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Abstract

The aim is the prediction of the failure time of prestressed concrete beams under low
cyclic load. Since the experiments last long for low load, accelerated failure tests with higher
load are conducted. However, the accelerated tests are expensive so that only few tests are
available. To obtain a more precise failure time prediction, the additional information of
time points of breakage of tension wires is used. These breakage time points are modeled
by a nonlinear birth process. This allows not only point prediction of a critical number
of broken tension wires but also prediction intervals which express the uncertainty of the
prediction.

1 Introduction

Actual the assessment of existing prestressed concrete bridges by means of recalculation in con-
junction with rehabilitation and strengthening is gaining more and more importance compared
to the construction of new bridges. The current design codes had been developed over decades
always adapting new design approaches current at that time. Even for this reason the recalcu-
lation of older existing structures often leads to deficiencies concerning load-bearing capacity,
durability and resistance against fatigue. The ongoing increase of traffic concerning heavy
trucks underlines the importance of assessment and maintenance of the transport networks and
particularly the bridge stock, the latter with regard to structural safety.

Beside corrosion effects, the major influence for time dependent losses of load-bearing capacity
is the phenomenon of fatigue failure. Fatigue is caused by frequent cyclic loads due to the
crossing of heavy trucks on the bridge deck. Beside steel bridges, prestressed concrete bridges
are affected as well, see e.g. Al-Zaid and Nowak (1988), Higgins et al. (2006). For the design of
new bridges against fatigue or the assessment of existing bridges by means of recalculation, S-N
curves are needed. The latter describe the fatigue resistance of the materials. With regard to the
prestressed concrete bridges, this refers especially to the embedded reinforcing and prestressing
steel in cracked sections. For the design and assessment of bridges, S-N curves are needed in a
range up to 108 load cycles. To obtain values for the whole range and for a better understanding
of the fatigue behavior of prestressed concrete bridges, one has to carry out long running tests
which are extremely expensive. Hence, there is a great need to optimize these tests procedures.

From historical view the first documented fatigue tests on prestressed concrete beams will be
found in Magnel (1956). Larger test series carried out at the University of Texas are described
by Overman and Breen (1984). Further studies can be found in Rao and Frantz (1996) and
Carpinteri et al. (2005). A comprehensive survey regarding fatigue tests on prestressing steel
in air and embedded in concrete is given in Heeke (2016). The latter leads to fatigue strength
which is significantly less than studied before.

During the course of the Collaborative Research Center SFB 823 Statistical modeling of non-
linear dynamic processes, large-scale test series with stress ranges down to 50 MPa and failure
times in a range up to 108 load cycles are carried out at TU Dortmund University. The aim
of the ongoing experimental studies described subsequently is to investigate fatigue behavior
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and to provide characteristic S-N curves for prestressing steel in curved steel ducts embedded
in concrete of post-tensioned members. S-N curves belong to the basics which are needed to
verify prestressed concrete bridges against fatigue. However, tests under cyclic loading of post-
tensioned concrete beams may be very time-consuming and expensive. Especially at very low
stress ranges with a very high number of cycles, which are of particular interest concerning
prestressed concrete bridges, even an optimized test with a realized load frequency of 10 Hz
lasts several months. For post-tensioned steel, an endurance range in the S-N curves has not
been established by tests up to now. Therefore the S-N curve in the range up to 108 cycles can
only hypothetically be guessed, until appropriate test results will be available.

For low loads down to 60 MPa, tests in the research project SFB 823 last nearly 100 days so
that most experiments are done under higher loads up to 200 MPa. Hence so called accelerated
failure tests (AFT) were conducted. If there are enough AFT experiments, the lifetime at a
small load can be estimated from the S-N curves, see e.g. Patel (1989), Meeker and Escobar
(1998), Goual and Seddik-Ameur (2014). However, here also these AFT experiments last long
and are expensive so that the results of only few experiments are available, in our project
for example results of ten experiments. Such small numbers of experiments are too small to
estimate the lifetime at low load with enough precision. Nevertheless, the main interest lies in
the lifetime at low stress at 50 MPa or even lower.

