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Homogeneity testing for skewed and
cross-correlated data in regional flood

frequency analysis
J. Lilienthal∗, R. Fried∗, A. Schumann†

April 13, 2016

Abstract: In regional frequency analysis the homogeneity of a group of multiple
stations is an essential pre-assumption. A standard procedure in hydrology to
evaluate this condition is the test based on the homogeneity measure of Hosking and
Wallis, which applies L-moments. Disadvantages of it are the lack of power when
analysing highly skewed data and the implicit assumption of spatial independence.
To face these issues we generalize this procedure in two ways. Copulas are utilised to
model intersite dependence and trimmed L-moments as a more robust alternative to
ordinary L-moments. The results of simulation studies are presented to discuss the
influence of different copula models and different trimming parameters. It turns out
that the usage of asymmetrically trimmed L-moments improves the heterogeneity
detection in skewed data, while maintaining a reasonable error rate. Simple copula
models are sufficient to incorporate the dependence structure of the data in the
procedure. Additionally, a more robust behaviour against extreme events at single
stations is achieved with the use of trimmed L-moments. Strong intersite dependence
and skewed data reveal the need of a modified procedure in a case study with data
from Saxony, Germany.
Key words: homogeneity test; regional flood frequency analysis; TL-moments;

copulas

1 Introduction

The estimation of frequencies of extreme events like high floods is an important task in hydrology.
One of the main difficulties there is the lack of data. To date most gauging stations in Germany
provide data of the last 30-50 years. The calculation of high return levels is therefore highly
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imprecise. To handle this problem, regional flood frequency analysis can be applied, which
combines the information from a group of several similar stations.

The popular index-flood procedure (Dalrymple, 1960) assumes that the quantile function of the
variable of interest (like the annual flood peak) at the i-th station, Qi, can be written as

Qi(p) = µi q(p), i = 1, . . . , d,

which means that the distribution is the same for each station, except for one site-specific
scaling factor µi, which is usually estimated by the sample mean or another location parameter.
The common factor q(p) is called regional growth curve. A group of stations which fulfils this
assumption is called homogeneous.

The assessment of the homogeneity of groups of stations is an important step in regional flood
frequency analysis, because heterogeneous groups lead to biased estimations of the regional
growth curve (Lettenmaier et al., 1987). Several procedures to test homogeneity have been
proposed. Viglione at al. (2007) compared the L-moment based Hosking-Wallis procedure
(Hosking, 1990; Hosking and Wallis, 1993) with two rank based tests and concluded that
L-moment based tests are better for little skewed distributions while rank based tests are better
for higher skewness.

The procedures analysed by Viglione at al. (2007) assume intersite independence, an assumption
which is often not valid. Castellarin et al. (2008) investigated this problem for the Hosking-Wallis
procedure. Their result is that cross-correlation reduces the power of the test. This means
that the heterogeneity of a group of stations is detected less often and therefore heterogeneous
cross-correlated groups misleadingly tend to look homogeneous. Their proposed solution is an
empirical corrector that is added to the test statistic.

This study generalises and improves the Hosking-Wallis procedure for highly skewed data as well
as for the existence of intersite dependence. Trimmed L-moments (Elamir and Seheult, 2003)
are used instead of regular L-moments. Hosking (2007) already showed that asymmetrically
trimmed L-moments can be preferable to regular L-moments in parameter estimation of
generalized Pareto distributions of high skewness. To incorporate the intersite dependence
structure between a set of stations, copula models are utilised.

In Section 2 the methodology needed to generalize the Hosking-Wallis procedure is explained.
The changes are motivated and displayed in Section 3. In Section 4 simulation studies are
performed to compare the new method to existing approaches and to assess the quality of the
modifications. A small case study follows in Section 5, in which the need for modifications
of the original procedure is revealed. Thereafter the main results are summarized and their
relevance is discussed.

2 Methods

This section gives the basics about the Hosking-Wallis heterogeneity measure, as well as
the trimmed L-moments and some copula theory, which are later on used to generalize the
homogeneity measure.
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2.1 Hosking-Wallis heterogeneity measure

The original heterogeneity measure of Hosking and Wallis (1993) is based on the comparison of
the observed sample variability of L-moment ratios (Hosking, 1990) and the expected variability
under the assumption of homogeneity. It can be divided into three parts: the calculation of a
statistic, the calculation of coefficients to normalize that statistic and finally the decision about
homogeneity.

First L-moment ratios have to be calculated at each site, as well as regionalized averages of
them. Let there be d samples of length n1, . . . , nd and let τ̂(i), τ̂3(i), and τ̂4(i) be the empirical
L coefficient of variation (L-CV), L-skewness, and L-kurtosis of sample i = 1, . . . , d, respectively.
The regional averaged versions are defined by

τ̂ =
∑d
i=1 niτ̂(i)∑d
i=1 ni

, τ̂3 =
∑d
i=1 niτ̂3(i)∑d
i=1 ni

, τ̂4 =
∑d
i=1 niτ̂4(i)∑d
i=1 ni

.

