = ∃x, y : P (x, y, s, t)
P (x, y, s, t) = P (x, y, s, t) ∨ ∃z : Reach(s, z) ∧ P (x, y, z, t)

until P ′(x, y, s, t) = P (x, y, s, t)
B Compute set of heavy edges
H(x, y) = ∃d : χE(x, y, d) ∧ ∃d′, x′, y′ : (d ≤ d′) ∧ χE(x′, y′, d′) ∧ P (x′, y′, x, y)
return H(x, y)

fs(x, y) is the random subgraph where every edge is deleted with probability Pr [fs(x, y) = 0].
Another example is to sample nodes with probability p and look at the induced subgraph of
these nodes. For this, let f : S → Bn be a random function with Pr [fs(x) = 1] = p and
we compute χE(x, y) ∧ fs(x) ∧ fs(y). These will be our main tools to design randomized
OBDD-based algorithms.
We focus on randomized algorithms with zero error, i. e., we want to design Las Vegas

algorithms. A problem with one- or two-sided error could be that we cannot apply probability
amplification by repeating the algorithm polyN times since we are dealing with large input
graphs. For instance, the parallel mincut algorithm by Luby, Naor, and Naor [90], which uses
only pairwise independence and randomly chooses edges with a fixed probability, has a failure
probability of 1/polyN . While increasing the number of parallel execution is possible, it is
not clear how to do this in the implicit setting without sequential repetition.

Nevertheless, we have to keep these limitations in mind and it is not surprising that a
restricted computational model is not capable of everything we know from explicit algorithms
without increasing memory consumption or running time. But we will see that randomiza-
tion in OBDD-based algorithms is still a useful mechanism and can lead to simple and fast
algorithms outperforming deterministic ones.

Randomized Minimum Spanning Tree Algorithm

Our first randomized OBDD-based algorithm computes a minimum spanning tree and is based
on the known randomized MST algorithm by Karger, Klein, and Tarjan [76] with expected
linear running time. Let G = (V,E) be a weighted graph and denote the weight of an edge
{u, v} by w(u, v). The algorithm combines so-called Borůvka steps with random sampling.
Here, we describe the Borůvka step used by Bollig [15] in the deterministic OBDD-based
minimum spanning tree algorithm: Start with an empty set F1 of edges. With respect to
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F1, at the beginning each node is a connected component. For every connected component,
select an edge with minimum weight that is incident to a node from a different component.
Add these edges to F1 and recompute the connected components with respect to the new
set of edges. Iterating the Borůvka step until one component remains results in a minimum
spanning tree F1. A single Borůvka step reduces the number of connected components by
at least a factor of two. Edges chosen in a Borůvka step are definitely part of a minimum
spanning tree.
The random sampling procedure tries to eliminate edges which cannot be in a minimum

spanning tree. For this, we need the notion of F -heavy (F -light) edges with respect to a forest
F . An edge {u, v} ∈ E is F -heavy if w(u, v) is greater than every edge weight on the unique
path from u to v in F , and F -light otherwise. It is easy to see that an F -heavy edge cannot
be part of any minimum spanning tree which means we can compute the set of F -heavy edges
for an intermediate forest F and discard these edges to reduce the density of the graph. Now,
the algorithm of Karger, Klein, and Tarjan works as follows:

1. Apply two Borůvka steps and let F1 be the set of selected edges and G1 be the subgraph
that consists of the edges connecting two different components.

2. Let G2 be a random subgraph of G1 obtained by choosing each edge with probability
1/2. Apply the algorithm recursively on G2 which returns a minimum spanning forest
F2 for G2.

3. Compute the set of F2-heavy edges and delete them in G1. Call the remaining graph
G3.

4. Apply the algorithm recursively on G3 which returns a minimum spanning forest F3.

5. Return the union of F1 and F3.

In order to implement this algorithm as an randomized OBDD-based algorithm, we have to
think about how to compute the set of heavy edges and how to randomly sample a subgraph.
The latter is the easier problem: We construct two 3-wise independent random functions
fr1(x), fr2(y) using Algorithm 6 and set

Filter(x, y) = (|x|2 < |y|2) ∧ (fr1(x)⊕ fr2(y)).

Because we are dealing with undirected graphs, we want Filter(x, y) = Filter(y, x) for every
(x, y). Therefore, we set Filter(x, y) = Filter(x, y) ∨ Filter(y, x). Since

Pr [fr1(x)⊕ fr2(y) = 1] = Pr [fr1(x) 6= fr2(y)] = 1/4 + 1/4 = 1/2,

the operation χE(x, y) = χE(x, y) ∧ Filter(x, y) computes a random subgraph as required.
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Algorithm 9 RandomMST (χE(x, y, d), R(x, y)): Randomized implicit MST algorithm
Input: Weighted graph χE(x, y, d), merged nodes R(x, y)
Output: Minimum spanning tree MST (x, y)
B Edges selected in the Borůvka steps
F1(x, y) = 0
B Step 1: Two Borůvka steps (Bollig [15])
for i = 0 to 1 do

B Choose smallest edges (see Appendix B.2 for the definition of Π1)
C(x, y) = ∃d : χE(x, y, d) ∧R(x, y)∧

∃y′, z, d′ : R(x, z) ∧ χE(z, y′, d′) ∧R(z, y′) ∧Π1((z, y′, d′), (x, y, d))
C(x, y) = C(x, y) ∨ C(y, x)
F1(x, y) = F1(x, y) ∨ C(x, y)
B Compute connected components
R(x, y) = findTransitiveClosure(R(x, y))

end for
B Step 2: Recursive step on random subgraph
B Construct 3-wise independent random functions (see Algorithm 6)
fr1(x) = RandomFunc(x, n)
fr2(y) = RandomFunc(y, n)
Filter(x, y) = (|x|2 < |y|2) ∧ (fr1(x)⊕ fr2(y))
Filter(x, y) = Filter(x, y) ∨ Filter(y, x)
χE′(x, y, d) = χE(x, y, d) ∧ Filter(x, y)
F2(x, y) = RandomMST (χE′(x, y, d), R(x, y))
B Compute F2-heavy edges (see Algorithm 8)
H(x, y) = HeavyEdges(F2(x, y), χE(x, y, d))
χE(x, y, d) = χE(x, y, d) ∧ (H(x, y))
B Step 4: Recursion
F3(x, y) = RandomMST (χE(x, y, d), R(x, y))
B Step 5: Return MST
return F1(x, y) ∨ F3(x, y)

For the F -heavy edges, assume that we have a function P (x, y, s, t) which evaluates to 1
if and only if the edge {x, y} is on the (unique) path from s to t in the forest F . Then an
edge {s, t} is F -heavy if there is no edge {x, y} with less or equal weight and P (x, y, s, t) = 1.
Thus, the function

H(x, y) = ∃d : χE(x, y, d) ∧ ∃d′, x′, y′ : (d ≤ d′) ∧ χE(x′, y′, d′) ∧ P (x′, y′, x, y)

represents the set of F -heavy edges in the graph. Using an iterative squaring approach,
the function P (x, y, s, t) can be easily computed with O(log2N) functional operations. Al-
gorithms 9 and 8 show the implicit implementation of our ideas. Since we are using 3-wise
independent random functions, we cannot apply the same analysis as in [76]. An upper bound
on the number of functional operations is currently not known. We experimentally evaluate
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the algorithm by a comparison to the deterministic algorithm by Bollig [15] and implicit
variants of the well-known algorithms by Kruskal and Prim in Chapter 5.

Randomized Maximal Matching Algorithm

As we mentioned in the discussion about strengths and weaknesses of random functions in
OBDD-based algorithms, a drawback of our model is the missing possibility to use different
probabilities for different nodes or edges. Thus, for designing a randomized maximal matching
algorithm we cannot directly use known algorithm using pairwise independence like in [3] or
[89] where nodes are marked with a probability proportional to the node degree. In order to
simulate these selections by our construction, we use an iterative random sampling approach:
We delete each edge with probability 1/2, store all isolated edges, and repeat this as long as
the graph is not empty. Finally, we add the stored isolated edges to the matching, remove
all edges incident to matched nodes, and repeat the procedure until there are no edges left.
Algorithm 10 shows the whole randomized maximal matching algorithm.

Algorithm 10 Randomized maximal matching algorithm
Input: Graph G = (V,E)
Output: Maximal matching M ⊆ E
M = ∅
while E 6= ∅ do

E′ = E
M ′ := ∅
while E′ 6= ∅ do

Delete each edge in E′ with probability 1/2 (using 3-wise independent r.v.)
Add all isolated edges in E′ to M ′

end while
M = M ∪M ′
E = E \ {(u, v) | u or v is matched by M}

end while
Return M

We say that an edge e ∈ E (before the inner while-loop) survives iff e ∈ M ′ after the inner
while-loop of Algorithm 10.

Lemma 4.4.1. For every e = {u, v} ∈ E with degE(u) > 1 or degE(v) > 1 be-
fore the inner while-loop in Algorithm 10, the probability that e survives is at least

1
8 · (degE(u) + degE(v)− 2) . If degE(u) = degE(v) = 1 then e survives with probability 1/2.

Proof. Let e = {u, v} ∈ E be an edge before the inner while-loop and let Re be the number of
rounds until edge e is deleted. If degE(u) = degE(v) = 1 then e survives if and only if Re > 1
which occurs with probability 1/2. The random bits in each iteration are 3-wise independent
and the iterations themselves are completely independent. Thus, the variables Re are also
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3-wise independent. Denote the neighborhood of e by N(e) = {e′ ∈ E | e∩ e′ 6= ∅}, i. e., N(e)
contains all edges incident to u or v. Then we have

Pr [e survives] = Pr
[
Re is unique maximum in {Re′ | e′ ∈ N(e)}

]
.

It is easy to see that Pr [Re = i] =
(1

2

)i
for i ≥ 1. Let e′ ∈ N(e) with e′ 6= e and let z ≥ 1

be fixed. Since the Re are 3-wise independent, we have

Pr [Re′ ≥ z | Re = z] = Pr [Re′ ≥ z] =
∞∑
i=z

(1
2

)i
=
(1

2

)z−1
.

Therefore, the probability that there is an edge e′ ∈ N(e) \ e with Re′ ≥ z is at most
|N(e)| − 1

2z−1 . Thus, Re is unique maximum with probability at least 1− |N(e)| − 1
2z−1 if Re = z.

This probability is greater than 0 for z ≥ dlog(|N(e)| − 1)e+ 2. Finally, we have

Pr [Re is unique maximum] ≥
∞∑

z=dlog(|N(e)|−1)e+2

(1
2

)z
·
(

1− |N(e)| − 1
2z−1

)
≥

(1
2

)log(|N(e)|−1)+2
·
(

1− |N(e)| − 1
2log(|N(e)|−1)+1

)
= 1

4 · (|N(e)| − 1) ·
1
2

= 1
8 · (degE(u) + degE(v)− 2) .

Algorithm 11 shows the implicit version of Algorithm 10. The random sampling is realized
as in our minimum spanning tree algorithm, see Algorithm 9.
The number of deleted edges for a matching edge {u, v} that is added to the matching is

deg(u) + deg(v)− 2 if we do not count the matching edge itself. Thus, the expected number
of deleted edges is Ω(|E|) at the end of the outer loop. This gives us the following result.

Theorem 4.4.2. Let G = (V,E) be a graph with N nodes. Algorithm 11 computes a maximal
matching. All functions used in Algorithm 11 depend on at most 3 logN variables and the
expected number of operations is O(log3N).

Proof. Each iteration of the inner-loop needs O(logN) operations. Since we halve the number
of edges in expectation in each iteration of this loop, the expected number of iterations is
O(logN). In expectation, the number of edges e = {u, v} with degE(u) = degE(v) = 1 is
halved in each iteration of the outer loop since the survival probability is 1/2 of each edge
due to Lemma 4.4.1. Thus, we can assume that all edges in E have either degE(u) > 1 or
degE(v) > 1. Using Lemma 4.4.1, we can show that the expected number of edges (excluding
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Algorithm 11 Randomized Implicit Maximal Matching Algorithm
Input: Graph χE(x, y)
Output: Maximal matching χM (x, y)
B Initial matching
χM (x, y) = 0
while χE(x, y) 6≡ 0 do

χE′(x, y) = χE(x, y)
NewEdges(x, y) = 0
while χE′(x, y) 6≡ 0 do

B Construct 3-wise independent random functions (see Algorithm 6)
fr1(x) = RandomFunc(x, n)
fr2(y) = RandomFunc(y, n)
Filter(x, y) = (x > y) ∧ (fr1(x)⊕ fr2(y))
Filter(x, y) = Filter(x, y) ∨ Filter(y, x)
B Delete edges with probability 1/2
χE′(x, y) = χE′(x, y) ∧ Filter(x, y)
B Update T (x, y)
T (x) = ∃z, y : (z 6= y) ∧ χE′(x, y) ∧ χE′(x, z)
B Store isolated edges
NewEdges(x, y) = NewEdges(x, y) ∨ (χE′(x, y) ∧ T (x) ∧ T (y))

end while
B Add edges to current matching
χM (x, y) = χM (x, y) ∨NewEdges(x, y)
Matched(x) = ∃y : χM (x, y)
B Delete edges incident to matched nodes
χE(x, y) = χE(x, y) ∧Matched(x) ∧Matched(y)

end while
return χM (x, y)

the matching edges) deleted in each iteration of the outer-loop is at least

∑
e={u,v}∈E

|N(e)| − 1
8 · (degE(u) + degE(v)− 2) =

∑
e={u,v}∈E

· degE(u) + degE(v)− 2
8 · (degE(u) + degE(v)− 2) = |E|/8.

Thus, the expected number of iterations of the outer-loop is also bounded above by O(logN).
Since we add only isolated edges to the matching, M contains a matching at the end of the

algorithm. The matching is also maximal because we delete all edges incident to matched
nodes and the graph is empty in the end.

Application to the Maximal Independent Set Problem

In the distributed model which is for instance considered in [99] each node represents a proces-
sor in a network and each edge represents a bidirectional communication channel. The time
complexity is measured in the number of rounds until each node completes its computation
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where one round consists of sending messages then receiving messages from neighbored nodes
and some local computation. The bit complexity is measured in the maximum number of bits
sent over a single channel in all rounds together.
With a similar idea as for the matching algorithm we are able to design a distributed MIS

algorithm: Each node v draws a random bit until this bit is 0. Let Rv be the number of bits
drawn by node v. We send Rv to all neighbors and include node v to the independent set
if and only if Rv is a local maximum. The expected number of bits for each channel is 1.
A similar analysis as before show that we have an maximal independent set after O(logN)
steps in expectation and the overall expected number of bits per channel is O(logN).



5. Experimental Evaluations

In this chapter, we present the results of the experimental evaluations on implicit graph
algorithms. We use the developed algorithms from previous chapters and compare them to
known explicit or implicit algorithms for the same problem. This chapter is meant to motivate
and underline our goal to simplify implicit algorithms by using randomization or, for the
special case of interval graphs, by utilizing the special structure of the nodes’ labels. Thus,
the experiments can be divided into two categories: (1) Show the limitations and problems
of known implicit algorithms. (2) Compare our new algorithms to known algorithms (if
possible) and try to show the advantages/disadvantages of them. Particularly, the conducted
experiments address the following questions:

1. How are the maximum matching algorithms by Bollig, Gillé, and Pröger [18] performing
on a chosen set of bipartite graphs in comparison to the explicit algorithm by Hopcroft
and Karp [61]?
Section 5.2 is about the performance of the implicit maximum matching algorithm
compared to the algorithm by Hopcroft and Karp. We choose three input instances:
very structured graphs, partly randomized but sufficiently structured graphs, instances
from a real-world application.

