Toward
Autopoietic Programming

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Technischen Universitiat Dortrmund
an der Fakultat fir Informatik

von

Robert E. Keller

Dortmund

Tag der miindlichen Prifung: 23. April 2012

Dekanin: Prof. Dr. Gabriele Kern-Isberner
Prifungskommission

Vorsitzender: Prof. Dr. Peter Marwedel

1. Gutachter und Betreuer: Prof. Dr. Wolfgang Banzhaf
2. Gutachter: Prof. Dr. Heinrich Miiller
Wissenschaftlicher Mitarbeiter: Dr. Lars Hildebrand

To my friends.

Contents

Contributions
Abstract

1 Introduction

1.1 Motivation
1.2 Objectives

Evolutionary Algorithms

2.1 Optimization e
2.2 Adaptation
2.3 Natural evolution
2.4 A typical Evolutionary Algorithm
2.5 Genetic Programming

Developmental
Genetic Programming
3.1 Introduction
3.2 Algorithmic metaphors of development
3.3 A genotype-phenotype mapping:

an algorithmic metaphor of development
3.4 The empirical developmental algorithm:

an instance of a genotype-phenotype mapping
3.5 Hard generic constraints for a

Genetic-Programming algorithm

Algorithmic components
4.1 Basic components of the

projected search algorithm
4.2 The empirical genotype-phenotype mapping
4.3 Repairing types of the

empirical genotype-phenotype mapping
4.4 Interjection: Biological phenomena and

algorithmic metaphors oL
4.5 An instance of replacing repairing L.
4.6 An executable repaired transcript

29
29
34
38
40
45

47
47
48
54
o6

62

67

4.7 Example of a genotype-phenotype mapping

99

4.8 A genotypic representation for the empirical common search algorithm 100

4.9 Operators of the projected search algorithm
4.10 Quality evaluation and selection for the

projected search algorithm L.
4.11 Termination
4.12 Projected search algorithm

5 First empirical problem
5.1 Target language
5.2 Properties of an empirical problem
5.3 Problem

6 Second empirical problem
6.1 Genotype evolution
6.2 Genetic-code evolution
6.3 Hypothesis on genetic-code evolution
6.4 Experiment e
6.5 Parameters
6.6 Results and discussion

7 Third empirical problem
7.1 Experiment
7.2 Parameters
7.3 Results and discussion

8 Further problems

81 Overview
8.2 A repairing hyperheuristic over

linear phenotypes Lo
8.3 Problem domain.
8.4 Target languageso
8.5 Experiments
8.6 Summary and conclusions L.

9 Summary

10 Conclusions and outlook
A Mathematical conventions
About the author
Acknowledgments

Zusammenfassung

101

107
107
107
109

145
145
147
150
151
152
155

167
167
168
171

181
181

182
183
184
186
195

197

201

205

207

211

213

Bibliography 216

List of figures 235
List of tables 241
Name Index 243
Subject Index 245

Contributions

e Discussing the undesirable recursion of control layers of explicit “self-” adaptive
systems —Suggesting a metaphor of self-adaptive biological development as an
approximating approach toward autopoietic programming?.

e i) A formal model of Developmental Genetic Programming (DGP): a genotype-
phenotype mapping—from a syntactically unrestricted, binary search space
into an arbitrary LR(1) target language’—based on artificial genetic codes
and suggested repairing algorithms. ii) Automatic regulation of mapping re-
dundancy through problem-oriented co-evolution of codes and genotypes gives
adaptive DGP that implicitly classifies input by its noise®, thus approaching a
minimal, sufficient target-symbol set and reversing the “curse of dimensional-
ity4.”

e A design for common as well as adaptive developmental, linear Genetic Pro-

gramming in a compiled, arbitrary LR(1) target language.

e Application of the design to unsupervised learning in noisy, high-dimensional
search spaces, and to producing most effective, short search methods for certain
realistic problems from discrete combinatorial optimization.

li.e., our strategic objective for a digital medium: self-creating and -maintaining bit patterns

in a problem environment
2restricted solution space
3problem-irrelevance
“from combinatorial optimization

Abstract

Chapter 1 gives objectives of the present work that takes an interest in artificial
systems approaching practical, “real-world” problem environments in which the
preservation of a system, i.e., the maintenance of its problem-specific behavior, is
of paramount importance. Depending on the environment, adaptations—system-
preserving structural changes—may become necessary.

Autopoiesis® (Heylighen 2002)(Maturana and Varela 1980) of a system denotes
its self-creation and -preservation.® The required self-organization and the resulting
performance of current artificial systems appear insufficient in a practical environ-
ment, where an ideal system would autonomously identify and approach problems,
possibly producing similarly independent subsystems that represent problem solu-
tions.

For informatics, we call this objective autopoietic programming, assuming its fea-
sibility as a working hypothesis. We follow a straightforward approach, advanc-
ing an instance of current Machine Learning toward perfect self-organization, and
discuss limitations that are due to impenetrable barriers inherent to present pro-
gramming paradigms. To the end of the approach, chapter 2 discusses the autopoi-
etic process called natural evolution (Darwin 1859; Ayala and Valentine 1979) from
which self-organizing systems emerge.” Therefore, artificial evolution (Alliot, Lutton,
Ronald, Schoenauer, and Snyers 1996)—man-made implementations of evolutionary
principles—approaches our supreme objective of artificial, fully self-organizing sys-
tems. For informatics, our present realm of interest, we thus focus on Evolutionary
Algorithms (EA) (Béck, Fogel, and Michalewicz 1997), i.e., probabilistic, iterative
direct search methods that are inspired by biological evolution.

Regarding autopoietic programming, an EA called Genetic Programming (GP)
(Koza 1992; Banzhaf, Nordin, Keller, and Francone 1998) offers itself, because such
algorithms produce algorithms. However, a GP user faces undesirable properties
typical of all current semi-automatic problem solvers, such as costly manual creation,
maintenance, and problem-specific adaptation, the last being particularly critical
since practical environments usually come with incomplete problem knowledge. To
ameliorate the situation and to boost system performance, self-adaptation, in the
sense of automatic specialization by enriching the problem model of a GP run, is
desirable and approaches autopoiesis.

Sa.k.a. self-organization
6 «Self-production” is the literal meaning of autopoiesis.
"Example: an ecosystem, an individual organism.

vil

viil

Ontogeny, a.k.a. development, is the history of structural changes of a system.
In the realm of biological systems (Meinhardt 1982), we meet endogenous devel-
opment that is essential to a system’s self-organization. System-inherent genotypic
information, emerging during phylogeny in nature, guides such ontogeny that builds
phenotypic structure which, in turn, exhibits behavior.

Chapters 2—4 propose a basic formal model of a non-trivial genotype-phenotype
mapping for search algorithms. The model as well as natural ontogenic phenomena
suggest the design of beneficial mappings that leads to our GP-framework that we
call Developmental Genetic Programming (DGP), a subset of developmental Genetic
Programming that itself is a relatively small class of GP approaches that emphasize
ontogenic aspects.® Given the trivial mapping (identity), the framework collapses
into an instance of the vast majority of common Genetic Programming approaches.

Chapters 5-7 design toy and practical problems for thought experiments and ex-
periments on the framework, and they evaluate the empirical outcome. In a dynamic
environment, autopoiesis of a system requires the latter’s structural components to
stay in flux. Since these elements carry the function of the system, including its
autopoiesis, the concept of self-adapting ontogeny imposes itself.

Chapter 8 shifts the focus within artificial ontogeny toward the phenotypic level.
In our framework, a repairing method is the only essential component of ontogeny
that is solely concerned with phenotypes. Deleting repair is a particularly interesting
flavor of this component. Therefore, the chapter considers this repair type, dealing
with the phenotypic level only.

Chapter 9 summarizes technical results, and Chapter 10 discusses conclusions
on exploiting the limited autopoiesis of current search algorithms and suggests an
escape, inspired by adaptive DGP, to fully self-organizing computation.

8In the years following the coining of “DGP” in 1998, the term “developmental Genetic Pro-
gramming” gained popularity in the community as a token for all ontogenic approaches.

Chapter 1

Introduction

We don’t want a system we cannot correct when it misbehaves. I can promise you
there’s no part in a machine that doesn’t fail once in a time and does the wrong
thing. Pilots make mistakes, but machines fail much more often. DUANE WOERTH,
PRESIDENT OF AIR LINE PILOTS ASSOCIATION

Hal, switch to manual hibernation control.—I can tell from your voice harmonics,
Dave, that you're badly upset. Why don’t you get some rest?—..Hal..I order you
to release the..control.—I'm sorry, Dave, but in accordance with special subrou-
tine..,quote, When the crew are dead or incapacitated, the onboard computer must
assume control, unquote..I must, therefore, overrule your authority, since you are not
in any condition to exercise it intelligently.—Hal,..Unless you obey my instructions,
I shall be forced to disconnect you.—..Dave..that would be a terrible mistake. I am
so much more capable than you are of supervising the ship..—..Hal..I'll..carry out a
complete disconnection.—..0.K., Dave,..You're certainly the boss. I was only trying
to do what I thought best. Naturally, I will follow all your orders. You now have full
manual hibernation control. DavE BowMAN, CAPTAIN
HAL 9000, AEURISTICALLY PROGRAMMED a/GORITHMIC COMPUTER

FROM “2001—A SPACE ODYSSEY” BY ARTHUR C. CLARKE

1.1 Motivation

The present work strongly overlaps with the field of Evolutionary Computation (EC)
whose applied focus is on biologically inspired, probabilistic, direct search algorithms
that are to solve hard problems.

On the one hand, the field features works that give a rigorous mathematical
analysis of simple Evolutionary Algorithms (EAs) which are little relevant to solv-
ing practical, i.e., real-world, problems that require complex specialized algorithms.
Such practical, in particular self-adapting! EAs do not yield themselves well to for-
mal rigor. This especially holds for EAs that employ variable-length representations,
which is a trademark of Genetic-Programming algorithms. However, formally ap-
proaching simple EAs may give deep intuition handy for the manual design of a
practical EA.

On the other hand, there are contributions to the manual creation of EAs that
successfully approach a particular practical problem class or an instance thereof. In

L —or, self-specializing—

2 1 Introduction

this context, we summarize different human roles—e.g., decision making, software
engineering, and field testing—by the term user who must acquire and introduce
problem knowledge to the algorithm in question, thus specializing it. Furthermore,
this person is to create and feed an appropriate problem representation to this prob-
abilistic algorithm, eventually applying the latter once or, usually, numerous times
with different setups. The resulting computations, limited by their fixed imple-
mentation, yield output that may require manual interpretation and verification as
solutions that are feasible in the practical environment.

Often hoping for further output that addresses the problem better, the user,
making educated guesses, then adapts the algorithm, and continues with the above
steps in a trial-and-error manner.? To the end of such practical analysis, investigat-
ing the algorithmic behavior implies extensive empirical studies if the environmental
resources—budgets, deadlines, emotional states of customers, etc.—allow for this.
In particular, parameter studies, exploring the space of behavioral trajectories, are
necessary. In parallel, evaluating competing search algorithms is also required.

The situation is satisfactory in that an EA resulting from this tedious process
often delivers acceptable solutions. However, the involved costs, in particular for
repeated manual adaptation and for tests on possibly run-time expensive hardware,
are troublesome.

Already in the Seventies, a principle for partially self-adapting Evolutionary Al-
gorithms was established and implemented for Evolution Strategies (Schwefel 1975).
This initial approximation of self-organization changes parameter values that con-
trol subroutines of the search algorithm, while the latter does not transform its
structure, its semantics, or the meaning of the employed genotypic representation.

In general, artificial systems do not possess the high degree of plasticity found
in natural life forms, which results in lacking functional flexibility. In biological
systems, adaptive potential abounds, so we merely mention, as a prominent instance,
the human brain as a general problem solver: it can specialize and re-specialize in
arbitrary problem domains, while a current technical solution, at best, improves its
operation within its fixed domain.? Figure 1.1 illustrates the situation.

Summarizing, so far, theoretical work has neither delivered a domain-unspecific,
self-adapting practical EA nor a domain-unspecific recipe for creating problem-
specific practical EAs. Thus, applied work continues, adding to the throng of special
solutions in a wasteful, manual trial-and-error fashion.

Therefore, the present work is to contribute to the slow approach toward a hy-
pothetical, autopoietic artificial system in the realm of nature-inspired computing.
The roots of this system and of its existing crude approximations, such as artificial
neural networks and Genetic Programming (GP), may be found in (Wiener 1948)
that discusses control and communication in organisms and machines. As GP is an
algorithm-producing Evolutionary Algorithm, it weakly promises future paradigms
that feature full self-organization.

Zthus, ironically, implementing a cycle similar to the evolutionary loop that is the kernel of an
EA system
3Example: a partially self-adapting auto-pilot solely learns to pilot more smoothly.

1.1 Motivation

Figure 1.1: Search methods feature a low plasticity compared to the real world and a
living structure, such as the human brain as a potent world model. Their poor functional
complexity forces the user of basic algorithmic solvers to abstract from a practical situation
and still to specialize the solver’s model to meet the abstract problem. Accordingly,
returned output may require substantial human interpretation. Such repeated manual
complexity reduction and subsequent increase accumulates costs as undesirable side effect.
Even current self-modifying flavors of bio-analog approaches do not compare favorably in

Status quo
Artificial Neural Networks Evolutionary Algorithms

manual pre/postprocessing high plasticity

specialization

W
model
cost accumulation
_—

interpretation

complexity increase problem
abstraction
-7 real world

complexity reduction

terms of assimilating novel scenarios.

4 1 Introduction

Hypothetical transition

Genetic Programming

\
| = function machine
.8 S
o
I S A 2
'8 .8
aye) ©
(2] E
| 8 | hature autopoietic system organism
\ N = i o .
v 520 cree_ltlng . cybernetics :
—maintaining - 2T
shift
\ hazardous real world %

Figure 1.2: A complete transition of cybernetic complexity from the user to an artifi-
cial entity in question: the concept of a present, merely nature-inspired model of a real
situation turns into the proposal of an autopoietic system that shares its world with its
user. Not requiring explicit external directives, it builds and follows its own developmental
“yellow brick road” to self-completion. However, the lunch for its user is still not free, just
cheaper: his or her ease of implicit “natural” interaction with the envisioned system still
comes at the risk of a mismatch of its desirable vs. actual behavior, like it is with current,
costly designed and tuned systems.—In our field of interest, a computing model is a viable
entry point to the mentioned transition, and we focus on Genetic Programming.

Thus, while the present work has a practical motivation, it takes an interest in
aspects of a self-improving GP algorithm that lead away from GP. In particular,
while GP’s practical side is optimization, the motivation here is not to manually
implement yet another specialized solver for a particular practical problem*. Figure
1.2 summarizes. (1.1)

1.2 Objectives

1.2.1 Conventions

At their definitions, a term and a mathematical symbol o are emphasized, and the
latter is given at the start of the subject index. As the URL of a cited Internet re-
source may change, the corresponding bibliography entry, marked Internet, mentions

4For such work, see, e.g., (Keller, Banzhaf, Mehnen, and Weinert 1999; Lohnert, Schiitte,
Sprave, Rechenberg, Boblan, Raab, Koref, Banzhaf, Keller, Niehaus, and Rauhe 2001).

1.2 Objectives 5

author and title instead. An instance of the resource may thus be easily located with
a search engine. A reference to a text unit—such as a section or a formula—gives
the unit’s start page and its location on the page, marked by the unit index. For
instance, paragraph 1.1, p.4, mentions a motivation of the present work.

1.2.2 Strategic objective:
practical autopoietic artificial systems

An entity consisting of linked components that shows behavior dependent on each
component shall be called a system. This view is derived from (Vester 1980).

By the label real-world, we designate entities related to a problem for which
one must give an a priori unknown, acceptable solution within acceptable time.
Crisp technologies—coming from, e.g., engineering and operations research (Gillett
1977)—approach such problems along an iterated sequence of steps, such as formal
analysis, modeling, possibly simulating, evaluating, and implementing the verified
model as an artificial system that deals with the problem. This process generates
crisp systems that operate in a deterministic manner, often subject to central control.
For instance, software engineering may deliver a provably correct algorithm that
manipulates safety-critical machinery. A purely crisp system is highly specialized
and optimized with respect to its sole purpose, depending on manual maintenance.
In particular, it cannot assume other goals or adapt to a previously undefined change
in its environment or its state. It is therefore especially prone to an immediate,
complete, and irrecoverable failure if a single subsystem fails for a critical time
period.

Soft technologies may give rise to randomness, trial-and-error approaches, gradual
adaptation of behavior®, redundant layout of system structure, and weakly coupled
subsystems.

Typical computing instances of the resulting soft systems come from the field of
Computational Intelligence (Cl) (Schwefel, Wegener, and Weinert 2003) (see Figure
1.3). In a dynamic problem environment, a robust system may emerge that keeps
pursuing several objectives even when subsystems fail permanently and completely.
For instance, (Dittrich, Biirgel, and Banzhaf 1999) describes a robot controller that
adapts its behavior to an unforeseen permanent failure of an actuator. For a soft
system, design and verification of desirable behavior is often impossible to achieve
in a theoretical, let alone formal manner. In particular, its behavior is often unpre-
dictable for a given situation or point in time. A classic example is a class-4 cellular
automaton (Wolfram 1994), and many systems considered in Artificial Life (Adami
1998) also defy prediction.

For a problem, some of its aspects may allow for crisp techniques, while others
may call for soft approaches. A safety-critical system, for instance, gains behavioral
stability from redundant subsystems that therefore may be brittle which allows them
to result from crisp, single-objective optimization which saves resources.

5The behavior of a system shall be its characteristic interaction with its environment, and it is
thus “manifested in input-output relationships,” as (Heylighen 2002) puts it.

6 1 Introduction
L — T ol Y

Computational Intelligence

also known as

Soft computing

Evolutionary

Algorithms
Genetic
Evolutionary Evolution Algorithms
Programming Strategies Genetic

Programming

L — — el SRS

Figure 1.3: The field of Computational Intelligence comprises Artificial Neural Networks,
Fuzzy Systems, and Evolutionary Algorithms. The latter consist of the subfields shown
at the bottom.

e Currently, a real-world system features crisp properties resulting from a design
philosophy of transparency for the purpose of perfect manual control of behav-
ior during system setup or operation. Thus, the system essentially depends on
costly human interference, i.e., problem-specific (re)design, maintenance, and
repair.

This situation calls for a system type with soft properties that therefore may
perform self-maintenance: a part of the system behavior that modifies the structure
of the system such that it continues its behavior. Such modification can appear as
a sequence of structural extensions and/or deletions.

The degree of self-maintenance in soft state-of-the-art systems is unsatisfactory.
For instance, a software system, serving a company that is busy with domain migration
in order to escape economical crisis, requires a rewrite, at best, or faces its demise, which
worsens the overall situation. Such inflexibility is especially obvious in systems whose
behavior depends on their material representation. With nanotechnology in its
infancy, they profoundly differ from software systems that can readily change their
elementary structure by adding, deleting, or inverting a single bit.

Self-maintenance is one aspect of autopoiesis, and living systems, e.g., multicel-
lular organisms, distinctly outperform current artificial entities in this respect. In
particular, in the life cycle of numerous species, metamorphosis essentially changes
the behavior of an individual that afterwards, often, can migrate to a new domain.
Also, self-repair, the re-growth of lost or damaged cellular structures, is a permanent
process in all life forms. Thus, some principles at work in biological systems may

6Imagine a future machining tool that not merely changes its drills but re-grows a blunted drill
point at the molecular level.

1.2 Objectives 7

support self-maintenance of systems in artificial media, as has been amply demon-
strated by rudimentary self-adaptation of systems from Computational Intelligence
(CI) and Artificial Life.

The area of Evolutionary Algorithms, a part of CI, deals with algorithms that
mimic natural evolution. Artificial Life investigates analysis and synthesis of life-like
phenomena, abstracting from their material representation. The present work feeds
on both fields, because we are interested in autopoietic problem solving in a digital
medium.

On the one hand, organisms, i.e., forms of life resulting from natural evolu-
tion,” are self-organizing systems. On the other hand, an Evolutionary Algorithm
lacks their flexibility in structural self-modification, which implies a rather rigid
representation of both the algorithm and its structure of interest—its product—that
represents a solution. The ultimate cause for this crispness is the designer’s desire
to quickly and reliably establish and maintain a controllable, stable, and problem-
oriented behavior which is a cornerstone of a manually designed algorithm.® Figure
1.4 summarizes.

e Both an organism and its environment are changing over time, and we identify
a closed cybernetic organization:

“information gives structure gives behavior maintains information.”

e The need for maintenance arises from a fundamental property of the physical
world: unattended structural order exhibits a strong tendency toward decay-
ing.? This observation is characterized by the Second Law of Thermodynamics
or, as one may put it, the law of entropy increase.'®

Interacting structural elements of an organism yield its characteristic behavior:
maintaining genetic information by carrying and passing it on to future carriers. In
particular, within individual limits, spontaneous endogenous structural changes can
re-synchronize behavior with rapid environmental changes, maintaining the organ-
ism.

Systemic' information controls all such modifications of systemic structure.
Substructures and resulting traits of an organism constitute its phenotype, and the
corresponding genetic information, thus represented by a part of the phenotype, is
known as genotype. The latter represents a fixed model of organism and environ-
ment, while permanent systemic model interpretation, considering organismic and
environmental states, keeps adapting the phenotype. For a multicellular organism,
this history of structural changes is known as its ontogeny, or development, trig-
gered by short-term environmental or systemic stimuli.'?> From a systems-oriented

"life as biology knows it

8Thus, compared to natural information processing, software appears as “hardware.”
9Unfortunately, the author’s desktop makes no exception.

0For a nice technical exposition, see, e.g., (Feynman, Leighton, and Sands 1963).
Hgystem-inherent

12For instance, exogenous mechanical stress may prompt further growth of existing structures.

8 1 Introduction

VS
physical/organic

soft systems reality

Computational Intelligence
Genetic Programming

Artificial Neural Networks

2
%
6\.
% o,
% Artificial Life &5”
.QQI’ ’
N
quick & dirty xe’o’,
il
systems &7

,¢ organisms

autopoiesis

Figure 1.4: We suggest an informal coordinate array over transparency and autopoiesis of
a system. Close to the grid’s origin, utterly undesirable systems reside that neither show
an endogenous nor a clear structural and functional organization. Regarding artificial
systems, so-called “quick and dirty” creations may be mentioned. Cleanly designed crisp
systems, however, are transparent and amenable to manual maintenance. From there,
increasing autopoiesis necessarily implies decreasing system transparency, because physical
constraints require a function to be performed by combined structures, and a structure
to carry several functions, if the system in question is to form and maintain itself while
competing for resources. This proper and dense structure/function relation renders a both
perfectly clear and self-organizing entity a utopia, so that the system space suggested here
ends at the horizon of infeasibility. Eventually, we find biological organisms, hard to
fathom, practically impossible to engineer from scratch, that operate efficiently. Between
the four mentioned extremes, we see soft systems and suggest rough areas for prominent
approaches such as Artificial Neural Networks and Genetic Programming, our focus.

1.2 Objectives 9

perspective, ontogeny is the history of the structural transformations of a unity, as
Maturana and Varela put it. There are several models of such development, e.g., cel-
lular automata, L-systems (Prusinkiewicz and Lindenmayer 1990) (see Figure 1.5),
systems of differential equations, and regulatory networks, i.e., self-maintaining webs
of feedback loops, such as the gene regulatory network in organisms that reflects the
permanent, coordinated expression of genes.

e Genetic information, supporting organismic development, emerges from natural
evolution. This process of change reflects long-term environmental stimuli in
that it adapts genotypes. We interpret an instance of natural evolution as
autopoietic behavior of the top-level super-organism that is composed of all
life forms sharing an ecosystem.'® Accordingly, this organism prevails in flux
with its constituting life forms appearing, staying, and eventually perishing.

The closed organization of information, structure, and behavior is a temporal
invariant, found on different levels of a hierarchy of autopoietic systems. The
lowest level directly emerges from the physical properties of matter.

Above, we use “organism” in the biological sense, while, below, an organism
shall denote any self-organizing system. It necessarily is self-adapting, building and
changing its structure and thus maintaining its characteristic behavior. This requires
assimilation, i.e., transformation of environmental resources into systemic structure.
In particular, it performs self-repair, restoring a substructure that has been rendered
dysfunctional.

Usually, a biological organism also features self-reproduction, creating a new en-
tity that is or will become, by ontogeny, similar to the producer. Such endogenous
reproduction by an organism is i) unnecessary for its maintenance, but, as the or-
ganism will vanish, ii) essential to the self-maintenance of its super-organism.

e Thus, we see an organism, in the general sense, as a production system for
similar organisms, while a super-organism represents a production system for—
possibly different kinds of—organisms.

For instance, the self-maintaining process of natural evolution produces life forms
that constitute its carrying substrate, and it is even self-creating, having started on a
formerly sterile Earth. Finally, it reproduces when it creates organisms that migrate
to a lifeless habitat, e.g., a volcanic island, where they initiate another instance of
the process.

Therefore, natural evolution is an autopoietic self-repeating system that might,
for this reason, serve as a paragon for practical artificial production systems. As a
working hypothesis, one has assumed that basic principles behind natural evolution—
variability, stability, and bias in the carbon-based medium-—are general in that

13For an instance of another super-organism, an individual life form that emerges from ontogeny
is built of cells.

4For example, a slow atmospheric change might see a new species, whose individual organisms—
featuring more efficient metabolisms—push aside members of an established sort, while evolution
continues.

1 Introduction

10

N /Vﬁ//
N //V/,,/f N /
N Eaalniannisriikiik
'&lo/u/ww ﬂ,’v%////}
HINMNMIRNN
RN

=SS = S WY /,/

Wy (M
0N | i

\\\I I/!:”"l’
X[/

N\

Q

Z,

A

Figure 1.5: Graphic representation of the dynamics of an L-system, i.e., a parallel string

rewriting approach as opposed to sequential rewriting by a grammar. Appropriate systems

model plant development.

1.2 Objectives 11

their effectiveness is not restricted to this realm, so that, in particular, artificial
evolution is possible. Evolutionary Algorithms (EAs) corroborate this idea for a
digital medium: they produce and adapt structures to a given problem environment.
Applied research has designed EAs for many practical domains, see, e.g., (Dunning
and Davis 1996; Miihlenbein 1993; Knickmeier 1992; Keller, Banzhaf, Mehnen, and
Weinert 1999; Beielstein, Ewald, and Markon 2003).

Here, we focus on Genetic Programming because the concept of an EA producing
algorithms as structures of interest is closer to autopoiesis than for other kinds of
products. (1.2)

It is tempting to assume that more than the mentioned basic principles of natu-
ral evolution may apply to non-organic media, so that adding them to GP and other
artificial production paradigms is desirable. In particular, natural organisms are far
superior to current production systems in terms of autopoiesis, self-reproduction,
and behavioral diversity. Thus, numerous practical environments call for corre-
sponding artificial organisms. In prazi, one would accept such an entity if it was
competitive with a well-performing natural counterpart in a shared real-world sce-
nario. For brevity, we only mention growing and self-repairing systems, controlled
exponential mass production of consumer items, and independent planning and act-
ing in hazardous environments.

e Since crisp technologies'® with their manual design phases realize the current
philosophy of artificial production, we emphasize that one cannot implement
an artificial organism, as it is self-creating. Instead, one must provide an
environment in that an instance of true artificial evolution can self-synthesize
as a super-organism by giving rise to problem-oriented organisms.

e We call such an environment a producing matrix, and our long-term, strategic
objective is the realization of a material instance, i.e., we are interested in
material organisms as products.!® (1.3)

e For the present work, however, we focus on approaching an informatics in-
stance. Therefore, the product in question is self-organizing computation.
Figure 1.6 summarizes. (1.4)

To that end, only discrete representations shall feature, so that a digital comput-
ing system may be used.'” We suggest the notion of a hypothetical algorithmic ma-
trix that gives rise to algorithmic organisms whose behavior represents self-modifying,

15For informatics, one might speak of hard or crisp computing.

16The potential manifestation of artificial organisms as problem solvers might itself raise critical
situations. Like each other technology, a producing matrix would imply opportunities and risks,
calling for its responsible use by society. Regrettably, this issue, requiring extensive discussion,
cannot feature in the present work.

1"While currently without practical significance, we conservatively note that spacetime may well
be discrete (Smolin 2004), in which case every physically implemented representation is discrete,
anyway, rendering the classic analog/digital distinction obsolete.

12 1 Introduction

(ni e)
) os
autopoiesis
3 variability development stability 1
genotype information structure phenotype
ievoliution § super organism§
spatiotemporal pattern behavior
o medium /
/ \artificial

computation

Figure 1.6: A medium of interest allows for random variation. In the physical world, heat
in the thermodynamic sense is a source of such noise and may be a cause for structural
variability. Information, carried by structures, influences the development of structures
whose spatial dynamics, interacting with the medium, raise a selective bias on the original
information. If the medium is inherently stable, evolution of information emerges on
a low structural level, being a prime instance of autopoiesis. Likewise self-maintaining
“individual organisms,” coming forth from evolution and reflecting it in terms of self-
controlled growth and continued existence, constitute a superorganism whose development
1s their evolution. Higher medium stability may yield emergence of redundant structures
and maintenance mechanisms that further promote stability which counterbalances noise.
Artificial or hazardous media call for speedily evolving artificial superorganisms that spawn
autopoietic material solutions. As an initial focus, however, we identify self-organizing
computing.

1.2 Objectives 13

stochastic, and possibly Turing-complete computation as dynamics of this “in flux”
environment.'® We call this product autopoietic programming, and i) a data structure
could represent the required systemic information of an organism; ii) an algorithm
could represent evolutionary and developmental processes that might produce such
information and its interpreter.

e [f Turing-complete computation can arise in the medium of the matrix, and if
an algorithmic organism is computable, at all, then the latter might emerge.

Eventually, iii), as an argument independent from the nature of a medium: the
existence of an artificial organism is, at least, not implausible: while all known
organisms are natural and represented organically!®, there is no evidence that dif-
ferently represented, fully self-organizing systems cannot exist.?’ (iii) suggests the
idea of a material matrix (cf. 1.3, p.11), in particular, one made of artificial pro-
grammable matter that we define as material whose structure reliably and flexibly
yields to fine-grained control. There exists preliminary research related to flavors
of this concept, e.g., (MacLennan 2002). We assume that the confluence of biology,
computer science, materials sciences (Ball 1998), microfabrication (Madou 1997),
and nanotechnology (Drexler 1992) will realize instances of this notion. The task of
obtaining material problem-oriented organisms will promptly follow.

e We are interested in autopoietic programming in the medium of programmable
matter, because this implements the strategic objective: a material producing
matrix.

From a practical view point, only this matrix is ultimately relevant, because, in
physical reality, a solution is materially represented?! (cf. (Keller 2001)).

1.2.3 Tactical objective: extending Genetic Programming
by information transformation

Since natural evolution is the only known production system of organisms, an ad-
vanced instance of artificial evolution (Alliot, Lutton, Ronald, Schoenauer, and Snyers
1996) (cf. 2, p.29) may approach the strategic objective. An Evolutionary Algorithm
(EA) represents a flavor of artificial evolution, producing individuals, i.e., structures
that are of interest to the user of the algorithm.

Genetic Programming (GP) (cf. 2.5, p.45) comprises EAs whose individuals re-
present algorithms. Thus, in contrast with other EA variants, a GP algorithm
delivers structures that exhibit complex behavior, the latter being a necessary prop-
erty of an organism, which further argues for focusing on GP (cf. 1.2, p.11). In a

18In particular, a universal Turing machine (UTM) could emerge. For a vivid and concise
definition of a UTM, see (Wegener 1993) (German).

191 e., based on molecules whose structurally essential units are carbon atoms
20Exobiology and Artificial Life are extensively modeling and searching such feasible alternatives.
21This also holds for an abstract problem, since the solution is represented as, e.g., a brain state

of a mathematician.

14 1 Introduction

given problem environment, individuals are to exhibit desired behavior that the user
may describe as an input/output relationship, given as data pairs i;,0;. This I/O
set illustrates problem-oriented behavior in that a “good” individual should com-
pute o; when given ;. Here, the error of the actually computed output offers itself
as a canonical quality measure of individual behavior. As the I1/O set is explicit
and static, the measure inherits these properties. Based on the quality of individu-
als, a GP algorithm selects them for further processing, performing explicit artificial
selection.

However, for a dynamic world, i.e., a system and its environment, quality of
behavior cannot be caught by a static measure. Rather, the user requires a dynamic
quality measure that exposes the system to changing environmental states. For GP,
one may define an explicit measure by use of different 1/0O sets (cf., e.g., (Gathercole
1998)) and different individual states during quality evaluation.

A given 1/0O set plus state shall be called a test case. For practical problems,
the combinatorial explosion of the number of test cases makes the manual design of
case—class representatives infeasible, so that an explicit dynamic quality measure is
no option.

o We therefore suggest the general notion of implicit selection that results from
the usually unpredictable system/environment interaction.

For two examples from GP: if an individual simulates a tool and its operational dynamics,
the time span until mechanical failure (selection) reflects quality. If an individual has a
defensive purpose, the progression of structural integrity of a protected object indicates
quality.

In general, we call a phenomenon implicit or emergent, if it manifests itself as
non-designed effect. During a production process, emergence may be desirable be-
cause it results as side effect of the process, not exclusively reserving resources like
explicit procedures do. Cybernetically closed®* artificial evolution would support
our strategic objective, e.g., by implicitly representing a multitude of test cases,
eliminating the need for their manual specification. To the end of such closure, cur-
rent production paradigms must turn from their mostly explicit to a purely implicit
character. (1.5)

e To approach this goal, we focus on strengthening Genetic Programming’s self-
control.

As entry point to an approach, we see bioinformatics that yields computational mod-
els for biological research: one may superimpose a problem environment on such a
model in order to exploit the modeled implicit dynamics for the practical task at
hand, interpreting biological agents and structures as entities from the environment.
For instance, computer simulations of biological environments, done by one of my
former students, model aspects of organic evolution in an artificial world (Samsonova
2002). One could, for instance, apply spatio-temporal models resulting from such
approaches to problems of logistics.

2Zperfectly self-regulating, free of external parameters

1.2 Objectives 15

e Fhilia T

pe g =
[T pureter &
1 agents
1 Gasses
T~ DumpChannels
[Reset D
. E
|
® .
:
afEEsanaEL
. o o
|
I
= -
Pos:[4 [0 | Foou: |20 Joora
Agent: [14 [B spec

Figure 1.7: A spatial world with active and “dead” agents.

Regarding GP, its concept of individuals and a static I/O set as their environment
leads to the notion of dissolving this monolithic standard approach?® into a world
inhabited by individual agents that represent the environment of other agents and
whose co-evolution results as side effect of their behavior. (Student project team 272
“Philia” 1997)* is an example, describing a spatial world (see Figure 1.7) in which
each mobile autonomous agent exhibits behavior under direction of its personal,
variable program.

Crude behavior wastes resources, forcing the corresponding program into inac-
tivity, i.e., the agent perishes under implicit selection. Resulting evolution shows as
self-maintaining agent strategies.?> For another attempt at implicit program syn-
thesis in a dynamic world, see (Keller, Kosters, van der Vaart, and Witsenburg
2002).

e In summary: problem-devoted implicit artificial evolution requires creating a
model environment whose physics favors, ignores, or punishes a given individ-
ual behavior.

However, while such environments strongly support emergence of agents, they them-
selves, as explicit creations, lack self-induced development (as an example, see Figure
1.8).

ZEA kernel with algorithms as individuals

24 A contribution of former students of mine

25Manually designing the agent world as a model of a given real environment may turn PHILIA
into a corresponding problem solver. Eventually, spatially interpreting an agent as an “atom”, or
cell, of programmable matter approaches an instance of the desired material producing matrix.
However, the explicit design thwarts autopoiesis.

16 1 Introduction

Seq ID Count Function Calls
Al 000055 6315 | Not If Not Or If FoodAhead? TurnRight Seq
A2 000158 971 | Not If Not Or If Or FoodAhead? Mate
A3 000257 645 | Not If Not Or If FoodAhead? Seq Move
A4 000041 625 | Not If Not Or If FoodAhead? Move Seq

A5 000070 214 | Not If Not Or If FoodAhead? Move Eat

A6 000382 193 | Not If Not Or If Or FoodAhead? Move

A7 000251 165 | Not If Not Or If FoodAhead? TurnRight Mate
A8 000228 129 | Not If Not Or If FoodAhead? TurnRight Move
A9 000077 102 | Not If Not Or If FoodAhead? TurnRight If
A10 000287 54| Not If Not Or If FoodAhead? If Move

(Not
(f
(Not
(Or
(If (FoodAhead?) (Seq (Move) (FriendAhead?) (Eat)) (TurnRight))

)
)
{3
(

)

Figure 1.8: Depending on local physics, a favorable strategy Al has emerged that there-
fore continues to exist, as indicated by its high repetition count. However, the underlying
category set, containing concepts such as space, motion, metabolic requirements, social
relations, referenced in strategies, is frozen, so that the evolution of novel concepts and
their assimilation (learning) by agents is no option.

e Essentially, such endogenous ontogeny is autopoiesis, since continuous struc-
tural self-modification equals creating and maintaining the self.

This is our deepest reason for focusing on development as an approach toward au-
topoietic programming.

e Thus, the increase of endogenous ontogeny in GP is a direct objective of the
present work. It requires self-adaptation of entities of a GP algorithm such
that this adaptation, in turn, improves the conditions for their evolution. In
this sense, we further concentrate on self-adapting Genetic Programming.

(1.6)

e In the mentioned cyclic organization of behavior, structure, and information,
the latter has received emphasis. Therefore, endogenous adaptation of such
genetic information that controls ontogeny shall guide to self-adapting GP.

Thus, biological ontogeny, organizing the tissue of a multicellular life form, is of
interest as a paragon: we view a GP run with its evolved running programs, cor-
responding to cells, as a crude precursor to the artificial organism of autopoietic
programming. The run, shaping genotypes and expressing them as programs, per-
forms its ontogeny.?® Thus, if the run can adapt the information that controls
development of a phenotype, it can control its own development.

26 A well-known insight into natural evolution sees ontogeny recapitulating phylogeny. We add
that phylogeny is the ontogeny of evolution. Thus, all evolution collapses into the notion of
development.

1.2 Objectives 17

In this context, a cell is the essential natural paragon, so that the endogenous
synthesis of its structures is the basic phenomenon of interest to us. We note that
the time-bounded build-up of a self-maintaining structure in the presence of many
freedom degrees requires appropriate information that guides the assembly process.
In particular, the process that builds a protein—a naturally occurring polypeptide
that has a definite three-dimensional structure in a physiological environment—is
guided by genetic information.?” In general, creation and maintenance of structural
and functional complexity requires information in order to stay ahead of thermo-
dynamically induced decay. For instance, cellular protein synthesis demonstrates
an information-to-function transformation, since it produces a structure that carries
biochemical reactivity that is the protein’s characteristic behavior. This process is
fundamental to organic life because proteins are essential to architecture and func-
tion of a life form.

e Thus, algorithmic interpretations of protein synthesis can support endogenous
development of a GP run.

Previously, we emphasized self-adaptation (cf. 1.6, p.16) because it is necessary
for self-maintenance. Eventually, the strategic objective requires the emergence and
maintenance of problem-oriented behavior in a given practical environment (cf. 1.3,

p.11).

e In summarizing conclusion (see Figure 1.9), we see a tactical objective: extend-
ing GP by principles of endogenous ontogeny such that i) the self-maintenance
of the resulting production system is supported, while ii) the produced struc-
tures exhibit a desired practical behavior.

(1.7)

Next, the discussion shall work toward technical objectives.

1.2.4 Ontogeny and self-maintenance

From a cybernetic perspective, endogenous ontogeny supports a system’s evolvability,
i.e., its potential for evolution.?® Regarding informatics, the concept of endogenous
ontogeny relates to the notion of a self-programming computer. The latter is tech-
nically feasible because most current “universal machine” architectures follow von
Neumann’s design from 1946 that, in particular, views a program as data, allowing
for a program’s self-manipulation. The essential deficiency of a GP algorithm is
its modest use of the von-Neumann architecture: the algorithm merely manipulates
individuals—that represent some of its subprograms—while it does not touch its
own semantics.

2T A protein with a critical biochemical behavior could rise from an uninformed process in a trial-
and-error fashion. However, several freedom degrees—e.g., the numbers of amino-acid types, of
participating type instances, and of possible acid sequences—make random assembly too sluggish
for survival of an organism.

28To our knowledge, (Altenberg 1994) has coined this term, while we use it in a broader meaning
here.

18 1 Introduction

artificial:matrix algorithmic matetial } strategic objective

superorganism

autopoiesis
4

! e
matrix snapshot &

self-development

tactical objective Genetic Programming + endogenous development

Figure 1.9: We see a production matrix of material organisms as strategic objective.
Control of matrix elements is a necessary prerequisite for such organisms, so that they
may be approached by algorithmic organisms effecting self-maintaining computation in an
appropriate matrix, e.g., a digital medium, thereby representing a superorganism, while
unused parts of the matrix appear “dead”, only subject to omnipresent underlying noise.
We have established Genetic Programming as a pragmatic starting point toward this
organism. Its autopoiesis appears as self-controlled development of the matrix, so that we
get the introduction of endogenous development to Genetic Programming as our tactical
objective.

However, an instance of natural evolution, occurring in an ecosystem, manifests
itself as a process that essentially modifies itself by touching its carrying organisms,
since it fully exists within them.?® Thus, endogenous ontogeny adapts the process,
and the implied genotype-phenotype distinction introduces the option of adapting
the interpretation of the genotype, i.e., development itself, which enhances evolvabil-

ity.

o If we abstract from natural organisms, we see a freedom degree emerging for
an arbitrary system that features endogenous ontogeny: interpretation of a
genotype can change, depending on the environmental and systemic state,
changing the meaning of the underlying genotypic representation.

e We therefore distinguish a GP algorithm that produces i) a program (phe-
notype) in a given language from one yielding ii) a program representative
(genotype) in a given representation.

Type (ii) shall be called an interpreting Genetic-Programming algorithm: it views a
produced representative as a program to be executed for fitness evaluation. There-
fore, this type may alter the interpretation, thus modifying implicit semantics of

29We suggest that, on this background, it is not so much the “selfish gene” (Dawkins 1989) but
this process that is an egotistic and invisible puppet master of organisms.

1.2 Objectives 19

the produced genotypes. Type (i), however, is bound by the explicit semantics of a
given programming language.

e While the primary objective—an algorithmic matrix—cannot directly be im-
plemented as an interpreting GP approach,®® discussing the latter may yield
insights into manually creating an environment that raises such a computing
super—organism.

We note that, in the realm of Evolutionary Algorithms, focusing on interpreting GP
as a matrix precursor is the only meaningful option, because the types of producer
and product are identical (program).3! This situation directly relates to the basic
conundrum of autopoiesis: how can a system create itself? An escape is a random
initial structure that serves as both information and its rewriting interpreter. In
conclusion, interpreting Genetic Programming as a crude precursor of an algorithmic
matrix shall guide from here. The discussion continues with part (ii) of the tactical
objective:

1.2.5 Approaching desired systemic behavior

From a user’s perspective, a self-organizing system implies the risk of autonomy; i.e.,
systemic independence from external objectives, such as solving a given problem.
The user must therefore provide an environment that guides autopoiesis of problem-
devoted behavior.

A user can create or adapt an Evolutionary Algorithm (EA) for a given problem en-
vironment. The EA produces individuals, i.e., approximate—solution representatives,
using heuristics that include an element of chance. This trial-and—error approach
extends its incomplete knowledge about the properties of a given practical problem,
and it represents growing information as a dynamic population of selected variable
individuals. The user hopes for the algorithm to compute, with acceptable effort,
an individual of acceptable quality.?®> To that end, the user must provide an explicit
quality measure. The EA selects, from a subpopulation, mostly better individuals
as parents of future, possibly even better offspring.

As this scheme does not require an a priori “understanding”® of an individual’s
semantics or a problem’s properties, it may mold arbitrary, genotypically encoded
information, provided the latter affects phenotypic quality that feeds back to the
EA.

e This cybernetic insight suggests implicit, problem-oriented directing of self-
organization in an interpreting GP algorithm: since ontogeny supports au-
topoiesis, we propose genotypic encoding of information that influences indi-
vidual development.

33

30A created self-creating entity is an oxymoron.

31'While Evolutionary Programming (Fogel, Owens, and Walsh 1966) produces finite automata,
their limited computational power renders them insignificant for autopoiesis.

32The meaning of “acceptable” is highly context-sensitive, depending on factors such as project
deadlines, budgets, emotional states of decision makers, available computing resources, and the
behavior of competitors.

33Evolution indeed resembles a “blind watchmaker,’

)

as Dawkins put it.

20 1 Introduction

Thus, selection on an individual also biases a run towards particular ontogeny;,
making the run self-adapting. Adapting an algorithm means specializing it in a
given problem, which is necessary since no algorithm performs best over all prob-
lems, as (Wolpert and Macready 1997)3* implies. For a given practical problem,
an evolution—based self-adaptation of an EA is recommendable,?® because manu-
ally developing an efficient deterministic adaptation may be as unfeasible as finding
an efficient deterministic exact solution to the problem. In particular, one lacks a
complete problem description while, in many practical environments, one faces an
urgent need of, at least, approximate results. Also, an effective EA often features
complicated dynamics, emerging from its superimposed probabilistic processes, that
eludes formal modeling that could lead to a useful manual adaptation.

e In summary, we suggest the idea of an interpreting GP algorithm that fits
individual genotypes encoding both

i) information on phenotypic parts and
ii) information on interpreting (i)

to a given problem, thus supporting self-organization that honors the user’s

goal.
(1.8)

Contributors have presented flavors and relatives of interpreting Genetic Program-
ming. Concepts of some such works that are related to our objectives follow.

1.2.6 Approaches to interpreting GP

Overview

Ontogenic processes are influenced by environmental as well as genetic factors.?

Natural ontogeny has a plethora of aspects, some being reflected by different ap-
proaches to artificial development. Corresponding work in and around the field of
GP claims advantages for performance, synthesis flexibility, reliability, and resource
saving of the designed production systems and their emerging products. Beneficial
phenomena are, e.g.,

e growth of structures, and hierarchies of their representations and correspond-
ing transformations

e an emerged program as structure of interest or as producer of the latter

e artificial evolution that is closer to its natural role model.

34The results of this contribution have gained some fame by the name of “No-Free-Lunch the-
orems.”

35From a viewpoint outside of the present work, manual interference represents such self-
adaptation: one may perceive the EA as just another component of its user’s evolutionary loop of
human learning that, according to N.K. Jerne’s suggestion from 1967, may be a selective process.

36For instance, a Drosophila egg’s poles develop differently due to non—genetic information com-
ing from the maternal organism (Smith and Szathméry 1995).

1.2 Objectives 21

Aware of Ashby’s insight that “complexity3” can only be absorbed by complexity,”
we note that problem properties must be mirrored by the design of a successful
production system, interpreting or otherwise.

e Within the system and its products, structural complexity may shift3®, but it
cannot be avoided which would represent a “free lunch.” From this perspec-
tive, autopoiesis shows as intra-systemic flow of complexity and is constrained
by the need for structural soundness. The latter follows from grammars®®
that, especially in artificial systems, are given explicitly or function implicitly
through appropriate construction and repair mechanisms.

The following list of contributions touches essential aspects of interpreting Genetic
Programming and its cousins. (Sims 1994) describes a Genetic Algorithm—i.e., a
type of Evolutionary Algorithm propagated by (Holland 1975; Holland 1992)—that
produces graphs that represent the morphology and resulting behavior of virtual
three-dimensional “beings”.

(Hemmi, Mizoguchi, and Shimohara 1994) reports on artificial development of
circuitry. The described process produces programs in hardware description lan-
guage. A developmental phase rewrites a start symbol into a tree structure rep-
resenting a program. An evolutionary step sequence varies these programs that
eventually control a programmable-logic device representing circuitry whose behav-
ior translates into program quality that feeds back into the evolutionary framework.

In several works, e.g., (Gruau 1994), this author elaborates on his core idea of cel-
lular encoding: rewriting a phenotypic graph by use of rules conveniently represented
by a genotypic tree structure. As a graph can represent arbitrary—in particular,
cyclic—structures, complex behavior-carrying structures, such as artificial neural
networks, can emerge as results of the underlying Genetic Algorithm. (Zomorodian
1995) presents a process that evolves programs whose execution eventually produces
push-down automata as phenotypes.

(Spector and Stoffel 1996) suggests ontogenetic programming supporting a func-
tion set that contains manually designed operators that modify an individual whose
parts they are. Thus, in particular, self-modification of an individual is subject
to the latter’s adaptation, and, while a genotype-phenotype distinction is missing,
there is structural change of an individual during its runtime.’ (Ortega-Sanchez,
Mange, Smith, and Tyrrell 2000) reports on a hardware architecture that mimics
the development of multicellular organisms, gaining reliability through its resulting
distributed organization.

37For our purposes, structural complexity, resulting from connecting primitive entities, suffices
as interpretation of this term that features in many disciplines with a multitude of meanings.

38Example: Complex genotype that is a phenotype vs. simple genotype plus development yield-
ing a complex phenotype

39For GP, we mean formal grammars in terms of computer science. In general, for a given
medium, a grammar manifests itself in phenomena that do not allow for arbitrary structures.

40The authors use their HiGP system (Stoffel and Spector 1996) to experimentally investigate
ontogenetic programming.

22 1 Introduction

Grammar-driven Genetic Programming

(Keller and Banzhaf 1996) presents Developmental Genetic Programming (DGP)*!

that evolves binary genotypes. By use of i) a given table of binary strings and
symbols and ii) a given context-free grammar GG, DGP converts a genotype into a
symbol sequence that DGP then interprets as a sentence—a program representa-
tion—in L(G), the language defined by G.

(O’Neill 2001) proposes Grammatical Evolution (GE) that evolves a variable-length
genotype g that represents a sequence of production rules from a given context-free
grammar G. Applying the rules specified by g produces a sentence in L(G). In
GE, a genotype therefore directly represents a sentence and gives no freedom of
further interpretation. For DGP, we call such additional interpretation besides the
genotype’s immediate transcription into a phenotypic medium “repairing”#?. It is
not solely ruled by a grammar and can therefore be adapted in a problem—oriented
manner by an evolutionary process. In contrast, the grammar given to GE, by
its language—defining nature, is fixed, so that GE cannot change the meaning of a
genotypic element g; that therefore always refers to rule r;. Thus, the concept of GE
appears as a special case of DGP solely working on genotypes that do not require
additional interpretation, i.e., GE’s phenotype synthesis is purely grammar—driven.

Adaptation of further interpretation, however, is essential to search performance,
as it can add stability—against deleterious mutations and the dreaded loss of gene-
tic diversity—by manipulating the redundancy of the genotype-phenotype mapping
that is established by interpretation. (Keller and Banzhaf 1999) introduced this
adaptation, and, for GE, the equivalent step would be the evolution of the under-
lying grammar, which is indeed what (O’Neill and Ryan 2004) suggests. This work
proposes adapting the grammar that implies the set of symbols that may compose a
solution. Like our contribution referenced above, this effort shows that a mechanism
of co-adaptation with solutions is feasible. This step does not, however, address an
inherent GE duality: if a phenotype in statu nascendi contains a non-terminal after
the last rule of genotype g has been followed, synthesis restarts at the beginning
of g. This property increases pleiotropy, which, on the one hand, supports a desir-
able, compact genotypic representation. On the other hand, however, such linking
of several phenotypic traits to the same genotypic information violates the principle
of modularity, which is critical because optimization usually requires independent
variation of traits. Finally, like each grammar-driven GP approach, GE’s genetic
variation operators do not have to obey a genotypic syntax and therefore do not call
for their manual design, because the phenotypic syntax is enforced by the grammar.

Further flavors referring to Developmental Genetic Programming (Béck,
Hammel, and Schwefel 1997) states a central issue underlying interpreting ap-
proaches: “Surprisingly, despite the fact that the representation problem, i.e., the
choice or design of a well-suited genetic representation for the problem under con-
sideration, has been described by many researchers...only few publications explic-
itly deal with this subject...[(Keller and Banzhaf 1996)]...” Like the contributions to

4initially called Binary Genetic Programming
42This narrow term has but historical reasons.

1.2 Objectives 23

Figure 1.10: An instance of the tree representation of an algorithm that computes the
value of the arithmetic expression (a+ b) % c + 3 % 4. The value results from substituting
parameters a,b, and ¢ with numerical values.

Grammatical Evolution mentioned above, efforts of others have started building on
our DGP and also corroborate that interpreting GP can be an improvement over
common approaches.

(Paterson and Livesey 1996), referring to (Keller and Banzhaf 1996), introduce
GADS*?, an approach similar to the later proposed Grammatical Evolution, and
they report on improved performance over tree GP (see Figure 1.10) on an instance
of the cart-centering problem: a cart, sitting at one end of its track, is to be centered
fastest possible by moving it to the left or right with a fixed force.

In (Paterson and Livesey 1997), the authors continue their work, extensively
dwelling on (Keller and Banzhaf 1996), and have GADS evolve caching algorithms
in the language C.

(Yu and Bentley 1998) suggests a framework of methods for generating feasible,
optimized structures in the presence of constraints, referring to the mapping of un-
constrained genotypes to constrained phenotypes from (Keller and Banzhaf 1996).
(Kargupta 2001) and (Kargupta, Ayyagari, and Ghosh 2003) propose the construc-
tion of linear representations of non-linear functions by use of randomized mappings
from the former to the latter. They refer to (Keller and Banzhaf 1999) when they
focus on the natural genetic code as a motivation for the design of such mappings.

(Ebner, Shackleton, and Shipman 2001) suggest several kinds of genotype-
phenotype mappings within cellular automata. They demonstrate the beneficial
influence of appropriate redundant mappings on the search performance and refer
to (Keller and Banzhaf 1999) as an instance of mapping adaptation in the medium of

43“Genetic Algorithm for Deriving Software”

24 1 Introduction

programs. (Margetts and Jones 2001), referring to the same work and to (Keller and
Banzhaf 1996), describe a framework for designing an adaptive genotype-phenotype
mapping. On a toy problem, their work shows improvement over a static map-
ping. (Wu and Garibay 2002) refer to (Keller and Banzhaf 1999) and (Keller and
Banzhaf 2001) as methods for adapting the genotype-phenotype mapping. The au-
thors suggest the Proportional Genetic Algorithm that adapts the ratio of expressed
vs. non—expressed genetic information. We note that this allows for the use of
constant—size genotypes that yet result in different phenotypic sizes, which simpli-
fies genotype handling while maintaining the potential of evolving a good phenotype
with a small size.

Next, we discuss methodical steps to the end of contributing to interpreting GP.

1.2.7 Research method

For exploring the suggested approach (cf. 1.8, p.20), we must engineer practical
heuristic algorithms. Thus, empirical research (chapters 5-7) will ensue, to which
end an elementary process from the natural and life sciences suffices:

1. Create and explain a testable hypothesis on an expected or observed phe-
Nnomenon.

2. Create and perform an appropriate experiment for measuring relevant observ-
ables.

3. Identify trends in the aggregated measurements that contradict or corroborate
the hypothesis.

4. On an inconclusive outcome, adapt hypothesis and proceed with step 1.

In our context, an experiment corresponds to runs of a GP algorithm in question
that are applied to the same given problem, differing due to chance** inherent to an
EA. As such GP algorithms only matter as tools for intended empirical research®®,
we will not discuss their engineering below the design level.

As a general issue of EA design, we decide on using a pseudo-random-number
generator (PRNG) of a readily available software library, as this requires less effort
than accommodating for a random-number generator (RNG): the former represents
a deterministic algorithm that computes a sequence of seemingly random—chosen
numbers, while the latter is hardware that translates natural random phenomena?
into numbers. While, thus, no PRNG can emulate an RNG,*” most of the effective
practical Evolutionary Algorithms call a PRNG that simulates randomness suffi-
ciently well.

Next, immediate objectives of the present work can follow.

441f “chance” is to manifest itself as a sequence of pseudo-random numbers, one supplies each
run with a different seed value for the underlying generator.

45To that end, the author has created the GP system SOLUTION (Software evolution).

46Examples: heat-induced movement of molecules, radioactive decay.

47A believer of the opposite is already in a state of sin, as Donald Knuth once put it.

1.2 Objectives 25

phenomenon representation—dependent

structure.__. process

abstraction

principle representation—independent

implementation

analogy representation—dependent

structure.____ algorithm

Figure 1.11: The transfer of system dynamics between media as source of innovation.
In particular, a structure carrying a process that modifies its carrier is an omnipresent
phenomenon of interest to us, e.g., vortex, life form, star, algebraic entity. Abstracting
from representation-dependent issues yields a principle that one may implement as a novel
analogous phenomenon in a different medium, e.g., hardware carrying algorithms. Sym-
metry of the approach results if one masters the target medium, e.g., by “programming”
a living cell.

1.2.8 Technical objectives

From the tactical objective, the identified research method (cf. 1.2.7, p.24), and the
ubiquitous desire for an at least rudimentary model of an investigated phenomenon,
we derive a first technical focus:

e Arguing empirically and theoretically that adding metaphors of biological prin-
ciples, in particular ontogeny, to a GP algorithm can support its autopoiesis
and performance (see Figure 1.11).

(1.9)

We close a conceptual cycle by relating this issue to the strategic objective next.
The principle of phylogeny is always effective in an Evolutionary Algorithm (EA).
However, mostly, it is the only major biological paragon, so that EAs represent a
warped mimicry of elegant organic evolution. The user ameliorates their resulting
shortcomings against a practical problem by adding explicit and complex task—
specific mechanisms. The thus upgraded production system may perform better,
but it does so at the expense of its self-maintenance: an added mechanism requires
further external parameters that must be set by its environment. For instance, the
user is to adapt an increasing number of parameter values to provoke and maintain
desirable system behavior. Thus, by use of an EA, he or she merely shifts the task
of manually producing a good solution s toward the similar complicated task of

26 1 Introduction

endogenous ontogeny _______ = autopoiesis
byrproducts
control info ontogeny __________
”””” > phenotype == program
A L.
e
selection
A .
! self-adapting
| interpreting Genetic Program | rewriter
%
| | o,
| Y iy
no free lunch, but free for lunch
environment _________s problem-orientation

Figure 1.12: Endogenous ontogeny supports autopoiesis. To this end, one may extend
a genotype format to hold information that directs the interpretation of a genotype, so
that the semantics of the produced phenotype arises from the genetic information and the
behavior of the instructed interpreter. Thus, ontogeny becomes subject to environmental
pressure, which makes the Genetic Program a self-adaptive rewriting process. Among its
products, only the delivered programs are of interest as solutions. While the overall com-
plexity of the problem environment at hand cannot decrease, so that the proverbial “free
lunch” of Machine Learning remains unobtainable, a user of this concept saves resources.

manually finding a value combination that turns the algorithm into a process that
yields s.%8

The classic approach to weakening this dilemma of performance vs. ease of use
is to manually add a further explicit mechanism that is to adapt the previously
introduced parameters. Thus, the yet again extended system still fits structures of
interest as well as parameters that control this structure adapting. However, this
kind of “self”—adaptation, being explicit itself, also stays cybernetically open, since
it has its own external parameters as well.

e We call this situation the conflict of recursion*, and it is a technical motiva-

tion for autopoietic programming that could extend its complexity that then
absorbs problem intricacies, which would avoid the conflict. Figure 1.12 sum-
marizes.

In summary and conclusion, for an EA as a rather explicit construction, the
desire for the algorithm’s self-maintenance raises the conflict of recursion. Avoiding

48Remember Ashby’s sophism on complexity absorption.
49Who controls the controller?

1.2 Objectives 27

the latter requires self-organization on an elementary level of the digital medium: a
corresponding EA-like production system adapts its structure®, including

e representations of genotypes,
e operators, and
e its statement sequence.

As a side effect, the system generates some of its components—phenotypes—that
have special meaning to the user only as structures of interest. To the system, each
state change is but an accompanying effect, because it has no objective. In order to
stimulate a transition from classic algorithmic to autopoietic production systems,
we suggest hypothetical intermediate EA forms next.

One may envision a generic Evolutionary Algorithm that flows through the space of
EAs, thus adapting itself by changing, e.g., from an instance of Evolution Strategies
to one of Genetic Algorithms. Alternatively, we think of a meta EA that shapes a
population of EAs along with populations of interesting structures. This algorithm
would be a GP instance, as it produces algorithms. Both the generic and meta EA
are not autopoietic, lacking, for instance, self—creation. The generic flavor, however,
is closer to self-organization, since it dissolves the boundary between “self” and
“non-self” thus eliminating the concept of hierarchical control as given with the
meta variant.

e This view changes the meaning of “environment”: to a structure—
representing, e.g., a genotype, an operator, or an item from the problem
domain—all other entities that influence its adaptation form its environment.
In particular, the terminator between problem—approaching algorithm and
problem environment vanishes. The classic representation of the latter is a
coherent model, such as a data set, that is fed to an EA. The revised view
asks for a primitive structure of reference to which other primitive structures
represent its environment.?!

Summarizing, implicit self-adaptation relies on the symmetry of the relation “struc-
ture a is a part of the environment of structure ” that emerges when one increases
the resolution with which one observes the underlying medium. Thus, a and b may
be mutually adapted by a process dubbed co-evolution.??

e Regarding our tactical objective, systemic co-evolution of ontogeny and geno-
types follows as notable issue.

50Systemic information and function rest here.

51Example: A genotype can add to the environment of a mechanism that maps the genotype
onto a phenotype. A traditional perspective only sees the distinction between an EA, encompassing
geno— and phenotypes, and its problem environment.

52Numerous examples of artificial co-evolution exist. However, comparatively little work, such
as (Teller 1996), relates to co-evolving programs and structures of the underlying GP algorithm.

28 1 Introduction

A necessary principle for such co-adaptation is locality, i.e., an association of an
entity with other inhabitants of its environment. Thus, an event that affects an en-
tity influences “close” neighbors directly. Different natures of this association, such
as physical or functional, exist, and examples abound.?® A neighborhood, resulting
from locality, can therefore manifest itself in many senses.

In conclusion, to the present work, mutual neighborhood of a genotype and a struc-
ture carrying ontogeny is relevant, possibly supporting their implicit adaptation
through systemic co-evolution. The resulting change of genotypic meaning would
be a novel freedom degree for implicitly adapting a phenotype, besides using ge-
netic operators for standard, explicit manipulation. While our current focus is on
program phenotypes, different structures of interest can be targeted. This is a pro-
found argument for ontogenic EAs and Genetic Programming in particular, as it
indicates future potential of changing the language in which to express products:
while a word from a programming language may describe an object, a correspond-
ing word from a “physical” language is the object. As realizations of the strategic
objective, we envision successors of GP to assemble their physical structure, such
as biological development shows as a growing organic life form. However, since the
present work is to support i) migration to artificial self-organization® as well as ii)
current practical problem solving, compromising implicit with explicit mechanisms
is unavoidable here. This gives the first technical issue (cf. 1.9, p.25), and to the
end of its implementation, we identify a second one:

e Discussing the concepts of genotype and phenotype as well as mappings that
realize ontogeny.

Both items form our technical objective. The second issue starts chapter 3 and
prepares the design of algorithmic components in chapter 4 needed for empirical
research (chapters 5-8) toward the first issue. Next, to set the technical context, we
discuss Evolutionary Algorithms.

53In a swarm of moving agents, a change of course of an individual may prompt its immediate
spatial neighbors to assume the new heading. In a given cellular automaton that knows different
cell types, the state of a cell may only influence state changes of cells of the same type.

54Fostering the mental transition of society from mechanistic to self-defining production philoso-
phies might become even harder than their technical realization. In particular, followers of estab-
lished methods and technologies often attempt judging alien approaches by meaningless criteria,
asking, metaphorically speaking: “How loud is blue?”

Chapter 2

Evolutionary Algorithms

2.1 Optimization

For a problem, a formal distinction between a user’s decision and the represented po-
tential solution prepares making a difference between a genotype and its phenotype.
The user’s ultimate goal is a decision that supports a result considered “optimal”
by given criteria.! A decision problem p is characterized by a finite non-empty set of
decision variables and objectives, and by a finite set of constraints.