Hence, we propose here two methods which use additional information besides the failure
times of former tests to predict the failure time at low stress. The additional information is
given by a degradation measure. Usually the sizes of cracks are used as degradation measures,
see e.g. Meeker et al. (1998), De Oliveira and Colosimo (2004), Wang and Xu (2010). But here
we have the advantage that the time points of the breaking of the tension wires in the prestressed
concrete beams are available since acoustic signals obtained by a microphone indicate clearly
the breakage of a wire. We model the time points of the breaking of the tension wires with
a point process where the waiting times for the next breaking of a tension wire follow an
exponential distribution depending only on the number of wires which are broken before. Such
point processes are also called birth processes (see e.g. Snyder and Miller (1991)).

Point processes as Poisson processes and renewal processes are often considered in reliability
and lifetime analysis, see e.g. Sobczyk and Spencer (1992), Sánchez-Silva and Klutke (2016).
Sobczyk and Spencer (1992) treat also a linear birth process for fatigue accumulation in Chapter
18 and uses birth processes with time-varying intensity for crack growth in Chapter 26. However,
our birth process is nonlinear in the number of broken tension wires. The nonlinearity is due
to the redistribution of the load on the tension wires. There are several approaches for load
sharing systems as those of Cramer and Kamps (1996), Burkschat (2009) or Peña et al. (2007).
But they assume several systems exposed to the same stress so that accelerated failure tests
cannot be treated.

Linking the nonlinear birth process of each experiment with its underling stress, we provide
two types of prediction intervals for the time of a critical number of broken tension wires. The
critical number of broken tension wires has a direct relation to the failure time of the concrete
beam so that its lifetime can be derived from the time of the critical number of broken tension
wires. We use the times between successive breaks of the accelerated experiments and optional
some first breaking times of the concrete beam for which we want to obtain the prediction
interval.

Although prediction intervals provide not only a prediction but also its precision, they are
often not derived. Most prediction intervals are only derived for the simple situation that all
experiments are conducted under the same conditions, see e.g. Fertig et al. (1980), Engelhardt
and Bain (1978), Engelhardt and Bain (1982), Patel (1989), Meeker and Escobar (1998), Frey
(2012), Lawless and Fredette (2005) Krishnamoorthy et al. (2009). Only few prediction intervals

2



for accelerated experiments are available as those of Patel (1989) for normal distributed lifetimes
and Xiong and Milliken (2002) for exponential distributed lifetimes while the prediction intervals
of Xiong and Milliken (2002) are based on simulations. Our prediction intervals are simulation
free and thus faster to calculate.

In Section 2 the description of the experiments with the concrete beams are given. Section 3
provides the statistical model with the birth process and its link to the stress while Section 4
treats the two proposed prediction intervals. The results for our experiments with the concrete
beams and some simulations are given in Section 5. At last, Section 6 provides a conclusion.

2 Test setup and procedure

The tests on prestressed concrete girders (hereinafter: SB01-SB05) within the Collaborative
Research Center SFB 823 have been carried out at TU Dortmund University. The experimental
setup is based on the setup of already conducted experiments, also carried out at TU Dortmund
University (see Maurer et al. (2012)).

The series described in Maurer et al. (2012) consisted of five concrete girders (TR01-TR05)
with tendons for post-tensioning. They had been tested with different stress ranges ∆σp from
455 MPa to 98 MPa for the prestressing steel in curved steel ducts. The prestressing steel of
the tendons used for these test girders has been taken from an existing bridge which was built
in 1957 and demolished in 2007. Each of the taken 3/8” strands consists of seven single wires.
Each strand had been consisted of a steel grade St1570/1770 with a diameter of 9.3 mm and a
cross-sectional area of 52 mm2. The prestressing steel had been strained at a length of 2 m for
the curved tendon with a minimum radius of r = 5 m in a region of the test girder with pure
bending without shear. Hence, the influence of fretting corrosion between the tensioned strand
and steel duct is included.

The experimental set-up consists of steel frames, the concrete girder and a hydraulic press
in a four-column testing machine, which can apply a cyclic load at maximum +/-2500 kN (see
Figures 1 and 2). The overall dimensions of the concrete girder are 4.00 m × 1.00 m × 0.30
m. A recess in midspan of the girder in conjunction with a steel contact element ensures the
unambiguous definition of the center of the compression zone in the upper cross-section part
and from this the exact inner lever arm and tension force in the tendon.

The test girders of the second test series SB01-SB05 are very similar to those of the first
test series TR01-TR05. A few modifications like a steel-link in the pressure area in the girder’s
center and the prestressing of the anchoring rods increase the stiffness of the whole test stand
and the test frequency, whereby the duration could be reduced. The test frequency was set at
1.5-2 Hz for the first test series and was optimized up to 10 Hz for the second test series.