2. Does the improvement with respect to the number of operations of the matching algorithm
on unit intervals by using some properties of the node labels also carry over to the actual
performance?
In Section 5.3, we evaluate the unit interval matching algorithm from Section 3.3. The
input graphs are randomly constructed by a random generation algorithm by Saitoh
et al. [113]. We focus here only on the matching algorithm since, unfortunately, the
coloring algorithm does not perform well on both unit and general interval graphs.
The poor performance of the coloring algorithm is very likely due to the fact that the
implicit algorithm is simulating the sequential coloring algorithm. Nevertheless, it uses
some nice ideas to accomplish this which differ from the parallel implementation ideas.

3. Can randomization lead to improved implicit algorithms?
In Section 5.4, we compare the randomized implicit maximal matching algorithm from
Section 4.4 with known deterministic algorithms. In addition, we use the randomized
construction of OBDDs from Section 4.3 to generate graphs with a fixed density and

87



88 Chapter 5. Experimental Evaluations

(a) (b)

(3, 0) (3, 3)

(0, 0) (0, 3)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

A0 B0 A1 B1

Figure 5.1.: Example of a labeled grid graph with 4 × 4 nodes and a labeled graph with 32
nodes and block size d = 8 from the class rope.

investigate whether and how the density influences the running time of both random-
ized and deterministic maximal matching algorithms. In Section 5.5, we compare the
performance of the deterministic implicit minimum spanning tree algorithm by Bollig
[15] with the randomized implicit algorithm from Section 4.4.

The input graphs that are used in this chapter are described in Section 5.1. The specific
hardware and software setup of the experiments is explained in the beginning of each section.
All source files, scripts and random seeds are publicly available1.

5.1. Input Graphs

Very Structured Graphs: Grid graphs

A graph G = (V,E) on |V | = N2 nodes with integer N ≥ 2 and V = {0, . . . , N − 1} ×
{0, . . . , N − 1} and edge set

E = {((x, y), (x′, y′)) | (x = x′ and |y − y′| = 1) or
(y = y′ and |x− x′| = 1)}

is called undirected grid graph (see Fig. 5.1 (a)). We assume that N = 2n for some n ∈ N.
Therefore, we can implicitly represent a grid graph with N2 = 22n nodes for some integer

1http://ls2-www.cs.uni-dortmund.de/~gille/

http://ls2-www.cs.uni-dortmund.de/~gille/


5.1. Input Graphs 89

n ≥ 1 by

χE((xr, xc), (yr, yc)) = 1⇔ |xr|2 = |yr|2 and ||xc|2 − |yc|2| = 1 or
|xc|2 = |yc|2 and ||xr|2 − |yr|2| = 1,

where (xr, xc) and (yr, yc) are Boolean encodings of nodes.
We have chosen the variable order π = (xr0, yr0, xc0, yc0, . . . , ycn/2−1) for the OBDD represen-

tation, i. e., the interleaved variable order with increasing significance. It is not difficult to
see that the π-OBDD size for the implicit representation of the grid graph G is bounded
by O(logN) [131]. Our motivation for choosing this graph class is to analyze our implicit
algorithms on very structured graphs. Furthermore, grid graphs have already been used in
the investigation of implicit algorithms for maximum flow in 0-1 networks and for topological
sorting [115, 131]. The generated grid graphs have a size of 2n×2n beginning with n = 4 and
n is incremented by 1 after each round.

Both Random and Structured: Rope graphs

The graph class rope has been introduced by Cherkassky et al. [27] and each graph from
this class is structured but also contains a completely random part, which is quite different
from grid graphs. These bipartite graphs are balanced (like grid graphs), i. e., graphs with
V = A ∪̇ B, |A| = |B| = N/2, and N even. The nodes in A and B are grouped into
t = N/(2d) blocks of size d. These blocks are denoted by A0, . . . , At−1 for A and B0, . . . , Bt−1

for B respectively. Block Ai is connected to block Bi for i = 0, . . . , t − 1 and to block
Bi−1 for i = 1, . . . , t − 1. The blocks are alternately connected by a perfect matching and
a random bipartite graph with average degree d − 1 beginning and ending with a perfect
matching (see Fig. 5.1 (b)). In our tests we have chosen the parameter d = 8. The size
of the generated graphs begins with 16 and is doubled after each round. The nodes are
labeled consecutively according to the order of the connected blocks beginning with A0, i.e.,
the nodes of Ai are labeled with (2d) · i, . . . , (2d) · i + d − 1 and the nodes of Bi are labeled
with (2d) · i + d, . . . , (2d) · i + 2d − 1 (see Fig. 5.1). For the OBDD representation of the
characteristic function of the edge set we have chosen the interleaved variable order with
decreasing significance, i. e., π = (xn−1, yn−1, . . . , x0, y0).

Instances from Real-World Applications

In order to empirically study maximum flow algorithms, Negruseri et al. [105] have investi-
gated real-world instances which came up from an advertisement application within Google2.
The close relationship between matching and maximum flow problems motivates our inves-
tigation on these real-world instances. In contrast to the other classes these instances are

2Graph data files can be found at http://www.columbia.edu/~cs2035/bpdata/ (Retrieved: July 2015).

http://www.columbia.edu/~cs2035/bpdata/
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Number |A| |B| Edges

0 136 18872 222951

1 137 18872 222951

2 137 18888 222951

3 40 7086 33609

4 41 7086 33609

5 41 7093 33609

6 125 7107 33609

7 86 7117 33609

8 86 7127 33609

9 289 16653 33051

10 290 16846 33051

11 290 16904 33051

12 50 13360 50040

13 51 16264 56577

14 51 21016 56577

15 164 288826 2523313

Number |A| |B| Edges

16 165 288826 2523313

17 165 288858 2523313

18 196 89030 1080027

19 197 89044 1080041

20 197 89044 1080041

21 40 28489 43629

22 41 28944 43629

23 41 28944 43629

24 35 11361 22279

25 36 11588 22279

26 36 11695 22279

27 934 8752 42711

28 935 8896 42711

29 935 9028 42711

30 125 55058 844598

31 126 56858 844598

32 126 57926 477356

Table 5.1.: Properties of the real-world instances from [105].

unbalanced, i.e., for all graphs with node set V = A ∪̇B it is |A| � |B|. The dataset consists
of 33 graphs whose properties are listed in Table 5.1. In our experiments the labeling of the
nodes has been adopted from the data files. As for the class rope, for the OBDD represen-
tation we have chosen the variable order, where the variables are ordered with decreasing
significance.

Graph Database: University of Florida Sparse Matrix Collection

The University of Florida Sparse Matrix Collection [39] is a set of sparse matrices from real
applications. Table 5.2 lists the largest matrices from this collection used in the experiments
ordered by name and gives the size and a short description of the graph. More instances
that are used for the minimum spanning tree algorithms can be found in Appendix B.2. The
matrices can be downloaded from the website3 and are represented by a list of edges. For the

3http://www.cise.ufl.edu/research/sparse/matrices/ (Retrieved: July 2015)

http://www.cise.ufl.edu/research/sparse/matrices/
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Instance Nodes Edges

333SP 3712815 22217266

adaptive 6815744 27248640

as-Skitter 1696415 22190596

hollywood-2009 1139905 113891327

roadNet-CA 1971281 5533214

roadNet-PA 1090920 3083796

roadNet-TX 1393383 3843320

Table 5.2.: Summary of the used large matrices from the University of Florida Sparse Matrix
Collection [39]

OBDD representation we use the interleaved variable order with decreasing significance and
adopt the node labels provided by the files.

Graph Class: Unit Interval Graphs

Unit interval graphs can be represented as balanced nonnegative strings over {‘[’, ’]’} (see,
[113]) and such strings are created randomly using the algorithm in [8]. We generated 35
random graphs of size 2i for i = 10, . . . , 23. The label of the nodes correspond to the position
in the sorted sequence of interval starting points as described in Section 3.2.2. The variable
order for this graph class is the interleaved variable order with decreasing significance.

Limited Randomness: Pseudorandom Graphs

Our OBDD construction from Section 4.3 can be modified such that we get an input distribu-
tion in the following way: If the 1-sink of the OBDD is chosen with probability p as a successor
of nodes in the last layer Ln−1 the expected size of |f−1(1)| is p ·2n. Let f : S → B2n be a ran-
dom function generated by this modified construction and set r(x, y) = fs(x, y)∧(|x|2 > |y|2).
Then we have a random graph by computing the function χE(x, y) = r(x, y) ∨ r(y, x) with
Pr [χE(x, y) = 1] = p for x 6= y. Thus, the expected density |E|

(N2 ) is p.
Note that the graph is not a random graph where edges are independently chosen with

probability p. This distribution is usually notated by G(N, p) where N is the number of
nodes and p the edge probability. Actually, our graph distribution is significantly different to
G(N, p) in the sense that many properties of G(N, p) graphs are violated in our case, e. g.,
connectivity, existence of a perfect matching, and chromatic number [7]. Even more, Alon and
Nussboim [7] showed that some properties of G(N, p) graphs carry over to k-wise independent
graphs for small k = polylogN but can not be guaranteed in (ε, k)-wise independent graphs
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even for large values of k and small values of ε. Here, in an (almost) k-wise independent
graph each edge is chosen with a fixed probability p and any subset of k edges is (almost)
independent.

5.2. Implicit Maximum Matching Algorithm in Bipartite Graphs

Bollig, Gillé, and Pröger [18] presented two implicit maximum matching algorithms for
bipartite graphs which we briefly described in Section 2.3: One algorithm is based on
augmenting paths and will be denoted by AP and the other is based on a push-relabel
technique which we denote by PR. We recall that the number of functional operations is
Õ(N1/2+c ·

√
MO(N) + N1−c) in the case of AP and Õ(N2/3 ·MO(N)) in the case of PR,

respectively where MO(N) is the number of operation of the maximal matching subrou-
tine. Both AP and PR need a priority function for breaking symmetries and we tested both
priority functions from Section 2.3: Π1(x, y, z) = 1 iff |y|2 < |z|2 and Π2(x, y, z) = 1 iff
|y − x|2 < |z − x|2. Initial experiments have shown that the running time of both implicit
maximum bipartite matching algorithms using the second priority function Π2 is significantly
faster than the running time of the algorithms with the simple priority function Π1. A reason
can be that the second priority function leads to a better spreading of neighboring nodes
and therefore to better results. These initial experiments have also shown that the maximal
matching heuristic by Hachtel and Somenzi [57] is faster than the maximal matching algo-
rithm by Bollig and Pröger [20]. Note that the asymptotically sublinear number of functional
operations does not hold anymore if we use the algorithm by Hachtel and Somenzi. We only
present the results of the implicit algorithms with respect to the second priority function
and the maximal matching heuristic by Hachtel and Somenzi. We also compare AP and PR
empirically with an explicit implementation of the well-known Hopcroft-Karp algorithm [61],
in the following HK for short.

Experimental Setup

All algorithms have been implemented in C++ and we have used the OBDD package CUDD
2.4.2 by Somenzi4 for the implicit algorithms and LEDA5 6.3 graph libraries for HK. The
experiments have been performed on a computer with a 3 GHz Intel Core Duo processor
and 2 GB main memory running Ubuntu 11.04. The sources have been compiled with the
g++ 4.5.2 compiler and optimization flag O3. The running time has been measured by
used processor time in seconds, and the space usage of the implicit algorithm is given by the
maximum SBDD size which came up during the computation, where a SBDD is a collection of
OBDDs which can share nodes. Note that the SBDD size is independent of the used computer

4CUDD is available at http://vlsi.colorado.edu/ (Retrieved: July 2015)
5LEDA is available at http://www.algorithmic-solutions.com/ (Retrieved: July 2015)

http://vlsi.colorado.edu/
http://www.algorithmic-solutions.com/
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system. For our results we have taken the mean value over 50 experiments on graphs with
the same number of nodes. Only the graphs belonging to the rope class have been generated
randomly. Due to the small variance of these values, we only show the mean value in the
diagrams.
The OBDD package CUDD provides some heuristics to minimize the size of the OBDDs,

which are generated by a functional operation, by changing the variable order. Since initial
experiments have shown that this feature slows down our implicit maximum bipartite match-
ing algorithms, it has been disabled for our experiments. The variable order has been fixed
throughout the whole execution of the implicit algorithms. In the paragraphs of the graph
classes we described in detail which variable order we have chosen.

Implementation of HK

The key idea of HK [61] is to augment the current matching with a maximal set of shortest
node-disjoint augmenting paths. Our implementation of HK begins with an empty matching
and repeats the following steps until the set of augmenting paths is empty: We find all shortest
augmenting paths via breadth first search and delete all edges which are not on such a path.
Next, we add shortest augmenting paths one by one via depth first search. After we have
found one path, we delete all edges which are incident to one node on the path to ensure that
the paths are node-disjoint. Finally, the current matching is augmented by a maximal set of
node-disjoint augmenting paths.

Space Usage

It is easy to see that HK needs O(|V |+ |E|) space while the space needed to store an OBDD
of size S is O(S logS). Therefore, we can roughly compare the space usage of HK and the
implicit algorithms if we know the size of the input graph and the maximum OBDD size
which is generated during the computation of the implicit algorithm.

Results

The experiments show that both implicit algorithms perform nearly identically and are very
fast and space efficient on grid graphs (see Fig. 5.2). They outperform HK with respect to
the running time with more than four million nodes. The space requirement of the implicit
algorithms is significantly smaller on every grid graph and, in fact, the space usage is sublinear
with respect to the number of nodes in the grid graph (see Fig. 5.2). The memory limit of
2 GB is exceeded by HK on graphs with more than eight million nodes while the implicit
algorithms use only few megabytes memory even on grid graphs with more than a billion
nodes. Grid graphs demonstrate the potential of implicit matching algorithms but are very
simple graphs. On graphs from the class rope AP outperforms both PR and HK (see Fig.
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Figure 5.2.: Experimental results of the implicit augmenting-path-based matching algorithm
(AP), the implicit push-relabel-based algorithm (PR) and HK on grid graphs.
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Figure 5.3.: Experimental results of the implicit augmenting-path-based matching algorithm
(AP), the implicit push-relabel-based algorithm (PR) and HK on rope graphs.
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Figure 5.4.: Experimental results of the implicit augmenting-path-based matching algorithm
(AP) and HK on real-world instances.

5.3). The space requirement of the implicit algorithms corresponds to the running time of
each algorithm. The fast algorithm deals with small OBDDs and in the case of the slower
algorithm the size of the OBDDs is large. Fig. 5.3 also shows that the space usage of AP
on these instances is linear with respect to the number of nodes while the space usage of PR
tends to be superlinear. Our experiments on real-world graphs indicate that PR cannot be
used for practical instances. Even on small input graphs we were not able to execute this
algorithm because of our memory limit of 2 GB. On these instances HK yields better running
times but the running times of AP are competitive (see Fig. 5.4) and we were able to observe
that the real space usage is slightly better than in the explicit case.

Summary and Conclusion

Overall, PR does not seem to be applicable on large real-world instances but AP performs
very well on more complex but sufficiently structured graphs. Though HK runs faster than
AP on real world instances, the gap between both algorithms is not so large as to rule out
the possibility of using the latter algorithm for sufficiently structured practical problems.
Our results show that the number of functional operations does not correspond directly

to the practical performance of the algorithms but the number of variables seems to have a
significant influence on the space usage of the implicit algorithm. Recall that the number of
variables is max{3 logN,MV (N)} for AP and max{4 logN,MV (N)} for PR. The maximal
matching algorithm by Bollig and Pröger [20], i. e., MV (N) = 6 logN , was only working
on grid graphs whereas the heuristic by Hachtel and Somenzi [57], i. e., MV (N) = 3 logN ,
performs well on every chosen input instance although the usage rules out a guarantee of a
sublinear number of functional operations. These performances are going to be confirmed in
Section 5.4 where solely maximal matching algorithms are compared.
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Figure 5.5.: Running time and space usage of the matching algorithms on random unit interval
graphs. The second plot shows the ratio of S logS (space usage of the OBDD-
based algorithm) and the number of nodes.

