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ABSTRACT 

The roles of GABAergic receptors of the Basolateral amygdala (BLA) in the cannabinoid CB1 receptor agonist 
(arachydonilcyclopropylamide; ACPA)-induced anxiolytic-like effect and aversive memory deficit in adult male 
mice were examined in elevated plus-maze task. Results showed that pre-test intra-peritoneal injection of ACPA 
induced anxiolytic-like effect (at dose of 0.05 mg/kg) and aversive memory deficit (at doses of 0.025 and 
0.05 mg/kg). The results revealed that Pre-test intra-BLA infusion of muscimol (GABAA receptor agonist; at 
doses of 0.1 and 0.2 µg/mouse) or bicuculline (GABAA receptor antagonist; at all doses) impaired and did not al-
ter aversive memory, respectively. All previous GABA agents did not have any effects on anxiety-like behav-
iors. Interestingly, pretreatment with a sub-threshold dose of muscimol (0.025 µg/mouse) and bicuculline 
(0.025 µg/mouse) did not alter anxiolytic-like behaviors induced by ACPA, while both drugs restored ACPA-
induced amnesia. Moreover, muscimol or bicuculline increased and decreased ACPA-induced locomotor activi-
ty, respectively. Finally the data may indicate that BLA GABAA receptors have critical and different roles in an-
xiolytic-like effect, aversive memory deficit and locomotor activity induced by ACPA. 
 
Keywords: ACPA, GABA, anxiety, memory, amygdala 
 
 
 
 

INTRODUCTION 

Cannabis sativa (Marijuana) is common-
ly used all over the world. The plant extract 
composes of almost 70 cannabinoid com-

pounds (Burns, 2006). Various researches 
have shown that the administration of mari-
juana affects various cognitive and non-
cognitive behaviors including impairment of 
spatial (Uchida et al., 2012; Wise et al., 
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2009) and non-spatial learning and memory, 
anxiety-like behaviors, mood, locomotor, 
and euphoria experience both in animal 
models and human subjects (Burgdorf et al., 
2011; Kilmer et al., 2011; King et al., 2002; 
Pacula, 2011). Some reports revealed that the 
endogenous cannabinoid system is critically 
linked to the extinction of aversive memories 
(Marsicano et al., 2002). Endocannabinoids 
are thought to be retrograde messengers re-
leased by neurons to modulate release of 
neurotransmitters (Kreitzer and Regehr, 
2001; Nicolle et al., 2001; Ohno-Shosaku et 
al., 2001; Wilson and Mogil, 2001). Three 
main cannabinoid receptors have been identi-
fied so far as CB1, CB2, and CB3 (non-CB1 
and -CB2), which are engaged in canna-
binoids’ functions (Mackiewicz et al., 2006; 
Ryberg et al., 2008). CB1 receptors are plen-
tifully expressed in the central nervous sys-
tem regions such as the hippocampus, amyg-
dala, cerebellum and cortex (Davies et al., 
2002; Pertwee and Ross, 2002; Wilson et al., 
2002). CB2 receptors mostly are expressed 
peripherally rather than in brain tissues. It is 
believed that neuropsychological functions 
of endocannabinoids are related to CB1 re-
ceptors. CB1 is mainly expressed in the 
amygdala (Katona et al., 2001; McDonald 
and Mascagni, 2001), an essential part and 
component of the limbic circuitry. The 
amygdala is an integral part in controlling 
the emotional behavior such as conditioned 
fear, anxiety (McKernan and Shinnick-
Gallagher, 1997), and pain perception 
(Gauriau and Bernard, 2002; Paulson et al., 
2002).  

Amygdala nuclei mainly are classified 
into the three groups:  
1)  the deep or basolateral group, which in-

cludes the lateral nucleus, the basal nu-
cleus, and accessory basal nucleus used 
as auxiliary and helping nucleus;  

2) the superficial or cortical-like group, 
which consists of cortical nuclei and nu-
cleus of the lateral olfactory tract; and  

3)  the centromedial group composed of the 
medial and central nuclei (Faber and Sah, 