The experimental procedure was the same for both test series and will be described below.
Firstly, all the press force was applied to the concrete girder. The load was increased continu-
ously until an initial crack in the tension zone appears and a bearing effect of the concrete in
tension could be excluded. Initially the girder has been released in a way, so that the load could
be increased up to the respective medium load range. After that, the fatigue strength of the
embedded prestressing steel was tested under a constant cyclic loading until a critical number
of the wires had broken due to fatigue and the remaining section could not longer withstand
the load.

During the experiment runtime, the crack width in midspan of the girder was measured
continuously. As soon as a wire has broken due to fatigue, the measurement of the crack width
showed a sudden increase. The amount of increase depends on the total number of already
broken wires. The more wires were broken, the greater the sudden increase was (see Heeke
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Figure 1: Fotograph of the experimental setup

(2016)). Although the time point of the breaking of a tension wire could be determined by the
sudden increase of the crack width, a more precise determination of the breaking times was
obtained with a microphone since each breaking causes a short load noise.

It could be that more than one tension wire is breaking at a time point. However, this cannot
be determined, neither by the crack width nor by microphone. But this should be a rare event
so that we neglect this possibility in our model.

The applied stress range ∆σp and the time of every broken wire in each of test girders is
shown in Figure 3.

3 Statistical model

Let n be the time measured in load cycles and Nn the number of broken prestressing wires
up to time n. The waiting time between the i − 1’th and the i’th broken wire is defined as
∆Ni := min{n : Nn ≥ i}−min{n : Nt ≥ i−1}. The exponential distribution is commonly used
to model lifetimes. Hence, we assume that

∆Ni ∼ Exp(λθ(i− 1, s)), i = 1, . . . , I ≤ Imax,

where λθ(i−1, s) is the parameter of the exponential distribution, which depends on the number
of broken wires i and the stress range s := ∆σp of the experiment. Imax denotes the maximum
number of possible wire breakages, so that we have Imax = 35 here, because there are five
strands with seven wires each embedded in a beam.

Note that Nn is the classical Poisson process if λθ does not depend on the number i of broken
tension wires. If it depends on i it is birth process, see e.g. Snyder and Miller (1991).

A simple assumption for λθ(i− 1, s) in the experiments with prestressed concrete is

λθ(i, s) := hθ

(
s · Imax

Imax − i

)
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Figure 2: 3D CAD model of the test stand
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Figure 3: Tests results for TR01-TR05 and SB01-SB05

for a function hθ which depends on θ ∈ Θ. The term Imax
Imax−i expresses the increase of stress on

the remaining Imax − i wires when i wires are broken. In particular, when the half of the wires
are broken (i = Imax/2) then the stress is doubled. The function hθ models the dependence
of the waiting time for the next breakage on the stress of the remaining tension wires. In this
work we choose

hθ(x) := exp(−θ1 + θ2 log(x)),

with θ = (θ1, θ2)> ∈ Θ = [0,∞)2 so that

log(E(∆Ni)) = log

(
1

λθ(i− 1, s)

)
= θ1 − θ2 · log

(
s · Imax

Imax − i+ 1

)
,

i.e. it is assumed that the expected time until the next wire break can be modeled in that way.
This model for the logarithmized expectation coincides with a well-known and used model in
the engineering sciences from Basquin (1910).

Since we do not only have one experiment with one stress level s but J experiments with
different stress ranges s1, . . . , sJ , we observe realizations ∆ni,j of

∆Ni,j ∼ Exp(λθ(i− 1, sj))

for i = 1, . . . , Ij ≤ Imax, j = 1, . . . , J .
For the prediction we have a new beam experiment with realizations ∆ni,0 of

∆Ni,0 ∼ Exp(λθ(i− 1, s0))
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with i = 1, . . . , I0 << Imax. We use I0 = 0 if no observations of broken tension wires is available
for this experiment. In particular, our aim is also to make predictions for low stress levels where
no experiments were conducted up to now.

Let Icrit denote a critical number of broken tension wires which is closely related to the lifetime
of the concrete beam. Then we want to predict the time of the Icrit’th failure (I0 < Icrit < Imax),
i.e. the time measured in load cycles given by

∆n1,0 + · · ·+ ∆nI0,0 + ∆NI0+1,0 + · · ·+ ∆NIcrit,0.