(2.1)

Each variable represents exactly one value from a set, for instance, R.
(2.2)

The set generated by all variables shall be called the decision space of p, denoted
by dec, —dec, # () follows from 2.2 and 2.1—, so that a decision is modeled by a
point in that space. An objective describes a desirable state of the problem environ-
ment that gives rise to p, and a solution aims for the realization of all objectives.
The environment potentially reacts to a presented solution, thus implicitly describ-
ing the problem. The user can also model the environment explicitly by an objective
function, or implicitly by a simulator. A constraint of p is an environmental prop-
erty that restricts the structure of applicable solutions, so that a potential solution
is applicable if and only if it satisfies all constraints, if any.

Practical decision problems abound,? and, for many, the vexing ignorance about
efficient deterministic solvers calls for the use of approximate solvers,® such as Evo-
lutionary Algorithms, that often yield helpful solutions in time.

L(Schwefel 1995) gives a general introduction to optimization with emphasis on Evolutionary
Algorithms. See also (Schwefel 1981) for an extensive technical discussion.

2For a car-production line, parameters control the motion sequence of neighboring assembly
robots. The objective is fastest car assembly, constrained by mandatory collision avoidance re-
garding robots. Thus, there may be a potential solution, theoretically giving a fast assembly using
immaterial robots, practically, however, violating the constraint. In this robot example, a decision
is a value tuple that represents settings of motion-control parameters.

3With the majority of the computer science community, we strongly believe NP#P.

29

30 2 Evolutionary Algorithms

We present standard* mathematical conventions in appendix A, p.205. Here,
customized conventions follow. We call the set of all potential solutions of a problem
p its potential-solution space, denoted by pot,. As s € pot, is unrestricted, its
existence is guaranteed®, so that pot, # () holds. If s satisfies all constraints, it
shall be called a feasible solution. We call the set of all feasible solutions the solution
space of p, denoted by sol,. Thus, sol, C pot,, and, if there are no constraints,
sol, = pot,, else, sol, = () might ensue.

d in the decision space dec, represents some potential solutions of p, as follows.
A semantic mapping of p shall be a relation R C dec, x pot,. Thus, R gives meaning
to d by relating it to an r € R(d) C pot,, and we call d a semantic representation of .
We assume determinism of a decision. Then, each decision semantically represents
exactly one potential solution. Thus, a semantic mapping is a function from dec,
into pot,,.

S, shall denote {f ‘ f : dec, — pot,}, i.e., the set of all semantic mappings of
p. Thus, for f € S,, dom(f) = dec, and img(f) C rng(f) = pot,. In the robot
example, pot, is the set of unconstrained motion sequences. A semantic mapping
of the underlying problem models the functional connection between all parameter
settings and the resulting motion sequences.

The concept of a semantic mapping allows for modeling different functional con-
nections for p by representing each connection by another mapping.® A connection
between dec, and pot, may be such that there is a potential solution that does not
result from any decision. In this case, the respective semantic mapping is not sur-
jective. For instance, one of the robotic freedom degrees cannot be used because
the control panel does not offer the respective parameter. Thus, a potential solution
using this degree is not represented by any decision.

Finding a decision d € dec, means identifying the corresponding value for each
decision variable of d. For given m € S, finding a potential solution s € pot, shall
mean locating d : m(d) = s. An entity attempting to approach a problem p—e.g.,
a human or a software system—is often called a decision maker, and we use the
introduced umbrella term “user.” Given m € S, the user attempts finding d € dec,
that semantically represents an applicable solution of p. d shall be called feasible
under m, and

{d € dec, | m(d) € sol,}

is the feasible-decision space under m [feay,). fea,, C dec, and img(m|feq,,) C sol,
follow. Note that fea,, = 0, if sol, = 0 V img(m) N sol, = 0 hold.

4The author became careful in his assumptions on common mathematical notions when he
hit a major glitch in a discussion with a Russian colleague, discovering clashing definitions of a
“standard” term.

5Given p, there is always an action aiming for the realization of all objectives of p, even if failure
is known a priori.

6For the robot example, a customizable control panel allows a human to redefine the meaning
of a parameter for the robot’s actuators. Thus, a given decision d may result in a motion sequence
different to the one that originally resulted from d. Different panel definitions can be modeled by
different semantic mappings.

2.1 Optimization 31

in f,, shall denote pot,, \ sol,, which implies inf, C pot, and inf, N sol, = 0. We call
i € inf, an infeasible solution, and

{d € dec, } m(d) € inf,}

the infeasible-decision space under m [in f,,)].

infm C dec, and m(inf,,) C inf, follow.

infm N fea,, = (0 holds because of inf, N sol, =0 (s. above).

infm, U fea,, = dec, follows from dec, = dom(m), pot, = rng(m), and inf, plus sol,
being a partition of pot,,.

We identify the standing term “solving a problem” with

“finding d € dec, : m(d) € sol,.”
To this end, the user must employ a search process regarding p, i.e., a procedure that
is to locate d. One can model the process as a search algorithm a that employs the
given m € S, [alg,,,|. Thus, for m,n € S,, m # n, one may view alg,,, and alg,,
as different instances of a.

We call the set of decisions visited by all runs of a its search space [sea,)].
sea, C dec, follows.

d € sea, shall be called a search point of a.

img(m|sea,) C img(m) C pot, follows from A.2, p.205.

The user is interested in those search points that semantically represent feasible
solutions under the given mapping m € S, i.e., in

{d € sea, | d € fea,}

that we call a’s representative space [rep,], and d € rep, is a representative of
m(d) € sol,.

d € rep, & (d € sea, Nd € fea,,) < d € sea, N feay,

follows, so that rep, = sea, N fea,,, implying rep, C sea, and rep, C fea,,.
(2.3)

img(m|yep,) = m(rep,) follows from A.3, p.205.
m(rep,) = m(sea, N fean,) follows from 2.3, p.31. As

m(sea, N fea,,) C m(sea,) Nm(feay,)
holds due to A.4, p.205,
m(rep,) C m(sea,) N m(fea,)

results.

In summary, for a given decision problem p, an m € S,, and an alg,,,, the following
relations hold. (2.4)

32 2 Evolutionary Algorithms

e dec, = dom(m)

e rep, C sea, C dec,
e rep, C fea,, C dec,
e rep, = sea, N feay,
o inf, Cdec,

e inf,N fea, =10

o inf, U fea, = dec,

e pot, = rng(m)

o m(inf,) Cinf, C pot,
e inf,Nsol, =1

e inf, U sol, = pot,

We show three further implications. For sets A, B, and D = A N B, the inclusions
D C Aand D C B hold, implying € C m(sea,) and € C m(fea,,). As m(rep,) C €
(above),

o m(rep,) C m(dec,)
e m(rep,) C sol, follow.
As for sets A, B,C with A C B and A C C, relation A C BN C holds,

e m(rep,) C m(dec,) N sol, follows.

In summary, the context of a functional connection between the decision space and
the potential-solution space of a problem has been established. Next, we discuss op-
timization on this background. This will support designing the GP system required
for the empirical part of the present work (cf. 3, p.47).

If the user solely wants to solve a problem p, a search algorithm a must merely
try to return any non-empty subset of rep,. However, most practical problems call
for especially qualified representatives, so that the user designs a function o for p
that determines the quality of a feasible solution s, i.e., the latter’s degree of aptitude

2.1 Optimization 33

for reaching all of p’s objectives. Quality is represented by a quality value from an
ordered set (). Here, @ C R shall hold, which is without restriction of generality.
o : sol, — @ is an evaluation function if and only if a greater o(s) indicates a better
solution. A search process applies an evaluation function to a found solution and
interprets the resulting quality value, thus influencing further search. We call an
s € sol, an acceptable solution if o(s) > ¢ with a user-given acceptance value ¢ that
signifies a degree of quality s must show, at least, to satisfy user expectations.

{s € sol, | o(s) > ¢} shall be denoted by acc, with ¢ = (p,0,¢). Thus, if the
search process locates an s’ € accy, it may terminate by returning s’

Optimizing a problem p means searching for a globally best feasible solution” —
and, in our view, for each of its representatives—which is called a global optimum
of p. For practical environments, it is often unclear whether the best solution s
located during a completed search process is a global optimum. Thus, a human user
is satisfied, at least temporarily, if s is acceptable.

A representative of a locally best feasible solution s and s itself are both called
a local optimum.® To optimize p, the process may continuously offer the best rep-
resentative(s) found since its start.” In particular, optimizing a dynamic problem p
means attempting to find a current optimum. p also renders dynamic the task of the
self-adaptation of the search process. This situation, however, does not complicate
self-adaptation but merely turns it open-ended.

To a user, a situation appears as a “hard problem” only if a helpful solution or a
solver guaranteed to find the latter in time are unknown. As such tasks often occur
in a highly constrained physical environment, they are called “real-world.”!® We
suggest to describe a real-world problem p by the following properties.

(2.5)
e An acceptable s € sol, is unknown.

e Given a practical run-time period 7" and a search algorithm a, then

S ={s€sea, | a locates s at teT}< |sea.

e Acceptable s € sea, are rare.

S with |&] < | S| shall be called a large set. In particular, seq, is large. Typically,
sol,, and, thus, also pot, are large, since sol,, C pot,, (cf. 2.4, p.31). The second and
third real-world criteria!! capture that, for the underlying large search space, simple
brute-force approaches, such as enumeration or pure random search, probably cover

7w |

global” refers to the entire search space.

8Here, “local ” refers to a contiguous search space volume containing the representative. Thus,
a global optimum is also a local one.

9Thus, such a representative is not necessarily an optimum.

190ne can, however, construct such a problem without a relation to the material world.

' These criteria are highly situation-specific, so that our view on a real-world task p complements
other characterizations of p as, e.g., an NP-complete problem. For example, in a given situation,
the user may not perceive a small NP-complete instance as a problem.

34 2 Evolutionary Algorithms

an uninteresting space fraction, because a practical run-time period 7" usually only
lasts from a few minutes up to several weeks.'? A typical real-world problem comes
from domains like control, classification, or scheduling. One calls its counterpart
a toy problem, especially appropriate for the analysis and demonstration of search
methods.

In summary, we have introduced a formal distinction between a solution and its
representations in the context of optimization. Next, the issue of adaptation, a
manifestation of optimization, leads to EAs.

2.2 Adaptation

Gradual change of structures, slow by human standards, directed by positive and
negative feedback, is the visible property of natural evolution which shares this fea-
ture, not its speed, with artificial optimization processes. This common trademark is
essential to EAs which implement phylogenetic principles for approaching problems.

2.2.1 Classification of an Evolutionary Algorithm

A structure is an arrangement of entities, and a process is a structure in time, com-
prising activities. The process of adaptation, producing and deleting structures,
generates a temporal sequence of composed structures such that latter instances
perform better in the sense of a given criterion. Computer-aided adaptation, rep-
resented as an algorithmic solver, may attempt yielding an exact solution, i.e., an
optimal structure, in a given environment. Often, however, in particular in the con-
text of manufacturing material structures, the given task turns out to be a real-world
problem.!® Thus, the user may want to trade in desirable algorithmic properties, in
particular determinism that guarantees exactness, for bearable resource consump-
tion that still finds an acceptable structure.

To that end, search may begin at one or more points in structure space which
usually are unacceptable (cf. third real-world criterion). A blind random search!?
(Brooks 1958), as a non-deterministic solver, identifies potential solutions in an en-
tirely undirected manner. While it, in principle, performs a simultaneous search, its
implementation may work sequentially due to limited working memory. The solver
keeps a currently best solution and delivers the overall best found structure as final
result, thus producing a temporal sequence of intermediate solutions of increasing
quality. In particular, it does not use information as search guide, such as proper-
ties of previously found solutions. Adding mechanisms that yield such assistance in
finding further solutions results in a heuristic random search. Thus, this approach is

12Even given fantastic computing resources performing at the boundaries of physics, typical
real-world problems would not at all yield to brute search within 7', as follows from the limit of
(Bremermann 1962).

13From the perspective of computational complexity, far over 1,000 NP-complete classes, fre-
quently aggravating industrial problems, are currently known.

14 A k.a. simple random search, pure random search, Monte-Carlo method.

2.2 Adaptation 35

essentially sequential, while it supports massively parallel implementations due to
its concept of a population of solutions.

Evolutionary Algorithms (Fogel, Owens, and Walsh 1966; Rechenberg 1971;
Rechenberg 1989; Schwefel 1975; Holland 1992; Koza 1992; Back, Fogel, and
Michalewicz 1997; Banzhaf, Nordin, Keller, and Francone 1998; Blickle 1996b;
Mitchell 1996; Nissen and Biethahn 1995) are examples whose heuristics employs
principles governing phylogeny as observed in natural evolution (Darwin 1859; Ay-
ala and Valentine 1979; Kauffman 1993; Dawkins 1989; Weber, Depew, and Smith
1988; Holland 1995).1°

Many contributions, like (Goldberg 1988; Davis 1990; Angeline 1993), describe
EAs that, for certain problems—some being real-world—, usually find better ap-
proximate solutions during observation than blind random search does. Thus, the
performance difference must come from use of information, such as natural evolu-
tion, constrained by physical limits, cannot have produced the panoply of feasible
genotypes through a pure random process (Bremermann 1963).

2.2.2 Natural evolution: adaptation of genetic information

Genetic information is implemented by molecules called DNA (deoxyribonucleic acid)
(see Figure 2.1) and RNA (ribonucleic acid). The genotype of an organism represents
an instance of such information that, interacting with the environment, supports
autopoietic organismic processes. The resulting structural and functional traits of
the life form are called its phenotype which shows behavior in the habitat.

During reproduction, a parental organism transfers a more or less exact replica of
its (partial) genotype to each offspring. On the one hand, if an individual keeps re-
producing in a dynamic environment, parental behavior obviously honors properties
of the habitat. In this sense, the parental phenotype and the underlying genotype
are considered adapted to the environment by some degree. On the other hand, ge-
netic information that results in behavior obstructive to its reproduction thus ends
its history. This link between genotype and phenotype contributes to two essential
effects:

e Temporal sequences of genotypes come into existence such that a latter in-
stance is probably more or equally adapted than an earlier one.

e Genetic information that contributes to an organism’s level of adaptation does
not easily vanish.

The first effect necessitates genetic variation, corrupting inappropriate informa-
tion, thus synthesizing new genotypes, while the second one calls for the conser-
vation of well adapted information. This discrimination of information is known
as selection. We note that conservation must be provided by a remarkable effort

150One sometimes speaks of EAs as “metaphors” of natural evolution.

36 2 Evolutionary Algorithms

Figure 2.1: A part of a DNA molecule, featuring instances of all of the four essential basic
DNA components labeled A,C,G,T. Dotted lines indicate hydrogen bonds.

2.2 Adaptation 37

of evolved structures and mechanisms against the Second Law of Thermodynamics
which provides variation for free.!

In summary, natural evolution is the sketched process that adapts genotypic struc-
tures to their environment and keeps the represented information in sync with the
dynamic habitat.

2.2.3 Structure adaptation as optimization

In its essence, natural adaptation, a gradual structure shaping guided by necessities,
is equivalent to technical optimization that approaches a structure in view of an
ideal. Natural evolution yields adapted genetic information as a molecule (cf. 2.2.2
p.35), a material structure, that contributes to the behavior the respective organism
shows in its spatio-temporal context, i.e., its environment. The underlying concept—
adaptation that influences behavior that feeds back into the shaping process—is not
restricted to the carbon-based medium of life.

e Thus, a domain transfer of the gist of natural evolution may yield an instance
of optimization: purpose-oriented adaptation in an artificial medium.'”

This observation has lead to the core idea of Evolutionary Algorithms (cf. 2.2.1,
p.34): implementing phylogenetic principles to the end of approximate problem
solving. Predecessors were conceived in the late 1950s, with (Box 1957) possibly
being the first respective contribution. EAs emerged in the early 1960s when it
was still unclear whether artificial evolution in a computer would be feasible. A
strongly growing body of empirical investigations and applications,'® in particular
for real-world problems, has answered this question positively.

The high industrial potential of EAs receives increasing attention. Let (Minister,
Williams, Masters, Gilbert, and Haase 1995; Quagliarella, Periaux, Poloni, and
Winter 1998; Zibo and Naghdy 1995; Blickle 1996b; Claus, Hopf, and Schwefel
1996; Gerdes 1996; Keller, Banzhaf, Mehnen, and Weinert 1999; Keller 2002; Busch,
Ziegler, Banzhaf, Ross, Sawitzki, and Aue 2002; Costa and Schoenauer 2009) suffice
as recent examples.

In summary, natural evolution manifests itself in the creation and maintenance of
well-adapted living structures. Optimization may show as evolutionary adaptation
of artificial structures. Thus, inspiration for EAs in general and the present work in
particular comes from underlying natural structures and processes to be discussed
next.

16Spontaneous undirected changes of molecules carrying genetic information occur as quantum
phenomena (cf. (Schrodinger 1944)).

1"The user has an objective, e.g., the design (genotype) of a mass-limited bridge (phenotype) with
a maximal tether (adaptedness). This artificial structure shows its behavior in the context of forces
exerted by passing vehicles and moving air masses (environment). The user may optimize the design
in an experimental fashion, generating a structure sequence of increasing quality (adaptation).

18See, e.g., (Alander 1994; Alander 1995) and Langdon’s online “Genetic Programming biblio-
graphy” for a large collection of instances.

38 2 Evolutionary Algorithms

2.3 Natural evolution

For the present work, a discussion of the stunningly intricate phenomenon of evo-
lution in its biological medium cannot even mention all major issues. In particular,
the biochemical representation of structures and mechanisms is mostly irrelevant
here, while their cybernetic meaning matters. We therefore modestly focus on a
few fundamental, grand themes that are of immediate significance, neglecting, in
particular, a myriad of technicalities from molecular biology.

2.3.1 Principles: heredity, variation, and selection

As seen before, for evolution to occur in a medium, three effects are necessary:
diversification, conservation, and bias.

In the natural context, variation, in its procedural meaning, affects genotypic
structures and results in genetic diversity, the static meaning of the emphasized
term. Due to heredity, a modified copy of the complete or partial parental genotype
becomes genetic information of the offspring. Reproduction elegantly combines and
implements heredity and variation. Thus, an organism produces an average number
of offspring per time unit that can be compared to the numbers of other individuals
from the same environment, and the result is called the fitness of the organism.
Therefore, fitness is a measure of relative reproductive success.'® Since the genotype
co-determines the degree of organismic adaptation (cf. 2.2, p.34), variation may lead
to different parental and offspring fitness. Phenomena resulting in such difference
are instances of natural selection.?

e The higher the parental fitness, the more offspring carry the transferred genetic
information which is adapted, and the higher the chance is that the latter will
go, in turn, from these to their offspring, establishing conservation.

e Modified instances of information are worse, equally well, or better adapted
than corresponding parts of established genotypes.?! Natural selection, biased
for adaptation quality, yields fitness differences that induce negative feedback
for the first case, and positive feedback for the last two cases, resulting in only
their conservation.

9Thus, the organismic property of being well-adapted (cf. 2.2.2, p.35) is not equivalent to having
a high fitness. Rather, the former is necessary for the latter, since an “out-of-sync” organism will
stand little chance to reproduce often. The former, however, is not sufficient for the latter since
a well-adapted life form may, in an extreme case, not reproduce, at all, for instance, for a lack of
resources, such as a mate or sufficient energy.

20While the difference results implicitly, the emphasized term comes from the mechanistic, phe-
notypic point of view that “selection” discards or chooses an individual for reproduction. In view
of molecular biology, genetic information is chosen for transfer.

21For a classic instance, a predator may spot an offspring’s fur pattern more, equally, or less
easily than the parental pattern.

2.3 Natural evolution 39

2.3.2 Artificial metaphors

The principles from 2.3.1, p.38, serve as paragons of EA components.

Mutation and genetic variation

An undirected spontaneous random modification of genetic information, usually a
rare event, is called a mutation, a term introduced by de Vries around 1902, then
only having a phenotypic connotation. A common natural example for a mutagenic
agent is ultraviolet radiation. A point mutation results in a change of only one
atomic genetic component, while a macro-mutation is a single event whose effect is
equivalent to the combined effect of several point mutations.

Abstracting from natural material structures and their dynamics, data types
can represent elementary cybernetic issues of evolution. Thus, for EAs, a minimal
mutation algorithm takes an artificial genotype g, copies it, changes the copy into
a genotype h,h # g, that it returns. In this manner, the algorithm also has an
implicit reproductive character, representing a metaphor of heredity. Therefore, in
the present work, artificial mutation shall be of the described type.

(2.6)

Variation, reproduction, and heredity

Biology distinguishes asexual and sexual reproduction. In the former case, exactly
one individual produces offspring, and, in its pure flavor, this process yields a clone:
parent and child are genetically identical. For instance, a bacterium reproduces in
this way. An algorithmic metaphor of clone production—an element of artificial
mutation—shall be called copying.

In the latter, sexual case, two parental organisms produce an offspring whose
genotype contains partial information from each parent. Thus, sexual reproduction
establishes an instance of heredity and variation.??> The intricacies of this type of
biological information transfer have inspired numerous artificial metaphors that all
realize information synthesis involving at least two parents.

Phenotypical behavior and selection

Natural selection on the produced offspring and future parents follows from their
different efficiency in interacting with a resource-limited environment. As materially
represented artificial habitats must show the same restriction, the user can easily
implement a flavor of synthetic selection.

With the presented notions on artificial echos of natural evolutionary phenomena,
a scheme can be assembled next that crudely captures fundamental issues of its
biological paragon.

22For its paramount significance, we mention meiosis as the underlying biological process during
which crossing over interchanges parental information. The resulting “mixed” information even-
tually becomes the offspring genotype which then controls the autopoiesis of the corresponding
phenotype.

40 2 Evolutionary Algorithms
2.4 A typical Evolutionary Algorithm

2.4.1 Components
Preliminaries

Data types of an EA mimic features of natural evolution in an often rough manner
that is due to limited computing resources available for the optimization of a given
problem. Also, one usually finds many different software analogies of the same
natural phenomenon, because the user incorporates problem-specific knowledge into
the EA design. A data type represents a structure and its dynamics that contributes
to artificial evolution, e.g., variation of a genotype. Especially, an operator of the
data type performs a process on an instance of its value range, raising the required
dynamics.?

Individual

An organism is mimicked by an artificial individual, a data type representing a point
in the search space of the algorithm.?* The individual represents exactly one ar-
tificial phenotype, i.e., data whose interpretation by the EA yields behavior. This
situation is a minimal requirement on EA design, because behavior is the substrate
of necessary selection.

Only if an EA gives rise to ontogeny, an individual ¢ contains an artificial genotype
that is not identical with ¢’s phenotype. Then, a semantic mapping other than
identity reads the genotype to write the phenotype. Among current EAs, a tiny
minority we call developmental features flavors of ontogeny. Some of their design
issues take center stage as of chapter 3, p.47.

Individual fitness

A fitness function of an EA implements an evaluation function, so that a return
value indicates an individual’s fitness.?> By identification of an individual with its
phenotype and, if given, genotype, one speaks of the fitness of all three entities.
As a static construction, the function is a crude and explicit mimicry of a natural
environment.

Fitness-based artificial selection

A fitness value is processed by an operator that implements artificial selection. At
time ¢ of a run r of an EA, the selector chooses a component from the tuple ¢ of all

23 A minimal example is given as bit inversion on a binary string, implementing point mutation
of an artificial genotype.

24Example: a vector from IR®. A corresponding individual may contain a real-valued three-
dimensional array.

2Frequently, “fitness” is identified with “fitness value.” Note also that biologists directly refer
to reproductive success, while the EA community uses the term synonymously to the presented
notion of quality of phenotypical behavior.

2.4 A typical Evolutionary Algorithm 41

individuals that r has located and not lost again so far. ¢ is called the population of
r at ¢ [our notation: pop,.s].%°

e We decide on a constant population size, supporting a minimal EA design.

Individual interaction with an EA environment has a dual character like its natural
twin. Selection for reproduction identifies an individual (parent) as argument for
a variation operator that introduces a different phenotype (child) to the population,
while selection for replacement removes a chosen delinquent in favor of such offspring.
The decision on an individual follows a—potentially subtle—selection rule that is
biased in favor of higher quality: identify ¢ for reproduction with an average selection
probability higher than that of a worse individual j. For replacement, vice versa, the
rule prefers j in most cases.

There is a large set of selection schemes in use with EAs, e.g., elitist selection
which we mention for later reference. A selector adhering to this philosophy gua-
rantees that the underlying EA run r keeps a point as long as it is among n > 0
best points found since r’s start.

Selection pressure resulting from a scheme directs artificial evolutionary search by
supporting both reproductive success of better adapted individuals and failure of
others.

Creation and variation operators

Regarding optimization, variation at time ¢ introduces a candidate that represents
a point in search space that the underlying EA thus visits, revisits, or already stays
at, therefore gaining, regaining, or maintaining its population’s genetic diversity.
One tends to visualize this notion as the population moving through search space.

Typically, variation operators mimic natural mutation and crossing over. A re-
combinator takes at least two parents and produces at least one offspring from copies
of random-chosen parental genotypic parts. This combination of parts of potential
solutions may boost progress. A mutator takes one parent only and generates a
different offspring individual, while chance is involved in the creation of the latter.
In its basal flavor, this process represents a blind random jump in search space, pos-
sibly discovering a radically novel structure. A creator synthesizes individuals that
compose the initial population?” of an EA run. The operator “mimics” the origin
of life immensely crudely, so that it is rather a symbol of the emergence of natural
structures that carry information or behavior. Its creations are starting points for
the evolutionary search. To that end, chance and a priori problem knowledge may
influence their synthesis.

Creators and variators are known as search operators since they perform an ex-
ploration of space, representing innovation.

26We do not model multi-population flavors which do not add to the essence of ontogeny. Also
note that a materially implemented, finite population covers, for a real-world problem, an utterly
insignificant fraction of the involved spaces.

27 An entity—e.g., an individual, a genotype, or phenotype—of this set is often also called initial.

42 2 Evolutionary Algorithms

An artificial point mutation results in the smallest variation of a genotype, so
that one often defines the distance between genotypes g, h as minimal number of
such events transforming ¢ into h. Moving a population, a point mutation appears
as an individual walking through search space. This process identifies a contiguous
sequence of visited points, and we call it and each of its subsequences a trail. 27)
A macro-mutation of a genotype may show as an individual leaping in search space.
The built sequence of visited points and each of its subsequences shall be called a
route.? (2.8)

Since the population is finite and smaller than a practical search space, explo-
ration may replace a current individual by a newly found one. Especially, the latter
may structurally differ from the former, so that this situation represents a change
of the distribution of frequencies of current genotypes. Note that, depending on the
employed selection scheme, the lower the frequency of a genotypic structure is, the
less likely the latter may be reproduced. Negative feedback sets in that, in the ex-
treme case, only stops at the loss of a structure.?? An operator performing copying
(s. def.) is often used to counter such loss of structural diversity, because it mimics
mutation-free asexual reproduction, strongly promoting exploitation of a genotype
by amplifying the number of its current identical instances.

e Desirable self-adaptation of an EA maintains a dynamic balance of exploration
and exploitation such that search progress is supported.

In summary, heredity, variation, and selection are necessary for natural evolution
(cf. 2.3.1, p.38), and data types used during an EA run mimic these phenomena.
Artificial evolution emerges from an EA’s control flow that links these components
as follows.

Control flow

Natural genetic information migrates from parents to offspring that turn into par-
ents. Thus, iteration is an appropriate central control structure of an EA. At its
beginning, a creation operator produces initial individuals to be selected for the
start of this iteration. Exploration and exploitation of selected genotypes follow,
yielding offspring that in turn await selection, which ends the first cycle. We call
the iterative structure that carries such cycles the evolution loop since it gives rise to
the essential part of genotype emergence. The—still mostly black—art of employing
EA principles manifests itself in designing and initializing an algorithm such that
the loop provokes and maintains the mentioned dynamic balance of innovation and

conservation. (2.9)

28Thus, a trail is a route, and, in a search space containing more than two points, there may be
a route that is not a trail.

29Example: If all instances of the vector (1,2,3) vanish, this structure suffers extinction.

390n the one hand, the loop must support exploitation of a found promising solution without
losing its potential for further exploration of more attractive space regions. On the other hand, it
must explore without frequently losing well-adapted structures due to weak exploitation.

2.4 A typical Evolutionary Algorithm 43

Termination

Often, for practical reasons like releasing shared computing resources, an EA must
not run indefinitely. To that end, the user defines the loop’s termination criterion
based on the fitness f of a best genotype that the run has ever found and that is
represented by the best-so-far individual. For a practical optimization problem, a
globally best fitness is unknown, so that a comparison of f to this optimal quality
value is no option. However, the criterion may be the equality of f to the acceptance
value, and it is then called the success predicate of the underlying problem (Koza
1992). It may also be equality of the amount of so-far evolved individuals to a user-
determined maximal number, in which case it is known as time-out predicate. An EA
run virtually always uses a variant of this condition,* and the logical disjunction of
both predicates gives a typical termination criterion for a real-world problem.

For a generational Evolutionary Algorithm, one views the population as current
generation, indexed n € Ny, that comprises parents. For a fixed population size s,
the evolution loop produces exactly s offspring building the next generation n + 1
that becomes the current one. Thus, for a generational EA, a number of consecutive
generations is a canonical temporal notion that we call the generational-time measure.
A generation produced last in terms of this measure, and associated entities, e.g.,
phenotypes, shall be called final.

In extended summary, we have discussed components of a typical Evolutionary Al-
gorithm and developmental extensions, and an instance shall be synthesized next.

2.4.2 A basal Evolutionary Algorithm
Structure

Informal pseudo code and its comment in ISO-C style shall suffice to summarize
the control flow through the described data types.

31The Master’s thesis by one of the author’s former students explores boosting GP’s implicitness
by a metaphor of an individual’s limited initial energy that is to render obsolete a time-out predicate
(Remco Nabuurs, Energy-Bound Genetic Programming, University of Leiden, The Netherlands,
2004).

44 2 Evolutionary Algorithms

creation /* of initial population */
IF algorithm is developmental

genotype-phenotype mapping /* yields feasible solutions */
quality evaluation /* interprets solutions, evoking behavior */
WHILE termination criterion not met /* (re)enter evolution loop */

selection /* for reproduction of better behavior */

cloning XOR reproductive variation /* of chosen parents */

/* produces next generation */
IF algorithm is developmental
genotype-phenotype mapping
quality evaluation

ELIHW /* leave loop */

For transparency, we have stretched out the design of the presented pseudo-
algorithm, and an equivalent, elegant version follows.

REPEAT
IF first loop entry
creation
ELSE
selection
cloning XOR reproductive variation ESLE
IF algorithm is developmental
genotype-phenotype mapping
quality evaluation

UNTIL termination criterion met

Function

As a flavor of artificial evolution, the presented EA template describes an instance
of an iterative search process of gradual improvement of target structures. Purely
volume-oriented approaches, e.g., blind random search, are at one end of the scale of
such approximation schemes.

2.5 Genetic Programming 45

At the other end, exclusively path-oriented algorithms, such as gradient-based
procedures and zigzag strategies, often only find suboptimal solutions for most
practical tasks that are strongly irregular, i.e., multi-modal,®* non-convex, and non-
differentiable. In the middle of the spectrum, hybrid optimizers such as EAs yield
a practical compromise.

There are theoretical results on the functionality of Evolutionary Algorithms,
like (Beyer 1995; Biack 1996; Rudolph 1996; Motoki 2002; Schwefel, Wegener, and
Weinert 2003) to name few, and (Béck, Fogel, and Michalewicz 1997) gives further
references. Due to a large number of complex EAs for practical problems, a unifying
theory does not yet exist. However, individual results support intuitive design of
effective real-world heuristics as they foster a precise understanding of basic mech-
anisms. While theory may keep lagging behind rapidly emerging practical EAs,
complete formal models of simple older variants are also useful to foster acceptance
with skeptics from classic fields of optimization. This may be especially in demand
for the flavor known as Genetic Programming (GP).

2.5 Genetic Programming

e We characterize a GP algorithm (Koza 1992; Banzhaf, Nordin, Keller, and
Francone 1998) as an EA that interprets a point in search space as an algorithm
whose computation influences individual quality.

While this description captures GP’s original spirit, the field has quickly em-
braced a wider view that includes arbitrary phenotypic structures, e.g., (Koza, Myd-
lowec, Lanza, Yu, and Keane 2001; Bennett I1I, Koza, Yu, and Mydlowec 2000; Cao,
Kang, Chen, and Yu 2000; Keller, Banzhaf, Mehnen, and Weinert 1999).

The user may represent knowledge and assumptions on a problem as

e the function set, containing symbols of algorithms,** and as
e the terminal set that symbolizes variables and constants.

An underlying GP system synthesizes algorithm representations from the provided
elements.

Often, quality evaluation interprets a user-given set of fitness cases as a problem at
hand: each case is a pair (input 7, output o) that defines o desired from an individual
that has taken ¢ as argument. For all cases, the evaluation phase computes the
individual total error on the output, yielding a quality value for feedback, so that,
in terms of Machine Learning (Mitchell 1997), the cases represent a training set.

We can approach the technical objective next.

32Featuring several optima.
330ne reason is the chronic delay from developing appropriate mathematical tools.
34Example: ‘4’ for arithmetic addition, ‘myFnc’ for a user-defined routine.

46

2 Evolutionary Algorithms

Chapter 3

Developmental
Genetic Programming

Everything flows. HERACLEITUS

3.1 Introduction

To the end of empirical research (cf. 1.2.7, p.24), a system is required whose core
procedure shall be called the projected search algorithm. Initialized with different
sets of parameters, it represents different GP approaches to be investigated.

The technical objective suggests adding an ontogenic metaphor as an initial step
of addressing the inherent EA dependence on strong human control that results from
many explicit side constraints. To that end, the discussion shall first consider the
feasibility of such metaphors for a common GP approach.

The design of problem-unspecific algorithms is required for the present work,
accompanied by some domain-unspecific tasks that serve as carrier for a feasibility
discussion of goal-oriented autopoiesis.! In the long term, we hope for a transition of
user attitude from manual problem identification and application of single-purpose
solvers to allowing an artificial system to gain insight into a domain that it thereby
changes such that “problems”—we see them as consequences of uninformed domain
manipulation—do not occur in the first place. A prime instance of an informed
natural system is a developing organism: it does not have to stop for analysis of a
glitch it must never hit because continuous change is necessary for the process of
life.

LOptimizing specific real-world problems is the object of many EA contributions, and, in par-
ticular, GP’s ability to this end has been sufficiently demonstrated. For few of many instances, we
mention (Aiyarak, Saket, and Sinclair 1997; Andrews and Prager 1994; Baydar and Saitou 2000;
Keller, Banzhaf, Mehnen, and Weinert 1999; Koza, Keane, Bennett, Yu, Mydlowec, and Stiffelman
1999; Langdon and Barrett 2004).

47

48 3 Developmental Genetic Programming

3.2 Algorithmic metaphors of development

3.2.1 Preliminaries

Facts and theories from molecular biology suggest the concept of distinct search and
solution spaces, an understanding first emphasized and empirically demonstrated
for GP in (Banzhaf 1993). As an initial approach to the technical objective, we are
to theoretically analyze and elaborate on relations between spaces, using our view
on EAs from chapter 2 to the end of identifying degrees of freedom for designing
the projected search algorithm. Given a semantic mapping, a point in decision
space represents a potential solution of the underlying problem. If the mapping
is identity, we call it trivial, because it has the decision space equal the potential-
solution space. It follows that the search space is a subset of the potential-solution
space, and, especially, the representative space is contained in the solution space.
This particular case describes the current situation for most GP algorithms:

e search must be strictly controlled as it operates in a structurally constrained
space.

e Otherwise, a developmental process as mandatory component of search uses a
non-trivial semantic mapping to project a located representative onto only one
feasible solution.

The concept of a semantic mapping abstracts from structural representations of
its domain and image elements. For current applied work, however, one must con-
struct different, concrete such representations. Furthermore, the theoretical frame-
work we start building here is to allow for an easy transformation of its key entities
into parts of the projected search algorithm.?

An alphabet is a finite set of symbols, as mentioned, e.g., in (Hopcroft and Ullman
1979). A structural representation of an entity f shall be given by an encoding E of
[lencgy] as follows.? The elements from the non-empty encoding alphabet of encg
compose the representation. The encoding structure of encg ¢ shall be a digraph

g:(N,A),

i.e., N is a finite set of so-called nodes, and A C N x N.?* An element of A is known
as directed edge or arc, and a digraph may be visualized as circles (nodes) that are
possibly connected by arrows (arcs). Note the special case ({},{}) that we call the
trivial graph. Also, with M C N, a digraph f = (M,(M x M) N A) is known as
subgraph of g.

A structural component m € N is to represent exactly one symbol from the

encoding alphabet E, which we model as n : N — [, the node function of encg;.
n(m) shall be called the value of m.

2The frame is also an entry to mathematical modeling of developmental-search dynamics, which
we see outside the scope of the present work.

3We may introduce notation v as [v].

4For an introduction to graph theory with an emphasis on informatics, see, e.g., (Wood 1987).

3.2 Algorithmic metaphors of development 49

Eventually, we can define an encoding of f as
encgy = (E,dom(n), A,n),

and |dom(n)| shall be called its encoding size.

Ultimately, we may capture a “structural representation” of f as follows. img(n)
shall be known as minimal alphabet of encg since it contains only those a € E that
are values of nodes of the encoding. Thus, for given (A, n) and arbitrary E, the set
of all encodings of f is determined as

encyy = {(E,dom(n),A,n) | img(n) C E},

and we call
(img(n), dom(n), A, n)

the minimal encoding of f over ¢ = (A, n) that is the structural representation of f
[repy,]. Therefore, t may be envisioned as a network such that each node is marked
with exactly one symbol from img(n). As ¢t determines the minimal encoding, we
can apply the context of the latter to the former, e.g., t’s encoding alphabet shall be
the encoding alphabet of the minimal encoding.

With the abstract notion of a structural representation ¢ at hand, an entity can
show in different ways. Especially, the concept of the node function of ¢ allows
for changing ¢ by defining the function sufficiently flexible. This property of ¢ is
relevant to designing a semantic mapping, because the latter represents the change
of a structural representation of a decision point into the structural representation
of a potential solution.

Next, we express the resource-efficient concept of a “string” in terms of an encoding.
Let
N ={ng,..,nx},k >0,

be the node set of a digraph g = (N, A) with
A=A{(ni,ni) [0 < i < N[},

then ¢ is called a path. Note &k = 0 that implies N = {ng}, A =), which is a
path that shows as single circle with no arcs, modeling an atomic component. Let
g=({0,..,k}, A),k > 0, be a path, then we call g a sequence. A sequence s = (N, A)
is determined by N because |N| fixes A; thus, s shall be denoted by (INV).

(3.1)

Let
encgy = (E,dom(n), A,n), N = dom(n)

with sequence (N), then we name F a string encoding of f. FE is determined by
(E,n) because

i) A is determined by |N|, and

ii) N = dom(n).

20 3 Developmental Genetic Programming

Thus, we write a string encoding encgy as (E,n) which determines the tuple
o= (n(j)),jeN

that shall be called a string over E with size |o|:= |N|. Thus, |o| is the encoding
size of encpy. With t = (A, n), consider the structural representation rep;, that we
name f’s string representation. n determines dom(n) which fixes A; therefore, rep;,
is given by n, and we denote the former by rep,, which can be identified with o
[repnf = U]'

Let string encoding encg; = (E,n) with minimal alphabet ming= img(n) C E.
If all a € min, are from the same class z, e.g., “letter,” then we call o = rep,, an
x string,” and with |o| = k, we get a k- string. For instance, a 3-letter string is
given by

encgy = ({'&,'b’ ¢’ 'd’}, {(0,'D7),(1,/a”),(2,'d)) })°

with min, = {'a’,'b’,'d’}, rep,, = (‘b’,a’,’d’). We shall also write o in its string
notation, a corresponding quoted symbol series—e.g., s = “bad”—, and both ¢ =
rep,, and s can be identified [rep,, = s|. o’s string value [$o]—its “contents”—can
be expressed by s, e.g., $s = “foobar”.

For given o = rep,,, we call i € dom(n) a position in o, and i is also a position of
a =n(i) € E, a building 0.” Regarding o, dom(n) shall be known as its position set
[pos,]. We define o (i) = n(i), while ; shall denote ¢’s i-th structural component.®

A node function n determines string representation o = rep,,. Thus, an appro-
priate data type element representing o can be synthesized—e.g., sequentially—from
n: a composer for n and of o computes n(i) for all i € dom(n) = pos, and stores
the values in the corresponding element components.

e Thus, n represents ¢’s sequence information [seq.|.
For node set N = () of a string encoding, the corresponding trivial graph
g = “777 ‘O_| — 0’

results that we call the trivial string, known as the empty word and often denoted
by €.

A string 7 shall be known as a substring of ¢ if and only if

(T=€¢)V3g: =04 A g+|r] <ol

SWhile the letter class allows for a simple writing of subsequent examples, recall that the
introduced notion of an alphabet is abstract: it may contain arbitrary entities, supporting our
strategic perspective.

6For ease of notation, note that IN 3 ¢ = n; € N, because, for a string encoding, N is the node
set of a sequence.

"Example: 2 is a position in o =“aba”, and 0 and 2 are positions of ‘a’.

8Example: for o = “test”, o(1) = ‘¢’ and o(0) = 0(3) = ‘t’, but o9 # o3.

3.2 Algorithmic metaphors of development 51

g shall be named starting position of 7, and the latter shall be identified with
9
Oq,|7|-

Summarizing, the usual, informal notion of a string—a “finite sequence of symbols
from an alphabet”, e.g., (Hopcroft and Ullman 1979; Wood 1987)—shows as special
case of the presented encoding concept given by directed graphs (digraph)!® and
functions. This view of encoding allows flexible descriptions of producing and trans-
forming general structural representations, which is of interest regarding semantic
mappings which operate between such representations.

The concept of a set of structures matters regarding an EA population. Thus, for
the design of the projected search algorithm, an encoding of such a set is of interest
next.

3.2.2 Encoding of a set and space

A digraph g = ({ng, n1,n2,n3}, {(no, n1), (n1,n2), (n1,n3)}) shall be called a fork,
and we name g = ({no, .., nx}, {(no,n1), (n1,n2), .., (Mg_1, %), (ng,n0)}), & > 0, a
cycle. Note a cycle ¢ = ({n},{(n,n)}), i.e., ¢’s single node connects to itself, that is
known as a loop graph. We call a graph containing such structures forked and cyclic,
and, regarding a path, path-containing. These subgraphs give rise to six disjoint
classes whose union equals the set of all graphs:

e The first class contains only the trivial graph which is neither forked nor cyclic
nor path-containing.

e Second class: graphs that are path-containing and neither cyclic nor forked,
and we call it path-containing, denoted by 9 (pronounce “path”).

e Third class: graphs that are cyclic and neither path-containing nor forked,
with the loop graph as only representative.

e Fourth class: graphs that are cyclic and path-containing and not forked, and
it shall be called circular.

e Fifth class: graphs that are forked and not cyclic, denoted by FNC.
e Eventually, the sixth class: graphs that are forked and cyclic.

Let the class of a graph g be denoted by clss(g), so that, e.g., for a sequence
g, clss(g) = 4. We consider two graphs identical if they are in the same class.
Two encodings shall be known as identical if their encoding structures—which are
graphs—are identical and if their alphabets are equal.

9Example: For o = “abed”, 01,2 = "bc”.

To illustrate different strings having the same string value, let o = “hownow”, p = ”browncow”.
a =012, 3 =042, and 7 = p2 2 have identical values $a = $3 = $7 = “ow”.

10We shall also use “graph” in place of “digraph.”

52 3 Developmental Genetic Programming

Let E denote a finite set, and, for each e € E, let there be one individual encoding
encie = (Ee7 N67 A67 ne)-

The resulting set S of individual encodings shall be called an encoding set of
E, and we can identify an e € E with its enc;, € S. If all encodings in S are
mutually identical, then (E., clss(Ne, A.)) are equal for all e € E. Thus, for E := E,
and ¢ := clss(N,, A.), (E,c) determines the encoding alphabet and the graph class
of the encoding structure of each element in S. Then, we name S a homogeneous
encoding of E [encsg| with encoding structure ¢ and encoding alphabet E.

e If the structure is the path-containing or circular class, then the encoding shall
be called linear. If all s € encgg have equal encoding size m, then we call m
the encoding size of encgp, and the latter shall be named fixed-size.

Regarding a given problem, we assume that a homogeneous encoding encgp is
supplied for each set E of interest, such as the search space of an employed
solver. While this restriction simplifies design of the projected search algorithm,
it still allows for dealing with real-world problems. For instance, for a prob-
lem p, consider given encg,y,, an encoding of its potential-solution space. Then,
eNCrgol, = {€NCig € S ‘ q € sol,} is an encoding of sol, C pot,,.

(3.2)

For a set F, consider a homogeneous encoding
encsp = {(E, Ne, A, ne) ‘ e € E}

which determines the structural representations repa, .. of each e € E. We call
{repa.n.). | € € E} the representing set of £ over S.

e Especially, dec, and pot, shall be identified with respective representing sets
that matter to the projected search algorithm during its computing of a se-
mantic mapping.

In summary, we have given an encoding concept for a set. For a problem, properties
of involved spaces and their implications for semantic mappings can be discussed on
this background next.

Some characteristics of an encoding reflect properties of a material, digital comput-
ing environment. For instance, finite memory is honored by finite size and alphabet
of an encoding. Thus, a representing set of decision space dec, and of potential-
solution space pot,, respectively, is also finite, while, theoretically, the spaces may
contain infinitely many points.

e Thus, there is a finite number of corresponding semantic mappings, and, as
sol,, C pot,, a solution space is finite.

Depending on the representing sets of dec, and pot,, dec, N pot, = () does or does
not hold, so that we discuss both cases next.

3.2 Algorithmic metaphors of development 53

3.2.3 Intersecting decision and potential-solution space

Let dec, N pot, # 0, then there are three mutually exclusive cases.

Firstly, let dec, C pot,. In this case only, s, € S, can be trivial, while, for a real-
world problem, n = |dec,| >> 1 and |pot,| >> 1 imply a large number of semantic
mappings, including n! — 1 non-trivial bijections alone from the decision space into
itself.

Secondly, let pot, C dec, hold, then s, is non-bijective, which implies that it is not
trivial.

Thirdly, pot, # dec, A pot,, dec, remains, so that there is a non-empty set
S = {d € dec, = dom(s,) | d & pot, = rng(s,)},

which implies s,(d) # d for all d € S, so that s, is not trivial.

In summary, given intersecting dec, and pot,, for each real-world problem and “al-
most all” problems, there exist many non-trivial semantic mappings, respectively.
This situation matters to the design of the projected search algorithm, since we
must decide on a mapping and suggest a subalgorithm that computes it.

Next, the discussion continues for dec, N pot, = 0.

3.2.4 Disjoint decision and potential-solution space

Regarding dec, and pot,, respective disjoint encoding alphabets or different graph
classes render these spaces disjoint. Also, different encoding sizes may have this
effect.

e Given disjoint spaces, an m € S, is always non-trivial. We focus on this
case, at least for the immediate reason that it gives independence from any
problem-specific phenotypic representation of pot,,.

Some m € S, may mutually differ in how far they are beneficial, i.e., supporting
the performance of a search algorithm alg,, . For an extreme instance, consider
m(dec,) = o with global optimum o of p, while n € S, n # m, maps the space onto
a global “pessimum.”

In summary, for problem p with large pot, and dec, Npot, = 0, idge., & S, and |S,|
is big. This situation poses a task for the design of the projected search algorithm:

o Identify a subalgorithm that, given p, computes a mapping m € S, that is
beneficial to the resulting search algorithm alg,,,.

We approach this object next by fusing principles of EA design with the current
discussion.

54 3 Developmental Genetic Programming

3.3 A genotype-phenotype mapping:
an algorithmic metaphor of development

We consider non-trivial m € S, for an algorithm alg,,,. Thus, r € rep, represents
information to a subalgorithm that computes s = m(r) € sol,. Such a developmental
algorithm dev_, is a part of the projected search algorithm p_,.

(3.3)

r € fea,, C dec,—a decision with feasible semantics in terms of the mapping—shall
be called a genotype of its phenotype s under m, which reflects that a biological phe-
notype is a living structure that interacts with its spatio-temporal context. Likewise,
under m € S, s € sol, represents interaction with its problem environment.

e Note that, while we are focusing on EAs, the concept of a developmental al-
gorithm is independent from this class of search procedures. Hence, on the
one hand, an arbitrary search algorithm that uses this concept shall also be
called developmental. Thus, m # id4e., holds for such alg,,,, because the corre-
sponding developmental algorithm dev_, represents m, a non-trivial semantic
mapping (cf. 3.3, p.54).

e On the other hand, a search algorithm alg,, for problem p shall be called
common if and only if m = idg, and rep, = sea,. From 2.4, p.31, the
following statements and their implications result for this algorithm.

(3.4)
e dec, C pot,
e sol, C pot,
e inf, C pot,
e inf,Nsol, =1
e inf, U sol, = pot,
e rep, = sea, C fean, C (dec, N sol,) C pot,, which implies
e rep, C sol,, which implies
o rep, Ninf, =10

Thus, for a common search algorithm, the search space is a subset of the solution
space, and, especially, a genotype and its phenotype are identical. This scenario is
the simplest conceivable setup of a search algorithm: each search point is feasible.
Especially, the concept of a semantic representation of an entity is insignificant to
the process, because m € S, is trivial. Therefore, the algorithm has no freedom of
interpreting—i.e., assigning meaning to—a located point.

3.3 A genotype-phenotype mapping 59

e Thus, a common approach cannot adapt its understanding of a search point
to the current properties of the underlying problem.

Almost all GP algorithms belong to this class for some reasons to follow. Firstly,
this field has been strongly influenced by (Koza 1992) which propagates common
approaches. This publication made the name of the field known and led to a massive
rise of research on artificial evolution of algorithms. Secondly, as most GP-related
publications show, common search usually shows the desired behavior: for a given
problem, it often delivers a rising progression of the average fitness of the popula-
tion. Therefore, no immediate need for conceptually different search algorithms is
felt. Thirdly, designing and implementing a developmental algorithm represents a
substantial additional effort.

Fourthly, from a perspective that ignores ontogeny, it seems, for each prob-
lem, blatantly detrimental to have a search algorithm waste expensive resources on
locating and transforming possibly infeasible search points while the user is only
interested in feasible solutions. Indeed, a developmental search algorithm alg,, is
to return a feasible structure of interest, and, to this end, @ must obey

S = m(sea,) N sol, # 0.

m~(S) = sea, N fea,, = repa,

the representative space of the algorithm, follows. Restricting m to this space results
in a function f := m|,ep, with dom(f) = rep, (cf. A.1, p.205),

rng(f) = sol, C rng(m) = pot,,

img(f) C sol, (cf. 2.4, p.31).

Thus, f : rep, — sol, maps genotypes under m onto phenotypes for p. Therefore,
f shall be called the genotype-phenotype mapping of a which determines m and rep,
which determine f [gpa].

In summary, we have formally introduced a general concept of the genotype-
phenotype mapping (GPM) of a developmental search algorithm for arbitrary struc-
tures.! (3.5)

Next, a specific, empirical GPM must be identified for the ontogenic version of the
projected search algorithm p_,. As entry point, we consider the first-ever instance
of a developmental GP algorithm, suggested in (Banzhaf 1993). The feasibility and
effectiveness of the proposed search procedure is demonstrated on a problem, and it
is hypothesized that a developmental stage can enhance search performance of EAs.

"Here, a GPM is a crude metaphor of biological ontogeny of an individual. Development is
a continuous phenomenon during organismic existence, while a GPM is a singular, initial event
that yields an artificial phenotype. Furthermore, identical instances of a natural genotype do not
yield identical phenotypes, because their ontogeny also depends on their habitats. Thus, biological
development represents a mapping that is not a function. Such differences between the smooth
network of natural structure-building processes and the comparatively bumpy concepts of a GPM
and other artificial mechanisms will ultimately only dissolve in autopoietic programming.

o6 3 Developmental Genetic Programming

An empirical investigation of this hypothesis shall carry the design of p_. from
here, and, to this end, a comparison of certain search procedures for a real-world
problem will serve. (3.6)

These empirical search algorithms shall be named

e common and
e developmental, respectively,

and they are instances of p_, (cf. 3.1, p.47).'2 A motivation for the manual design
of dev_,, the developmental algorithm that gives rise to the developmental instance
of p_., follows.

For problem p with large potential-solution space, |S,| is big (cf. 3.2.4, p.53). For
p, let there be a search algorithm alg,, , an acceptance value ¢, and an evaluation
function o. Fort = (p, 0, ¢), we define problem d that asks for an m € dec, := S, with
m(sea,) C acc,. Thus, facing d, the user is interested in a semantic mapping of p that
projects a’s entire search space onto at least one acceptable solution. In this ideal
situation, the creation of the first individual of the initial population represents such
a solution, yielding great search performance. However, this scenario is unrealistic
for a real-world problem p for that, by its definition, s € acc; is unknown, so that a
solution to d is unknown. Thus, solving d implies solving p.

This complex is an instance of the conflict of recursion (cf. 1.2.8, p.26). Its reso-
lution requires a complete algorithmic metaphor of organic evolution which “simul-
taneously adapts everything.” An according EA would adapt all of its components,
not merely its population containing structures of interest. Here, the component in
question would be dev_, which computes the semantic mapping—and, therefore, the
GPM—of p_,. Thus, dev_,, the empirical developmental algorithm, must be designed
manually next.

3.4 The empirical developmental algorithm:
an instance of a genotype-phenotype mapping

A starting point toward a developmental algorithm is Kimura’s “neutral theory'? of
molecular evolution” (Kimura 1968; Kimura 1983) which is supported by empirical
results (Mukai 1985). The theory postulates that organic evolution on the molec-
ular level is essentially driven by mutations that are almost or utterly neutral, i.e.,
insignificant to natural selection, which effects random genetic drift. One can see
“neutral evolution” and the classic, Darwinian flavor which is selection-centered as
superimposed phenomena that add up to the evolution of species. This framework

12Therefore, here, the description of SOLUTION (cf. 1.2.7, p.24)—which implements p_—
commences. As our focus is on investigating behavior of empirical search algorithms, optimizing a
special test problem only matters as means to this end, so that no acceptance value is needed for
such a problem. Thus, SOLUTION will, in principle, represent an open-ended process.

13We shall prefer “neutrality theory.”

3.4 The empirical developmental algorithm 57

includes the concept of neutral variants, i.e., different genotypes that yield similar
phenotypes,'* that one can readily express as algorithmic metaphor. While such
artificial neutrality only recently gained some attention of the GP community, it
has been suggested at an early stage (Banzhaf 1994). Although neutral variation
involves detrimental potential, such as supporting introns!® (e.g., (Brameier and
Banzhaf 2003)), it can foster performance (e.g., (Miller and Thomson 2000; Yu and
Miller 2002)). Regarding organic evolution, a neutral mutation derives one of a given
phenotype’s neutral variants from another such one, opposed to an adaptive mutation
that results in a fitness change. The former is, according to the neutrality theory, a
major reason for the high genetic diversity observed in natural populations.

To the end of assimilating neutrality into our framework, we catch the previously
introduced notion of an EA individual in formal terms next.

3.4.1 An individual: a genotype and a phenotype

Let alg,,, be a search algorithm for problem p with m € S, (standard assumption).
We denote { (d,m(d)) | d € fea,,} by indm,, so that an individual i € ind,, represents
its genotype d and phenotype m(d). Let r be a run of a, and let ¢ denote a point
in run time. By definition, r’s population is the tuple of n > 0 individuals that are
available to r at t. Thus,

pOpr,t = (jOv 7.]k) with .jOu 7jk S anm

The identity of j = (d, m(d)); € pop,, over time is given by genotype d and 0 < i < k,
because |m(d)| = 1. Thus, if j" = (e, m(d)); € pop, 1 with d = e, then j and j’ are
identical [j = j'|.

J € ind,, shall be known as one of r’s individuals that is real at time ¢ if and only

if j € pop,, else it is unreal at t.

For r, we name a genotype d real at t if and only if there is an individual 7 = (d, m(d))
that is real at ¢, else d is unreal. Let this terminology hold ditto for phenotype m(d).

If i = (d,m(d)) € ind,,, then ¢ and its genotype d shall be called singular at ¢ if and
only if ¢ is the only real individual of » with genotype d at t.

Let i, = (d, m(d)) € pop,, ji = (e,m(d)) € pop,s. If and only if d = e, we call i), a
double of j;. In particular, (d,m(d));, (d, m(d)); € pop,; with i # j may hold, i.e.,
doubles may represent the same genotype—and phenotype—at the same time. As
an extreme, at ¢, only one genotype g may be real, i.e., each current individual of the
population represents g. As opposite scenario, there are |pop, ;| singular genotypes.

For a run r and time ¢, let s = (r,t), and consider

sng, := {i € pop, | i singular for r at t}.

14 A5 selection is fitness-based, it behaves in an unbiased manner regarding “neutral” variants,
hence the term.
15Genetic information that does not influence phenotypic quality.

o8 3 Developmental Genetic Programming

We define the genetic diversity of pop, as
|sngsl
5=)
|pops|

Usually, |pops| > 1, so that, for the aforementioned two extremes, gds = 0 and
gds = 1 result, respectively, with other gds values in [0, 1].

e For the remainder of the present work, |pop,.;| > 1 shall be fixed for all ¢,
which is advantageous to the later synthesis of the projected search algorithm,
as we will detail then.

The presented concepts of an individual and its encompassing population gives rise
to a discussion of neutral mutations of the former and genetic diversity of the latter
next.

3.4.2 Neutral genotypic mutation and genetic diversity

Consider alg,,, with m € S, for problem p. Mutation shall be represented by a
function
mut : dec, — dec,

with mut(d) # d for all d € dec, (cf. 2.6, p.39).'6

For m(d) = m(mut(d)), d and mut(d) shall be known as neutral variants of m(d).
We call the mutation of d to mut(d) neutral under m.

Let r be a run of a. A neutral mutation regarding individual
g :=(d,m(d)), € P := pop,,

may result in gd, ;41 > gd, ;.

e Proof For instance, let
k= (d,m(d)), € P,1 # k,
which implies that & is a double of g. Let a neutral mutation regarding ¢ yield

L= (e,m(d))s € Q := poprss1,€ # d,

and let (e,m(d)) ¢ P. Thus, [replaces k that is a double of ¢, which implies
that | does not replace an individual which is singular for r at t, while [is
singular for r at ¢t + 1. Therefore, |sng.:| < |sng,++1|, and gd,; < gd, 141

follows, because |P| = |@Q)]. O
(3.7)

In summary, a neutral mutation—that can only occur for a developmental search

algorithm alg,, —may increase genetic diversity of a’s population over run-time.
(3.8)

16T hus, mut is merely undefined for the pathological case |dec,| = 1 which will not be considered
as it is irrelevant to problem solving.

3.4 The empirical developmental algorithm 59

3.4.3 Genetic diversity and performance

Let the standard assumption hold and consider run r of given alg,, . As an extreme,
each real individual at time ¢ represents the same phenotype q, which we name
maximal phenotypic convergence in q. With both a developmental and common run,
this scenario may occur once r finds a very good phenotype q := m(d). Then, for
instance, selection favors d for copying, so that the number of real d-representing
individuals rises. d and q are said to be taking over the population which is getting

trapped in q. (3.9)

Thus, without a countering process, at time s > ¢, maximal phenotypic convergence
in q rules. Otherwise, the trapped population may escape, e.g., because r finds
a better q’. If d is not acceptable, the trapping process is known as premature
convergence of the population. (3.10)

For a common search algorithm, this phenomenon is necessarily reflected by a sink-
ing genetic diversity, because the number of singular genotypes decreases. For a de-
velopmental search algorithm, however, convergence—premature or not—does not
necessarily mean sinking genetic diversity, because m(d) may be the phenotype of
real neutral variants. (3.11)

Especially, in presence of development, neutral mutations may increase and possibly
maximize genetic diversity (cf. 3.7, p.58) during run-time interval 7' = [t, u] with
maximal phenotypic convergence in some m(d). However:

For a common run 7, such convergence in m(d) during 7" is equivalent to minimal
genetic diversity—

e Proof Fixed population size |pop, ;| > 1 holds for ¢ in 7" (cf. 3.4.1, p.58);
if each individual that is real at ¢ represents m(d),
then d is the only real genotype at ¢, since m = idgec, -

Thus, |sng.:| = 0, equivalent to gd,., = 0, for all ¢ in T.. O

—while a permanently high genetic diversity is desirable: it supports exploration as
it confronts a search process with potentially different subenvironments.
(3.12)

This property is usually critical to performance on a real-world problem as its ac-
ceptable search points are mostly scattered over space. Therefore, there is a number
of contributions, e.g., (Brameier and Banzhaf 2002; McPhee and Hopper 1999; Rosca
1995; Keller and Banzhaf 1994), attempting to avoid diversity loss—well-known for
common approaches—by use of additional explicit, manually designed procedures.
However, a neutral mutation increases and maintains diversity implicitly,!” support-
ing our strategic objective (cf. 1.5, p.14).

(3.13)

1"Neutrality emerges from properties of both the underlying genotypic representation and GPM.

60 3 Developmental Genetic Programming

For a phenotype g, one can imagine such mutations having search drift through
space along lines of q’s so-called neutral network that contains q’s neutral variants. In
GP, this concept has received attention on a practical and theoretical level (Yu and
Miller 2001; Miller and Thomson 2000; Langdon and Poli 1998; Keller and Banzhaf
1996). As an EA variation operator contributes to reproduction (cf. 2.6, p.39), it
introduces a new, real individual to the underlying search process. Thus, neutral

mutations of a real genotype d build the real neutral network of m(d).
(3.14)

As an extreme, the neutral networks of all phenotypes percolate through search
space in the following way inspired by (Eigen 1992). Let a distance measure be
given on the search space. Then, for each pair of different phenotypes (q,), a pair
of genotypes (g, r) exists with m(q) = q and m(r) = r such that ¢ is closest possible

to r. (3.15)

This situation enables search to have its trapped population escape from a premature
phenotype'® r by building its real neutral network R: convergence implies that ever
more individuals in the population represent r, while their genotypes—zr’s neutral
variants—form R. Especially, for a given " € R, ever more real individuals may

represent 7’ due to selection-guided copying, thus “reinforcing” R.
(3.16)

Therefore, for r € R, with rising probability, an r-instance carried by an individual
is subjected to a neutral mutation which extends or reinforces R, implying that R’s
build-up is autocatalytic.'® Thus, either, with sufficient population size given, R
grows into the neutral network N of r, or R remains a proper subset of N where
one may imagine the trapped population leaping and walking. In this manner,
remarkable search progress can come as transition of individuals between neutral
networks, as follows. (3.17)

Consider a measure that represents distance as minimal number of point mutations
leading from a genotype r to ¢q. A real neutral network R of a premature phenotype
r may be close (cf. 3.15, p.60) to a network) of a better yet unreal phenotype.
Therefore, with many neutral variants r € R (cf. 3.16, p.60), one of them is likely
to be selected for a non-neutral mutation into a ¢ € @, resulting in a “dam breach”
through which the population escapes.?

e In summary, for a developmental search algorithm, the very process that is
detrimental to successful exploration, i.e., premature convergence, dissolves
itself as result of its effect.?! (3.18)

BExample: A local unacceptable optimum.

9This self-enforcing growth is an emergent phenomenon, as it is not established by a dedicated
method, so that, to the naive observer, the network is growing itself. Processes of this type are
typical of the morphogenesis of natural organisms.

20Due to the locally high fitness of r, a mutation of r € R may also likely lead to a genotype ¢’
with lower fitness. However, fitness-based selection gives ¢’ little chance for long-term proliferation.

21This is a further cybernetic example of implicit self-regulation through coupled exciting and
inhibiting processes (cf. 2.2, p.34).

3.4 The empirical developmental algorithm 61

In this perspective, we see a developmental algorithm giving rise to a genotypic po-
pulation divided into disjoint subpopulations that represent real neutral networks.
During premature convergence, search freezes in the single, phenotypic “popula-
tion,” while it continues in the genotypic one.