5.3. Implicit Maximum Matching Algorithm in Unit Interval
Graphs

First, we start with a brief discussion about the performance of the coloring algorithms on
(unit) interval graphs. The implicit algorithm performed poorly even on instances of size
around 2000. At a first glance, this might not be surprising due to the complex coloring
algorithm but having a closer look we see that, for instance, the implicit matching algorithm
which is evaluated in this section is optimized for the implicit setting while the coloring
algorithm uses some nice ideas to simulate the sequential algorithm. Hence, these results do
not rule out the possibility of an efficient implicit coloring algorithm but suggest that there
have to be new ideas to benefit more from the strengths of implicit algorithms.
For the evaluation, we compare the OBDD-based matching algorithm from Section 3.3 to

the algorithm which gets the interval representation as an input, sort the intervals according
to their left endpoints and compute a maximum matching by scanning this sorted sequence
with the same idea used in the implicit algorithm.

Experimental Setup

We implemented the implicit algorithm with the BDD framework CUDD 2.5.0 by F. Somenzi.
The algorithms are implemented in C++ and were compiled with Visual Studio 2012 in the
default release configuration. The experiments were performed on a computer with a 2.6 GHz
Intel Core i5 processor and 4 GB main memory running Windows 7. The runtime is measured
by used processor time in seconds and the space usage of the implicit algorithm is given by
the maximum SBDD size which came up during the computation. Due to the small variance
of these values, we only show the mean in the diagrams.
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Results and Conclusion

The implicit matching algorithm outperforms the explicit matching algorithm on unit interval
graphs (see Fig. 5.5). Even on graphs with more than 8 million nodes the implicit algorithm
computes a maximum matching within 1 second. Storing an SBDD of size S needs O(S logS)
bits. The memory diagram shows that the asymptotic space usage of the implicit algorithm on
these instances is close toO(N). Recall that the unit interval representation needs Θ(N logN)
space since logN bits are needed to represent the starting points. All in all, the implicit
algorithm needs less space and can compute a maximum matching on larger instances than
the explicit one. An interesting consequence of these results is that the submodules of our
maximum matching algorithm, namely computing the connected components, a Hamiltonian
path in every connected component and a maximum matching on these paths, are also very
fast and space efficient which is surprising, since especially the computation of the transitive
closure is often a bottleneck in implicit algorithms.

5.4. Randomized and Deterministic Implicit Maximal Matching
Algorithms

In order to evaluate the performance of the randomized maximal matching algorithm from
Section 4.4, we can choose between three deterministic maximal matching algorithms: the
heuristic by Hachtel and Somenzi (HS) [57], HS combined with a strategy of Karp and Sipser
[20], and the algorithm by Bollig and Pröger [20]. All these three algorithms are described
in Section 2.3. We focus here only on HS because the combination of HS and Karp-Sipser
is intended to result in a larger matching rather than in a faster computation and, as we
mentioned before, we were not able to run the maximal matching algorithm by Bollig and
Pröger because the memory limitation was exceeded on every instance presented here.
For the comparison, we choose three types of input instances: First, we run the algorithms

on the bipartite graphs from the real advertisement application. The motivation was to check
whether the randomized algorithm is competitive or even better on instances where HS is
running very well. Second, we use non-bipartite graphs from the university of Florida sparse
matrix collection. Since HS is designed for bipartite graphs, a preprocessing step computing
a bipartition of these graphs are needed to compute a maximal matching (see, e. g., [20])
while our algorithm also works on general graphs. Finally, we use the pseudorandom graphs
with a fixed number of N = 217 nodes and variable density to investigate which algorithm
is performing better in dense and sparse graphs. For this we generated OBDDs representing
graphs (as described in Section 5.1) with width w = k2/(2ε) · logN where ε was fixed to 2−k

and k ∈ {4, . . . , 7}. The range for the density parameter p was {0.05 · i | i ∈ {1, . . . 19}}.
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Sparsification

Recall that we mainly use random functions to sample a subgraph from the original graph
which can also be seen as some kind of graph sparsification. We will see that sparsification
is a good heuristic to get faster algorithms. The reason is probably the fact that the worst-
case OBDD size of a function f is bounded by the number of inputs in f−1(1). We use the
following implementation of our randomized maximal matching algorithm which we denote
by RM: In order to minimize the running time for the computation of the set of nodes with
two or more incident edges, we sparsify the graph at the beginning of the outer while loop
(see Algorithm 11) by deleting each edge with probability 1/2 and repeating this D times.
Initially, we set D = log |E| and decrease D by 1 at the end of the outer loop. Asymptotically,
the running time does not change since after O(logN) iterations, i. e., D = 0, it does exactly
the same as the original algorithm. Initial experiments showed that this is superior to the
original algorithm.

Experimental Setup

All algorithms are implemented in C++ using the BDD framework CUDD 2.5.0 by F. Somenzi
and were compiled with Visual Studio 2013 in the default 32-bit release configuration. The
experiments were performed on a computer with a 2.5 GHz Intel Core i7 processor and 8
GB main memory running Windows 8.1. The runtime is measured by used processor time in
seconds and the space usage of the implicit algorithm is given by the maximum SBDD size
which came up during the computation. For our results, we took the mean value over 50 runs
on the same graph. In the case of the randomly generated graphs we present the mean value
for the running time and space usage in the diagrams and the standard deviation of these
values in Appendix B.1. Due to the small variance of the values on the other graphs, we only
show the mean in the diagrams/tables.
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Figure 5.6.: Running times and space usage of HS and RM on the real world instances.
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Instance Nodes Edges Time (sec) Space (SBDD size)

333SP 3712815 22217266 1140.54 66968594

adaptive 6815744 27248640 403.82 22767094

as-Skitter 1696415 22190596 337.53 32020282

hollywood-2009 1139905 113891327 418.36 62253086

roadNet-CA 1971281 5533214 136.18 13177668

roadNet-PA 1090920 3083796 75.26 7633318

roadNet-TX 1393383 3843320 92.62 9125438

Table 5.3.: Running time and space usage of RM on the graphs from [39]
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Figure 5.7.: Running times of HS and RM on the random instances.
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Figure 5.8.: Space usage of HS and RM on the random instances.

Results and Conclusion

On the random instances the running time and space usage of RM was more or less unaffected
by the density of the graph while HS was very slow for small values of p and gets faster
with increasing density. The performance of HS exhibits a strictly monotonically decreasing
behavior with increasing density (Fig. 5.7). For low densities (p ≤ 0.2) RM was much faster
than HS. In terms of space usage (Fig. 5.8) RM is on densities up to 0.7 better than HS.
In Fig. 5.6 we see that on the bipartite real world instances RM is similar to HS if the
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running time is negligibly small but on the largest instances (number 15 to 20) RM is much
faster. The graphs from [39] were intentionally chosen to show the potential of RM and indeed
do so: It was not possible to run HS on these graphs due to memory limitations whereas RM
computed a matching in reasonable time and space (see Table 5.3).
Both graphs from [105] and [39] have very small density and the experiments on the random

graphs seem to support the hypothesis that RM is a better choice than HS for such graphs.
The running time of RM was very robust and did not have much variation for different
densities which is quite surprising because of the randomization.

5.5. Randomized and Deterministic Implicit Minimum Spanning
Tree Algorithms

We compare the randomized minimum spanning tree algorithm from Section 5.5 with three
different deterministic implicit algorithm: First, the algorithm by Bollig [15] using O(log3N)
functional operations. Then two implicit variants of the known explicit algorithms for comput-
ing a minimum spanning due to Prim and Kruskal (see, for instance, [35]). These algorithms
are simple enough to present them in Appendix B.2. We choose several instances from the
university of Florida sparse matrix collection. These instances are unweighted. Thus, for
every graph with N nodes we initially chose random weights for every edge from the set
{1, . . . ,

√
2N} resulting in 79 weighted graphs of size between 1000 and 2000. For a detailed

overview of the instances, we refer to Appendix B.2. The instances are sorted in ascending
order of the number of nodes.

Experimental Setup

The implementation and the conduction of the experiments were done by Michael Capelle.
All algorithms are in C++ using the BDD framework CUDD 2.5.0 by F. Somenzi and were
compiled with the g++ 4.5.2 compiler using Cygwin and with default optimization parame-
ters. The experiments were performed on a computer with a 3 GHz Intel Core Duo processor
and 2 GB main memory running Windows Vista. The runtime is measured by used processor
time in seconds and the space usage of the implicit algorithm is given by the maximum SBDD
size which came up during the computation. For our results, we took the mean value over 50
runs on the same graph. Due to the small variance of the values, we only show the mean in
the diagrams.

Results and Conclusion

The randomized MST algorithm is outperforming all other algorithms on almost every in-
stance in terms of running time (see, Fig. 5.9 and Fig. 5.10). This is surprising since the
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number of variables used in this algorithm is also 6 logN as in the deterministic algorithms.
This large number of variables is due to the priority functions that choose the smallest edge
out of a set of candidates in all of the algorithms. It seems that the reduced number of
Borůvka steps in comparison to the algorithm by Bollig and the subgraph sampling works
well on these instances. In terms of space usage the implicit variants of Prim and Kruskal
are using much less space than the other two algorithms. This is often observed when the
implicit algorithms are working in a sequential way. But this is also the reason that the lower
space usage does not reflect in a better running time. The randomized algorithm uses less
space than the algorithm by Bollig but the difference is not as remarkable as in the case of
running time.
Unfortunately, all of these instances are very small and the algorithms still have a quite

large running time. However, despite the large number of variables and the unknown number
of functional operations, the randomized algorithm performs well and it might be promising
to further improve or even design a new randomized implicit MST algorithm with a smaller
number of variables or a guarantee on the number of functional operations.
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Figure 5.9.: Running times of the MST algorithms on some graphs from [39]
.



104 Chapter 5. Experimental Evaluations

33 35 37 39 41 43 45 47

Instance Number

S
e

c
o

n
d

s
 (

lo
g

s
c
a

le
d

)

0
.5

2
.0

1
0

.0

Prim

Kruskal

Bollig

Random

49 51 53 55 57 59 61 63

Instance Number

S
e

c
o

n
d

s
 (

lo
g

s
c
a

le
d

)

1
5

2
0

1
0

0

Prim

Kruskal

Bollig

Random

Figure 5.10.: Running times of the MST algorithms on some graphs from [39]
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Figure 5.11.: Space usage of the MST algorithms on some graphs from [39]
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Figure 5.12.: Space usage of the MST algorithms on some graphs from [39]
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6. Estimation of Matchings in Dynamic Data
Streams

This chapter deals with the estimation of weighted and unweighted matchings in dynamic
graph streams. It is a very active field of research which we summarize in the first section of
this chapter. Then in Section 6.2 we give an algorithm for estimating the value of an optimal
weighted matching in a graph by using a black box algorithm that estimates the size of a
maximum matching in a graph. In Section 6.3, we extend a known matching size estimation
algorithm for a class of sparse graphs (including planar graphs) to dynamic graph streams
and improve an estimation algorithm for trees. Section 6.4 concludes the algorithmic part of
this chapter by showing applications of the weighted matching estimation algorithms using
the algorithms from Section 6.3 and known estimation algorithms. In the last Section 6.5, we
prove a space lower bound for every streaming algorithm estimating the matching size up to
a (1 + ε)-factor for small ε.

6.1. Related Work and Contribution

Matchings in data streams are very well-studied and there is a lot of recent works on this
topic. We summarize these results grouped by the two problems that are investigated here:
unweighted matching and weighted matching.

Unweighted Matching

Insertion-only Streams: As mentioned by Feigenbaum et al. [45], maintaining a 2-
approximation to the maximum matching (MM) in an insertion-only stream can be straight-
forwardly done by greedily maintaining a maximal matching. Improving on this algorithm
turns out to be difficult as Goel, Kapralov, and Khanna [53] showed that even in bipartite
graphs no algorithm using Õ(N) space can achieve an approximation ratio better than 3

2 .
This lower bound was later improved by Kapralov to e

e−1 [73]. Nevertheless, Konrad, Mag-
niez, and Mathieu [81] gave an algorithm using Õ(N) space with an approximation factor of
1.989 if the edges are assumed to arrive in random order. For distributed matching among
k players, Huang et al. [63] gave a lower bound of Ω(k ·N/α2) for any approximation factor
α > 1.

107
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To bypass the natural Ω(N) bound required by any algorithm maintaining an approximate
matching, recent research has begun to focus on estimating the size of the maximum match-
ing. Kapralov, Khanna, and Sudan [74] gave a polylogarithmic approximate estimate using
polylogarithmic space for random order streams. For certain sparse graphs including pla-
nar graphs, Esfandiari et al. [44] described how to obtain a constant factor estimation using
Õ(N2/3) space in a single pass and Õ(

√
N) space using two passes or assuming randomly

ordered streams. They also gave a (2 + ε)-estimation on the size of a maximum matching in
trees using O(

√
N) space. The authors showed a lower bound of Ω(

√
N) for any approxima-

tion better than 3
2 .

Dynamic Streams: Chitnis et al. [29] gave an 1-pass algorithm that computes a maximal
matching of size at most k in Õ(k · N) space. Recent results by Assadi et al. [9] showed
that approximating matchings in dynamic streams is hard by providing a space lower bound
of Ω(N2−3ε) for approximating the maximum matching within a factor of Õ(N ε). Simul-
taneously, Konrad [80] showed a weaker lower bound of Ω(N3/2−4ε). Both works presented
an algorithm with an almost matching upper bound on the space complexity of Õ(N2−2ε)
[80] and Õ(N2−3ε) [9]. Chitnis et al. [28] improved their first result and gave a streaming
algorithm using Õ(k2) space that returns an exact maximum matching under the assumption
that the size is at most k. It is important to note that all these results actually compute
a matching. In terms of estimating the size of the maximum matching, Chitnis et al. [28]
extended the estimation algorithms for sparse graphs from [44] to the settings of dynamic
streams using Õ(N4/5) space. This was published almost simultaneously to our similar result
which we describe later along with a discussion of the differences.
For multipass streaming algorithms we refer to the survey by McGregor [95]. A bridge

between dynamic graphs and the insertion-only streaming model is the sliding window model
studied by Crouch, McGregor, and Stubbs [37]. In this model only the last w entries of the
stream are considered for a parameter w > 0. The authors gave a (3 + ε)-approximation
algorithm for maximum matching using O(N polylogN) space.

Weighted Matching

Insertion-only Streams: For maximum weighted matching (MWM), a series of results have
been published starting with a greedy algorithm yielding a 6-approximation [45] which was
continuously improved [94, 42, 133, 43] with the current best bound of 4 + ε being due to
Crouch and Stubbs [36]. All these algorithms return a matching and need O(N polylogN)
space.
Dynamic Streams: Crouch and Stubs [36] gave a reduction that showed that solving
O(1

ε logN) MM instances gives a 2(1 + ε)-approximation to MWM. The MM instances are
given by separating the edges by weight which can easily be done in a stream. Thus, we can
use every MM algorithm for dynamic streams to approximate the MWM problem. Chitnis
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et al. [28] showed that their results for MM can be extended to MWM with an additional
O(1

ε logN) factor resulting from separating the edges by weight.