2003; Sah and Lopez De Armentia, 
2003).  
It has been proven that CB1 cannabinoid 

receptors are expressed at high levels in the 
BLA amygdala nuclei (Herring et al., 2003; 
Marsicano et al., 2002). Expression of the 
CB1 protein is limited to a definite and no-
ticeable subpopulation of GABAergic inter-
neurons corresponding to large cholecysto-
kinin-positive cells (Jazi et al., 2009). In-
depth and comprehensive analysis has shown 
that CB1 receptors exist presynaptically on 
cholecystokinin-positive axon terminals, 
which establish symmetrical GABAergic 
synapses with their postsynaptic targets 
(Azad et al., 2003; Katona et al., 2001). In 
the mammals brain, γ-aminobutyric acid 
(GABA) is the most abundant inhibitory 
neurotransmitter (Nicoll et al., 1990), work-
ing by means of different receptor types: the 
ionotropic GABAA and GABAC receptors 
(both of which activate Cl− currents) and the 
metabotropic GABAB receptor (G protein 
coupled receptor). The present study, in ac-
cordance with the above mentioned data, was 
designed to examine the role of BLA GA-
BAergic (GABAA receptors) system on the 
ACPA (selective CB1 cannabinoid receptor 
agonist), which causes emotional amnesia in 
the EPM test-retest protocol in mice.  

 
MATERIALS AND METHODS 

Animals 
Male albino NMRI (Institute Pasture, 

Iran) mice weighting 27-30 g (9-10 week 
old), were applied. The animals were kept 
under a 12/12-h light-dark cycle, with light 
beginning at 0700 h and at a controlled tem-
perature (22 ± 2 c). They had free access to 
food and water. The animals were housed 10 
per cage (45cm × 30cm × 15cm). Eight ani-
mals were used in each experiment. Each an-
imal was only used once. All procedures in 
this investigation are in accordance with the 
guide for the Care and Use of Laboratory 
Animals as adopted by the Ethics Committee 
of Faculty of Science, Tehran University 
(357: November 2000). 
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Drugs  
Ketamine and xylazine (Alfasan Chemi-

cal Co., Woerden, Holland) were applied for 
animal anesthesia. Muscimol (GABAA re-
ceptor agonist), bicuculline (GABAA recep-
tor antagonist) and ACPA (CB1 cannabinoid 
receptor agonist) have been used in this 
study that purchased from Tocris, Bristol, 
UK). All drugs were dissolved in sterile 
0.9 % saline, just before the experiment, ex-
cept for bicuculline. Bicuculline was dis-
solved in 1 drop of glacial acetic acid using a 
Hamilton microsyringe, then made up to a 
volume of 5 ml with sterile 0.9 % saline and 
then diluted to the required volume. Musci-
mol and bicuculline were administered into 
the BLA of amygdala at volume of 0.6 µl/ 
mouse (0.3 µl/site). The control animals re-
ceived saline or vehicle. The timing of drugs 
administration was defined as per our pilot 
results and the previous studies (Chegini et 
al., 2014; Yousefi et al., 2013). 

 
Surgical procedures and microinjections 

All surgical procedures were organized 
under ketamine-xylazine (100 mg/kg keta-
mine-5 mg/kg xylazine) anesthesia. Cannu-
lae were implanted with bilateral 27-gauge 
stainless steel cannulas into either the BLA 
of amygdala. Drugs were injected into the 
amygdala (coordinates from bregma as fol-
lows: AP = -0.7 mm, ML = ± 2.7, DV = 3. 8 
(Paxinos and Franklin, 2001). Skull cap was 
made from dental acrylic. Finally, stainless 
steel wires were inserted with plastic caps in-
to each cannula to prevent any debris from 
entering the brain and to maintain patency of 
the hollow metal cylinder. The injecting 
needle extended 1 mm beyond the tip of the 
cannulas, reflecting the ultimate desired 
depth of the apparatus and the actual depth 
the infusion needle reached during antago-
nist or buffer infusion. Following surgery all 
animals were allowed 1 week to recover 
from surgery and get cleared from anesthet-
ics effect. For drug infusion, animals were 
gently restrained in hand and the stylets were 
removed from the guide cannulae and re-
placed by 27-gauge injection needles. Each 

injection unit was connected by polyethylene 
tubing to a 1 µl Hamilton syringe. The for-
ward movement of a small air bubble inside 
the polyethylene tubing interposed among 
the upper end of needle and the microsyringe 
was taken as evidence of drug flow. The in-
jection needles were left in place for an addi-
tional 60 s to allow diffusion after which the 
stylets were reinserted into the guide cannu-
lae (Ebrahimi-ghiri et al., 2012; Nasehi et al., 
2012; Zarrindast et al., 2011a).  