More neutrality-related arguments for using developmental algorithms in EAs
follow. A search algorithm often faces a constrained optimization problem p, i.e., a
potential solution q € pot, must satisfy one or more restrictions in order to be a
feasible q € sol, C pot,. Such a constraint (s. def.) is the more rigid, the more a
user requires its obedience from q, and if there is no compromise, the constraint is
named hard. Then, two extreme flavors of a search algorithm alg,,, locate feasible
solutions:

e On the one hand, alg,, may only use safe search operators that obey all con-
straints, so that each operator, when given a feasible point ¢ € rep,, returns
q € rep,. Thus, alg,,’s search space is closed within all feasible decision
points, i.e., sea, C fea,,, which, due to 2.4, p.31, implies rep, = sea,,?* from
which it follows that

— a common search algorithm exclusively uses safe search operators.

e On the other hand, alg,, may use search operators that effect full search,
i.e., there is an iteration of their applications that locates each decision point.
Thus, dec, = sea, follows, that is, maximal structural diversity is available.
However, rep, = sea, must hold, implying dec, = rep,. Therefore, via seman-
tic mapping m, each d € dec, is to represent a feasible solution.

— Given such m, one has the freedom to design unsafe search operators.

Due to the presupposed hard constraint, there is d € dec, whose representation
under the given encoding is not applicable.?® Thus, d & sol,,, but

m(d) € sol, < dec, = rep, (above).
This gives d # m(d) = m # idge, which implies that
— alg,,, is developmental (cf. 3.3, p.54).
In particular, due to dom(m) = dec,, m is a genotype-phenotype mapping
9Pa = m|(repa:decp) =m.
(3.19)

The described extreme developmental search algorithm shall be called full : it
can locate each structure, and each structure represents a feasible solution.

22This is a minimal condition for a search algorithm (cf. definition of representative space).
23For instance, in the robot example, not each setting of motion-control parameters avoids colli-
sion.

62 3 Developmental Genetic Programming

This property is desirable as it allows for many neutral variants of phenotypes, so
that their neutral networks may be close: then, percolation is given.

e We therefore decide that d_,, the empirical developmental search algorithm,
shall be full. This is of particular relevance here, because a GP algorithm must
deal with hard constraints given for each problem it is applied to, as follows.

(3.20)

3.5 Hard generic constraints for a
Genetic-Programming algorithm

3.5.1 Preliminaries

We use the term GP problem for a task p to be approached by a GP algorithm.?*
For such a procedure, a structure of interest is represented by an algorithm, so that
s € sol, is such a feasible algorithm.

Some basic terminology of formal languages which can describe an algorithm is to
be assimilated into our framework next. A string over alphabet A is also called a
word, and A* denotes the set of all words over A. A grammar G defines, among
others, a finite set of rules, a terminal alphabet © containing terminal symbols, and a
start symbol?® from which one can, using rules, derive a word over © that is known
as sentence. The set of all derivable sentences is named the language of G [L(G)].
G’s rules define the syntax of sentences from L(G), i.e., their structure.

In order to structurally represent a feasible solution, a GP algorithm alg,,, em-
ploys a given target language L,. A given grammar G with L, = L(G) shall be called
alg,,,’s target grammar. We allow p_,, the projected search algorithm, to employ a
Turing-complete target language, because the technical objective refers to real-world
problems. The declaration of an available target language as L, is necessary, since
the underlying computing environment of alg,, will usually offer several languages,
while alg,,, structurally represents all feasible solutions as w € L,.?°

e The terminal alphabet of L, shall be called the target alphabet of alg,,, [Q24]
with w € €2, as a target symbol. Thus, €2, defines the symbol set of alg,,,, i.e.,
the union of its function and terminal sets.

e We identify w € L, with an equivalent program, i.e., a computationally identi-
cal sentence from a programming language that is supported by the computing
environment.

24While we focus on such methods, several of the coming concepts are readily transferable to
other types of search processes.

PLiterature also gives the synonym sentence symbol.

26For instance, for its quality evaluation, a feasible solution from target language LISP must be
expressed in the machine language of the processor that runs the underlying search process.

3.5 Hard generic constraints for a GP algorithm 63

3.5.2 Constraints

For given problem p, in terms of target language L,, a GP algorithm gpalg, struc-
turally represents s € sol, as w € L,. We therefore identify s and w, implying

SOlp C La. (321)

Each material computing environment offers finite memory as a hard size constraint,
so that there is, as we name it, a maximal phenotypic size [> |w| for a w € L, that
can actually be produced by gpalg, . (3.22)

Thus, if L,’s syntax allows for the construction of a sentence w € L, : |w| > [, then
w is infeasible, implying sol, C L,. In particular, the syntax of a target language to
be employed regarding a real-world problem must allow for indefinite |w]|, because

the size of an acceptable phenotype is unknown a priori.??

(3.23)
A potential solution is an unconstrained structure, so that, for a GP problem p,
pot, = 2% (cf. 3.2, p.52). With 3.23, we get sol, C L, C Q = pot, = sol, C pot,
in accordance with 2.4, p.31. With alphabet A, [> 0, let

A= {5 € A”

|s| <1},
the set of strings over A with, at most, size [.

For a given computing environment with size constraint k > 0, all structures repre-
sentable there reside in Q"% C QF = pot,,. Thus, eventually,

sol, C (M N L) C L, € U = pot,

follows from above.
(3.24)

L, implies the most prominent generic hard restriction: it requires s € pot, to be, as
we name it, legal, i.e., syntactically correct < s € L,, in order to be feasible (cf. 3.21,
p.63). This syntactic constraint, as it shall be known, is special among all generic
hard restrictions gpalg, may face for a given problem: s with s € sol, A s € L,
violates one or more restrictions, but it still carries semantics; however, an s & L,
that only violates the syntactic constraint is meaningless and thus unavailable to a
common approach, even if s, as an extreme, is only one point mutation away from
a global optimum.

e Due to its significance, mostly, only the syntactic constraint shall be considered
subsequently.?® Then, while legality of s € pot, is always necessary for s € sol,,
from here, this restriction is also sufficient for s € sol,,.

2"Example: the length of an arithmetic expression that appropriately models a given black box’s
I/0 behavior is initially unknown.

28Then, regarding the size constraint, we assume, for given gpalg, , that there is sufficient
memory available during a run.

64 3 Developmental Genetic Programming

3.5.3 Syntactic constraint and projected search algorithm

The constraint usually strongly reduces the size of the search space of a common
GP algorithm, compared to the encompassing potential-solution space.

For instance, regarding some problem p, consider a fixed-size linear encoding
of pot, over some encoding set with encoding size three, and let the constraints
on size and syntax be the only hard restrictions. Let gpalg, be common, implying
m = idge., and rep, = sea,, with grammar G describing arithmetic infix expressions
over terminal alphabet 0, = {a, b, +, *}.

From this scenario, to be known as infix example, it follows that gpalg, must
initialize three decision variables with one target symbol each such that s € sol,
results. For instance, while “a 4+ 0” € sol,, “aa—" € inf, due to the syntactic
constraint. With |Q,] = 4 and three positions in s € pot,, |pot,|] = 4% results.
However, all two operands from {2, may only occur in positions zero and two of
s € sol,, while all two operators may only show in position one, giving

|sol,| = 2% = 27%|pot,| =
|sol,| < |inf,| < |poty| = |sol,| + |inf,|.

Usually, due to combinatorial explosion, a structural constraint on a composing

process such as a GP algorithm results in ||is7;{”|| rising exponentially over the size of
P

the composition. (3.25)

From a typical maximal linear-expression size n > 10 for a real-world GP problem,
we get, for common gpalg, .

lpot,| > |inf,| >> |sol,|.

(3.26)
Thus, we get, as special case of 3.4, p.54,
rep, = seaq C sol, C pot,,.

e Therefore, almost all of pot,, is inaccessible to common search, which represents
a disadvantage, as follows.

Although, for common gpalg, , d € inf,,, by definition, does not semantically re-
present r € sol,, d may contain one or more substructures s that stand for an
acceptable solution or a—possibly composite—part thereof.

For instance, consider a modified infix example with maximal phenotypic size
four. Then, while “abx* 0" € inf,, its substructures® a,b, “b*b” € sol,, and, es-
pecially, it features b € sol, twice. Let “b x b” be a substructure of an acceptable
s € sea,. Then, the existence of several s’ € sea, that contain “b* b’ increases the
probability of locating s. However, the larger inf, is, the fewer such s’ € sea, = rep,

29We drop string notation for one-symbol strings.

3.5 Hard generic constraints for a GP algorithm 65

exist that are points in short walks from real points to s, because rep, Ninf, = 0
(cf. 3.4, p.54). For example, given

i) real individual “a + b€ sea, and

ii) unreal, acceptable “a + b b” € seay,
the shortest walk from i) to ii) contains unreal o =“a + bx” € inf, = o & sea,.

Put vividly: common search tries to migrate from good to better representatives,

but infeasible space regions block fast transition.
(3.27)

e Summarizing, a structural constraint usually yields inf, # 0 and especially
linf,| >> |sol,|, which is detrimental to common search where it shows as
remarkably poor structural diversity in sea, (cf. 3.26, p.64).

inf, # () is a property of the underlying problem p and, thus, cannot be eliminated
by design of a search algorithm. However, some implications do depend on design, as
follows. Unavailability of elements in inf, may also be detrimental to non-common
search progress:

e For alg,, with given m # idge.,,
inf, 70 = inf,, #0
may hold, so that an m-redesign with inf,, = () is a desirable extreme.

From 2.4, p.31,

inf, =0 = fea,, = dec,
results, implying

rep, = sea, C fea,, = dec, = dom(m) =
m(sea,) C m(dec,) = m(fea,,) C sol,.
(3.28)

e In words, theory does not exclude rep, = dec,, so that, by designing m ac-
cordingly, one might be able to provide the maximally available structural
diversity, given by dec,, to alg,,, such that each structure represents a feasible
solution.

This situation may be beneficial to alg,,,, because it is the opposite of 3.27. Notably,
given an appropriate m, alg,, is developmental and full, because i) m # id holds
by precondition, and ii) rep, = dec, (above).

e Thus, pursuing the technical objective, we decide that d_,, the empirical de-
velopmental search algorithm, shall be full.

Next, depending on this type, further d_, components can be determined as parts
of the projected search algorithm.

66

3 Developmental Genetic Programming

Chapter 4

Algorithmic components

4.1 Basic components of the
projected search algorithm

4.1.1 Design principles

Mainimalism shall guide design decisions in order to save computing resources, i.e.,
memory and CPU cycles, and it supports a search algorithm’s autopoiesis, as it
requires and endorses implicitness of the algorithm (cf. 1.2.8, p.26), because each
explicitly designed entity eventually calls for manual control. A second design ob-
jective is efficiency of an approach’s use of these resources in obtaining empirical
results. Thus, designed structural representations of entities should be similar to
those used by the computing environment. If a trade-off between computing time
vs. memory is to be made, saving of time, usually the more limited resource, shall
have priority.

Following several design objectives usually leads to conflicting decisions, and, as
resolving compromise, a design should be as minimal and efficient as possible in
order to be as effective as necessary regarding search progress. For instance, given
a problem, a smallest possible target language should be given that probably allows
for the expression of an acceptable solution.’

The design of the encoding of a decision space comes first, as it necessarily influences
decisions on search operators and GPM.

4.1.2 Encoding of a decision space

Put in formal terms defined so far, (Banzhaf 1994) suggests a linear fixed-size en-
coding of a decision space. Especially, the encoding alphabet is binary, instanced as
B:= {0, 1}, and the encoding structure is ¥, the path-containing class. As we shall
show next, this proposal is most advantageous.

!'Note that the need to determine such a language, along with numerous other technical deci-
sions, are instances of the conflict of recursion.

67

68 4 Algorithmic components

B provides for a practical, simplest, and universal encoding of an entity, e.g., a
search point, when given a digital computing environment, as its memory is orga-
nized as a binary string o. Given problem p, both B and § allow for an encoding of
d € dec, as a binary string 7. Thus, 7 can be a substring of ¢, implying that (B,)
is an encoding of a decision space that results in most memory-efficient representa-
tions of its elements.? Also, as consequence, we can represent a search operator most
time-efficiently, because there are elementary operators provided by the computing
environment for the modification of memory contents, such as bit-inversion.?

e For these reasons, we decide on a binary encoding of a decision space. Further-
more, as each considered decision space, dec, shall have a fixed-size encoding,
because an identical encoding size for each d € dec, favors a small system spec-
ification, obeying minimalism. Thus, per search run on problem p, a fixed-size
binary encoding {B,q} of dec, shall be given. Therefore, for given size n,
dec, = 2", and we identify d € dec,, encoded as string s over B, with s (cf.
3.2.2, p.52).

Next, an encoding of the potential-solution space of a problem shall be determined
for p_,, the projected search algorithm.

4.1.3 Encoding of a potential-solution space

For gpalg, for problem p,
sol, C (Q'*** N L,) C L, C 2

holds, while pot, = QI'** (cf. 3.24, p.63). Thus, the encoding alphabet of a pot,-
encoding is €, as given by a grammar defining L,. Therefore, in order to define the
encoding, its structure and the nature of L, must be determined.

e 9 shall be this structure, allowing for a space-efficient representation of q € pot,,
in the underlying memory of the environment.?

With sol, C pot,, the former inherits the latter’s encoding, so that a feasible solu-
tion is structurally represented as a string. This is advantageous, because a string
representation can be readily converted to a structure that the computing environ-
ment can directly execute. A corresponding program converter, i.e., an interpreter

or compiler, produces a machine program®.

2An encoding of a space S over B as well as the resulting encoding of an s € S shall be called
binary.

3Moreover, as a binary encoding of a decision space is standard in the field of genetic algorithms,
the large body of respective literature may support further work.

4Note: given an alphabet A, a w € A* does not necessarily require 9§ for its structural repre-
sentation. For example, tree may be represented as “tree”—i.e., via §—or, e.g., as some forked
structure, i.e., via FNC.

5A sentence of a machine language, i.e., a set of exactly those sequences of processor operations
that do not yield an undefined state of the environment.

4.1 Basic components of the projected search algorithm 69

A string representation is also expected by a processor, so that § allows for the
encoding of a feasible solution as a machine program. In this case, p_, would emulate
an instance of machine-language GP, e.g., (Nordin 1994; Crepeau 1995; Nordin 1997).

e However, for the present work, L, shall be an existing, high-level general-
purpose language for that a compiler exists. The use of the latter, as opposed
to interpreting, allows for saving computing time if the quality of a feasible
solution depends on many fitness cases. Also, L, must be apt for general
purposes so that it is good for arbitrary real-world domains. Eventually, it
shall be high-level—in particular, not a machine language—so that a real
feasible solution can be more easily interpreted by a human user.

(4.1)

In summary, for problem p and alg,, :=p_ (projected search algorithm), a pot,-
encoding equals (€2, §) with given L, as described. As Q"*** = pot,, with k as p’s
size constraint, we obtain

k

[poty| = I9%]-

=0

(4.2)

4.1.4 The mutation search operator

A mutator is the simplest form of a search operator, taking one argument only, i.e.,
d € dec,, from which it derives a different structure, implementing an underlying
mutation function (cf. 3.4.2, p.58). Especially, a point mutator [pm], in its elemen-
tary instance, only changes the value of a single random-selected decision variable
to another random value.

Let d € dec, be given to pm with d’ := pm(d), d” := pm(d’), and so forth. An
indefinite number of repetitions gives dec,. Any search operator with this prop-
erty shall be called ergodic, and, under non-elitist selection, using a single ergodic
search operator yields dec, = sea,. This equality is necessary for d_,, the empirical
developmental search algorithm, to be full as desired (cf. 3.5.3, p.65).

e Thus, we decide to make an ergodic point mutator a search operator of d_,.
Since d_.’s decision-space encoding is binary, the bit data type characterizes an
atomic component of the genotype representation. Thus, d_,’s point mutator
inverts one random-selected bit of a genotype.

(4.3)

As recombination plays a prominent role in many GP algorithms, we discuss its
significance for d_.’s design.

70 4 Algorithmic components

4.1.5 Recombination

Typical recombinators used in GP seem to behave like macro-mutation (Luke and
Spector 1997), they may introduce an undesirable bloating of phenotypes, at least
for a tree representation, e.g., (Angeline 1998), they may be performing worse than
mutation, e.g., (Chellapilla 1997), or only slightly better when operating on a bigger
population (Luke and Spector 1998). If one wants clear improvement over mu-
tation, one must invest notable effort into designing complex recombinators, espe-
cially regarding GP homology, i.e., interchanged segments are similar regarding their
intra-parental position, function, or fitness contribution, e.g., (Hansen 2003; Platel,
Clergue, and Collard 2003; Nordin, Banzhaf, and Francone 1999).

With respect to effecting macro-mutations in d_,, a recombinator is obsolete
because a series of point mutations can amount to the same result. Also, a point
mutator alone is a source of variation which is necessary for evolution. Especially,
there are frequent, critical states of a GP run when a recombinator, in contrast with
a mutator, cannot introduce a novel genotype.

For instance, consider a population, with genetic diversity at zero, of fixed-
length binary strings. Then, no number of two-parent, “same-position” homologous
recombinations can increase diversity, because the exchanged parental substrings
are identical. However, a single point mutation discovers a new genotype.

e In conclusion, as a point mutator is the leanest kind of search operator, sup-
porting minimal design, recombination shall not be used by p_., the projected
search algorithm.

We have determined basic components of p_. which implements both the empiri-
cal common and developmental search algorithm. Next, the genotype-phenotype
mapping of the latter can be designed.

4.2 The empirical genotype-phenotype mapping

4.2.1 A paragon

We do not have to determine biological role models for a genotype-phenotype map-
ping (GPM), because a purely formal discussion is an option. However, trusting an
insight underlying Computational Intelligence that nature has solved critical issues
of structure design before it yielded the human brain, we shall consider biological
GPM. Nevertheless, our strategic objective will not allow for explicit design of nu-
merous, complex, mimicking machineries, which, due to the conflict of recursion, is
an endless dead end.

Development of an organic, multicellular phenotype under influence of its geno-
type, physically represented by DNA or RNA molecules, yields, on a macroscopic
level, a phenotype which interacts with its habitat. Ontogeny of this structure is
driven by a most intricate cause-effect network that still lacks a whole, explanatory
model.

4.2 The empirical genotype-phenotype mapping 71

Our focus shifts to the molecular level of observation with a cell as elementary
instance of life: it is i) a structural and functional component of a multicellular
organism, or ii) an autonomous life form, e.g., a bacterium. The field of molecular
biology (for instance, (Watson, Hopkins, Roberts, Steitz, and Weiner 1992)) is con-
cerned with phenomena that build and maintain cellular structures and processes.
On this level, a phenotype consists of proteins (s. def.) which are elementary architec-
tural and functional components. Therefore, their context serves well for designing
small algorithmic metaphors. To that end, one may interpret a given protein q as
a sequence of its composing molecules that are amino acids and that give rise to
q’s individual, three-dimensional, folded conformation which determines q’s role as
tissue part or biochemical agent.

The underlying production process, interpreting a genotype, is often called pro-
tein synthesis or, more to the point, polypeptide synthesis.

4.2.2 Polypeptide synthesis and genetic codes

Regarding inspiration for GP, we are merely interested in a most elementary descrip-
tion of the synthesis® in question, emphasizing the theme of transforming informa-
tion to behavioral structure. Due to our underlying objectives, advanced artificial
machinery should ideally emerge from metaphors of molecular basics, finding its
own design that honors the “physics” of the artificial medium. Especially, struc-
tural complexity must emerge from a man-made binary substrate. The former thus
increases its evolvability by staying in sync with the medium and additional organi-
zational layers to which it contributes by its development which is guided by evolved
information.

As instance of natural, evolved information, a DNA molecule is a sequence of
nucleotides, namely, adenine (A), guanine (G), cytosine (C), and thymine (T). RNA is
a molecule type structurally similar to DNA, consisting of A, C, G, and uracil (U),
a further nucleotide. A DNA or RNA segment is a contiguous nucleotide sequence,
and a segment that is a transcriptional unit in the following context is called a gene.
It contains exons, i.e., coding segments, that may be separated by introns that are
sequences which do not contribute to the synthesized product.

A cellular process named transcription reads, in its first phase, a DNA gene,
producing a similar RNA sequence, known as a primary transcript or mRNA precur-
sor. In a second step, splicing, a.k.a. splicing out (Fincham 1994), or intron splicing
(Watson, Hopkins, Roberts, Steitz, and Weiner 1992), removes introns from the
precursor, yielding the final product: (mature) messenger RNA (mRNA). Three con-
secutive nucleotides in DNA or mRNA are known as codon, so that one may view
such molecules as codon sequences. For instance, in segment “UGCUACGUAAG”,
starting at the first ‘G,” one identifies GCU, ACG, and UAA as codons.

In a scanning step, a cellular process called translation determines codons of an
mRNA segment. Due to phenomena that establish the entire process, a certain
codon corresponds to, or codes for, a certain amino acid that is said to be encoded

6(Creighton 2002) greatly elaborates on proteins.

72 4 Algorithmic components

by the former. Thus, the segment gives rise to an according amino-acid sequence,
and a long” instance of such a chain, resulting from a gene, is a polypeptide. For
instance, CCG codes for amino acid proline, and ditto GCU for alanine. Thus, a
segment containing “CCG GCU” results in the synthesis of an amino-acid sequence
“proline alanine” as part of the sequence that is encoded by the segment.

With four different nucleotides and three per codon, 4% = 64 different codons
exist of which 61 encode an amino acid, while three stop codons cause translation
to terminate upon their encounter, ending synthesis of a polypeptide chain. The
mapping of codons and amino acids is a function, known as the—mearly—universal
genetic code,® so that, for instance, CCG codes for Proline only. Thus, the code
is sometimes called frozen, which hints at the view that it, like all stable, complex
biological phenomena, has been adapted by organic evolution. It is non-injective,
mapping codons onto 20 amino acids, so that, e.g., CCU, CCC, CCA, and CCG
code for proline.

A synthesized polypeptide chain folds into a three-dimensional structure that
characterizes the protein. Acid sequence and chain length determine the folding that
yields the resulting phenotype which, in turn, determines the protein’s behavior, i.e.,
its role.

e From an abstract point of view, biosynthesis, as the entire process is often
called, interprets information to produce a structure that exhibits behavior,
thus implementing the grand developmental theme on the elementary level
of life (see Figure 4.1). The different structural media involved allow for an
interpretation of a genotype ¢ such that a phenotype is produced without

changing g. (4.4)

e Therefore, biosynthesis shall inspire algorithmic metaphors of the artificial
GPM in discussion.

4.2.3 A genotype-phenotype mapping

As we have determined alg,, :=d_,, the empirical developmental search algorithm
for a given problem p, to be full, rep, = dec, holds (cf. 3.19, p.61). Thus, for d_’s
GPM m, namely, gp, : rep, — sol, , we get

gpq : dec, — sol, C pot,
= gPa € Sp,
i.e., gp, is a semantic mapping of p.

e In general, for a full developmental search algorithm alg,,,, , we obtain
gpa € Sp, i.e., a GPM of a is a semantic mapping for a.

"By this term, molecular biologists usually mean a few dozen up to a few thousands of acids.
8There are, indeed, rare exceptions where an organism uses a slightly different code, e.g., for
the synthesis of some mitochondrial proteins.

4.2 The empirical genotype-phenotype mapping 73

gene

DNA sequence junk data carrier
transcription medium transition
primary transcript ... exonintron exon ... working copy
splicing out interpretation

MRNA sequence exonexon edited copy

GUA AGCUGU
translation interpretation +medium transition

polypeptide chain Valine SerineCysteine product

folding

interaction

with

biochemical reactivity environment

Figure 4.1: Simplified scheme of biosynthesis: we focus on some of its steps that are
instances of transitions between media and of data interpretation (for brevity, processes
are presented mechanistically as agents, rather than as emergent phenomena). A DNA
sequence serves as data carrier. Transcription, effecting a medium transition to RNA,
ignores so-called junk between genes and yields a primary transcript that represents a
working copy, so that original data remains untouched. The underlying molecular ma-
chinery continues by retaining some subsequences (exons) and splicing out others (in-
trons). Translation interprets the edited result as codon sequence and represents it in the
medium of amino acids. The synthesized polypeptide chain is subject to molecular forces
that fold it into a protein. This structure or its biochemical reactivity represent function,
i.e., interaction with its environment. The sequence of codons and corresponding acids is
information, i.e., an invariant of interest, giving so-called colinearity of gene and encoded
protein.

74 4 Algorithmic components

However, for all gp,, one shows: if sol, C pot, holds, then

inf, = pot, \ sol, # ()
— dm € S, :img(m) Ninf, # 0
= img(m) ¢ sol, = m # gp,.

e Thus, for problem p, not each m € S, can be used as GPM of a full, develop-
mental alg, to be designed for p.

e Especially, for real-world or GP problem p, sol, C pot, holds due to 3.26, p.64.
Thus, not each m € S, may be gpq ..

Therefore, we shall discuss a guideline for designing a GPM of d_., the empirical
developmental search algorithm.

4.2.4 An attractive genotype-phenotype mapping

For problem p, d_. being full implies dec, = repq_,. Thus, we may use each function
m : dec, — sol, as GPM for d_,.? We therefore define

Gp:={m € S, | m # idge,, img(m) N sol, # 0}.

Thus, m € G, maps at least one d € dec, into sol,, implying fea,, # 0.

For a search algorithm alg,,, with a GPM gp, : rep, — sol,, each f € G, qualifies
for gp, == f, m = gp,, if alg,,, is full and developmental. Thus, we name f a
potential genotype-phenotype mapping of a full developmental search algorithm for
p. Therefore, for some p, our task of designing a GPM for d_,, the empirical deve-
lopmental search algorithm, can be restated as identifying an appropriate f € G,,.
Usually, |G,| > 1, so that properties of such f are of interest next.

We define an ideal genotype-phenotype mapping gpy . to map repq . onto an ac-
ceptable ¢ € sol,, i.e., each point that d_, finds, using gpq_, is desirable for the
user. Especially, d_, locates ¢ soonest possible, i.e., with the creation of the first
individual of the initial population, showing Utopian search performance. Also,
with img(gpa_.) = ¢, gpa_. is usually “maximally non-injective”, since, mostly,
|dom(gpa_.)| = |repa_.| > 1. For a real-world problem p, one cannot give gpy . a
priori, at least because ¢ is, by definition of p, unknown. However, a less fantastic,
yet beneficial property of a desirable gpq . € G, can be sketched:

e The more genotypes gpq_. maps to acceptable phenotypes, the more likely is
d_ to locate such a phenotype. An according gpq . shall be called attrac-
tive, reflecting the notion that the mapping attracts many genotypes to fewer,
acceptable phenotypes.

We shall follow this notion as a guideline for designing a practical GPM for the
empirical developmental search algorithm.

9Note that statements on d_ that are not GP-specific hold for any full, developmental search
algorithm.

4.2 The empirical genotype-phenotype mapping 75

4.2.5 Necessary and desirable properties of an attractive
genotype-phenotype mapping

If an acceptable solution of problem p is unknown, a search algorithm alg,, with
GPM m := gp, must be able, in principle, to locate each feasible solution s € sol,,.
This is equivalent to img(gp.) = rng(gp.) = soly, i.e., gp, must be surjective,
residing in

SG, = {f e Gy } img(f) = Salp}a

the set of all surjective GPMs for a full developmental search algorithm for p.
(4.5)

|dec,| and |sol,| are finite (cf. 3.2.1, p.48), so we obtain a simple criterion. In
general, for a surjective function f with finite domain,

|dom(f)| > |rng(f)| = (f € SG, < |decy| > |sol,|).

(4.6)

We distinguish
i) |sol,| =1 = |SG,| =1, and
ii) |sol,| > 1 = |SG,| > 1.

i) is trivial, and, for ii), we must identify a beneficial GPM in SG,, through con-
struction. (4.7)

For a function f, an explicit function definition shall be represented by a look-up table
that gives f(d) for each d € dom(f). An algorithm that computes f by use of the
table, to be called an explicit mapping algorithm of f, can thus be efficient. Any other
function definition and according algorithm shall be named implicit.

For given real-world problem p, an explicit definition of f € SG,, is impractical:
dec, is large, since sol, is large (cf. 2.5, p.33) and |dec,| > |sol,| holds (cf. 4.6).
Therefore, we must construct an implicit definition of a surjective GPM for d_., the
empirical developmental search algorithm. Thus, u, the according projected mapping
algorithm, will interpret a genotype g € dec, = repq_,, thereby composing pg € sol,,
the phenotype of g. (4.8)

4.2.6 Structural vs. functional interpretation of a genotype

4 must interpret a genotype as a set of parameters that represents information guid-
ing the composition of the phenotype. One can identify two—possibly combined—
types of interpretation:

e functional: a parameter represents information that guides the synthesis of a
set of parts of the phenotype.

e structural: a parameter represents this set.

76 4 Algorithmic components

For minimalism, the discussion shall focus on a structural interpretation, because it
directly approaches phenotype composition, while a functional interpretation would
call for the introduction of additional mechanisms.

e Thus, genotype g € dec, represents gpar, & set of parameters to be identified
with structural, genotypic components. Each such component in g,,, represents
P, a subset of parts of p, which is to be composed. Likewise, ¢ € P shall be
known as phenotypic component of p,.

(4.9)

1 therefore has to establish a mapping between genotypic and phenotypic compo-
nents in order to synthesize p,. Thus, for defining ;1, we must determine a represen-
tation of a genotypic component.

4.2.7 Structural genotypic representation

To alleviate human interpretation of binary string b, we may indicate a possibly
given, logical structure of b by a space that partitions its string notation. For
instance, “0110010010” may be rendered as “01 10 01 00 10”.

For a search algorithm alg,,,, genotype g € fea,, C dec, is encoded as a string (cf.
4.1.2, p.67). We thus determine the simplest representation of genotypic component
¢ € gpar as a single substring of g, ¢ # ¢, with component size |c¢| and component
value $c. For instance, in ¢ =“0010101001”, one may let ¢ with starting position
two and component size three be a component with value $¢ =“101".

For minimalism, we decide!® that all components of a given genotype ¢ shall
have the same size, called g’s component size. Therefore, for all ¢,d € gpqr, We get
lc] = |d|] < |g|. Note that, here, the component size of a genotype is individual. For
instance, for genotype “0110 1 0100” with component size four, “0110” and “0100”
may be components. (4.10)

For minimalism, a bit of genotype g shall be a bit of a component of g, so that g
only consists of its genotypic components.!! For instance, for the above genotype
“0110 1 01007, we have set “0110” and “0100” as components. However, the visually
isolated “1”, at position four, must be in a component of g, so that, e.g., “0 1 01”

must be in gy (4.11)

As a further design decision, for all ¢,d € g, ¢ and d shall not overlap, since this
restriction allows for a simple computation of the starting position of a component.!?
For instance, above, “0 1 01”7 overlaps with the two other components, so that the

10A series of design decisions implemented in the present work is to follow. Dropping the implied
restrictions hints to future work.

1Tn future work, one may consider frozen genotypic parts, invisible to evolution, that may, e.g.,
protect absolute, untouchable user knowledge.

12In future work, one may relax this constraint, e.g., to implement pleiotropy, i.e., one genotypic
feature influencing several phenotypic traits.

4.2 The empirical genotype-phenotype mapping 7

given g, is unacceptable here. For the same genotype with component size three,
however, g,q, = {“0117,010”,“100” } passes.

(4.12)

Text unit 4.12, p.77, and 4.11 imply that the size of g € fea,, C dec, is an integer
multiple of its component size, because |g| is fixed for a given problem (cf. 4.1.2,
p.68). Thus, for ¢ € gpar, In € N : |g| = n|c|.

(4.13)

As the component size is individual for a genotype (cf. 4.10, p.76), n is individual.!3
Otherwise, however, p can be defined in a unified way for all genotypes.

e We therefore decide that all components of all genotypes g € repq_, shall have
the same component size.

Thus, with 4.13, for all g, h € repq_., one gets n = |gpar| = |hpar|, i-€., all genotypes
consist of the same number of components, called the component number of repq_ .

e In summary, each genotype in repq_, entirely consists of the same number of
non-overlapping equal-sized components.'*

(4.14)

In particular, the structure of a genotypic component is determined by component
size cg of repg . Therefore, the size of a genotype ¢ is implied by ¢; and component
number ¢, as |g| = ¢, - ¢;. Thus, given ¢ and either ¢, or ¢, g can compute gy,
and represent it as a set of ¢, indexed c,-bit strings whose ordered concatenation
yields ¢g. For instance, given g =“01101000", with ¢, = 4 or ¢, = 2 known, one
gets gpar = {019, 104, 104, 003}.

To avoid visual clashes, especially in a mathematical expression, we introduce the
bracketed string notations (..) and [..] as equivalents to the quoted notation, so that,
e.g., “001 000”= (001 000) = [001 000].

Next, we can discuss a concrete structural representation of a genotype of d_,, the
empirical developmental search algorithm.

4.2.8 Binary genotypic representation

With ¢, given, the resulting binary representation of a genotypic component allows
for 2¢ different component values that p can interpret. As a genotype g entirely
consists of such components (cf. 4.14, p.77), u can view it as a string over

A= Gpor = B

13In future work, this may support speciation, the emergence of species.
“Interestingly, design decisions only resulting from minimalism and efficiency principles often
lead to metaphors of biological paragons. This will also be seen regarding the above decisions.

78 4 Algorithmic components

that we name the source alphabet of the representation, with a € A as source sym-
bol.”> For instance, for ¢, = 2, we obtain A = B = {00,01, 10,11}, and, with
¢ =3, g ="01 11 10” as a genotype over B .

With a bit as the atomic component of a genotype (cf. 4.1.4, p.69), |g| = cncs
shall be called g’s atomic genotype size, and we name ¢, the symbolic genotype size
of g [|g|s |. For instance, with ¢, = 2 and ¢, = 3, g =“011 001” has |g| = 6 and
lgls = 2.

In summary, for a full developmental search algorithm alg, , for problem p, we
identify a genotype g € rep, = dec, with its encoding, fixed-size binary string (cf.
3.2.2, p.52). Given fixed size k := cncs, we therefore identify dec, with A®.

(4.15)

dec, = fea,, = rep, = A™

follows (cf. 3.19, p.61).
(4.16)

e As d_,, the empirical developmental search algorithm, is full (cf. 3.20, p.62),
given a problem p, the user defines the underlying genotypic representation by
determining ¢, and c,.

4.2.9 Phenotypic representation

For a given phenotype py, pg,., shall denote the set of its phenotypic components.
For a GP algorithm alg,,, applied to a problem p, sol, C L, C (2 for target language
L, (cf. 3.23, p.63). Thus, as p, € sol,, it is a string in Q.

e In analogy to 4.12, p.77, we decide that a component of phenotype p shall be
represented by a set of p-substrings that do not overlap, supporting minimal-
ism, because overlap wastes memory.'® For instance, {(a+), (¢)} represents
a component of “a + ¢ * e”, while {(+cx), (xe)} does not.

e Furthermore, each substring of p must be covered by a ¢ € p,,-. For instance,
forp=“a+b+c", {{(a)},{(b),(+c)} } is no potential p,q, as p11 =“+" is
not covered.

e As a further decision, a phenotypic component shall contain exactly one sub-
string of p. For instance, for p = “a + ¢ * €”, {(4c)} is such a simple phenotypic
component. Thus, we identify a simple component with its single element.

In summary, for a given phenotype p, p,qr can be represented as a set of indexed p-
substrings whose ordered concatenation yields p. For instance, given p = (a+bxc),

Ppar = {(a+)o, (b)1, (x¢)2} or, trivially, pyer = {(a + b*c)o}.

15The terms reflect the notion that a genotype g is the origin of information on composing p,.
16 As with the genotypic discussion, subsequent design decisions are to focus on a minimal design.
The implied alternatives and, especially, their hybrids, point to future work.

4.2 The empirical genotype-phenotype mapping 79

For p : |p| > 1, several phenotypic-component sets of p exist. Thus, for designing y,
we must identify one. Given a pyq, if all ¢ € pp,, have the same size, ppq, shall be
called normal. For instance, for p = “sin(a)”, the set ppe = { “sin(”, “a)” } is
normal.

e We decide that p shall only employ normal sets.

If |p| is odd, then p has only two normal component sets:

i) ppar = {p}, to be called monolithic, and

ii) the set whose |p| components all have size one, named atomic.
For instance, for p = “a+b”, pper = {[a]o, [+]1, [bl2} is atomic and ppa, = {[a+0b]o}
is monolithic.

As a current constraint, for genotype g, ;1 interprets a genotypic component ¢ € gy,
as S C Pgpuns S # 0 (cf. 4.9, p.76). If py .. is monolithic, then S = p, . , so that each ¢
semantically represents p,. For instance, let g = 01 10 11 11 00 with p, = “a + b”
with monolithic py .. = {[a + bJo}, then each ¢ € gpor = {000, 10y, 115, 115,004}
represents [a + b] = p,.

Thus, p is explicit which contradicts the definition of p realizing an implicit
mapping, and, therefore, a monolithic component set cannot be the only set type
employed by .

e For that reason and for minimalism, we decide that p shall only employ the
atomic component set of a phenotype.

In conclusion, for the empirical developmental search algorithm d_,, a phenotypic
component is represented by a target symbol a € €4 . Thus, for phenotype

p= Co..Ck, 0 < k‘,Ci € Qdﬂ,

we obtain py., = {co, ..,k }-
(4.17)

In extended summary, representations for genotypic and phenotypic components,
respectively, have been defined. Next, we continue u’s design by determining, for
each component c of a genotype g, the set of p,’s components that c is to represent
semantically (cf. 4.9, p.76). (4.18)

4.2.10 A mapping from genotypic to phenotypic structural
components

Given genotype g, unit 4.9, p.76, states that each component g; represents a p,,. As
p must fully synthesize p,, each p,, is to be represented by a g;. This relation shall
be called an individual component relation of g. For instance, with g = (cocicac3)
and p, = (cocic2), {(c1, c0), (o, c1), (c3, c2), (o, C2), (2, c2)} defines such a relation.
This concept implies that each genotype is a direct definition of its phenotype, which
gives an explicit GPM which has been ruled out for pu. Thus, we must determine
a type of component relation that is independent from an individual genotype and

80 4 Algorithmic components

phenotype. To that end, let there be a GP algorithm alg,, and a source alphabet
A. While a given structural component ¢ = e, is only associated with its genotype
or phenotype e, ¢’s component value $¢ from A or 2, is independent from ¢ and e
(cf. 9, p.51). Thus, a viable relation of components may only consider their values.

(4.19)

Text unit 4.9, p.76, and 4.19 imply that b € A is to represent O C €),. Thus, an
according component-value relation of alg,, is described by

cor, C A x €,.

Therefore, with ¢ € gy, representing ¢ € p, ., the latter carries a value from
cvrg($c) C Q.

e Since a component carries exactly one value (cf. def. of the node function),
lcvrq($c)| = 1 must hold.!” Eventually, therefore, a component-value relation
is a function cur, : A — Q. (4.20)

For instance, given A := {00,01, 10,11} and Q, := {a, b, +, *},
then cur, := {(00, a), (01,b), (10,b), (11, +)} may be designed.

We obtain dom(cvr,) = A, rng(cvr,) = €, and, as cvr, is a function:

Al > [Q] & V(S CQ,:S#0) Jcor, : S =img(cur,). (4.21)

The set of all source symbols of a genotype g shall be called its genotypic alphabet
AgyC A’ Accordingly, one may speak of the phenotypic alphabet Q,, of p, and g.
Given ¢ and cvr,, p can compute

Qp, =f{o € Q| FbE Ay : cory(b) = o} = cury(Ay).

Thus, g and cvr, determine €, which p can use for synthesizing p,. As a composer
of py (cf. def.), u requires seg,,, the phenotype’s sequence information (cf. 3.2.1,
p.50) that orders the o € Q,, , thus yielding p,.

4.2.11 Phenotypic sequence information

The meaning of a genotype g manifests itself in ¢’s contents sequence, that is,
the combination of a content and its position is significant. Thus, expressing this
combination, given by g, in p, is the essence of genotype-phenotype mapping. To
that end, p is to determine p,’s sequence information. For a real-world problem,
usually, [€2, | > 1 holds. Thus, there may be more than one potential py, i.e., a legal
string over €2, , while, however, only one p, is to be composed, implying that x must

1"Relaxing this constraint calls for future work on an additional mechanism that determines one
of several values, possibly depending on phenotypic status and environment.
18Example: g = (00 11 11 00) = A, = {00, 11}.

4.2 The empirical genotype-phenotype mapping 81

determine exactly one sequence information.' To that end, p could generate p, as,
e.g., a legal random string over €2, , which would, however, violate the GPM essence.
Therefore, artificial evolution must learn the structure of a solution as well as its
components, the latter represented here as elements from €2, . To that end, one
must link genotypic and phenotypic structure, so that the former assumes meaning
via fitness feedback. Here, this approach requires connecting seq,, the genotypic
sequence information, with seg,, which p must derive from the former.

Consider k : k+ 1 = ¢,, the given component number of repy_ . Thus, genotype
g = (g:) € A¥! for 0 < i < k, representing seg,. A minimal approach to link-
ing genotypic and phenotypic sequence information identifies g’s position sequence
0,..., k with the position sequence of a string p € Q,**!, thus aligning ¢; with p;.
Eventually, to complete p, each p; must receive an o € (2, . Honoring the GPM
essence, one efficiently derives, from g = (g;),

p = (core(gs)) € QT
This composition of p from g realizes the latter’s transcription under cvr,,

trQfea, cory © €0, — QL e, cora(G0---Gk) 1= CUT4(Go)...cOT4 (k)
(tra for short), yielding the primary transcript of genotype g (under tm).(4 2)

Note that tra is well-defined, because dom(cvr,) = A and rng(cvr,) = Q, (cf.
4.2.10, p.80) and since cvr, is a function (cf. 4.20, p.80).2° We obtain, due to 4.16,
p.78,

dom(tra) = fea,, = A°, rng(tra) = Q4". (4.23)

With img(cur,) C Q, (cf. 4.21, p.80),
img(tra) = (img(cvry))™ C Qq",
so that, here, one does not get a narrower description of img(tra) than the trivial
statement that, for a function f, img(f) C rng(f) (cf. 2.1, p.29). An algorithm com-
puting tra shall be called a transcriptor 7 which, especially, computes the sequence
information of the primary transcript of g. For the infix example, consider

A :=1{00,01,10,11}, Q, := {a,b, +, *}, cor, := {(00, a), (01,b), (10,b), (11, +)},
and ¢, := 3. This implies img(tra) = {a,b,+}*, and g := 01 10 00 and k := 01 11 00
yield tra(g) = “bba” and tra(h) = “b+a” as primary transcripts, implying
tra(g) & sol,, tra(h) € sol,.

e [n general, if a primary transcript of a genotype h is legal, it shall be the
phenotype, i.e.,
tra(h) € sol, < p(h):=71(h) = p. (4.24)
The other case requires discussion, because p must deliver a phenotype for an arbi-
trary genotype (cf. 3.19, p.61).

9Future work may look into relaxing this constraint, having g yield several permuted, feasible
strings over £, , thus exploring a phenotypic space of g.

2OInterestingly, the formal discussion, unrelated to natural phenomena, has lead to metaphors
of a cellular process (cf. 4.2.2, p.71).

82 4 Algorithmic components

4.2.12 Repairing a phenotypic component sequence

For a genotype g : tra(g) ¢ sol,, to maintain the GPM essence, p must map tra(g)
to a g € sol, that is to be the phenotype. This repairing has to be deterministic due

to 2.1, p.30. (4.25)

First, we analyze whether p can determine for given t¢ra(g) whether its repairing
is to commence, at all. To that end, an efficient algorithm for deciding tra(g) €
sol, C Lq_, must exist. Therefore, a target language of d_, shall be defined by an
LALR(1)?! grammar G (Aho, Sethi, and Ullman 1986), because, for L(G), the word
problem is in O(n). (4.26)

Especially, during LR parsing of a string w, it is always efficiently possible to com-
pute the legal-symbol set of the current—i.e., actually scanned—w;. The set contains
those terminal symbols of G that are syntactically correct for w; regarding wy..w;_1.
For the infix example—which shall be the default for subsequent illustrations—,
in w = “abc”, current wy = a is legal, and current w; = b is not. Regarding our
practical background, we note: a language that is essentially LALR(1) is valid for
real-world problems, because it can be Turing-complete.??

e As a further design decision, we set € ¢ Lq_ for the empty word, because
representing behavior by € is counter-intuitive. (4.27)

e In summary, an efficient repairing algorithm, or cleaner, p exists that, given
tra(g) and Lq_, decides w := tra(g) € Lq_,. Especially, during parsing, p can
decide whether the current w; is legal, and p can compute its legal-symbol set.

(4.28)

A necessary, rectifying structure modification (s. def.) of w := tra(g) & Lq_ results
from a composition of one or more basic repairing methods which p may apply to
an illegal, current w;: deletion eliminates w;, replacement exchanges it for a legal
symbol, and insertion introduces one or more symbols into w such that w;, possibly
getting shifted, is legal at its (new) position j.23

e A cleaner p, given w := tra(g) ¢ Lq_ and using these methods, is to deter-
ministically deliver w’ € Lq_, (cf. 4.25, p.82), and p, = w'.

For instance, consider primary transcript w = “a+ +b” with illegal wy = +. p-
instances can transform w into legal “a + b” by deleting w,, or, by inserting a at
wy, into “a+a -+ b”. Eventually, an instance may change w by replacing wy with
b, giving v = “a 4+ bb” with illegal v3 = b, so that, e.g., final deleting of v gives
“a+b”. Alternatively, it may alter v by inserting + at v3, giving “a+b + b”.

21Look-Ahead one symbol during the Left-to-right scanning of the input for producing a Right-
most derivation.

22This is exemplified by many general-purpose languages like C and FORTRAN90.

23For purists: the second one may not be considered basic if one prefers to view it as a composition
of the first and third.

4.2 The empirical genotype-phenotype mapping 83
In general, p computes the transformation sequence
(tm(g) =to—t — .. >l — b, = pg)a

with ¢;,0 < 7 < n, as intermediate transcripts of genotype g. The examples show that
repairing methods may or must be combined in order to have a phenotype result.
A pure p employs one repairing method only until it uses a different method once,
at most, at its end. Accordingly, such p shall be known as deleting, replacing, or
inserting repairing, respectively. For instance, as seen, repairing may progress, using
replacement only, up to the end of the current intermediate transcript from which
a phenotype can only emerge by deletion or insertion.

The variance of phenotype size over a population favorably distinguishes Genetic
Programming from standard flavors of other Evolutionary-Computation paradigms,
e.g., Evolution Strategies or Genetic Algorithms.

We have |tra(g)| = |g|s, the symbolic genotype size (cf. 4.22, p.81). In general,
for all repairing types, |py| = |g|s < tra(g) = p, € Lqa_., because p does not modify
a legal tra(g).

e Under deleting repairing for a real-world problem, usually, |p,| < |gls, because
this type may remove symbols from the primary transcript. (4.29)

There are pathological exceptions that virtually only matter for toy problems.
For the infix example, consider tra(g) = +, so that deleting repairing, first,
eliminates the only symbol, yielding intermediate transcript e. For a given
target language whose smallest sentences have size three, p must thus insert,
at least, three symbols into the transcript to generate a phenotype, resulting

in [pg| > [tra(g)] = lgls

e Under replacing repairing, usually, |p,| about equals |g|s, because repairing,
reaching the end of the current intermediate transcript, must delete or insert
few symbols only, if at all. (4.30)

e Under inserting repairing, usually, |p,| > |g|s, because p mostly does not have
to delete or replace symbols eventually, since it can grow an illegal intermediate
transcript into a phenotype.

P PHENOLYD (4.31)

e In summary, we have introduced repairing methods by which p can transform
a given tra(g) ¢ Lq_, into a phenotype it returns, while, else, it delivers tra(g).
Thus, p returns p, for the primary transcript of an arbitrary genotype g.

Next, we can complete the definition of p by combining its subalgorithms 7, the
transcriptor, and p, the cleaner.

84 4 Algorithmic components

4.2.13 Composing a genotype-phenotype mapping

Computing a GPM m of d_,, the empirical developmental search algorithm, p in-
terprets a genotype g € dec, = repq_, by composing its phenotype p, € sol, C Lq_,
(cf. 4.8, p.75). Thus, p invokes 7 for given g and receives primary transcript tra(g).
It then calls p on tra(g) and receives phenotype p,. We obtain u(g) := p(7(g)).

(4.32)
Thus, p computes

m = tra o rpr,

the concatenation of tra and rpr, the function computed by p. In particular, given
a problem p, p is to compute m € SG,, a surjective GPM (cf. 4.7, p.75).

e As d_, is full and developmental, we will construct a surjective p-instance for
the general case of such a GP algorithm alg,,,. We begin with tra, the first
component of m.

Let a component-value relation cvr, be given along with a

g € rep, = fea,, = dec,
and ¢, := (k+ 1) € IN as component number of rep,. We then have

tra : dec, — Q" tra(go..gr) = cvra(go)..cora(gr).

Next, we identify properties of rpr. As p takes an arbitrary primary transcript as
input, dom(rpr) = Q"™ follows. (4.33)

Since p computes a phenotype,

img(rpr) C sol, C (2, N L,) € L,

follows with { > 0 (cf. 3.24, p.63). | < ¢, or [> ¢, follows from the above discussion
on the sizes of a genotype and its phenotype. In accordance with img(rpr), we
define rng(rpr) := sol,. rpr : Q,"™ — sol, results. (4.34)

We must show that m = trao rpr is well-defined. rpr and tra are functions.
For given ¢,, dom(m) = dom(tra), img(tra) C dom(rpr), img(rpr) C rng(m) hold,
as follows, and give the statement.

dom(m) = dec, = fea,, = dom(tra)
img(tra) = (img(cvry))™ C Q,° = dom(rpr)
img(rpr) C sol, = rng(m)

(cf. 3.28, p.65)(4.23, p.81: 4.33, p.84). O
(4.35)

4.2 The empirical genotype-phenotype mapping 85

As m : dec, — sol, by definition, m surjective < img(m) = sol,. For a certain
[>0, sol, = (2, N L,) (cf. 3.24, p.63). Thus, due to 4.35,

m surjective < img(m) = (2, N L,).

Depending on given parameters like ¢,, the rpr-instance, cvr,, and [, the mapping
m may or may not be surjective.

For instance, consider a modified infix example with no fixed-size encoding of
pot,, so that one theoretically faces indefinitely long phenotypes. Let A :=
{00,01,10,11}, Q, := {a,b,+,x}, cvr, := {(00,a), (01,b), (10,b),(11,+)} and
¢n = 3. Assume that, actually, due to the size constraint, [= 4 holds. Thus,
sol, = (2, N L,), so that, e.g., abb*, a+, a+b € Q, and “a+b” € L,
hold, and sol, = {a,b,a+a,a*xa,a+b,a*b,b+a,b*xa,b+b,bx*b}. (4.36)

Let p perform deleting repairing, then the resulting, computed m is not
surjective, because

i) “«” & img(cvr,) and

ii) for the example, deleting repairing does not introduce a symbol to the phe-

notype it delivers. Thus, img(m) lacks phenotypes that contain “x¢”, so that
img(m) # sol,, i.e., m is not surjective. O

However, for another cur, : img(cvr,) = Q,, m is surjective: (4.37)

Following from the assumption, for each s € (), contained in a q € sol,, there is
be A:cory(b) = s.

e Thus, for each q € sol, : |q] = 3—e.g., “a+Db"—, thereis g € dec, : tra(g) = q,
e.g., g:=00 11 01.

e The sole case q € sol, : |q] = 1 remains, e.g., g = “a”. Then, there is
g € dec, : tra(g) & sol, and deleting repairing eliminates symbols from tra(g)
such that q results.?*

Thus, for each q € sol,, there is a g € dec, : m(g) = q, implying i) sol, C img(m),
while ii) img(m) C sol, by definition of m.

i) Nii) = sol, =img(m) < m surjective.

The last example inspires a general design of a desired m : m € SG),,.

Let there be a full developmental gpalg, for a problem p, component
number c,, cvr,, and sol, := (""" N L,).

24For example, g := 00 01 01 gives v := tra(g) = “abb”, so that deleting repairing eliminates v;

[132)

and vg, which results in p, = “a”.

86 4 Algorithmic components

o If rpr is deleting and if img(cvr,) = Q,, (438)
4.38

then m is surjective.

As cvr, is surjective by assumption, for each q := qg..q; € sol,, [< c,, there is a

9 1= 90--Ge,—1 € decy : tra(g)oy = cvra(go).-cura(g) = o-q = 9,
and if [< ¢, — 1, there are cvr,(g;), l < i < ¢, — 1, that are illegal in tra(g);11. p
successively deletes these, so that rpr(tra(g)) = m(g) = q results.

If, alternatively, I = ¢, — 1, then tra(g) = g € sol,, so that p = id by definition, and,
again, rpr(tra(g)) = tra(g) = m(g) = q follows.

Thus, for each q € sol,, there is a g € dec, with m(g) = q, so that, as above,
sol, = img(m) < m surjective.
O

e In summary, we have derived an implicit, surjective GPM. Thus, for the empiri-
cal developmental search algorithm d_, in particular, such m € SG, guarantees
availability of each optimal phenotype. While 4.38 shows this special relevance
of deleting repairing, comparing all three repairing types must continue.

4.3 Repairing types of the
empirical genotype-phenotype mapping

4.3.1 Size-related issues

For a real-world problem, an acceptable feasible solution and, thus, its size are
unknown. In this perspective, setting a large genotype size for safety is recommend-
able. Then, however, only deleting repairing can produce a phenotype whose size
is significantly smaller than the set genotype size (cf. 4.29, p.83)(4.30, 4.31) and
whose quality marks it as a good acceptable solution.

e Thus, for a real-world problem, deleting repairing supports search perfor-

mance.? 26 (4.39)

Access to a short phenotype is indeed relevant, as such a solution may be more
general than a long one, due to an argument from Machine Learning (Mitchell

25Example: for 4.36, p.85, and an arbitrary genotype, only deleting repairing can produce the
shortest phenotypes, a and b.

26Note: while a small genotype size and an arbitrary repairing type can also yield a short
phenotype, they do not give all long phenotypes, because a GPM is a function, so that a genotype
represents one phenotype only.

4.3 Repairing types 87

1997). A solution delivered by a learning system may be, as an extreme, specialized
in that it explicitly represents only the given training data.?” (4.40)

e A general implicit solution, in contrast, is comparatively short, so that, for a
real-world problem, a small phenotype size is a necessary condition for a good
solution. (4.41)

GP as an instance of Machine Learning (cf. (Banzhaf, Nordin, Keller, and Francone
1998)) corroborates 4.40: the relation of size and generality of a feasible solution has
been studied, e.g., (Rosca 1996; Nordin and Banzhaf 1995), and results corroborate
4.41.

GP algorithms naturally generate phenotypes of variable size, in contrast to other
Evolutionary-Computation flavors, because a target language—a Turing-complete
one, in particular—usually contains sentences of different sizes. Variability in phe-
notypic size is essential to several beneficial GP properties. FEspecially, feasible
solutions of varying size can represent different compromises on conflicting quality
criteria. On the one hand, a short, general solution, e.g., a recursion, has a high
fitness whose computation, however, may be impractical because quality evaluation
must make explicit the associated behavior. On the other hand, a long, special
solution has a low fitness but may yield better to evaluation. Thus, the option on
producing feasible solutions of different sizes allows for trading computation time
vs. memory vs. quality.

Size variability also supports GP’s practical relevance, because most real-world
problems are multi-objective, and distinct phenotypes may represent different trade-
offs regarding all objectives. This issue is essential to the production of algorithmic
models of material structures, whose different sizes and shapes cope in separate ways
with the challenges posed by a physical environment. The evolutionary production
of such models matters to our strategic objective. While GP is not autopoietic,
its feasibility for model production is evident (Globus, Lawton, and Wipke 1998;
Keller, Banzhaf, Mehnen, and Weinert 1999; Comisky, Yu, and Koza 2000; Porter,
Willis, and Hiden 1996; Schoenauer, Sebag, Jouve, Lamy, and Maitournam 1996).

e In summary, under fixed-size genotype encoding, deleting repairing is neces-
sary for a surjective GPM which makes available full phenotypic structural
diversity, i.e., feasible solutions of all shapes and sizes.

The term bloating (cf. 4.1.5, p.70) describes a phenomenon ubiquitous in GP (e.g.,
(Banzhaf and Langdon 2002; Podgorelec and Kokol 2000; Angeline 1994; Angeline
1998; Iba 1999; Langdon and Poli 1997)): during a GP run, an increasing fraction
of phenotypic code does not contribute to quality.?® Thus, in terms of the present

2TExample: a toy function regression of f(z) = 22 on a given training set of I/O value pairs

{(1,1),(2,4),(3,9)}. A highly specialized feasible solution, given as an algorithm:

if x == 1 print 1; if x == 2 print 4; if x == 3 print 9. The most general pheno-
type print x*x is shorter, because it represents an implicit function.

28While such code is often called bloat, the negative connotation is not always appropriate (cf.
3.4, p.56).

88 4 Algorithmic components

phenotype encoding, a substring is bloat if either i) quality evaluation does not
execute it, or ii) its execution does not contribute to the behavior of the underlying
individual, or iii) its contribution to behavior does not contribute to quality. For i),
the bloat shall be called inactive, and active in the other cases.?

Bloat can be beneficial and detrimental, so that a GP algorithm should allow for
it in a controlled manner. Therefore, some algorithms call a dedicated procedure
explicitly dealing with bloat (e.g., (Blickle 1996a; Bleuler, Brack, Thiele, and Zitzler
2001)), thus, however, reducing their implicitness. As a typical detrimental effect,
bloating increases the average phenotype size in a population, which may waste
memory and, in particular for active bloat, CPU cycles. Only deleting repairing
implicitly keeps the size of a phenotype at and under the fixed size of the associated
genotype (cf. 4.29, p.83)(4.30, 4.31).

e In summary, Developmental GP, a fixed genotype size, and deleting repairing
allow for i) genotype bloat—a source symbol that represents an illegal target
symbol—while limiting its amount, and ii) phenotype bloat, i.e., active and
inactive bloat, limiting its amount, too, thus contributing to our technical
objective.

4.3.2 Information-related issues

A real-world problem calls for a large target language. Thus, both inserting and
replacing repairing mostly require a deterministic (cf. 4.25, p.82) decision which
symbol to introduce in place of a current illegal symbol, because, usually, its legal-
symbol set contains more than one element. To that end, the user must design an
additional algorithm which computes the symbol in question.

This kind of information flux into the developing phenotype does therefore not re-
sult from the activity of search operators, yielding an undesirable, deterministic bias
which is incompatible with the EA paradigm whose power comes from—directed—
non-determinism on the genotype level. (4.42)

For the infix example, replacing repairing must exchange an illegal operator by
an operand symbol. Thus, given a bias for, e.g., b, “a+ %” will always result in
((a _l_ b”.

For a real-world problem, it is often unknown whether a given bias is detrimental or
beneficial. Even if one introduces a beneficial one by chance, it may turn detrimental
over time for a dynamic problem.

e In summary, both inserting and replacing repairing add to design effort and
run time, also decreasing implicitness of a GP algorithm, and they raise an
undesirable search bias. For deleting repairing, however, all of the above trou-
blesome aspects are almost not given: as discussed, a few symbols at most

29Example: “a+a — a” features active bloat, while if (true) then a=1 else a=0 has inac-
tive bloat, namely, the else-branch.

4.3 Repairing types 89

are inserted to complete a syntactic unit at the end of a phenotype. Thus,
especially for a real-world problem, deleting repairing is recommendable.

(4.43)

An illegal primary transcript tra(g) may contain a legal substring s that, especially
after a long run-time period, may represent a composite building block,? i.e., a part
of an acceptable solution.

e Only inserting repairing always—i.e., independent from the s-context—results
in a phenotype that contains s:

sufficient maximal phenotypic size given, this cleaner always grows tra(g) into a
phenotype by creating a context that turns s legal, while deleting and replacing
repairing eliminate, on syntax error at sp, this current symbol. Thus, inserting
repairing is preserving in that it guarantees s in p,, also after a change of the s-context
in tra(g) due to a mutation of g. For instance, consider illegal tra(g) = “+ba + b”
with legal s := “a + b”. Then, deleting repairing gives transformation sequence

“‘l’ba‘l’ b77 N ((ba+b77 N ((b _l_ b” — pg

which lacks s. Consider tra(g) = “b + ba + b”. Then, replacing repairing, biased
for b and +, gives

((b+ba+b77_>((b+b++b77_)((b+b+bb77_)((b+b+b77:pg

which, again, lacks s. Eventually, under inserting repairing, the two primary tran-
scripts yield

+ba+b — b+bat+b — b+b+a+b=p, and

b+ba+b — b+b+a+b=p,

respectively, so that s features in the phenotype.
e In summary, only inserting repairing is preserving.

e However, from a broad perspective (4.3.1, p.86; 4.3.2), deleting repairing is
most recommendable, especially for a real-world problem.

Note that those statements on repairing that we have merely illustrated, by flavors
of the infix example, also hold for a Turing-complete language, because a cleaner
operates in a purely syntax-based manner, while Turing-completeness comes from
semantics attributed to terminal symbols. We have chosen the non-complete infix
language as default only to keep examples short. (4.44)

30We use this term from the field of Genetic Algorithms metaphorically.

90

4 Algorithmic components

4.3.3 Redundancy and genetic diversity

Further issues of repairing matter to the genetic diversity of the underlying popula-

tion.

Given a full developmental GP algorithm alg,, , let its GPM gp, = m be surjective.
We call a non-injective function f redundant because there are

g, h € dom(f):g+#h, f(g)= f(h)
Thus, for gp.,

|dec,| > |sol,| < gp, redundant.

Redundancy of gp, is necessary for neutral mutations, so that appropriate mutators
can maintain genetic diversity of alg,, ’s population (cf. 3.8, p.58). (4.45)

e This maintenance is implicit—in contrast with dedicated methods, e.g.,

Also,

(Bersano-Begey 1997; Keller and Banzhaf 1994)—because it results as side
effect. Thus, a redundant GPM-—an algorithmic metaphor of ontogeny—
contributes to a self-maintaining GP algorithm, approaching our technical
objective.

The redundancy of gp, is itself implicit. A redundant component-value re-
lation cvr, is sufficient for the redundancy of gp,, because, for genotype
9= Go--gk. tra(go--gr) = (cvra(go).-cvra(gr))-

For instance, let A :={00,01,10,11}, €, :={a,b,+,x},

cvr, = {(00,a),(01,b),(10,b),(11,4)}. Then, genotypes 00 11 01 and
00 11 10 yield identical phenotypes “a + b” since cvr, is redundant in b.

A repairing type may support the redundancy of gp,, because deleting, replac-
ing, or inserting symbols of different genotypes can yield identical phenotypes.
In particular, this can occur in the presence of a non-redundant cor,. (4.46)

For instance, let A := {00,01,10,11}, Q, := {a,b,+,x} and
injective cur, := {(00,a), (01,b), (10,*),(11,+)}. Then, 00 11 10 01 and
00 11 11 01 yield illegal primary transcripts “a 4+ *b” and “a + +b”. Under
deleting repairing, identical phenotypes “a + b” result.

Summarizing, implicit redundancy of gp, may result from either a redundant
component-value relation or repairing. In particular, a superposition of both
sources may strongly boost their effect. (4.47)

under non-elitist selection, a found, singular excellent genotype g may become

unreal again. If gp, is not redundant, there is no real genotype h : h # g, gpa.(h) =
pg- Thus, the excellent phenotype p, has been lost, as it is commonly phrased.
If, however, the GPM is redundant, then such an h may exist, keeping p, in the
population. Thus, the redundancy of a GPM, boosting genetic diversity, implicitly

4.4 Interjection: Biological phenomena and algorithmic metaphors 91

fights loss of good phenotypes, approaching the technical objective. Therefore, a
mechanism dedicated to supporting beneficial or opposing detrimental effects of
variation in Evolutionary Algorithms, e.g., (Aguirre, Tanaka, and Sugimura 1999;
Nordin, Francone, and Banzhaf 1995), is not the only way to these ends.

To emphasize the implementation of our objective by the designed GPM, we relate
the latter to biology next.