Since ∆n1,0, . . . ,∆nI0,0 have already been observed, the task reduces to the prediction of the
future sum of waiting times

∆Nfut := ∆NI0+1,0 + · · ·+ ∆NIcrit,0. (1)

4 Prediction intervals

If the parameter θ = (θ1, θ2)T is known then the prediction for the expected time (number of
load cycles) until the number of broken tension wires attains the critical number Icrit is

∆n1,0 + · · ·+ ∆nI0,0

+
1

λθ(I0, s0)
+ · · ·+ 1

λθ(Icrit − 1, s0)

since the expectation of random variable ∆Ni,0 with exponential distribution satisfies E(∆Ni,0) =
1

λθ(i−1,s0) .
However, such a point prediction will usually fail the true future time. To include the precision

of the prediction, a prediction interval for ∆Nfut and thus for ∆n1,0 + · · · + ∆nI0,0 + ∆Nfut is
needed. A (1− α)-prediction interval P for the future value of ∆Nfut should satisfy

P(∆Nfut ∈ P) ≥ 1− α,

where α is usually a small value like α = 0.1. It means that the future observation ∆Nfut lies in
the prediction interval P with a probability greater than 1−α, e.g. 90% if α = 0.1. The smaller
α is and thus the larger 1 − α is, the larger and more noninformative the prediction interval
is. Therefore α = 0.1 is a good choice since the probability is at least 90% that the prediction
interval includes the future observation.

In order to find a prediction interval for ∆Nfut, the distribution of ∆Nfut in Expression (1)
is needed. As ∆Nfut is the sum of exponential distributions each with a different parameter,
it is hypoexponential distributed (see e.g. Ross (2014), pp.293) with cummulative distribution
function

F∆Nfut,θ(∆nfut) (2)

:=

Icrit∑
i=I0+1

ai(θ)(1− exp(−∆nλθ(i− i, s0))),

where ai(θ) :=
∏Icrit
k=I0+1,k 6=i

λθ(k,s0)
λθ(k,s0)−λθ(i,s0) . Expression (3) can be numerically instable if it

is implemented directly and Icrit − I0 is large or the parameters λθ of the single exponential
distributions do not differ much. In this case Gertsbakh et al. (2015) provide a more stable
implementation based on the matrix exponential (see Botev et al. (2013)).
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An α-quantile bα(θ) of the hypoexponential distribution can be computed implicitly by solving

F∆Nfut,θ(bα(θ))− α = 0.

Hence, if the parameter θ is known then

P :=
[
bα

2
(θ), b1−α

2
(θ)
]

is a prediction interval for ∆Nfut since P(∆Nfut ∈ P) = 1− α.
However, the parameter θ = (θ1, θ2)T is not known in practice and has to be estimated

from the data ∆nall := (∆n1,0, . . . ,∆nI0,0, . . . ,∆n1,J , . . . ,∆nIJ ,J) given by the experiments. A
commonly used estimator for θ is the maximum likelihood estimator

θ̂ ∈ arg max
θ∈Θ

fθ,all(∆nall),

where

fθ,all(∆nall) :=
J∏
j=0

Ij∏
i=1

fλθ(i,sj)(∆ni,j)

is the density of the distribution of all data and fλ(∆n) := λ exp(−λ∆n) is the density of
the exponential distribution. The density fθ,all(∆nall) is given as the product of the single
densities fλθ(i,sj)(∆ni,j) because ∆N1,0, . . . ,∆NI0,0, . . . ,∆N1,J , . . . ,∆NIJ ,J are stochastically
independent.

Having an estimator θ̂ for θ, the prediction of the time of the critical number Icrit of broken
tension wires is

∆n1,0 + · · ·+ ∆nI0,0

+
1

λθ̂(I0, s0)
+ · · ·+ 1

λθ̂(Icrit − 1, s0)
.