 
Apparatus and behavioral testing 

We applied a wooden elevated plus-maze 
(EPM) apparatus set up 50 cm above the 
floor which included two oppositely posi-
tioned open-arms (50 × 10 cm) and two en-
closed arms (50 × 10 × 40 cm), surrounded 
by1cm high Plexiglas ledge so that to pre-
vent falls. The junction area of the four arms 
(central platform) measured 10 × 10 cm 
(Carobrez and Bertoglio, 2005; Zarrindast et 
al., 2010, 2011b). The EPM test is used to 
assess anxiety and memory processes in ro-
dent models of CNS disorders.  

Findings demonstrate that aversive learn-
ing and memory may be studied at the same 
time as anxiety in rodents exposed to the 
EPM test/retest. Animals retested in the 
EPM avoid exploring the open spaces, dis-
playing a clear enclosed arm preference with 
a low percentage of entries and time spent in 
the open arms relative to their respective lev-
el on testing. The aversive and fear-inductor 
nature of the open arms represents a useful 
tool for the study of aversively motivated 
learning processes in the EPM. For example, 
learning and memory have been studied in 
the EPM through avoidance to open-arms in 
the retest session. The different analysis in-
dicated that this response of further avoid-
ance to open-arms is gradually acquired 
throughout testing, and is thought to reflect 
the retrieval of the aversive memory related 
to the initial EPM exploration (Chegini et al., 
2014; Valizadegan et al., 2013). 

Mice were left undisturbed to the testing 
room 1 hour prior to the test so that to adapt 
to the testing environment. The mice were 
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individually placed in the center of the maze 
facing a closed arm and allowed 5 min of 
free exploration. Experiments were under a 
low light (40-lux), during the day phase, be-
tween 9:00 and 14:00 h. During this 5 min, 
the percentage of open arm time and open 
arm entries were calculated as follows:  
(a) %OAT (the ratio of time spent in the 

open arms to total time spent in any 
arms×100);  

(b) %OAE (the ratio of entries into open 
arms to total entries×100) and CAE 
(close arms entries as a relative pure in-
dex of locomotor activity).  

These behaviors were recorded by a video 
camera while a monitor and a computer-
recording system were installed in an adja-
cent room. Raw data were used to manually 
calculate these behaviors. Experiments were 
performed by someone blind to doses of 
drugs and statistical results.  

 
Experimental design 

Experiment 1: effect of pretest micro-
injections of muscimol and bicuculline on 
open-arm exploratory-like behaviors 

To substantiate that the microinjection of 
drugs into BLA involves in anxiety, the drug 
infusion took place before EPM testing. In 
the present experiment nine groups of ani-
mals received saline (0.6 µl/mouse, 3 
groups), vehicle (0.6 µl/mouse, 3 groups), 
muscimol (0.025, 0.05, 0.1, and 0.2 µg/ 
mouse) or bicuculline (0.025, 0.05, 0.1, 0.2 
and 0.4 µg/mouse), 5 min. before testing. In 
order to investigate possible after-effect in-
tra-BLA drugs effects on aversive learning 
during test day to aversive memory in retest 
day, treated groups were retested in the EPM 
24 h later un-drugged.  

 

Experiment 2:  
effect of pretest microinjections of ACPA on 
open-arm exploratory-like behaviors.  

To provide information on the impact of 
ACPA on anxiety, the drug infusion hap-
pened before EPM testing. In this experi-
ment 4 groups of animals received saline 

(10 ml/kg, i.p.) and ACPA (0.0125, 0.025, 
and 0.05 mg/kg, i.p.) 15 minutes before test-
ing. To inquire possible carry-over drug ef-
fects on aversive learning, treated groups 
were retested in the EPM 24 h later un-
drugged.  

 

Experiment 3: the effect of pretest  
microinjections of muscimol and bicuculline 
on open-arm exploratory-like behaviors  
induced by ACPA 

To supply evidence that possible interac-
tion of GABAA  BLA receptors with explora-
tory-like behaviors induced by ACPA, the 
drugs infusion were made before EPM test-
ing for anxiety-like behavior assessment. In 
these experiments the animals received sa-
line (0.6 µl/mouse, 4 groups), sub-threshold 
dose of muscimol (0.025 µg/mouse, 4 
groups) and bicuculline (0.025 µg/mouse, 4 
groups) intra-BLA, 5 min before testing. 
Furthermore, these animals also received sa-
line (10 ml/kg, i.p.) and sub-threshold and 
effective doses of ACPA (0.0125, 0.025 and, 
0.05 mg/kg, i.p.) 15 min before testing. In 
order to look into the possible side-effects of 
intra-BLA drugs on aversive learning, treat-
ed groups were retested in the EPM 24 h lat-
er un-drugged.  