4.4 Interjection: Biological phenomena and
algorithmic metaphors

Using an irrational approach, the user may randomly identify a natural phenomenon
as a paragon for an artificial metaphor. In contrast, one may also perform a rational,
possibly formal, discussion, detached from biology, that yields a result which, upon
analysis, is recognized as a metaphor. Our design process of a GPM for the empirical
developmental search algorithm belongs to the latter class, as follows.

4.4.1 Biological development and artificial genotype-
phenotype mapping

While neutral mutations and polypeptide synthesis (cf. 3.4, p.56) (4.2.2, p.71)
are natural issues that have inspired the terminology for some of the introduced
algorithmic entities, our discussion of an artificial GPM has unfolded only along for-
mal arguments and the occasional Gedankenexperiment, guided by design principles
(cf. 4.1.1, p.67) which we have established without reference to biology. Following
them, we exclusively cared for properties of the digital medium at hand, not impos-
ing one-to-one replicas of complex biochemical mechanisms and structures on it. In
particular, the spirit of the discussed GPM is rooted in the concept of a semantic
mapping (cf. 2.1, p.30) which is independent from a biological background.

They are linked, however, in that both the GPM as well as natural development
with biosynthesis at its heart turn information into structure that carries function
(cf. 4.4, p.72).31 A fixed-size binary-string encoding of genotypes has emerged from
the purely technical discussion (cf. 4.1.2, p.68). It appears that this representation
is a metaphor of the linear encoding of genetic information as a DNA or RNA
sequence. Also, all genotypic components in a source alphabet A are to have the
same size. It thus turns out that they are an analogy of—equal-sized—codons (cf.
4.2.2, p.71). Thus, ¢ € A shall also be called a codon, and a codon size means the
component size. Furthermore, all artificial genotypes of a GP run resulted as equal-
sized items, which is in parallel to natural genotypes of the same gender of the same
multicellular fauna species having (almost) identical size.

31Eventually, each biological phenomenon is related to computation, since an organism uses
genetic and environmental information for self-maintenance. This connection sits at the root of
Evolutionary Algorithms.

92 4 Algorithmic components

Also, a given component-value relation cor, : A — Q, (cf. 4.20, p.80) corre-
sponds to the universal genetic code, so that the former shall be known as a genetic
code. A sequence of artificial codons influences the structure of the string of pheno-
typic components (cf. 4.2.11, p.81) which are target symbols. Since a natural codon
determines an amino acid (cf. 4.2.2, p.72), a target symbol is a metaphor of such
an acid.

e Interestingly, deleting repairing, which surfaced as the most recommendable
cleaner from the discussion, is a counterpart of intron splicing (s. def.), an
essential phase of the transcription of codons.

The redundancy of an artificial GPM is necessary for neutral mutations which sup-
port genetic diversity (cf. 4.45, p.90). This situation is a mirror image of the
hypothesis that natural neutrality is a major reason for the observed, high diversity
in populations (Kimura 1983; Mukai 1985).

e In summary, numerous components of the discussed GPM that have resulted
from technical arguments turn out to be algorithmic metaphors that lead to
implicit effects in the empirical developmental search algorithm, supporting
the technical objective.

Thus, remarkably, organic evolution, a presumably intention-free phenomenon,
results in paragons of metaphors that result from rational design.?? This conclusion
is of practical value to EA design, as follows.

4.4.2 Approaches toward algorithmic metaphors

Considering the overwhelming richness of shapes, sizes, structures, and mechanisms
generated by organic evolution, probably each technical solution resulting from ra-
tional design is a metaphor of a biological phenomenon.3?

e This working hypothesis on designing a problem-oriented artificial system
means for EA design that there always is an appropriate algorithmic metaphor
for a solvable problem.

Thus, if a user is faced with a problem for that i) no efficient deterministic
solution is known and ii) theory does not deny solubility, the hypothesis suggests
to produce an appropriate EA. Its making may proceed in an informal, experience-
guided manner, and such intuitive design can save much time otherwise taken by a
thorough—especially, formal—analysis. Put vividly, this approach saves “thinking
time” that natural evolution has already spent on a problem class. (4.48)

32This observation builds the core of bionics, a cousin of Evolutionary Algorithms, that applies
biological principles to the construction of technical structures, because natural products mostly
lead regarding key criteria, e.g., performance, economy, and durability. A classic example is the
tensile strength of spider silk which is several times higher than that of the best current steel types.

33 A quick journey through, e.g., ecology, entomology, and molecular biology may dampen skep-
ticism regarding this assumption.

4.4 Biological phenomena and algorithmic metaphors 93

The feasibility of intuitive design has been sufficiently demonstrated on real-world
problems by the EA community. Furthermore, there is no comprehensive theory
that models EA dynamics on practical problems. For instance, superimposed ran-
domized processes often raise behavior that is mathematically intractable or, at
least, hard to catch. Idealizing assumptions, simplifying such challenges, result in
theorems that are of little or no real-world relevance. Especially, for GP, the variable
phenotype size severely obstructs formal modeling. For example, predicting effects
of recombination on the temporal progression of frequencies of genome parts in a
population is difficult, as shown in (O’Reilly and Oppacher 1995).

Also, extending theory for a slight, fast intuitive adaptation of an EA to a prob-
lem can sometimes require a big theoretical effort. For GP, a typical example is
a series of contributions leading to (Poli 2001) that models the above-mentioned
progression with respect to a basic recombinator for tree representation. A minor,
swift change, e.g., of this operator, reflecting a property of a new problem, may well
render the slowly gained theoretical statements useless for the resulting EA.

e For the mentioned reasons, theory strongly lags behind state-of-the-art EAs.3*
Thus, the technical objective calls for intuitive design which shall, besides
rational arguments, lead hereafter.

e A golden rule of this approach requires transferring the essence of a biological
phenomenon into the target medium in a manner that respects the nature of
the latter. (4.49)

For instance, (Holland 1992) proposes a binary genotype encoding which is ben-
eficial (cf. 4.1.2, p.67) as it fits with properties of the underlying digital medium.
As an example of a detrimental design, numerous GP contributions emphasize non-
homologous variation. Detrimental effects of this operator type or beneficial effects
of homologous recombinators feature in several works, e.g., (Langdon 2000; Nordin,
Banzhaf, and Francone 1999).

An explanation for the feasibility of intuitive design is that both a natural life-
form as well as a hypothetical, artificial autopoietic aggregate are cybernetic systems
(cf. 1.2.2, p.5). This is because cybernetics, in a view dual to Wiener's definition,
is the art of piloting (Ashby 1956). In our wording, both an organism and a truly
life-like artificial system must navigate through a dynamic, abstract space of con-
straints by adapting their structures such that the resulting behavior supports their
existence. As this behavior is independent from the process that generates the un-
derlying structure, different generators, e.g., organic evolution or intuitive design vs.
a rational process, may result in similar structures.3

34Nevertheless, theory is relevant to practical EA work, because both are mutual catalysts: a
fundamental understanding of simple metaphors fosters intuitive design of a complex system that,
in turn, provokes growth of formal models.

350ne may hypothesize that natural evolution and thinking are merely different instances of the
medium-independent phenomenon of evolution.

94 4 Algorithmic components

e In summary, intuitive design may well result in a metaphor that leaves little
or no space for improvement. So far, rational design has identified a repairing
GPM for the empirical developmental search algorithm, while intuitive design
is admissible, too.

4.5 An instance of replacing repairing

While deleting repairing is the overall most recommendable flavor (cf. 4.3.2, p.89),
its replacing sibling is desirable for simple situations where (cf. 4.30, p.83) the
user wants to determine the phenotype size through the mandatory parameter of
genotype size, e.g., since the structure of a feasible solution is fixed by the nature of
the underlying problem. Thus, we shall determine an instance of replacing repairing
for coming, initial experiments. To that end, two cases must be addressed next: a
primary or intermediate transcript is illegal if it either

i) contains an illegal symbol, or

ii) is irreducible, i.e., it is the first part of a sentence, such as “a+b+".

4.5.1 An illegal symbol

A deterministic decision for one of usually several symbols in the legal-symbol set
of s € Q, [L(s)] must be made (cf. 4.25, p.82) by a corresponding algorithm to be
designed next.

The Hamming distance of g,h € B" [hd(g, h)] is the number of bit pairs (g;, h;) :
gi # h;, so that 0 < hd(g, h) < n. For example, hd(11,11) = 0, hd(00,01) = 1,
hd(00,11) = 2.

Let B C B™ and g € B", then we name
h € B : h # g Hamming-closest to g for B < Ai € B : (i # g, hd(i,g) < hd(h, g)).
For instance, with B = B?, 01 and 10 are Hamming-closest to 11 for B.

Given S C €, the codon set of S under a genetic code cvr, shall be the set {c € A ‘
cury(c) € 8}. For illegal s € €, its legal-codon set is the codon set of L(s).

Given tra(g), the minimal-distance set of an illegal s; := cvr,(g;) is that S C L(s;)
whose codon set contains exactly those codons that are Hamming-closest to g; for
s;’s legal-codon set. In this sense, s € S is closest to s; under cvr,. For instance,
for

A :=DB>=1{00,01,10,11}, Q,:= {a, b, +,*},

and cur, := {(00,a), (01,b), (10, %), (11,4)}, genotype g := 00 01 01 gives tra(g) =
“apbyby” with L(by) = {*,+}. For understanding, one may index a codon by
the symbol it encodes, so that, e.g., 01 = 01,. The legal-codon set of b; equals
{10,,11;}. As hd(10,,01,) =2 > hd(11,,01,) = 1, the minimal-distance set of b;
is {41}, so that ‘+’ is closest to b under cvr,.

4.5 An instance of replacing repairing 95

The index of a codon ¢ € A shall be its decimal value, so that, e.g., ¢ = 11 has index
3. Given s € ,, that ¢ € cor, (s) with the least index is the lowest-index codon
of s.

Eventually, given S C €Q,, that s € S whose lowest-index codon has the least index
among all codons in cvr, *(S) C A is the lowest-index symbol in S.

With these preliminaries at hand, we define a replacing-symbol selector [o,.], a deter-
ministic algorithm, inspired by (Banzhaf 1993):

e Given an illegal s € ,, the selector picks the lowest-index symbol in the
minimal-distance set of s.

The algorithm is well defined because there is exactly one such closest symbol, since
cur, is a function and a codon index identifies one codon only. For instance, for
minimal-distance set {001y, 100,} of illegal s; = cvr,(101), the algorithm computes
b as replacement for s;, because the index of 001, is less than that of 100,.

There is freedom in identifying exactly one element in a legal-codon set, and
our decision to take the codon with the lowest index is arbitrary. This illustrates
the conflict discussed in 4.3.2, p.88: replacing repairing, among other flavors, intro-
duces a problem-unrelated search bias. Also, the host of preliminaries emphasizes
the design effort such repairing types require. Eventually, while we have assimilated
the handy, established term “repairing” for historical reasons, its connotation of a
“faulty” genotype giving rise to a pre-phenotype that requires correction is mislead-
ing. Rather, ontogeny represents interpretation of information that has ezclusively
been created by phylogeny which learns “correct”, i.e., adapted, genetic information
through selection and variation, and which has provided developmental machinery
as a corresponding interpreter.36

Next, we can design rp_,, the replacing repairing algorithm in question.

e It starts parsing the given primary transcript tra(g) in a loop: if parsing meets
an illegal symbol s, mp_, exchanges s for o,(s), and parsing continues. Thus,
the loop computes a sequence of (intermediate) transcripts, and it halts when
parsing meets the end of the current transcript t whose finite size warrants
termination.

Thus, t is a clean transcript, i.e., it does not contain an illegal symbol.

e If t can be reduced to the start symbol of the underlying target grammar, it
is a sentence of the target language, so that t = p,, the required phenotype.
Thus, mp_, terminates.

For instance, given tra(g) := “abb”, rp_ may yield p, = “a+Db” as clean
reducible transcript.

e However, if clean t is irreducible, such as “a+”, np_, continues as follows.

36This view of natural evolution recommends deleting repairing.

96 4 Algorithmic components

4.5.2 A clean irreducible transcript

A finalizing algorithm turns a clean irreducible transcript into a phenotype. To that
end, as an instance of structure modification, it adds and/or deletes symbols.

For instance, finalizing may turn
“sin(a) * cos(b) x (7 into
“sin(a) * cos(b) * (a)” or
“sin(a) * cos(b)”.

Corresponding methods shall be known as appending finalizing and deleting finalizing,
respectively. (4.50)

Appending finalizing

e An instance of appending finalizing [¢ap], given clean irreducible transcript
t = s9..8,, can always—efficiently—produce a phenotype unless a limit on
phenotype size interferes, because ¢,, can compute L(s,1) efficiently, from
which it can pick the actual s, ; that it appends to t, producing a clean
transcript t’.

o If t/ is irreducible, ¢,, repeats the above step on t', else it halts, returning the
computed phenotype.

Thus, for use by ¢,p, we must design a deterministic algorithm (cf. 4.25, p.82) that
computes s,+1, called the appended-symbol selector [o,p].

An appended-symbol selector

The number of symbols to be appended should be minimal for avoiding the discussed
problem-unrelated search bias and for efficiency: an appended symbol does not
result from a codon, whose value and position in its genotype represent learned
information, and computing and storing the symbol consumes resources.

e Thus, ideally, appending finalizing is to extend the given irreducible transcript
minimally.

To approach this goal, we assign a termination number ng to each s € §,. The
number indicates the potential of s to support a minimal transcript extension, and
we can guess this potential since L, is context-free. For a simple target language,
such as a set of arithmetic infix expressions, we define ng as the minimal number
of symbols to be appended after s in order to yield the phenotype. For languages
with a sophisticated syntax, one may use a heuristic measure that, e.g., prefers an
operand to an operator to the opening symbol of a loop, and assign termination
numbers accordingly.

A language, depending on its richness, offers more or less symbol classes, known
as tokens. For instance, b may be characterized by the token “variable”, while m and
42 may be marked as “constant”. Thus, we can assign ng to all s €), of the same

4.5 An instance of replacing repairing 97

token by tagging the latter with ng. For instance, consider transcript t := “a+”.
Appending “variable” symbol b finalizes t, while “operator” symbol sin requires,
at least, three more symbols: ‘(’, an argument, and ‘)’. Thus, we assign termination
number 0 to token “variable” and termination number 3 to token “operator.”

The number of symbols actually needed for finalizing after appending s can be
larger than ng that does not reflect the left context of s, e.g., an open parenthesis.
That circumstance, however, does not keep ¢,;, from completing the phenotype, since
the termination numbers “pull” the algorithm to an early end. This approximate
and feasible approach gives independence from an inefficient, exact algorithm from
compiler construction that, given a clean irreducible symbol sequence, calculates the
minimal number of appended symbols for finalizing (Aho, Sethi, and Ullman 1986).

Given these preliminaries, we can design a o,;, instance:
1. For clean irreducible sq..s,, compute legal-symbol set L(s,41).

2. Return that s € L(s,;1) with minimal ng and, in an ambiguous case, lowest
index as actual s,41.

e In summary, we have designed an instance of appending finalizing, ¢,,, that
warrants a small extension of its argument into the phenotype.

Next, deleting finalizing, the remaining alternative, shall be discussed (cf. 4.50,
p.96).
Deleting finalizing

As there is no degree of freedom in removing a symbol, the only instance of deleting
finalizing [¢ge| of given t := sy..s,, is:

1. delete s, yielding t’ := sq..8,_1

2. if £/ is reducible V t' = ¢, halt, else continue on t := t’.
¢ge halts due to the finite size of its argument, computing the phenotype or €. The
latter case, rare in a practical situation, requires further action (cf. 4.27, p.82). For

instance, transcript “sin(a+”, given to ¢q., yields

sinfa+ — sinfa — sin(— sin — e

e In summary, while ¢q. is recommendable for avoiding a problem-unrelated
search bias, it is not applicable to each target language as only finalizing type.
Thus, a repairing algorithm using deleting finalizing must deal individually
with the e-case. We shall encounter examples later.

98 4 Algorithmic components

Replacing finalizing

More flavors of finalizing, customized for given target languages and problems, can
be combined from principles underlying ¢,, and ¢q.. These latter, elementary types
more or less ignore the size of the given transcript as a guideline to desired phenotype
size (cf. 4.5, p.94). Therefore, as an instance with broader applicability, also for later
use, we design a basic, “messy” hybrid, named replacing finalizing, that exchanges
the last and only illegal symbol s,, of the given transcript3” such that a phenotype
with identical size results.

For instance, the given, illegal transcript t = “a + +” may result from replacing
repairing 7p_, of primary transcript tra(g) = “+b+”. Note that such t cannot
necessarily be finalized by rp_, continuing on s,, because it may open a syntactic
unit, instead. For example, above t may yield t' = “a+ (.

e Thus, we design an instance of replacing finalizing as follows:
return s € L(s,) that
i) gives a phenotype when replacing s,

ii) is closest to s,, honoring 7p_’s spirit. Resolve a possible ambiguity by
selecting the lowest-index symbol.

e As a customized flavor, replacing finalizing is not applicable for each target
language,®® but it has the advantage over appending finalizing that it does
not introduce as much problem-unrelated information. We thus recommend
to employ replacing finalizing when possible.

e In summary, an instance of replacing repairing (cf. 4.5, p.94) has been deter-
mined that can be an algorithmic component of d_,, the empirical develop-
mental search algorithm.

Next, to continue the design of d_,, we discuss the transformation of a phenotype
into a representation that is executable in the given computing environment.’

4.6 An executable repaired transcript

For its quality evaluation, a phenotype p, from the given target language L, is
interpreted by a corresponding target machine. If L, is the native language of the
underlying computing environment—a physical approximation of a universal Turing
machine (UTM)*0—,

i) this UTM and the target machine are identical, else

ii) the target machine is virtual, emulated by the UTM.

37Thus, this argument is necessarily non-clean.

38Example: for “sin(+”, no symbol can replace + and give a phenotype.

39While this technicality does not contribute to search behavior, it is essential to the practical
applicability of the algorithm.

4OFor brevity, we identify approximation and its abstract model.

4.7 Example of a genotype-phenotype mapping 99

We focus on ii) (cf. 4.1, p.69). Thus, a commercial compiler is to transform p,
into an equivalent machine program which is a sentence of the native language.
In order to make p, accessible to the compiler, d_, must embed the former within
further information, e.g., a main-program frame, in a step called editing.*! This
additional code follows from the definition of L, and from p,-properties. Thus, from
a current, practical point of view, editing greatly saves resources in that it spares
a developmental GP algorithm the learning of such code.*? However, regarding our
strategic objective, it will be essential to let a future, artificial organism learn all
properties of its environment—not just the nature of the given problem—in order
to have it become independent from manually prepared information and wrappers
that protect it from harsh reality.

Eventually, compiling and linking of the edited phenotype yield a machine program
as executable representation.

e In extended summary, transcription and, on demand, repairing with integrated
finalizing are the essential steps of the modeled genotype-phenotype mapping.
Editing, compiling, and linking result as technical necessity. To the target
machine, the phenotype is executable, while, to the underlying computing
environment, the machine program is. This distinction is cybernetically ir-
relevant because phenotype and machine program are equivalent, while the
GPM assigns semantics—the phenotypic behavior—to the genotype which in-
fluences the mapping, thus representing genetic information. For an overview,
see Figure 4.2.

4.7 Example of a genotype-phenotype mapping

Recall 4.44, p.89. Let a modified instance of the infix example be given with replac-
ing repairing and replacing finalizing. Consider genetic code

cvrg == {(000, a), (001, b), (010, +), (011, %), (100, a), (101, b), (110, +), (111, %)}.

Thus, g := 000 001 011 yields primary transcript t := tra(g) = “agbi*y”, and
replacing repairing applies to by as illegal symbol with codon 001 in g. The legal-
symbol set L(b;) = {+,*} results, and x with codon 011 is closest to b; which,
thus, gets replaced by x. The intermediate transcript t' = “ag *; *5” follows, and
repairing continues with replacing finalizing swapping illegal %, with b, yielding

"« ”
t = a0>l<1b2 —pg.

With, for instance, ISO-C given as the user-desired language, editing adds, e.g., a
function frame, so that the edited phenotype results as

4L A corresponding biological process arranges a polypeptide chain such that its folding (cf. 4.2.2,
p.72) begins.
420ne could, e.g., feed back compiler messages on submitted edited phenotypes to the algorithm.

100 4 Algorithmic components

| Binary Genetic Programming \

genetic ggg';’;‘;;;fj
programming ’/—" geno/phenotyps] fitness
l ’ i trransformation >§ evaluation

gengti
cye

————

————

| I genetic

- [nformation
0119/0111/../6001/0160

OT10/011 1/ /G001 /0160/./0018

Figure 4.2: Overview of the GP flavor “Binary Genetic Programming,” or simple Develop-
mental GP. Creation and the genetic cycle of the underlying Evolutionary Algorithm yield
binary genetic information that an extension transforms into phenotypes for subsequent
fitness evaluation. This addition transcribes, repairs and edits forms of the genotype such
that a compiler can eventually produce the final representation, a phenotypic executable,
an analogy of a protein.

double fnc(double a, double b) {return a * b ;}

SOLUTION may then join this representation with others and embed the resulting
bundle, which represents the current generation, into a main program that it passes
to the given compiler. It forwards the yielded executable file to the underlying
operating system for processing and collects subsequent individual output for quality
evaluation. For brevity, we skip describing—engineering-intense—technicalities of
SOLUTION, e.g., automatic training-data-driven generation of the main program,
function-frame generation, and grammar-driven generation of a customized parser
for an arbitrary LR(1) target language.

e In extended summary, we have designed essential algorithmic components of
d_., the empirical developmental search algorithm, in a formal context.

Next, the genotypic representation for c_,, the empirical common search algorithm
and second approach emulated by the projected search algorithm (cf. 3.1, p.47),
must be determined.

4.8 A genotypic representation for the empirical
common search algorithm

For a common GP algorithm, there is no distinction between a genotype and its
phenotype (cf. 3.3, p.54): the structure of interest represents both information and

4.9 Operators of the projected search algorithm 101

corresponding function carrier without an internal separation that would allow for
interpretation of the former.

e We have determined a phenotype representation for d_. (cf. 4.1.3, p.69), so
that this encoding shall also be used for c_,. Thus, a genotype of c_, is a
sentence of a given target language.

With genotypic representations for both empirical approaches at hand, we can dis-
cuss:

4.9 Operators of the projected search algorithm

To keep c_, and d_, comparable, they must not differ in principle, with the exception
of the existence of a genotype-phenotype mapping. Especially, they have to employ
operators with analogous effects on their respective genotypic representations. This
must hold due to the principle of mono-causality for comparing entities: ideally,
one has them differ in one critical property only, so that an observed behavioral
distinction must result from this single issue.

e Therefore, next, we must determine analogous search operators for c¢_. and
d_.

4.9.1 Creation and mutation
Random determination

An operator of an Evolutionary Algorithm may have to determine a component of
an operand in a randomized manner, e.g., an atomic element of a genotype.

e As default, random determination shall choose each component with equal prob-
ability, as this distribution is simplest. For instance, for each bit in an n-bit
string, its probability of random determination equals 1/n.

Developmental mutation

e Following from 4.3, p.69, and 4.1.5, p.70, mutation is d_,’s only search operator
besides—essential—creation (cf. 2.4.1, p.41).

Later, depending on given codon size and codon number*? of a particular genotypic
representation, a mutator may need specification, since only binary point mutation
is standard.

43Synonym of component number.

102 4 Algorithmic components

Developmental creation

Minimalism requires a creation operator whose behavior is problem-independent, so
that no further entities add to the conflict of recursion.

e Thus, for given codon number n and size s, the operator produces a random-
determined n-s—bit string. For instance, for n = 3 and s = 2, a created
random genotype may equal “01 11 00”.

Due to 4.9, p.101, we must design analogous operators for c_.:

Common creation

For a user-given, desired genotype size n, the operator in question is to produce a
random sentence g = p, € L, : |py| = n. (4.51)

One must allow for |p,| # n, because there may be no § € L, : |s| = n. For
instance, for the language of infix expressions over alphabet {a,+}, i.e.,
{8 | §=a(+a)’,i > 0}, there is no element with even size.

As L, is LR(1), algorithms we have designed for developmental phenotype pro-
duction can also be used by common creation, e.g., by a minimal instance of a
creator of § € L,:
Random-determine s € L(Sp) and set gy := s. Iterate this step for §;,7 > 1, growing
an § precursor ps, until |ps| = n. If—clean—ps & L,, a ¢,, flavor** yields §, else

— —

PS = 8 = py.

(4.52)

The ¢,, instance used by the common creator only differs in that no codon order
exists which would induce an order on 2, so that a user-given order is required to
resolve ambiguities in case of several symbols with minimal termination number.
Note that different creator invocations with same n may result in phenotypes of dif-
ferent size, which may be beneficial (cf. 4.3.1, p.87) and does thus not disadvantage
c_, in a comparison.

For instance, with n = 4, the operator may yield a modification sequence
“a” N ((a+77 N ((a _l_ SiIl” N “a + Sin(” .

The ¢., flavor may eventually produce “a+sin(a)” = § € L, with |§] = 6. A
different invocation may give

sin” — “sin(® — “sin(a” — “sin(a)” =§ € L, with |s] = 4.

44 appending finalizing, chosen here for reasons previously explained

4.9 Quality evaluation and selection for the projected search algorithm 103

Common mutation

Recall footnote 16, p.58, which implies that, for our discussion, mutation is always
applicable to a given genotype.

e For minimalism, point mutation shall be the only variator of c_,, the empirical
common search algorithm.

Here, a given operand is a g € L,, so that s € (), is an atomic component to be
modified. As a common variator, the operator in question must be safe (cf. 3.4.3,
p.61):

1. Random-determine i : 0 < i < |g| =: n.

2. Random-determine t € L(g;) : t # ¢; such that ¢’ = go..gi—1t gix1--gn_1 € La,
replace ¢g; with t, and halt, yielding mutant ¢’ # g.

3. If such t does not exist, restart with step 1 to comply with 2.6, p.39.

(4.53)

Thus, the mutator potentially enters a loop that halts with run time going to infin-
ity, because a genotype contains at least one g; for that t exists, since, otherwise, L,
would be too poor for the given real-world environment.*® This common point mu-
tation, called safe single-symbol conversion, changes, for instance, “a + b” to “axb”.

e In extended summary, search operators for the projected search algorithm p_,
have been determined.

Thus, we must design a p_.-subroutine for quality evaluation (cf. 2.4.1, p.40) next.

4.10 Quality evaluation and selection for the
projected search algorithm

The background of the current issue is given, e.g., by (Blickle and Thiele 1995; Béck,
Fogel, and Michalewicz 1997) that give an overview and theoretical analysis of basic
evaluation and selection schemes. A measure of adjusted fitness (Koza 1992) of an
individual ¢ [a(g)] has range]0, 1], a(g) = 1 if and only if ¢ is perfect, and, the lower
a(g) is, the lower is ¢’s quality. It has the favorable property that its computation
only depends on ¢, in contrast with, e.g., normalized fitness (Koza 1992). We define
our measure a(g) as 1/(1+ s(g)), where s(g) is the sum over all fitness cases of the
squared error that ¢ produces for each case.

4SFor critical applications, one easily safeguards the operator against a pathological, endless
loop by adding a counter-based recovery procedure that, e.g., suspends evolution and interviews
the user regarding a desirable continuation.

104 4 Algorithmic components

e Thus, the quality measure of adjusted fitness shall be employed by the pro-
jected search algorithm.

The principle of selection identifies an element from a population P of individuals
based on differences in their quality values (cf. 2.4.1, p.41). A required, minimal
selector op_, therefore picks two individuals for comparison. To that end, the user
must provide a quality-based selection rule (s. def.), and we decide on a simple and
resource-saving setting of selection probabilities: ‘1’ for the better individual, which
implies ‘0’ for the other one. This distribution already determines the candidate to
be selected for reproduction, so that o, . does not have to invoke a pseudo-random-
number generator. We obtain as oy, :

1. Random-determine ¢, heP.
2. Compute a(g), a(h).

3. If a(g) > a(h), return ¢, else h.

Note that this step does not introduce a bias since both individuals are random-
determined.

4. Halt.

op_, represents an instance of a scheme known as tournament selection with a tour-
nament size of two, or 2-tournament selection.

Reproduction and replacement

During a p_, run, selection for reproduction (cf. 2.4.1, p.41) prepares the creation of
offspring through mutation (cf. 2.6, p.39) or copying. On the one hand, a selector for
replacement requires computing time. On the other hand, without replacement, an
individual has eternal existence, and the resulting growth of the population consumes
memory without bounds, if unchecked.

e Heeding the time-first principle (cf. 4.1.1, p.67), we decide against selection
for replacement.

e Thus, a simple design of ensuring p_.’s limited memory consumption requires
a user-given fixed population size (cf. 3.4.1, p.58). (4.54)

In effect, the population, P, produces an equally big offspring set P’. As a
minimal way of determining the reproduced population from P and P’, p_,
is to discard P, continuing with P’ as its population, which implies that the
search algorithm is generational (cf. 2.4.1, p.43).

e In summary, we have determined all components of the body of p_.’s evolution
loop.

4.11 Termination 105

4.11 Termination

e Following 2.4.1, p.43, the time-out predicate shall be a termination criterion
of the evolution loop.

e As default, the predicate value shall be set to 50, so that, after the completion
of that many generations of a p_, run, it terminates. (4.55)

(Koza 1992) states that, after having produced about that number of generations,
a run stops showing interesting behavior. This may be but a weak argument for
the present work, because our GP algorithms are fundamentally different from the
tree- and crossover-based approaches of the cited work. Thus, we may change this
default on demand.

Another major termination criterion to be discussed is the success predicate. For
our empirical research, it is not as important as in an industrial context, because
the focus is not on the production of an individual with a given quality value but on
aspects of the behavior of a given search algorithm. In particular, even if a perfect
individual is found, we are interested in the continuation of the successful run so
that its further behavior can be measured.

e Thus, the termination criterion of p_, shall be identical with the given time-out
predicate.

e In summary, we have determined all necessary components of p_,, the pro-
jected search algorithm, so that it can be synthesized next.

4.12 Projected search algorithm

As ¢, and d_., the empirical common and developmental search algorithm, only
differ in their genotype-phenotype mapping, we can determine p_, as an instance of
the given outline of an Evolutionary Algorithm (cf. 2.4.2, p.43):

e If and only if p_, is to emulate a d_.-instance, it invokes one of the designed
GPM flavors immediately prior to quality evaluation.

In particular, the flavor that uses the given replacing repairing (cf. 4.5.2, p.98)
yields a d_,-variant that we call the first developmental search algorithm as it will be
an entry point to experiments.

Depending on the common or developmental type of a search algorithm to be emu-
lated, p_. employs the respective representations and operators that we have deter-
mined.

e In extended summary, we have designed the projected search algorithm, which
concludes the formal part of the initial step toward the technical objective
(cf. 3.1, p.47). Next, the empirical part follows, i.e., p_’s behavior shall be
observed and discussed. (4.56)

106 4 Algorithmic components

Chapter 5

First empirical problem

5.1 Target language

For experiments, the target language of the projected search algorithm must be
decided. Following from 4.27, p.82 (3.5.2, p.63, 4.1, p.69, 4.26, p.82), this language
can be a compiled general-purpose language.

e As a design decision, the empirical target language Lepmp shall be ISO-C
(Harbison and Steele 1995) because it is highly portable. (5.1)

Thus, a final transcript—a phenotype—is a symbol sequence compliant with
the ISO-C language definition.

Next, we must determine an empirical problem as an issue of experiments.

5.2 Properties of an empirical problem

5.2.1 Class

There are many contributions applying Genetic-Programming (GP) algorithms to
problems of function regression, e.g., (Davidson, Savic, and Walters 1999; Duffy and
Engle-Warnick 1999; Guyaguler 2000)." This is due to a ubiquitous method of qual-
ity evaluation: the input-output relation defining the problem can be conveniently
modeled as an isomorphic set of fitness cases. Next, we begin determining a first
instance of a regression problem as object of the projected search algorithm (cf. 3.6,
p.56).

5.2.2 Type

The previous text unit implies that all problems represent pattern recognition prob-
lems. A search algorithm is to find an entity that represents an acceptable solution

LCritical remarks to the account that GP can only handle function regressions show the opposite:
actually, a general regression problem — given I/O data of a black box, induce the hidden system
— is an archetype of problems.

107

108 5 First empirical problem

in that it recognizes the pattern in question well. For instance, a located function
of a given regression problem recognizes the pattern in the problem representation
given as I/O data.?

For the intended empirical research, the use of a synthetic problem,—i.e., a de-
signed problem—, is desirable: its properties can be made to support the objective
of the research. Opposed to a synthetic problem, there is what we call an emergent
problem that arises from an environment as an undesirable phenomenon.

For the hardest pattern recognition problems, a decision maker does not know
the type of pattern to be identified. The user of an according search algorithm
can, at most, decide whether a found pattern is significant. In terms of Machine
Learning, an appropriate search algorithm is an instance of reinforcement learning
or even unsupervised learning®. (5.2)

A problem occurring in the material world shall be called a physical problem. It
is noisy, i.e., i) measured values of a variable are always uncertain because the
measuring process, in principle, is imprecise, and possibly ii) a considered variable
is irrelevant to the problem, at all. Thus, the resulting problem representation—
e.g., fitness cases—is blurry. Therefore, the notion of a “perfect” phenotype is
meaningless for a physical problem: a phenotype that satisfies all fitness cases is
merely an exact solution to an imprecise problem description.* This reasoning is
a deep argument for 1, p.47, arguing for focusing the empirical research on the
tendency of the behavior of a search algorithm.

In summary, we shall determine synthetic regression problems as empirical prob-
lems that have some or all of the above properties: aspects of unsupervised learning,
and noise. Particularly, we consider above issue ii):

5.2.3 Knowledge

A major task of approaching a problem with emergent properties is determining
problem knowledge and representing it to a search algorithm. Especially, determin-
ing the set of all problem-relevant variables is a challenge. Ideally, the algorithm
determines problem knowledge in parallel to locating an acceptable solution, thus
enhancing its performance. (5.3)

We consider the situation of incomplete problem knowledge later. For now, accord-
ing with 4.9, p.101, we decide that the user shall have full problem knowledge and
represent it to the search algorithm. The user is indeed guaranteed to have complete
knowledge since the empirical problem is to be synthetic (cf. 5.2.2, p.108).

5.2.4 Dynamics

A static problem problem environment always reacts the same when presented with
the same feasible solution. Thus, problem synthesis is simpler for a static than for

2A recent buzz word that is synonymous to pattern recognition is data mining.

3In professional lingo, the user expects the algorithm to “take me there, I don’t know where —
get me that, I don’t know what.”

4Thus, an imperfect phenotype may be an even better solution than a perfect phenotype.

5.3 Problem 109

a dynamic problem. In order to support a simple execution of empirical research, a
considered problem shall be static.?

All static real-world problems of interest are variable, i.e., there are different feasible
solutions that result in different reactions from the problem environment. Otherwise,
there would be only one such reaction, which would imply that each feasible solution
would be globally optimal. Also, it is practical to produce a variable problem by
use of, e.g., a simple function f with |img(f)| > 1. In conclusion, all considered
empirical problems shall be variable.

In summary, the first empirical problem shall be a variable synthetic static regression
coming with complete knowledge. We can create the determined problem properties
with an objective function (s. def.) featuring the same properties. This process
results in the simplest problem representation to a GP algorithm, i.e., a set of
fitness cases.

5.3 Problem

5.3.1 Representation

The objective function may be arbitrarily chosen from the set of functions with the
determined properties (cf. 5.2.4, p.109). It shall be the first empirical function

f:R*—=R; f(m,v,q,a)=sin(m)-cos(v) - L + tan(a).
Vet
As the problem is a symbolic regression, a search algorithm is to determine a sym-
bolic representation of a function that approximates f. Since complete knowledge
is given, the component functions of the empirical function are known to a run of
the projected search algorithm.

5.3.2 Closure of a run

During a GP run, a component function might take an evolved argument value for
that it is not defined. As some component functions of the first empirical function
are not defined for each real-valued number, an undesirable behavior of the projected
search algorithm may follow. This situation illustrates that, given a grammar G,
a sentence s € L(G) does not necessarily have semantics. Then, the language is
“open”, i.e., s is open to interpretation. Likewise, we call s an open sentence, else
a closed sentence, and defining the semantics of s shall be called closing 5.° For a
GP run r, its property that it produces closed sentences only is called r’s closure.
In order to support the closure of a run of the projected search algorithm, we use
the concept of a protected function as it is standard in GP.

5This decision does not render coming empirical results invalid in the context of a dynamic
problem: a dynamic problem can be approximated by a sequence of static problems.

6For the infix example, the symbol sequence 1/0 is a sentence while the value of the represented
mathematical expression is undefined. We close the open sentence by defining that it shall represent
the largest positive integer value that is representable in the computing environment.

110 5 First empirical problem

5.3.3 Closure by protected functions

Division

For protection against division by zero, we define the division function D(x) that re-
turns the reciprocal value of its non-zero argument. If = 0, D(x) := 1 while a more
appropriate value would be the largest or smallest value representable in the com-
puting environment. The use of such a value, however, is likely to provoke overflow
or, respectively, underflow errors during subsequent computation. This situation,
in turn, would necessitate the introduction of further protected functions, e.g., a
protected multiplication. This again is undesirable as it would violate the principle
of minimalism because protection handling consumes computing resources.”

A protected function introduces an external bias to a search algorithm.® For
practical search algorithms, it often cannot be decided theoretically whether an
external bias is detrimental or beneficial. This is since, often, the future algorithmic
behavior eludes theoretical prediction.’

Root, exponential function

We define a protected square root function sqrt (x). It returns the square root of the
absolute value of its argument.!©

Furthermore, we define an overflow-protected exponential function exp(x) that re-
turns e® unless the value of x causes an overflow, in which case the function returns
1.

In extended summary, protected functions have been determined for the first em-
pirical problem. This implies that a produced phenotype is closed, so that a run of
the projected search algorithm has closure.

5.3.4 Alphabets
Target alphabet

The empirical problem comes with complete knowledge. Due to the minimalism
principle, the target alphabet (2 equals the set of symbols that represent all functions
and parameters that are components of the empirical function:

Q = {+, *,D, sin, cos, tan, sqrt, exp, (,), m, v, q,a}

"This argument also justifies the use of alternative small values besides 1.

8This type is opposed to an internal bias that results from evolution alone, and that represents
discovered problem knowledge.

9The user may try resolving the conflict between the introduction of a potentially detrimental
bias and the necessity of a protected function by designing a self-adaptive protected function. This
approach, however, results in the conflict of recursion. The situation illustrates a general task for
the user of a current practical search algorithm: making an educated guess on the introduction of
a bias.

1075 case of a negative argument value, no imaginary number is produced which would contradict
the definition of the empirical function.

5.3 Problem 111

For instance, over €2, the symbol sequence that is structurally identical to the defi-
nition of the first empirical function is

sin(m) * cos(v) * D(sqrt(exp(q))) + tan(a)
that we call the phenotypic representation of the function.

The more frequently o € €2 is contained in an acceptable solution s, the more
problem-relevant o shall be called. o is problem-irrelevant if and only if it is not
contained in s. (5.4)

The decision on a target alphabet is critical for the performance of a GP algorithm.
The size of the solution space of a problem depends on the size of the alphabet
(cf. 3.24, p.63). Thus, if the alphabet contains problem-irrelevant symbols, the
solution space is unnecessarily large, which is detrimental. It is therefore desirable
to determine a small target alphabet as a parameter of a run. However, if the
alphabet does not contain all problem-relevant symbols, an acceptable solution may
not be located, i.e., the respective run lacks sufficiency (Koza 1992). Thus, 2 must
be as small as possible and as large as necessary for sufficiency. We call such € an
ideal target alphabet. Having complete problem knowledge is sufficient for designing
an ideal alphabet. Therefore, for an emergent problem, it is often unknown. Thus,
the identification of an ideal alphabet by a self-adaptive GP run shall be investigated
later (cf. 5.3, p.108). (5.5)

In summary, we have determined a target alphabet for the first empirical problem.
Thus, next, an appropriate source alphabet A with |A| > |Q] (cf. 4.21, p.80) can be
defined that is required by the developmental search algorithm. (5.6)

Source alphabet

Due to 5.6, |A| > 14 must hold. Following the minimalism principle, the smallest n
with 2" > 14 shall be the size of the source alphabet. n = 4 results. B* follows as
the source alphabet for the first empirical problem:

A = {0000, 0001, 0010, 0011, .., 1110, 1111}.

Regarding A, a genetic code can be determined (cf. 4.4.1, p.92) as parameter for
the developmental search algorithm.

5.3.5 Genetic code

Explicit surjective definition

By definition, a genetic code is a component-value relation cvr, of a full GP algo-
rithm a, i.e., a mapping from the source into the target alphabet. We explicitly
give a genetic code of the first developmental search algorithm in table 5.1, p.112.
Following from 4.37, p.85, cvr, has been designed such that img(cvr,) = € holds,
i.e., cur, is surjective, which contributes to the desirable surjectivity of the genotype-
phenotype mapping.

112 5 First empirical problem
Table 5.1: Genetic code of first developmental search algorithm.
0000 + | 0001 * 0010 * 0011 D
0100 m | 0101 v 0110 g 0111 a
1000 (1001) 1010 sin | 1011 cos
1100 tan | 1101 sqrt | 1110 exp | 1111)
Redundancy

Recall that the redundancy of a genetic code may be beneficial since it supports
genetic diversity. The respective discussion has solely focused on the relationship of
i) the redundancy of a genetic code, and
ii) the genetic diversity of a population.

Next, we discuss the relationship of
i) this redundancy, and
ii) phenotypical structure.

Given complete problem knowledge, the structure of the first empirical function
is known. We know that, as a function component, multiplication occurs more
often than any other binary operator in the target alphabet. Thus, the presented
genetic code has been designed for redundancy of the multiplication operator: two
different codons represent *. This situation increases the probability of producing a
phenotype that is structurally close to the empirical function. (5.7)

This is beneficial because the structural identity of a phenotype with the empiri-
cal function is sufficient for the phenotype to be perfect. The described situation
illustrates that the redundancy of a genetic code influences the performance of the

developmental search algorithm, which we follow next. (5.8)

Function redundancy

The redundancy of a function has been defined in a qualitative sense via its injec-
tivity. Let f : A — B with finite non-empty A and non-empty B be given. f shall
be said to have quantitative redundancy r on b € B with

redy(b) = |f~(b)[|A]™".

Z reds(b) =1

follows. Thus, the quantitative redundancy on b is a measure for the fraction of
domain elements that f maps onto b. Put vividly, the more domain elements are
mapped onto b, the higher is the redundancy on b. (5.9)

5.3 Problem 113

If and only if f maps no element onto b, red;(b) = 0. If exactly one a € A is mapped
onto b, red;(b) = |A|7*. If A is mapped onto b, red;(b) = 1. (5.10)

If f is surjective, there is no b € B with reds(b) = 0. If f is injective, reds(b) is
either |A|™! or 0. Thus, if f is bijective, red(b) = |A|~! follows for all b € B.

Next, we employ our concept of the quantitative redundancy of a mathematical func-
tion for discussing the relationship between a genetic code cur, and the performance
of a developmental search algorithm a.

Code redundancy and performance

Let ¢ = cvr,. The higher the quantitative redundancy r = red.(0) is on o €), the
higher is the number of codons encoding 0. We call r the code redundancy of ¢ on o.
The higher r is, the higher is

i) the probability that a final transcript contains o in n positions

ii) this n.
r strongly influences the probability from i), but it does not solely determine it. For
example: let r = 0 for a given o € Q. Then, no codon encodes o (cf. text unit 5.10), so
that o is not contained in a primary transcript. However, the employed repairing mode
may introduce o into the final transcript. For another example: let r = 1. Then, all
codons encode o, so that o is contained in a primary transcript. However, the employed
repairing mode — e.g., deleting repairing — may reduce the number of instances of o in
the final transcript.

If and only if a code has a positive redundancy on a problem-relevant target symbol,
it shall be called a beneficial genetic code.

Let a code ¢ be given that maps a source alphabet A. We then call |A|~! the neutral
redundancy of c¢. If and only if ¢ has its neutral redundancy on a target symbol o,
then c shall be called neutral on 0. A target symbol with neutral redundancy under ¢
is, regarding the number of its instances in all possible primary transcripts, neither
over- nor under-represented. If and only if ¢ is neutral on each o € img(c), i.e., if
and only if ¢ is injective, then we call ¢ a neutral genetic code. Put vividly, ¢ does
not favor or neglect any target symbol in its image.

The more the redundancy of a code ¢ on o € € mirrors o’s problem-relevance
(s. def.), the likelier a resulting phenotype is structurally close to an acceptable
solution. This situation is a beneficial bias (cf. 5.7, p.112). We then call ¢ a mirroring
genetic code. Thus, the more frequently a target symbol occurs in an acceptable
solution, the more redundant is a mirroring code on this symbol. Especially, given
an acceptable solution, a corresponding ideal mirroring code is neutral on those
target symbols which are neither rarely nor frequently contained in the solution. The
code has a positive redundancy on exactly those symbols whose instances compose
the solution. Thus, the redundancy on all other symbols is zero. In particular,
in the pathological case that the solution s contains exactly one symbol o—in |s]
instances—, the code has redundancy 1 on o.

114 5 First empirical problem

Eventually, if a code is mirroring, it is beneficial, while a beneficial code is not
necessarily mirroring.

In a vivid conclusion, a given code represents a concentration of ingredients in the
boiling developing population. This concentration cannot be designed or changed
for a common search algorithm because it has no genotype-phenotype mapping in
the first place. Besides the number of instances of a target symbol in a phenotype,
their positions decide on the phenotypic quality, too. Thus, a mirroring code is not
sufficient for producing an acceptable phenotype. The distribution of the symbols
onto beneficial positions must follow from the dynamics of the developmental search
algorithm.!!

For an emergent problem, one or more beneficial redundancies are usually unknown.
Their identification by a GP run is desirable, and we will investigate this issue later
(cf. 5.3, p.108). Identifying redundancies represents identifying a relevant target
alphabet. This is because a positive redundancy on a symbol s from a large set S of
potential target symbols turns s into a target symbol, i.e., there is at least one codon
encoding s. Thus, identifying beneficial redundancies on symbols from S supports
designing an ideal target alphabet, approaching the conflict discussed at 5.5, p.111.

In summary, we have determined that a genetic code should be mirroring. (5.11)

An unknown beneficial code and target alphabet should be identified by a GP run.
(5.12)

Next, the redundancies resulting from the presented genetic code for the first em-
pirical problem shall be discussed.

Empirical-genetic-code redundancy

Since |A| = 16, a redundancy value is a multiple of 167!, the code’s neutral re-
dundancy. For each target symbol, except ‘*’ and ‘)’, its redundancy r is neutral
because it is encoded by exactly one codon. ‘*’ and ‘)’ are encoded by two codons
each, resulting in 7 = 2-16~! each. Thus, the redundancy on ‘*’ is twice the neutral
redundancy, and the reason for this situation has been discussed at 5.7, p.112. The
reason for the high redundancy on ‘)’ follows. Seven of the fourteen target symbols,
namely
D, (, sin, cos, tan, sqrt, exp,

require a following-up ‘)’ in order to close an open expression. This problem-
unrelated property of the phenotypic representation yields a search bias toward
nested phenotypes like

D(m + sin(v + sqrt(a*..))))))))).

' This situation reminds us of producing a chemical compound. Redundancies on symbols
correspond to concentrations of ingredients, and symbol positions correspond to a critical sequence
of adding ingredients to a reactor. This observation indicates combining the fields of Genetic
Programming and Artificial Chemistries. For an introduction on the latter subject, see (Dittrich
2000).

5.3 Problem 115

The ‘)’-tail results from the phenotypic size limit that forces a determined repairing
mode to finish the open expression (cf. 4.5.2, p.96). Therefore, phenotypes similar
to the above structure result from this search bias (cf. 4.42, p.88). Often, the result-
ing lack of structural diversity is detrimental, unless, by coincidence, the produced
structures are similar to an acceptable solution. For the first empirical problem,
a perfect solution, e.g., the empirical function, is known. We conclude that i) the
produced phenotypes are not similar to a perfect solution and ii) therefore, the de-
scribed bias is detrimental. Thus, we design the above-neutral redundancy on ‘)’
which raises a counter-bias that supports the production of less nested phenotypes
like
D(m) + sin(v 4 sqrt(a)) + .. * q.

The described situation is an instance of a generic conflict in cybernetics. A design
decision implies biased system behavior. If the bias is detrimental to a designer’s
objective and if the designer can predict the bias, he or she may design a counter-
bias. This bias, however, may be detrimental itself, and so forth. The situation
is an instance of the conflict of recursion. Often—e.g., for an environment with
unknown dynamics—a detrimental bias of the system behavior is unpredictable.
This is a fundamental reason why autopoietic system behavior is necessary, and
why an “autopoiesis-giving” subsystem cannot be designed a priori and attached to
a non-autopoietic system.!?

In conclusion, problem knowledge can be represented by a genetic code, which may
provoke an instance of the conflict of recursion, so that a self-adaptive behavior of
a developmental GP run is desirable.

In extended summary, a beneficial genetic code has been determined for the first
empirical problem. (5.13)

Determining further parameters of the projected search algorithm continues.

5.3.6 Developmental representation
Genotype size

The size of the phenotypic representation of the first empirical function equals 25.
We decide that the genotype size of the empirical developmental search algorithm
shall equal this size, that is, a genotype consists of 25 codons. The reason is that,
only in pathological cases, the size of a phenotype is very different from the size
of its genotype. For instance, a much longer phenotype implies that the develop-
mental mechanism contains problem-specific information that the genotype should
represent. Next, the determined genotype size calls for a discussion of the resulting
search space.

12Rather, an autopoietic system solely creates and maintains itself on the fly when facing an
unpredicted situation. Its “service” or “goal-oriented behavior” are merely by-products, or side-
effects, while its autopoiesis is its essence that makes it perform “well” in some present situation.

116 5 First empirical problem

Search space and problem classification

The empirical problem is not a real-world problem because an acceptable solution
is known (cf. 2.5, p.33). However, the solution is unknown to instances of the
projected search algorithm. In order to complete classifying the empirical problem
from the perspective of the developmental instance, we must compute the size of the
solution space. The search space of the empirical developmental search algorithm
shall also be called the developmental search space.

For the present work, the magnitude’s order of space sizes is of interest. We
use the Emn notation that stands for x10™. There are sixteen different codons in
the source alphabet A, and the genotype size g equals 25. Thus, the developmental
search space contains

|AY9] ~ 1.3E30

genotypes (cf. 4.15, p.78). This space represents the solution space of the problem
because the genotype-phenotype mapping is a semantic mapping (cf. 3.5, p.55).

In order to perform a conservative problem classification, let a fast implemen-
tation of a search algorithm a be given for the problem: let a locate and evaluate
a solution in, e.g., 1E—12 seconds.!® Let a generous run-time period of one year
be given, which in itself is already impractical for the majority of problems, any-
way. During this period, a run of a locates and evaluates at most about 3.2E19
search points, which is an insignificant fraction of the search space. Thus, from the
perspective of the developmental search algorithm, the first empirical problem is a
real-world problem.

In conclusion, regarding the technical objective, the problem is valid for empirical
research. (5.14)

As we have determined a genotype representation of d_,, the empirical developmental
search algorithm, its search operators can be discussed next (cf. 2.4.1, p.41).

5.3.7 Search operators

Following from text units 4.3, p.69, and 4.1.5, p.70, point mutation is a search
operator of d_,. (5.15)

The objective of the empirical research is the observation the behavior of the pro-
jected search algorithm (cf. 4.56, p.105). The behavior strongly depends on the
properties of the employed search operators. Thus, observing the influence of dif-

ferent operators is of interest. To that end, we design such operators next.
(5.16)

From an atomic perspective, single-bit inversion has been decided on as an operator of
the empirical developmental search algorithm (cf. 4.1.4, p.69). However, a genotype

13This is especially unrealistic for a GP algorithm since quality evaluation is most time-
consuming with these Evolutionary Algorithms. A general, longer argument, making use of the
Bremermann limit instead of a concrete time interval, as chosen here, would not yield another
classification, so we omit it here.

5.3 Problem 117

also represents a codon sequence, so that, from a codon perspective, a codon in a
genotype is a “point”.!* Thus, we require point mutators for both perspectives.

Coupled mutator

The coupled mutation operator, applied to a genotype g = ¢y..c,, random-determines
¢; = by..by, and then inverts random-determined bits b;, by, j # k. Thus, this opera-
tor is a point mutator from the codon perspective, and we call it the coupled mutator.
The reason for the chosen design is that a single-bit inversion is equivalent to the
point mutator for the atomic perspective. In order to design different operators (cf.
5.16, p.116) and following from the minimalism principle, exactly two bits must be
inverted.!?

The coupled mutator effects the smallest non-atomic modification of a codon.
For a codon with size n, there are n — 1 non-atomic mutators. For instance, for a
codon with size three, there is the coupled mutator as well as a mutator that inverts
all three bits of the codon. All n — 1 mutators qualify as point mutators for the
codon perspective. Next, we design an operator that emulates these mutators for
the first empirical problem.

Unrestricted mutator

The unrestricted mutator u, applied to a genotype g = cg..c,, random-picks

¢; = bg..bs. Four alternative cases occur, and we set the probability p for each case.
i) p=0.5: u random-picks exactly one bit.

ii) p = 0.35: u random-picks exactly two different bits.

iii) p = 0.1: u random-picks exactly three different bits.

iv) p = 0.05: w picks all four bits.

u then inverts the picked bit(s).

The probability distribution is sound as the sum over the probabilities equals one.!®

Following from the distribution, the unrestricted mutator emulates the point muta-
tion for the atomic perspective because it can perform a single-bit inversion. The
mutator also emulates all point mutators for the the codon perspective regarding
the first empirical problem.

e In extended summary, we have determined search operators of the empirical
developmental search algorithm. Properties of a search operator co-determine
the dimensionality of a genotype representation, which shall be discussed next.

14With the pathological exception of a single-bit codon, these two perspectives are different.

15The coupled mutator assumes a codon size of two or more, which is met in the context of the
first empirical problem. This mutator is an algorithmic metaphor of the biological phenomenon
that some mutations tend to change nucleic acids in a coupled manner.

16The distribution reflects the principle of variation that has been identified in the context of
natural evolution: a small hereditary genetic change occurs more often than a big change. This
is because a big change is more likely to be disruptive — especially, lethal — to offspring, so that
the modified genome is unlikely to be reproduced.

118 5 First empirical problem

Figure 5.1: An example of a synthetic fitness landscape over a planar solution space
generated by dimensions x and w. Quality function t maps the space into fitness val-
ues, generating the landscape. Profiles for real-world problems usually do not offer nice
properties such as continuity.

5.3.8 Dimensionality of a representation

For a genotype representation and a respective point mutator, a mutable genotype
component shall be called a dimension of the representation.!” For a moving popu-
lation (cf. 2.4.1, p.41), a dimension corresponds to a direction of a move. (5.17)

The number of dimensions is called the dimensionality of the representation. For
instance, for a 3-bit representation and a single-bit point mutator, each bit is a di-
mension, which gives a dimensionality of three. (Keller and Banzhaf 1996) indicates
a relationship between the performance of a search algorithm and the dimensionality
of the employed representation. We detail and extend this issue next.

Fitness landscape and performance

A semantic mapping s maps the search space of a search algorithm a onto the
solution space. f o s(sea,), the concatenation of a’s fitness function f after s, yields
a so-called fitness landscape (see Figure 5.1). Thus, there is a bijection between the
solution space and the points of the resulting fitness landscape that may be likened

1"Thus, a dimension represents a behavioral freedom degree of an underlying search algorithm.

5.3 Problem 119

to a 3-D profile of a hilly or mountainous real landscape. Following this notion, a
higher point in the landscape corresponds to a higher genotypic fitness, representing
a higher solution quality. Especially, a peak in the landscape represents a local
optimum. Accordingly, one speaks of an appropriate landscape part between peaks
as a valley.

For Genetic Programming, a solution space is discrete since an alphabet is dis-
crete (cf. 3.24, p.63). A fitness landscape is discrete because it results from applying
a fitness function to the solution space. A landscape is often very rugged, as several
contributions emphasize, e.g., (Albuquerque, Chopard, Mazza, and Tomassini 2000;
Kinnear, Jr. 1994). This is because a small difference d between two genotypes
may result in a large difference between the respective phenotypic behavior and fit-
ness values. As a small d corresponds to a small move in the search space, a large
ruggedness results.

A landscape may be visualized in a more abstract manner, e.g., as a 3-D histogram.
A column of the histogram represents a genotype, and its height illustrates the
respective fitness. (5.18)

Mostly, search spaces of emergent problems are high-dimensional. Thus, the visual-
ization results from an n-to-three-dimensional mapping with a loss of information.
In particular, a visualization may appear smooth while the landscape is rugged.
Therefore, while a visualization supports human problem understanding, it must be
interpreted regarding the problem’s actual dimensionality, especially, since a strongly
rugged landscape reflects many local optima, and their existence is detrimental to
performance. This is because an individual may become trapped on a relatively bad

peak (cf. 3.9, p.59), which supports premature convergence (cf. 3.10, p.59).
(5.19)

A population moving through a search space (cf. 2.4.1, p.41) gives the notion of
this population moving on the corresponding fitness landscape. A subpopulation is a
subset of the population of a run of a search algorithm. Depending on the underlying
selection algorithm and the neighborhood of a peak P, the following situation may
arise. A subpopulation & located on or close to P is unable to leave its vicinity by
walking (cf. 2.7, p.42). This is because P is circled by a valley, so that an individual
walking from P would probably not be selected for reproduction. Thus, the more
distant P is from another, potentially better, peak @), the more unlikely it becomes
that & locates @) by walking (cf. (Eigen 1992)). (5.20)

Alternatively, an individual from & may leave P by leaping (cf. 2.8, p.42). The
end point of a leap may have a quality roughly equal to or better than that of P,
the start point. In a beneficial case, the end point E equals @) or is close to @)
without a dividing valley between E and (). However, a leap — corresponding to a
macro-mutation — from P may be detrimental because it may miss a better point
close to P that might have been reached by walking. (5.21)

In summary, a rugged fitness landscape is detrimental to performance. This is par-
tially due to its potential for trapping a subpopulation in a local and unacceptable

120 5 First empirical problem

optimum. Walking and jumping—the only forms of search—in order to escape the
optimum may both be detrimental. Thus, next, we consider a beneficial transfor-
mation of a landscape.

Distance measure

The notion of distance is at the root of the current discussion (cf. 5.20, p.119).
We use the given definition (cf. 2.4.1, p.42) for defining “distance” on a fitness
landscape. As a point mutation results in the smallest structure variation, the
distance between two solutions p, ¢ shall be the minimal number of point mutations
required to transform p into q. This notion is a special case of the edit distance
of structures'®s and ¢ that is defined as the minimal number of point mutations
required to transform s into ¢.

For two binary sequences of identical size, the Hamming distance (s. def.) is an
edit distance. For another example, let the symbol sequences a+b and a*c be given.
The transformation of a symbol at position ¢ into an arbitrary different symbol at
position ¢ is a point mutator that we call single-symbol converter. Then, the edit
distance of the given sequences equals two.

Let a distance measure d be given for A, a non-empty set of structures. Then,
max({d(a,b)|a,b € A})

shall be called the diameter of A, and we denote it by @ 4. The diameter of a space
can be used for assessing whether a given distance d(a,b) is “small” or “big”, i.e.,
whether a and b are “close” or “far apart”. To that end,

d(a,b)0 ;!

is considered, and, thus, the larger the resulting value is, the bigger is the distance,
while 0 is the minimum and 1 is the maximum. We call this value the relative
distance of a and b. It is undefined for (), = 0, which is equivalent to A containing
exactly one element.

In summary, the edit distance, a formal distance measure for structures, has been
identified. Thus, the intended transformation of a landscape can be considered next.

Fitness-landscape transformation

Two different peaks A, B may be adjacent, i.e., d(A, B) = 1. Put differently, there
is a connecting trail (cf. 2.4.1, p.42) whose start point is, e.g., A and whose end
point is B. Thus, this trail is shortest possible, which is almost ideal since it implies
that there is no separating valley. Thus, exactly one appropriate point mutation
regarding A locates B. A beneficial transformation of a fitness landscape follows:

18This distance measure is discussed and applied in (Keller and Banzhaf 1994) in order to
explicitly maintain genetic diversity.

5.3 Problem 121

e for each pair of non-adjacent peaks, a shortest connecting trail is introduced,
i.e., the peaks are made adjacent. We call this transformation the complete
connecting of the landscape.

Topologically, the connecting trail is a saddle between the peaks. Therefore, the
transformation turns a peak into a saddle point that we call a transformed peak.
Thus, all local optima become saddle points, and a sole global optimum, if existing,
becomes the only remaining local optimum. Especially, in the transformed land-
scape, a subpopulation cannot get trapped prematurely in a non-global optimum,
which is highly beneficial.

Complete connecting implies that, from each point p in the landscape, there is a
short monotonously rising trail leading to a global optimum, as follows:

i) If p is a global optimum, the trail size is zero; else

ii) if p is a transformed peak, p is adjacent to a global optimum; else

iii) p is not a transformed peak:

there is a monotonously rising trail to the closest transformed peak ¢

because ¢ was a local optimum. From ¢, ii) applies.

On a completely connected landscape, a hill climber

e that knows!?

take

among all rising trails starting at its position the best one to

locates a perfect individual with fewest steps, exhibiting best performance. We call
this search procedure a directed hill climber. The underlying complete connecting is
almost ideal and suggests an ideal transformation:

for each point—mnot merely for each local optimum—that is not a global optimum,
a shortest possible connecting trail to a global optimum is introduced. We call
this transformation absolute connecting. On the resulting landscape, a directed hill
climber locates a perfect individual in, at most, one step, exhibiting overall best
possible performance. (5.22)

This extreme space restructuring emphasizes that some beneficial transformations,
in their pure form, are infeasible for real-world problems due to lack of problem
knowledge. We therefore focus on complete connecting as a—still unreachable—
role model.

Opposed to absolute connecting, complete connecting results in a landscape that
is more amenable to visualization. Compared to the original landscape, the com-
pletely connected landscape is much smoother because valleys between local optima
have been eliminated.?® Next, we consider the practicality of beneficial transforma-
tions.

19The knowledge may come from an oracle as known in theoretical informatics.
200ne may visualize complete connecting as covering the original landscape with a think blanket.
A fold of the blanket connecting two peaks represents a saddle.

122 5 First empirical problem

Increasing dimensionality

Complete connecting links two arbitrary peaks of a fitness landscape by a shortest
trail. For a real-world problem, an acceptable local optimum, corresponding to a
peak, is unknown. Therefore, complete connecting is infeasible, so that we discuss
an approximation. (5.23)

First, let the search space be a subset of the solution space, i.e., we consider a

common search algorithm (cf. 3.4, p.54). (5.24)

The core operation of complete connecting is linking two non-adjacent peaks by a
two-point trail. Thus, the trail is no subset of the search space. For instance,
consider a search algorithm a with a fitness function f. Let there be a symbol set
{+,—,a,b}, a language L = {+a, —a,+b, —b}, and the single-symbol converter as
a point mutator. The resulting two-dimensional search space is sea, = L. We call
this scenario the sign example. Let the points +a and —b be peaks with

f(=b) > f(+a). (5.25)
The peaks are not adjacent. A shortest modification sequence equals
[+a] = [—a] — [-b],
and the only other such sequence is
[+a] — [+b] — [-D].
Thus, there exists no two-point trail in sea,.

In general, for connecting two non-adjacent peaks by a two-point trail, a transfor-
mation of the search space must reduce the peak distance to one. As the distance
measure depends on the encoding e of the search space, we discuss changing e into
an encoding g. For a set S, let the representation of ¢ € S under an encoding c
be denoted by 2.. Let there be non-adjacent representations p., q. of peaks p and
q. There are to be adjacent representations py,g,. Thus, a point mutation is to be
able to change p, to g,. To that end, we add a component to a point representation
under e such that mutation can change the component value to a value that results
in the representation of g,. Thus, this procedure creates g by adding one dimension
to e, which is the desired change of e (cf. 5.17, p.118). (5.26)

In summary, we have determined a principle of a beneficial fitness-landscape trans-
formation: increasing the dimensionality of the encoding of the search space S. This
embeds S into S, called the hyperspace of S that, in turn, is known as a subspace
of S’. One may visualize the effect of embedding as bending the original landscape
within its hyperspace. Ideally, the bending results in a transformed landscape in that
points of interests, e.g., peaks, are closer. Next, we apply the identified principle.