If θ is unknown, then the prediction interval for the future ∆Nfut must depend on the available
data ∆nall which is a realization of the random vector ∆Nall. Hence, it is a function P(∆nall)
of ∆nall and it is an exact prediction interval if Pθ(∆Nfut ∈ P(∆Nall)) ≥ 1− α for all possible
θ. That means for different realizations ∆nall, we get different prediction intervals. A naive
prediction interval for ∆Nfut is given by (see Meeker and Escobar (1998))

P :=
[
bα

2
(θ̂), b1−α

2
(θ̂)
]

(3)

where θ̂ is the maximum likelihood estimator. This is an approximate (1 − α)- prediction
interval only for large sample sizes, because it does not include any information about the
uncertainty of the estimation. For a small number of observations the coverage probability may
differ drastically from 1− α (see Meeker and Escobar (1998), p.294). We will analyze this in a
simulation study in Section 5.

To include the uncertainty of the estimator θ̂, a confidence interval for θ can be used. A
(1 − α)-confidence interval C for θ depends also on the available observation vector ∆nall and
satisfies P(θ ∈ C(∆Nall)) ≥ 1 − α for all θ ∈ Θ. A (1 − α)-confidence set for θ can be derived
using a likelihood ratio test (see e.g. Mood et al. (1974), pp.409). It is given by

Ĉ :=

{
θ : −2 log

(
fθ,all(∆nall)

fθ̂,all(∆nall)

)
≤ χ2

2,1−α

}
, (4)
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if χ2
2,1−α is the (1 − α)-quantile of the χ2 distribution with 2 degrees of freedom, because we

consider θ = (θ1, θ2), i.e. two parameters have to be estimated.
It is possible to use the (1− α)-confidence set Ĉ in Expression (4) to include the uncertainty

of the estimation. A (1− 2α)-prediction interval which is also valid for smaller sample sizes is
then given by

P :=
⋃
θ∈Ĉ

[
bα/2(θ), b1−α/2(θ)

]
(5)

⊂
[
min
θ∈Ĉ

bα/2(θ),max
θ∈Ĉ

b1−α/2(θ)

]
,

i.e. for all θ ∈ Ĉ the corresponding quantiles of the hypoexponential distribution are computed.
The minimum over all lower quantiles bα

2
and the maximum over all upper quantiles b1−α

2
is

then the desired 1− 2α prediction interval for ∆Nfut.

5 Results

We now apply the proposed methods to the data from the ten experiments described in Section
2. Figure 4 shows the fitted expectation of the logarithmized waiting times when the Basquin
link function from Section 3 is used. The relation between the increasing stress on the gradually
breaking wires and the waiting time is adequately modeled by this function as it is tends to
infinity for a stress near 0 and fits the majority of observed waiting times. For the comparison
of the two prediction methods, we use the beam SB03 as an example, because with an initial
stress range of 60 MPa it is the most interesting one for real applications. In this experiment
18 wire breaks could be observed until the complete failure of the beam. The time of this 18th
failure can be predicted if the corresponding observation is removed from the dataset.

In Figure 5, 90%-prediction intervals for this last wire break are shown where a different
number of previous broken wires from the same experiment and all observations from the other
experiments are used. The fewer observations from SB03 are used the more wire failures have
to be predicted. Hence, the prediction intervals are larger and get smaller when less breakages
are predicted. The naive intervals are always smaller than the ones based on the likelihood ratio
approach but the true time of the beam’s complete failure is not always covered by the naive
intervals, where this is only once the case for the likelihood ratio method. It is obvious that the
prediction task is simpler when less wire breaks have to be predicted.

To further check the performance of the two proposed prediction methods, we consider a
simulation study. For this, we consider three experiments with initial stress ranges s1 = 200
MPa, s2 = 100 MPa and s3 = 80 MPa. Six wire breaks are simulated for each of the three
experiments by using the Basquin link function

λθ(i, s)

:= exp

(
−θ1 + θ2 log

(
s · Imax

Imax − i

))
,

with Imax = 35 and θ = (28.163551, 2.922285)>,
which is the maximum likelihood estimator from the real data of the SFB-project.