 
Verification of cannulae placements 

After the completion of the experimental 
sessions, each animal was eliminated with an 
overdose of chloroform. Animals received 
intra-BLA injection of ink (0.3 l/side; 1 % 
aquatic methylene blue solution). The brains 
were then removed and fixed in a 10 % for-
malin solution for 10 days before sectioning. 
Sections were analyzed to find out the loca-
tion of the cannulae aimed for bilateral BLA. 
The cannulae placements were checked by 
using the atlas of Paxinos and Franklin 
(2001). Data which were obtained from ani-
mals with injection into the specified sites, 
outside these regions were not taken into the 
consideration for the analysis.  
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Statistical analysis 
Given the normality of distribution and 

the homogeneity of variance, the results were 
statistically evaluated using the repeated 
measure and two-way analysis of variance 
(ANOVA), in which mean ± S.E.M was em-
ployed for the comparison of outcomes be-
tween experimental groups and their corre-
sponding controls. Where F-value was sig-
nificant, one-way analysis of variance 
(ANOVA) and post-hoc analysis (Tukey’s 
test) were performed. Differences with 
P < 0.05 between groups were considered 
statistically significant. 

 
RESULTS 

Histology 
For the statistical analyses, we included 

the data only from animals with correct can-
nulae implants (320 animals). 27 animals 

with incorrectly positioned cannulae tips 
were excluded. 

 

The effect of pretest microinjections of 
muscimol into BLA on open-arm explorato-
ry-like behaviors 

Repeated measure and post-hoc analysis 
demonstrated that intra-BLA injection of 
muscimol at dose 0.1 and 0.2 µg/mouse in-
creased %OAT (Figure 1; Panel 2A) and 
%CAE (Figure 1; Panel 2B) but not CAE 
(Figure 1; Panel 2C) in the retest day, while 
these interventions did not alter all behaviors 
in the test day (Figure 1; Panels 1A, 1B and 
1C). In conclusion, the data uncovered that 
muscimol did not induce any effect on anxie-
ty behaviors, while impaired aversive 
memory acquisition. All the experimental 
repeated measure results are summarized in 
the Table 1. 

 

 
Figure 1: Open-arms exploratory behavior following pretest microinjections of muscimol (Panels 1 
and 2) and bicuculline (Panels 3 and 4) into BLA. After 24 h, all groups were retested in the EPM un-
drugged. %OAT (A); %OAE (B) and CAE (C). Values are expressed as mean±S.E.M (n=8 in each 
group).  
**P < 0.05 different from respective saline group in the panel 1. +P < 0.05, ++P < 0.01 and +++P < 0.001 different from control 
saline group in Panel 2. ψ < 0.05 different from the saline group in the Panel 4. 
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Table 1: The table describes repeated measure analysis with P values for the effect of GABAA agonist 
and antagonist on exploratory-like behaviors.  

Experiments Behaviors Day effect Dose effect 
Day-Dose inter-

action effect 

Final results 
conclusion for 

each experiment

Repeated measure analysis 
results for muscimol  
microinjection into the BLA 
(between Panel 1 and 2 of 
Figure 1) 

 F(1,35) P F(4,35) P F(4,35) P  

%OAT 64.25 0.0005 12.234 0.0005 10.15 0.0005 Muscimol into 
BLA impaired 
aversive memory 
acquisition 

%OAE 6.511 0.001 15.342 0.0005 5.978 0.001 

CAE 2.6545 0.087 3.477 0.0921 3.054 0.0857 

Repeated measure analysis 
results for bicuculline micro-
injection into the BLA (be-
tween Panel 3 and 4 of Fig-
ure 1) 

 F(1,42) P F(5,46) P F (4,46) P  

%OAT 8.45 0.0005 4.657 0.001 4.021 0.0005 Bicuculline into 
BLA decreased 
locomotor activity 

%OAE 6.245 0.001 5.346 0.001 3.542 0.052 

CAE 3.546 0.046 1.645 0.1648 4.679 0.041 

 
 

The effect of pretest microinjections of 
bicuculline into BLA on open-arm explora-
tory-like behaviors 

Repeated measure and post-hoc analysis 
demonstrated that intra-BLA injection of 
bicuculline at dose 0.4 µg/mouse decreased 
CAE (Figure 1; Panel 4C) but did not alter 
%OAT (Figure 1; Panel 4A) and %CAE 
(Figure 1; Panel 4B) in the retest day. The 
interventions did not alter any behaviors in 
the test day (Figure 1; Panels 3A, 3B and 
3C). In conclusion, the data showed that 
bicuculline did not induce any effect on anx-
iety behaviors and aversive memory ac-
quired. All the experimental repeated meas-
ure results are summarized in the Table 1. 