5.3 Problem 123

Increasing the dimensionality of the search-space encoding

For the sign example, increasing the dimensionality of the search-space encoding
may mean adding one or more symbol positions to a phenotype representation (cf.
5.26, p.122). However, this option is not generally available for a common Genetic-
Programming algorithm, due to the hard syntactic constraint (cf. 3.5.2, p.63).2
Thus, one wants to increase the dimensionality of the encoding e of the search space
sea, while respecting the syntactic constraint. To that end, one may introduce an
encoding

f:f#Fe

of sea,, which is a subset of the solution space sol, (cf. 5.24, p.122) which is encoded
by e. Therefore, under f, sea, is not a subset of sol,. It follows that, for s € seaq,,
a function m must map s; onto s. that can be executed for quality evolution. Note

f#e=m#1id.

e Thus, the described situation is equivalent to a genotype being mapped onto
its phenotype, and the employed search algorithm is developmental. We can
therefore use results on genotype-phenotype mapping (cf. 3.3, p.54). Espe-
cially, the required new search-space encoding f shall be binary (cf. 4.1.2,
p.68) and have a higher dimensionality than the encoding e of the solution
space. f represents the search space of an underlying developmental search
algorithm.

In summary, we have determined a principle of increasing the search-space di-
mensionality in compliance with the syntactic constraint: one supplies a higher-
dimensional encoding of the solution space. The according representation of the
solution space is a developmental search space. Thus, a developmental search algo-

rithm implies the potential of a beneficial landscape transformation. (5.27)

e This is a primary reason for using artificial ontogeny as component of a search
algorithm. In particular, the mentioned principle detaches the landscape from
the solution space whose fitness topology is frozen since the semantics of the
employed target language is static. Instead, the principle attaches the land-
scape to a developmental search space which is only indirectly linked to the
target language by means of a semantic mapping. Thus, the semantics of a
point in this space may vary, which implies that the landscape may change.

Example

We use the sign example. The dimensionality of the given solution-space encoding
equals two, and a binary search-space encoding of higher dimensionality is wanted.
The target alphabet contains four symbols. Thus, the source alphabet must contain,
at least, four codons, so that, e.g., the genetic code in table 5.2, p.124, may be given.

(5.28)

124 5 First empirical problem

Table 5.2: Genetic code of sign example.

00 | +
01| a
10 | -
11| b

Following 5.3.6, p.115, the symbolic genotype size shall equal two. Thus, the

atomic genotype size equals four because each codon consists of exactly two bits.
Therefore, the search-space dimensionality?? equals four since single-bit inversion is
the point mutator of a binary representation. It follows, as intended, that the
search-space dimensionality is higher than the solution-space dimensionality.

The search space represents the solution space through a genotype-phenotype
mapping. In order to fully determine such a mapping for the sign example, we must
give a repairing mode (cf. 4.2.12, p.82). Deleting repairing shall be used, following
the recommendation at 4.43, p.89. Replacing finalizing shall be used, following the
recommendation at 4.5.2, p.98. Appending finalizing shall be used in situations
where replacing finalizing is not applicable.? The determined scenario shall be
called the four-dimensional sign example.

Consider the genotype 1111 that gives the primary transcript bb. Deleting repairing
yields the transformation sequence

bb — b — ¢,

yielding € as an irreducible transcript which requires finalizing. As replacing final-
izing is not applicable since there is no symbol to be replaced, appending finalizing
continues the transformation sequence and delivers

€ — + — +a.

Thus, 1111 represents the phenotype +a, i.e., one of the given peaks. Let a point
mutator change the considered genotype 1111 into 1011 that gets transcribed into
the primary transcript, phenotype and peak —b. Thus, the peaks are adjacent in the
search space while they are not in the solution space. This illustrates the effectiveness
of increasing the search-space dimensionality (cf. 5.3.8, p.123). A discussion of its
feasibility (cf. 5.23, p.122) follows.

21For instance, for the sign example, appending a position results in potential solutions of size
three, e.g., “—ba”. As such a solution is infeasible, it cannot be evaluated.

22This expression shall be equivalent to the exact but cumbersome term “dimensionality of the
search-space encoding.”

23This is because the use of deleting finalizing is not an option: the symbolic genotype size is
two and the size of a sentence of the target language is also two. Thus, the size of the primary
transcript is two and the size of the final transcript, i.e., a sentence, must also be two, so that
deleting a trailing symbol is no option.

5.3 Problem 125

5.3.9 Feasibility of increasing dimensionality

The sign example is simple, open to manually conducting experiments and thought
experiments. Especially, one can enumerate and visualize the search space and
solution space.

Binary graph and search space

The four-dimensional binary search space B* is amenable to visualization. A four-
dimensional cube, i.e., a tesseract, can be visualized by a three-dimensional pro-
jection: a cube within a cube, the cubes aligned, and corresponding cube corners
connected by edges.

The number of corners of an n-dimensional cube, 0 < n, equals 2". The 2%
corners of a tesseract correspond to the 16 elements of B*. We give a corner-labeling
algorithm ¢ that defines a bijection between the corners of an n-dimensional cube
and the search space B”, as follows for the example of a tesseract.

c labels an arbitrary origin corner with 0000. This corner has edges connecting it to other unlabeled
corners. ¢ labels these corners, in arbitrary order, with unused labels

b € {z € BYhd(z,0000) = 1} = {1000, 0100, 0010, 0001}.

This labeling step is iterated recursively for each newly labeled corner as an origin corner until all
cube corners are labeled.

¢ implies that two corners that are connected by an edge have binary labels
whose Hamming distance equals one. Thus, a point mutation of a corner label [
to a label m corresponds to a walk from a space element to an adjacent element.
Therefore, the search space B" can be modeled as a graph whose nodes represent the
corners of an n-dimensional cube and whose edges represent the cube edges. We call
this graph an n-dimensional binary graph. The four-dimensional binary graph can be
visualized as a wire-frame model of the mentioned three-dimensional projection of
a tesseract.

e In summary, an n-dimensional binary graph models the search space B". Next,
we use this model for discussing the relationship of i) dimensionality and ii)
genetic diversity and neutral networks (cf. text units 3.11, p.59, 4.45, p.90,
3.8, p.58, 3.13, p.59).

Redundancy, diversity, and neutrality in search space

The four-dimensional sign example results in the following list of genotypes, pri-
mary transcripts, and phenotypes. Thus, the list represents an explicit genotype-

phenotype mapping. (5.29)

126 5 First empirical problem

0000 ++ +a 0001 +a +a 0010 +- +b 0011 +b +b
0100 at +a 0101 aa +a 0110 a- -a 0111 ab +a
1000 -+ -a 1001 -a -a 1010 -- -b 1011 -b -b
1100 b+ +a 1101 ba +a 1110 b- -a 1111 bb +a

While the solution space and target language contains four elements, namely,
sol, = {+a, —a, +b, —b},
|seay| = |B*| = 16

holds for the search space.

In general, a difference in space sizes depends on the dimensionality of sea,: the
size of a structurally unconstrained space depends exponentially on its dimension-
ality (cf. text units 4.1.2, p.68, 3.24, p.63). When |sea,| > |sol,|, the genotype-
phenotype mapping must be redundant which is beneficial (cf. 4.3.3, p.91). In
the four-dimensional sign example, the mapping is highly redundant on +a, for in-
stance. This redundancy solely results from the employed repairing type, since the
given genetic code (cf. 5.28, p.123) is non-redundant (cf. 4.46, p.90). (5.30)

Even if a search space is not larger than the accompanying solution space, a
genotype-phenotype mapping can still be redundant on a subspace of the solution
space. For instance, for another variant of the sign example, the above sol, could
be a subset of a larger target language. This is an argument for the evolution of
genetic codes, because it necessitates the evolution of redundancies (cf. 5.12, p.114)

regarding different sublanguages, as follows. (5.31)

A population, moving through search space, represents, by use of a genotype-
phenotype mapping m, a dynamic subset of the solution space. Thus, in order to stay
beneficially redundant, m must be dynamic, too. As a genetic code co-determines
m, the co-evolution of codes and genotypes can imply such an adaptation of m.2*
A corresponding developmental search algorithm would experiment with different
landscapes, molding them into beneficial shapes. We shall provoke and investigate
this situation later.

The sign example also illustrates the beneficial phenomenon of percolating real neu-
tral networks (cf. 3.18, p.60) and its connection to dimensionality and diversity. To
that end, we model a neutral network of a phenotype p as a subgraph of the binary
graph B™:

S={reB"xem™(p)},

i.e., the nodes of B"™ that represent p’s genotypes.

240One may imagine a population moving through search space and watching the solution space
through a collection of differently warped windows, or through a single warping window. The
window represents an adapting mapping, giving a changing fitness landscape (cf. 5.27, p.123).

5.3 Problem 127

We call S the binary neutral network of p. For instances of such networks, consider
the genotype-phenotype mapping m of the four-dimensional sign example (cf. 5.29,
p.125). For example, the binary neutral network of +a equals

N = {0000, 0001, 0100, 0101, 0111, 1100, 1101, 1111}.

N is an instance of a connected graph G, i.e., for nodes a,b of GG, there is a path
connecting a, b that is a subgraph of G. Thus, starting at a node of N, each other
node of N can be reached by a sequence of point mutations that do not leave
N. Especially, N is a cycle percolating through the search space, given in a short
notation by

0000, 0001,0101,0111,1111,1101, 1100, 0100, 0000.

When visualizing the search space as a tesseract, N is a closed sequence of cube
edges.

e In general, connectivity, as we call the property of being connected, of a bi-
nary neutral network always allows for finding a previously unreal node of the
network without the need for introducing a macro-mutation.

A network that contains more than one element represents genetic diversity. There
is a beneficial duality of such diversity (cf. text units 3.12, p.59, 3.15, p.60). On the
one hand, high genetic diversity fosters exploration of the search space sea,. On the
other hand, it is necessary for neutral networks percolating through sea,, and we
illustrate this second aspect. Let t be a trail in sea, that connects the genotypes g, h.
Let t be shorter than the shortest trail in sol, that connects the phenotypes py, pp.
Then, we call ¢ a tunnel. A mutation from a genotype in ¢ to another genotype in ¢
shall be called a tunnel effect.

For the sign example, the binary neutral network of peak —b is N = {1010, 1011}
(cf. +a’s network above). The genotypic distance

hd(1011_y, 11114,) = 1

is minimal. However, the respective minimal phenotypic distance equals two.?®

Thus, the trail ¢ = (1111,1011) is a tunnel, and a point mutation changing one
genotype in t into the other one is a tunnel effect. (5.32)

This is an extreme instance of text units 3.15, p.60, and 3.17, p.60: neutral networks
of phenotypes may percolate through search space such that a small mutation may
free a trapped subpopulation from premature convergence.

For the sign example, a beneficial point mutation from 1111,, to 1011_y
locates a better peak in sea,. In sol,, however, either i) a series of two beneficial
point mutations or ii) one equivalent macro-mutation would have to locate —b.

In sea,, the probability of the above beneficial point mutation equals 471. We
calculate the corresponding probability for sol, under the point-mutation series from
i). Thus, the structure to be changed is +a, the worse phenotype.

#Two is even the maximum of all phenotypic distances, because it is the diameter of sol,,.

128 5 First empirical problem

First, point mutation changes one of the two positions, e.g., position zero that
contains target symbol ‘+’, with probability 27!, Second, selecting the resulting
offspring —a for a mutation occurs with a probability we denote by pPser. pser < 1
holds for a population size greater than one because —a is no peak. Third, in —a,
point mutation changes the position that contains ‘a’ with probability 27!. Thus,
for sol,, mutation from +a to —b has probability

2_1 * Psel * 2_1 = 4_1psel

which is less than the corresponding probability for sea,. Therefore, locating the
better peak is more likely in sea,, so that the situation is more beneficial for a deve-
lopmental than a common search algorithm. Regarding the peaks, this is reflected
by their relative distance of 47! in sea, vs. 1 in sol,.?®

If the dimensionality of a search space is higher than that of the solution space, we
call the former high-dimensional. The four-dimensional sign example illustrates the
principle behind high-dimensional neutral networks: points of interest, e.g., a good
genotype g and a better genotype h, may be significantly closer than p, and p,. In
that case, a search algorithm may locate a trail from g to A with higher probability.
We call this beneficial principle the tunnel principle. It is most effective when the
situation described at 3.15, p.60, holds: then, short monotonously rising trails go
from a space point to a better one.

e Summarizing, the tunnel principle is an argument in favor of the use of a
developmental search algorithm. This is because, for a common search algo-
rithm, a genotype equals its phenotype (cf. 3.3, p.54), so that the principle is
inoperational.

The illustrated beneficial phenomena resulting from a high-dimensional search space
are independent from the four-dimensional sign example. Thus, they occur in large
high-dimensional search spaces and the associated large solution spaces of emergent
problems. It is there where they are most significant, due to the large diameters
of the spaces: phenotypes may have a large relative distance in the solution space
while their genotypes may have a tiny relative distance in the search space.?”

e In summary, a high-dimensional search space supports the redundancy of a
genotype-phenotype mapping. This redundancy is sufficient and necessary for a
neutral network which fosters genetic diversity and may implement the tunnel
principle that approximates beneficial landscape transformations. (5.33)

26In sea,, the peaks are closest possible, while, in sol,, they are located at opposite ends of the
space.

27In the extreme case, phenotypes may have a distance equal to the space diameter while their
genotypes have a Hamming distance of one. This translates into a relative distance of one and
virtually zero, respectively.

5.3 Problem 129

Redundancy of the genotype-phenotype mapping

A redundant genetic code, an appropriate repairing type, or their combination
may result in a redundant genotype-phenotype mapping (cf. 4.46, p.90). For the
four-dimensional sign example, redundancy solely results from the employed repair-
ing type, since the genetic code is non-redundant (cf. 5.30, p.126). In general,
redundancy-based beneficial phenomena (cf. 5.33, p.128) can be amplified by em-
ploying or evolving a redundant code (cf. 5.31, p.126).

e We focus on the evolution of codes, while the evolution of repairing types is
further work. (5.34)

Authors discuss high-dimensional phenomena for different applications of computer
science, e.g., (Gordon 1994), emphasizing positive implications. The involved prin-
ciples are medium-independent and therefore of interest to many fields, in particular
physics, chemistry, and biology. A lesson learned there is that beneficial results do
not come without an investment, e.g., energy, space, or time. Here, one must take
care for obtaining a beneficial redundant code for a high-dimensional search space,
as follows.

The more redundant a code is to be on a given target alphabet 2, the more
codons there must be for each s € (cf. 5.9, p.112). As |Q] is fixed, the size of
the code domain—the source alphabet A—must be increased. Thus, the codon size
¢ must be increased, since |A| = 2¢ holds. A greater codon size results in a greater
atomic genotype size, because a genotype is a sequence of a fixed number of codons.
This is equivalent to an increase of the dimensionality of the search space sea,.

For a space S, we denote its dimensionality by dim(S). The increase of dim(sea,,)
amplifies sea,’s property of being high-dimensional (cf. def.), which may be benefi-
cial. However, a larger genotype size consumes more memory, which is detrimental
but unavoidable. Also, an increase of dim(sea,) amplifies the space’s potentially
detrimental properties, as follows.

Adding a dimension is equivalent to adding a direction to sea,. Thus, on the
resulting landscape, a knowledgeable search algorithm can create a tunnel effect (cf.
5.22, p.121). However, as knowledge of an emergent problem is incomplete, adding
a dimension may decrease the probability of selecting a beneficial direction. As
another facet of this conflict, increasing dim(sea,) increases

|$€Cla| — 2dim(seaa)‘

The increase is beneficial or detrimental depending on the ratio r of the number of
acceptable to all genotypes in the enlarged sea,. We call r the acceptability ratio of
sea,. For a small problem p, computing r is feasible, since the fitness evaluation of
each genotype g € sea, is feasible. We also define the term for the solution space
s50l,,.

Increasing dim(sol,), i.e., increasing the maximal size of a phenotype, further in-
creases the large subset of unacceptable phenotypes. Due to combinatorial explo-
sion, this increase is exponential over dim(sol,) (cf. 3.25, p.64). A corresponding

130 5 First empirical problem

increase of computing resources as a counter-measure is infeasible. In the field of
optimization, this situation is well known as the curse of dimensionality.®

e Summarizing, one can state that increasing the dimensionality of the solu-
tion space is always detrimental once the maximal phenotype size allows for
representing an acceptable solution.

However, for a search space sea,, it depends on the employed genotype-phenotype
mapping whether increasing dim(sea,) is detrimental or a boon of dimensionality, as
follows. (5.35)

The redundancy of the used code is critical: i) positive redundancy on a problem-
relevant symbol s is beneficial, while ii) it is detrimental on a problem-irrelevant
s (cf. 5.4, p.111). This holds since i) supports the acceptability ratio, while ii)
weakens it. (5.36)

In the ideal case, a code ¢ has a positive redundancy on exactly all problem-relevant
symbols. We call such ¢ a beneficially redundant genetic code, and it is beneficial
(s. def.).?? The defined property is absolute in that a code does or does not have
it. However, an absolute notion might be incompatible with the philosophy of
Evolutionary Computation that is not based on crisp views. Thus, gradations of
beneficial redundancy of ¢ shall be permissible. Intuitively, ¢ is more or less benefi-
cially redundant depending on whether it maps the source alphabet more or less on
problem-relevant symbols. Therefore, ¢ may become more beneficially redundant as
follows. (5.37)

i) If ¢ has code redundancy r = red.(s) = 0 on a problem-relevant s € €, one
increases r, which introduces s to the underlying search process.

ii) If ¢ has redundancy r > 0 on a problem-irrelevant s, one decreases r, which
assigns a lesser importance to s during search. (5.38)

We implement i). A is a codon space with dim(A) = |a|,a € A, since the codon size
la| is identical over A. A genotype g € seaq, is a fixed-size sequence of n codons, so
that

dim(sea,) = n - dim(A).

Therefore, one can increase dim(sea,) by increasing dim(A). This enlarges A, due

to
|A| _ 2dim(A).

Thus, for a code ¢ and a problem-relevant s € €2,

c(s) C A

28For instance, a search algorithm that exhibits an acceptable performance for a given problem
size may not do so for a slightly larger instance of the same problem.

29The inversion does not always hold, since a beneficial code may also have a positive redundancy
on a problem-irrelevant symbol. Furthermore, a mirroring code is beneficially redundant, while
the inversion does not always hold.

5.3 Problem 131

may be larger with ¢ being more redundant on s, which especially supports the above
option i). In particular, with more codons at hand, finer redundancy gradations can
exist because || is fixed. Especially, the mirroring quality (s. def.) of a code can be
tuned.

For instance, given a surjective code that maps A = B? onto €, || = 4, the
only code-redundancy value occurring is 4~!. However, for A = B3, more values
occur, e.g., 1/2, 1/4, 1/8, when mapping

— four codons onto the first target symbol,

— two further codons on the second symbol, and

— one further codon each on the remaining two symbols.

e Summarizing, increasing search-space dimensionality may result in a genetic
code that is more beneficially redundant or even more mirroring. Such a code
results in an increased acceptability ratio, which may supply more beneficial
space directions to the next mutation event. In particular, the larger the code
redundancies are on all problem-relevant symbols, the higher is the acceptabil-
ity ratio, which is beneficial. For an extreme toy example, a code results in a

genotype-phenotype mapping whose image only contains a global optimum.
(5.39)

However, a symmetrical argument holds for the detrimental case that a code has
large redundancies on problem-irrelevant target symbols, due to incomplete prob-
lem knowledge. In conclusion, increasing search-space dimensionality may result in
beneficial or detrimental phenomena, depending on the code, which calls for code
evolution that could realize the potential of a high-dimensional search space of sup-
porting a beneficially redundant genotype-phenotype mapping. (5.40)

In extended summary, such a mapping may support—preferably connected—binary
neutral networks along which a population explores the landscape using tunnels.
The tunnel principle approximates ideal fitness-landscape transformations. Also,
neutral networks implicitly support genetic diversity. Thus, unlike a common search
algorithm, the developmental population can have diversity in search space and con-
vergence in solution space simultaneously.?® We have demonstrated such beneficial
developmental phenomena for the four-dimensional sign example, a synthetic quasi-
minimal problem. As their occurrence is independent from space sizes, they can
show in the large spaces of emergent problems. (5.41)

However, due to the curse of dimensionality, the critical increase of dim(sea,) may
also result in detrimental phenomena, depending on the employed genetic code.
Therefore, a developmental search algorithm should co-evolve genotypes and genetic
codes to the end of a beneficial fitness-landscape transformation. (5.42)

Eventually, a problem-relevant target symbol s is an atomic phenotypic building
block. A code that is redundant on s supports the proliferation of s-instances in

30This situation is no free lunch — especially, eating and keeping the cake — since one invests
an ontogenetic apparatus.

132 5 First empirical problem

a population. Thus, an appropriately adapted code together with point mutation
and a preserving repairing type (s. def.) could foster the combination of desirable
building blocks.

e In conclusion, we shall investigate code evolution later.

We have identified two performance-critical phenomena for a developmental search
algorithm: i) the acceptability ratio of the search space, and ii) the distribution of
acceptable and unacceptable points in a fitness landscape, determining its topology.
We discuss the interdependence of both issues next.

Genotype-phenotype mapping and developmental causality

The strong causality of a run of a search algorithm with fitness function f is the prop-
erty that a small change from a genotype g into h results in a small |f(g)— f(h)|. For
brevity, we shall call this property causality. One has argued that causality is advan-
tageous for the convergence properties of an Evolutionary Algorithm (Rechenberg
1994).

For a small area of a fitness landscape, strong causality is equivalent to a smooth
area. (5.43)

This holds because strong causality is equivalent to a small gradient ~ of the area,
with

v=1f(g) = f(h)|d(g, h)~".
Thus, strong causality is desirable because a rugged landscape is detrimental (cf.
5.19, p.119). Especially, strong causality and non-elitist selection support a sub-
population & in locating an optimum through point mutation. This holds because
point mutation yields a small d(g, h), so that |f(g) — f(h)| is small.

Then, through point mutations for the better case, G approaches a close opti-
mum. In the worse case, G may walk into a close valley. However, due to the small
quality loss, the decrease in the reproduction probability (cf. 5.20, p.119) may be
small. Thus, & may cross the valley and reach another peak. Therefore, causality
is beneficial because it increases the probability of walking to a better peak. While
leaping is an alternative to walking, it is potentially detrimental (cf. 5.21, p.119).

e Summarizing, strong causality is beneficial because it fosters search progress
by point mutation. It thereby also supports the independence of the search
algorithm: point mutation does not need external control, while a macro-
mutation does, e.g., a step-size information. Thus, strong causality contributes
to the strategic objective. Therefore, next, we discuss increasing causality for
a run of a search algorithm, and, equivalently, smoothing the fitness landscape
(cf. 5.43, p.132).

Given a fixed acceptance value, increasing the acceptability ratio implies transform-
ing the landscape. An extreme genotype-phenotype mapping of a developmental
search algorithm a projects all genotypes onto a perfect phenotype p, i.e.,

9Pa : sea, — {p}.

5.3 Problem 133

The resulting landscape is absolutely smooth. We call the transformation landscape
leveling. In order to approximate it, a must evolve beneficial codes, since a code
co-determines gp,. (5.44)

We suggest an alternative smoothing principle that does not change the accept-
ability ratio. Hill building rearranges the columns (cf. 5.18, p.119) that represent
genotypes such that the landscape turns into a single hill. We call the result an
ideal fitness landscape, because it corresponds to a problem whose perfect solution
is located by a hill climber which is a simple search algorithm. In particular, the
landscape is smoother than the original.3!

As the location of a genotype in search space is fixed, hill building implies reas-
signing quality values to genotypes. This means that genotypes are re-mapped onto
other phenotypes such that the ideal landscape results. Thus, for a developmen-
tal search algorithm d_,, hill building requires a change of the genotype-phenotype
mapping gp,_., which again calls for evolving codes.

We give an example for the effect of different codes on landscapes. The
four-dimensional sign example with the given code results in the beneficial situation
that the peaks +a and —b are connected by a tunnel (cf. 5.32, p.127). A different
code may result in an even higher redundancy of gp,_, on the peak +a while, however,
there may be no tunnel leading to a better peak. For an extreme instance, a code ¢
maps all source symbols onto the same target symbol ‘+’) i.e.,

img(c) = {+}.

img(gpa_) = {+a}

follows. A smooth and level landscape results, but no genotype represents the better
peak —b (cf. 5.25, p.122), so that d_. cannot locate it. If evolving a code is feasible,
it may produce another code that results in a more beneficial genotype-phenotype

mapping. (5.45)

e Summarizing, the ideal methods of landscape leveling and hill building increase
strong causality. Approximating them for an emergent problem requires evolv-
ing a genetic code.

We call a process that increases causality smoothing. Due to the often non-linear
nature of an emergent problem, a given genetic code may smooth a local landscape
area and roughen another one. The manual design of a code that yields smoothing
of the entire fitness landscape is infeasible due to the large size of the search space
and incomplete problem knowledge. For instance, one cannot build a hill because,
by the nature of the problem, an acceptable peak is unknown.

Opposite to such ideal and global smoothing, local smoothing at a genotype g € pop;.
of a run r at time t is feasible. In particular, the smoothing of a landscape area

31The tunnel principle may be involved, since hill building may move formerly distant landscape
points close together.

134 5 First empirical problem

remote from ¢ is irrelevant if point mutation is the only variation source: then, a
remote genotype h cannot become ¢’s recombination partner and influence perfor-
mance.

However, at a point g € sea,, a single code may result in some smoothly as-
cending directions, while others are rugged. The strength of causality at g depends
on dimensionality dim(sea,): more directions available at g increase the probability
that one leads to a much better or worse neighbor.

e Therefore, the notion of local smoothing argues for evolving individual genetic
codes that co-determine individual genotype-phenotype mappings.>?> We shall
therefore discuss this issue later in the present work. (5.46)

Here, we continue with the issue of dimensionality for the first empirical problem.

5.3.10 Dimensionality of the developmental representation

The unrestricted mutation operator changes a single bit of a genotype indepen-
dently from another bit. Thus, given the determined codon size of four bits and
genotype size of 25 codons, the empirical developmental search algorithm d_, faces
100 dimensions under this mutator type. The resulting search space of the first
empirical problem p has a size of |seaq_ | = 2'%° ~ 1.3E 30 genotypes. (5.47)

In extended summary, this concludes the definition and analysis of the instance of
d_, that is to run on p. Next, we must determine the instance of the empirical
common search algorithm c_, that is to run on p.

5.3.11 Common representation
Common genotype size

e For c_,, we set desired genotype size: 25.

This is because the genotype size of the empirical developmental search algorithm
equals 25 and both search algorithms are to be compared (cf. 3.6, p.56). Thus,
each genotype—which also is a phenotype—of c_, is a target-symbol sequence of, at
least, 25 symbols: if creation produces an irreducible symbol sequence s, the size of
a genotype derived from s can be greater than the desired size (cf. 4.51, p.102). As
an extreme example, consider the genotype

D(DMOMMOMOMMDMOMMDMMOD (a)))))).

Prior to the blank space in the representation, there are 25 symbols. The determined
finalizing (cf. 4.52, p.102) of this irreducible subsequence requires appending 15
symbols in order to yield a genotype.

With the genotype size given, we can discuss the resulting search space of c_,.

32Local smoothing for an individual is like a vehicle in rugged terrain that builds a road by
moving on it, similar to a state-of-the-art automatic railroad construction unit.

5.3 Problem 135

Common search space

We call sea. . the common search space. For the target alphabet, |Q2| = 14 holds (cf.
5.3.4, p.110). For Q% ie., {w € Q* | |w| = 25}, we find

s = [Q0%°] = 14*° ~ 4.5E28.

However, |sea._ | < s holds for the following reason. Many w € Q% are not the
beginning of a sentence, i.e., w & sea._, (cf. 3.5.3, p.64). Each other w € Q% yields
exactly one sentence, since finalizing is deterministic.

As the safe single-symbol conversion is the determined point mutator of c_,, we get
dim(sea.) = 25 (cf. 4.53, p.103).

5.3.12 Common v developmental representation

The developmental search space seaq_, (cf. 5.47, p.134) is high-dimensional com-
pared to the common search space sea._ . Also,

|seaq , | > |sea._ |
holds by at least two magnitude orders. (5.48)

A high-dimensional search space can support a beneficially redundant genotype-
phenotype mapping (cf. 5.40, p.131). Thus, for the first empirical problem, such a
mapping may exist for d_,. Comparing both empirical search algorithms, a better
performance is indeed to be expected for d_,, since we have determined a genetic
code with beneficial properties (cf. 5.13, p.115). (5.49)

However, this hand-designed code is only slightly redundant, and seaq_, will not
adapt it. In conclusion, we predict a d_, performance that is only slightly higher
than the c_. performance. (5.50)

This prediction follows from the general analysis of the beneficial vs. detrimen-
tal potential of a high-dimensional search space (cf. 5.35, p.130). Put vividly,
high-dimensional effects may be a curse and a boon for the same run of a search
algorithm. Biasing this situation favorably is often hard for emergent problems
due to incomplete knowledge. Thus, manually designing a desirable code requires
educated guessing. If a mostly detrimental code results, the potential boon turns
into an actual curse of dimensionality: the large space size, coming from high di-
mensionality, does not represent numerous smooth saddles but rugged peak-valley
constellations. Regarding the resulting genotype-phenotype mapping, a designed
code may lose beneficial potential and may introduce a detrimental situation. This
risk is an essential reason for evolving genetic codes. (5.51)

We have given an example of a genotype-phenotype mapping with both nice
and undesirable properties: the manually designed code (cf. 5.3.5, p.111) is re-
dundant on the multiplication and the closed-paranthesis operator, which may be

136 5 First empirical problem

beneficial and detrimental. On the one hand, redundancy on multiplication results
in more such operators as components of evolved phenotypes. This is desirable since
the problem function features two instances of the operator. On the other hand,
redundancy on the closed parenthesis is detrimental if many good subexpressions
are long: their synthesis becomes unlikely.

e In extended summary, representations and search operators of both empir-
ical search algorithms have been determined. Next, we fix representation-
independent experimental parameters of the projected search algorithm which
emulates both algorithms.

5.3.13 Experiment parameters
Problem instance

Following from 5.2.4, p.109, we represent the first empirical problem P; as a set
of fitness cases. Due to the real-valued four-dimensional parameter space of the
empirical function (cf. 5.3.1, p.109), a fitness case consists of

e four real input values and
e one real output value.

To the empirical developmental search algorithm d_,, Py is a real-world problem (cf.
5.14, p.116). Also, as many real-world problems are emergent, incomplete knowledge
is essential for experiments regarding the technical objective. In order to give little
knowledge about P; to an empirical search algorithm, we only offer it

e 10 fitness cases.

The situation is similar to optimizing an emergent problem in an industrial con-
text: often, merely scarce problem data is available due to technical and psycholog-
ical reasons. Prominent examples are measuring-difficulties and paranoid customer
behavior because of a competitive business environment.

In this context, for further reference, we mention the relevance of a small difference in
search performance. For i) mass production, ii) an expensive manufacturing process,
or iii) a non-linear phenomenon during production, a small improvement in solution
quality implies a significant economic advantage. (5.52)

Size parameters

For an experimental run of the projected search algorithm p_,, we set a

e fixed population size: 500 individuals (cf. 4.54, p.104).

5.3 Problem 137

This size results from the experience in Evolutionary Algorithms that a large search
space speaks against using a population with few individuals. Facing a large space,
even a population with a size several magnitude orders greater than here repre-
sents but a negligible space fraction. However, “critical mass” seems to exist in a
population whose size ranges in the hundreds and greater. Here, to emphasize the
real-world character of Py, we have chosen a population size at the low end of this
range.

If there is a fixed number n of generations that a run r of a generational EA must
compute, then we call n the run size of . For a p_, run, we set

e run size: 50 generations (cf. 4.55, p.105).

A set E of equally sized runs of an EA a_,, with the runs applied to the same
problem, shall be called an experiment with |F| as experiment size. E can be viewed
as a virtual run of a_,, since all | F| runs have the same size. Thus, given F and a run
size of g generations, we call the set of all | F| generations with identical index i the
generation 7 of the virtual run. Accordingly, we call the set of the |F| populations
of E the virtual population of the experiment.

In order to compare the performance of the empirical search algorithms c_, and
d_, (cf. 3.6, p.56), three experiments must be conducted, and each one shall have

e experiment size: 19 runs.

We index the runs of an experiment with ¢ € [0, 18] N INy. Each run of the same
experiment gets a different seed value, i.e., a value that initializes the underlying
pseudo-random number generator. All runs that have the same index—i.e., they
come from different experiments—get the same seed value. This supports compara-
bility of experiments.
e The common experiment consists of runs of c_..

The coupled experiment consists of runs of d_, using the coupled mutator.

The unrestricted experiment consists of runs of d_, using the unrestricted mu-

tator.

Apart from these differences, the experiments use identical algorithmic components
and parameters (cf. 4.9, p.101).

5.3.14 Empirical results and discussion

Since the projected search algorithm p_, is generational (cf. 4.10, p.104), we shall
measure run time as the number of completed generations.

Let r denote a p_, run using fitness function fit. We call

ZiEpopr,t flt('&)

|p0pr,t|

138 5 First empirical problem

T T T T T T T T T
; : ; : : b GPMunTestricted . ..
ISR i-~____GPM-coupted~——

T . Common -----

mean average fitness

i i i i
30 35 40 45 50
generations

Figure 5.2: Progression of the mean average quality.

the average quality of generation t of r, denoted by fit,(t).

Let E denote an experiment.

ek fitr (1)
|El
shall be called the mean average quality of generation t of E, or, synonymously,
mean average fitness, denoted by fite (t).

Figure 5.2 shows graphs that visualize the progression of the mean average fitness for
the common, coupled, and unrestricted experiment, respectively. These progressions
reflect the performance of the respective empirical search algorithms. The acronym
GPM in a graph label expands to “genotype-phenotype mapping” and signals the
developmental type of the corresponding search algorithm.

Let g(t) denote a quality measure for a run r or an experiment E, i.e., fit,(t) or
fity(t). For generations t,u : t < u, we call

_qlu) —q(t)
u—t

the progress of r or E over time span [t,u]. Thus, v € R, and a greater v is more
desirable.

5.3 Problem 139

An entity associated with the common, coupled, or unrestricted experiment shall be
qualified accordingly, e.g.: “a coupled graph.” Both the coupled and the common
graph start at the initial generation 0 at about identical quality values. This
indicates the sound situation that there is no artificial bias in the initial experimental
conditions. Both graphs show strong progress until generation 5, with the coupled
progress being greater. This early strong progress is typical for an Evolutionary
Algorithm: initial genotypes, being random structures, usually have a low quality.
Thus, finding better solutions is more likely early during a run.

At generation 5, however, the common progress drops while the coupled
progress continues only somewhat weaker. The decrease in progress at the end
of an early run stage is EA-typical: subpopulations start getting trapped in local
optima. Here, one may explain the observed stronger coupled progress as follows.

Tunnel hypothesis

For Py, the developmental search space seaq_, is high-dimensional compared to the
common search and solution space sea._ (cf. 5.48, p.135). Thus, a beneficially
redundant genotype-phenotype mapping gp, = may exist (cf. text units 5.40, p.131,
5.3.12, p.135). It depends on gp,y whether an increase in dim(seaq) is beneficial or
detrimental: the redundancy of the genetic code used by gpy is critical (cf. 5.36,
p.130).

As we have given a code with desirable properties for Py (cf. 5.13, p.115), the
resulting gpy_ is expected to be beneficially redundant. Thus, we state the tun-
nel hypothesis: discussed, nice high-dimensional phenomena—especially, the tunnel
principle—take effect and result in the observed stronger coupled progress (cf. 5.33,
p.128).

Conflict of hypothesis recursion

We have derived the tunnel hypothesis from theoretical discussions. In principle,
the ratio of the number of tunnels vs. |seaq_, | can be computed using enumeration.
However, the large size of seaq , (cf. 5.47, p.134) forbids this approach. This sit-
uation is an instance of a generic conflict of empirical investigation, as follows. If
observed system behavior cannot be explained by current theory or complete ob-
servation, one produces a hypothesis on its explanation. One must then test the
hypothesis against an appropriate additional observation to be made. In case the
test supports the hypothesis, one must yield a next hypothesis on explaining the
additional observation, and so on.?® We call this situation the conflict of hypothesis

recursion. One must terminate it by a plausibility argument for the last produced
hypothesis.34 (5.53)

Here, we are satisfied to take the theoretical discussions that lead to the tunnel
hypothesis as such an argument.

331t is a philosophical issue whether this recursion perhaps continues ad infinitum.
34The recursion depth depends on the quality of the plausibility argument and available experi-
mental resources.

140 5 First empirical problem

Coupled and common experiment

At generation 9, the coupled progress begins falling stronger, and over the final ten
generations, it remains slightly positive on average. The common progress continues
falling, and over the final ten generations, it is virtually zero.

The common quality value is always less than the coupled one in the same
generation ¢ > 2, due to the described different coupled and common progress
profile. Especially, at the

e final generation, the coupled maximal mean average quality is about 6
percent higher relative to

e the common maximal quality, reached at generation 33.

Summarizing, the coupled experiment performs better than the common experiment.

The difference between coupled and common progress is best visible between
generations 5 and 20. Most probably, during this time and later, low-quality
local optima (cf. 3.10, p.59) reduce the common progress strongly, while coupled
progress may be more stable due to tunnel effects that support escapes of trapped
subpopulations.

During the following period, common quality rises to its maximum at generation
33 and then, on average, slightly falls until the final generation, i.e., generation
49.

e Thus, common progress is negative for the time span [33,49].

This indicates that ¢_,’s potential for quality improvement is exhausted. During the
same time, coupled quality keeps rising on average, although its progress is not as
great as during generation 0 to 20.

e Thus, coupled progress is positive for the time span [33,49].

This shows potential for further quality improvement by d._,, i.e, the coupled in-
stance of d_..

Escapes are performance-critical during a later stage of an EA run r with a fixed-
population size: an emergent problem often yields a landscape with numerous local
optima. Thus, exploration may turn parts of pop,., i.e., r’s population, into trapped
subpopulations.

Local optima exist in both a high- and a low-dimensional search space. Thus,
both coupled and common progress suffer from trapped subpopulations. An effect
of this situation shows in the coupled and the common progression: beginning in
[15,20] and continuing to the final generation, both progressions oscillate.

Such quality oscillation is typical for a non-elitist selection method and a multi-
modal problem, as follows. Let & C pop, sit at a local optimum ¢. & may migrate
from ¢ to a worse or better point, decreasing or increasing G’s mean average quality,
respectively. On the one hand, the search dynamics fosters phenomena that increase

5.3 Problem 141

quality. On the other hand, it may lead to situations — e.g., trapped subpopulations
— that obstruct a quality increase. In particular, the older an experiment is in
terms of run-time, the more and better local optima it has found, so that improving
quality becomes less probable. Therefore, a dynamic equilibrium between beneficial
and detrimental pressure emerges that yields quality oscillation. (5.54)

This explains the shared issue of decreasing average common and coupled progress.

As for the discussed difference in the progress profiles: a small trapped coupled
subpopulation & may walk a large neutral network N of the trapping local optimum
n. However, due to the high dimensionality of seaq_,>®> N might contain genotypes
that are entry points of tunnels to networks of optima that are better than n.
Especially, several such genotypes might be entry points to the same network O of
a better local optimum. Such situations increase the probability that & still locates
a better genotype. This might explain why

e the coupled progress is positive for every time span [t,49], 0 < t < 49, as
opposed to the common one.

The only difference between c¢_, and d._, is that the latter is developmental. Thus,
this difference causes the observed difference in performance. Therefore, adding
algorithmic metaphors of development to a Genetic-Programming algorithm may
enhance its performance. This partially realizes the technical objective of the present
work (cf. 1.9, p.25).

e In summary, the coupled performance is greater than the common one. This is
explained by the developmental type of the coupled experiment. In particular,
we hypothesize that tunnel effects counter premature convergence. Thus, the
technical objective has been approached. (5.55)

Unrestricted, coupled, and common experiment

The coupled and unrestricted quality progressions are almost equal in period [0, 18].
Especially, the initial unrestricted quality is virtually that of the two other experi-
ments.

In [18,49], the unrestricted progress is greater than the coupled one:

e At generation 46, the unrestricted experiment reaches its maximal mean
average quality.

e This quality is about 10 percent higher relative to the common maximal qual-
ity, and

35d.._, has the same search space seaq_. as du_,, the unrestricted d_, instance. This holds since:
i) de_, and d,,_, use an identical genotypic representation; ii) their mutators manipulate atomic
components of the representation, so that both algorithms face the same dimensionality.

142 5 First empirical problem

e it is about 4 percent higher relative to the coupled maximal quality which is
reached at the final generation. (5.56)

e Summarizing, the unrestricted experiment performs better than the coupled
and the common one.

The only difference between c_, and d,_, is that the latter is developmental. Thus,
this difference causes the observed difference in performance. Therefore, adding al-
gorithmic metaphors of ontogeny to a Genetic-Programming algorithm may enhance
its performance. This partially realizes the technical objective of the present work
(cf. 1.9, p.25).

Both d,_, and d._, are developmental. Thus, the explanation for the higher
coupled performance relative to the common one (cf. 5.55, p.141) also applies to
the higher unrestricted performance relative to the common one: the only difference
between d,_, and d._, is the respective mutator, and the given explanation does
not consider this difference. Next, we discuss this difference for comparing the
unrestricted and the coupled experiment.

Let Ap, denote the source alphabet of P;. Consider the codons
¢,d € Ap, : hd(c,d) = 1V hd(c,d) = 3.
Under the coupled mutator Fmut.p, there is no route (s. def.) from ¢ to d because
hd (e, Pmut.p(c)) = 2.

For instance, under Pmutg,, there is no route from 0011 to 0001. Thus, for a
genotype g = (¢;),¢; € Ap,, repeated Pmut., application can reach exactly all
genotypes whose Hamming distance to g is even. Therefore, a search route starting
at g can only explore a proper subspace of seaq_ . However, repeated application of
the unrestricted mutator Fmut,,, reaches all genotypes. Therefore, a search route
starting at g can explore seaq_. .

e Summarizing, d,_,, in contrast to d._,, can access the complete neighborhood
of a genotype. (5.57)

As mentioned, the unrestricted quality progression almost equals the coupled pro-
gression up to generation 18. From there to the final generation, the unrestricted
progress is greater than the coupled one.

For a multi-modal problem and non-elitist selection, quality oscillation is likely
to occur during a later stage of an experiment (cf. 5.54, p.141). However, the quality
oscillation of the unrestricted experiment is dampened compared to the coupled one.
We suggest this dampening occurs because an unrestricted trapped subpopulation
has more escape routes available due to the larger accessible neighborhood (cf. 5.57,
p.142). Thus, it easier finds a better genotype even during a later stage, so that
quality is less likely to drop.

5.3 Problem 143

e In summary, for d,_, vs. d._, the unrestricted mutator dampens quality
oscillation, supporting positive progress.

The described higher performance of d,,_, compared to the common search algorithm
c_, contradicts experience on Evolutionary Computation. This is because the search
space size and dimensionality of d,,_, are 2 and 1 orders (cf. 5.48, p.135) of magnitude
higher, respectively, than those of c_,. As the population size is identical for both
algorithms, a higher performance of the common algorithm should be observed due
to the curse of dimensionality.

Thus, the actual observation corroborates the conclusion that a redundant
genotype-phenotype mapping may be sufficient for beneficial high-dimensional phe-
nomena (cf. 5.33, p.128): it confirms the redundancy-based predictions that

e better performance was to be expected for instances of d_, due to the given
genetic code (cf. 5.49, p.135), and

e that a d_ instance should perform only slightly better than c_, (cf. 5.56,
p.142)(cf. 5.50, p.135).

In particular, the phenomena demonstrated by use of small synthetic examples,
e.g., the four-dimensional sign example, might be effective for the — large — first
empirical problem. This supports the conjecture that these phenomena are inde-
pendent from the size of a search space (cf. 5.41, p.131).

e In summary, the unrestricted developmental experiment has a higher perfor-
mance than the common one, which partially realizes the technical objective
of the present work. A redundant genotype-phenotype mapping may be suffi-
cient for beneficial high-dimensional phenomena which might scale up in the
context of large emergent problems. The unrestricted experiment also has a
higher performance than the coupled one. This argues for using point mutation
during a developmental search algorithm.

Next, we draw conclusions for further approaching the technical objective.

5.3.15 Conclusion and further research

We have compared the empirical common search algorithm and two instances of
the empirical developmental search algorithm on a real-world problem. The results
argue for the developmental flavor that we shall further investigate.

An employed genetic code is critical for search progress. An unfortunate man-
ual code design simultaneously loses beneficial and introduces detrimental potential
regarding the resulting genotype-phenotype mapping (cf. 5.51, p.135). We have
discussed different aspects of this situation (cf. text units 5.46, p.134, 5.45, p.133,
5.44, p.133, 5.42, p.131, 5.12, p.114).

e Summarizing, the concept of a genotype-phenotype mapping makes sense if
and only if it employs an adapted genetic code.

144 5 First empirical problem

e In conclusion, for problems that do not allow for an a prior: code adaptation,
the evolution of a genetic code is necessary. This shall be the next issue of
investigation.

All arguments for evolving a structure originate from the subject of incomplete
problem knowledge. For evolving codes, the unknown local landscape topology of
an individual matters. The hypothesized phenomenon of local smoothing argues
for evolving individual codes that then co-determine individual genotype-phenotype
mappings (cf. 5.46, p.134).

The observations corroborate experience from Evolution Strategies and Evolu-
tionary Programming that mutation as sole source of variation can imply progress.
In particular, mutation appears to be beneficial for both the common and develop-
mental search algorithm.3

e In conclusion, we focus on evolving individual genetic codes with mutation as
only variation source. Thus, the feasibility of code evolution must be demon-
strated. To that end, next, we shall determine a second empirical problem.

(5.58)

36We emphasize this issue because recombination has been the primary variation operator of
initial contributions to Genetic Programming. This situation has strongly influenced the field.

Chapter 6

Second empirical problem

It is of interest whether an instance of the empirical developmental search algorithm
d_, can co-evolve genetic codes and genotypes (cf. 5.58, p.144)(cf. 1.2.4, p.17).
To investigate, we will first propose a principle for evolving genetic codes. To the
end of deciding the principle’s feasibility, we will design an appropriate d_, instance
that shall be called the second developmental search algorithm, denoted by dx_,. The
first developmental search algorithm (cf. 4.12, p.105) has resulted from a general
discussion. Thus, dy_, shall build on this first instance.

6.1 Genotype evolution

6.1.1 Repairing

An individual g with a genotype g and phenotype p, shall be denoted by (g, pg)-
Given an illegal primary transcript tra(g), repairing yields p, (cf. 4.2.12, p.82). A
certain instance of replacing repairing (cf. 4.5.2, p.98) is a component of the first
developmental search algorithm. A simpler algorithm, namely, deleting repairing
(cf. 4.2.12, p.82), has been discussed.

e Due to the minimalism principle, we decide on dy_, to employ deleting repair-
ing, denoted by g_,.

Therefore, a p_, instance must be determined next by identifying one of several fi-
nalizing methods (cf. 4.5.2, p.96). First, p may produce a transformation sequence
that ends with an irreducible transcript, so that, second, p must apply a finalizing
algorithm.

e Due to the minimalism principle, p_ shall employ deleting finalizing (cf. 4.5.2,
p.97).

For the infix example, a transformation sequence
xxa/ — xa/ — a/ — a

results from a p _, instance using deleting finalizing.

145

146 6 Second empirical problem

Deleting finalizing may produce the empty transcript € (cf. 4.5.2, p.97).! For in-
stance, for the infix example,

+E 4+ o e

results. For the determined empirical target language (cf. 5.1, p.107), € is irreducible.
Thus, if a genotype g. gets transformed into €, p, does not exist, so that quality
evaluation of g. cannot take place. However, a quality value of g, is essential to
d_.’s continuation.

e To that end, d,_, should consider g. to have worst quality.

This requirement is plausible from a biological point of view: e corresponds to the
lack of an organism. Thus, the natural genotype in question will not reproduce. As
Evolutionary Computation crudely models reproductive success by the concept of
quality, worst quality is appropriate for g.. We achieve this as follows. Let P denote
the second empirical problem. From a technical point of view, g. has no semantics
because it lacks p,. . However, as d_, is full (cf. 3.20, p.62), its genotype-phenotype
mapping
gPq, . : TePa,_ — S0lp, C Lemyp

must be defined for g. € repq, .
e Thus, we redefine L, to include ¢, so that we can define
€ € solp,.

Accordingly, we extend the fitness function of d,_, to yield the worst quality
value for e. We call the described handling of the empty-string situation the
Ly, extension.

Eventually, we discuss alternative, less favorable approaches. Being a fixed-
population-size Evolutionary Algorithm, d,_, may not discard a produced individual
g = (g,¢€). Therefore, d_, could replace g by

h = (h,pn),pn # €.

However, L.,,, extension saves resources that such replacement and subsequent qual-
ity evaluation of h would require. As another option, randomly creating h would
introduce an undesirable external search bias, as would creating h as a copy of a
real genotype. Finally, these alternatives are also more explicit than L., extension
which produces a worst-quality genotype that is likely to be replaced by another
genotype during subsequent selection and reproduction, anyway.

e Deleting-finalizing with L., extension shall be called open finalizing.? In con-
clusion, d,_, shall apply deleting repairing with open finalizing to a produced
genotype.

'While this situation is rare for a long genotype, technical soundness requires a discussion.
2The name comes from the notion that an irreducible transcript of a genotype g leaves the
meaning of g open.

6.2 Genetic-code evolution 147

6.1.2 Variation

e We decide to implement variation as the point mutator fmuty that randomly
selects and inverts a bit of its argument (cf. 5.15, p.116)(cf. 4.9.1, p.101).

e In particular, due to the minimalism principle, Mmuty shall be the only varia-
tion operator of dy_, which is admissible since fmuty is ergodic. (6.1)

An execution probability px of a copying or variation operator o designates that
an algorithm calls Fo from the respective operator set with probability p,. This
probability is also called a rate, and a rate is given to each "o in order to set a d,_,
instance.

e We have determined d,_, regarding evolving genotypes. Next, evolving genetic
codes is the focus. To that end, first, we must develop an appropriate principle
in the context of Developmental Genetic Programming. Second, the principle’s
implementation needs discussion.

6.2 Genetic-code evolution

6.2.1 Biological motivation

The empirical genotype-phenotype mapping is a mathematical metaphor of biologic-
al phenomena: ontogeny, in particular, polypeptide synthesis. The universal genetic
code (s. def.) is essential to this synthesis, so that its properties and origin are
of interest to Developmental Genetic Programming (DGP). Like natural evolution
has produced genotypes, it has yielded the universal genetic code. One has argued
that natural selection favors those code properties necessary for the evolution of
organisms (Maeshiro 1997).

e We conclude that natural evolution has produced the universal genetic code
which potentially favors the emergence of adapted genotypes.

For a given problem, artificial evolution, gleaned from natural evolution, often results
in acceptable genotypes. Thus, we suggest as hypothesis:

e Artificial evolution, appropriately implemented, produces beneficially redun-
dant or even mirroring (cf. 5.11, p.114) genetic codes. That is, such evolution
gives genetic codes that favor evolving acceptable genotypes. (6.2)

6.2.2 Technical motivation

DGP defines genotype semantics by a genetic code, a repairing method, and the
employed target language. Investigating the evolution of repairing methods remains
as future work (cf. 5.34, p.129), and the semantics of the target language is fixed.
Thus, evolving genetic codes results as current focus regarding adapting genotype
semantics for a given problem.

148 6 Second empirical problem

Extensive technical arguments for code evolution have been given (cf. 5.58, p.144).
Essentially, d,_, should evolve codes such that its individuals move on beneficial
landscapes. In particular, regarding the desired surjectivity of a genotype-phenotype
mapping (cf. text units 4.5, p.75, 4.37, p.85), an objective of code evolution follows:

e An emerging genetic code ¢ : A — €4 should be surjective on X C Qq,_,
> containing exactly all problem-relevant target symbols. Thus, a genotype
represents a phenotype that only consists of problem-relevant symbols. (6.3)

e We shall develop a principle of code evolution for Developmental Genetic Pro-
gramming next.

6.2.3 Individual genetic code

So far, a developmental run r transcribes all genotypes of its population by use of
the same global genetic code. This scenario corresponds to the current situation
in organic evolution: the universal genetic code (s. def.) is essential to polypeptide
synthesis in most organisms.®> Organic evolution of different codes has resulted in
the dominance of the universal genetic code. Thus, evolution has produced codes
as well as it is producing genotypes.

e As we desire the emergence of artificial genetic codes, all necessary condi-
tions for the evolution of structures must be given: existence of a population,
heredity, variation, a quality measure, and quality-based selection.

e We define the code population of a run by replacing the concept of a global
genetic code by that of an individual genetic code: each real individual
g = (g,p,) carries exactly one code c, and transcription of g uses c.

g shall be called a carrier of c. ¢ is thus characterized by g and c, so that we denote
it by (g, c).

e Summarizing, the code population of a run r is given as the set of the individual
genetic codes of r’s real individuals. The code-population size results as r’s
population size.

e We define d,_,’s creation operator to produce an initial code c for an individual,
giving an initial code population. By default, ¢ shall be a random code. Table
6.1, p.149, represents an example of a random code. (6.4)

30ne of the rare exceptions is mitochondrial polypeptide synthesis.

6.2 Genetic-code evolution 149

Table 6.1: Example of a random code.

000 | 001 | 010 | O11 | 100 | 101 | 110 | 111
* / * a a d | + | a

6.2.4 Code variation, heredity, quality, and selection

e For reasons given for genotypic variation, we define point mutation to be the
only type of code variation used by d,_,.

The corresponding operator fmut., performs point code-mutation on a code

CZA—>QdXH,|Qd |>1

X —

as follows:

1. Random-select a codon ¢; € A.

2. Replace a = c(¢;) € g, . in code entry (¢;, a) of c’s definition by a random-
selected b € Q4. , a #D.

For instance, consider code ¢ (cf. 6.1, p.149). Pmut, randomly selects 010. Then,
in c’s 010—entry, it replaces ¢(010) = “«’ by ‘b’. The resulting mutant code ¢’ maps
010 onto ‘b’.

e Due to the individual-code concept, reproducing a carrier by copying implicitly
reproduces the carried genetic code, which implements heredity.

e This situation honors the minimalism principle. It furthermore enhances the
implicitness of d,_, because it renders an explicit code reproduction obsolete.
This contributes to the strategic objective (cf. 1.5, p.14)(cf. 1.9, p.25).

e Analogously to reproduction, selection of a code c is implied by selection of c’s
carrier. Thus, to the end of giving rise to code evolution, there is no need for
an explicit concept of code quality. However, for investigating code evolution,
next, we must give such a concept in order to measure adaptation.

The quality of an individual shall also be called individual quality in order to avoid
confusion with code quality. A code ¢, carried by ¢ = (g,c), co-determines §’s
individual quality because it co-determines p,. Thus, one may identify c’s quality
with ¢’s quality: carrier quality defines the quality of the carried code. However, c,
if carried by h = (h,c), h # g, may result in pj, # p,. Thus, the individual qualities
of g and h may differ, so that c’s quality varies.

150 6 Second empirical problem

This variability is undesirable since the current focus is on adapting codes to a given
problem which is independent from an individual. Thus, next, we must suggest a
concept of code quality that is independent from carrier quality.

For subsequent experiments on Py, which is a small synthetic problem to be deter-
mined, one may use a code-quality measure based on

i) search-space enumeration and

ii) the knowledge of a perfect solution.

Thus, such a measure is impractical for a real-world problem which has a large
search space and no a priori known acceptable solution. For P,, however, an even
perfect solution § € solp, will be known, and 5 shall be the only such solution.

o Let gpg denote a mapping gp,_ that employs code c. We define the code
fitness value of a genetic code c as

: lgps,_ ' (3)]
"Yflt(C) = W .

For instance, if seaq, . contains 2'? genotypes, and if gp§ maps 200 of these onto
the perfect solution, then ~fit(c) = 200 - 272 results. ~fit ranges [0, 1], and a higher
value indicates a more beneficial code.

e In summary, we have defined point code-mutation, copying, and selection of an
individual genetic code. The implicit nature of a code being carried contributes
to the strategic objective. A measure for code quality has been determined.

Next, we hypothesize that the introduced concepts of carried codes and their
mutation, together with the underlying dynamics of genotypic evolution, yield the
evolution of genetic codes. This prediction shall be corroborated by a plausibility
argument (cf. 5.53, p.139).

6.3 Hypothesis on genetic-code evolution

e The code hypothesis to be investigated (cf. 6.2, p.147) is that code evolution is
operational: dy_, adapts individual genetic codes such that they are increas-
ingly beneficially redundant.

A coarse argument for this conjecture is that artificial evolution is known to work
for a wide variety of structures of interest. A more detailed reasoning follows. Let
there be individuals § = (g,c;) and h = (h,c;) in a given run. Let code c;j be
more beneficially redundant than c,. Thus, with some likelihood, phenotype p;, has
a higher fitness than p,. Therefore, since selection on phenotypes implies selection
on the carried codes, cj has a higher probability than c; of being propagated over
time by

i) being copied and

ii) being subjected to point code-mutation Fmut;(c;) = c;L.

6.4 Experiment 151

When c;L is even more beneficially redundant than c;, the given argument which
applied to c; applies to its mutant c;L, and so forth.

The given reasoning applies in an analog manner to genotypes. As both the genotype
and code of an individual are complementary aspects of its phenotype, the resulting
process receives positive feedback.

e The given explanation shall be called the code-evolution explanation: an au-
tocatalytic process emerges in which increasingly better genotypes carry in-
creasingly beneficially redundant codes. That is, co-operative co-evolution is
initiated: a mutual hitch-hiking of codes and their carriers begins. (6.5)

Thus, during an experiment, we expect codes to become more beneficially redundant
along with an increase in the average individual fitness. Therefore, such an obser-
vation would corroborate the code hypothesis and its explanation. In particular, for
problems that allow for measuring the code quality, the average code fitness should
rise over time along with the average individual fitness. (6.6)

6.4 Experiment

6.4.1 Objectives

A series of d,_, runs shall be performed on problem P, that is to be small so that
code-fitness computation is practical (cf. 6.2.4, p.150).

e Rephrased, the code hypothesis states that, for a code population, evolution
increases the number of code entries that contain a problem-relevant target
symbol (cf. 5.37, p.130).

e Thus, for testing the hypothesis, target alphabet 23, must also contain
problem-irrelevant symbols.

e In order to test the code-evolution explanation, the mean best and mean aver-
age code fitness and the mean best and mean average individual fitness must
be measured (cf. 6.6, p.151).

6.4.2 Empirical function

P, the required small problem, shall be a symbolic regression (cf. 5.2.1, p.107) of a
known problem function on a four-dimensional parameter space. The function shall
be

fPZ (a/7 m7 U? q) = a/27

and we introduce the three parameters m, v, q in order to represent noise, i.e., un-
desirable phenomena. (6.7)

152 6 Second empirical problem

e Thus, the corresponding noise symbols m,v,q € 23, are the problem-
irrelevant symbols required above. (6.8)

e All parameter values shall be real-valued and range [0, 1].

Summarizing, the second empirical function fp, : R* — R results. Next, we deter-
mine all experiment parameters of dy_,, some depending on fp,.

6.5 Parameters

6.5.1 Problem instance and size parameters

e Like Py, P, is to be represented as a set of fitness cases. Due to fp, : R* — IR,
a fitness case consists of
four real input values and
one real output value.

e The training set shall consist of
100 random-generated fitness cases.

e We choose a population size of
50 individuals for all runs of Ep,, the experiment in the making. This
relatively small value is appropriate considering Py’s simple nature.

e Fp, shall have a size of
50 runs. Each run shall have a size of exactly
50 generations. Thus, a run will not terminate if and when it finds a perfect
genotype. This property is desirable because interesting observations may also
occur afterwards.

6.5.2 Alphabets
Target alphabet

L4 QdXH - {mavaqaa>+>*> _a/}

shall be the target alphabet. Thus, the smallest perfect phenotype d,_, may find
equals “axa”. It is relevant that a small perfect phenotype can be represented be-
cause this allows for the use of a small genotype size which exponentially determines
the size of search space seaq, . Eventually, seaq, = being small is essential to Ep,
because the code-fitness measure is infeasible on a large space (cf. 6.2.4, p.150). We
call this situation the code-fitness-measure constraint.

The role of m,v, q as noise symbols has been mentioned (cf. 6.8, p.152). They
are operand symbols. For P,, the only other symbol type is that of an operator.
Thus, we have introduced

o +, —, /€ Qq, asoperator noise symbols.

Next, we can determine the source alphabet Ap, that depends on Qg .

6.5 Parameters 153

Source alphabet
e We decide on Ap, = B3.

Thus, an individual genetic code maps 2® = 8 three-bit codons onto Q4. . As
|4, .| = 8, the determined codon size is minimal regarding d,_,’s ability to produce
a surjective genetic code (cf. 4.37, p.85). Keeping the codon size minimal is desirable
due to the code-fitness-measure constraint.

6.5.3 Spaces

Code space

Due to |Ap,| = |Qq, | = 8, the set of all genetic codes contains 8% &~ 1E 7.2 elements.
We call such a set the code space of a Developmental Genetic Programming algorithm
a_, that features code evolution, denoted by ~ysea,_ .

Search space

As symbolic genotype size for g € seayq, , we determine

° |g[s =4
The only perfect phenotype that d,_, can produce from four-codon genotypes equals
§=a=x*a. (69)

This small symbolic genotype size and the singular nature of § are desirable due to
the code-fitness-measure constraint. In particular, as the codon size equals three, a
small search-space size results:

o |seaq, | =2" ~1E3.6

6.5.4 Operator execution probabilities

We determine the execution probabilities of the operators for variation and copying,
denoting the last one by lcop.

Table 6.2: Execution probabilities for variation and copying for the second empirical
problem.

px(fcop) | 0.6
px(Pmuty) | 0.32
px(Pmuts) | 0.08

px(Pmuty) is over 50 percent of the copying rate, and py(fmut,) is only 25 percent
of pyx(fmuty). Thus, Fcop may yield several clones of an individual § = (g, c) be-
fore mutation changes clones. fmut; may change the identical genotypes of clones,

154 6 Second empirical problem

thus distributing the ex-clones over the fitness landscape. Eventually, mut; may
change the still identical codes of ex-clones, thus possibly adapting the codes to dif-
ferent landscape regions. Superimposed, due to lcop’s top rate, copying of mutants
amplifies this process. Therefore,

px(cop) > px(Pmuty) > px(Fmuts)
represents different time scales of the dynamics of d,_,.

e In extended summary, we have determined all standard parameters of the
second developmental search algorithm d,_,. Next, its experiment-specific
parameters must be fixed.

6.5.5 Initial individual genetic code

By default, dy_, produces random initial codes (cf. 6.4, p.148). However, for expe-
riment Ep,, each initial codon entry shall encode

o ‘—’c Q4 . Thus, all initial codes are equal to the one given by table 6.3.

Table 6.3: Initial codes for experiment on second empirical problem.

000 | 001 | 010 | O11 | 100 | 101 | 110 | 111

Therefore, for a genotype g € seaq, , the primary transcript
tra(g) =~ — — -
results. Under deleting repairing with open finalizing (cf. 6.1.1, p.145),
gpi,_(9) =e# 8 =axa
= fit(g) = 0 A~fit(c) =0

for an initial code c. (6.10)

e In conclusion, no initial code or genotype has a selective advantage. Also,
genotype evolution and the predicted code evolution start under worst condi-
tions. Thus, final code quality and individual quality will be significant.

e For d,_,, the fixed initial individual genetic code supports the upcoming em-
pirical analysis. It also represents a global code that code mutation then
diversifies into individual codes.

e In extended summary, all parameters regarding Ep, are set.

6.6 Results and discussion 155
6.6 Results and discussion

6.6.1 Code-evolution explanation

Two argumentation lines corroborating the code-evolution explanation follow.