Hosking and Wallis (1993) defined three different measures of dispersion using L-moment ratios.
The two most often applied ones are

V1 =
d∑
i=1

ni(τ̂(i) − τ̂)2/
d∑
i=1

ni, (1)

V2 =
d∑
i=1

ni((τ̂(i) − τ̂)2 + (τ̂3(i) − τ̂3)2)1/2/
d∑
i=1

ni. (2)

These statistics have to be normalized afterwards. This means that

Hi = Vi − µi
σi

, i = 1, 2, (3)

is calculated with appropriate values of µi and σi. To select these, a parametric bootstrap is
performed. Using the regional averages of L-CV, L-skewness and L-kurtosis a kappa distribution
(Hosking, 1994) is fitted. A large number of datasets is then drawn from this kappa distribution,
each of them consisting of d samples with corresponding sample lengths n1, . . . , nd. For each
bootstrap dataset the value of Vi is calculated and the mean and standard deviation over all of
these values are inserted for µi and σi, respectively.

According to Hosking and Wallis (1993) the set of samples is called “acceptably homogeneous” if
Hi > 1, “possibly heterogeneous” if 1 ≤ Hi < 2 and “definitely heterogeneous” if Hi ≥ 2. Note
that Hosking and Wallis (1993) did not formulate this as a test, but rather as a recommendation.
However, in the following sections we will treat this procedure like a test, saying that the test
rejects the null hypothesis of homogeneity if the test statistic exceeds 2.

3



2.2 Trimmed L-moments

Trimmed L-moments (TL-moments) are a generalization of L-moments (Elamir and Seheult,
2003). Like L-moments they are defined as linear combinations of expectations of order statistics,
but trimming of some upper and lower order statistics is possible. Let X1:n ≤ . . . ≤ Xn:n be
order statistics of a conceptual sample of size n which is drawn from the distribution of X. The
TL(s, t)-moment of order r ∈ {1, 2, . . .} is defined by

λ(s,t)
r = 1

r

r−1∑
k=0

(−1)k
(
r − 1
k

)
E(Xr+s−k:r+s+t)

with trimming parameters s, t ∈ N. The ordinary L-moments are a special case of TL-moments
when choosing s = t = 0. Like other moments, TL-moments characterize the underlying
distribution. The first TL-moment is a measure of central location, the second one describes
dispersion, and so on. The series of TL-moments {λ(s,t)

r : r = 1, 2, . . .} characterizes the
underlying distribution uniquely, if it exists (Hosking, 2007).

TL-moment ratios are defined by

τ (s,t) = λ
(s,t)
2

λ
(s,t)
1

, τ
(s,t)
3 = λ

(s,t)
3

λ
(s,t)
2

, τ
(s,t)
4 = λ

(s,t)
4

λ
(s,t)
2

(4)

and are called TL coefficient of variation (TL-CV), TL-skewness, and TL-kurtosis, respectively.
These statistics generalize the corresponding L-moment based ones called L-CV, L-skewness,
and L-kurtosis.

Sample TL-moments of order r ∈ {1, 2, . . .} can be calculated as a linear combination of the
ordered data x1:n ≤ . . . ≤ xn:n by

λ̂(s,t)
r = 1

r
( n
r+s+t

) n−t∑
i=s+1

wi xi:n

with wi =
∑r−1
k=0(−1)k

(r−1
k

)( i−1
r+s−k−1

)(n−i
t+k
)
(Hosking, 2007). Sample TL-moment ratios are

denoted by τ̂ (s,t)
r , r ∈ {2, 3, . . .}, and are calculated by replacing the theoretical moments with

the corresponding empirical ones in equation (4). Alternative methods to calculate TL-moments
are given and compared among each other in Hosking (2015).

2.3 Modelling and generating multivariate extremes

Copulas are a convenient and flexible way to model multivariate distributions. In the recent
decade the interest in copulas has rapidly increased in the hydrological community (see e.g.
Genest and Favre, 2007).

The following Theorem of Sklar is the main theorem of copula theory: Let X1, . . . , Xd be
random variables with joint distribution F and marginal distributions Fi. Then there exists a
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decomposition
F (X1, . . . , Xd) = C(F1(X1), . . . , Fd(Xd)) (5)

which splits the joint distribution into marginals F1, . . . , Fd and a copula C : [0, 1]d 7→ [0, 1]
describing the underlying dependence structure (Sklar, 1959). The reverse of this is also true:
with a given d-dimensional copula C and marginal distributions F1, . . . , Fd formula (5) defines
a joint distribution of X1, . . . , Xd. This enables us to separate the modelling of the marginal
distributions and of the dependence structure.