 
The effect of pretest intraperitoneal  
injections of ACPA on open-arm  
exploratory-like behaviors 

Repeated measure and post-hoc showed 
that intraperitoneal injection of ACPA at the 
highest dose (0.05 mg/kg) increased %OAT 
(Figure 2; Panel 1A) and %CAE (Figure 2; 
Panel 1B) but not CAE (Figure 2; Panel 1C) 
in the test day. The same interventions in the 
retest day showed that ACPA increased 
%OAT (Figure 2; panel 2A at doses 0.025 
and 0.05 mg/kg) and %CAE (Figure 2; Panel 
2B at dose 0.05 mg/kg) but not CAE (Figure 
2; Panel 2C). In conclusion, the data demon-
strated that ACPA induced anxiolytic-like 
effect and impaired aversive memory acqui-

sition. All the experimental repeated measure 
results are summarized in the Table 2.  

 
The effect of pretest microinjections of 
muscimol and bicuculline on open-arm ex-
ploratory-like behaviors induced by ACPA 

Two-way ANOVA and post-hoc analysis 
showed that pretest intra-BLA injection of 
sub-threshold dose of muscimol (0.025 µg/ 
mouse) or bicuculline (0.025 µg/mouse) po-
tentiated %OAT (Figure 2 Panel 4A for 
muscimol and Figure 2 Panel 6A for bicucul-
line) and %OAE (Figure 2 Panel 4B for 
muscimol and Figure 2 Panel 6B for bicucul-
line) induced by ACPA in the retest day. The 
interventions showed that muscimol and 
bicuculline did not %OAT (Figure 2 Panel 
3A for muscimol and Figure 2 Panel 5A for 
bicuculline) and %OAE (Figure 2 Panel 3B 
for muscimol and Figure 2 Panel 5B for bi-
cuculline) induced by ACPA in the test day. 
Interesting data showed co-administration of 
muscimol or bicuculline with ACPA decree-
sed and increased respectively, locomotor 
activity both test and retest days (Figure 2 
Panel 3C and 4C for muscimol and Figure 2 
Panel 5C and 6C for bicuculline). Finally, 
the data revealed that the main effect of 
muscimol and bicuculline is on ACPA-in-
duced locomotor activity rather than anxiety 
and aversive memory. All the experimental 
repeated measure results are summarized in 
the Table 2. 
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Figure 2: Panels 3 and 4 for muscimol and Panels 5 and 6 for bicuculline show the effect of intra-
BLA pre-testing injection of sub-threshold dose muscimol and bicuculline on open-arms exploratory-
like behavior induced by both sub-threshold and effective doses of ACPA. After 24 h, all groups were 
retested in the EPM un-drugged which showed by %OAT (A), %OAE (B) and CAE (C). Values are 
expressed as mean±S.E.M (n = 8 in each group).  
*P < 0.05 and **P < 0.01 different from saline group in the Panel 1. ψψψP < 0.001 different from saline group in Panel 2. For 
panels 3 φφ < 0.01 and φφφ < 0.001 are compared to respective group in the Panel 1, while δ < 0.05, δδ < 0.01 and 
δδδ < 0.001 are compared to the respective group in the Panel 2.  

 
DISCUSSION 

It has been presumed that in the events 
which are connected to the feelings and emo-
tions, the amygdala (a major brain region) 
regulates hippocampal formation activity for 
driving information recording to cortical are-
as. For instance, BLA  activation into inacti-
vation situation (i.e. damage)  change 
memory from the event in favor of the essen-
tial part to visual details (Adolphs et al., 

2001, 2005; Canli et al., 2000), thus, it seems 
that amygdala and the hippocampal system 
jointly play a critical role in the emotional 
memory improvement (Dolcos et al., 2004). 
Moreover, emotional situation including 
aversion and fear, may improve or may 
weaken memory formation (McGaugh, 
2004). Since the existing animal models of 
learning and memory have a limited ability 
to detect the effect of drugs on anxiety and 
fear memory, as measured by these models, 
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Table 2: Repeated measure analysis with P values for the effect of ACPA by itself and two-way ANO-
VA results for the effect of GABAA agonist and antagonist on exploratory-like behaviors induced by 
ACPA.  