Other Results

The p-Schatten norm of a matrix A ∈ RN×N is defined as ||A||Sp =
(∑N

i=1 σ
p
i

) 1
p where

σi is the i-th singular value of A. Common special cases include the Frobenius norm
||A||S2 =

√∑
i,j A

2
ij , and the rank ||A||S0 = |{σi|σi 6= 0}|. As we know from Chapter 2,

computing the maximum matching size is equivalent to computing the rank of the Tutte
matrix. Estimating the maximum matching size therefore is a special case of estimating the
rank of a matrix. Li, Nguyen, and Woodruff [85] showed that, with the exception of the
Frobenius norm, approximating Schatten norms is far more difficult than approximating the
vector frequency counterpart. Any estimation of the rank within any constant factor is shown
to require Ω(N2) space when using so-called bi-linear sketches and Ω(

√
N) space for general

linear sketches. It should be noted that with the exception of ||A||S2 , all known algorithms
for Schatten norms and graph problems in dynamic streams are based on bi-linear sketches.

Reference Graph class Streaming model Approx. factor Space

MM: greedy General Insertion-only 2 O(N)
[74] General Random polylogN polylogN
[44] Trees Insertion-only 2 + ε Õ(

√
N)

[44] Bounded arboricity Insertion-only O(1) Õ(N2/3)
here Trees Dynamic 2 + ε O( log2 N

ε2 )
here Bounded arboricity Dynamic O(1) Õ(N4/5)

[44] Forests Insertion-only 3
2 − ε Ω(

√
N)

here General Insertion-only 1 +O(ε) Ω
(
N1−ε)

MWM: [36] General Insertion-only 4 + ε O(N log2 n)
here General Random polylogN polylogN
here Bounded arboricity Dynamic O(1) Õ(N4/5)

Table 6.1.: Results for estimating the size (weight) of a maximum (weighted) matching in
data streams. In the random streaming model the edges arrive in random order
but can also only be inserted.

Techniques and Contribution

Table 6.1 gives an overview of the results presented here in comparison to previously known
algorithms and lower bounds. Our first main result is an approximate estimation algorithm
for the maximum weight of a matching. We give a generic procedure using any unweighted
estimation as black box. In particular, we show that for every λ-approximate estimation algo-
rithm for the unweighted matching problem using S space, there exists an O(λ4)-approximate



110 Chapter 6. Estimation of Matchings in Dynamic Data Streams

estimation algorithm for the weighted matching problem using O(S · logN) space. Combining
this theorem with the recent result of Kapralov, Khanna, and Sudan [74] gives a polylog(N)
space and polylog(N)-approximate estimate for weighted matching in random order streams
which is the first sublinear streaming algorithm for the MWM problem.
We can implement this algorithm in dynamic streams. Building on the work by Esfandiari

et al. [44], we give a constant estimation on the matching size of bounded arboricity graphs
in dynamic streams, which was also independently obtained in [28]. Both our approach and
the algorithm of Chitnis et al. [28] yield identical space bounds of Õ(N4/5), which immedi-
ately extends to weighted matching. The difference is that their algorithm uses a sampling
routine to recover small matchings while we use the Tutte matrix to estimate the size of small
matchings. In some sense their result is stronger. However, our technique is of independent
interest: For instance, using the connection between Tutte matrix and matching we can show
a space lower bound for algorithms approximating the rank in data streams. In addition,
we also present an algorithm maintaining a small matching in two passes using sublinear
space. Surprisingly, in terms of space usage the algorithms using the Tutte matrix and the
algorithms maintaining a small matching need the same amount in the end. We also improve
the estimation algorithm for trees [44] by presenting a simple algorithm for dynamic streams
using only O( 1

ε2 log2N) space.
Our lower bound is proven via reduction from the Boolean Hidden Hypermatching problem

(see, Definition 2.6.2) introduced by Verbin and Yu [126]. Recall that in this problem two
players Alice and Bob are given a binary N -bit string and a perfect t-hypermatching on N
nodes, respectively. Bob also gets a binary string w. The players are promised that the parity
of bits corresponding to the nodes of the i-th hypermatching either are equal to wi for all i or
equal to 1−wi for all i and the task is to find out which case holds using only a single round of
communication. We construct a graph consisting of N nodes and a t-clique for each hyperedge
of Bob’s matching and a single edge for each bit of Alice’s input that has one node in common
with the t-cliques. Then we show that approximating the matching size within a factor better
than 1 +O(1/t) can also solve the Boolean Hidden Hypermatching instance. Using the lower
bound of Ω(N1−1/t) from [126], we have that any 1-pass streaming algorithm approximating
the size of the maximum matching up to an (1 +O(ε))-factor requires Ω(N1−ε) bits of space.
This lower bound also implies an Ω(N1−ε) space bound for 1+O(ε) approximating the rank of
a matrix in data streams which also improves the Ω(

√
N) bound by Li, Nguyen, and Woodruff

[85] for general linear sketches.

6.2. Estimation of Weighted Matchings

The greedy algorithm for MWM simply adds an edge to the matching (and removes adjacent
edges) if the weight of the matching increases. It is easy to see that this algorithm does
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. . .
1 2 3 N − 1 N

Figure 6.1.: Edges are streamed in ascending order with respect to their weights. The solution
of the greedy algorithm is N whereas the optimal solution has weight at least∑N/2
i=1 2i ≈ N2/4.

not give any guarantee on the solution (see Fig. 6.1). Previous approximation algorithms for
weighted matchings in insertion only streams analyzed in [45, 94, 42, 133, 36] extend this
greedy approach by a charging scheme: They partition the set of edges such that they can
charge the weight of edges in an optimal solution to edges in the approximation. To achieve
this, they either explicitly partition the edges into sets of geometrically increasing weights or
this partitioning is done implicitly by adding a new edge if the weight of the matching locally
increases by a given threshold. The aforementioned algorithms are either greedy or they are
maintaining a matching in each partition. Therefore, they cannot have sublinear space in an
insertion-only stream and they need at least Ω(N2−3ε) in a dynamic stream even when the
maintained matching is only an O(N ε) approximation which follows from the lower bound
by Assadi et al. [9]. We overcome this problem by estimating just the weight of a weighted
matching. For this, we use a similar charging scheme, but with a twist. As estimation routines
do not necessarily give information on distinct edges, single edge weights cannot be charged
to an edge with larger weight. However, entire matchings can be charged as the contribution
of edges in a specific range of weights, for instance in [r, 2 · r], can only be large if these edges
take up a significant part of any maximum matching in the subgraph containing only the
edges of weight at least r.

A coarse description of our algorithm is as follows: First, we partition the edges into sets of
geometrically increasing weights. For the sake of simplicity, we assume that the edge weights
are of the form 2i with i ≤ c logN . Then for every 0 ≤ i ≤ c logN we estimate the size
of the maximum matching in the subgraphs containing only edges with weight at least 2i.
Essentially, we want to estimate the contribution of the edges with weights in [2i, 2i+1) and
sum these up over i. To estimate this contribution we look at the difference of the estimators
for the maximum matching size in the subgraph for i and i+ 1. This is where the estimation
routine for the size of a maximum matching comes into play. Clearly, the difference is not
a good estimator for the contribution of the edges with weights in [2i, 2i+1) in general. But
whenever these edges have a significant contribution to the maximum weighted matching the
difference will also get a good estimator for the contribution: The maximum matching in the
subgraph for i has to be much larger than the size of the matching in the subgraph for i+ 1
since the edge weights are geometrically increasing in i. However, another problem is that we
want to estimate a difference a− b by estimating a and b separately. This is only sufficiently
good if a is by a constant factor larger than b. Fortunately, in our case a has to be larger than
b if the contribution of the edges is significant. In the notion which we define more formally
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Algorithm 12 Approximation of Weighted Matching from [125]
Input: Graph (V,E =

⋃t
i=1Ei)

Output: Matching
for i = t to 1 do

Find a maximal matching Mi in Ei.
Remove all edges e from Ej with 1 ≤ j ≤ t where e ∈ Mi or e shares a node with an

edge in Mi.
end for
return

⋃t
i=1Mi

next we call i a good rank if a ≥ T · b and a significant rank if additionally the matching in
the subgraph for i is larger than c times the matching in the subgraph for i+ 1. In the end,
our estimator is the sum over the contributions of all significant ranks.

Algorithm and Analysis

For the analysis, we use a result on parallel algorithms by Uehara and Chen [125]. We show
that the weight outputted by our algorithm is close to the weight of the matching computed
by their algorithm, implying an approximation to the maximum weight.
Consider a graph G = (V,E,wG) with arbitrary edge weights wG(e) ∈ R+. We start by

describing the parallel algorithm by Uehara and Chen [125] (see also Algorithm 12). Let
γ > 1 and k > 0 be constant. We partition the edge set by t ranks where all edges e in
rank i ∈ {1, . . . , t} have a weight wG(e) ∈

(
γi−1 · wmaxkN , γi · wmaxkN

]
where wmax is the maximal

weight in G. Let G′ = (V,E,wG′) be equal to G but each edge e in rank i has weight ri := γi

for all i = 1, . . . , t. Starting with i = t, we compute an unweighted maximal matching Mi

considering only edges in rank i (in G′) and remove all edges incident to a matched node.
Continue with i− 1. The weight of the matching M :=

⋃
Mi is wG′(M) =

∑t
i=1 ri · |Mi| and

satisfies wG(M∗) ≥ wG′(M) ≥ 1
2γ ·wG(M∗) where M∗ is an optimal weighted matching in G.

In order to adapt this idea to our setting, we need to work out the key properties of the
partitioning and how we can implement it in a stream. The first problem is that we cannot
know wmax in a stream a priori and in a dynamic stream even maintaining wmax is difficult.
But we need to know the partition an inserted edge belongs to which is not possible if we
do not have wmax. Recalling the partitioning of Uehara and Chen, we disregard all edges
with weight smaller than wmax

kN which is possible because the contribution of these edges is at
most N

2 ·
wmax
kN = wmax

2k ≤ OPT
2k where OPT is the weight of an optimal weighted matching.

Thus, they only consider edges with larger weights and it is also possible to partition the set
of edges in a logarithmic number of sets. But how do we choose the partitioning when we do
not know the value of wmax? Now, we use the properties that edge weights within a single
partition set are similar and that 1

γ ≤
w(e)
w(e′) ≤ γ for two edges e ∈ Ei and e′ ∈ Ei−1 with

i ∈ {2, . . . , t}. These properties are sufficient to get a good approximation on the optimal
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weighted matching which we show in the next lemma. The proof is essentially the same as in
[125].

Lemma 6.2.1. Let G = (V,E,w) be a weighted graph and ε > 0 be an approximation
parameter. If a partitioning E1, . . . , Et of E and a weight function w′ : E → R satisfy

1
1 + ε

≤ w′(e)
w(e) ≤ 1 for all e ∈ E and w(e1)

w(e2) ≤ 1 + ε and w(e) < w(e′)

for all choices of edges e1, e2 ∈ Ei and e ∈ Ei, e′ ∈ Ej with i < j and i, j ∈ {1, . . . , t} then
Algorithm 12 returns a matching M =

⋃t
i=1Mi with

1
2(1 + ε)2 · w(M∗) ≤ w′(M) ≤ w(M∗)

where M∗ is an optimal weighted matching in G.

Proof. The first property 1
1+ε ≤

w′(e)
w(e) ≤ 1 for all e ∈ E implies that w(S)

1+ε ≤ w
′(S) ≤ w(S) for

every set of edges S ⊆ E. Thus, it suffices to show that 1
2(1+ε) · w(M∗) ≤ w(M) ≤ w(M∗).

Since M∗ is an optimal weighted matching, it is clear that w(M) ≤ w(M∗). For the lower
bound, we distribute the weight of the edges from the optimal solution to edges in M . Let
e ∈M∗ and i ∈ {1, . . . , t} such that e ∈ Ei. We consider the following cases:

1. e ∈Mi: We charge the weight w(e) to the edge itself.

2. e 6∈Mi but at least one node incident to e is matched by an edge in Mi: Let e′ ∈Mi be
an edge sharing a node with e. Distribute the weight w(e) to e′.

3. e 6∈ Mi and there is no edge in Mi sharing a node with e: By Algorithm 12, there has
to be an edge e′ ∈Mj with j > i which shares a node with e. We distribute the weight
w(e) to e′.

Since M∗ is a matching, there can only be at most two edges from M∗ distributing their
weights to the same edge in M . We know that w(e)

w(e′) ≤ 1 + ε for all choices of two edges
e, e′ ∈ Ei with i ∈ {1, . . . , t} which means that in case 2 we have w(e) ≤ (1 + ε) · w(e′). In
case 3 it holds w(e) < w(e′). Thus, the weight distributed to an edge e′ in M is at most
2(1+ε)w(e′). This implies that w(M∗) =

∑
e∈M∗ w(e) ≤

∑
e′∈M 2(1+ε)·w(e′) = 2(1+ε)·w(M)

which concludes the proof.

Using Lemma 6.2.1, we can partition the edge set in a stream in an almost oblivious manner:
Let (e0, w(e0)) be the first inserted edge. Then an edge e belongs to Ei iff 2i−1 · w(e0) <
w(e) ≤ 2i · w(e0) for some i ∈ Z. We can assume that the weights are greater than 0. Then
the number of sets is O

(
log wmax

wmin

)
. For the sake of simplicity, we will assume that the edge

weights are in the interval [1,W ] for someW ∈ N. Thus the number of sets can be bounded by
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Algorithm 13 Weighted Matching Approximation
Input: Graph G = (V,

⋃t
i=0Ei) with weights ri for edges in Ei, Parameters T, c > 0

Output: Estimator of the weighted matching
for i = t to 0 do

Ŝi = R̂i = 0
end for
weight = 0
last = t
R̂t = Ŝt = Unweighted Matching Estimation(V,Et)
for i = t− 1 to 0 do

Ŝi = Unweighted Matching Estimation(V,
⋃t
j=iEj)

if Ŝi > Ŝlast · T then B Add current index i to Igood
if Ŝi − Ŝlast ≥ c · R̂last then B Add current index i to Isign

R̂i = Ŝi − Ŝlast
last = i

end if
else

Ŝi = 0
end if

end for
for i = t to 0 do

weight = weight+ ri · R̂i
end for
return 2

5 · weight

O(logW ). Note that we are still not able to discard the edges with weights smaller than wmax
kN

since we do not know wmax beforehand. However, typically we can assume that W = polyN
because otherwise the representation size of a single weight is too large.
We now introduce a bit of notation we will use in the algorithm and throughout the proof.

As before, we partition the edge set E =
⋃t
i=0Ei into t+ 1 = O(logW ) ranks where the set

Ei contains all edges e with weight w(e) ∈
[
2i, 2i+1). W.l.o.g. we assume Et 6= ∅ (otherwise

let t be the largest rank with Et 6= ∅). Let G′ = (V,E,w′) be equal to G but each edge e ∈ Ei
has weight w′(e) = ri := 2i for all i = 0, . . . , t. Let M =

⋃t
i=0Mi be the matching computed

by Algorithm 12 and S be a (t+ 1)-dimensional vector with Si =
∑t
j=i |Mi|.

Algorithm 13 now proceeds as follows: For every i ∈ {0, . . . t} the size of a maximum
matching in (V,

⋃t
j=iEj) and Si differ by only a constant factor. Conceptually, we set our

estimator Ŝi of Si to be the approximation of the size of the maximum matching of (V,
⋃t
j=iEi)

and R̂i = Ŝi− Ŝi+1 is the estimator of the contribution of the edges in Ei to the weight of an
optimal weighted matching. As we know, the estimator R̂i is crude and generally not a good
approximation to |Mi|. What helps us is that if the edges Mi have a significant contribution
to w(M), then |Mi| �

∑t
j=i+1 |Mj | = Si+1. In order to detect whether the matching Mi

has a significant contribution to the objective value, we introduce two parameters T and
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c. The first matching Mt is always significant (and the simplest to approximate by setting
R̂t = Ŝt). For all subsequent matchings where i < t, let Mj be the most recent matching
which we deemed to be significant. We require Ŝi ≥ T · Ŝj and R̂i ≥ c · R̂j . If both criteria are
satisfied, we use the estimator R̂i = Ŝi − Ŝj and set i to be the now most recent, significant
matching, otherwise we set R̂i = 0. The final estimator of the weight is 2

5
∑t
i=0 ri · R̂i. The

next definition gives a more detailed description of the two sets of ranks which are important
for the analysis.