Weak corroboration

Top down, figure 6.1 shows the progressions of the mean best individual fitness,
mean average individual fitness, mean best code fitness, and mean average code
fitness on a logarithmic fitness scale.

At generation 0, for each population member, individual fitness and code fitness
equal zero (cf. 6.10, p.154). Therefore, no graph starts here, since log(0) is not
defined.

Both individual-fitness graphs rise, i.e., there is positive progress (s. def.).

Initial progress is decreased by the combination of i) tournament selection—which is
not an elitist-selection variant—and ii) the high mutation rate py(fmutg): a dy_, run
r can lose a good individual ¢ before fcop amplifies ¢’s frequency in pop, sufficiently
for protection against extinction. We observe such loss in fact in Ep,, even for a
perfect individual § = (g, 3).

The overall positive individual-fitness progress is relevant because, according to the
code-evolution explanation, it is necessary for code adaptation.

Due to the small mutation rate py(Pmut;), both code-fitness graphs only become
visible at generation 2.

e We observe positive progress for best and average code fitness. This situation,
together with the positive individual-fitness progress, corroborates the code-
evolution explanation (cf. 6.6, p.151).

Also, the synchronous changes in the progress of the average code fitness and av-
erage individual fitness support the explanation that predicts that both genotype
evolution and code evolution show simultaneously as co-evolution. A realization
of the prediction shows in figure 6.1 at generation 9: the progress of both the
mean average code fitness and the mean average individual fitness decline strongly
(logarithmic scale).

e Thus, this observation backs up the code-evolution explanation.

e In summary, the observed simultaneous and synchronous positive progress of
individual fitness and code fitness corroborates the code-evolution explanation.

156 6 Second empirical problem

0

T

)

\
|

T \\\\H‘
|
1 \\\\H‘

\
\

T
\
1

fitness
T \\\\H‘ B
\
/
\
| \\\\H‘

T
~
1

/
/

/‘075 \\//\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\

O 10 20 50 40 50
generations

Figure 6.1: Top down, the graphs show the progressions of the mean best individual
fitness, mean average individual fitness, mean best code fitness, and mean average code
fitness on a logarithmic fitness scale.

6.6 Results and discussion 157

Strong corroboration

Regarding individual fitness and code fitness, the code-evolution explanation (CEE)
implies: if the one displays positive progress, the other one does so, too. We call
this relationship the fitness-fitness correlation. It implies that

i) better, i.e., above-average, individuals carry better codes, and

ii) better codes are carried by better individuals.

It is in accordance with the observed synchronous progress of average individual (ge-
notype) fitness and code fitness. However, progress of averaged fitness does not ne-
cessarily imply the fitness-fitness correlation: averaging loses the information about
the genotype/code fitness-value pair of an individual. Therefore, figure 6.1 corrob-
orates the CEE merely weakly, i.e., the former does not contradict the latter. As
the CEE implies the fitness-fitness correlation, an analysis on the existence of this
dependency in Ep, is desirable:

e We raise the question whether indeed, over time,
i) better individuals tend to have better codes, and

ii) better codes are mostly being carried by better individuals. (6.11)

To approach this issue, we define the coupled fitness value of an individual § = (g, c):

fit(§) == fit(g) - Afit(c)

Figure 6.2 illustrates the progression of the mean average coupled-fitness values. The
positive progress reflects figure 6.1. However, a deviation is to be pointed out next.
To that end, the mean average code quality of generation t of experiment E shall be

denoted by ~fitg(t). Analogously, we use fitE(t). At the final generation
w =49, we have

a = fitg,, (w) = 6.4 - 107%

Average individual fitness and code fitness values are 4- 107! and 1072, respectively,
resulting in

b 1= fitg,, (W) fit, (W) =4-1077,
q:=a/b=1.6

Thus, for w, the average coupled-fitness value is 1.6 times higher as expected for no
dependency between individual and code fitness.

e In particular, ¢ > 1 answers the above question (cf. 6.11, p.157) positively,
i.e., it confirms the fitness-fitness correlation predicted by the CEE.

158 6 Second empirical problem

O.Q0g [T I e

0.006 -

0.004 -

coupled fitness

0.002

O»OOO\\\ \\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\

0 10 20 50 40 50
generations

Figure 6.2: Progression of the mean average coupled-fitness values.

6.6 Results and discussion 159

Individual and code fitness

Figure 6.3 and figure 6.4 visualize this correspondence. Each figure displays, for
a given generation t of the experiment and for each of the following intervals, the
mean-average numbers of t’s individuals whose fitness and code fitness are in the

respective intervals. We set a factor r := 0.1 to determine the fitness intervals
0,7],]r,27] , .., |97, 10r], and, for r := 0.02344,* the code-fitness intervals are analo-
gous.

Figure 6.3 reflects the situation for generation 0, with each of the 50 individuals
having fitness and code fitness zero (cf. 6.10, p.154). Figure 6.4 shows the scenario
of the final generation: put vividly, the population has started migrating toward a
situation where a better individual may carry a better code and vice versa.

Table 6.4, p.159, summarizes the values from figure 6.4.

Table 6.4: Individual distribution. First row z/y gives co-ordinates within the
fitness/code-fitness plane from figure 6.4, with = 0 meaning fitness interval [0,] and
so forth, y analogously for code fitness. Second row Individuals gives number of individ-
uals represented by the respective population column in the figure. ¥ < 50 indicates ca.
0.3/50 = 0.6% of generation that is distributed over several more columns that appear
with height 0.0 at chosen figure scale.

2y 0/00/1]0/21/0]2/3[2/6]9/09/1]9/3][9/6]] %
Individuals | 5.8 | 0.2 | 288 | 0.7 | 0.6 | 0.1 | 11.8 | 1.1 | 0.2 | 0.4 || 49.7

e In conclusion, experiment Fp, strongly corroborates the code-evolution expla-
nation. Next, we analyze whether code evolution indeed occurs in Ep,, i.e.,
we test the code hypothesis.

6.6.2 Code evolution

In order to test the hypothesis, the progression of code redundancy on each target
symbol in €4 is of interest. As a direct measure, we define the symbol frequency
of a genetic code c on s € g, as

p(c,8) =lc(s)].

For instance, for Ep,’s initial code co (cf. 6.3, p.154), ¢(co,‘—’) = 8 holds.
Thus, we can express the code redundancy red.(s) (s. def.) of c : A — Q on s €

" olc. s
c, s
rede(s) = ——.
A
In particular, ¢(c, s) = 1 is equivalent to ¢ being neutral on s. (6.12)

40.2344 = 10r is the maximal code fitness located over all runs of the experiment.

160 6 Second empirical problem

50
40
: R
P
U -
= [
E :
= 3
229

Figure 6.3: Generation 0. Population distribution in fitness/code-fitness space.
Mean-average values. x-axis: individual fitness; y-axis: code fitness; z-axis: number
of individuals in given generation that have a fitness and code fitness corresponding
to the position of their “population column.”

6.6 Results and discussion 161

30

ndividuals

Figure 6.4: Generation 49. Ditto. Squares with top labeled “0.0” indicate column
height less than 0.05. Tallest column represents strong non-global optimum ‘a’,
second-tallest column visualizes global optimum ‘a % a’. Figure represents snapshot
of population migration toward better code-fitness and fitness.

162 6 Second empirical problem

For given c, we call ¢(c,s) the s-frequency. For instance, one may refer to the
a-frequency for ‘a’ € Qq, . Next, we define a measure over ¢(c, s). Let there be

e a fixed generation number i

e an experiment F on d,_,

e a fixed population size p = |pop,| for each d,_—runr € £
e afixed s ey, .

Let C; = {c ‘ g = (g,c) € pop,;,r € E} be a multiset, i.e., repetitions are signifi-

cant.” Then,
mis = Z ¢(Ca S)

ceC;

is the sum of the s-frequencies over all p|E| codes in generation i of E.

mis

d)(sa i) = p|E|

shall denote the mean symbol frequency on s in generation i of £. Thus, s occurs, on

average, ¢(s,i) times in each ¢ € C;. The sum of ¢(s,i) for s € Qq, equals |Qq,_|.
(6.13)

Figure 6.5, p.163, visualizes the observed progression of the mean symbol frequencies
on all target symbols. The logarithmic scale centers the neutral frequency value
¢ = 1, emphasizing its meaning as lower boundary of the problem-relevance of a
symbol. Initially, the maximum mean symbol frequency

¢('=",0) = |Qa,_[=8

follows from the fixed initial genetic code (cf. 6.5.5, p.154). Thus, strong noise

meets the start of Ep,. Then, ¢(‘—’,t) falls over time ¢, and, accordingly, the
frequencies on the other target symbols rise (cf. 6.13, p.162) while d,_, explores the
code space. Eventually, for these symbols, the first and second highest final mean
symbol frequencies occur. These frequencies are on ‘a’ and ‘*’ which compose the
only perfect phenotype (cf. 6.9, p.153).

Thus, codes in the Fp, population become more redundant (cf. 5.37, p.130)
on the only problem-relevant target symbols ‘a” and ‘x’. Put differently, individual
genetic codes increase in beneficial redundancy (cf. 5.38, p.130).

e In conclusion, Ep, verifies the code hypothesis, i.e., code evolution is opera-
tional, also corroborating the code-evolution explanation.

Furthermore, codes become increasingly mirroring due to the pronounced ris-
ing of the ‘a’- and ‘x’-frequencies. Therefore, the stronger instance of the
hypothesis (cf. 6.2, p.147) has also been supported.

SFor instance, a population is a multiset.

6.6 Results and discussion 163

10,0 [T T T T T T T T T

>
QO | i
C
&)
> | i
-
Y
R er/g"’“g/"
. a- -~

L _-—-
O L O _
S 1.07 o |
- i . =
> I ©]
%) / -
- I / v - |
O L / A///W /* — o~
&)
E L |

/%//

OW i

9 10 20 30 40 50
generations

Figure 6.5: Logarithmic scale: progression of the mean symbol frequencies on all
target symbols.

164 6 Second empirical problem

In particular, ‘a’ prevails in the perfect phenotype s = a % a, which is mirrored by

the top mean symbol frequency ¢(‘a’,w) = 1.4. In second place, ¢(‘*’,w) = 0.74,

reflecting that “*’ is the only other problem-relevant symbol. Third, ¢(‘'v’,w) = 0.4
on a problem-irrelevant symbol, and lower final frequencies follow. Last comes

)

¢(‘m’,w) = 0.23. Table 6.5 summarizes, neglecting ‘—’ and its artificially high
frequency. The table gives problem-irrelevant symbols in italics.

Table 6.5: Symbol frequencies for second empirical problem.

S a * (% .. m

¢(s,w) || 1.4 107404 | ..]0.23

Thus, the final frequencies of the irrelevant symbols reside in a
e 0.4 —0.23 = 0.17 frequency range.

The absolute difference between the

i) top final frequency of the irrelevant symbols and the
ii) bottom final frequency of the relevant symbols
equals

o [0.4—0.74] = 0.34.

As this difference is twice the frequency range, a distinct final-frequency group-
ing of the relevant vs. the considered irrelevant s €)4, exists.

e Thus, d,_, performs a binary classification as it probabilistically decides its
target alphabet regarding problem-relevance. Here, code evolution represents
learning the problem-relevance of target symbols, thus identifying noise (cf.
6.7, p.151). This type of machine learning resides between unsupervised and
reinforcement learning (cf. 5.2, p.108), because a genetic code is not directly
tagged with quality information.

Next, we describe the

e single run of an anecdotal experiment Ef, over
e 200 generations

instead of 50 generations. The run produces a

e final a-frequency: 2.9

e final x-frequency: 1.3

6.6 Results and discussion 165

as the two single top frequencies over all s € €4, . That is, for Ep , the initial
artificial top frequency of ‘—’ eventually falls below the problem-relevant frequencies,
confirming a tendency already visible in Ep,.

For brevity, we define a compact form of representing a code from Fp,: fors; € Q4 ,
from left to right, a sequence sg..s7 shall define the code

{(000, s0), (001, s1), ., (111, s7) .

From Ep,, three evolved codes of good or perfect individuals and their code fitnesses
follow in table 6.6.

Table 6.6: Examples of evolved codes.

| Evolved c € yseaq, . | ~fit(c) ||

*xaaax/a- 0.16
* aaaaa+ta 0.16
¥ aaa*x / ¥ % 0.18

e The table illustrates an implicit effect of code evolution: An individual genetic
code under a small mutation rate is a long-term memory shielded from direct
selection pressure by the phenotype.

Thus, codes may remember problem-irrelevant symbols at a residual level. This is
beneficial for a dynamic problem: when the relevance distribution shifts, formerly
irrelevant symbols can still contribute to the synthesis of a now better phenotype.
Due to the principle of code evolution, re-adaptation of codes then starts with this
phenotype.

e The table also illustrates that even codes with absurdly high fitness keep ir-
relevant symbols, preventing the code population from being trapped.

6.6.3 Extended summary

An individual genetic code is carried by an individual (g,p,) and controls the
genotype-phenotype mapping of g onto p,. For the second empirical problem P,
the developmental search algorithm d,_, adapts codes by selection on their carri-
ers: over time, problem-relevant target symbols are increasingly used for phenotype
synthesis.

e Thus, d,_, adapts individual genotype-phenotype mappings. This renders
manual creation of a beneficial problem-specific mapping obsolete, which is
often costly due to incomplete problem knowledge.

166 6 Second empirical problem

In particular, code evolution adapts an individual set S C g4, that dy_, can use
for phenotype synthesis. Thus, S represents the union of an individual function and
terminal set. S mostly contains problem-relevant symbols. In this manner, code
evolution approaches a minimal and sufficient function and terminal set, which is
desirable (cf. 5.3.4, p.111).

e In summary, adding algorithmic metaphors of biological development and co-
evolution to a GP algorithm enhances its autonomy (cf. 1.9, p.25).

Due to test objectives, we have designed Py small and made only one perfect solu-
tion accessible to the considered d,_, instance. Thus, next, we must discuss code
evolution for a large problem. To that end, the discussion shall initially proceed
along the lines of (Keller and Banzhaf 2001).

Chapter 7

Third empirical problem

e The current objective is to test whether code evolution occurs on a large
problem to be given. (7.1)

e Code-fitness computation is only feasible for a small problem. Thus, we focus
on observing the progression of mean symbol frequencies.

7.1 Experiment

On the small, second empirical problem P,, final symbol frequencies are distinctly
and correctly grouped regarding problem relevance. This exact classification cannot
be expected on the large, synthetic problem P3 to be determined, at least because
the required experimental run time is unavailable.

(7.2)
Analogously, locating a perfect individual cannot be expected.

e However, if and only if code evolution is operational on P3, an approximate
symbol classification should occur. To test for it, we must design P35 with
problem-relevant as well as noise symbols contained in the target alphabet.

(7.3)

Several properties of a problem make locating an acceptable solution within accept-
able time hard for an EA run. A prominent such property is a search-space size
that, by many orders of magnitude, is greater than the size of the run set, i.e., the
number of all different individuals produced by the run. (7.4)

Such a large difference is implied by a real-world problem (cf. 2.5, p.33). Thus,
designing a large P5 turns the associated experiment Ep, interesting for the technical
objective (cf. 1.9, p.25). Following 5.2.1, p.107, P3 shall be a symbolic function
regression of an arithmetic, random-generated objective function. In particular, all
function-parameter values shall come from [0, 1], and we give the third empirical
function as

167

168 7 Third empirical problem

fp, : R® > R

fp,(A,B,a,b,..,y,2z) =j+x+d+j*o+exr-t-at+th-k+u+a-k-
s*¥o*i-h*v-i-i-s+l-uwxn+l+r-j*
j*oxv—j+i+f*rc+x-v+n-nxv-a-q*
ikh+d-i-t+s+1l¥a-j*grv—-i-p*q* (7.5)
u-x+te+m-kxr+k-1lxuxx*d*r-att-
e*X—vV-p-C-o—o*wkc*h+x+e-a*u+

cklxr-x*xt-nxd+p*x*wxv-j*n-a-exb+a

Below, we shall discuss the role of those fp, parameters that do not feature in the
function expression. Next, we can set dy_, for Ep,.

7.2 Parameters

7.2.1 Target and source alphabet

Following from fp,, d,_’s terminal set must contain {a,b,..,w,z} that contains
exactly all problem-relevant operands, i.e., those that feature in fp,’s expression.

A, By, z} contains all remaining operands from fp.’s parameter set: they are noise
{A, By, g op 5’5 D y
symbols.

e Thus, the terminal set shall be the union of the two described operand sets:

T ={a,b,..,w,z, A, B,y,z}.

e To provide for noise for d,_,’s function set, we define
F = {+> - % /}
with / as noise symbol.

e Target alphabet
Qg =FUT

results with |4, | = 32, containing five noise symbols.

Next, we can determine Ap, depending on g, .

e A codon size of
10g2(mdxﬁ|) =9

bits, at least, results to have code evolution produce potentially surjective
individual genetic codes (cf. 4.37, p.85).

For Ep,, we fix the codon size at five bits: this value already implies the
mandatory, large search space, as will be argued later.

e Ap, = B° results as source alphabet.

We discuss the implied code space.

7.2 Parameters 169

7.2.2 Code space

Given source alphabet A and target alphabet €2 for a corresponding algorithm a_,,
the size of the resulting code space is

|[yseaq_ | = A
With
|Ap,| = [Qq, | =32,
|yseaq, | = 32% ~ E48.2
results.

Text unit 7.4, p.167, is general regarding the structure of interest. In particular, it
does not distinguish between a genotype and a genetic code.

e Thus, P3 is hard for d,_, regarding finding desirable genetic codes, since a run
of Ep, must have a run set » with |r| << |yseaq, | in order to have feasible
time consumption.

Next, we can discuss seaq, which depends on Ap,.

7.2.3 Search space

e We choose as
symbolic genotype size: |g|s = 400 codons,

while the length of fp,’s expression equals 200 target symbols only. This genotypic
over-sizing models practice where, due to an unknown minimal length of an accept-
able solution, the user may set an unnecessarily large genotype size as parameter.
This action detrimentally blows up search space.

e A Developmental-Genetic-Programming algorithm may counter negative blow-
up implications with a beneficially redundant genotype-phenotype mapping
(cf. 5.39, p.131).

e Here, the chosen genotype size implies the desired large search space (cf. 7.1,
p.167), as follows.

With codon size ¢ = 5 bits and |g|s = 400 codons, we get
|seaq, | = 2°191s ~ 10602

e Thus, P3 may be hard for d,_, regarding locating an acceptable genotype, for
the analogous reason that code search is hard (s. above).

Mmuty is dy_,’s only genotypic-variation operator (cf. 6.1, p.147). Thus
dim(seaq,) = log,(|seaq, |) = ¢ |g|s = 2,000

results as dimensionality which is, like the search-space size, rather large.

Next, we shall determine further experiment parameters.

170 7 Third empirical problem

7.2.4 Problem instance and size parameters

Due to fp,, a fitness case is from [0, 1]*® x R. Let the

training set consist of 100 random-generated fitness cases. A
e population size of p = 1,000 individuals shall be given for all Ep, runs.
e [p,’s size shall be e = 30 runs, and

e run size shall be exactly r = 200 generations:

there is no quality-dependent run termination, so that phenomena of interest
can be measured until a time-out occurs after the production of the 200th
generation.

The union of all run sets for a given experiment E shall be called the experiment set.
Ep,’s experiment set contains at most e-r-p =6 - 109 individuals. In particular,
each run set contains at most rp = 2 - 10° individuals. Thus,

|seaq, | > |yseaq, | > erp > rp.

e Therefore, for dy_,, P3 has a real-world quality (cf. 7.4, p.167) regarding
locating desirable genetic codes and genotypes.

Next, we discuss further Ep, parameters.

7.2.5 Operator execution probabilities

We determine the execution probabilities of the operators for variation and copying.

Table 7.1: Execution probabilities for variation and copying for the third empirical prob-
lem.

px(fcop) | 0.85
px(Pmuty) | 0.12
px(Pmut,) | 0.03

Note that the point code-mutation rate is only 25 percent of the point-mutation
rate. For a discussion of differences in the determined rates, see 6.5.4, p.153.

7.2.6 Initial individual genetic code

e The initial individual genetic codes of each Ep, run shall be random-produced
(cf. 6.4, p.148).

7.3 Results and discussion 171

fithess progression

0.018 . . : ;
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002F -

O / I I I I I I I I I
0O 20 40 60 80 100 120 140 160 180 200

generations

mean best-fitness
mean avg-fitness -

fitness

Figure 7.1: Top down: mean best individual fitness and mean average individual fitness.

Thus, each of the |24, | mean symbol frequencies on s € 4, is expected to equal
about

#(s,0) =1

in the initial generation: we expect an initial code to be about neutral on each
target symbol (cf. 6.12, p.159). In this manner, an initial code population does not
represent knowledge on the problem-relevance of symbols, which contributes to P3’s
practical character.

e In summary, P53 has a real-world character for d,_, regarding finding genotypes
and individual genetic codes.

We discuss Ep,’s outcome next.

7.3 Results and discussion

Top down, figure 7.1 visualizes the observed progression of the mean best and the
mean average individual fitness, respectively.

e Both progressions show positive progress (s. def.), which, due to the previously
corroborated CEE, predicts code evolution.

172 7 Third empirical problem

symbol frequency progression, part 1
1.8 o
1.6
1.4
1.2
1
06 el M

62—
0 20 40 60 80 100 120 140 160 180 200

generations

frequency

Figure 7.2: Observed progressions of the mean symbol frequencies on the mentioned
target symbols.

In particular, after generation 5, progress of both progressions is about constant
until and including the final generation, indicating a stable and continuing genotype
evolution.

Figure 7.2, figure 7.3, figure 7.4, and figure 7.5 synoptically show the frequency

progression — short for the progression of the mean symbol frequency ¢(s,t) — for
each s € Q4 . For legibility, each figure gives the progressions for eight symbols
only.

0 < ¢(s,t) < |Ap,| = 32 follows. (7.6)

e According to expectation (cf. 7.2.6, p.170), for s € 4, _, its frequency pro-

)

gression starts at ¢(s,0) ~ 1: an unbiased initial situation is given (cf. 6.12,
p.159) as desired.

For a later generation t > 0,

o(s,t) <1

signifies less problem-relevance of s: the virtual code-generation t represents the
collective memory of the search process since t = 0 and classifies s as less important.

(7.7)

7.3 Results and discussion 173

symbol frequency progression, part 2

frequency

O 20 40 60 80 100 120 140 160 180 200
generations

Figure 7.3: As before.

After generation 5, the progress of both fitness progressions is positive and about
constant. Notably however, earlier, the mean-best fitness progress is virtually zero.
Often, for an EA experiment with random-only individuals at t = 0, the mean-
best fitness immediately rises. This is because, initially, it is likely that, soon, an
individual is located that is the best-so-far individual, because random structures do
not represent problem knowledge. The present lack of this ubiquitous observation
emphasizes the hardness of P3: producing individuals that are better than the best
initial individuals consumes several generations.

Synchronized with fitness progression, the behavior of early frequency progres-
sions is of interest: the majority of the progressions begins fanning out, or, spreading
out, between t = 5 and t = 10.

e If code evolution is present — it is, as one will see — then the fan-out complies
with and thus corroborates the CEE: the fan-out visualizes large shifts in the
symbol frequencies of codes that, in turn, foster locating better individuals.

The CEE postulates co-operative co-evolution (cf. 6.5, p.151). Thus, fitness-
progress change and fanning out mutually predict each other. Such duality is typical
of co-evolving structures of interest, and, in particular, co-evolution begins in all
structure populations almost simultaneously.

174 7 Third empirical problem

symbol frequency progression, part 3
3 T T T T T T T T T

frequency

O 20 40 60 80 100 120 140 160 180 200
generations

Figure 7.4: As before.

In the present case, on the one hand, an above-average genotype may result from
a mutation, leading to a proliferation of the associated individual genetic code. On
the other hand, an above-average code may come from a code mutation, leading to
a proliferation of the associated genotype.

After strong frequency oscillation during initial fanning out, the frequency dis-
tribution begins stabilizing. Initial oscillation phenomena are typical for learning
processes, where, after an early exploratory period, a phase of exploitation sets in.
Such fluctuating progress of observables indicates early instability before the system
may ease into a dynamic equilibrium. For the instance of frequency progressions,
we may explain the observed oscillations as follows.

Vividly, code evolution implies a conflict among instances of target symbols that
compete for limited resources: i) 32 positions in a code, and ii) a fixed number of
codes. Formally, this conflict is reflected in (cf. 6.13, p.162).

In particular, if the frequency on a less problem-relevant s € €4 rises, this
means an increase in the number of s-instances in the code population. This, in
turn, limits the potential of s-containing codes and their carriers to prevail in the
long term, because s is less important. Thus, after some time, a more relevant
symbol may rise in frequency, having the s-frequency sink. In total, the s-frequency
first rises and then sinks, starting its oscillation. Eventually, a phase of leveling out
of all frequency progressions begins.

7.3 Results and discussion 175

symbol frequency progression, part 4
18 T T T T T T T T T

frequency

0 L | | | | | | | |
O 20 40 60 80 100 120 140 160 180 200

generations

Figure 7.5: As before.

Table 7.2, p.176, lists all s € Qg4 sorted by their rounded ¢(s,w) values, with
w = 199 for Ep,.

Given perfect classification by Ep,, a noise symbol s would score (cf. 7.7, p.172)

¢ =d(s,w) =0,
and a relevant symbol would give
¢ = ¢(57 QJ) > 1.

e However, ¢ is a mean average emerging from a search process. Thus, there is
a window of uncertainty |0, 1[: ¢ closer to zero indicates that Ep, considers s
as probably less relevant.

e Accordingly, [0,0] and [1, 32] shall be called a window of certainty each.

e Therefore, in order to assess Ep,’s learning success, we must identify a fre-
quency range
0,67, 0 < 9" <1,

by fixing a ¢T value.

176 7 Third empirical problem

Table 7.2: Final mean symbol frequencies of the third empirical problem. Noise and
operator symbols are marked x.

s € Qq, o(s,w) irrelevant | operator
/ 0 X X

0.2 X

0.4 X

o |¥|n|K|lal+|lmrin=E|ln|lwloe|B|—lc|o| g
o
>

el =gl B R
—_
ot

w
[\)
Il
)
o,
"
v
Ot
o

7.3 Results and discussion 177

Thus, ¢ has this meaning:

o ¢ < ¢(s,w) & We consider Ep, to classify s as “relevant”.

Therefore, the smaller ¢ is, the better Ep, must approximate perfect classification
regarding noise symbols to avoid classification error. Analogously, a greater ¢’ value
implies more rigor regarding relevant symbols.

e Thus, for a balanced compromise, classification error should be least for
o7 =~ 0.5. (7.8)

As worst case, giving a noise symbol a frequency ¢ > 1 or giving a relevant symbol
¢ = 0 constitutes an absolute error.
To the end of assessing classification quality, we define
e N:={A B,y,z,/} CQq, ., |N| =05, the set of noise symbols,
e R:=Q4 _ \ N, |R| =27, the set of relevant symbols, and,
e n and r, the numbers of correctly recognized noise and relevant symbols, de-
pending on ¢7.
|
2
denote the classification ratio. 0 < ¢ < 1 follows, and the better Ep, approximates

perfect classification, the closer ¢ is to one. Especially, the ratio weighs the approx-
imation quality equally regarding noise and relevant symbols.

Let ¢:=

Table 7.3, p.177, gives the rounded ratios for ¢! values that range over zero and the
uncertainty window in 0.1-steps.

Table 7.3: Symbol-classification ratios.

L7 [nlr] c]
00 1]27]06
0112706
02227 |07
03[227 |07
04326038
0532207
0631806
07 [31706
08 [4]16]07
09 5[1307

178 7 Third empirical problem

e For ¢7 = 0, implementing maximal rigor, a ratio of still ¢ = 0.6 results.

e The sole instance of the maximum ¢ = 0.8 occurs at ¢* = 0.4, which represents
a good compromise (cf. 7.8, p.177).

e All five noise symbols reside in [0, 0.9] that is the lower third of the total window
[0,2.7] containing all emerged frequencies.

e In particular, 60% of all noise falls into [0, 0.4] that resides within the lowest
sixth of the total window.

e Especially, the noise symbols in {B,y, /} score the three lowest frequencies,
with ¢/” at virtually zero, on average eliminating this operator from a popula-
tion.

e Thus, Ep, places all noise symbols in the uncertainty window and zero, avoid-
ing an absolute error.

e Likewise, it does not eliminate a relevant symbol, giving the minimal relevant

frequency ¢(‘c’,w) = 0.4.

Given more run time, further classification improvement is likely, considering the
unbroken positive fitness progress that indicates continuing search dynamics.

We note a conspicuous feature of all operator progressions, i.e., they abruptly
experience freezing: discontinuously, progress changes permanently to practically
zero. For brevity, we shall also speak of freezing symbols. Table 7.4, p.178, gives the
freezing time for each operator, marking those that freeze in their correct certainty
window.

Table 7.4: Freezing time for all operators.

| Operator || = [+ |- /]
Generation 90 | 33|28 9
True certainty ||| x X || x

Freezing is only observed for operators, with the sole reliable exception of operand

i at generation 187. Notably, ¢(i,w) is the maximum of all emerged frequencies.
Also, the only noise operator, ‘/’, freezes first.

Eventually, Ep, perfectly classifies three of all four operators, i.e., their final
frequencies lie in their correct certainty windows. However, for operands, perfect
classification percentage is lower, and Ep, scores 11 of 28 i.e., ca. 40%.

e In conclusion, Ep, delivers perfect classification easier for operators than for
operands. While such classification requirement is unrealistic for a real-world
problem, the result indicates a trend that is also valid for less rigorous classi-
fication assessment, i.e., o7 > 0.

7.3 Results and discussion 179

We offer an explanation of this dichotomy between operators and operands. For
fp, and its parameter values, a mutation of an operator often changes the mutant’s
expression value stronger than an operand mutation does.

e Thus, we conjecture there is higher selection pressure regarding operators that
therefore settle in local optima sooner than operands. With frozen operators,
Ep, then continues fitting the operands. Observations support the conjecture:

At generation 9, ‘/’ freezes, and, simultaneously, the i-progression starts its
first strong rise, moving away from the nearby uncertainty window.

4

At generation 28, ‘—’ freezes, and, at generation 29, the A-progression
starts dropping, crossing from its false certainty window into more desirable
uncertainty.

At generation 33, ‘4’ freezes, and, simultaneously, the a-progression experi-
ences its first strong rise after initial oscillation, going further into its correct
certainty window.

At generation 90, ‘x’ freezes, and, simultaneously, the i-progression, having
had stalled since generation 80, starts rising again, going to the maximum
value over all progressions which also is in i’s correct certainty window.

e In summary, d,_, yields code evolution that is operational on the large third
problem Pj (cf. 7.3, p.167) which has real-world quality regarding evolving
genotypes and individual genetic codes.

e Occurring code evolution is in accordance with the observed fitness progres-
sion, corroborating the co-evolutionary nature of code and genotype evolution
as postulated by the code-evolution explanation.

Also, the steadily rising fitness progression means that the relevant yet uncertainly
classified symbols are not essential for improving fitness, at least during the obser-
vation window and for the given fitness cases.

e Thus, in practice, a d,_, instance may be able to ignore some relevant symbols,
thus focusing on a proper subset of the solution space where it may still find
an acceptable solution.

Also, we have observed a solidifying of the frequency distribution, which may be an
analogy to the frozen thus universal genetic code in nature.

e We interpret the observed dynamics in the frequency progressions as implicit
competitive and co-operative co-evolution:

symbol instances compete for a limited number of code entries, and problem-
relevant instances together in the same code instance may lead to a good
carrier that promotes the symbol instances.

180 7 Third empirical problem

e Thus, d,_, autonomously adapts its symbol set to the given problem, which
further approaches the technical objective.

At the technical core of the present work, there are: i) the model of Develop-
mental Genetic Programming (DGP) with its geno/phenotype mapping, and ii) the
automatic regulating of mapping redundancy. i) is based on genetic codes and re-
pairing algorithms. A repairing method is the only essential DGP component that is
solely concerned with phenotypes, while, so far, the focus has been on the genotypic
level. Therefore, next, we consider deleting repair, dealing with the phenotypic level
only. We also take this step as a prompt to consider another problem domain, and
to go for some of its well-known benchmark problems.

Chapter 8

Further problems

8.1 Overview

A heuristic is a method for finding a good problem solution within acceptable time,
while one cannot show that a found solution cannot be bad, or that the heuristic will
always perform reasonably fast. A metaheuristic is a heuristic that uses heuristics.
The label hyperheuristic (Ross 2005), see (Soubeiga 2003) for its first use, names a
heuristic that roams the space of metaheuristics that approach a given problem.

For example, (Chakhlevitch and Cowling 2005) propose a method of synthesizing
low-level heuristics for personnel scheduling, where useless heuristics are filtered so
that one is left with practical heuristics that constitute a solver. (Burke, Kendall,
and Soubeiga 2003) suggest tabu search (cf. (Glover and Laguna 1997)) on the
space of heuristics for an instance of scheduling. (Gaw, Rattadilok, and Kwan 2004)
present a timetabling application of a hyperheuristic with special emphasis on its
parallel implementation. (Dowsland, Soubeiga, and Burke 2007) choose simulated
annealing as learning method for a hyperheuristic that targets a practical example of
a p-median problem. (Oltean 2005) uses Genetic Programming (GP) for producing
Evolutionary Algorithms that are applied to discrete optimization. For the bin-
packing problem, (Burke, Hyde, and Kendall 2006) suggest a hyperheuristic with a
GP engine. While it does not add loops to the heuristics it builds, some of them
emulate a hand-crafted bin-packing strategy. The approaches from the mentioned
papers did not use grammars to direct the exploration of a search space, as is,
instead, the case with the hyperheuristic to be presented here.

Hyperheuristics (HH) have started gaining attention as one expects them to build
optimizers that are more malleable when employed for different, real-world domains.
However, one cannot create a fixed HH that works efficiently in all domains (Wolpert
and Macready 1997).

Given the above, we see the objective of a domain-independent framework that (i)
one can specialize for a problem domain at hand, that (ii) places modest demands
on its user, and that yet (iii) yields effective metaheuristics. Especially, it would
be perfect if the user was only required to offer simple heuristics with which a
hyperheuristic could produce effective metaheuristics within feasible time.

To that end, we suggest a hyperheuristic that takes, as input, the description of

181

182 8 Further problems

Algorithm 1 GP-based HYPERHEURISTIC.
1: given: grammar (G, population size p, length |
2: repeat
3: produce next random primitive-sequence o : |o| = |
EDITING(0,G) — g genotype
until p genotypes created
while time available do
Selection: 2-tournament
Reproduction: Copy winner ¢ into loser’s place — ¢’
Exploration: with a given probability
Mutate copy ¢’ — 6
EDITING(6,G)— ¢" genotype
10: end while

patterns of metaheuristics for D, an arbitrary, fixed problem domain. In principle,
one can change this description in order to use the hyperheuristic on a different
domain. As description, we suggest a grammar, G, that can generate sentences
that are built from D’s low-level heuristics and well-known metaheuristics. In this
manner, ¢ € L(G) defines a metaheuristic for D. Thus, any form of grammar-based
GP (e.g., (Wong and Leung 1995) (Montana 1995) (Whigham 1996) (Janikow 1999)
(Keller and Banzhaf 2001) (O’Neill and Ryan 2003)) that evolves programs in L(G)
is a hyperheuristic for D. Here, we shall realize this idea as an instance of linear GP
(Brameier and Banzhaf 2006).

An advantage of the introduced framework is that domain knowledge becomes
a free commodity for the GP hyperheuristic that does not have to reinvent the
user-given component heuristics. Moreover, by working a preference for desirable
patterns into GG, one can guide the search engine towards metaheuristics that hold
promise.

In Section 8.2, we describe the hyperheuristic in some detail. In 8.3, we explain
problems that serve as challenges to the hyperheuristic. In 8.4, we give it grammars
that we experiment with in 8.5.

8.2 A repairing hyperheuristic over
linear phenotypes

For a domain of interest, we represent a metaheuristic as a genotype/phenotype
g € L(G) with grammar G = (N, T, P,S). N is the set of non-terminals, 7" is the
terminal set, P is the set of production rules, and S € N is G’s start symbol. Thus,
L(G) € T*, the set of all strings over T. We call a terminal ¢t € T" a primitive, and it
may designate a hand-crafted metaheuristic, a low-level heuristic, or a part of them.

Executing a metaheuristic, g, with g = ¢%;...4, and i; € T', means the execution
of the i, from left to right, building a whole pattern, s, that is a possible solution to

8.3 Problem domain 183

the underlying problem. s is developed from an initial, complete structure, ig():

s = in(e.(ir(ip()))...).

g’s primitives, with the exception of iy, take a complete structure as input. All
primitives of g yield a whole structure as output. Especially, i, in some simple
manner, delivers an initial, complete structure.

We define g¢’s fitness, i.e., its quality q(g), as the value of an objective function,
o0, on the argument s, so that we get q(g) = o(s).

At the start of a run of the GP hyperheuristic, given population size p, an
initialization algorithm produces p random primitive-sequences from 7™. All such
sequences have the same length, |. Mutation of a genotype g € L(G) randomly
selects a locus, j, of g, and replaces the primitive at that locus, ¢;, with a random
primitive, t € T,t # ;.

Naturally, both initialization and mutation may result in a sequence of primitives,
o = lp..i;..5; € T, that is not a valid genotype, i.e., o & L(G) C T*. If this is the
case, the sequence is passed to an operator, EDITING, a minimal flavor of deleting
repairing (cf. def.). This routine attempts to turn o into an element from L(G).
To that end, the operator starts reading o from left to right. If EDITING reads a
primitive, p, that represents a syntax error in its current locus, EDITING replaces it
with the no-operation primitive, n. These steps are repeated until the last primitive
has been processed. Then, either the current version of o is in L(G), and EDITING
ends, or still o € L(G). In the latter case, EDITING keeps repeating the above
steps on o, but this time processing it from right to left. The result is either a
o € L(G) or a ¢ that consists of n-instances only. In this latter, unlikely case,
EDITING then assigns the lowest available fitness value to o. This way, ¢ will most
likely disappear from the population during selection. The selection scheme used
by the GP hyperheuristic is “tournament.” We summarize the hyperheuristic in
Algorithm 1.

Note that we initialize the population using primitive-sequences of a fixed length,
|. However, over time, the application of the EDITING operator effectively leads to
a population containing genotypes of variable lengths, which in particular allows the
evolution of parsimonious heuristics.

8.3 Problem domain

To study the GP hyperheuristic, we select a certain NP-hard domain from discrete
optimization, i.e., the set of traveling-salesperson problems (TSP) (Lawler, Lenstra,
Kan, and Shmoys 1985). In its simplest form, a TSP involves finding a minimum-
cost Hamiltonian cycle (“tour”) in a given, weighted graph. Let the n nodes of such
a graph be numbered from 0 to n — 1. Then, one describes a tour involving edges
(vo,v1), (v1,02), ..., (Vn_1,v0) as a permutation p = (vy, ..., v,_1) over {0,...,n — 1}.
We call permutation (0,1,...,n — 1) the natural Hamiltonian cycle of the graph
(“natural cycle”). In the following sections, for empirical studies, we will use 600
symmetrical, Euclidean, random-generated problems of ten nodes. The weight of an

184 8 Further problems

metaheuristic ::= NATURAL
| NATURAL search

search ::= heuristic
| heuristic search

heuristic ::= NATURAL
| 2-CHANGE

Figure 8.1: Grammar N20

edge (i, 7) is the distance between i and j. To demonstrate the practical applicability
of the GP hyperheuristic (GP HH), we will also use TSP problems of more realistic
sizes.

8.4 Target languages

8.4.1 Grammar N20

We start by providing the GP HH with two low-level heuristics only: NATURAL
that creates the natural cycle for a problem, and 2-CHANGE which executes a min-
imal change of a tour H into a different tour. That is, given two of H’s edges—
(a,b),(c,d) : a # d, b # ¢ — 2-CHANGE replaces them with (a,c), (b,d). When the
hyperheuristic, executing an evolved metaheuristic, encounters a 2-CHANGE primi-
tive as component of the metaheuristic, the HH randomly selects two appropriate
edges, (a,b) and (¢, d), from all edges of the underlying tour. The hyperheuristic
then gives these edges as arguments to 2-CHANGE and executes this primitive.

The primitives NATURAL and 2-CHANGE are terminal symbols for a grammar,
which we call N20, that guides the HH in creating and mutating metaheuristics.
We give N20 in pseudo Backus-Naur form (BNF) (Control Data Corporation 1979)
in Figure 8.1. We shall employ the top two rules of N20, metaheuristic and
search, in several upcoming grammars where these rules shall be represented by
“Preamble”. Note that there is no implicit beneficial bias in L(N20), the language
generated by N20. For instance, the sequence
NATURAL 2-CHANGE 2-CHANGE NATURAL, where the final execution of NATURAL
destroys whatever improvement may have been made by the repeated execution of
2-CHANGE, is in L(N20). Also, we have not provided a non-destructive local heuristic,
for instance, one that only executes 2-CHANGE if this results in a shorter cycle. So,
the system has no domain-specific, built-in intelligence, and has no way of evolving
it over the given grammar. Can the GP hyperheuristic still create an effective
metaheuristic, specific to the given instance of a problem? We will see this in
Section 8.5.1.

8.4 Target languages 185

Preamble
heuristic = NATURAL
| 2-CHANGE
| IF_2-CHANGE /* added */
Figure 8.2: Grammar If
Preamble
heuristic ::= 2-CHANGE
| IF_2-CHANGE

Figure 8.3: Grammar NoNatural

8.4.2 Grammars If and NoNatural

Next, we extend grammar N20, giving a grammar we call If, shown in Figure 8.2.
IF_2-CHANGE is a conditional 2-CHANGE that executes 2-CHANGE only if the execution
will shorten the tour under construction. As every greedy operator, IF_2-CHANGE
is a boon and a curse, but its introduction is safe here since the grammar holds a
randomizing counterweight in the form of 2-CHANGE.

Hoping to define an even more apt language, we do away with NATURAL in rule
heuristic, and we define grammar NoNatural shown in Figure 8.3.

8.4.3 Grammar ThreeChange

We extend the target language by a further low-level TSP heuristic that is known as
a 3-change: delete three mutually disjoint edges from a given cycle, and reconnect
the resulting three paths such that a different cycle is obtained.

Given this method, we define the heuristic IF_3-CHANGE: 1) randomly select edges
as arguments for 3-change 2) if 3-change will better the cycle, execute 3-change.

Since IF_3-CHANGE introduces a greedy bias, it may or may not be helpful to
provide a counter-bias, for instance by allowing for an occasional worsening of a
cycle. We decide in favor of making this step available, and to this end we define
the heuristic IF_NO_IMPROVEMENT:
if none of the latest 1,000 individuals produced has found a better best-so-far tour,
execute a 2-change.

We add IF_3-CHANGE and IF_NO_IMPROVEMENT to the previous grammar and call
the resulting one ThreeChange. It is shown in Figure 8.4.

8.4.4 Grammar NoNolmprove

A small language is desirable, as it implies a small search-space size for the hyper-
heuristic. To understand whether the heuristic IF_NO_IMPROVEMENT does or does

186 8 Further problems

Preamble
heuristic ::= 2-CHANGE
| IF_2-CHANGE
| IF_3-CHANGE
| IF_NO_IMPROVEMENT

Figure 8.4: Grammar ThreeChange

Preamble

heuristic ::= 2-CHANGE
| IF_2-CHANGE
| IF_3-CHANGE

Figure 8.5: Grammar NoNolmprove

not improve the effectiveness of the GP hyperheuristic, we remove it from grammar
ThreeChange. We call the resulting grammar and its language NoNoImprove. The
grammar is shown in Figure 8.5.

8.4.5 Grammar DoTilllmprove

So far, only sequential and conditional execution of user-provided heuristics are avail-
able to evolved metaheuristics. Therefore, a loop element is required for completing
the set of essential control structures. To that end, we introduce the primitive

REPEAT_UNTIL_IMPROVEMENT p: execute primitive p until it has lead to a shorter
cycle or until it has been executed ¢ times for user-given ¢.

An example for the use of the primitive REPEAT_UNTIL_IMPROVEMENT in a gram-
mar, DoTilllmprove, is shown in Figure 8.6. Note that this grammar allows for
evolving a metaheuristic that represents one of a few simple search types, such
as memory-less iterated local search (Lourenco, Martin, and Stutzle 2002), greedy
search, or random search, without enforcing the evolution of only one such type.
This is because the grammar contains primitives that represent elements of such
search types, but it does not describe primitive-sequences of exclusively one such
type. Thus, at any point during a hyperheuristic run, the population may con-
tain metaheuristics that represent different search types, while there is only one
underlying grammar.

8.5 Experiments

Initially, we are interested in whether or not, on average, for small problems from
the chosen domain, an evolved metaheuristic does at least better than blind search,

8.5 Experiments 187

Preamble

heuristic ::= 2-CHANGE
| loop IF_2-CHANGE
| loop IF_3-CHANGE

loop ::= REPEAT_UNTIL_IMPROVEMENT
| /% empty */

Figure 8.6: Grammar DoTilllmprove

the minimal approach to any problem. This is to see whether the hyperheuristic
manages to acquire any domain information, at all, and to represent it in the struc-
tures of evolved metaheuristics. Later, we shall go for bigger problems. There, a
comparison with the second-simplest approach, a pure hill climber, is not ambitious,
as it performs poorly on larger TSPs. Indeed, literature ignores it. Instead, we shall
compare evolved solvers to a state-of-the-art hybrid Genetic Algorithm.

Here, we compare the search performed by evolved metaheuristics to a form of
blind search that operates on the solution space of a problem to be given to the
hyperheuristic. For this purpose, blind search creates n > 0 random permutations,
with n to be given. That is, each of the n search steps creates a random cycle, i.e.,
a candidate solution.

For a meaningful comparison in terms of efficiency, one must ensure that the
processes to be compared perform approximately equal numbers of their respective
elementary operations. Thus, for the present purpose, we must set n = 10 for
blind search, as this number equals the genotype size which equals the number of
simplest search steps that an evolved metaheuristic performs during its evaluation.
In this manner, the best of the n cycles found by a run of blind search can be
compared with the single cycle constructed by n calls of heuristics as orchestrated
by a metaheuristic.

To compare an achieved tour length [to a given length L, we define 6(l, L) =
1 —1/L. Thus, for [and m with 6(l, L) > §(m, L), [is a better result than m. Also,
d(l, L) < 0 implies that [is worse than L, a § value of zero indicates | = L, and
positive values signal an improvement.

8.5.1 Grammar N20

For the small TSP problems, we will employ a restricted version of the GP hyper-
heuristic where all produced primitive-sequences shall be genotypes of the same size.
For the larger problems, we shall drop this limitation.

The genotype size shall be | = 10. The initial genotypes shall all be identical: g =
NATURAL...NATURAL, |g| = |. Thus, initialization of the population of a hyperheuristic
run does not effect random search, so that any discovered, good individual must have
come from evolutionary search alone.

188 8 Further problems

H Popul. size ‘ Genotype size ‘ Offspring ‘ Mut. prob. H
H 10 ‘ 10 ‘ 2,500 ‘ 0.3 H

Table 8.1: Basic Parameters

H Length ‘ Mean ‘ SD ‘ 4} H
Natural | 3,827 | 539 | n.a.
Best | 2,654 | 265 | 0.31

Table 8.2: Hyperheuristic, 600 10-node random problems, 1,000 runs per problem.
Improvement ¢ relative to mean natural length. “n.a.”: not applicable

For the present setup of the hyperheuristic, its random choice of an element from
a set, e.g., for a mutation, shall be uniform.

We number the loci of genotypes, beginning with zero. In the context of L(N20),
the described setup implies that we exclude position zero from mutation, as only
NATURAL is legal there. We set mutation probability to 0.3 (cf. Algorithm 1, step
9). The GP hyperheuristic shall measure time in terms of the number of individuals
produced after creation of p = 10 initial individuals. We set this offspring number
to 2,500 (cf. Algorithm 1, step 6). Table 8.1 reports the used parameters.

On a single, random-generated ten-node problem, P, we observe tour lengths
found by evolved metaheuristics. These lengths are, on average over 1,000 inde-
pendent runs, better by 0.3 [§] than P’s natural length, opposed to 0.2 for random
search.

Interestingly, the hyperheuristic produces such metaheuristics despite the fact
that the underlying primitives do not allow for direct use of problem-specific infor-
mation. For example, an informed decision on the choice of arguments to a 2-CHANGE
execution is not an option. To establish whether this phenomenon is independent
from P, we perform 1,000 independent runs of the hyperheuristic for each of 600 ran-
domly created, ten-node problems, collecting the natural lengths of these instances
and the lengths of the shortest tours found by the runs. Table 8.2 shows the results.

We notice a mean improvement of about 0.31, so that the good performance of
the GP hyperheuristic, observed for P, appears to be rather general.

Let us shift the focus from the problem space to the metaheuristic space. We
therefore consider, for P, both the GP hyperheuristic and pure random search in
the space of metaheuristics, i.e., L(N20). As the given genotype size equals ten,
the genotype that starts with NATURAL, followed by the longest possible unbroken
chain of nine 2-CHANGE calls, offers most opportunities for improving a tour. On
P, the 1,000 runs of the hyperheuristic locate this genotype 14,171 times, while the
expected value for 1,000 runs of 2,510 random samples each is merely

1,000 - 2,510/2° ~ 4, 902.
Table 8.3 collects the values.

8.5 Experiments 189

H Approach ‘ Hits H
GP hyperheuristic | 14,171
Random 4,902

Table 8.3: GP hyperheuristic v ideal random search on L(N20). Hits of optimal
genotype.

H Popul. size ‘ Genotype size ‘ Offspring ‘ Mut. prob. H
| 10 | 20 | 5000 | 03 |

Table 8.4: Basic Parameters

8.5.2 Grammars N20, If and NoNatural

For further experiments, we change some of the basic parameters. The genotype
size, which equals the number of times an evolved metaheuristic calls a provided
heuristic, shall be twenty. 5,000 offspring shall be produced per run. Table 8.4
reports the used parameters.

For a comparison of the resulting behaviors of the hyperheuristic when it is fed
with the different grammars, we consider forty symmetrical, Euclidean, random-
generated problems of ten nodes. On each problem, the HH performs 500 inde-
pendent runs. Regarding the shortest tour found during a run, we give means and
standard deviations (SD) over all runs over all problems, rounded to the nearest
integer. Table 8.5 summarizes the results of the experiments. Its first line gives the
values over the natural lengths of the random problems.

The improvements in the mean-best values show that one can improve perfor-
mance of the GP hyperheuristic by increasing expressiveness of the target language
L, or by changing a bias in L, as we have done over the series of grammars discussed
in Section 8.4.

Language NoNatural, the one of the three giving the best results, is still very
simple in terms of the structural and functional sophistication of its sentences when
one compares them to procedures used by state-of-the-art TSP solvers. We therefore
ask whether or not, even with this quite rudimentary language at hand, the GP
hyperheuristic can still be of use given a real-world problem.

So, we consider problem eilbl from (Reinelt 2007). Its dimension is n = 51
nodes, its best known solution has a length of 428.87 (Jayalakshmi, Sathiamoorthy,

H 40 problems ‘ Mean best ‘ SD ‘) H

Natural length 3,774 508 | n.a.
N20 2,600 277 | 0.31
If 2,530 251 | 0.33
NoNatural 2,423 204 | 0.36

Table 8.5: Performance of hyperheuristic over different languages, on 40 ten-node
random problems, 500 runs per problem. Improvements ¢ relative to natural length.

190 8 Further problems

| Popul. size | Genotype size | Offspring | Mut. prob. |
[100 | 500 | 100000 | 05 |

Table 8.6: Basic Parameters

H eilb1 ‘ Mean best ‘ SD ‘ Best ‘) H
Natural length 1,313.47 | n.a. n.a. | n.a.
NoNatural 922.00 | 26.96 | 853.73 | 0.3

Table 8.7: Performance for eil51 over NoNatural, 100 runs. Improvement J of mean
best relative to natural length.

and Rajaram 2001), with natural length of approximately 1,313.47. All values deli-
vered by the GP hyperheuristic shall be rounded off to the nearest hundredth. We
shall only be dealing with real-valued tour lengths, emphasizing differences between
very good vs. excellent results. Literature often mentions integer lengths that result
from measuring a distance between two nodes by rounding it to the nearest integer,
which implies that tours with different real-valued lengths can have the same integer
length.

For a symmetrical TSP instance, the number of tours that are different in human
terms equals (n — 1)!/2. The evolved metaheuristics operate on permutations of n
nodes, so that the search-space size is n!. So, while the previous problem dimension,
n = 10, yields a size of n! ~ 3.6x 10°, n = 51 gives about 1.6 x 10°® search points
and 1.52x 10% different tours. To accommodate for the larger search space, we set
the basic parameters as shown in Table 8.6.

Table 8.7 gives the results obtained for eil51. Column “Best” gives the length
of the shortest cycle found over all runs. On average, even the simple language
NoNatural guides the GP hyperheuristic to an improvement of about 0.3 relative to
the original tour.!

8.5.3 Grammars ThreeChange and NoNolImprove

Table 8.8 gives the results obtained with grammar ThreeChange. We notice another
improvement in the mean-best value. This means that the combination or the
individual effects of the added primitives, IF_3-CHANGE and IF_NO_IMPROVEMENT,
increase the search power of the hyperheuristic.

Table 8.9 gives the results obtained using grammar NoNoImprove. This grammar
lacks the primitive IF_NO_IMPROVEMENT. Interestingly, we see that removing this
primitive yields even better search performance.

I'Naturally, longer runs may produce even better results. For example, in one run with 10°
produced offspring, the shortest tour found had a length of about 749. However, we did not
perform enough such runs to be able to report reliable results here.

8.5 Experiments 191

H eilbl ‘ Mean best ‘ SD ‘ Best ‘) H
Natural length 1,313.47 | n.a. n.a. | n.a.
ThreeChange 874.96 | 26.55 | 810.73 | 0.33

Table 8.8: Performance for eil51 over ThreeChange, 30 runs. Improvement o of mean
best relative to natural length.

H eil51 ‘ Mean best ‘ SD ‘ Best ‘) H
Natural length 1,313.47 | n.a. n.a. | n.a.
NoNolImprove 798.32 | 15.98 | 763.30 | 0.39

Table 8.9: Performance for eilbl over NoNolmprove, 30 runs. Improvement § of
mean best relative to natural length.

8.5.4 Grammar DoTilllmprove

Successful optimization algorithms all use the iteration of effective heuristics. We
therefore predict that the looping construct available in grammar Do TillImprove—
that is otherwise identical to the previous grammar, NoNolImprove-will further im-
prove the performance of the GP hyperheuristic.

Table 8.10 gives the results of our experiments with grammar Do TillImprove.
One sees that search performance, in terms of the mean-best value, indeed clearly
improves, even when only a small ¢, i.e., number of loop iterations, is used. For
comparison, the bottom row of the table gives the best known result for eil51,
taken from (Jayalakshmi, Sathiamoorthy, and Rajaram 2001).2

We have provided the GP hyperheuristic with very trivial, low-level heuristics
only, and with a simple grammar. It is therefore most remarkable that, for « = 70,
one run of the hyperheuristic evolves a metaheuristic that locates a tour whose
rounded length equals the best known result. We call such a method a best meta-
heuristic. Unfortunately, (Jayalakshmi, Sathiamoorthy, and Rajaram 2001) does not
mention the precision of its result. We report that our full-precision value equals
428.871765.

Actually, for ¢ = 800, the hyperheuristic routinely produces best metaheuristics,
i.e., each of its 100 runs produces at least one such MH, as evidenced by standard
deviation zero. Also, with much less effort, given ¢« = 480, almost every run produces
at least one best MH.

For + = 800, a run lasts 10.1 minutes on average on common hardware; here: a
single core of an Intel Xeon 3.2 GHz dual core machine without additional heavy
processes, but with I/O for storing about 1 GB of data about states of the hy-
perheuristic. Even so, as 100,100 (initial individuals plus offspring) /10.1/60 ~ 165,
this many metaheuristics are produced each second on average, including their exe-
cution that locates tours as solutions to the given problem.

2(Jayalakshmi, Sathiamoorthy, and Rajaram 2001) presents a hybrid Genetic Algorithm, only
applicable to Euclidean TSPs, that uses a specialized crossover together with several non-trivial,
handcrafted heuristics.

192 8 Further problems

| eill | Mean best | SD. | Best | | P% |
| Nat. length | 1,31347[na. | na | na [20626 |
DTI 528.89 | 8.98 | 508.75 10 23.32
7 477.82 | 8.11 | 454.12 20 11.41
7 458.61 | 5.79 | 444.21 30 6.93
7 439.42 | 2.90 | 431.95 60 2.46
7 436.61 | 3.07 | 428.87 70 1.8

7 429.28 | 0.56 | 428.87 240 0.1
i 428.88 | 0.03 | 428.87 480 0.002
7 428.87 | 0.00 | 428.87 800 0.0
i 428.87 | 0.00 | 428.87 10* 0.0

| Hybrid GA | na. | na. | 428.87

best known ‘ 1n.a. H

Table 8.10: Performance for problem eil51 over grammar Do TillImprove (DTI) for
different values of ¢, ¢ iterations at most, 100 runs per value. P: Mean best or natural
length in terms of % of best known result. All real values rounded off to nearest
hundredth except where higher precision required for distinction.

H 0. ‘ S.D. ‘ Primitive H
190.37 | 11.9 n “no operation”
0.999 | 0.00008 | NATURAL
90.77 2.87664 | REPEAT_UNTIL_IMPR.

104.27 7.5 IF_3-CHANGE
99.61 7.89451 | IF_2-CHANGE
14.98 3.6872 2-CHANGE

| 309.63 | 1.—¢(n) | mean effective MH size |

Table 8.11: For problem eil51, grammar DoTilllmprove, « = 800, ¢ iterations at
most, 100 runs: average primitive frequency ¢. Fixed max. genotype size | = 500.

Next, we are interested in the structure of an evolved metaheuristic. For a
primitive p and a string s, we define the primitive-frequency ¢(p) as the number of
p’s occurrences in s. We focus on the average primitive-frequencies over all runs
with « = 800, i.e., we ask how many instances of a given primitive occur, on average,
in a produced genotype. Table 8.11 summarizes the results. While, as seen before,
each run yields at least one best metaheuristic, the evolved metaheuristics do not,
on average, exhaust the maximal genotype size, |, as evidenced by | — ¢(n) (bottom
row of table). This means that the hyperheuristic works against bloat, a typical
nuisance with many GP flavors, i.e., strong growth of undesirable parts of an evolved
structure. Hence, the mean effective size of a produced metaheuristic is less than
62% of |, the fixed maximal size of a MH.

¢(NATURAL) does not exactly equal 1 due to rare, evolved strings that only
consist of n-instances and that never got selected for competition with a meta-
heuristic. IF_3 — CHANGE has the highest ¢ value among the non-n primitives.

8.5 Experiments 193

| €l76 | Mean best | SD. | Best | L | P.% |
| Nat. length | 1,974.71[na. | na. | mna. [26275 |
DTI 600.09 | 12.37 | 576.60 800 10.24

i 592.93 | 12.10 | 564.48 2x 103 8.92
i 589.63 | 11.98 | 562.27 5x 103 8.31
i 586.29 | 12.81 | 559.78 | 1.5x 10* 7.7

i 586.39 | 12.55 | 561.79 5x 104 7.72
7 586.10 | 12.47 | 559.09 5x 10° 7.67
7 586.48 | 12.81 | 557.90 5x 10° 7.74

H Hybrid GA ‘ n.a. ‘ n.a. ‘ 544.37

best known ‘ n.a. ‘ ‘

Table 8.12: Performance for eil76, details as given in caption of Table 8.10.

This is of interest because human MH designers prefer the use of 3-CHANGE over
2-CHANGE: while the former runs longer, the latter often does not shorten a tour
as much. ¢(IF_2 — CHANGE) is the second-highest frequency, so that IF_3-CHANGE
and IF_2-CHANGE, the two non-destructive, tour-changing primitives, are the most
frequent effective elements of an evolved MH.

¢(REPEAT _UNTIL_IMPROVEMENT), the third-highest frequency, still equals about
29% of the mean effective MH size. This shows that the hyperheuristic makes strong
use of this loop-based primitive, approximating a k-opt heuristic that is widely used
in hand-crafted TSP solvers. This heuristic executes a k-change until no further
improvement occurs, while REPEAT_UNTIL_IMPROVEMENT, together with its primitive
to be repeated, runs until a first improvement happens or ¢ is exhausted.

Eventually, ¢(2 — CHANGE) equals about 4.8% only. This shows that the hyper-
heuristic mostly does not use this tour-changing primitive that represents the only
destructive operator among all given heuristics.

Next, we consider eil76 (Reinelt 2007), a 76-node problem with a size of about
1.9 x 10! search points. We use the same basic parameters as given in Table 8.6,
and, again, grammar Do TillImprove.

Results are summarized in Table 8.12. Despite the vastly larger search space,
already ¢ = 800, the value that results in zero standard deviation over eil51, yields
a promising result as given in column “Best”, ie., § = 576.7. 1,974.71 is the
length of eil76’s natural cycle that an evolved metaheuristic starts changing into its
output cycle. Relative to this natural length, [is already in the vicinity of the best
known result from literature (Jayalakshmi, Sathiamoorthy, and Rajaram 2001), i.e.,
a = 544.37.

We therefore keep increasing ¢ over some orders of magnitude, up to 5x 10°,
which results in a new § = 557.9 that is within §/a — 1 ~ 2.49% of «.

Over ’s magnitude orders 4, 5, and 6, the stagnation of P.%, of the corresponding
mean best values, and of their standard deviations suggests increasing the number
of offspring to be evolved. We therefore set this basic parameter to 1x 10°, keeping
all other parameter values. Judging by table 8.12, already ¢ = 2x 103 is a promising

194 8 Further problems

H Popul. size ‘ Genotype size ‘ Offspring ‘ Mut. prob. H
| 100 | 500 | 1x10° [05 |

Table 8.13: Basic Parameters

H eil76 ‘ Mean best ‘ S.D. ‘ Best ‘ L ‘ P.% H
| Nat. length | 1,974.71 [na. | na. | na. | 262.75 |
| DII | 548.99 | 1.67 | 544.37 | 2x10°] 0.85]
H Hybrid GA ‘ n.a. ‘ n.a. ‘ 544.37 ‘ best known ‘ n.a. H

Table 8.14: Performance of metaheuristics evolved over language DTI, on problem
eil76. 100 runs of GP hyperheuristic for given ¢ value. Best evolved metaheuristics
at least match effectiveness of hand-crafted Hybrid GA. Other details as given in
caption of Table 8.10.

value. Table 8.13 summarizes the values of the basic parameters. Table 8.14 shows
results. The mean best over all runs is well within one percent of a = 544.37,
the best known solution. Our best evolved metaheuristics yield tour lengths that
are actually shorter than «. Unfortunately again, (Jayalakshmi, Sathiamoorthy, and
Rajaram 2001) does not specify whether « is a rounded value. As tour lengths can be
close to each other — the hyperheuristic finds, for instance, tour lengths 547.757183
and 547.740601 — full-precision values can be critical to comparing effectiveness of
TSP solvers. Thus, we report that our GP hyperheuristic has found an overall best
tour length of ayy = 544.36908.

This result and also the best GP-HH result over problem eil51 easily beat best
results from (Oltean 2005) that compares its evolved evolutionary algorithms (EA)
against a standard GA, while our evolved metaheuristics must compete with the so-
phisticated, specialized GA from (Jayalakshmi, Sathiamoorthy, and Rajaram 2001)
that has produced «. In particular, the evolved EAs start with initial tours gained
from the Nearest-Neighbor heuristic, while our evolved metaheuristics begin with
the natural tour as given by the problem statement.

To our knowledge, our best results on both benchmark problems are the best
over all GP work done on TSP.