Experiments Behaviors 
Treatment  

effect 
Dose effect 

Treatment-dose 
interaction ef-

fect 

Final results con-
clusion for each 

experiment 

Two-way ANOVA analysis 
results for the effect of 
muscimol microinjection in-
to the BLA on exploratory-
like behaviors induced by 
ACPA in the test day (be-
tween panel 1 and 3 of Fig-
ure 2) 

 F(1,56) P F(3,56) P F(3,56) P  

%OAT 2.314 0.0845 2.154 0.152 2.351 0.129 
Muscimol reduced 
locomotor activity 
induced by ACPA 

%OAE 2.945 0.164 2.364 0.124 1.872 0.0961 

CAE 3.214 0.042 3.134 0.048 3.045 0.05 

Two-way ANOVA analysis 
results for the effect of 
muscimol microinjection in-
to the BLA on exploratory-
like behaviors induced by 
ACPA in the retest day (be-
tween panel 2 and 4 of Fig-
ure 2) 

 F(1,56) P F(3,56) P F(3,56) P  

%OAT 6.342 0.001 7.125 0.001 3.164 0.05 Muscimol potentiat-
ed and decreased 
aversive memory 
deficit and locomo-
tor activity induced 
by ACPA, respec-
tively 

%OAE 3.021 0.041 4.12 0.04 5.215 0.01 

CAE 4.284 0.034 2.641 0.07 4.12 0.01 

Two-way ANOVA analysis 
results for the effect of 
bicuculline microinjection 
into the BLA on explorato-
ry-like behaviors induced 
by ACPA in the test day 
(between panel 1 and 5 of 
Figure 2) 

 F(1,56) P F(3,56) P F(3,56) P  

%OAT 2.31 0.081 2.745 0.084 1.97 0.245 
Bicuculline in-
creased locomotor 
activity induced by 
ACPA 

%OAE 2.54 0.154 1.87 0.86 1.548 0.154 

CAE 7.25 0.001 5.21 0.001 21.354 0.001 

Two-way ANOVA analysis 
results for the effect of 
bicuculline microinjection 
into the BLA on explorato-
ry-like behaviors induced 
by ACPA in the retest day 
(between panel 2 and 6 of 
Figure 2) 

 F(1,56) P F(3,56) P F(3,56) P  

%OAT 5.31 0.001 5.02 0.001 4.32 0.001 Bicuculline potenti-
ated and increased 
aversive memory 
deficit and locomo-
tor activity induced 
by ACPA, respec-
tively 

%OAE 3.25 0.01 3.04 0.01 2.91 0.048 

CAE 5.85 0.001 6.65 0.001 8.14 0.0005 

 
 

the exact subject matter and points may be 
misinterpreted and misunderstood. There-
fore, elevated plus maze (EPM) task is an at-
tempt to assess the effects of drugs on anxie-
ty, learning, and memory happening at the 
same time in rodents (Asth et al., 2012). The 
justification for utilizing the EPM in testing 
anxiety relies on the natural tendency of an-
imals to avoid dangerous situation when they 
face height and open spaces (Chegini et al., 
2014; Zarrindast et al., 2010). 

 

The effect of ACPA on open-arm  
exploratory behaviors in native mice  
subjected to the EPM  

The present results show that, intra-
peritoneal infusion of selective CB1 canna-
binoid receptor agonist, ACPA, make anxio-
lytic-like behaviors appear in the EPM. 
Moreover, anxiolytic effects of ACPA re-
vealed in retest day. These results propose an 
impairment of aversive memory acquisition 
on testing presented itself in ACPA-treated 
groups. Meanwhile, the drug did not alter lo-
comotor activity in the test and retest days. It 
has been showed that cannabinoids have 
several effects on the cognitive and non-
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cognitive behaviors such as short-term 
memory deficit, mood alterations, increased 
body awareness, decreased attention, sleepi-
ness and discoordination (Court, 1998; 
Heishman et al., 1997). In terms of anxiety-
like behaviors, it appears that the effects of 
cannabinoid agonists on this phenomenon 
are complex and often contradictory and 
conflicting in both humans and animals. In 
the anxiety animal model these agents in-
duced dose-dependent regulation which 
seems the animal is strongly affected by en-
vironmental context. For instance, low doses 
of nabilone (Onaivi et al., 1990), CP55, 940 
(Marco et al., 2004) and Delta9-tetrahydro-
cannabinol (Berrendero and Maldonado, 
2002) as CB1 cannabinoid receptor agonists 
induced anxiolytic-like effects in the EPM 
and light–dark tasks. On the other hand, the 
CB1 knockout mice also showed an anxio-
genic-like behavior in the EPM and social 
interaction task (Haller et al., 2002; Uriguen 
et al., 2004). A recent study reported that 
cannabinoid agonists at high and low doses 
induced opposite effects on cognitive behav-
iors (Moreira and Wotjak, 2010). For in-
stance, high and low doses of these com-
pounds induced anxiogenic- and anxiolytic-
like behaviors, respectively. The effects can 
be blocked by CB1 cannabinoid antagonists 
(Haller et al., 2007).  