Definition 6.2.2 (Good and Significant Ranks). Let Ŝ and R̂ be the vectors at the end of
Algorithm 13. An index i is called to be a good rank if Ŝi 6= 0 and i is a significant rank if
R̂i 6= 0. We denote the set of good ranks by Igood and the set of significant ranks by Isign,
i. e.,

Igood :=
(
i ∈ {0, . . . t}

∣∣∣ Ŝi 6= 0
)

and

Isign :=
(
i ∈ {0, . . . t}

∣∣∣ R̂i 6= 0
)
.

We define Igood and Isign to be in descending order and we will refer to the `-th element of
Igood and Isign by Igood(`) and Isign(`), respectively. That means

Igood(1) > Igood(2) > . . . > Igood(|Igood|) and

Isign(1) > Isign(2) > . . . > Isign(|Isign|).

We slightly abuse the notation and set Isign(|Isign| + 1) = 0. Let D1 := |Mt| and for ` ∈
{2, . . . , |Isign|} we define the sum of the matching sizes between two significant ranks Isign(`)
and Isign(`− 1) where the smaller significant rank is included by

D` :=
Isign(`−1)−1∑
i=Isign(`)

|Mi|.

In the following, we subscript indices by s for significant ranks and by g for good ranks for
the sake of readability. Looking at Algorithm 13 we can prove some simple properties of Igood
and Isign.

Lemma 6.2.3. Let Igood and Isign be defined as in Definition 6.2.2. The parameter T and c
are from Algorithm 13. Then

1. Igood(1) = Isign(1) = t and Isign ⊆ Igood.

2. For every good rank ig ∈ Igood there is an ` ∈ {0, . . . , |Isign|} such that Isign(`) > ig ≥
Isign(`+ 1) and Ŝig > T · ŜIsign(`).

3. For any is ∈ Isign and i′s ∈ Isign with i′s < is it is R̂i′s ≥ c · R̂is.
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Proof.

1. It is clear that Isign ⊆ Igood. Since we assumed that Et 6= ∅, there is a nonempty
matching in Et which means that Ŝt = R̂t > 0.

2. Let ` be the position of last in Isign where last is the value of the variable in Algorithm
13 during the iteration i = ig. Then Isign(`) > ig ≥ Isign(`+ 1) (recall that we defined
Isign(|Isign|+ 1) = 0). Since ig is good, it is Ŝig > T · Ŝlast = ŜIsign(`) .

3. For every is ∈ Isign we have R̂is ≥ c · R̂last where last is the value of the variable
in Algorithm 13 in iteration i = is. By definition it is last ∈ Isign and last > is.
Therefore, it holds ̂RIsign(`+1) > c · R̂Isign(`) for every ` ∈ {0, . . . , |Isign| − 1} which
implies the statement.

Now, we have the necessary notations and properties of good and significant ranks to prove
our main theorem.
Theorem 6.2.4. Let G = (V,E,w) be a weighted graph where the weights are from [1,W ].
Let A be a randomized algorithm that returns an λ-estimator M̂ for the size of a maximum
matching M of a graph with 1/λ · |M | ≤ M̂ ≤ |M | with probability at least 1−δ and that needs
space S. If we partition the edge set into sets E0, . . . , Et with t = blogW c where Ei consists
of all edges with weight in [2i, 2i+1), set ri = 2i, and use A as the unweighted matching
estimator in Algorithm 13, then with T = 8λ2 − 2λ and c = 2

5 · T + 5λ the algorithm returns
an O(λ4)-estimator ÔPT for the weight of the maximum weighted matching with probability
at least 1− (t+ 1) · δ using O(S · t) space. This means there is a constant d such that

1
dλ4 · w(M∗) ≤ ÔPT ≤ w(M∗)

where M∗ is an optimal weighted matching.
Proof. The probability that all t + 1 estimations returned by algorithm A are within the
approximation bounds is at least 1− (t+1) ·δ. Conditioning on this event, we now prove that
we get an O(λ4)-estimator. The estimator returned by Algorithm 13 without the 2/5 factor
can be written as

∑|Isign|
`=1 rIsign(`) · R̂Isign(`). Let M =

⋃t
i=0Mi be the result of Algorithm

12 on the input (V,
⋃
Ei). Since 1/2 ≤ 2i/w(e) ≤ 1 and w(e)/w(e′) ≤ 2 for e, e′ ∈ Ei and

i ∈ {0, . . . t} by the definition of Ei, we can use Lemma 6.2.1 with ε = 1 to get

1
8 · w(M∗) ≤

t∑
i=0

ri|Mi| ≤ w(M∗). (6.1)

Thus, it is sufficient to show that
∑|Isign|
`=1 rIsign(`) · R̂Isign(`) is a good estimator for

t∑
i=0

ri|Mi|.
We divide this into two subproblems:
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1. (Estimation) R̂Isign(`) is a good estimator for D`.

2. (Charging) We show that
t∑
i=0

ri|Mi| can be estimated by
|Isign|∑̀

=1
rIsign(`)D`.

Recall that D` =
∑Isign(`−1)−1
i=Isign(`) |Mi|.

(1) Estimation of D`

Recall that we defined Si =
∑t
j=i |Mi|. Since

⋃t
j=iMj is a maximal matching in

⋃t
j=iEj , Ŝi

is a good estimator for Si.

Lemma 6.2.5. For all i ∈ {0, . . . , t} we have 1
λ
· Si ≤ Ŝi ≤ 2 · Si.

Proof. Let Fj be the set of unmatched nodes after the iteration j of Algorithm 12. LetM∗ be
a maximum matching in (V,

⋃t
j=iEj). Mj is a maximal matching of (V,Ej(Fj)) and therefore⋃t

j=iMj is a maximal matching of (V,
⋃t
j=iEj). This allows us to apply the bounds of the

λ-approximate estimation algorithm:

1
λ
· Si = 1

λ
·

t∑
j=i
|Mj | ≤

1
λ
· |M∗| ≤ Ŝi ≤ |M∗| ≤ 2 ·

t∑
j=i
|Mj | = 2 · Si.

Next, we show that for an index ig ∈ Igood the difference Ŝig − ŜIsign(`) to the last significant
rank is a good estimator for

∑Isign(`)−1
i=ig |Mi|.

Lemma 6.2.6. For all ig ∈ Igood with Isign(`+1) ≤ ig < Isign(`) for some ` ∈ {1, . . . , |Isign|}
and T = 8λ2 − 2λ it is

1
2λ ·

Isign(`)−1∑
i=ig

|Mi| < Ŝig − ŜIsign(`) <
5
2 ·

Isign(`)−1∑
i=ig

|Mi|

and 1
λ |Mt| ≤ Ŝt = R̂t ≤ 2|Mt|.

Proof. For all ig ∈ Igood with Isign(`+ 1) ≤ ig < Isign(`) we have

Isign(`)−1∑
i=ig

|Mi| = Sig − SIsign(`) ≥
Lem. 6.2.5

1
2 · Ŝig − λ · ŜIsign(`)

>
Lem. 6.2.3 (2)

T

2 · ŜIsign(`) − λ · ŜIsign(`) ≥
Lem. 6.2.5

(
T

2 − λ
)
· 1
λ
· SIsign(`)

= T − 2λ
2λ · SIsign(`). (6.2)
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Setting T = 8λ2 − 2λ, we then obtain the following upper and lower bounds

Ŝig − ŜIsign(`) ≥
Lem. 6.2.5

1
λ
· Sig − 2 · SIsign(`) = 1

λ

Isign(`)−1∑
i=ig

|Mi| −
(

2− 1
λ

)
· SIsign(`)

>
Eq. (6.2)

1
λ

Isign(`)−1∑
i=ig

|Mi| −
(

2− 1
λ

)
· 2λ
T − 2λ ·

Isign(`)−1∑
i=ig

|Mi|

= 1
λ

Isign(`)−1∑
i=ig

|Mi| −
(2λ− 1

λ

)
· 2λ

8λ2 − 4λ ·
Isign(`)−1∑

i=ig
|Mi|

=
( 1
λ
− 2

4λ

) Isign(`)−1∑
i=ig

|Mi|

= 1
2λ ·

Isign(`)−1∑
i=ig

|Mi|

and

Ŝig − ŜIsign(`) ≤
Lem. 6.2.5

2 · Sig −
1
λ
· SIsign(`) = 2 ·

Isign(`)−1∑
i=ig

|Mi|+
(

2− 1
λ

)
· SIsign(`)

<
Eq. (6.2)

2
Isign(`)−1∑

i=ig
|Mi|+

(
2− 1

λ

)
· 2λ

8λ2 − 4λ ·
Isign(`)−1∑

i=ig
|Mi|

=
(

2 + 2
4λ

) Isign(`−1)−1∑
i=ig

|Mi|

≤ 5
2 ·

Isign(`−1)−1∑
i=ig

|Mi|,

where we used λ ≥ 1 in the last inequality. Since |Mt| = St and R̂t = Ŝt, the last statement
follows directly from Lemma 6.2.5.

From Lemma 6.2.3 (1) we know that Isign ⊆ Igood which together with the last Lemma 6.2.6
implies that R̂Isign(`) is a good estimator for D`.
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Corollary 6.2.7. For ` ∈ {1, . . . , |Isign|} it is

1
2λ ·D` ≤ R̂Isign(`) ≤

5
2 ·D`.

Furthermore, if c > 5λ then the values of the D` are exponentially increasing:

D1 ≤
5λ
c
D2 ≤ . . . ≤

(5λ
c

)|Isign|−2
D|Isign|−1.

Proof. Recall that for ` ∈ {2, . . . , |Isign|} we defined D` =
∑Isign(`−1)−1
i=Isign(`) |Mi|. For ` = 1

the value of R̂Isign(1) = Ŝt is a good estimator for the size of the matching Mt (which is
equal to D1 by Definition 6.2.2) due to Lemma 6.2.5. Since for ` ∈ {2, . . . , |Isign|} it is
R̂Isign(`) = ŜIsign(`) − ̂SIsign(`−1) and Isign ⊆ Igood, the first statement is a direct implication
of Lemma 6.2.6 by setting ig = Isign(`).

For three adjoining significant ranks Isign(` + 1), Isign(`), Isign(` − 1) with ` ∈ {2, . . . ,
|Isign| − 1}, we have

1
2λ ·D` = 1

2λ

Isign(`−1)−1∑
i=Isign(`)

|Mi| <
Lem. 6.2.6

ŜIsign(`) − ̂SIsign(`−1) = R̂Isign(`)

<
Lem. 6.2.3 (3)

1
c
· ̂RIsign(`+1) = 1

c
·
(

̂SIsign(`+1) − ŜIsign(`)
)

<
Lem. 6.2.6

5
2c

Isign(`)−1∑
i=Isign(`+1)

|Mi| =
5
2c ·D`+1.

Since D1 = |Mt| and R̂Isign(1) = R̂t = Ŝt, we also have

1
2λ ·D1 ≤

1
λ
·D1 ≤

Lem. 6.2.5
R̂t ≤

Lem. 6.2.3 (3)

1
c
· R̂Isign(2) ≤

Lem. 6.2.6

5
2c

Isign(1)−1∑
i=Isign(2)

|Mi| =
5
2c ·D2.

Thus, for c > 5λ the values of the D` are exponentially increasing:

D1 ≤
5λ
c
D2 ≤ . . . ≤

(5λ
c

)|Isign|−2
D|Isign|−1.

(2) The Charging Argument

We show that the sum of the matching sizes between two significant ranks Isign(` + 1) and
Isign(`) is bounded by O(λ · T ·D`) = O

(
λ · T ·

∑Isign(`−1)+1
i=Isign(`) |Mi|

)
.
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Lemma 6.2.8. For c = 2
5 · T + 5λ and ` ∈ {1, . . . , |Isign| − 1} it is

Isign(`)−1∑
i=Isign(`+1)+1

|Mi| ≤ (2λ · T + 25λ2) ·D`

and if 0 6∈ Isign
Isign(|Isign|)−1∑

i=0
|Mi| ≤ (2λ · T + 25λ2) ·D|Isign|.

Proof. For the proof of the first inequality, let ig ∈ Igood be minimal such that Isign(`+ 1) <
ig < Isign(`) for ` ∈ {1, . . . , |Isign| − 1}. If such a good rank does not exist, set ig = −1. We
distinguish between two cases. Note that c = 2

5 ·T +5λ > 5λ what we need to apply Corollary
6.2.7.

Case 1: ig = Isign(`+ 1) + 1. For the sake of simplicity, we abuse the notation and set
ŜIsign(0) = 0 such that R̂Isign(`) = ŜIsign(`) − ̂SIsign(`−1) also holds for ` = 1. Using
Lemma 6.2.6 we have

1
2λ ·

Isign(`)−1∑
i=Isign(`+1)+1

|Mi| = 1
2λ ·

Isign(`)−1∑
i=ig

|Mi| <
Lem. 6.2.6

Ŝig − ŜIsign(`)

<
ig 6∈Isign

c · R̂Isign(`) = c ·
(
ŜIsign(`) − ̂SIsign(`−1)

)

<
Lem. 6.2.6

5
2 · c ·

Isign(`−1)−1∑
i=Isign(`)

|Mi| =
5
2 · c ·D`

⇔
Isign(`)−1∑

i=Isign(`+1)+1
|Mi| < 5λ · c ·D` (6.3)

Case 2: ig 6= Isign(`+ 1) + 1. In this case ̂SIsign(`+1)+1 ≤ T ·ŜIsign(`) by the definition of good
ranks. Thus

1
λ
·

Isign(`)−1∑
i=Isign(`+1)+1

|Mi| ≤ 1
λ
· SIsign(`+1)+1 ≤

Lem. 6.2.5
̂SIsign(`+1)+1

≤ T · ŜIsign(`) ≤
Lem. 6.2.5

2 · T · SIsign(`) = 2 · T ·
∑̀
i=1

Di

≤
Cor. 6.2.7

2 · T ·D` ·
∑̀
i=1

(5λ
c

)i−1
≤ 2 · T ·D` ·

1
1− 5λ

c

⇔
Isign(`)−1∑

i=Isign(`+1)+1
|Mi| ≤ 2λ · T

1− 5λ
c

·D`. (6.4)
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Combining the inequalities 6.3 and 6.4, we have
∑Isign(`)−1
i=Isign(`+1)+1 |Mi| ≤ max

{
5λ · c, 2λ·T

1− 5λ
c

}
·D`

which simplifies to

Isign(`)−1∑
i=Isign(`+1)+1

|Mi| ≤ (2λ · T + 25λ2) ·D` for ` ∈ {1, . . . , |Isign| − 1} (6.5)

because 5λ · c = 2λ·T
1− 5λ

c

if and only if c = 2
5 · T + 5λ. If 0 6∈ Isign we have to do the same

arguments to bound
∑Isign(|Isign|)−1
i=0 |Mi| by (2λ ·T +25λ2) ·D|Isign|. Let ig ∈ Igood be minimal

such that 0 ≤ ig < Isign(|Isign|). Again, we distinguish between two cases.