For + = 2,000, on average, the hyperheuristic produces 97 metaheuristics per
second on eil76. On eil51, the previous problem, we obtained a value of 165. Thus,
an increase in problem size by factor 76/51 ~ 1.5 has increased effort by factor
165/97 ~ 1.7. This is a moderate price to pay, considering that the search space of
eil76 is larger by about factor 101166

For eil76, we are interested in whether or not, at a reasonable expense of more
run time, the hyperheuristic can find more very good results. Thus, we run the
GP-HH again, changing ¢ from 2,000 to 15,000. Table 8.15 shows results. The mean
best’s P.% value drops down to 0.26%, less than a third of its previous value. On
average, the GP hyperheuristic produces 56 metaheuristics per second, which is still
about 60% of the previous rate. While we consider only 30 runs this time, the very

8.6 Summary and conclusions 195

H eil76 ‘ Mean best ‘ S.D. ‘ Best ‘ L ‘ P.% H
| Nat. length | 1,974.71 | na. | na. | na. | 26275 |
| pr1 | 545.77] 0.97 | 544.37 | 15x10* | 0.26 |
H Hybrid GA ‘ n.a. ‘ n.a. ‘ 544.37 ‘ best known ‘ n.a. H

Table 8.15: Performance over 30 runs of GP hyperheuristic for given ¢ value. Other
details as given in caption of Table 8.14.

low standard deviation indicates reliable search behavior. In view of these values,
the more than sevenfold increase of + has paid off.

8.6 Summary and conclusions

In this chapter, we have introduced a domain-independent, linear GP hyperheuristic
that produces metaheuristics from provided heuristics by use of deleting repair. The
metaheuristics are expressions from a user-given language.

We demonstrated this approach for the domain of traveling-salesperson problems.
To this end we provided the hyperheuristic with simple heuristics from this domain
and with a progression of simple grammars. The grammar over which the GP-HH
has been seen to do best describes sequences of heuristics and loops, with a fixed
maximum number of loop iterations of a single heuristic.

While this grammar is simple, for the considered, realistic benchmark TSPs,
the GP hyperheuristic evolves metaheuristics that find tours with lengths that are
highly competitive with the best known lengths from literature. These lengths
are often yielded by specialized, man-made solvers that use sophisticated, hand-
crafted heuristics and that are initialized with tours that are provided by some
smart, manually produced initialization heuristic. None of this is available to the
presented GP hyperheuristic.

In addition, by setting the iteration number and the number of produced meta-
heuristics appropriately, the hyperheuristic has been able to routinely produce meta-
heuristics capable of matching best known results, with modest run times.

The approach produces parsimonious metaheuristics whose sizes are, on average,
considerably smaller than the maximally available size. Out of the provided primi-
tives, the GP hyperheuristic strongly favors the non-destructive primitives and the
loop-based primitive. These proved critical to giving competitive effectiveness to
the produced metaheuristics.

However, the GP hyperheuristic did not ignore the destructive primitive but dis-
covered a good ratio of all primitives. In particular, it did not wander off into pro-
ducing very greedy metaheuristics only, as, for instance, some greedy hyperheuristic
would do.

As the principles of the GP hyperheuristic are domain-independent, one may
hope it will work for other domains when one supplies it with domain-specific heuris-
tics and languages. The user of this approach can influence the search performance
of the hyperheuristic at an abstract, problem-oriented level by modifying the used

196 8 Further problems

language, i.e., by adding or removing heuristics, and by describing optional patterns
for the order of execution of the given heuristics.

To that end, for an arbitrary domain, one may manually develop sophisticated
heuristics or, saving expensive manpower, merely provide trivial heuristics, or simply
extract smart methods from existing solvers, and represent all of them as primitives.
These are the terminals of a grammar that generates the language used by the
hyperheuristic. The latter will then perform the tedious task of searching for a
promising metaheuristic, i.e., an effective combination of the provided heuristics.

Also, one may allow a generous maximal size of the metaheuristics that are to be
evolved, since the presented GP hyperheuristic displays an implicit tendency toward
keeping them parsimonious. In particular, for different metaheuristics, deleting
repair, embodied as EDITING operator, often leads to a different effective size, i.e.,
the number of effective primitives in a metaheuristic. This variance is beneficial
as it is a necessary condition for the emergence of metaheuristics that are both
parsimonious and good.

EDITING requires an only small computational effort, since the elimination of
an erroneous primitive ¢; from a metaheuristic does not force i) the calculation of
the set of primitives that are proper in locus j, and ii) subsequent selection of one
of them with which to replace ;.

Thus, only given point mutation, EDITING, and a fixed maximal size of its
products, the hyperheuristic may benefit from parsimonious metaheuristics and their
varying sizes, without risking bloat.

In summary, we have demonstrated the efficacy of deleting repair, in terms of
avoiding bloat and supporting diversity of phenotype size, on a realistic problem
domain. In feasible time, such problems yield to metaheuristics only, if at all.
Therefore, and as deleting repair relies on an underlying grammar, we have taken this
situation as opportunity to apply Genetic Programming as a novel hyperheuristic
that is guided by a grammar that describes problem-specific metaheuristics, using
a loop-based primitive, i.e., grammar terminal.

As an aside, we suggest some directions of future work on this GP hyperheuris-
tic. One may, for instance, test it on further real-world problems coming from
several domains, comparing the produced metaheuristics to other domain-specific
algorithms. Additionally, one may identify a problem type for which few or no
well-established solvers exist, such as fully autonomous real-time control of agents
in dynamic, hazardous environments. One may also break up low-level heuristics
into their components and represent them as primitives. In this way, in principle,
the hyperheuristic would be able to produce even more novel and powerful meta-
heuristics. Furthermore, the hyperheuristic could, on the fly, represent an evolved
metaheuristic as a further primitive of the underlying grammar, thus enriching the
language used for expressing metaheuristics.

Next, we give a summary of the present work.

Chapter 9

Summary

Real-world problems meet with insufficient flexibility of current artificial production
systems, which yields our long-term strategic objective: realizing a matrix from
which material autopoietic systems emerge that represent acceptable solutions. For
computer science, this implies autopoietic programming: a computing system that
emerges and self-stabilizes in a problem environment.

A system’s capability of performing its ontogeny—development as sequence of
endogenous structural modifications—is necessary for its autopoiesis. Ontogeny is
therefore essential to the evolution of complex systems, i.e., their implicit adap-
tation. Natural evolution is an instance that is autopoietic and produces similar
systems, and it is a paragon for the well-established Evolutionary Algorithms (EA):
these probabilistic direct search methods use heuristics that are distorted but still
effective metaphors of biological phenomena. Thus, Genetic Programming (GP),
given by EAs that find problem solutions represented as programs, lends itself to
approximating autopoietic programming.

Ontogeny occurs under influence of information, resulting in a structure that, in
its environment, exhibits behavior that effects adaptive pressure on the information.
In nature, a genotype co-determines cellular structures that are the material basis
of an associated phenotype. Previous work has extended GP by a fixed genotype-
phenotype mapping. However, a static EA component is of limited practical value.
In particular, self-adaptation, i.e., endogenous self-maintaining modification, is nec-
essary for autopoiesis. Thus, we see a self-adaptive genotype-phenotype mapping
as a near objective. However, an engineering approach toward this goal raises the
conflict of recursion: one cannot manually produce a fully self-adaptive algorithm,
which would require an infinite hierarchy of control layers. The explicit and there-
fore fixed semantics of an algorithm is the dilemma’s root, so that co-evolution of)
semantics-giving and ii) -carrying components of a GP algorithm may support its
implicit adaptation, weakening the conflict. A technical objective results: investigat-
ing whether introducing evolution-related phenomena—in particular, ontogeny and
co-evolution—to a GP algorithm may support its self-adaptation and performance.
To that end, cybernetics suggests the co-evolution of both an i) ontogenetic appa-
ratus and ii) genotypes as a focus, because (i) performs a mapping from (ii) onto
phenotypes whose behavior might feed back selective pressure to (i), proposing a
circle of mutual control in place of a hierarchy of command layers.

197

198 9 Summary

A theoretical discussion analyzes and extends the concepts of the GP-oriented
mapping to a model that can be used by a generic search algorithm. A common
search algorithm identifies genotypes with phenotypes, opposed to a developmental
search method. Specialized for the present work, the model sees a GP algorithm
producing phenotypes from a solution space that is a subset of a given target language,
while the genotypes come from a decision space.

An initial mapping step reads genotypes and writes primary transcripts by use
of a manually given genetic code. A full developmental GP algorithm maps the entire
decision space onto solutions that are final transcripts, synthesized by alternative
repairing algorithms that we suggest.

Of these methods, the generic model recommends deleting repairing which best
supports autonomy of the search algorithm. This repairing type enables the algo-
rithm to accept also those genotypic introns that represent phenotypic introns that
are syntax errors. As a side effect, this tolerance allows the algorithm to maintain
maximal genetic diversity. Also, the necessary deleting of all—differently sized—
erroneous phenotypic introns implicitly yields desirable structural diversity of the
resulting solutions.

To emphasize the efficacy of deleting repairing, the present work describes a
further, domain-independent, linear GP method that uses this repairing type. The
method produces metaheuristics, only using elementary, provided heuristics. The
metaheuristics are expressions from a user-given target language.

This approach is shown to perform well for a domain of discrete combinatorial
problems. The given language is simple. Within modest run time, however, and
for realistic benchmark problems, the GP method evolves metaheuristics that find
solutions that are highly competitive with the best known solutions from literature.
The latter are often yielded by specialized, man-made solvers that use sophisticated,
hand-crafted heuristics.

The approach produces parsimonious metaheuristics whose sizes are, on aver-
age, considerably smaller than the maximally available size. Thus, one may allow a
generous maximal size which gives enough space for the synthesis of valuable subex-
pressions, divided by erroneous strings that deleting repair will eliminate. In this
manner, for different metaheuristics, deleting repair often leads to a different effec-
tive size, i.e., the number of effective components of a metaheuristic. This variance
is beneficial as it is a necessary condition for the emergence of metaheuristics that
are both parsimonious and good.

Deleting repair requires an only small computational effort, since the elimination
of an erroneous component i; from a metaheuristic does not force i) the calculation
of the set of components that are proper in locus j, and ii) subsequent selection of
one of them with which to replace ;.

Thus, only given point mutation, deleting repair, and a fixed maximal size of
an evolved product, a search method may benefit from parsimonious products and
their varying sizes, without risking bloat.

The generic model also implies that, without information on the problem-
relevance of a target symbol, the mapping of genotypes must be surjective. To

199

that end, as undesirable constraint, the employed genetic code must contain all tar-
get symbols. Thus, the model suggests redundant mappings, which requires a code
or repairing to raise neutrality of genotypes. We focus on the according adaptation
of a code. As for representation, genotypes should be high-dimensional over phe-
notypes. This may establish neutral genotypic networks as diversity pools between
which developmental search may outrun common search through tunnels.

For empirical investigation, we develop a linear, compiling, developmental as
well as common GP system with genotypic fixed-size binary strings and phenotypic
sentences of an arbitrary LALR(1) language (here: ISO-C). Technically, from a final
transcript, a proposed editing algorithm produces input to compiling or interpreting
phases that yield phenotypic behavior. Cybernetically, only the final transcript
matters as it represents genotypic semantics that results in feedback of adaptive
pressure to the genotype.

For system design, we follow minimalism and efficiency as principles. Notably,
they, as well as the model, argue for algorithms that, upon their completion, are
recognized as metaphors of biological phenomena, e.g., deleting repairing that mim-
ics so-called intron splicing. This situation corroborates the well-known heuristic
EA-design principle of selecting, without deep analysis, a biological phenomenon as
paragon for an algorithmic component, because one assumes that cybernetic quality
of the phenomenon has emerged from natural evolution.

As targets of empirical research, we implement static symbolic regression prob-
lems. Results confirm model predictions. In particular, a beneficially redundant
code and high-dimensional genotypic representation foster performance over com-
mon search. However, for practical problems, the user often lacks complete know-
ledge on symbol relevance, which makes a manual ad hoc design of a desirable genetic
code infeasible.

Therefore, with codes and redundant mappings in the center of interest, the focus
moves to co-evolving individual codes and genotypes. Theory supports this objec-
tive since code variability fosters variability of fitness-landscape topologies whose
individual properties—notably, locally strong causality—are critical for search per-
formance. The EA—design principle also recommends this approach because natural
evolution has produced the Universal Genetic Code that favors the evolution of
organismes.

In our accordingly extended system, an initial individual consists of its genotype
and a random genetic code. Explicit mutation of codes and their implicit cloning
and selecting via their carriers are to drive their evolution. The suggested code
hypothesis defines this evolution as a process producing individual codes that are
increasingly beneficially redundant. The accompanying code-evolution explanation
(CEE) views this process as an instance of cooperative co-evolution: autocatalytic
mutual hitch-hiking of codes and their carriers.

Code evolution is observed on a small problem with tractable code-fitness mea-
suring. Simultaneous positive progress of both individual and code fitness corrobo-
rates the CEE. Since adapted codes are components of the underlying developmen-
tal search algorithm d,_,, code evolution appears as d,_,’s implicit self-adaptation,

200 9 Summary

which approaches the technical objective. This effect results from codes and geno-
types co-operating as well as from instances of target symbols competing for limited
space of a code. Code evolution is also observed on a large and high-dimensional
problem that is hard for dy_, regarding both code and genotypic search. Occurring
positive fitness progress predicts this evolution, thus corroborating the CEE.

From a machine-learning perspective, the observed process performs a good,
unsupervised, probabilistic binary classification of target symbols by their problem
relevance, thus filtering noise from the problem representation.

Code evolution implicitly adapts individual genotype-phenotype mappings, re-
ducing the need for their difficult or infeasible manual design. In particular, it
approaches the GP-typical task of providing a minimal, sufficient function-and-
terminal set: an optimal code is a surjection onto this set. Thus, code evolution
shrinks the solution space and increases density of acceptable phenotypes there, sup-
porting performance. It also weakens the well-known curse of dimensionality, since
it fosters mapping genotypes onto good phenotypes, thus increasing the number of
favorable directions for the search process to choose from for the next exploratory
step away from a located individual. Eventually, an individual genetic code under
a small mutation rate represents a long-term process memory shielded from direct
selection pressure by the phenotype, adding process inertia for stability.

In summary, theoretical and empirical observations indicate that co-evolving
genotypes with their developmental machinery as part of a GP algorithm can support
its autonomy and performance.

Chapter 10

Conclusions and outlook

Architecture is frozen music. GOETHE

The brain is an orchestra without a conductor,
playing a mysterious, wonderful symphony. UNKNOWN

A phenotype is i) a structure whose interpretation yields behavior of interest, or
ii) a model of such behavior, or iii) such behavior. A computer-program represen-
tation is but an instance of (i). Thus, while our focus is on GP, the summarized
arguments on development and search dynamics apply to processes adapting arbi-
trary phenotypical structures in an evolvable medium, e.g., a target language whose
sentences manipulate material items and represent a dynamic physical structure.
In particular, literature’s ubiquitous distinction between different EA flavors is sec-
ondary in the light of ontogeny, since their prominent structures, e.g., real-valued
vectors, finite automata, or program representations, can result as problem-specific
expressions of universal genotypes, i.e., binary strings that carry a search process
that is independent from phenotypic technicalities.

e As for exploiting our presented results to the end of autonomy and performance
of a search process, we recommend such approaches to real-world problems that
feature self-adaptive development. Individual genotype-phenotype mappings
and their co-evolution with genetic information, as has been introduced here
for GP, can weaken the dilemma that a process user tries compensating for in-
complete problem knowledge by adding search mechanisms that subsequently,
however, require manual control.

e In particular, for GP-like processes, some possibilities come to mind: Redun-
dancy adaptation of limited-size codes, eliminating or introducing user-given
target symbols, results from an implicit pressure toward a sublanguage of min-
imal sufficient expressiveness, implementing Ockham’s Razor. This addresses
prominent conflicts of GP-usage, for instance: a given Turing-complete target
alphabet may unnecessarily have an infinite loop emerge, if the underlying

201

202 10 Conclusions and outlook

problem does not require completeness.! Then, also a code without irrele-
vant, iteration-raising symbols may result in acceptable solutions, and it can
be more redundant on relevant symbols. In general, adaptation of codes may
gradually shift the active part of the given target language to a subset that
properly models the problem at hand.

e Code evolution implicitly yields automatically defined functions if a code en-
try may contain a non-trivial symbol sequence. Code variation would turn
the sequence into a building block, i.e., a problem-relevant macro-symbol,
increasing genotypic functional abstraction. As side effect, to genotypic re-
combination, this phenotypic building block appears encapsulated and thus
protected against well-known, undesirable disruptive crossover, provided a
crossover point resides between codons only.

Also, DGP is independent from the class and level of a target language. One may
therefore supply an arbitrary decidable language, if one expects problem-specific
advantages. For instance, short genotypes and a context-sensitive language may
lead to elegant parsimonious and acceptable solutions, while repair time remains
acceptable although the word problem is not efficiently decidable. For another
instance, the native code of a given processor type, supplied as target language,
would have DGP emulate machine-language GP.

Regarding further empirical work, measuring causality progression during code
evolution would test the implicit CEE prediction that code adaptation smooths the
individual fitness landscapes. As an issue of particular theoretical interest, one may
investigate whether prominent algebraic structures exist in evolved desirable codes.
Eventually, further work could extend the mathematical model for predicting search
dynamics.

As for exploring beyond the realm of presented results, the principles behind
co-adapting codes apply to other components of a DGP algorithm as well. Further
parameters can be softened and become part of the evolving medium, such as a
codon that might change in length, directly changing size and dimensionality of the
decision space. However, no EA design can fully annihilate the conflict of recursion
in this way because the subalgorithms that modify the parameters require additional
explicit control, thus maintaining the dilemma. Also co-evolving such subalgorithms
offers no escape either, since an EA that modifies its algorithms may crash or cease
to represent an Evolutionary Algorithm, and user-given protective measures that
address these risks introduce further explicit components.

Thus, in the short term, coming EAs will be made to mimic ever more complex
biological phenomena, such as regulatory networks, in order to increase their au-
topoietic potential. For practicality, such design regression, stacking control layers

'A GP system may bluntly terminate an evolved, possibly infinite loop after a user-chosen
number of iterations, or it may use man-designed, sophisticated flexible mechanisms to address
this issue, like a metaphor of limited energy, as one of my former master students suggested
(Nabuurs 2004). As best option, however, a system only provides a loop statement if the latter is
required by a problem.

203

of adaptation, is ended by an autopoietic system—namely, the user’s brain—that
supplies problem-specific values to the outer layer, thus closing the algorithm cyber-
netically.

In the long term, one should set up an environment that brings forth a fully
autopoietic computing system. Inspired by the presented concept of self-adaptive
ontogeny, the system may be represented as a binary string that ¢s the computing
medium. With a given, minimal Turing-complete bit-based language that implies
laws that govern the medium, the latter permanently maps itself onto itself, neither
reaching chaos nor a fixed point that would mean death, i.e., static equilibrium.
Problem data, feeding into the medium, creates a structured disturbance, giving
rise to selection, while external noise gives variability, and stability follows from the
physical implementation, e.g., RAM. Thus, with all necessary conditions for evolu-
tion given, problem-relevant patterns may emerge. At a freely chosen region of the
medium, the environment accepts patterns that occur there, and it interprets them,
i.e., it applies them to the given problem. The resulting, more or less desirable
reaction must feed back to the medium as less or more external noise, respectively,
stabilizing or disturbing the emerging patterns. In this manner, without any man-
ual setting up, the process carried by the medium learns about the problem, its
representation, and the solution representation expected by the environment.

One or more virtual CPUs raise the process by interpreting and thus animating
the medium that therefore is a permanently self-rewriting sentence of the given
language.? This allows for higher interpreters to emerge, i.e., for abstraction build-
up. Systemic singularities, that is, conditions where the underlying real machine
crashes, do not exist by design of the virtual machine.

In conclusion, the behavior of this hypothetical process is only biased by problem
data and therefore autopoietic. Both origin and adaptation of order in the carrying
medium do not require an external source, and, as side effect of the continuous
adaptation, a problem solution is approached. However, system transparency, as
enforced by explicit programming of a computing medium, is traded in for such
flexibility. At any given point in time, the semantics of the carried behavior is hard
to decode, since each single state of the hypothetical medium merely represents
a snapshot of an implicit semantics definition that is distributed over space, i.e.,
memory, and time. Semantic analysis would meet obstacles well known from research
on organic neural networks and their plasticity.

e A material analogy of the sketched digital medium would reach the strategic
objective.

e An empirical proof of principle requires implementing the medium as next
step. To that end, work by the author is in progress.

2Cum grano salis, because, actually, over time, the dynamic medium represents a set of sen-
tences, and each exists for just one point in this time, because the next state change, i.e., bit flip,
creates another sentence. Thus, each sentence is a complete architecture as well as but a freeze
frame, a slice, taken out of the high-dimensional sculpture the underlying developmental process
chisels out of the phase space of the medium.

204 10 Conclusions and outlook

Appendix A

Mathematical conventions

The notation A C B shall denote that A is a proper or improper subset of B.
A mapping of sets A and B shall be a binary relation of the sets, i.e., a subset of
A x B, their Cartesian product. Especially, a function f from A into B, denoted by
f + A — B, is a mapping such that each a € A is paired with exactly one b € B,
denoted by f(a) = b, also expressed as mapping a onto b. B is called the range set
of f [rng(f)], and A is called the domain set of f [dom(f)].

{be€rng(f) } Ja € dom(f) : f(a) = b}
is called the image set of f, denoted by ¢mg(f) or f(dom(f)), and ergo
img(f) C rng(f).
f:A— B with f(a) = a is called the identity function of A, denoted by #d 4, and
dom(ids) = img(ida) C rng(ids) follows.

Let f: A— B, let C C A.
{(a,b) € f | a€ C} is called the restriction of f to C, or f restricted to C' [f|c].
Thus, a restriction of a function is a function, and dom(f|c) = C follows.

rng(f|c) shall equal rng(f). (A1)

img(flc)={be€ B|3ce C: flc(c) = b} follows,
implying b € img(f|c) = b € img(f), since f(c) = flc(c) = b.
This implies img(f|c) C img(f). (A.2)

img(flc) = {z € rng(flc) | 3a € dom(flc) : flo(a) = x} holds.
This implies img(f|c) = f(C), because rng(f|c) = rng(f) and f(a) = f|c(a).
(A.3)

Let f: A— Band Ay, As C A, then f(A; N As) C f(A1) N f(As) holds.
(A.4)

A function f is called an injection (adj. injective) if, for each b € rng(f), there is, at

most, one a € dom(f) : f(a) = b. f is a surjection (surjective) if img(f) = rng(f),
and, eventually, it is a bijection (bijective) if it is injective and surjective.

205

206 A Mathematical conventions

Let n > 0,n € N, ag,..,a,_1 € A, then t = (ag, .., a,_1) shall be called an n-tuple
over A. An a;, 0 <i <n—1,is called a component of ¢ [a; € t], and n is the size
of t [|t]].X

!Usually, the smallest component index equals one. Here, we acknowledge computer science
where index counting starts at zero. Also, mathematically, the €-notation applies to sets only.
Both differences, however, do not violate the connotations of the common definitions.

About the Author

Robert Keller has been involved with informatics in research, R&D, teaching, and indus-
try. From the University of Dortmund, Germany, he holds a diploma in computer science
with emphasis on mathematics and software engineering. His interest is in self-organizing
systems and their use as, for instance, optimizers, controllers, and autonomous agents. At
the Computer Science Department in Dortmund, and at the Informatics Center Dortmund,
he has contributed to the Collaborative Research Center “Design and management of com-
plex technical processes and systems with Computational Intelligence” (German Research
Foundation) as well as to the European Network of Excellence in Evolutionary Computing,.
He has also done research and taught at the Faculty of Mathematics and Natural Sciences
at the University of Leiden, the Netherlands. Since 2005, he has been with the Depart-
ment of Computing and Electronic Systems at the University of Essex, U.K. In the past, he
taught systems analysis, evolutionary computing, artificial life, object-oriented software
engineering, and programming. He reviews for journals and conferences on computational
intelligence.

207

208

Selected publications

Robert E. Keller, Riccardo Poli, “Improved Benchmark Results from Sub-
heuristic Search”, Parallel Problem Solving from Nature (PPSN) 2008, Dortmund,
2008 Sep; Workshop on Hyperheuristics (long paper)

Robert E. Keller, Riccardo Poli, “Toward Subheuristic Search”, Proceedings of
the 2008 Congress on Evolutionary Computation (IEEE CEC) within 2008 World
Congress on Computational Intelligence (IEEE WCCI), Hong Kong, 2008 Jun; IEEE
press, 2008 (long paper)

Robert E. Keller, Riccardo Poli, “Self-adaptive Hyperheuristic and Greedy
Search”, Proceedings of the 2008 Congress on Evolutionary Computation (IEEE
CEC) within 2008 World Congress on Computational Intelligence (IEEE WCCI),
Hong Kong, 2008 Jun; IEEE press, 2008 (long paper)

Robert E. Keller, Riccardo Poli, “Cost-benefit investigation of a Genetic-

Programming Hyperheuristic”, Proceedings of the 8th International Conference
on Artificial Evolution (EA) 2007, Tours, France, 2007 Oct (long paper)

Robert E. Keller, Riccardo Poli, “Linear Genetic Programming of Parsimo-
nious Metaheuristics”, Proceedings of the 2007 Congress on Evolutionary Com-
putation (IEEE CEC), Singapore, 2007 Sep (long paper)

Robert E. Keller, Walter A. Kosters, Martijn van der Vaart, Martijn D.J. Wit-
senburg, “Genetic Programming Produces Strategies for Agents in a Dy-
namic Environment”, Proceedings of the Belgium/Netherlands Artificial Intelli-
gence Conference (BNAIC) 2002, The Netherlands, 2002 Oct (long paper)

Robert E. Keller, “Evolutionary methods for data mining”, in: “DEALING
WITH THE DATA FLOOD: Mining data, text and multimedia”, Meij, J.M. (ed.),
STT Netherlands Study Centre for Technology Trends, The Hague, The Nether-
lands, 2002 Apr (book chapter)

F. Lohnert, A. Schiitte, J. Sprave, I. Rechenberg, I. Boblan, U. Raab, I. Santibénez
Koref, W. Banzhaf, R.E. Keller, J. Niehaus, H. Rauhe, “Genetisches Program-
mieren fiir Modellierung und Regelung dynamischer Systeme”, Daimler-
Chrysler AG Forschung und Technologie FT3/AI; Technische Universitdt Berlin,
Bionik und Evolutionstechnik; Leiden Institute of Advanced Computer Science; In-
formatik Centrum Dortmund e.V., 2001 (final project report)

209

Robert E. Keller, “Autopoietic solutions for real-world problems”, in: EvoDe-
bates: Fit for the Future; EvoNet—The European Network of Excellence in Evolu-
tionary Computing, 2001 (invited position statement)

Robert E. Keller, Wolfgang Banzhaf, “The evolution of genetic code on a hard
problem” in: Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-
Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H.
Garzon, Edmund Burke (eds.), Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2001), San Francisco; Morgan Kaufmann Publishers,
San Francisco CA, 2001 Jul (long paper)

Robert E. Keller, Wolfgang Banzhaf, “The evolution of genetic code in genetic
programming”, in: W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, R. E. Smith (eds.), Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-1999), Orlando FL; Morgan Kaufmann Publishers,
San Francisco CA, 1999 Jul (long paper)

Robert E. Keller, Wolfgang Banzhaf, Jorn Mehnen, Klaus Weinert, “CAD Surface
Reconstruction from Digitized 3D Point Data with a Genetic Program-
ming/Evolution Strategy hybrid”, in: Advances in Genetic Programming 3,
Chapter 3, MIT Press, 1999 (book chapter)

Stefan Klahold, Steffen Frank, Robert E. Keller, Wolfgang Banzhaf, “Exploring
the Possibilities and Restrictions of Genetic Programming in Java Byte-
code”, Late Breaking Papers at the Genetic Programming 1998 Conference, John

R. Koza (ed.), University of Wisconsin, Madison; Stanford University Bookstore,
1998

Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, Frank D. Francone, “Genetic
Programming—An Introduction; On the Automatic Evolution of Computer
Programs and its Applications”, Morgan Kaufmann Publishers, San Francisco CA;
dpunkt.verlag, Heidelberg, Germany, 1998 (book)

Robert E. Keller, Wolfgang Banzhaf, “Genetic Programming using Genotype-
Phenotype Mapping from Linear Genomes into Linear Phenotypes”, Ge-
netic Programming 1996: Proceedings of the First Annual Conference; Stanford
University; John R. Koza, David E. Goldberg, David B. Fogel, Rick L. Riolo (eds.),
MIT Press, Cambridge MA, 1996 (long paper)

210

Acknowledgments

Foremost, my gratitude belongs to Wolfgang Banzhaf, head of the Computer Science
Department at the Memorial University of Newfoundland, St. John’s, Canada, for
encouragement and opportunities that I have enjoyed in his Emergent Computation
research group?, and that I hopefully could and will pass on to my students.

Special acknowledgments go to Hans-Paul Schwefel, former head of the Systems
Analysis group at the former Department of Computer Science at the University of
Dortmund, for friendly support and discussions on artificial evolution and its great
natural paragon.

Many thanks are due to Ulrich “Batchman” Hermes for technical support and count-
less heated XPI1LOTS? battles during nocturnal coffee breaks.

Special thanks belong to Elena for challenging my over-simplifications of molecular
biology and for keeping several Linux flavors happy that live on my laptops.

Last, by far not least, I owe a bowl of his favorite gourmet food to Timothy, the
20-pound cat, for his mostly patient and quiet company. His autopoietic behavior®
keeps reminding me of the embarrassing gap between technical and natural systems.

2Computer Science Department at the University of Dortmund
3A real-time, 2-D, multiplayer conflict environment
4in particular, when he most selectively stole the ham from my sandwich

211

212

Zusammenfassung

Kapitel 1 nennt Zielsetzungen der vorliegenden Arbeit, die sich fiir kiinstliche Sys-
teme interessiert, die praxisrelevante Problemumgebungen angreifen. Dort ist der
Selbsterhalt, i.e., die Aufrechterhaltung des problemspezifischen Systemverhaltens,
von iiberragender Bedeutung, und umgebungsabhangig werden dazu moglicher-
weise Anderungen der Systemstruktur notwendig. Autopoiese bezeichnet die Selbst-
erzeugung und -bewahrung einer Entitat. Emergenzfahigkeit und Selbstorganisation
gegenwartiger kiinstlicher Systeme und die sich ergebende Systemleistung erscheinen
unzureichend in praktischen Umgebungen. Dort sehen wir als ein ldealsystem eine
Entitat, die selbstbestimmt Problemstellungen erkennen und behandeln wiirde und
womoglich dhnlich unabhangige Subsysteme als Losungen erzeugen wiirde. Fiir die
Informatik bezeichnen wir dieses strategische Ziel als autopoietisches Programmieren
und setzen seine Machbarkeit als Arbeitshypothese voraus. Um unmittelbaren prak-
tischen Nutzen zu erhalten, entscheiden wir, einen Vertreter des maschinellen Ler-
nens in Richtung vollkommener Selbstorganisation zu erweitern, wobei wir Grenzen
dieses Vorgehens diskutieren, das durch die Natur derzeitiger Programmerzeugung
beschrankt ist.

Zur Annaherung an das Ziel bespricht Kapitel 2 den autopoietischen Vorgang der
natiirlichen Evolution, dem seinerseits selbsterhaltende Systeme entspringen. Da-
her approximiert kiinstliche Evolution—ein manuell erzeugtes Zusammenspiel struk-
tureller Variation, Reproduktion und Selektion in technischen Medien—die beab-
sichtigte Emergenz kiinstlicher autopoietischer Systeme. Nachfolgend konzentrieren
wir uns deswegen auf Evolutionare Algorithmen: probabilistische, iterative direkte
Suchverfahren, die Wirkungsweisen der organischen Evolution (u.a. Phylogenese)
verwenden. Unter diesen Algorithmen bietet sich angesichts des strategischen Ziels
besonders das Genetische Programmieren (GP) an, da Algorithmen dieser Klasse
wiederum Algorithmen produzieren koénnen. Dennoch kdmpft ein Benutzer des GP
mit dessen unerwiinschten Eigenschaften, wie sie typisch sind fiir alle gegenwarti-
gen, nur halbautomatischen Problemloser: kostenintensive manuelle Erzeugung und
Wartung als auch problemspezifische Anpassung, wobei letztere besonders kritisch
ist, weil der Benutzer gewohnlich nur unvollstandiges Wissen iiber eine gegebene
praktische Problemumgebung besitzt. Zur Verbesserung dieser Situation und zur
Anhebung der Leistung eines GP—Systems erscheint uns dessen Selbstanpassung—
im Sinne einer automatischen Verhaltensspezialisierung auf ein vorliegendes Prob-
lem durch eine Anreicherung des Problemmodells, das ein GP-Lauf erzeugt—als
wiinschenswert, da sie Autopoiese unterstiitzt.

213

Ontogenese, oder Entwicklung, ist die Historie des Strukturwandels eines Sys-
tems. Ein biologisches System besticht durch seine endogene Entwicklung, die
wesentlich fiir seine Selbstanpassung ist. Systeminharente genotypische Informa-
tion, wie sie wahrend der biologischen Phylogenese entsteht, leitet Ontogenese, die
die phanotypische Struktur des Systems erzeugt und wandelt, was wiederum dessen
Verhalten hervorbringt und spezialisiert.

Kapitel 2-4 schlagen ein formales Basismodell einer nichttrivialen Genotyp-
Phénotyp-Abbildung fiir Suchverfahren vor. Das Modell sowie natiirliche onto-
genetische Phdnomene inspirieren den Entwurf vorteilhafter Abbildungen, die wir in
ein GP—-Rahmenwerk einbetten, das wir implementieren. Dieser Rahmen reprasen-
tiert Developmental Genetic Programming, eine kleine Teilmenge von GP—Ansétzen,
die ontogenetische Aspekte betonen. Gibt man dem Rahmenwerk die triviale
Abbildung—die Identitdt—, so kollabiert es in einen der vielen gewohnlichen GP—
Ansitze.

Kapitel 5-7 entwerfen Spiel- und Echtprobleme fiir Gedankenexperimente und
Versuche mit dem Rahmenwerk, und sie bewerten die empirischen Ergebnisse. In
Tendenz zeigt sich, dass manuell fest gegebene, problemspezifische Ontogenese die
GP-Leistung fordert. In einer praktischen Umgebung erfordert die Autopoiese eines
Systems jedoch, dass dessen strukturelle Komponenten im Fluss verharren. Da
diese Elemente die Gesamtfunktion des Systems tragen, die seine Autopoiese bein-
haltet, zwingt sich das Konzept der selbstanpassenden Ontogenese auf. Dazu schla-
gen wir die Auflosung des populationsweiten Entwicklungsmechanismus in individu-
elle Genotyp-Phénotyp-Abbildungen vor, die durch ebenso individuelle Informatio-
nen (genetische Codes) gesteuert werden. Durch Verschmelzung eines Codes mit
dem Genotyp des jeweiligen Individuums erhalten wir eine Koevolution beider In-
formationsarten und damit insbesondere die Anpassung der Ontogenese. Da ein
Code einem Genotyp problemspezifische Bedeutung gibt, resultiert also eine au-
tomatische Einordnung aller phanotypischen Bausteine nach ihrer vom Verfahren
wahrgenommenen Problemrelevanz. Dies 10st u.a. die wohlbekannte Aufgabe der
Ermittlung einer problemspezifischen, minimalen ausreichenden Symbolmenge fiir
ein GP-Verfahren.

Zusammengefasst besteht der technische Kern der vorliegenden Arbeit aus i) dem
Modell des Developmental Genetic Programming (DGP) mit seiner Geno/Phénotyp-
Abbildung, und aus ii) der automatischen Regulierung der Redundanz solcher Ab-
bildungen. i) fusst auf genetischen Codes und Reparaturverfahren. Solch ein Ver-
fahren ist der einzige der wesentlichen DGP-Bausteine, der auch dann Bedeutung
hat, wenn Geno- und Phanotypen identisch sind. Daher demonstriert Kapitel 8 einen
vorteilhaften Verfahrenstyp, das “deleting repair”, auf einer weiteren, realistischen
Problemdoméne und benutzt dazu die Identitat als Abbildung.

Man sieht klar, dass evolvierte Individuen aufgrund des deleting repair recht spei-
chersparend ausfallen, was dem problematischen Phanomen des bloat vorbeugt, bei
dem es sich um unnétige Bestandteile eines Individuums handelt, die oft als Neben-
effekt des Genetischen Programmierens entstehen. Insbesondere kann man daher
eine grossziigige maximale Individuengrosse (Lénge) festlegen, die GP im frithen
Stadium einer Suche Spielraum gibt. Diese Situation fithrt zu Losungen unter-

214

schiedlicher Grosse, was eine notwendige Bedingung fiir die Auffindung von kiirzeren
und guten Losungen ist, die speicherschonend sind. Solche Losungen kénnen auch
kiirzere Laufzeiten bedeuten. Dariiberhinaus spart deleting repair selbst Ressourcen,
da es lediglich fehlerhafte Komponenten einer Losung eliminiert, statt alternative,
korrekte Ersatzkomponenten zu berechnen und unter diesen solche zu bestimmen,
mit denen dann die fehlerhaften Komponenten ersetzt werden.

Kapitel 9 fasst Ergebnisse zusammen, und Kapitel 10 diskutiert Schlussfolgerun-
gen, wie man die begrenzte Selbstorganisation derzeitiger Suchverfahren nutzen
kann, und schlagt, inspiriert von Developmental Genetic Programming, einen
Ausweg zum vollstandig autopoietischen Rechnen vor.

215

216

Bibliography

Adami, C. (1998). Introduction to Artificial Life. Telos.

Aguirre, H. E., K. Tanaka, and T. Sugimura (1999, 13-17 July). Cooperative
crossover and mutation operators in genetic algorithms. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith (Eds.),
Proceedings of the Genetic and Evolutionary Computation Conference, Volume 1,
Orlando FL, pp. 772. Morgan Kaufmann.

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Compilers. London: Addison-
Wesley.

Aiyarak, P.; A. S. Saket, and M. C. Sinclair (1997, 1-4 September). Genetic pro-
gramming approaches for minimum cost topology optimisation of optical telecom-
munication networks. In Second International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications, GALESIA, University of
Strathclyde, Glasgow, UK. IEE.

Alander, J. T. (1994). An Indexed Bibliography of Genetic Algorithms: Years
1957-1993. Vaasa, Finland: Art of CAD Ltd.

Alander, J. T. (1995). An indexed bibliography of evolutionary strategies. Technical
Report 94-1-ES, University of Vaasa, Department of Information Technology and
Production Economics, Vaasa, Finland.

Albuquerque, P.; B. Chopard, C. Mazza, and M. Tomassini (2000, 15-16 April).
On the impact of the representation on fitness landscapes. In R. Poli, W. Banzhaf,
W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty (Eds.), Genetic Pro-
gramming, Proceedings of EuroGP’2000, Volume 1802 of LNCS, Edinburgh, pp.
1-15. Springer-Verlag.

Alliot, J.-M., E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers (Eds.) (1996).
Artificial Evolution, Volume 1063 of Lecture Notes in Computer Science (LNCS).
Springer Verlag.

Altenberg, L. (1994). The evolution of evolvability in genetic programming. In
K. E. Kinnear, Jr. (Ed.), Advances in Genetic Programming, Chapter 3, pp. 47-74.
MIT Press.

217

Andrews, M. and R. Prager (1994). Genetic programming for the acquisition of
double auction market strategies. In K. E. Kinnear, Jr. (Ed.), Advances in Genetic
Programming, Chapter 16, pp. 355-368. MIT Press.

Angeline, P. J. (1993). Evolutionary Algorithms and Emergent Intelligence. Ph. D.
thesis, Ohio State University.

Angeline, P. J. (1994). Genetic programming and emergent intelligence. In K. E.
Kinnear, Jr. (Ed.), Advances in Genetic Programming, Chapter 4, pp. 75-98. MIT
Press.

Angeline, P. J. (1998, 22-25 July). Subtree crossover causes bloat. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. Riolo (Eds.), Genetic Programming 1998: Proceedings of
the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA,
pp. 745-752. Morgan Kaufmann.

Ashby, W. R. (1956). An Introduction to Cybernetics. London: Chapman&Hall.

Ayala, F. and J. Valentine (1979). Ewolving: The theory and process of organic
evolution. Menlo Park, CA: Benjamin.

Béck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford Univer-
sity Press.

Back, T., D. B. Fogel, and Z. Michalewicz (Eds.) (1997). Handbook of Evolutionary
Computation, Bristol, United Kingdom. IOP Publishing and Oxford University
Press.

Béack, T., U. Hammel, and H.-P. Schwefel (1997, May). Evolutionary computa-
tion: Comments on the history and current state. IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION 1(1), 3-17.

Ball, P. (1998). Made to measure. Princeton, New Jersey: Princeton University
Press.

Banzhaf, W. (1993). Genetic programming for pedestrians. MERL Technical Re-
port 93-03, Mitsubishi Electric Research Labs, Cambridge, MA.

Banzhaf, W. (1994, 9-14 October). Genotype-phenotype-mapping and neutral vari-
ation — A case study in genetic programming. In Y. Davidor, H.-P. Schwefel, and
R. Ménner (Eds.), Parallel Problem Solving from Nature III, Volume 866 of Lecture
Notes in Computer Science, Jerusalem, pp. 322-332. Springer-Verlag, Berlin.

Banzhaf, W. and W. B. Langdon (2002, March). Some considerations on the reason
for bloat. Genetic Programming and Evolvable Machines 3(1), 81-91.

218

Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Francone (1998). Genetic
Programming—An Introduction; On the Automatic Evolution of Computer Pro-
grams and Its Application. dpunkt.verlag, Heidelberg, Germany. Morgan Kauf-
mann, San Francisco, CA.

Baydar, C. M. and K. Saitou (2000, 10-12 July). A genetic programming frame-
work for error recovery in robotic assembly systems. In D. Whitley, D. Goldberg,
E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer (Eds.), Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000), Las Vegas,
Nevada, USA, pp. 756. Morgan Kaufmann, San Francisco, CA.

Beielstein, T., C.-P. Ewald, and S. Markon (2003, 12-16 July). Optimal eleva-
tor group control by evolution strategies. In E. Canti-Paz, J. A. Foster, K. Deb,
D. Davis, R. Roy, U.-M. O'Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson,
M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland,
N. Jonoska, and J. Miller (Eds.), Genetic and Evolutionary Computation Confer-
ence (GECCO-2003), Volume 2724 of Lecture Notes in Computer Science (LNCS),
Chicago IL, pp. 1702-1714. Springer-Verlag, Berlin.

Bennett III, F. H., J. R. Koza, J. Yu, and W. Mydlowec (2000, 17-19 April).
Automatic synthesis, placement, and routing of an amplifier circuit by means of
genetic programming. In J. Miller, A. Thompson, P. Thomson, and T. C. Fogarty
(Eds.), Ewvolvable Systems: From Biology to Hardware, Third International Con-
ference, ICES 2000, Volume 1801 of Lecture Notes in Computer Science (LNCS),
Edinburgh, Scotland, UK, pp. 1-10. Springer-Verlag, Berlin.

Bersano-Begey, T. F. (1997, 13-16 July). Controlling exploration, diversity and
escaping local optima in GP: Adapting weights of training sets to model resource
consumption. In J. R. Koza (Ed.), Late Breaking Papers at the 1997 Genetic Pro-
gramming Conference, Stanford University, CA, USA, pp. 7-10. Stanford Book-
store.

Beyer, H.-G. (1995). Toward a Theory of Evolution Strategies: The (u, A)-Theory.
FEvolutionary Computation 2(4), 381-407.

Bleuler, S., M. Brack, L. Thiele, and E. Zitzler (2001, 27-30 May). Multiobjective
genetic programming: Reducing bloat using SPEA2. In Proceedings of the 2001
Congress on FEvolutionary Computation CEC2001, COEX, World Trade Center,
Seoul, Korea, pp. 536-543. IEEE Press, Piscataway NJ.

Blickle, T. (1996a, 22-26 September). Evolving compact solutions in genetic pro-
gramming: A case study. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P.
Schwefel (Eds.), Parallel Problem Solving From Nature IV. Proceedings of the Inter-
national Conference on Fvolutionary Computation, Volume 1141 of Lecture Notes
in Computer Science (LNCS), Berlin, pp. 564-573. Springer—Verlag, Berlin.

219

Blickle, T. (1996b, November). Theory of Evolutionary Algorithms and Application
to System Synthesis. Ph. D. thesis, Swiss Federal Institute of Technology, Zurich,
Switzerland.

Blickle, T. and L. Thiele (1995, December). A comparison of selection schemes
used in genetic algorithms. TIK-Report 11, TIK: Institut fiir Technische Infor-
matik und Kommunikationsnetze/Computer Engineering and Networks Labora-
tory, ETH/Swiss Federal Institute of Technology, Zurich, Switzerland.

Box, G. (1957). Evolutionary operation: A method for increasing industrial pro-
ductivity. Journal of the Royal Statistical Society C 6(2), 81-101.

Brameier, M. and W. Banzhaf (2002, 3-5 April). Explicit control of diversity and
effective variation distance in linear genetic programming. In J. A. Foster, E. Lut-
ton, J. Miller, C. Ryan, and A. G. B. Tettamanzi (Eds.), Genetic Programming,
Proceedings of the 5th European Conference, EuroGP 2002, Volume 2278 of Lecture
Notes in Computer Science (LNCS), Kinsale, Ireland, pp. 37-49. Springer—Verlag,
Berlin.

Brameier, M. and W. Banzhaf (2003, 14-16 April). Neutral variations cause bloat in
linear GP. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa (Eds.),
Genetic Programming, Proceedings of the 6th European Conference, EuroGP 2003,
Volume 2610 of Lecture Notes in Computer Science (LNCS), Essex, U.K., pp. 290—
299. Springer—Verlag, Berlin.

Brameier, M. and W. Banzhaf (2006). Linear Genetic Programming. Number 1 in
Genetic and Evolutionary Computation. Springer-Verlag.

Bremermann, H. (1962). Optimization through evolution and recombination. In
Yovits, Jacobi, and Goldstein (Eds.), Self-Organizing Systems, pp. 93-106. New
York: Spartan Books.

Bremermann, H. (1963). Limits of genetic control. [EEE Transactions MIL-7,
200-205.

Brooks, S. (1958). A discussion of random methods for seeking maxima. Operations
research 7, 430-457.

Burke, E., G. Kendall, and E. Soubeiga (2003, Dec). A tabu-search hyperheuristic
for timetabling and rostering. Journal of Heuristics 9(6), 451-470.

Burke, E. K., M. R. Hyde, and G. Kendall (2006, 9-13 September). Evolving bin
packing heuristics with genetic programming. In T. P. Runarsson, H.-G. Beyer,
E. Burke, J. J. Merelo-Guervos, L. D. Whitley, and X. Yao (Eds.), Parallel Problem
Solving from Nature - PPSN IX, Volume 4193 of LNCS, Reykjavik, Iceland, pp.
860-869. Springer-Verlag.

220

Busch, J., J. Ziegler, W. Banzhaf, A. Ross, D. Sawitzki, and C. Aue (2002, 3-5
April). Automatic generation of control programs for walking robots using ge-
netic programming. In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B.
Tettamanzi (Eds.), Genetic Programming, Proceedings of the 5th European Confer-
ence, EuroGP 2002, Volume 2278 of Lecture Notes in Computer Science (LNCS),
Kinsale, Ireland, pp. 258-267. Springer—Verlag, Berlin.

Cao, H., L. Kang, Y. Chen, and J. Yu (2000, October). Evolutionary modeling
of systems of ordinary differential equations with genetic programming. Genetic
Programming And Evolvable Machines 1(4), 309-337.

Chakhlevitch, K. and P. Cowling (2005, 30 March—1 April). Choosing the fittest
subset of low level heuristics in a hyperheuristic framework. In G. R. Raidl and
J. Gottlieb (Eds.), Evolutionary Computation in Combinatorial Optimization —
EvoCOP 2005, Volume 3448 of LNCS, Lausanne, Switzerland, pp. 23-33. Springer
Verlag.

Chellapilla, K. (1997, September). Evolving computer programs without subtree
crossover. I[EEFE Transactions on Evolutionary Computation 1(3), 209-216.

Claus, V., J. Hopf, and H.-P. Schwefel (Eds.) (1996). Evolutionary Algorithms and
their Application, Dagstuhl-Seminar, Mdarz 1996, Bericht Nr. 140, Wadern. IBFI
GmbH, Schloss Dagstuhl.

Comisky, W., J. Yu, and J. R. Koza (2000, 8 July). Automatic synthesis of a wire
antenna using genetic programming. In D. Whitley (Ed.), Late Breaking Papers at
the 2000 Genetic and Evolutionary Computation Conference, Las Vegas, Nevada,
USA, pp. 179-186. Morgan Kaufmann, San Francisco, CA.

Control Data Corporation (1979). Control Data Corporation: Algol-60, Version 5,
Reference Manual, Appendiz D. Control Data Corporation.

Costa, L. D. and M. Schoenauer (2009, 8-12 July). Bringing evolutionary com-
putation to industrial applications with guide. In F. Rothlauf (Ed.), GECCO-09:
Proceedings of the Genetic and Evolutionary Computation Conference, Montreal,
Quebec, Canada, pp. 1467-1474. ACM.

Creighton, T. E. (2002). Proteins (2nd ed.). New York: W.H. Freeman and
Company.

Crepeau, R. L. (1995, 9 July). Genetic evolution of machine language software. In
J. P. Rosca (Ed.), Proceedings of the Workshop on Genetic Programming: From
Theory to Real-World Applications, Tahoe City, CA, pp. 121-134. Morgan Kauf-
mann, San Francisco, CA.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or The
Preservation of Favoured Races in the Struggle for Life. London, UK: Murray.

221

Davidson, J. W., D. A. Savic, and G. A. Walters (1999, 1-2 July). Symbolic and
numerical regression: a hybrid technique for polynomial approximators. In R. John
and R. Birkenhead (Eds.), Proceedings of Recent Advances in Soft Computing’99,
De Montfort University, Leicester, UK, pp. 111-116. Physica Verlag, Heidelberg,
Germany.

Davis, L. (1990). Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold.

Dawkins, R. (1989). The Selfish Gene. Oxford, UK: Oxford University Press.

Dittrich, P. (2000). On Artificial Chemistries. Ph. D. thesis, University of Dort-
mund, Dortmund, Germany.

Dittrich, P.; A. Biirgel, and W. Banzhaf (1999). Random morphology robot—a test
platform for online evolution. Submitted to Robotics and Autonomous Systems.

Dowsland, K., E. Soubeiga, and E. Burke (2007). A simulated annealing based hy-
perheuristic for determining shipper sizes for storage and transportation. Furopean
Journal of Operational Research 179, 759-T74.

Drexler, K. E. (1992). Nanosystems: Molecular Machinery, Manufacturing, and
Computation. New York: Wiley Interscience.

Duffy, J. and J. Engle-Warnick (1999, 24-26 June). Using symbolic regression to
infer strategies from experimental data. In D. A. Belsley and C. F. Baum (Eds.),
Fifth International Conference: Computing in Economics and Finance, Boston
College, MA, pp. 150.

Dunning, T. E. and M. W. Davis (1996, 28-31 July). Evolutionary algorithms
for natural language processing. In J. R. Koza (Ed.), Late Breaking Papers at
the Genetic Programming 1996 Conference, Stanford University, CA, pp. 16-23.
Stanford Bookstore, Stanford University, CA.

Ebner, M., M. Shackleton, and R. Shipman (2001). How neutral networks influence
evolvability. Complexity 7(2), 19-33.

Eigen, M. (1992). Steps toward Life: a perspective on evolution. Oxford, UK:
Oxford University Press.

Feynman, R. P., R. B. Leighton, and M. Sands (1963). The Feynman lectures on
physics. Reading, Massachusetts; Palo Alto, CA; London, UK: Addison-Wesley
publishing company, Inc.

Fincham, J. R. (1994). Genetic Analysis. Oxford, UK: Blackwell Science.

Fogel, L., A. Owens, and M. Walsh (1966). Artificial Intelligence through Simulated
Fvolution. New York: Wiley.

222

Gathercole, C. (1998). An Investigation of Supervised Learning in Genetic Pro-
gramming. Ph. D. thesis, University of Edinburgh, UK.

Gaw, A., P. Rattadilok, and R. Kwan (2004). Distributed choice function hyper-
heuristics for timetabling and scheduling. In Proceedings of the 2004 International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2004),
Pittsburgh USA, pp. 495-497.

Gerdes, 1. (1996, 2-5 September). Application of evolutionary algorithms to the free
flight concept for aircraft. In H.-J. Zimmermann (Ed.), EUFIT’96: FOURTH EU-
ROPEAN CONGRESS ON INTELLIGENT TECHNIQUES AND SOFT COM-
PUTING, Aachen, Germany, pp. 1445-1449. Wissenschaftsverlag, Mainz, Ger-

many.
Gillett, B. (1977). Introduction to Operations Research. McGraw-Hill, New York.

Globus, A., J. Lawton, and T. Wipke (1998, November 12-15). Automatic molec-
ular design using evolutionary techniques. In A. Globus and D. Srivastava (Eds.),
The Sixth Foresight Conference on Molecular Nanotechnology, Westin Hotel in

Santa Clara, CA.
Glover, F. and M. Laguna (1997). Tabu Search. Springer.

Goldberg, D. (1988). Genetic Algorithms in Search, Optimization and Machine
Learning. Reading MA: Addison-Wesley.

Gordon, R. (1994). Evolution escapes rugged fitness landscapes by gene or genome
doubling: the blessing of higher dimensionality. Computers & Chemistry 18(3),
325-332.

Gruau, F. (1994). Neural Network Synthesis using Cellular Encoding and the Gene-
tic Algorithm. Ph. D. thesis, Laboratoire de I'Informatique du Parallelisme, Ecole
Normale Superieure de Lyon, France.

Guyaguler, B. (2000, June). Regression on petroleum well test data with the reser-
voir model as a parameter. In J. R. Koza (Ed.), Genetic Algorithms and Genetic
Programming at Stanford 2000, pp. 188-197. Stanford CA: Stanford Bookstore.

Hansen, J. V. (2003, March). Genetic programming experiments with standard
and homologous crossover methods. Genetic Programming and Evolvable Machines
4 (1), 53-66.

Harbison, S. P. and G. L. Steele (1995). C - A Reference Manual (4th ed.). En-
glewood Cliffs, NJ: Prentice Hall.

Hemmi, H., J. Mizoguchi, and K. Shimohara (1994, 6-8 July). Development and
evolution of hardware behaviours. In R. Brooks and P. Maes (Eds.), Artificial
Life IV, Proceedings of the fourth International Workshop on the Synthesis and
Simulation of Living Systems, pp. 371-376. Cambridge MA: MIT press.

223

Heylighen, F. (2002). Web dictionary of cybernetics and systems. Internet.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: The University of Michigan Press.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press. Note: This edition adds, in particular, a correction of a proof and
thoughts on the evolution of ecological systems. R.K.

Holland, J. H. (1995). Hidden order. Reading MA: Addison-Wesley.

Hopcroft, J. E. and J. D. Ullman (1979). Introduction to Automata Theory, Lan-
guages, and Computation. Reading, MA: Addison Wesley.

Iba, H. (1999, 13-17 July). Bagging, boosting, and bloating in genetic program-
ming. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation
Conference (GECC0-1999), Volume 2, Orlando FL, pp. 1053-1060. Morgan Kauf-
mann, San Francisco, CA.

Janikow, C. Z. (1999, 13 July). Constrained genetic programming. In T. S. Hussain
(Ed.), Advanced Grammar Techniques Within Genetic Programming and Evolu-
tionary Computation, Orlando, Florida, USA, pp. 80-82.

Jayalakshmi, G., S. Sathiamoorthy, and R. Rajaram (2001). An hybrid genetic
algorithm — a new approach to solve traveling salesman problem. International
Journal of Computational Engineering Science 2(2), 339-355.

Kargupta, H. (2001). A striking property of genetic code-like transformations.
Complex Systems 11(1), 1-29.

Kargupta, H., R. Ayyagari, and S. Ghosh (2003). Learning functions using random-
ized expansions: Probabilistic properties and experimentations. IEEFE Transactions
on Knowledge and Data Engineering 16(8), 894-908.

Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in
FEvolution. New York: Oxford University Press.

Keller, R. E. (2001). Autopoietic solutions for real-world problems. In EvoDebates:
Fit for the Future. EvoNet — The European Network of Excellence in Evolutionary
Computing. Internet.

Keller, R. E. (2002). Evolutionary methods for data mining. In J. Meij (Ed.),
Dealing with the data flood. The Hague, Netherlands: STT Netherlands Study
Centre for Technology Trends.

Keller, R. E. and W. Banzhaf (1994, June). Explicit maintenance of genetic diver-
sity on genospaces. Internet.

224

Keller, R. E. and W. Banzhaf (1996, 28-31 July). Genetic programming using
genotype-phenotype mapping from linear genomes into linear phenotypes. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford University, CA, pp.
116-122. MIT Press, Cambridge MA.

Keller, R. E. and W. Banzhaf (1999, 13-17 July). The evolution of genetic code in
genetic programming. In W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar,
M. Jakiela, and R. Smith (Eds.), Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-1999), Orlando FL, pp. 1077-1082. Morgan Kauf-
mann, San Francisco, CA.

Keller, R. E. and W. Banzhaf (2001, 7-11 July). The evolution of genetic code
on a hard problem. In L. Spector, W. B. Langdon, A. Wu, H.-M. Voigt, and
M. Gen (Eds.), Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001), San Francisco, CA, pp. 50-56. Morgan Kaufmann, San
Francisco, CA.

Keller, R. E., W. Banzhaf, J. Mehnen, and K. Weinert (1999). CAD surface
reconstruction from digitized 3D point data with a genetic programming/evolution
strategy hybrid. In L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline
(Eds.), Advances in Genetic Programming 3, Chapter 3, pp. 41-65. Cambridge
MA: MIT Press.

Keller, R. E., W. A. Kosters, M. van der Vaart, and M. D. Witsenburg (2002,
21-22 October). Genetic programming produces strategies for agents in a dynamic
environment. In H. Blockeel and M. Denecker (Eds.), Proceedings of the Fourteenth
Belgium/Netherlands Conference on Artificial Intelligence (BNAIC’02), Leuven,
Belgium, pp. 171-178. Katholieke Universiteit Leuven, Belgium.

Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217, 624-626.

Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge, UK:
Cambridge University Press.

Kinnear, Jr., K. E. (1994, 27-29 June). Fitness landscapes and difficulty in genetic
programming. In Proceedings of the 1994 IEEE World Conference on Computa-
tional Intelligence, Volume 1, Orlando, FL, pp. 142-147. IEEE Press, Piscataway,
NJ.

Knickmeier, F. (1992). Auslegung eines Rechnernetzwerkes mit minimalem Kom-
munikationsaufwand mittels evolutiondrer Algorithmen. Master’s thesis, Univer-

sitat Dortmund, Germany.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge MA: MIT Press.

225

Koza, J. R., M. A. Keane, F. H. Bennett, J. Yu, W. Mydlowec, and O. Stiffelman
(1999, 13-17 July). Searching for the impossible using genetic programming. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith (Eds.), GECCO-99: Proceedings of the Genetic and Evolutionary Com-
putation Conference, Volume 2, Orlando FL, pp. 1083-1091. Morgan Kaufmann,
San Francisco, CA.

Koza, J. R., W. Mydlowec, G. Lanza, J. Yu, and M. A. Keane (2001, 3-7 January).
Reverse engineering of metabolic pathways from observed data using genetic pro-
gramming. In Pacific Symposium on Biocomputing 6, Hawaii, pp. 434-445. World
Scientific press.

Langdon, W. B. (2000, April). Size fair and homologous tree genetic programming
crossovers. Genetic Programming And Evolvable Machines 1(1/2), 95-119.

Langdon, W. B. and S. J. Barrett (2004). Genetic programming in data mining
for drug discovery. In A. Ghosh and L. C. Jain (Eds.), Evolutionary Computing in
Data Mining. Heidelberg, Germany: Physica Verlag. To be published.

Langdon, W. B. and R. Poli (1997, 23-27 June). Fitness causes bloat. In P. K.
Chawdhry, R. Roy, and R. K. Pant (Eds.), Second On-line World Conference on
Soft Computing in Engineering Design and Manufacturing, pp. 13-22. Springer-
Verlag, London, UK.

Langdon, W. B. and R. Poli (1998, January). Why ants are hard. Technical Report
CSRP-98-4, University of Birmingham, School of Computer Science, UK.

Lawler, E., J. Lenstra, A. R. Kan, and D. Shmoys (Eds.) (1985). The Travelling
Salesman Problem. Chichester: Wiley.

Lohnert, F., A. Schiitte, J. Sprave, I. Rechenberg, I. Boblan, U. Raab, 1. S. Koref,
W. Banzhaf, R. Keller, J. Niehaus, and H. Rauhe (2001). Genetisches Program-
mieren fiir Modellierung und Regelung dynamischer Systeme. Technical report,
DaimlerChrysler AG, Forschung und Technologie FT3/AI, Berlin, Germany; Tech-
nische Universitat Berlin, Bionik und Evolutionstechnik; Universiteit Leiden, Lei-
den Institute of Advanced Computer Science, The Netherlands; Informatik Cen-
trum Dortmund e.V., Germany.

Lourenco, H. R., O. C. Martin, and T. Stutzle (2002). Iterated local search.
ISORMS 57, 321-353.

Luke, S. and L. Spector (1997, 13-16 July). A comparison of crossover and mu-
tation in genetic programming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,
M. Garzon, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1997: Proceedings
of the Second Annual Conference, Stanford University, CA, pp. 240-248. Morgan
Kaufmann, San Francisco, CA.

226

Luke, S. and L. Spector (1998, 22-25 July). A revised comparison of crossover
and mutation in genetic programming. In J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo
(Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference,

University of Wisconsin, Madison, pp. 208-213. Morgan Kaufmann, San Francisco,
CA.

MacLennan, B. J. (2002, October). Universally programmable intelligent matter.
Technical report, University of Tennessee.

Madou, M. (1997). Fundamentals of Microfabrication. New York: CRC Press.

Maeshiro, T. (1997). Structure of Genetic Code and its Evolution. Ph. D. thesis,
School of Information Science, Japan Adv. Inst. of Science and Technology.

Margetts, S. and A. J. Jones (2001, 18-20 April). An adaptive mapping for de-
velopmental genetic programming. In J. F. Miller, M. Tomassini, P. L. Lanzi,
C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon (Eds.), Genetic Programming,
Proceedings of FuroGP’2001, Volume 2038 of Lecture Notes in Computer Science
(LNCS), Lake Como, Italy, pp. 97-107. Springer—Verlag, Berlin.

Maturana, H. and F. Varela (1980). Autopoiesis and Cognition. Dordrecht: H.D.
Reidel.

McPhee, N. F. and N. J. Hopper (1999, 13-17 July). Analysis of genetic diversity
through population history. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith (Eds.), GECCO-99: Proceedings of the
Genetic and FEvolutionary Computation Conference, Volume 2, Orlando FL, pp.
1112-1120. Morgan Kaufmann, San Francisco, CA.

Meinhardt, H. (1982). Models of biological pattern formation. London/New York:
Academic Press.

Miller, J. F. and P. Thomson (2000, 15-16 April). Cartesian genetic programming.
In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty
(Eds.), Genetic Programming, Proceedings of EuroGP’2000, Volume 1802 of Lecture
Notes in Computer Science (LNCS), Edinburgh, UK, pp. 121-132. Springer-Verlag,
Berlin, Germany.

Minister, J.-B. H., N. P. Williams, T. G. Masters, J. F. Gilbert, and J. S.
Haase (1995, 1-3 March). Application of evolutionary programming to earthquake
hypocenter determination. In J. R. McDonnel, R. G. Reynolds, and D. B. Fogel
(Eds.), Evolutionary Programming IV: Proceedings of the Fourth Annual Confer-
ence on Evolutionary Programming, San Diego, CA, pp. 3-17. MIT Press, Cam-
bridge MA.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge MA: MIT
Press.

227

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.

Montana, D. J. (1995). Strongly typed genetic programming. Evolutionary Com-
putation 3(2), 199-230.

Motoki, T. (2002). Calculating the expected loss of diversity of selection schemes.
Evolutionary Computation 10(4), 397-422.