A large body of evidence shows that the 
endocannabinoidergic system plays a crucial 
role in physiological mechanisms of learning 
and memory (Lichtman et al., 2002; 
Marsicano et al., 2002). For example, sys-
temic injections of Δ9-THC, anandamide or 
intra-hippocampal injections of WIN55212-2 
impair memory acquisition, consolidation, 
and recall in rodents (Costanzi et al., 2004; 
Mishima et al., 2001; Nasehi et al., 2010). In 
terms of emotional memory, several brain 
regions including hippocampus, amygdala, 
and cortex with high density of CB1 receptor 
expression have critical role in emotional 
behavior regulation (Viveros et al., 2005). It 
seems that the endocannabinoidergic system 
plays a major role in aversive memory ex-
tinction (Marsicano et al., 2002). CB1 can-

nabinoid receptors are one of the major re-
ceptors in the emotional learning and 
memory and its neural plasticity process 
(Laviolette and Grace, 2006; Marsicano et 
al., 2002) and they have high expression in 
BLA and medial prefrontal cortex (mPFC) 
(McDonald and Mascagni, 2001).  

 
The effect of BLA GABAA agents on open-
arm exploratory behaviors 

The results showed that intra-BLA infu-
sion of muscimol and bicuculline did not al-
ter anxiety-like behaviors. Interestedly, fur-
ther analyses showed that muscimol im-
paired memory formation and locomotor ac-
tivity. A large number of studies have re-
ported that amygdale plays an important role 
in anxiety-like behaviors (Roozendaal et al., 
2009); specifically amygdale BLA nucleus 
(Wang et al., 2011). The amygdale BLA and 
lateral nucleus receives GABAergic neuron 
input from the raphe nucleus (Smith and 
Porrino, 2008). This system and its receptors 
are involved in the regulation of cognitive 
and non-cognitive behaviors including anxie-
ty-like behaviors, emotional memory, loco-
motor activity, attention, biorhythms, food 
intake and body temperature (Abrams et al., 
2005; Bonn et al., 2013; Holmes, 2008; 
Kriegebaum et al., 2010). GABA is the ma-
jor inhibitory neurotransmitter in the mam-
mals CNS, including the brain stem. The 
GABA induces most of its effects through 
activation of either GABAA or GABAB re-
ceptors. Synaptically released GABA acti-
vates postsynaptic GABAB receptors, which 
increase the membrane permeability to chlo-
ride, evoking a hyper-polarizing inhibitory 
postsynaptic current (IPSC). Inside the syn-
apse, the concentration of GABA to a rela-
tively high level (milimolar range) is in-
creased by synaptic release (Cathala et al., 
2005; Farrant and Nusser, 2005). The short 
current which is named as “phasic” inhibi-
tion happens as a result of the synaptic re-
lease of GABA from presynaptic terminals. 
But new detailed examinations have revealed 
that GABA released from presynaptic termi-
nals can escape, or spillover, from the synap-
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tic cleft, or there may be a spillover of 
GABA from the synaptic cleft, leading to ac-
tivations of the receptors either at the syn-
apse or distant from it (Cathala et al., 2005; 
Farrant and Nusser, 2005). On the contrary 
our results  two previous studies showed that 
GABAA receptor activation induced anxio-
lytic-like behaviors (Naseri et al., 2014; 
Rezayat et al., 2005), Many drugs such as 
benzodiazepines, barbiturates and alcohols 
seem to elicits their effects via GABAA re-
ceptors, (Morrow, 1995). GABAA receptors 
are ligand-gated heterooligomeric complexes 
comprising distinct subunits. Pharmacologi-
cal studies have highlighted the crucial role 
of the GABAergic system in the regulation 
of anxiety. For instance, using pentylene-
tetrazole (a GABAA receptors blocking 
agent) is shown to induce anxiety-like ef-
fects. On the contrary, using benzodiaze-
pines (with increasing effect on GABAergic 
transmission) induce anxiolytic-like effect 
(Kalueff and Nutt, 1997). The data from 
bicuculline-included experiments may sug-
gest that under normal conditions, the BLA 
GABAA receptors are not necessary for the 
anxiety-like behaviors and aversive memory 
formation. Some other studies have reported 
similar effects of intra-CA1 bicuculline on 
memory retention (Chegini et al., 2014; 
Zarrindast et al., 2002), spatial change and 
non-spatial novelty detection (Yousefi et al., 
2013). 