Furthermore we generate three wire failures of an additional experiment with s0 = 60 MPa.
For this additional beam, the time of the sixth wire break is predicted using only the first three
failure times. This is done with 90% prediction intervals via the naive and the likelihood ratio

9



●
●

●

●

●

●●
● ● ●

●

●

●
●

●

0 100 200 300 400 500 600

0
2

4
6

8
10

s ⋅ Imax (Imax − i)

Lo
g.

 w
ai

tin
g 

tim
e 

to
 th

e 
ne

xt
 w

ire
 b

re
ak

●

●

● ●
● ● ●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●

● ●

●

●

●

●●

●
●●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●

●
●●

●

●

●●
●

●
●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●

●

TR01 (200 MPa)
TR02 (455 MPa)
TR03 (200 MPa)
TR04 (150 MPa)
TR05 (98 MPa)

SB01 (200 MPa)
SB02 (100 MPa)
SB03 (60 MPa)
SB04 (80 MPa)
SB05 (80 MPa)

Figure 4: Fitted expectation of the logarithmized waiting times using the Basquin link function

approach. Hence, in this first scenario there are n1 = 21 observations to estimate the parameter
θ and to compute the 95% confidence set based on the likelihood ratio test. The sample size
is then subsequently increased by sampling repetitions of the first three experiments, so that
all scenarios have Jl = l · 18 + 3 observations for l = 1, . . . , 50. This results in an maximum
considered sample size of J50 = 903.

For each scenario, we check if the simulated time of the sixth breakage which has been removed
before the estimation is covered by the two prediction intervals and compare the length of the
intervals. This procedure is replicated 1000 times for each scenario to get meaningful estimations
of the coverage rates and the interval lengths.

The left-hand figure of Figure 6 shows the coverage rate over the 1000 replications. It can be
seen that for small sample sizes the naive method does not provide a valid prediction interval
as the coverage rate is much lower than 90%. With increasing sample size, the coverage rate
is converging to 90% though. The likelihood ratio approach leads to valid prediction intervals
even for a very small number of observations but the resulting intervals are conservative and
tend towards a 95% coverage rate instead of 90%. The intervals based on the confidence sets
are always larger than for the naive method because it uses the quantiles b0.025(θ̃) and b0.975(θ̃)
with θ̃ ∈ Ĉ, whereas the naive interval uses the smaller quantiles b0.05(θ̂) and b0.95(θ̂) based on
the maximum likelihood estimator θ̂. With increasing sample size, the (1−α)-confidence set Ĉ
becomes smaller until it only contains the maximum likelihood estimator. In this case the 90%
interval based on the likelihood ratio confidence set coincides with the naive 95% prediction
interval.

The average lengths of the 1000 prediction intervals for all considered scenarios are depicted
in the right-hand figure of Figure 6. For small sample sizes the prediction intervals based on
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Figure 6: Coverage rates (left) and mean interval lengths (right) of the 90% prediction intervals
using the likelihood ratio and the naive approach
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the confidence sets are much larger than the naive ones but they get smaller when the number
of observations is increased. In Scenario i = 27 with 489 observations and all following ones the
confidence sets only consists of the maximum likelihood estimator. Hence, the average length
of the intervals cannot decrease further. Since the naive prediction interval only depends on the
maximum likelihood estimator, the average lengths do not vary much for this method in the
simulation study.

Summarizing the results of the simulation study, it was shown that for small sample sizes the
naive method leads to invalid prediction intervals with too low coverage rates. In this situation
the approach based on confidence sets using likelihood ratio tests can be used. For moderate
and large samples, the naive prediction intervals are valid though. The prediction intervals
based on the confidence sets tend to be conservative as their coverage rate was always above
the chosen level of 90%. However, in praxis there often times are only a few experiments due to
the immense costs in time and material, so that the confidence set based method is nevertheless
a plausible choice.

6 Conclusion

The two proposed methods for predicting the failure time of prestressed concrete beams are
based on predicting the time when a critical number of tension is broken. One method is a
naive method using only the maximum likelihood estimator. The other method uses confidence
sets given by the likelihood ratio test. Both methods are based on the waitings times between
successive breakages of wires. This is possible since the time points can be measured quite pre-
cisely with a microphone. Using all available waitings times increase the number of observations
substantially which is in particular important when only few experiments with concrete beams
can be conducted. Since the number of observations is increased, reasonable prediction intervals
can be derived which provide the uncertainty of the prediction. Although a quite simple model
of the dependence of the waiting times on the number of tension wires is used, it is shown that
both methods provide reasonable results using ten experiments with concrete beams. A simula-
tion study however shows that the naive method should be used with caution if the number of
observations is low. The simple model which was used does not take into account any damage
accumulation. To include damage accumulation, the waiting times should depend on the wait-
ings times observed before and should have a Weibull distribution with increasing hazard rate.
However, it is up to now unclear how to get the estimators, predictors and prediction intervals
then since the independence of the waiting times is not satisfied anymore.
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