Now let each Xi be a maximum of k independent and identically distributed random variables.
The Fisher-Tippett-Theorem (see for example de Haan and Ferreira, 2007) states that in this
setting for increasing k the univariate limiting distribution of Fi has to be a generalized extreme
value distribution (GEV), which is given by

F (x) =

 exp
(
−
(
1 + γ x−µ

σ

)−1/γ
)
, γ 6= 0,

exp
(
− exp(−x−µ

σ )
)
, γ = 0,

if 1+γ(x−µ)/σ > 0 with µ, σ, and γ being parameters of location, scale, and shape, respectively
(Coles et al., 2001).

To construct a multivariate extreme value distribution, we need to combine marginal extreme
value distributions with an extreme value copula (Durante and Salvadori, 2010). Gudendorf and
Segers (2010) stated that a copula C is an extreme value copula if and only if it is max-stable,
that means that

C(u1, . . . , ud) =
(
C(u1/t

1 , . . . , u
1/t
d )

)t
holds for all u ∈ [0, 1]d and t > 0.

When analysing multivariate block maxima, for example the maximal flood peaks at several
stations over one year, it is therefore nearby to model the marginal distributions by the GEV
and the dependence between the stations by an extreme value copula. Because the GEV is
only the limiting distribution for a fixed block length, other distributions, like the more general
kappa distribution used in the Hosking-Wallis procedure, can also be utile.

There are only a few high-dimensional (meaning d > 2) extreme value copulas implemented in
popular statistical software. The following result comes in useful since it allows to expand the
model complexity by combination of multiple simple copulas. If C1 and C2 are copulas and
ai ∈ [0, 1], i = 1, . . . , d,

C(u1, . . . , ud) = C1(ua1
1 , . . . , u

ad
d ) C2(u1−a1

1 , . . . , u1−ad
d ) (6)

is a copula as well. If C1 and C2 are extreme value copulas, so is C (Durante and Salvadori,
2010). This model introduces new parameters a1, . . . , ad which define the mixture between
the two copulas for every dimension and enable even modelling of asymmetrical dependence
structures.

Fitting the copula parameters to the data is commonly done through a maximum pseudo-
likelihood approach, but depending on the copula model relations between the parameter and
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Spearman’s rho or Kendall’s tau can be exploited to derive the parameter (Genest and Favre,
2007).

Being multivariate distributions, copulas can be used to generate data sets which feature
specific dependence structures. There are different algorithms to generate random numbers
from copulas. One general approach is to begin with one independent uniformly-distributed
vector (v1, . . . , vd) and recursively transform each component using the conditional distribution
depending on the former components (Bouyé et al., 2000). To generate random numbers from
archimedean copulas like Gumbel or Clayton, a more efficient approach is described in Marshall
and Olkin (1988). To generate random numbers from a copula constructed as in (6), we apply
an algorithm presented by Durante and Salvadori (2010).

Initially each margin of the copula-generated data follows a uniform distribution on [0, 1]. To
get the desired marginal distributions the inverse probability integral transform is applied at
each margin. This way we obtain synthetic data sets featuring a dependence structure described
by the copula model and specific marginal distributions.

3 Motivation & construction of the generalized Hosking-Wallis
procedure

In this section we describe the modifications which we propose to the original Hosking-Wallis
procedure. For this we first review the papers of Castellarin et al. (2008) and Viglione at al.
(2007), which dealt with two different drawbacks of the original procedure and we explain the
differences to our approach. The modified procedure is summarised afterwards.

3.1 Consideration of intersite dependence with copulas

The original Hosking-Wallis homogeneity measure assumes intersite independence, meaning
that the observations of each station are independent of the other stations’ observations for the
same year. In practice this is a strict assumption, which is often not fulfilled. Stations in the
same river network feature a natural dependence, because floods at upstream stations affect
floods downstream. Additionally and more generally, all nearby stations are simultaneously
influenced by events like snowmelt or synoptic rainfalls.

Castellarin et al. (2008) investigated this problem. Their result is that cross-correlation reduces
the power of the test. This means that heterogeneity of a group of stations is detected less
often and therefore heterogeneous cross-correlated groups misleadingly tend to appear as
homogeneous. Their proposed solution is an empirical corrector. They first calculate the test
statistic H1 (see formula (3)) under the assumption of intersite independence. After this they
calculate an adjusted test statistic

H1,adj = H1 + C × ρ̄2(d− 1), (7)
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Figure 1: Empirical distribution of V1 when normal, Gumbel, Frank, or Clayton copulas generate
data, grouped by increasing rank correlation.

with the average squared correlation ρ̄2, the number of stations d, and a constant correction
coefficient C, which has to be derived by simulations. Castellarin et al. (2008) computed it as
C = 0.122, but they noted that “the coefficient C is inevitably associated with the Monte Carlo
simulation experiments performed in this study”.