 
The effect of BLA GABAergic system on 
open-arm exploratory behavior induced by 
ACPA 

The data uncovered that muscimol and 
bicuculline did not alter anxiolytic-like be-
haviors induced by ACPA, while both drugs 
restored ACPA-induced amnesia. Interest-
ingly muscimol or bicuculline increased and 
decreased ACPA-induced locomotor activi-
ty, respectively. This mainly showed that 
there is a dealing mechanism between anxie-
ty and cannabinoid level, to the extent that 
anxiety events increased endocannabinoid 
tone level for the reduction of anxiety phe-
nomenon, for instance, the increase of anan-

damide following a foot shock after hearing 
in the amygdale (Marsicano et al., 2002). 
Moreover, the contribution of amygdale en-
docannabinoids in the extinction of aversive 
memories has been also proposed (Azad et 
al., 2004). It has been reported that in stress-
ful stimuli, as well as rewarding experiences, 
mediate changes in the expression level of 
the CB1 receptor specifically in GABAergic 
terminals (Rossi et al., 2008; Yamodo et al., 
2010). It is well worth considering that, the 
stress-mediated regulation of the GABAergic 
CB1 receptor has been postulated as a com-
pensatory mechanism needed to restore the 
balance between GABAergic and glutama-
tergic neurotransmission in emotional home-
ostasis (Ruehle et al., 2012). CB1 canna-
binoid receptors are expressed in GABAer-
gic terminals of the amygdale (Haring et al., 
2007). Thus, the endocannabinoidergic sys-
tem can modulate GABAergic transmission 
through regulating the activity of afferents 
into GABA producing neurons (Haj-
Dahmane and Shen, 2005), and through di-
rectly modulating the functions of a subset of 
GABAergic neurons (Haring et al., 2007). In 
the connection of cannabinoidergic and GA-
BAergic systems interactions, some reports 
have mentioned that cannabinoids and their 
receptor agonists such as anandamide and 
ACPA inhibit the uptake of GABA into the 
cortical synaptosomes and this may happen 
through reducing the activity of the uptake 
energy source Na+/K+-ATPase (Steffens and 
Feuerstein, 2004). Thus, using of canna-
binoid receptor agonist, blocks respective 
transporters and finally increases GABA 
level in different brain regions (Köfalvi, 
2007). In vivo study showed GABAA recep-
tors have a critical role in modulation effect 
of cannabinoid (Beinfeld and Connolly, 
2001). For example it showed that blocked 
of GABAA receptors by bicuculline com-
pletely restored Δ9-THC-induced deficits in 
both the Morris water maze working-
memory task and an alternation T-maze task 
(Varvel et al., 2005). However a study 
showed that microinjection of the GABAA 
agonist muscimol into the central nucleus of 
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the amygdala but not into the BLA nucleus 
of the amygdala, reduced the antinociceptive 
effects of systemic WIN55, 212-2 (Manning 
et al., 2003), Rea and et al. (2013) demon-
strated that CB1 receptors in the BLA facili-
tate the expression of fear-conditioned anal-
gesia, through a mechanism which is likely 
to involve the modulation of GABAA signal-
ing. 

 
CONCLUSION 

In conclusion, the findings of the present 
study proposed that ACPA induced anxiolyt-
ic-like effect and aversive memory deficit. 
Furthermore, muscimol and bicuculline did 
not and restored anxiolytic-like effect and 
aversive memory deficit by ACPA, respec-
tively. Moreover, muscimol or bicuculline 
increased and decreased locomotion by AC-
PA, respectively. It seems that the main ef-
fect of GABAA in ACPA-induced behaviors 
is on locomotor activity rather than anxiety 
and aversive memory behaviors.  
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