Case 1: ig = 0. Using Lemma 6.2.6 we have

1
2λ ·

Isign(|Isign|)−1∑
i=0

|Mi| <
Lem. 6.2.6

Ŝ0 − ̂SIsign(|Isign|)

<
06∈Isign

c · ̂RIsign(|Isign|) = c ·
(

̂SIsign(|Isign|) − ̂SIsign(|Isign|−1)
)

<
Lem. 6.2.6

5
2 · c ·

Isign(|Isign|−1)−1∑
i=Isign(|Isign|)

|Mi| =
5
2 · c ·D|Isign|

⇔
Isign(|Isign|)−1∑

i=0
|Mi| < 5λ · c ·D|Isign|

Case 2: ig 6= 0. In this case Ŝ0 ≤ T · ̂SIsign(|Isign|) by the definition if good ranks. Thus

1
λ
·
Isign(|Isign|)−1∑

i=0
|Mi| ≤ 1

λ
· S0 ≤

Lem. 6.2.5
Ŝ0 ≤ T · ̂SIsign(|Isign|)

≤
Lem. 6.2.5

2 · T · SIsign(|Isign|) = 2 · T ·
|Isign|∑
i=1

Di

≤
Cor. 6.2.7

2 · T ·D|Isign| ·
|Isign|∑
i=1

(5λ
c

)i−1
≤ 2 · T ·D|Isign| ·

1
1− 5λ

c

⇔
Isign(|Isign|)−1∑

i=0
|Mi| ≤ 2λ · T

1− 5λ
c

·D|Isign|.

With the same c = 2
5 · T + 5λ as before we have

Isign(|Isign|)−1∑
i=0

|Mi| ≤ (2λ · T + 25λ2) ·D|Isign|.
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Now, we can show that w(M) is bounded in terms of
∑|Isign|
`=1 rIsign(`) ·D`. A lower bound to

w(M) =
∑t
i=0 ri · |Mi| is given by

t∑
i=0

ri · |Mi| ≥ rt ·Mt +
|Isign|∑
`=2

rIsign(`) ·
Isign(`−1)−1∑
i=Isign(`)

|Mi|+ r0 ·
Isign(|Isign|)−1∑

i=0
|Mi|

≥
|Isign|∑
`=1

rIsign(`) ·D` (6.6)

and for an upper bound

t∑
i=0

ri · |Mi| =
|Isign|∑
`=1

rIsign(`) ·MIsign(`) +
|Isign|−1∑
`=1

Isign(`)−1∑
i=Isign(`+1)+1

ri · |Mi|

+
Isign(|Isign|)−1∑

i=0
ri · |Mi|

≤
|Isign|∑
`=1

rIsign(`) ·D` +
|Isign|−1∑
`=1

Isign(`)−1∑
i=Isign(`+1)+1

ri · |Mi|+
Isign(|Isign|)−1∑

i=0
ri · |Mi|

≤
|Isign|∑
`=1

rIsign(`) ·D` +
|Isign|−1∑
`=1

rIsign(`) ·
Isign(`)−1∑

i=Isign(`+1)+1
|Mi|

+rIsign(|Isign|) ·
Isign(|Isign|)−1∑

i=0
|Mi|

≤
Lemma. 6.2.8

|Isign|∑
`=1

rIsign(`) ·D` +
|Isign|∑
`=1

rIsign(`) · (2λ · T + 25λ2) ·D`

= (1 + 2λ · T + 25λ2) ·
|Isign|∑
`=1

rIsign(`) ·D`. (6.7)
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Putting Everything Together

Using Corollary 6.2.7 we have 1
2λ · D` ≤ R̂Isign(`) ≤ 5

2 · D` for all ` ∈ {1, . . . , |Isign|} which
with (6.6) and (6.7) gives

1
2λ · (1 + 2λ · T + 25λ2) · w(M) ≤

(6.7)

1
2λ

|Isign|∑
`=1

rIsign(`) ·D`

≤
Cor. 6.2.7

|Isign|∑
`=1

rIsign(`) · R̂Isign(`)

≤
Cor. 6.2.7

5
2

|Isign|∑
`=1

rIsign(`) ·D`

≤
(6.6)

5
2 · w(M).

Recall that we set T = 8λ2 − 2λ. Now, folding in the factor of 1
8 from (6.1) and rescaling the

estimator by 2/5 gives an O(λ4)-estimation on the weight of an optimal weighted matching.

6.3. Estimation of the Size of Unweighted Matchings

In this section, we give two estimation algorithms for the size of a maximum matching. First,
we see that it is easy to estimate the matching size in trees. Second, we extend the result
from [44] where the matching size of so-called bounded arboricity graphs is estimated for
insertion-only streams to dynamic graph streams.

6.3.1. Estimating the Matching Size of Trees in Dynamic Streams

Let T = (V,E) be a tree with at least 3 nodes and let hT be the number of internal nodes, i. e.,
nodes with degree greater than 1. Esfandiari et al. [44] showed that the size of a maximum
matching is between hT /2 and hT . Therefore, it suffices to estimate the number of internal
nodes of a tree to approximate the maximum matching within 2 + ε factor. In order to
estimate the matching size, we maintain an `0-estimator for the degree vector d ∈ RN such
that dv = deg(v)− 1 holds at the end of the stream and with it `0(d) = hT . In other words,
we initialize the vector by adding −1 to each entry and update the two corresponding entries
when we get an edge deletion or insertion. Since the number of edges in a tree is N − 1,
the preprocessing time can be amortized during the stream. Using Theorem 2.5.9, we can
maintain the `0-estimator for d in O(ε−2 log2N) space.
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Theorem 6.3.1. Let T = (V,E) be a tree with at least 3 nodes and let ε ∈ (0, 1). Then there
is an algorithm that estimates the size of a maximum matching in T within a (2 + ε)-factor
in the dynamic streaming model using 1-pass over the data and O(ε−2 log2N) space.

As in [44] this algorithm can be extended to forests with no isolated node.

6.3.2. Dynamic Streaming Algorithms for Estimating the Matching Size in
Graphs with Bounded Arboricity

Our algorithm is based on the results from [44]. Since we need parametrized versions of their
results, we summarize and rephrase the ideas and proofs in this section. Let G = (V,E) be a
graph. The arboricity a(G) of G is a kind of density measure: The number of edges in every
induced subgraph with s nodes in G is bounded by s · a(G). Formally, the arboricity a(G) of
G is defined by a(G) = max

U⊆V

⌈
|E(U)|
|U |−1

⌉
. If µG is an upper bound on the average degree of every

induced subgraph of G then µG ≤ 2 · a(G).

Definition 6.3.2 ([44]). A node v ∈ V is light if deg(v) ≤ C with C = dµGe+ 3. Otherwise,
v is heavy. An edge is shallow if and only if both of its endpoints are light. We denote by hG
the number of heavy nodes in G and by sG the number of shallow edges in G, respectively.

Using the results from Czygrinow, Hanchowiak, and Szymanska [38] (and C = 20a(G)/ε2)
it is possible to get an O(a(G)) approximation for the size of a maximum matching by just
estimating hG and sG. Esfandiari et al. [44] improved the approximation factor to roughly
5 · a(g).

Lemma 6.3.3 ([44]). Let G = (V,E) be a graph with maximum matching M∗. Then we have
max {hG,sG}

η ≤ |M∗| ≤ hG + sG where η = 1.25C + 0.75 where C is at most d2a(G) + 3e.

Estimating hG and sG is possible by random sampling: For heavy nodes, we randomly draw a
large enough set of nodes and count the heavy nodes by maintaining their degree. Rescaling
the counter gives a sufficiently good estimate, if hG is large enough. For sG we randomly
draw nodes and maintain the induced subgraph. For each node contained in the subgraph
it is straightforward to maintain the degree and thereby to decide whether or not a given
edge from the subgraph is shallow. Then we can rescale the counted number of shallow edges
which gives us an estimation on sG if sG is large enough. Dealing with small values of sG and
hG, Esfandiari et al. additionally maintain a small maximal matching of size at most nα with
α < 1. If the maintained matching exceeds this value then we know that either sG or hG is
greater than nα/2 by Lemma 6.3.3 and the estimation of the parameters hG and sG will be
sufficiently accurate. The main tool to extend this algorithm to dynamic graph streams is
to estimate the size of a small matching by means of the Tutte matrix. But first, we restate
the following three lemmas from [44] for arbitrary parameters and extend them to dynamic
streams.
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Lemma 6.3.4. Let T be an integer and ε ∈ (0, 1). Then there exists a 1-pass algorithm for
dynamic streams that outputs a value ĥ which is a (1 ± ε) estimation of hG if hG ≥ T and
which is smaller than 3T otherwise. The algorithm needs O

(
log2 N
ε2 · NT

)
space and succeeds

with high probability.

Proof. The probability of sampling a heavy node is hG
N . Hence, sampling a set of nodes S

gives us |S| · hGN heavy nodes on expectation. Set |S| = 3 logN
ε2

N
T . For each node v ∈ S we

maintain its degree using O(logN) space. We define the indicator variable Xv with v ∈ S
which is 1 if v is heavy and 0 otherwise. Then our estimator for hG is ĥ = N

|S|
∑
Xv which is

equal to hG in expectation. First, assume hG ≥ T . Then using the Chernoff bound (Theorem
A.2.3), we have

Pr
[
ĥ ≥ (1 + ε) ·E

[
ĥ
]]

= Pr
[∑
v∈S

Xv ≥ (1 + ε) ·E
[∑
v∈S

Xv

]]

≤ exp
(
−3 logN

ε2
N

T
· hG
N
· ε

2

3

)
≤ 1
N
.

The same bound also holds for Pr
[
ĥ ≤ (1− ε) ·E

[
ĥ
]]
. If hG < T , then using the Chernoff

bound (Corollary A.2.5) gives us

Pr
[
N

|S|
·
(∑
v∈S

Xv

)
≥ 3T

]

= Pr
[∑
v∈S

Xv ≥
3T · |S| · hG
N · hG

]

= Pr
[∑
v∈S

Xv >

(
1 + 3T

hG
− 1

)
·E
[∑
v∈S

Xv

]]

≤ exp
(
−3 logN

ε2
N

T
· hG
N
·

3T
hG
− 1
3

)

≤ exp
(
−3 logN

ε2
N

T
· hG
N
· 2T

3 · hG

)
≤ 1
N
,

where the last inequality follows from ε ≤
√

2.

Lemma 6.3.5. Let T be an integer and ε ∈ (0, 1). Then there exists a 2-pass algorithm for
dynamic streams that outputs a value ŝ which is a (1 ± ε) estimation of sG if sG ≥ T and
which is smaller than 3T if sG < T . The algorithm uses O

(
a(G)·N log4 N

ε2T

)
space and succeeds

with high probability.

Proof. In the first pass, we sample 3 logN
ε2

a(G)·N
T edges uniformly at random using `0-samplers,

each of which cost at most O(log3N) space (Lemma 2.5.3). For each node of a sampled
edge, we maintain its degree in the second pass to decide whether a given edge is shallow
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or not. Hereafter, we reapply the analysis of Lemma 6.3.4: Let S = (e1, . . . , e|S|) be the
sequence of sampled edges in the first pass and let Xi be the indicator variable which is 1 if
and only if ei is shallow. The probability of sampling a shallow edge is sG

|E| which implies that
E [
∑
Xi] = |S| · sG|E| ≥ |S| ·

sG
a(G)·N . Now, let ŝ = |E|

|S|
∑
Xi be our estimator. We know that

E [ŝ] = sG. If sG ≥ T then by Chernoff we have

Pr [ŝ ≥ (1 + ε) ·E [ŝ]] = Pr
[∑

Xi ≥ (1 + ε) ·E
[∑

Xi

]]
≤ exp

(
−3 logN

ε2
a(G) ·N

T
· sG
a(G) ·N ·

ε2

3

)
≤ 1
N
.

The same bound also holds for Pr [ŝ ≤ (1− ε) ·E [ŝ]]. If sG < T , then using the Chernoff
bound gives us

Pr
[ |E|
|S|
·
(∑

Xi

)
≥ 3T

]
= Pr

[∑
Xi ≥

3T · |S| · sG
|E| · sG

]

= Pr
[∑

Xi >

(
1 + 3T

sG
− 1

)
·E
[∑

Xi

]]
≤ exp

(
−3 logN

ε2
a(G) ·N

T
· sG
a(G) ·N ·

3T
sG
− 1
3

)

≤ exp
(
−3 logN

ε2
a(G) ·N

T
· sG
a(G) ·N ·

2T
3 · sG

)
≤ 1
N
,

where the last inequality follows from ε ≤
√

2.

Lemma 6.3.6. Let ε ∈ (0, 1) and T > (16C/ε)2 be an integer. Then there exists a 1-pass
algorithm for dynamic streams that outputs a value ŝ which is a (1 ± ε) estimation of sG if
sG ≥ T and which is smaller than 3T if sG < T . The algorithm uses Õ

(
a(G)·N
ε
√
T

)
space and

succeeds with constant probability.

Proof. Let S be a set of 4N
ε
√
T

randomly chosen nodes. We maintain the entire subgraph
induced by S and the degree of each node in S. Note that the number of edges in this
subgraph at the end of the stream is at most a(G) · |S|. Since we have edge deletions this
number may be exceeded at some point during the stream. Thus, we cannot explicitly store
the subgraph but we can recover all entries using an (a(G) · |S|)-sparse recovery sketch using
Õ(a(G) · |S|) space. Let e1, . . . , esG be the shallow edges in G. Define Xi = 1 if ei ∈ E(S)
and 0 otherwise. Xi is Bernoulli distributed where the probability of both nodes being
included in the subgraph follows from the hypergeometric distribution (see Appendix A.2)
with population N , 2 successes in the population, sample size |S| and 2 successes in the
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sample:

p =
(2
2
)(N−2
|S|−2

)
(N
|S|
) = |S| · (|S| − 1)

N · (N − 1) ≥
|S|2

2N2 = 8
ε2T

.

Hence Xi is Bernoulli distributed, we have Var [Xi] = p · (1 − p) ≤ p. We know that
Var [

∑
Xi] =

∑
Var [Xi] +

∑
i 6=j Cov [Xi, Xj ]. For the covariance between two variables

Xi and Xj we have two cases: If ei and ej do not share a node, then Xi and Xj cannot be
positively correlated, i. e., Cov [Xi, Xj ] > 0. To be more precise, we observe that by definition
Cov [Xi, Xj ] is equal to E [XiXj ] − E [Xi] · E [Xj ] which is equal to Pr [Xi = Xj = 1] − p2.
The probability Pr [Xi = Xj = 1] is equal to the probability of drawing exactly 4 fixed nodes
from V with a sample of size |S| which is

(4
4
)(N−4
|S|−4

)
(N
|S|
) = |S| · (|S| − 1) · (|S| − 2) · (|S| − 3)

N · (N − 1) · (N − 2) · (N − 3) .

Due to Lemma A.1.2, we have |S|−cN−c ≤
|S|−c+1
N−c+1 ≤ · · · ≤

|S|
N .Therefore, Pr [Xi = Xj = 1] is at

most p2 which means that the covariance is at most 0. If ei and ej share a node, we have

Cov [Xi, Xj ] ≤ Pr [Xi = Xj = 1]

=
(3
3
)(N−3
|S|−3

)
(N
|S|
) = |S| · (|S| − 1) · (|S| − 2)

N · (N − 1) · (N − 2) ≤
Lem. A.1.2

p3/2.

By definition each node incident to a shallow edge has at most C neighbors and therefore, we
have at most 2C edges that share a node with a given shallow edge. In total, we can bound
the variance of X

Var [X] =
∑

Var [Xi] +
∑
i 6=j

Cov [Xi, Xj ]

≤ p · sG +
∑
ei 6=ej ,

ei,ej share a node

Cov [Xi, Xj ] ≤ p · sG + 2C · sG · p3/2

≤ p · sG + 2C · p · sG
8

ε
√
T
≤ 2p · sG

where the last two inequalities follow from √p ≤
√

|S|2
N(N−1) ≤

|S|
N/2 = 8

ε
√
T

and T ≥ (16C/ε)2.