Miihlenbein, H. (1993). Evolutionary algorithms: Theory and applications. In
E. Aarts and J. Lenstra (Eds.), Local Search in Combinatorial Optimization. New
York: Wiley.

Mukai, T. (1985). Experimental verification of the neutral theory. In T. Ohta
(Ed.), Population Genetics and Molecular Evolution. Berlin: Springer-Verlag.

Nabuurs, R. (2004). Energy-bound genetic programming. Master’s thesis, Univer-
sity of Leiden, The Netherlands.

Nissen, V. and J. Biethahn (1995). An introduction to evolutionary algorithms.
In J. Biethahn and V. Nissen (Eds.), Ewvolutionary Algorithms in Management
Applications, pp. 3-43. Berlin: Springer-Verlag.

Nordin, P. (1994). A compiling genetic programming system that directly ma-
nipulates the machine code. In K. E. Kinnear, Jr. (Ed.), Advances in Genetic
Programming, Chapter 14, pp. 311-331. MIT Press, Cambridge MA.

Nordin, P. (1997). Ewvolutionary Program Induction of Binary Machine Code and
its Applications. Ph. D. thesis, University of Dortmund, Computer Science Dept.

Nordin, P. and W. Banzhaf (1995, 15-19 July). Complexity compression and evo-
lution. In L. Eshelman (Ed.), Genetic Algorithms: Proceedings of the Sixth Inter-
national Conference (ICGA95), Pittsburgh PA, pp. 310-317. Morgan Kaufmann,
San Francisco, CA.

Nordin, P., W. Banzhaf, and F. D. Francone (1999, June). Efficient evolution
of machine code for CISC architectures using instruction blocks and homologous
crossover. In L. Spector, W. B. Langdon, U.-M. O'Reilly, and P. J. Angeline
(Eds.), Advances in Genetic Programming 3, Chapter 12, pp. 275-299. Cambridge
MA: MIT Press.

Nordin, P., F. Francone, and W. Banzhaf (1995, 9 July). Explicitly defined introns
and destructive crossover in genetic programming. In J. P. Rosca (Ed.), Proceedings

of the Workshop on Genetic Programming: From Theory to Real-World Applica-
tions, Tahoe City, CA, pp. 6-22.

Oltean, M. (2005, Fall). Evolving evolutionary algorithms using linear genetic
programming. Evolutionary Computation 13(3), 387-410.

228

O’Neill, M. (2001, August). Automatic Programming in an Arbitrary Language:
FEvolving Programs with Grammatical Fvolution. Ph. D. thesis, University Of Lim-
erick, Ireland.

O’Neill, M. and C. Ryan (2003). Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, Volume 4 of Genetic programming. Kluwer
Academic Publishers.

O’Neill, M. and C. Ryan (2004, 5-7 April). Grammatical evolution by grammati-
cal evolution: The evolution of grammar and genetic code. In M. Keijzer, U.-M.
O’Reilly, S. M. Lucas, E. Costa, and T. Soule (Eds.), Genetic Programming, Pro-
ceedings of the 7th European Conference, FuroGP 2004, Volume 3003 of Lecture
Notes in Computer Science (LNCS), Coimbra, Portugal, pp. 138-149. Springer—
Verlag, Berlin.

O’Reilly, U.-M. and F. Oppacher (1995, 31 July—2 August). The troubling aspects
of a building block hypothesis for genetic programming. In L. D. Whitley and
M. D. Vose (Eds.), Foundations of Genetic Algorithms 3, Estes Park, CO, pp.
73-88. Morgan Kaufmann, San Francisco, CA.

Ortega-Sanchez, C., D. Mange, S. Smith, and A. Tyrrell (2000, July). Embry-
onics: A bio-inspired cellular architecture with fault-tolerant properties. Genetic
Programming And Evolvable Machines 1(3), 187-215.

Paterson, N. and M. Livesey (1997, 13-16 July). Evolving caching algorithms
in C by genetic programming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,
M. Garzon, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1997: Proceedings
of the Second Annual Conference, Stanford University, CA, pp. 262-267. Morgan
Kaufmann, San Francisco, CA.

Paterson, N. R. and M. Livesey (1996, 28-31 July). Distinguishing genotype and
phenotype in genetic programming. In J. R. Koza (Ed.), Late Breaking Papers at
the Genetic Programming 1996 Conference, Stanford University, CA, pp. 141-150.
Stanford Bookstore, Stanford CA.

Platel, M. D., M. Clergue, and P. Collard (2003, 14-16 April). Maximum homolo-
gous crossover for linear genetic programming. In C. Ryan, T. Soule, M. Keijzer,
E. Tsang, R. Poli, and E. Costa (Eds.), Genetic Programming, Proceedings of the
6th European Conference, EuroGP 2003, Volume 2610 of Lecture Notes in Com-
puter Science (LNCS), Essex, UK, pp. 200-210. Springer—Verlag, Berlin, Germany.

Podgorelec, V. and P. Kokol (2000, 15-16 April). Fighting program bloat with the
fractal complexity measure. In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty (Eds.), Genetic Programming, Proceedings of the 3rd
Furopean Conference, FuroGP 2000, Volume 1802 of Lecture Notes in Computer
Science (LNCS), Edinburgh, pp. 326-337. Springer—Verlag, Berlin, Germany.

229

Poli, R. (2001, 18-20 April). General schema theory for genetic programming with
subtree-swapping crossover. In J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan,
A. G. B. Tettamanzi, and W. B. Langdon (Eds.), Genetic Programming, Proceed-
ings of the 4th European Conference, EuroGP 2001, Volume 2038 of Lecture Notes
in Computer Science (LNCS), Lake Como, Italy, pp. 143-159. Springer-Verlag,
Berlin, Germany.

Porter, M., M. Willis, and H. Hiden (1996). Computer-aided polymer design using
genetic programming. Technical report, Chemical Engineering, Newcastle Univer-
sity, UK.

Prusinkiewicz, P. and A. Lindenmayer (1990). The Algorithmic Beauty of Plants.
Berlin: Springer.

Quagliarella, D., J. Periaux, C. Poloni, and G. Winter (Eds.) (1998). Genetic Algo-
rithms and Fvolution Strategy in Engineering and Computer Science, Chichester,
UK. John Wiley and Sons.

Rechenberg, 1. (1971). Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Ph. D. thesis, Technische Universitat Berlin,
Germany.

Rechenberg, 1. (1989). Evolution strategy: Nature’s way of optimization. In
H. Bergmann (Ed.), Optimization: Methods and Applications, Possibilities and
Limitations, Volume 47 of DLR lecture notes in engineering, pp. 106-126. Berlin,
Germany: Springer.

Rechenberg, 1. (Ed.) (1994). Evolutionsstrategie °94, Volume 1 of Werkstatt Bionik
und FEvolutionstechnik. Frommann-Holzboog, Stuttgart, Germany.

Reinelt, G. (2007). URL:
http: / /www.iwr.uni-heidelberq. de /groups/comopt /software/TSPLIB95 /tsp/ .

Rosca, J. (1996, 28-31 July). Generality versus size in genetic programming. In
J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), Genetic Program-
ming 1996: Proceedings of the First Annual Conference, Stanford University, CA,
pp. 381-387. MIT Press, Cambridge MA.

Rosca, J. P. (1995, 9 July). Entropy-driven adaptive representation. In J. P. Rosca
(Ed.), Proceedings of the Workshop on Genetic Programming: From Theory to
Real-World Applications, Tahoe City, CA, pp. 23-32.

Ross, P. (2005). Hyperheuristics. In E. Burke and G. Kendall (Eds.), Search
Methodologies, pp. 529-556. Berlin, Heidelberg, New York: Springer-Verlag.

Rudolph, G. (1996). Convergence Properties of Evolutionary Algorithms. Ph. D.
thesis, Computer Science Dept., University of Dortmund, Germany.

230

Samsonova, E. (2002, June). HELIX: An Artificial Life system modeling DNA.
Master’s thesis, Faculty of Mathematics and Natural Sciences, University of Leiden,
The Netherlands.

Schoenauer, M., M. Sebag, F. Jouve, B. Lamy, and H. Maitournam (1996). Evo-
lutionary identification of macro-mechanical models. In P. J. Angeline and K. E.
Kinnear, Jr. (Eds.), Advances in Genetic Programming 2, Chapter 23, pp. 467-488.
Cambridge MA: MIT Press.

Schrodinger, E. (1944). What is Life? Cambridge, UK: Cambridge University
Press.

Schwefel, H.-P. (1975, May). Evolutionsstrategie und numerische Optimierung. Ph.
D. thesis, Technische Universitat Berlin, Germany.

Schwefel, H.-P. (1981). Numerical optimization of computer models. New York:
Wiley.

Schwefel, H.-P. (1995). FEwvolution and optimum seeking. New York: Wiley Inter-
science.

Schwefel, H.-P., I. Wegener, and K. Weinert (Eds.) (2003). Advances in Computa-
tional Intelligence—Theory and Practice. Springer, Berlin, Germany.

Sims, K. (1994). Evolving 3d morphology and behavior by competition. In
R. Brooks and P. Maes (Eds.), Artificial Life IV. MIT Press, Cambridge MA.

Smith, J. M. and E. Szathmary (1995). The major transitions in evolution. Oxford,
UK: W.H. Freeman/Spektrum.

Smolin, L. (2004, January). Atoms of space and time. Scientific American, 56-65.

Soubeiga, E. (2003). Development and application of hyper-heuristics to personnel
scheduling. Ph. D. thesis, Computer Science, University of Nottingham.

Spector, L. and K. Stoffel (1996, 28-31 July). Ontogenetic programming. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford University, CA, pp.
394-399. MIT Press, Cambridge MA.

Stoffel, K. and L. Spector (1996, 28-31 July). High-performance, parallel, stack-
based genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo (Eds.), Genetic Programming 1996: Proceedings of the First Annual
Conference, Stanford University, CA, pp. 224-229. MIT Press, Cambridge MA.

Student project team 272 “Philia” (1997, September). Final report: Implemen-
tation and Application of a Genetic Programming/Artificial Life System (Ger-
man original: “Endbericht: Realisierung und Anwendung eines GP/AL-Systems”).
Technical report, Computer Science Department, University of Dortmund, Ger-
many.

231

Teller, A. (1996). Evolving programmers: The co-evolution of intelligent recom-
bination operators. In P. J. Angeline and K. E. Kinnear, Jr. (Eds.), Advances in
Genetic Programming 2, Chapter 3, pp. 45-68. Cambridge MA: MIT Press.

Vester, F. (1980). Neuland des Denkens. Stuttgart: DVA.

Watson, J. D., N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner
(1992). Molecular Biology of the Gene. Menlo Park, CA: Benjamin Cummings.

Weber, B. H., D. J. Depew, and J. D. Smith (Eds.) (1988). Entropy, Information,
and FEvolution. MIT Press, Cambridge MA.

Wegener, 1. (1993). Theoretische Informatik. Stuttgart: B.G. Teubner.

Whigham, P. A. (1996, 28-31 July). Search bias, language bias, and genetic pro-
gramming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.),

Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford
University, CA, USA, pp. 230-237. MIT Press.

Wiener, N. (1948). Cybernetics. New York: Wiley.

Wolfram, S. (1994). Cellular Automata and Complexity. Reading, MA: Addison-
Wesley.

Wolpert, D. H. and W. G. Macready (1997, April). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation 1(1), 67-82.

Wong, M. L. and K. S. Leung (1995, 29 November - 1 December). Applying
logic grammars to induce sub-functions in genetic programming. In 1995 IEFEE
Conference on Evolutionary Computation, Volume 2, Perth, Australia, pp. 737—
740. IEEE Press.

Wood, D. (1987). Theory of Computation. New York: Wiley.

Wu, A. S. and I. Garibay (2002, June). The proportional genetic algorithm: Gene
expression in a genetic algorithm. Genetic Programming and Evolvable Hardware
3(2), 157-192.

Yu, T. and P. Bentley (1998, 27-30 September). Methods to evolve legal pheno-
types. In A. E. Eiben, T. Béck, M. Schoenauer, and H.-P. Schwefel (Eds.), Fifth
International Conference on Parallel Problem Solving from Nature, Volume 1498 of
Lecture Notes in Computer Science (LNCS), Amsterdam, pp. 280-291. Springer,
Berlin, Germany.

Yu, T. and J. Miller (2001, 18-20 April). Neutrality and the evolvability of boolean
function landscape. In J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B.
Tettamanzi, and W. B. Langdon (Eds.), Genetic Programming, Proceedings of the
4th European Conference, FuroGP 2001, Volume 2038 of Lecture Notes in Com-
puter Science (LNCS), Lake Como, Italy, pp. 204-217. Springer, Berlin, Germany.

232

Yu, T. and J. F. Miller (2002, 3-5 April). Needles in haystacks are not hard to
find with neutrality. In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B.
Tettamanzi (Eds.), Genetic Programming, Proceedings of the 5th European Confer-
ence, EuroGP 2002, Volume 2278 of Lecture Notes in Computer Science (LNCS),
Kinsale, Ireland, pp. 13-25. Springer—Verlag, Berlin.

Zibo, Z. and F. Naghdy (1995, 29 November—1 December). Application of genetic
algorithms to system identification. In 1995 IEEE International Conference on

Evolutionary Computation, Perth, Australia, pp. 777-782. IEEE press, Piscataway
NJ.

Zomorodian, A. (1995, 10-12 November). Context-free language induction by evo-
lution of deterministic push-down automata using genetic programming. In E. V.
Siegel and J. R. Koza (Eds.), Working Notes for the AAAI Symposium on Genetic
Programming, MIT, Cambridge MA, pp. 127-133. AAAI press, Menlo Park, CA.

233

234

List of Figures

1.1

1.2

1.3

Search methods feature a low plasticity compared to the real world and a
living structure, such as the human brain as a potent world model. Their
poor functional complexity forces the useruser of basic algorithmic solvers
to abstract from a practical situation and still to specialize the solver’s
model to meet the abstract problem. Accordingly, returned output may
require substantial human interpretation. Such repeated manual complex-
ity reduction and subsequent increase accumulates costs as undesirable
side effect. Even current self-modifying flavors of bio-analog approaches
do not compare favorably in terms of assimilating novel scenarios.

A complete transition of cybernetic complexity from the user to an artificial
entity in question: the concept of a present, merely nature-inspired model
of a real situation turns into the proposal of an autopoietic system that
shares its world with its user. Not requiring explicit external directives,
it builds and follows its own developmental “yellow brick road” to self-
completion. However, the lunch for its user is still not free, just cheaper:
his or her ease of implicit “natural” interaction with the envisioned system
still comes at the risk of a mismatch of its desirable vs. actual behavior,
like it is with current, costly designed and tuned systems.—In our field
of interest, a computing model is a viable entry point to the mentioned
transition, and we focus on Genetic Programming.

The field of Computational Intelligence comprises Artificial Neural Net-
works, Fuzzy Systems, and Evolutionary Algorithms. The latter consist of
the subfields shown at the bottom.

235

1.4

1.5

1.6

1.7

1.8

We suggest an informal coordinate array over transparency and autopoiesis
of a system. Close to the grid’s origin, utterly undesirable systems reside
that neither show an endogenous nor a clear structural and functional
organization. Regarding artificial systems, so-called “quick and dirty” cre-
ations may be mentioned. Cleanly designed crisp systems, however, are
transparent and amenable to manual maintenance. From there, increas-
ing autopoiesis necessarily implies decreasing system transparency, because
physical constraints require a function to be performed by combined struc-
tures, and a structure to carry several functions, if the system in question
is to form and maintain itself while competing for resources. This proper
and dense structure/function relation renders a both perfectly clear and
self-organizing entity a utopia, so that the system space suggested here
ends at the horizon of infeasibility. Eventually, we find biological organ-
isms, hard to fathom, practically impossible to engineer from scratch, that
operate efficiently. Between the four mentioned extremes, we see soft sys-
tems and suggest rough areas for prominent approaches such as Artificial
Neural Networks and Genetic Programming, our focus.

Graphic representation of the dynamics of an L-system, i.e., a parallel
string rewriting approach as opposed to sequential rewriting by a grammar.
Appropriate systems model plant development.

A medium of interest allows for random variation. In the physical world,
heat in the thermodynamic sense is a source of such noise and may be
a cause for structural variability. Information, carried by structures, in-
fluences the development of structures whose spatial dynamics, interact-
ing with the medium, raise a selective bias on the original information.
If the medium is inherently stable, evolution of information emerges on
a low structural level, being a prime instance of autopoiesis. Likewise
self-maintaining “individual organisms,” coming forth from evolution and
reflecting it in terms of self-controlled growth and continued existence,
constitute a superorganism whose development s their evolution. Higher
medium stability may yield emergence of redundant structures and main-
tenance mechanisms that further promote stability which counterbalances
noise. Artificial or hazardous media call for speedily evolving artificial
superorganisms that spawn autopoietic material solutions. As an initial
focus, however, we identify self-organizing computing.

A spatial world with active and “dead” agents.

Depending on local physics, a favorable strategy Al has emerged that
therefore continues to exist, as indicated by its high repetition count.
However, the underlying category set, containing concepts such as space,
motion, metabolic requirements, social relations, referenced in strategies,
is frozen, so that the evolution of novel concepts and their assimilation
(learning) by agents is no option.

1.9

1.10

1.11

1.12

2.1

We see a production matrix of material organisms as strategic objective.
Control of matrix elements is a necessary prerequisite for such organisms,
so that they may be approached by algorithmic organisms effecting self-
maintaining computation in an appropriate matrix, e.g., a digital medium,
thereby representing a superorganism, while unused parts of the matrix
appear “dead”, only subject to omnipresent underlying noise. We have
established Genetic Programming as a pragmatic starting point toward
this organism. Its autopoiesis appears as self-controlled development of
the matrix, so that we get the introduction of endogenous development to
Genetic Programming as our tactical objective.

An instance of the tree representation of an algorithm that computes the
value of the arithmetic expression (a+b)%c+ 3% 4. The value results
from substituting parameters a,b, and ¢ with numerical values.

The transfer of system dynamics between media as source of innovation.
In particular, a structure carrying a process that modifies its carrier is
an omnipresent phenomenon of interest to us, e.g., vortex, life form, star,
algebraic entity. Abstracting from representation-dependent issues yields
a principle that one may implement as a novel analogous phenomenon in
a different medium, e.g., hardware carrying algorithms. Symmetry of the
approach results if one masters the target medium, e.g., by “programming”
aliving cell.o

Endogenous ontogeny supports autopoiesis. To this end, one may extend
a genotype format to hold information that directs the interpretation of a
genotype, so that the semantics of the produced phenotype arises from the
genetic information and the behavior of the instructed interpreter. Thus,
ontogeny becomes subject to environmental pressure, which makes the
Genetic Program a self-adaptive rewriting process. Among its products,
only the delivered programs are of interest as solutions. While the overall
complexity of the problem environment at hand cannot decrease, so that
the proverbial “free lunch” of Machine Learning remains unobtainable, a
user of this concept saves resources.

A part of a DNA molecule, featuring instances of all of the four essential
basic DNA components labeled A,C,G,T. Dotted lines indicate hydrogen
bonds.

4.1 Simplified scheme of biosynthesis: we focus on some of its steps that
are instances of transitions between media and of data interpretation (for
brevity, processes are presented mechanistically as agents, rather than as
emergent phenomena). A DNADNA sequence serves as data carrier. Tran-
scription, effecting a medium transition to RNA, ignores so-called junk
between genes and yields a primary transcript that represents a working
copy, so that original data remains untouched. The underlying molecular
machinery continues by retaining some subsequences (exons) and splicing
out others (introns). Translation interprets the edited result as codon se-
quence and represents it in the medium of amino acids. The synthesized
polypeptide chain is subject to molecular forces that fold it into a protein.
This structure or its biochemical reactivity represent function, i.e., interac-
tion with its environment. The sequence of codons and corresponding acids
is information, i.e., an invariant of interest, giving so-called colinearity of
gene and encoded protein.

4.2 Overview of the GP flavor “Binary Genetic Programming,” or simple De-
velopmental GP. Creation and the genetic cycle of the underlying Evo-
lutionary Algorithm yield binary genetic information that an extension
transforms into phenotypes for subsequent fitness evaluation. This ad-
dition transcribes, repairs and edits forms of the genotype such that a
compiler can eventually produce the final representation, a phenotypic ex-
ecutable, an analogy of a protein.

5.1 An example of a synthetic fitness landscape over a planar solution space
generated by dimensions x and w. Quality function t maps the space into
fitness values, generating the landscape. Profiles for real-world problems
usually do not offer nice properties such as continuity.

5.2 Progression of the mean average quality.

6.1 Top down, the graphs show the progressions of the mean best individual
fitness, mean average individual fitness, mean best code fitness, and mean
average code fitness on a logarithmic fitness scale.

6.2 Progression of the mean average coupled-fitness values.

6.3 Generation 0. Population distribution in fitness/code-fitness space.
Mean-average values. x-axis: individual fitness; y-axis: code fitness;
z-axis: number of individuals in given generation that have a fitness
and code fitness corresponding to the position of their “population
column.”

6.4 Generation 49. Ditto. Squares with top labeled “0.0” indicate column
height less than 0.05. Tallest column represents strong non-global
optimum ‘a’, second-tallest column visualizes global optimum ‘a x
a’. Figure represents snapshot of population migration toward better
code-fitness and fitness. Lo

6.5 Logarithmic scale: progression of the mean symbol frequencies on all
target symbols.o

7.1
7.2

7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6

Top down: mean best individual fitness and mean average individual fitness.171
Observed progressions of the mean symbol frequencies on the mentioned

target symbols.o 172
Asbefore. e 173
Asbefore.o 174
Asbefore. 175
Grammar N20 184
Grammar If 185
Grammar NoNatural 185
Grammar ThreeChange 186
Grammar NoNolmprove 186
Grammar DoTilllmprove 187

239

240

List of Tables

5.1
5.2

6.1
6.2

6.3
6.4

6.5
6.6

7.1

7.2

7.3
7.4

8.1
8.2

8.3

8.4

8.5

8.6

Genetic code of first developmental search algorithm.

Genetic code of sign example.

Example of a random code.
Execution probabilities for variation and copying for the second empirical
problem.o Lo
Initial codes for experiment on second empirical problem.
Individual distribution. First row z/y gives co-ordinates within the
fitness/code-fitness plane from figure 6.4, with x = 0 meaning fitness inter-
val [0,7] and so forth, y analogously for code fitness. Second row Individ-
uals gives number of individuals represented by the respective population
column in the figure. ¥ < 50 indicates ca. 0.3/50 = 0.6% of generation
that is distributed over several more columns that appear with height 0.0
at chosen figure scale.
Symbol frequencies for second empirical problem.

Examples of evolved codes.

Execution probabilities for variation and copying for the third empirical
problem.o
Final mean symbol frequencies of the third empirical problem. Noise
and operator symbols are marked x.
Symbol-classification ratios. L.
Freezing time for all operators.

Basic Parameters
Hyperheuristic, 600 10-node random problems, 1,000 runs per prob-
lem. Improvement J relative to mean natural length. “n.a.”: not
applicable
GP hyperheuristic v ideal random search on L(N20). Hits of optimal
genotype. . ..o oL
Basic Parameters o
Performance of hyperheuristic over different languages, on 40 ten-
node random problems, 500 runs per problem. Improvements d rela-
tive to natural length. oo
Basic Parameters

8.7 Performance for eil51 over NoNatural, 100 runs. Improvement ¢ of
mean best relative to natural length.
8.8 Performance for eil51 over ThreeChange, 30 runs. Improvement o of
mean best relative to natural length.
8.9 Performance for eil51 over NoNolmprove, 30 runs. Improvement ¢ of
mean best relative to natural length.
8.10 Performance for problem eil51 over grammar DoTillImprove (DTI)
for different values of ¢, ¢ iterations at most, 100 runs per value. P:
Mean best or natural length in terms of % of best known result.
All real values rounded off to nearest hundredth except where higher
precision required for distinction.
8.11 For problem eil51, grammar DoTillImprove, © = 800, ¢ iterations at
most, 100 runs: average primitive frequency ¢. Fixed max. genotype
size | =500,
8.12 Performance for eil76, details as given in caption of Table 8.10.
8.13 Basic Parameters
8.14 Performance of metaheuristics evolved over language DTI, on problem
eil76. 100 runs of GP hyperheuristic for given ¢ value. Best evolved
metaheuristics at least match effectiveness of hand-crafted Hybrid
GA. Other details as given in caption of Table 8.10.
8.15 Performance over 30 runs of GP hyperheuristic for given ¢ value.
Other details as given in caption of Table 8.14.

242

192
193
194

Name Index

Aguirre, H., 91

Aho, A., 97

Aiyarak, P., 47

Alander, J., 37
Andrews, M., 47
Angeline, P.J., 35, 70, 87
Ashby, W.R., 21, 26
Aue, C., 37

Ayala, F.J., 35
Ayyagari, R., 23

Back, T., 35, 45

Back, T., 22, 103

Banzhaf, W., 22-24, 35, 37, 45, 47,
48, 55, 57, 59, 60, 67, 70, 87,
90, 95, 211

Barrett, S.J., 47

Baydar, C.M., 47

Bennett III, Forrest H., 45

Bentley, P., 23

Bersano-Begey, T., 90

Beyer, H.-G., 45

Bleuler, S., 88

Blickle, T., 35, 37, 88, 103

Brack, M., 88

Brameier, M., 57, 59

Bremermann, H., 34

Busch, J., 37

Cao, H., 45
Chellapilla, K., 70
Chen, Y., 45
Claus, V., 37
Clergue, M., 70
Collard, P., 70
Comisky, W., 87
Crepeau, R., 69

Darwin, C., vii, 35
Davis, D., 35
Dawkins, R., 35

de Vries, H., 39

Ebner, M., 23

243

Eigen, M., 60

Feynman, R.P., 7
Fogel, D., 103
Francone, F.D., 35, 70

Garibay, 1., 24
Gerdes, 1., 37
Ghosh, S., 23
Globus, A., 87
Goldberg, D., 35
Gruau, F., 21

Hammel, U., 22
Hansen, J.V., 70
Hemmi, H., 21
Heracleitus, 47
Heylighen, F., 5

Hiden, H., 87

Holland, J.H., 21, 35, 93
Hopkins, N.H., 71
Hopper, N.J., 59

Iba, H., 87

Jones, A.J., 24
Jouve, F., 87

Kang, L., 45

Kargupta, H., 23

Kauffman, S., 35

Keane, M.A., 45

Keller, R.E., 22-24, 35, 37, 45, 47, 59,
60, 87, 90

Kimura, M., 56

Knuth, D., 24

Kokol, P., 87

Koza, J.R., 35, 45, 87, 103, 105

Lamy, B., 87

Langdon, W.B., 37, 47, 60, 87, 93
Lanza, G., 45

Lawton, J., 87

Livesey, M., 23

Luke, S., 70

Macready, W.G., 20
Maitournam, H., 87
Margetts, S., 24
Maturana, H.R., 9
McPhee, N.F., 59
Mehnen, J., 37, 45, 47, 87
Michalewicz, Z., 103
Miller, J.F., 57, 60
Minister, J.-B. H., 37
Mitchell, M., 35
Mitchell, T., 87
Mizoguchi, J., 21
Motoki, T., 45
Mukai, T., 56
Mydlowec, W., 45

Nabuurs, R., 202
Nissen, V., 35

Nordin, P., 35, 69, 70, 87, 91, 93

O'Neill, M., 22
O’Reilly, U.-M., 93
Oppacher, F., 93

Paterson, N.R., 23
Platel, M.D., 70
Podgorelec, V., 87
Poli, R., 60, 87
Poloni, C., 37
Porter, M., 87
Prager, R., 47

Quagliarella, D., 37

Rechenberg, 1., 35
Roberts, J.W., 71
Rosca, J., 59, 87
Ross, A., 37
Rudolph, G., 45
Ryan, C., 22

Saitou, K., 47
Saket, A.S., 47
Sawitzki, D., 37
Schoenauer, M., 87

244

Schrodinger, E., 37

Schwefel, H.-P., 22, 35, 37, 45

Sebag, M., 87
Sethi, R., 97
Shackleton, M., 23
Shimohara, K., 21
Shipman, R., 23
Sims, K., 21
Sinclair, M.C., 47
Spector, L., 21, 70
Steitz, J.A., 71
Stoffel, K., 21

Thiele, L., 88, 103
Ullman, J.D., 97

Valentine, J.W., 35
Varela, F.J., 9
von Neumann, J., 17

Watson, J., 71

Weber, B., 35

Wegener, 1., 13, 45
Weiner, A.M., 71

Weinert, K., 37, 45, 47, 87
Willis, M., 87

Wipke, T., 87

Wolpert, D.H., 20

Wu, A.S. 24

Yu, J., 45, 87
Yu, T., 23, 57, 60

Zibo, 7., 37
Ziegler, J., 37
Zitzler, E., 88

Subject Index

(), 77
(N), 49
(E.n), 5
(g,c¢), 148
(9:pg), 145
A C B, 205
Ep,, 152
Ep,, 164
Ep,, 167
G, 74
L(G), 62
L,, 62

N, 177
R, 177
SGy, 75
Sp, 30

[..], 77
[v], 48
$o, 50

B, 67

A*, 62
A™eTE 63
En, 116
Q,, 62
Q,,, 80

g, 51

fit, 157
D4, 120

€, 50
ysea, ., 153
~fit, 150
g, 145

s, 150

A, T7
Ap,, 142
Ay, 80

F, 168

T, 168

¢, 177
rpr, 84
tra, 81
trafeam,cvraa 81

245

Py, 136

P, 146

Ps, 167
c_, 134
d._,, 140
d,_,, 141
dy_., 145
dev_,, 54
p_, 54, 136
dim(S), 129
fp,, 152
fp,, 168
gpg, » 150
L(s), 94

W, 75

P, 145

w, 157
hd(g,h), 94

seaq_., 135
cop, 153
Mmutg, 147
fmuts, 149
Pmutep, 142
Fmut,,., 142
flt () 138

a; € t, 206 Lemp, 107

accy, 33 Ly extension, 146

alga,,, 31 d_, 134

Cs, 17 ng, 96

clss(g), b1 Pap; 96

cuTy, 80 Cap, 96

dec,, 29 op_, 104

dom(f), 205 Cny TT

f(a) =10, 205 encgy , 48

f(dom(f)), 205 encry, 49

f:A— B, 205 encsp, H2

fean,, 30 m_, 95

pars 76 a(g), 103

gd8> 58 ¢de, 97

gPa; 99 D(x), 110

ie, 122 sqrt(x), 110

idy, 205 2-tournament selection, 104
img(f), 205

ndy,, 57 absolute connecting, 121

N frm, 31 absolute error, 177

infy, 31 acceptability ratio, 129

j =7, 57 acceptable, 19

k-x string, 50 acceptable feasible solution, 86
MiNg, D0 acceptable phenotype, 63, 74
mut, H8 acceptable solution, 33, 67, 75, 86, 89
Dgs 19 acceptance value, 33, 43, 56
Pgpars 13 active, 88

Psel, 128 active bloat, 88

pm, 69 adaptation, vii, 34

pop,., 140 adapted, 35

POpy ¢, 41 adaptive DGP, v

POS, H0 adaptive mutation, 57

pot,, 30 adenine, 71

reds(b), 112 adjacent, 120

repq, 31 adjusted fitness, 103, 104
T€Pn;, 90 adjusted-fitness measure, 103
repn, =, 50 advanced artificial machinery, 71
repg,, 49 alanine, 72

rng(f), 205 algorithm, 45, 62, 87

Sp, 53 genetic, 68

5€aq, 31 algorithmic component, 100
s€eqq, 50 algorithmic matrix, 11, 19
sngs, b7 algorithmic metaphor, 71, 72, 90, 92
sol,, 30 algorithmic model, 87

x string, 50 algorithmic organism, 11

246

algorithmic solver, 34

alphabet, 48

amino acid, 71, 72, 92

amino-acid sequence, 72

analogy, 91

appended symbol, 96

appended-symbol selector, 96

appending finalizing, 96-98, 102

approximate problem solving, 37

arc, 48

arithmetic expression, 63

arithmetic infix expression, 64, 96

art of piloting, 93

artificial autopoietic aggregate, 93

artificial codon, 92

artificial evolution, vii, 11, 13, 37, 42,
44, 81

of algorithms, 55

artificial genetic code, v

artificial genotype, 39, 40, 91

artificial genotype-phenotype
ping, 91, 92

artificial habitat, 39

artificial individual, 40

Artificial Life, 5, 7

artificial medium, 71

artificial metaphor, 91

artificial mutation, 39

artificial neural networks, 21

artificial neutrality, 57

artificial optimization, 34

artificial phenotype, 40

artificial selection, 40

asexual, 39

asexual reproduction, 42

assimilation, 9

atomic, 79

atomic component, 49, 69, 78, 103

atomic component set, 79

atomic genotype size, 78

atomic perspective, 116

atomic phenotypic-component set, 79

attractive, 74

autocatalytic, 60

automatically defined functions, 202

map-

247

autonomous agent, 15

autonomy, 19

Autopoiese, 213

autopoiesis, vii, 6, 19, 21, 67

autopoietic, 87

autopoietic programming, v, vii, 13,
55, 197

autopoietisches Programmieren, 213

average fitness, 55

average quality, 138

basal Evolutionary Algorithm, 43

basic recombinator, 93

behavior, 5, 7, 35, 40, 72, 87, 88, 93,
105

beneficial, 53, 88

beneficial genetic code, 113

beneficially redundant genetic code,
130

best-so-far individual, 43

better, 157

bias, 88

bijection, 205

bijective, 205

binary, 67, 68

binary encoding, 68

Binary Genetic Programming, 22

binary genotype, 22

binary genotype encoding, 93

binary neutral network, 127

binary point mutation, 101

binary relation, 205

binary representation, 77

binary search space, v

binary string, 68, 76

binary substrate, 71

biochemical reactivity, 17

bioinformatics, 14

biological ontogeny, 16, 55

biological phenomenon, 91-93

biological phenotype, 54

biological principle, 92

biological system, 6

biology, 91

bionics, 92

biosynthesis, 72, 91
bit data type, 69
bit-inversion, 68
black box, 63
blind random jump, 41
blind random search, 34, 44
bloat, 87, 88
bloating, 70, 87, 88
block

building, 131
boon of dimensionality, 130
bracketed string notation, 77
Bremermann limit, 34
brute-force, 33
building block, 89

C, 23, 82

caching algorithm, 23
carrier, 148

cart-centering problem, 23
Cartesian product, 205
causality, 132

cause-effect network, 70
CEE, 157

cell, 71

cellular automata, 9

cellular automaton, 23
cellular encoding, 21

chance, 24, 41

characteristic behavior, 17
child, 39

CI, 5

circuitry, 21

circular, 51

class-4 cellular automaton, 5
classification ratio, 177

clean irreducible, 97

clean irreducible symbol sequence, 97
clean irreducible transcript, 96
clean reducible transcript, 95
clean transcript, 95, 96
cleaner, 82, 83, 89, 92

clone, 39

clone production, 39

closed sentence, 109

248

closest, 94

closing, 109

closure, 109

co-evolution, 15, 27

code entry, 149

code evolution, 150

code fitness, 150

code hypothesis, 150, 199

code population, 148

code redundancy, 113

code space, 153

code-evolution explanation, 151, 199

code-fitness-measure constraint, 152

codes for, 71

codon, 71, 91, 94, 95, 99

codon number, 101, 102

codon perspective, 117

codon sequence, 71

codon set, 94

codon size, 91, 101

codon space, 130

combinatorial explosion, 14, 64, 129

commercial compiler, 99

common, 54, 56, 64, 198

common approach, 63

common creation, 102

common creator, 102

common experiment, 137

common Genetic Programming, viii

common Genetic-Programming algo-
rithm, 100

common point mutation, 103

common search, 55, 64

common search algorithm, 54, 59, 61

common search space, 135

compiled, arbitrary LR(1) target lan-
guage, v

compiler, 68, 99, 100

compiler construction, 97

compiling, 99

complete connecting, 121

complex biochemical mechanism, 91

complex biological phenomena, 72

complex recombinator, 70

complexity, 21

component, 76, 77, 79, 206

component number, 77, 81, 84, 85

component size, 76, 77, 91

component value, 76, 77, 80

component-value relation, 80, 84, 90,
92

composer, 50, 80

computation, 45, 91

computation time, 87

computational complexity, 34

Computational Intelligence, 5, 7, 70

computing environment, 62, 67, 68, 98,
99

computing resources, 67

computing time, 67, 104

conflict of hypothesis recursion, 139

conflict of recursion, 26, 56, 67, 70,
102, 197, 202

conflicting quality criteria, 87

conformation, 71

connected graph, 127

connecting trail, 120

connectivity, 127

conservation, 35

constant, 96

constant population size, 41

constrained optimization problem, 61

constrained phenotype, 23

constraint, 23, 29, 61

construction, 92

contents sequence, 80

context, 89

context-free, 96

context-free grammar, 22

control flow, 42

copying, 39, 104

correction, 95

coupled experiment, 137

coupled fitness, 157

coupled mutation, 117

coupled mutator, 117

creation operator, 42, 102

creator, 41, 102

crisp computing, 11

crisp system, 5

249

crisp technologies, 5
crossing over, 39, 41
current, 42, 82

current generation, 43, 100
current illegal symbol, 88
current symbol, 82, 89
current transcript, 95
curse of dimensionality, v, 130
customized parser, 100
cybernetic system, 93
cybernetically closed, 14
cybernetically open, 26
cybernetics, 93

cycle, 51

cyclic, 51

cytosine, 71

data mining, 108

data type, 39, 40, 50

death, 203

decision, 29

decision maker, 30

decision problem, 29

decision space, 29, 48, 52, 67, 68, 198

decision variable, 29, 64

deleting, 86, 89, 90

deleting cleaner, 83

deleting finalizing, 96, 97

deleting repairing, 83, 85-90, 92, 94,
95, 198

deletion, 82, 83

deoxyribonucleic acid, 35

design decision, 67

design effort, 88

design process, 91

desired behavior, 55

deterministic algorithm, 96

deterministic bias, 88

detrimental, 88

detrimental design, 93

developing organism, 47

developing phenotype, 88

development, viii, 7, 55, 71

developmental, 40, 54, 56, 65, 198

developmental algorithm, 54, 55, 61

developmental Evolutionary Algo-
rithm, 40

Developmental Genetic Programming,
v, viii, 22, 88, 214, 215

developmental Genetic Programming,
viii

developmental Genetic-Programming
algorithm, 55, 99

developmental machinery, 95

developmental process, 48

developmental search algorithm, 54,
55, 5861

developmental search space, 116

developmental theme, 72

DGP, viii, 22, 23, 147

diameter, 120

different size, 87

digital computing environment, 68

digital medium, 91, 93

digraph, 48, 51

dimension, 118

dimensionality, 118

directed edge, 48

directed graph, 51

directed hill climber, 121

direction, 118

disruptive crossover, 202

distance, 42, 60, 120

distance measure, 60

distributed organization, 21

diversity, 59, 70, 92

diversity loss, 59

DNA, 35, 73, 91

DNA gene, 71

domain set, 205

double, 57

drift, 60

durability, 92

dynamic problem, 88

dynamic quality measure, 14

EA, vii, 54

EA design, 40, 41, 92
EA dynamics, 93

EA individual, 57

250

EC, 1

ecology, 92

economy, 92

edit distance, 120

edited phenotype, 99

editing, 99

editing algorithm, 199

efficiency, 67, 96

efficient deterministic adaptation, 20

efficient deterministic exact solution,
20

efficient deterministic solution, 92

elitist selection, 41

emergent, 14

emergent problem, 108

Emergenzfahigkeit, 213

empirical common search algorithm, 1,
56, 100, 103, 105

empirical developmental algorithm, 56

empirical developmental search algo-
rithm, 1, 56, 62, 65, 69, 74, 75,
7779, 84, 86, 92, 94, 98, 100,
105

empirical genotype-phenotype map-
ping, 55, 70

empirical problem, 107

empirical research, 24, 105

empirical search algorithm, 56

empty word, 50, 82

encoded, 71

encoding, 48, 49, 51, 61, 67, 68, 101

encoding alphabet, 48, 49, 52, 67

encoding set, 52, 64

encoding size, 49, 50, 52, 53, 64, 68

encoding structure, 48, 52, 67

endogenous ontogeny, 17, 18

entomology, 92

entropy increase, 7

enumeration, 33

environment, 13, 27, 35, 37, 39, 68, 99

environmental information, 91

equal-sized, 91

equivalent program, 62

ergodic, 69

ergodic point mutator, 69

ergodic search operator, 69 external parameter, 25, 26

escape, 60 extinction, 42
essence of genotype-phenotype map-

ping, 80 fanning out, 173
eternal existence, 104 feasible, 30, 61
evaluation, 87 feasible algorithm, 62
evaluation function, 33, 40 feasible solution, 30, 61, 68, 75, 87, 94
evolvability, 17 feasible solutions, 55
evolution, 70, 76, 93, 197 feasible structure of interest, 55
evolution loop, 42, 43, 104, 105 feasible-decision space, 30
evolution of species, 56 final, 43
Evolution Strategies, 2, 27, 83 finalizing, 96, 97, 99
evolution-based self-adaptation, 20 finding a decision, 30
Evolutionare Algorithmen, 213 finding a potential solution, 30
Evolutionary Algorithm, vii, 11, 19, finite automata, 19

20, 25, 27, 34, 37, 88, 91-93, finite domain, 75

101, 105, 199, 202 finite memory, 63
Evolutionary Algorithms, 7, 35, 197 finite size, 95
Evolutionary Computation, 1, 87 first developmental search algorithm,
evolutionary loop, 20 105
evolutionary production, 87 first empirical function, 109
Evolutionary Programming, 19 fitness, 38, 40, 87
evolutionary search, 41 fitness case, 45, 69
evolvability, 18, 71 fitness feedback, 81
evolved information, 71 fitness function, 40
exact solution, 34 fitness landscape, 118
excellent phenotype, 90 fitness-fitness correlation, 157
executable file, 100 fixed population size, 104
executable representation, 99 fixed size, 88
execution probability, 147 fixed-length binary string, 70
exon, 71 fixed-size, 52
experiment, 94, 137 fixed-size binary encoding, 68
experiment set, 170 fixed-size binary string, 78
experiment size, 137 fixed-size binary-string encoding, 91
explicit artificial selection, 14 fixed-size encoding, 52, 68
explicit function definition, 75 fixed-size genotype encoding, 87
explicit mapping algorithm, 75 fixed-size linear encoding, 64
explicit quality measure, 19 flow of complexity, 21
explicit semantics, 19 FNC, 51
explicitly represent, 87 folding, 72, 99
exploitation, 42 foobar, 50
exploration, 41, 42, 59 fork, 51
explosion forked, 51

combinatorial, 14 forked structure, 68

external bias, 110 formal, 91

251

formal language, 62

formal model, 93

Fortran, 82

four-dimensional sign example, 124

freezing, 178

frequency, 42

frequency progression, 172

frozen, 72

frozen genotypic parts, 76

full, 61, 65, 69

full developmental GP algorithm, 90,
198

full developmental search algorithm,
61, 75, 78

full search, 61

function, 51, 91, 205

function and terminal sets, 62

function carrier, 101

function frame, 99

function regression, 87

function set, 45

functional, 75

GADS, 23

GE, 22

generational-time measure, 43

Gedankenexperiment, 91

gender, 91

gene, 71, 72

gene regulatory network, 9

general phenotype, 87

general problem solver, 2

general regression problem, 107

general solution, 87

general-purpose language, 82

generality, 87

generation, 105, 137

generational, 104

generational Evolutionary Algorithm,
43

generic Evolutionary Algorithm, 27

generic hard restriction, 63

Genetic Algorithm, 21

Genetic Algorithms, 27, 83, 89

genetic code, 92, 94

252

genetic diversity, 38, 41, 57-59, 70, 90,
92

genetic information, 7, 35, 91, 95, 99,
201

Genetic Programming, vii, viii, 11, 13,
28, 45, 83, 87, 93, 197, 200,
201, 213, 214

Genetic Programming bibliography, 37

genetic representation, 22

Genetic-Programming system, 202

genetische Codes, 214

Genetische Programmieren, 213

genotype, 7, 22, 35, 54, 57, 70, 71, 75—
81, 83, 84, 86, 88, 90, 91, 95,
96, 99-101, 103

genotype bloat, 88

genotype representation, 69

genotype size, 88, 94, 102

genotype-phenotype distinction, 18, 21

genotype-phenotype mapping, v, 22—
24, 40, 55, 61, 67, 70, 72, 74,
75, 79, 81, 84, 86, 90-92, 94,
99, 101, 105

genotypic alphabet, 80

genotypic component, 76, 77, 79, 91

genotypic information, viii

genotypic representation, 18, 100, 101

genotypic sequence information, 81

genotypic syntax, 22

genotypic tree, 21

global, 33

global genetic code, 148

global optimum, 33, 63

goal-oriented autopoiesis, 47

GP, vii, 71, 213

GP algorithm, 45, 62-64, 78, 80, 84,
87, 88, 105

GP problem, 62, 63, 74

GP run, 70, 87, 91

GP system, 202

GPM, 55, 138

GPM essence, 81, 82

gradient, 132

gradient-based, 45

gradual improvement, 44

grammar, 21, 22, 62
grammar-driven, 100
grammar-driven GP, 22
Grammatical Evolution, 22, 23
graph, 21, 51

graph class, 52, 53

grow, 83

guanine, 71

habitat, 35, 70

Hamming distance, 94
Hamming-closest, 94

hard, 61, 63

hard constraint, 61, 62
hard problem, 33

hardware architecture, 21
hardware description language, 21
heredity, 38

heuristic, 181

heuristic random search, 34
heuristics, 35
high-dimensional, 128
HiGP, 21

Hill building, 133
homogeneous encoding, 52
homologous recombinator, 93
homology, 70

human brain, 70

human learning, 20
hyperheuristic, 181
hyperspace, 122
hypothesis, 92

I/O behavior, 63

I/O set, 14

ideal fitness landscape, 133

ideal genotype-phenotype mapping, 74
ideal target alphabet, 111
Idealsystem, 213

identical, 51

identical encodings, 51

identical graphs, 51

identical phenotype, 90

identity, 40, 57

identity function, 205

illegal intermediate transcript, 83

illegal operator, 88

illegal primary transcript, 89, 90

illegal symbol, 95, 99

illegal transcript, 98

image set, 205

implicit, 14, 75, 90

implicit function, 87

implicit function definition, 75

implicit mapping, 79

implicit mapping algorithm, 75

implicit program synthesis, 15

implicit redundancy, 90

implicit selection, 14

implicit semantics, 18

implicit solution, 87

implicitness, 43, 67, 88

inactive, 88

inactive bloat, 88

index, 95

individual, 13, 39, 55, 57, 103, 104

individual component relation, 79

individual genetic code, 148

individual output, 100

individual quality, 45, 149

individual total error, 45

individuals, 19

industrial context, 105

industrial problem, 34

infeasible, 63

infeasible search point, 55

infeasible solution, 31

infeasible space region, 65

infeasible-decision space, 31

infinity, 103

infix example, 64, 85, 88

infix expression, 102

information, 91, 95, 100
systemic, 7

information-to-function transforma-

tion, 17

initial, 41

initial code, 148

initial code population, 148

initial population, 41

injection, 205

injective, 90, 205
innovation, 41
inserting, 88, 90
inserting repairing, 83, 88, 89
insertion, 82, 83
Intelligence

Computational, 7
intermediate solution, 34
intermediate transcript, 83, 94, 99
internal bias, 110
Internet, 4
interpretation, 22, 40, 95, 101
interpreter, 68, 95
interpreting, 54
interpreting Genetic Programming, 19
interpreting Genetic-Programming al-

gorithm, 18

interpreting GP, 19, 20, 23, 24
interpreting GP algorithm, 19
intron, 57, 71
intron splicing, 71, 92
intuitive design, 92-94
irrational, 91
irrational design, 91
irreducible, 94, 96
irreducible transcript, 96
irregular, 45
iterative search, 44

kiinstliche Evolution, 213

L-system, 9

LALR(1), 82

LALR(1) grammar, 82

landscape leveling, 133

language, 22, 28, 62, 99
hardware description, 21

large genotype size, 86

large set, 33

leaping, 42

learned information, 96

learning, 99

learning system, 87

left context, 97

legal, 63

legal random string, 81

254

legal solution, 63

legal symbol, 82

legal-codon set, 94, 95
legal-symbol set, 82, 88, 94, 97, 99
legality, 63

life, 47

life form, 35

life-like artificial system, 93
limited initial energy, 43
linear, 52

linear encoding, 52, 91
linear fixed-size encoding, 67
linear representation, 23
linking, 99

LISP, 62

living system, 6

local, 33

local optimum, 33

local smoothing, 133
locality, 28

logical disjunction, 43
logistics, 14

long phenotype, 86

look-up table, 75

loop graph, 51

loss of structural diversity, 42
lost, 90

lowest-index codon, 95
lowest-index symbol, 95, 98
LR parsing, 82

LR(1), 102

LR(1) target language, v, 100

machine language, 68
Machine Learning, 45, 86, 87
machine program, 68, 69, 99
machine-language GP, 69, 202
macro-mutation, 39, 70
macro-symbol, 202
main program, 100
maintenance
self-, 6
manual problem identification, 47
mapping, 74, 205
genotype-phenotype, 55, 56

mapping a onto b, 205
mapping adaptation, 23
material structure, 34, 37, 87
mathematically intractable, 93
matter

programmable, 13
maximal phenotypic convergence, 59
maximal phenotypic size, 63, 64, 89
maximal structural diversity, 61
maximally non-injective, 74
mean average code quality, 157
mean average fitness, 138
mean average quality, 138
mean symbol frequency, 162
meaning, 18, 28, 80, 81
measure, 60, 103
medium-independent, 93
meiosis, 39
memory, 67, 87, 88, 104
messenger RNA, 71
meta EA, 27
metaheuristic, 181
metamorphosis, 6
metaphor, 55, 91-94
minimal alphabet, 49
minimal design, 70
minimal encoding, 49
minimal genetic diversity, 59
minimal transcript extension, 96

minimal, sufficient target-symbol set,

v
minimal-distance set, 94, 95
minimalism, 67, 76, 79, 102
mirroring genetic code, 113
mitochondrial protein, 72
modification sequence, 102
modularity, 22

molecular biology, 38, 71, 92
molecular evolution, 56
monolithic, 79

monolithic component set, 79

monolithic phenotypic-component set,

79
Monte-Carlo method, 34
morphogenesis, 60

moving, 41

mRNA, 71

mRNA precursor, 71
multi-modal, 45

multi-objective, 87

multicellular fauna species, 91
multicellular organism, 21
multiset, 162

mutagenic agent, 39

mutation, 39, 58, 89, 101, 103, 104
mutator, 41, 69, 70, 90, 101, 103

n-dimensional binary graph, 125

native language, 98, 99

natural adaptation, 37

natural and life sciences, 24

natural codon, 92

natural development, 91

natural evolution, vii, 9, 34, 35, 37, 92,
93, 95

natural genetic code, 23

natural genotype, 91

natural life-form, 93

natural mutation, 41

natural neutrality, 92

natural ontogeny, 20

natural phenomenon, 91

natural population, 57

natural product, 92

natural selection, 38, 56

natural system, 47

negative feedback, 34, 38

neighborhood, 28

neutral, 56, 58, 113

neutral evolution, 56

neutral genetic code, 113

neutral mutation, 57-60, 90-92

neutral network, 60

neutral redundancy, 113

neutral theory, 56

neutral variant, 57, 58, 60, 62

neutral variation, 57

neutrality, 57

neutrality theory, 56

next generation, 43

no-operation primitive, 183

node function, 48-50, 80

nodes, 48

noise, v, 151

noise symbol, 152

noisy, 108

noisy, high-dimensional search space, v
non-destructive, 184
non-determinism, 88

non-elitist selection, 69, 90
non-homologous variation, 93
non-injective function, 90

non-linear function, 23

non-trivial semantic mapping, 48
normal, 79

normal phenotypic-component set, 79
normalized fitness, 103

NP-complete, 34

NP-complete problem, 33

nucleotide, 71, 72

objective, 29, 71

objective function, 29
objectives, 29

offspring, 35, 104

old, 141

Ontogenese, 214

ontogenetic programming, 21
ontogenic EA, 28

ontogeny, viii, 7, 19, 40, 55, 90, 95
open finalizing, 146

open parenthesis, 97

open sentence, 109

operand symbol, 88
operating system, 100
operations research, 5
operator, 101-103

optimal phenotype, 86
optimization, 22, 37, 41
optimizing, 56

optimizing a dynamic problem, 33
oracle, 121

organic evolution, 72, 92, 93
organic life, 17

organically, 13

256

organism, 7, 9, 11, 40, 91

origin of life, 41

overflow-protected exponential func-
tion exp(x), 110

paragon, 92

parameter studies, 2

parent, 39

parental behavior, 35

parental organism, 35

parental phenotype, 35

parsing, 82, 95

path, 49

path-containing, 51, 67

path-oriented, 45

peak, 119

percolation, 60, 62

perfect classification, 175

perfect individual, 105

performance, 59, 92

pessimum, 53

phenotype, 7, 35, 54, 57, 70-72, 74, 75,
78-91, 95-100, 102

phenotype bloat, 88

phenotype encoding, 88

phenotype representation, 101

phenotype size, 83, 88, 94, 96, 98

phenotypes, 70

phenotypic alphabet, 80

phenotypic behavior, 99

phenotypic component, 76, 78, 79, 92

phenotypic graph, 21

phenotypic representation, 111

phenotypic sequence information, 81

phenotypic size, 87

phenotypic space, 81

phenotypic structural diversity, 87

phenotypic structure, viii

phenotypic syntax, 22

phenotypic trait, 22

philia, 15

Phylogenese, 213

phylogeny, viii, 25, 35, 95

physical environment, 87

physical problem, 108

physics, 71
pleiotropy, 22, 76
point code-mutation, 149
point mutation, 39, 42, 60, 63, 70, 103
point mutator, 69
polypeptide, 72
polypeptide chain, 72, 99
polypeptide synthesis, 71, 91
population, 41, 57, 58, 83, 88, 90, 92,
93, 104
population of solutions, 35
population size, 60
position, 50, 80, 82
position sequence, 81
position set, 50
positive feedback, 34, 38
potential genotype-phenotype map-
ping, 74
potential solution, 29, 61, 63
potential-solution space, 30, 48, 52, 68
practical, vii, 1
practical EA work, 93
practical problem, 20, 93
practical relevance, 87
practical run-time period, 34
pre-phenotype, 95
precursor, 71
premature convergence, 59-61
premature phenotype, 60
preservation, vii
preserving, 89
preserving repairing, 89
primary transcript, 71, 81-84, 89, 95,
98, 99
primitive, 182
principle of mono-causality, 101
principle of variation, 117
PRNG, 24
probability, 101
problem, 45, 47, 55, 67, 84, 92-94
irregular, 45
optimizing a, 33
real-world, 74
problem environment, 54
problem knowledge, 41

257

problem-irrelevance, v

problem-irrelevant, 111

problem-oriented artificial system, 92

problem-relevant, 111

problem-specific adaptation, vii

problem-unrelated information, 98

problem-unrelated search bias, 96, 97

process, 34

producing matrix, 11

production rule, 22

program, 24

program converter, 68

program representation, 22

programmable matter, 13

programmable-logic device, 21

programming language, 62

progress, 138

projected mapping algorithm, 75

projected search algorithm, 47, 48, 51—
55, 62, 65, 68-70, 100, 103-105

proline, 72

Proportional Genetic Algorithm, 24

protected function, 109

protected square root function, 110

protein, 17, 71, 72

protein synthesis, 17, 71

pseudo-random number, 24

pseudo-random-number generator, 24,
104

pure, 83

pure random search, 33, 34

push-down automata, 21

quality, 32, 40, 87, 88, 103

quality evaluation, 45, 87, 88, 98, 100,
103, 105

quality measure, 104

quality oscillation, 140

quality value, 33, 104, 105

quality-based selection rule, 104

quantitative redundancy, 112

random determination, 101
random genetic drift, 56
random genotype, 102
random sentence, 102

random-determined, 102

random-number generator, 24

randomized mapping, 23

range, 103

range set, 205

rate, 147

rational, 91

rational design, 91, 92, 94

real, 57

real feasible solution, 69

real genotype, 57, 90

real individual, 57

real neutral network, 60

real phenotype, 57

real-world, 5, 33

real-world domain, 69

real-world environment, 103

real-world GP problem, 64

real-world problem, 33, 34, 41, 52, 59,
62, 63, 75, 80, 82, 83, 86-89,
93

real-world relevance, 93

recombination, 69, 70, 93

recombinator, 41, 70

recombinators, 70

recursion, 87

reduce, 95

redundancy, 22, 90, 92

redundant, 90

redundant component-value relation,
90

redundant mapping, 23

regulatory network, 9

regulatory networks, 202

reinforcing, 60

relative distance, 120

relative reproductive success, 38

reliability, 21

repairing, 22, 82, 83, 86, 90, 95, 99

repairing algorithm, v, 82, 97

repairing GPM, 94

repairing method, 82, 83

replacement, 82, 83, 104

replacing, 90, 94

replacing cleaner, 83

258

replacing finalizing, 98, 99

replacing repairing, 83, 88, 89, 94, 95,
98, 99, 105

replacing repairing algorithm, 95

replacing-symbol selector, 95

represent, 57

represent semantically, 79

representation, 78

representation problem, 22

representative, 31

representative space, 31, 55, 61

representing set, 52

reproduced population, 104

reproduction, 35, 38, 104

reproductive success, 41

restricted solution space, v

restricted to, 205

restriction, 61

restriction of f to C', 205

ribonucleic acid, 35

RNA, 35, 71

RNA sequence, 91

RNG, 24

robot example, 29, 61

route, 42

run set, 167

run size, 137

run time, 88, 103

s-frequency, 162

safe, 103

safe search operator, 61

search algorithm, 31, 53-55, 61, 65, 67,
74-76, 104, 105

search behavior, 98

search bias, 88, 95

search operator, 41, 67, 69, 70, 88, 101,
103

search performance, 22, 23, 56, 86

search point, 31, 54, 68

search process, 31

search progress, 42, 60, 65, 67

search run, 68

search space, 31, 40, 41, 45, 56

search-space dimensionality, 124

second developmental search algo-
rithm, 145

second empirical function, 152

Second Law of Thermodynamics, 7, 37

seed value, 24, 137

segment, 71

Selbstanpassung, 213

Selbstorganisation, 213

selection, 35, 95, 104

selection for replacement, 41, 104

selection for reproduction, 41, 104

Selection pressure, 41

selection probabilities, 104

selection probability, 41

selection rule, 41

selection schemes, 103

selector, 40, 41, 104

self-adapting, 20

self-manipulation, 17

self-programming computer, 17

self-adaptation, vii, 16, 42, 197

self-adapting, 1, 9

self-adapting Genetic Programming,
16

self-adaptive ontogeny, 203

self-maintaining agent strategies, 15

self-maintaining GP algorithm, 90

self-maintenance, 6, 91

self-modification, 21

self-organization, vii, 19, 20

self-organizing computation, viii

self-repair, 6, 9

self-reproduction, 9

selfish gene, 18

semantic mapping, 30, 40, 48, 56, 61,
72, 91

semantic representation, 30, 54

semantically represent, 64, 79

semantics, 63, 89, 99

sentence, 22, 62, 83, 94, 95

sentence symbol, 62

sequence, 49

sequence information, 50, 80, 81

sexual, 39

sexual reproduction, 39

259

shape, 87, 92

short phenotype, 86

side effect, 90

sign example, 122

simple phenotypic component, 78

simple random search, 34

simulator, 29

simultaneous search, 34

single-symbol conversion, 103

single-symbol converter, 120

singular, 57

singular excellent genotype, 90

singular genotype, 57

singularities, 203

size, 50, 87, 206

size constraint, 63, 69

small genotype size, 86

small phenotype size, 87

smoothing, 133

soft systems, 5

Soft technologies, 5

SOLUTION, 24, 56, 100

solution, 29, 87

solution space, 30, 198

source alphabet, 78, 80, 91

source symbol, 78

spacetime, 11

spatio-temporal, 54

special solution, 87

specialized, 87

specialized feasible solution, 87

speciation, 77

species, 77

spider silk, 92

splicing, 71

splicing out, 71

standard assumption, 57, 59

start symbol, 62, 95

starting position, 51, 76

stop codon, 72

strategic objective, 11, 25, 28, 70, 87,
99

string, 49, 50, 62, 76

string encoding, 49

string notation, 50, 64, 76

string representation, 50

string value, 50, 51

strong causality, 132

structural, 75

structural and functional complexity,
17

structural complexity, 21, 71

structural component, 48, 80

structural constraint, 65

structural diversity, 65

structural representation, 48-50, 67,
68

structurally constrained space, 48

structurally represent, 62, 63, 68

structure, 34, 62, 91-94

structure design, 70

structure modification, 82, 96

structure of interest, 7, 56, 62, 100

structure shaping, 37

structures of interest, 27

subgraph, 48

subpopulation, 119

subprogram, 17

subspace, 122

substring, 50

success predicate, 43, 105

sufficiency, 111

super-organism, 9

surjection, 205

surjective, 85, 90, 205

surjective genotype-phenotype map-
ping, 75, 84, 86, 87

swarm, 28

symbol, 88

symbol class, 96

symbol frequency, 159

symbol sequence, 22

symbol set, 62

symbolic genotype size, 78, 83

syntactic constraint, 63

syntactic unit, 89

syntax, 62

syntax error, 89

synthesis, 22, 72

synthesized polypeptide chain, 72

synthetic problem, 108
system, 5

system behavior, 25
systemic co-evolution, 27

tactical objective, 17

taking over the population, 59

target alphabet, 62

target grammar, 62, 95

target language, 62, 63, 67, 78, 82, 83,
87, 88, 95-98, 101, 198, 202

target machine, 98, 99

target medium, 93

target symbol, 62, 64, 79, 92

technical objective, 28, 62, 65, 88, 90—
93, 197

technical optimization, 37

technical structure, 92

tensile strength, 92

term, 4

terminal alphabet, 62, 64

terminal set, 45

terminal symbol, 82, 89

terminal symbols, 62

termination criterion, 43, 105

termination number, 96, 97, 102

terminology, 91

tesseract, 125

test case, 14

test problem, 56

text unit, 5

theory, 92, 93

thinking, 93

thinking time, 92

third empirical function, 167

thymine, 71

time-first principle, 104

time-out predicate, 43, 105

token, 96, 97

total window, 178

tournament selection, 104

tournament size, 104

toy problem, 34, 83

trail, 42

training data, 87

training set, 45, 87
training-data-driven, 100
transcript, 83, 97, 98
transcription, 22, 71, 81, 92, 99
transcriptor, 81, 83
transformation sequence, 83, 89
transformed peak, 121
translation, 71, 72

trapped, 59

trapped population, 59, 60
tree Genetic Programming, 23
tree representation, 70, 93
trivial, 48

trivial graph, 48

trivial string, 50

tunnel, 127

tunnel effect, 127

tunnel hypothesis, 139

tunnel principle, 128

tuple, 206

Turing-complete, 82, 87, 89

Utopian search performance, 74

valley, 119

value, 48

variable, 96, 109

variable phenotype size, 93
variable size, 87
variable-length genotype, 22
variation, 35, 38, 70, 91, 95
variation operator, 22, 41, 60
variator, 41, 103

virtual machine, 98

virtual population, 137
virtual run, 137
volume-oriented, 44
von-Neumann architecture, 17

walk, 65
walking, 42
window of certainty, 175

window of uncertainty, 175
word, 62

Turing-complete computation, 13 word problem, 82

Turing-complete target language, 62 working hypothesis, 92
typical Evolutionary Algorithm, 43 world, 14

wrapper, 99
U, 71

unconstrained genotype, 23

unconstrained structure, 63

universal genetic code, 72, 92

universal genotypes, 201

universal machine, 17

universal Turing machine, 13, 98

unreal, 57, 90

unreal genotype, 57

unreal individual, 57

unreal phenotype, 57

unrestricted experiment, 137

unrestricted mutator, 117

unsafe search operators, 61

unsupervised learning, v

untouchable user knowledge, 76

uracil, 71

user, 2, 3, 13, 25, 27, 30, 61, 91, 92, 94,
99, 102-104, 199, 201, 202

UTM, 13, 98

zigzag strategies, 45

261