128 Chapter 6. Estimation of Matchings in Dynamic Data Streams

Using Chebyshev’s inequality we have for sG ≥ T

Pr
[∣∣∣∣1p ·X − 1

p
E [X]

∣∣∣∣ > ε · 1
p
E [X]

]
= Pr [|X −E [X]| > ε ·E [X]]

≤ Var [X]
ε2E [X]2

≤ 2p · sG
ε2p2 · s2

G

≤ 2
ε2Tp

≤ 2ε2T

8ε2T = 1
4 .

If sG < T , we have E [X] = p · sG < pT . Thus, it is

Pr
[1
p
·X ≥ 3T

]
= Pr [X −E [X] ≥ 3Tp−E [X]]

≤ Pr [|X −E [X] | ≥ 2Tp]

≤ Var [X]
4T 2p2 ≤

2p · sG
4T 2p2 ≤

2
4Tp ≤

2ε2T

32T = ε2

16 ≤
1
16 .

Algorithm 14 Unweighted Matching Approximation
Input: G = (V,E) with a(G) ≤ α and ε ∈ (0, 1)
Output: Estimator on the size of a maximum matching
Set T = n2/5 for a single pass and T = n1/3 for two passes and η = 2.5d2 · α+ 3e+ 5.75.
Let ĥ and ŝ be the estimators from Lemma 6.3.4 and Lemma 6.3.6
for i = 0, . . . , log 3T/(1− ε) do

Solve rank decision with parameter k = 2i on the Tutte-Matrix T (G) for a random
assignment to the indeterminates

end for
if rank(T (G)) < 3T/(1− ε) then

Output 2i+1 for the maximal i ∈ {0, . . . , 2log 3T/(1−ε)} with rank(T (G)) ≥ 2i
else

Output max{ĥ, ŝ}
(1 + ε)η .

end if

Algorithm 14 shows the idea of the estimation of the unweighted maximum matching size in
bounded arboricity graphs using the previous results and the relation between the rank of
the Tutte matrix and the matching size.
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Theorem 6.3.7. Let G be a graph with a(G) ≤ α and N ≥ (16α/ε)5. Let ε ∈ (0, 1).
Then there exists an algorithm estimating the size of the maximum matching in G within a
2(1+ε)(5·a(G)+O(1))

(1−ε) -factor in the dynamic streaming model

• using a single pass over the data and Õ(α·N4/5

ε2 ) space that succeeds with constant prob-
ability or

• using 2 passes over the data and Õ(α ·N2/3) space that succeeds with high probability.

Proof. We condition on the event that the estimators succeed which gives the desired success
probability of the entire algorithms. For the sake of simplicity we assume that 3T/(1 − ε)
is a power of two. We know that we can decide the rank decision problem with parameter
k in a dynamic stream with one pass using O(k2 log2N) space by Theorem 2.5.8. Thus,
invoking this algorithm for k = 20, 21, . . . , 2log(3T/(1−ε)) results in a space requirement of
O(T 2 · log T · log2N) = O(T 2 log3N) for our choices of T . For the first part of the theorem,
we estimate sG and hG in 1-pass by ĥ and ŝ using Õ

(
N
ε2T

)
and Õ

(
α·N
ε
√
T

)
space, see Lemma

6.3.4 and Lemma 6.3.6. Setting T = N2/5 gives us the desired space bound of Õ
(
α·N4/5

ε2

)
(note that T > (16α/ε)2 which is required for Lemma 6.3.6). For the second part of the
theorem, we can improve the space requirements for the estimator ĥ and ŝ to Õ

(
a(G)N
T

)
by

using Lemma 6.3.4 and Lemma 6.3.5. Now, setting T = N1/3 gives the desired space bound.
Let OPT be the size of a maximum matching. First, we check whether OPT ≥ 2·3T/(1−ε)

by invoking the rank decision algorithm with parameter k = 3T/(1 − ε). Since the rank of
the matrix is equal to 2OPT , this decides whether OPT ≥ 2 · 3T/(1− ε). If this is not true,
we can give a 2-approximation on OPT by testing whether the rank of the Tutte matrix is
in [2i, 2i+1) for i = 0, . . . , log (3T/(1− ε))− 1. If OPT ≥ 2 · 3T/(1− ε) Lemma 6.3.3 implies
that max{hG, sG} ≥ 3T/(1 − ε) since hG + sG ≥ OPT . Assuming that we can approximate
max{hG, sG} then again by Lemma 6.3.3 we can estimate OPT since

max{hG, sG}
η

≤ OPT ≤ hG + sG ≤ 2 max{hG, sG}.

W.l.o.g. let ĥ = arg max{ĥ, ŝ}. Now we have two cases:

1. If hG = arg max{hG, sG} ≥ T then by Lemma 6.3.4 ĥ is a (1± ε) estimation on hG.

2. If sG = arg max{hG, sG} ≥ 3T/(1 − ε) we know by Lemma 6.3.6 that ŝ ≥ 3T which
implies that ĥ ≥ ŝ ≥ 3T . Thus by Lemma 6.3.4 ĥ is a (1 ± ε) estimation on hG. This
gives us

(1− ε)sG ≤ ŝ ≤ ĥ ≤ (1 + ε)hG ≤ (1 + ε)sG.

Therefore, max{ĥ, ŝ} is a good estimator for max{hG, sG}. For the estimator max{ĥ,ŝ}
(1+ε)η we



130 Chapter 6. Estimation of Matchings in Dynamic Data Streams

have

(1− ε)
2(1 + ε)η ·OPT ≤

(1− ε) max{hG, sG}
(1 + ε)η ≤ max{ĥ, ŝ}

(1 + ε)η ≤
(1 + ε) max{hG, sG}

(1 + ε)η ≤ OPT.

We want to mention that it is also possible to maintain a small matching in 2-passes using
only sublinear space with respect to the number of edges in a dynamic stream. This algorithm
can also be used for the 2-pass algorithm above also using Õ(a(G) ·N2/3) space.

Lemma 6.3.8. Let G be a graph with M edges and let α1 ∈ (0, 1] and α2 ∈ (0, 2) with
α1 ≤ α2. There is a dynamic streaming algorithm that maintains a matching of size Nα1 in
space Õ( M

Nα2 ·Nα1 +Nα2) using two passes with high probability.

Proof. We denote by F the unmatched nodes w.r.t. some matching (which is clear from the
context). Let M be some matching and assume that |E(F )| is large. If we repeatedly sample
an edge uniformly at random, then we will see an edge from E(F ) after a small number of
steps with high probability. If we continue this process long enough and update our matching
M every time we see an free edge, we have either found a large matching or the remaining
number of free edges is small.
Let T = 2 · M

Nα2 · Nα1 . In the first pass we sample a sequence (e1, · · · , eT ) of T edges
uniformly at random. After each sampled edge we update a matching M1 (starting with an
empty matching) by adding an edge to M1 iff both endpoints are currently unmatched. If
after the first pass M1 is smaller than Nα1 , we build an Nα2-recovery sketch for the edges in
E(F ) where F is the set of unmatched nodes.
Let Fi be the set of unmatched nodes before we sample edge ei, i. e., F1 = V , and let FT+1

be the set of unmatched nodes after the first pass. Assume that |E(FT+1)| ≥ Nα2 . Then we
know that |E(Fi)| ≥ Nα2 for every 1 ≤ i ≤ T . Let Xi = 1 iff ei ∈ E(Fi) and let X =

∑T
i=1Xi,

i. e., |M1| = min{Nα1 , X}. It is

E
[
X
∣∣∣ |E(FT+1)| ≥ Nα2

]
≥ T · N

α2

M
= 2 ·Nα1 .

Since adding an edge to M1 at step i, i. e., Xi = 1, decreases the probability that Xj = 1 for
j > i while Xi = 0 does not influence the probabilities, these random variables are negatively
correlated (as defined in Definition 2.4). Thus, we can use Chernoff bounds (Theorem 2.4.5)
to prove that

Pr
[
X < Nα1

∣∣∣ |E(FT+1)| ≥ Nα2
]
≤ Pr

[
X < (1/2)E [X]

∣∣∣ |E(FT+1)| ≥ Nα2
]

≤ e−N
α1/4
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which gives us

Pr [X < Nα1 ∧ |E(FT+1)| ≥ Nα2 ]

= Pr
[
X < Nα1

∣∣∣ |E(FT+1)| ≥ Nα2
]
·Pr [|E(FT+1)| ≥ Nα2 ]

≤ Pr
[
X < Nα1

∣∣∣ |E(FT+1)| ≥ Nα2
]
≤ e−Nα1/4.

Therefore, we have either |M1| = Nα1 or |E(FT+1)| < Nα2 after the first pass with high
probability.
Sampling T edges can be done by T `0-sampler in space Õ(T ). In the second pass we have

the matching and an Nα2-recovery sketch where both can be maintain in Õ(Nα2) space.

Graphs with arboricity a(G) can only have at most a(G) · N edges. Therefore, by using
Lemma 6.3.8 with M = a(G) ·N,α1 = 1/3 and α2 = 2/3 we can maintain a matching of size
at most N1/3 in space Õ(a(G) ·N2/3).

Corollary 6.3.9. There is a 2-pass dynamic streaming algorithm using Õ(α · N2/3) space
that maintains a matching of size at most N1/3 in graphs with bounded arboricity a(G) ≤ α.

6.4. Applications of the Weighted Matching Estimation Algorithm

Since every edge insertion and deletion supplies the edge weight, it is straightforward to de-
termine the rank for each edge upon every update. Using the following results for unweighted
matching, we can straightforwardly obtain estimates with similar approximation guarantee
and space bounds for weighted matching by using Theorem 6.2.4.

Random Order Streams

For an arbitrary graph whose edges are streamed in random order, Kapralov, Khanna and
Sudan [74] gave an algorithm with polylogN approximation guarantee and failure probability
δ = 1/ polylogN using polylogN space. Since this probability is over the randomness of the
input stream we cannot easily amplify it. Though if logW + 1 ≤ 1/(c · δ) the extension to
weighted matching in random order streams still succeeds with constant probability 1− 1/c.

Adversarial Streams

For graphs of bounded arboricity, Esfandiari et al. [44] gave an algorithm with constant
approximation guarantee using Õ(N2/3) space.

Dynamic Streams

Using the results from Section 6.3, we can estimate the value of an optimal weighted matching
in trees using O(ε−2 log3N) space and in graphs with bounded arboricity α in Õ(αN4/5/ε2)
space.
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6.5. Space Lower Bound of Streaming Algorithms Estimating the
Size of Matchings

In this section, we give a space lower bound for streaming algorithms estimating the size
of unweighted matchings with small approximation factors. Esfandiari et al. [44] showed a
lower bound of Ω(

√
N) bits of space for any estimation better than 3/2. Their reduction (see

below) uses the Boolean Hidden Matching Problem introduced by Bar-Yossef, Jayram, and
Kerenedis [11], and further studied by Gavinsky et al. [49]. We will use the Boolean Hidden
Hypermatching Problem which we have defined in Section 2.6. By Definition 2.6.2, in the
Boolean Hidden Hypermatching problem BHHt,N , Alice gets a Boolean vector x ∈ {0, 1}N

with N = 2kt for some k ∈ N and Bob gets a perfect t-hypermatchingM on the N coordinates
of x, i. e., each edge has exactly t coordinates, and a string w ∈ {0, 1}N/t. It is promised that
either Mx⊕ w = 1N/t or Mx⊕ w = 0N/t. The problem is to return 1 in the first case and 0
otherwise.
For our reduction we require the vector w to be the all zero vector, i. e., Mx = 1N/t or

Mx = 0N/t. We first show that this does not reduce the communication complexity.

Definition 6.5.1. The problem BHH0
t,N is the same as the BHHt,N problem with w fixed

to be 0N/t and x ∈ {0, 1}N has exactly N/2 bits equal to 1.

Lemma 6.5.2. The communication complexity of BHH0
t,4N is lower bounded by the commu-

nication complexity of BHHt,N .

Proof. First, let assume that t is odd. Let x ∈ {0, 1}N with N = 2kt for some k ∈ N and
M be a perfect t-hypermatching on the N coordinates of x and w ∈ {0, 1}N/t. We define
x′ = [x, x, x, x] to be the concatenation of two identical copies of x and two identical copies
of the vector resulting from the bitwise negation of x. W.l.o.g. let {x1, . . . , xt} ∈ M be the
l-th hyperedge of M . Then we add the following four hyperedges to M ′:

• {x1, x2, . . . , xt}, {x1, x2, x3, . . . , xt}, {x1, x2, x3, . . . , xt}, and {x1, . . . , xt} if wl = 0,

• {x1, x2, . . . , xt}, {x1, x2, x3, . . . , xt}, {x1, x2, x3, . . . , xt}, and {x1, . . . , xt} if wl = 1.

Note that we use every bit of the vector x exactly four times: Two times xi and two times
xi for every i ∈ [n]. Therefore, it is possible to construct these edges with the bits of x′ such
that M ′ is a perfect matching on the coordinates of x′. We omit this here for the sake of
readability. The important observation here is that we flip an even number of bits in the case
wl = 0 and an odd number of bits if wl = 1 (since t is odd). Since every bit flip results in a
change of the parity of the set of bits, the parity does not change if we flip an even number
of bits and the parity flips if we negate an odd number of bits. Therefore, if wl is the correct
(respectively wrong) parity of {x1, . . . , xt} then the parity of the added sets is 0 (respectively
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v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9 v1,10 v1,11 v1,12

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7 v2,8 v2,9 v2,10 v2,11 v2,12

Figure 6.2.: Worst case instance for t = 3. Bob’s hypermatching (illustrated by the shadings)
corresponds to disjoint 3-cliques among the lower nodes and Alice’ input vector
x ∈ {0, 1}12 corresponds to the edges between upper and lower nodes, i. e., x =
(0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1).

1), i. e., M ′x′ = 02N if Mx ⊕ w = 0N/2 and M ′x′ = 12N if Mx ⊕ w = 1N/2. The number of
ones in x′ ∈ {0, 1}4N is exactly 2N . If t is even, we can just change the cases for the added
edges such that we flip an even number of bits in the case wl = 0 and an odd number of
bits if wl = 1. Overall, this shows that a lower bound for BHHt,N implies a lower bound for
BHH0

t,4N .

Let us now sketch the reduction by Esfandiari et al. [44] from BHH0
2,N to approximate

maximum matching to get the idea how to extend it to the general bound. Let x,M be the
input for Alice and Bob. They construct a graph consisting of 2N nodes denoted by v1,i

and v2,i, for i ∈ {1, . . . , N}. For each bit xi of x ∈ {0, 1}N , Alice adds an edge {v1,i, v2,i}
iff xi = 1 and sends a message to Bob. Bob adds an edge between v2,i and v2,j for each
edge {xi, xj} ∈ M and approximates the size of the matching. If all parities are 1 then the
size of the maximum matching is N/2. If the parities are all 0 then the size is 3N/4. Every
streaming algorithm that approximates better than 3/2 can distinguish between these two
cases. The first observation is that the size of the matching is lower bounded by the number
of ones in x. The second observation is that the added edges by Bob increase the matching
iff the parities of all pairs are 0 and only the edges between the two 0 input bits of Alice
increase the matching. Since it is promised that all parities are equal and the number of ones
is exactly N/2, we can calculate the number of (0, 0) pairs. For our lower bound we show
that this calculation is still possible if Bob adds a t-clique between the corresponding nodes
of the hyperedge.

Theorem 6.5.3. Any randomized streaming algorithm that approximates the size of a maxi-
mum matching of a graph with N nodes within a factor better than 1+ 1

3t/2−1 for some integer
t ≥ 2 needs Ω(N1−1/t) space.

Proof. Let x,M be the input to the BHH0
t,N problem, i. e., M is a perfect t-hypermatching

on the coordinates of x, x has exactly N/2 ones and it is promised that either Mx = 0N/t
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or Mx = 1N/t. We construct the graph for the reduction as described above: For each bit
xi we have two nodes v1,i, v2,i and Alice adds the edge {v1,i, v2,i} iff xi = 1. For each edge
{xi1 , . . . , xit} ∈M Bob adds a t-clique consisting of the nodes v2,i1 , . . . , v2,it . For now, let us
assume t to be odd. We know that the matching is at least N/2 because x has exactly N/2
ones. Since Bob adds a clique for every edge it is always possible to match all (or all but one)
nodes of the clique whose corresponding bit is 0. In the case ofMx = 0N/t the parity of every
edge is 0, i. e., the number of nodes whose corresponding bit is 1 is even. Let M2i ⊆ M be
the hyperedges containing exactly 2i one bits and define l2i := |M2i|. Then we know N/2 =∑bt/2c
i=0 2i · l2i and |M | = N/t =

∑bt/2c
i=0 l2i. For every edge in M2i the size of the maximum

matching within the corresponding subgraph is exactly 2i+ b(t− 2i)/2c = 2i+ bt/2c − i for
every i = 0, . . . , bt/2c (see Fig. 6.2). Thus, we have a matching of size

bt/2c∑
i=0

(2i+ (bt/2c − i))l2i = N

2 + t− 1
2 · N

t
− N

4 = 3N
4 −

N

2t .

If we have Mx = 1N/t then let M2i+1 ⊆ M be the hyperedges containing exactly 2i + 1
one bits and define l2i+1 := |M2i+1|. Again, we know N/2 =

∑bt/2c
i=0 (2i + 1) · l2i+1 and

|M | = N/t =
∑bt/2c
i=0 l2i+1. For every edge in M2i+1 the size of the maximum matching within

the corresponding subgraph is exactly 2i + 1 + (t − 2i − 1)/2 = 2i + 1 + bt/2c − i for every
i = 0, . . . , bt/2c. Thus, the maximum matching has a size of

bt/2c∑
i=0

(2i+ 1 + (bt/2c − i))l2i+1 = N

2 + t− 1
2 · N

t
− 1

2

bt/2c∑
i=0

(2i+ 1) · l2i+1 + N

2t = 3N
4 .

For t even, the size of the matching is

t/2∑
i=0

(2i+ (t− 2i)/2)l2i = N

2 + t

2 ·
N

t
− N

4 = 3N
4

if Mx = 0N/t. Otherwise, we have

t/2∑
i=0

(
2i+ 1 +

⌊
t− 2i− 1

2

⌋)
l2i+1 = N

2 +
t/2∑
i=0

(t/2− i− 1)l2i+1

= N

2 − (t/2− 1) · N
t
− N

4 + N

2t = 3N
4 −

N

2t .

As a consequence, every streaming algorithm that computes an λ-approximation on the size
of a maximum matching with

λ <
(3/4)N

((3/4)− 1/(2t))N = 1/(1− 4/6t) = 1 + 1
3t/2− 1
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can distinguish between Mx = 0N/t and Mx = 1N/t and, thus, needs Ω(N1−1/t) space.

Finally, constructing the Tutte-matrix with randomly chosen entries gives us

Corollary 6.5.4. Any randomized algorithm that approximates the rank of a streamed matrix
A ∈ RN×N within a factor better than 1 + 1

3t/2−1 for some integer t ≥ 2 requires Ω(N1−1/t)
space.
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A. Some Mathematical Facts

A.1. Useful Inequalities

It is well known that the binomial coefficient
(n
k

)
can be bounded above by 2n·H(k/n) where

H(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function. A proof of an even
stronger bound can be found in Lemma 16.19. from [47]: For n ≥ 1 and 0 < ε ≤ 1/2 it is

bε·nc∑
i=0

(
n

i

)
≤ 2H(ε)·n.

It directly implies the bound on the logarithm of a binomial coefficient.

Lemma A.1.1. For n ≥ 1 and 0 < ε ≤ 1/2 it is

log
(

n

bε · nc

)
≤ n ·H(ε).

Next, we show two useful inequalities for calculations with fractions.

Lemma A.1.2. Let a, b, c ∈ N. If a ≥ b then

a+ c

b+ c
≤ a

b

and if a ≤ b then
a+ c

b+ c
≥ a

b
.

Proof. In the first case of a ≥ b we have

a ≥ b⇔ ac+ ab ≥ bc+ ab⇔ a

b
≥ a+ c

b+ c
.

The same calculation also proves the second statement.

A.2. Probability Theory

A random variable follows the hypergeometric distribution if

Pr [X = k] =
(K
k

)
·
(N−K
n−k

)(N
n

)
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where N ∈ N, n,K ∈ {0, . . . , N}. The hypergeometric distribution describes the probability
of k successes in n draws without replacement from a population of size N that contains K
successes.
The following three theorems present useful inequalities for bounding probabilities or ex-

pectations of random variables.

Theorem A.2.1 (Markov’s Inequality). Let X be a nonnegative random variable and a > 0,
then

Pr [X ≥ a] ≤ E [X]
a

.

Theorem A.2.2 (Reverse Markov Inequality [64]). Let X be a random variable with 0 ≤
X ≤ b and E [X] ≥ b

a for some b ∈ N and a > 1. Then for any α > 0

Pr [X ≥ (1− α) ·E [X]] ≥ α

a
.

Proof. The proof is very similar to the proof of Markov’s inequality:

E [X] =
b∑
i=0

i ·Pr [X = i] =
∑

i<(1−α)·E[X]
i ·Pr [X = i] +

∑
i≥(1−α)·E[X]

i ·Pr [X = i]

≤ (1− α)E [X] + b ·Pr [X ≥ (1− α)E [X]]

Solving this inequality for Pr [X ≥ (1− α)E [X]] gives a lower bound of α·E [X] /b ≥ α/a.

Theorem A.2.3 (Chernoff Bound). Let X1, . . . , Xn be independent binary random variables.
Define X =

∑
Xi and let µ = E [X]. Then for any δ ∈ (0, 1)

Pr [X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
and

Pr [X ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.

For any δ > 0 it is

Pr [X ≥ (1 + δ)µ] ≤
( exp(δ)

(1 + δ)1+δ

)µ
.

Theorem A.2.4 (Jensen’s Inequality). If f is a convex function, then for any random vari-
able X it holds

E [f(X)] ≥ f(E [X]).

Proofs of the Chernoff bound and Jensen’s inequality can be found in [101]. As a corollary
of the Chernoff bounds we have
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Corollary A.2.5. For any δ ≥ 1 it is

Pr [X ≥ (1 + δ)µ] ≤ exp(−δµ/3).

Proof. Using Theorem A.2.3 we have

Pr [X ≥ (1 + δ)µ] ≤
( exp(δ)

(1 + δ)1+δ

)µ
.

Thus, it remains to prove that
(

exp(δ)
(1+δ)1+δ

)µ
≤ exp(−δµ/3) which is equivalent to

f(δ) := δ − (1 + δ) ln(1 + δ) + δ/3 ≤ 0.

It is f(1) < 0 and f ′(δ) = 4/3− 1+δ
1+δ − ln(1 + δ) = 1/3− ln(1 + δ). Since f ′(δ) < 0 for δ ≥ 1,

we have f(δ) < 0 for all δ ≥ 1.





B. Experimental Evaluation

B.1. Randomized and Deterministic Implicit Maximal Matching
Algorithms

Number Running Time (RM) Running Time (HS) SBDD Size (RM) SBDD Size (HS)

0 0.243 0.475 567210 1346996

1 0.264 0.571 555968 1394008

2 0.256 0.567 553924 1394008

3 0.059 0.066 153300 220752

4 0.055 0.041 161476 194180

5 0.042 0.043 153300 194180

6 0.064 0.067 196224 252434

7 0.042 0.073 163520 279006

8 0.055 0.072 169652 279006

9 0.09 0.12 240170 368942

10 0.099 0.11 237104 368942

11 0.105 0.17 245280 368942

12 0.067 0.052 236082 245280

13 0.058 0.07 242214 310688

14 0.091 0.066 284116 328062

15 2.565 6.259 3115056 7887796

Table B.1.: Running times and space usage of RM and HS on real-world instances from [105].
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Number Running Time (RM) Running Time (HS) SBDD Size (RM) SBDD Size (HS)

16 2.545 6.167 3115056 7874510

17 4.002 6.329 3115056 7874510

18 1.112 1.81 2053198 2320962

19 0.913 2.043 2035824 2485504

20 0.828 1.931 2035824 2485504

21 0.073 0.036 182938 231994

22 0.059 0.046 163520 240170

23 0.095 0.036 162498 240170

24 0.043 0.022 134904 134904

25 0.037 0.021 135926 135926

26 0.058 0.018 169652 135926

27 0.203 0.331 346458 731752

28 0.188 0.348 317842 677586

29 0.244 0.305 319886 677586

30 0.632 1.176 1314292 2100210

31 0.568 1.114 1280566 2104298

32 0.458 0.568 950460 1410360

Table B.2.: Running times and space usage of RM and HS on real-world instances from [105].
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Figure B.1.: Standard deviations of the running times.
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Figure B.2.: Standard deviation of the space usage.
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B.2. Randomized and Deterministic Implicit Minimum Spanning
Tree Algorithms

B.2.1. MST Instances

Name Size Edges

1 saylr3 1000 1375
2 sherman1 1000 1375
3 tub1000 1000 1498
4 dwt_1005 1005 3808
5 dwt_1007 1007 3784
6 jagmesh2 1009 2928
7 lshp1009 1009 2928
8 cage8 1015 4994
9 delaunay_n10 1024 3056
10 M20PI_n1 1028 1033
11 S20PI_n1 1028 1033
12 orsirr_1 1030 2914
13 stufe 1036 1868
14 rajat04 1041 4317
15 msc01050 1050 14053
16 can_1054 1054 5571
17 can_1072 1072 5686
18 bcsstk08 1074 5943
19 lock1074 1074 25275
20 bcsstk09 1083 8677
21 bcsstk10 1086 10492
22 bcsstm10 1086 10503
23 jagmesh3 1089 3136
24 sherman4 1104 1341
25 email 1133 5451
26 1138_bus 1138 1458
27 jagmesh7 1138 3156
28 jagmesh8 1141 3162
29 ex32 1159 5092
30 eris1176 1176 8688
31 jagmesh5 1180 3285
32 M20PI_n 1182 1198
33 S20PI_n 1182 1198
34 fpga_trans_01 1220 3114
35 fpga_trans_02 1220 3114
36 bcsstk27 1224 27451
37 bcsstm27 1224 27451
38 dwt_1242 1242 4592
39 rdb1250 1250 3025
40 lshp1270 1270 3699

Name Size Edges

41 mhd1280b 1280 10749
42 plbuckle 1282 14681
43 jagmesh9 1349 3876
44 rail_1357 1357 3814
45 jagmesh6 1377 3808
46 ex23 1409 21147
47 spiral 1434 8397
48 jagmesh4 1440 4032
49 msc01440 1440 22415
50 bcspwr06 1454 1923
51 bcsstm12 1473 9093
52 bcsstk11 1473 16384
53 bcsstk12 1473 16384
54 qh1484 1484 2492
55 lshp1561 1561 4560
56 netscience 1589 2742
57 ex4 1601 15349
58 bcspwr07 1612 2106
59 bcspwr08 1624 2213
60 ex7 1633 26455
61 ex6 1651 23941
62 filter2D 1668 4541
63 bcspwr09 1723 2394
64 ex33 1733 10228
65 bcsstk14 1806 30824
66 adder_trans_01 1814 6387
67 adder_trans_02 1814 6387
68 ex3 1821 25432
69 nasa1824 1824 18692
70 ukerbe1_dual 1866 3538
71 rajat12 1879 5528
72 lshp1882 1882 5511
73 plsk1919 1919 4831
74 plat1919 1919 15240
75 bcsstk26 1922 14207
76 rajat02 1960 4621
77 netz4504 1961 2578
78 bwm2000 2000 2998
79 Trefethen_2000 2000 19953
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B.2.2. Deterministic Implicit MST Algorithms

The algorithms are using some priority functions for choosing the smallest edge out of a set of
candidates. The definition of these functions is as follows. The function Π1((x, y, d), (x′, y′, d′))
(which is used in [15]) is equal to 1 iff one of the following is fulfilled

• |d| < |d′|,

• |d| = |d′| and min(|x|, |y|) < min(|x′|, |y′|), or

• |d| = |d′| and min(|x|, |y|) = min(|x′|, |y′|) and max(|x|, |y|) < max(|x′|, |y′|).

The second function is defined by

Π2((x, y, d), (x′, y′, d′)) = |d| < |d′| ∨ (|d| = |d′| ∧ |x| < |x′|)

∨(|d| = |d′| ∧ |x| = |x′| ∧ |y| < |y′|).

Now, we can present the three deterministic implicit minimum spanning tree algorithms.

Algorithm 15 Implicit Variant of Prim’s Minimum Spanning Tree Algorithm
Input: Weighted graph χE(x, y, d) and χV (x))
Output: Minimum spanning tree MST (x, y)
R(x) = 0, MST (x, y) = 0
while R(x) 6≡ χV (x) do

B Determine start node and mark it as connected
Resid(x) = χV (x) ∧R(x)
R(x) = Resid(x) ∧ (∃y)(Resid(y) ∧ (|x| < |y|))
repeat

B Select candidates for insertion
T (x, y, d) = χE(x, y, d) ∧R(x) ∧R(y)
B Select the smallest candidate
C(x, y) = (∃d)(T (x, y, d) ∧ (∃x′, y′, d′)(T (x′, y′, d′) ∧Π2((x′, y′, d′), (x, y, d))))
B Add selected edge
C(x, y) = C(x, y) ∨ C(y, x)
MSTold(x, y) = MST (x, y)
MST (x, y) = MST (x, y) ∨ C(x, y)
B Mark node connected by the new edge
R(x) = R(x) ∨ (∃y)C(x, y)

until MSTold(x, y) ≡MST (x, y)
end while
return MST (x, y)
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Algorithm 16 Implicit Minimum Spanning Tree Algorithm by Bollig [15]
Input: Weighted graph χE(x, y, d) and χV (x))
Output: Minimum spanning tree MST (x, y)
MST (x, y) = 0
repeat

B Compute connected components of the forest
R(x, y) = findTransitiveClosure(MST (x, y))
B Choose smallest edges
C(x, y) = ∃d : χE(x, y, d) ∧R(x, y)∧

∃y′, z, d′ : R(x, z) ∧ χE(z, y′, d′) ∧R(z, y′) ∧Π1((z, y′, d′), (x, y, d))
C(x, y) = C(x, y) ∨ C(y, x)
MSTold(x, y) = MST (x, y)
MST (x, y) = MST (x, y) ∨ C(x, y)

until MSTold(x, y) ≡MST (x, y)
return MST (x, y)

Algorithm 17 Implicit Variant of Kruskal’s Minimum Spanning Tree Algorithm
Input: Weighted graph χE(x, y, d) and χV (x))
Output: Minimum spanning tree MST (x, y)
MST (x, y) = 0
B Each node is a single connected component
R(x, y) = χV (x) ∧ (|x| = |y|)
repeat

B Select all edges connecting nodes from different components
T (x, y, d) = χE(x, y, d) ∧R(x, y)
B Choose the smallest edge
E(x, y)← (∃d)(T (x, y, d) ∧ (∃x′, y′, d′)(T (x′, y′, d′) ∧Π2((x′, y′, d′), (x, y, d))))
E(x, y)← E(x, y) ∨ E(y, x)
B Update information about connected nodes
R(x, y) = R(x, y) ∨ (∃x′, y′)(R(x, y′) ∧ E(y′, x′) ∧R(x′, y))
MSTold(x, y) = MST (x, y)
MST (x, y) = MST (x, y) ∨ E(x, y)

until MSTold(x, y) ≡MST (x, y)
return MST (x, y)
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