A drawback of this approach is that the dependence structure is only taken into account
through the correlation ρ. Figure 1 shows the empirical distribution of the dispersion of
L-skewness (V1 in formula (1)) when generating data with four common copulas and given
rank correlations ρ = 0, 0.3, 0.6, 0.9. One can observe that the distribution changes more with
increasing correlation and thus would require different corrections. Hence, following the above
approach, we would need to calculate a specific correlation coefficient C for each dependence
structure.

Our solution to the problem of cross-correlated data differs from the above approach. Instead
of ignoring the assumption of independence and correcting for that afterwards, we dispose the
assumption by allowing cross-correlated data. Therefore the procedure of generating bootstrap
data to calculate the test statistic has to be altered.

First we fit a suitable copula model to our observed data. We then utilise this model to generate
data which features the same dependence structure like the observed data (see 2.3). All marginal
distributions are modelled to represent the same kappa distribution, whose parameters are
determined through L-moments like in the original procedure.

Assuming that our copula model along with the kappa marginals sufficiently describe the
distribution of the data, there is no further need to correct the test statistic afterwards and the
same decision rules like in the original procedure can be applied.

3.2 Trimmed L-moments instead of L-moments

Another weakness of the original procedure arises when analysing skewed data. Viglione at al.
(2007) compared the Hosking-Wallis procedure to two rank-based test statistics, a generalization
of the Anderson-Darling goodness of fit test and the Durbin and Knott test (Durbin and Knott,
1972). Viglione at al. (2007) concluded that L-moment based tests are better for little skewed
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distributions while rank-based tests are better for higher skewness. Their final recommendation
is to use the Hosking-Wallis procedure if the regionalized L-skewness is lower than 0.23 and the
Anderson-Darling test otherwise.

Our approach is to improve the Hosking-Wallis procedure by using trimmed L-moments (see 2.2)
instead of regular L-moments. This is done by substituting the L-moment ratios τ̂ , τ̂(i), τ̂3, τ̂3(i) in
formula (1) and (2) with corresponding TL-moment ratios τ̂ (s,t), τ̂

(s,t)
(i) , τ̂

(s,t)
3 , τ̂

(s,t)
3(i) with trimming

parameters s, t ∈ N, which have to be specified. The choice of suitable trimming parameters
will be discussed in the simulation studies in Section 4.

3.3 Generalized Hosking-Wallis procedure

The two previous subsections described the changes applied to the Hosking-Wallis procedure.
Now we summarise these changes and provide the generalized Hosking-Wallis procedure.

To calculate the generalized Hosking-Wallis procedure the following steps are performed:

1. Analyse the data to identify suitable trimming parameters (s, t) and copula model C.

2. Calculate a TL-moment based statistic:

V1 =
k∑
i=1

ni(τ̂ (s,t)
(i) − τ̂

(s,t))2/
k∑
i=1

ni, (8)

V2 =

∑k
i=1 ni

√
(τ̂ (s,t)

(i) − τ̂ (s,t))2 + (τ̂ (s,t)
3(i) − τ̂

(s,t)
3 )2)∑k

i=1 ni
. (9)

3. Fit the copula Ĉ and the marginal kappa distribution K̂ to the data.

4. Generate NSim datasets using the copula approach with copula Ĉ and equal kappa
margins K̂ and calculate (8) and/or (9) in each of them.

5. Calculate µi = 1/NSim
∑NSim
j=1 Vj and σi = 1/(NSim + 1)

∑NSim
j=1 (Vj − µi)2 to get

Hi = Vi − µi
σi

, i = 1, 2.

6. Classify the group as “acceptably homogeneous” if Hi < 1, “possibly heterogeneous” if
1 ≤ Hi < 2, and “definitely heterogeneous” if Hi ≥ 2.

The original procedure can be obtained by choosing L-moments (setting s = t = 0) and the
independence copula C(u1, . . . , ud) =

∏d
i=1 ui. Hence, this new procedure truly generalizes the

original one.
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4 Simulation studies

In this section simulation studies are carried out to investigate the advantages and drawbacks
of the modifications to the Hosking-Wallis procedure presented above.

First of all we compare the new approach directly to the results of Castellarin et al. (2008) and
Viglione at al. (2007). Therefore simulations of these works are partially replicated. Additional
new simulation studies examine the influence of the trimming parameters and the copula model
in more detail. An analysis of the different abilities of heterogeneity detection between L and
TL-moments and a small study about robustness against outliers at individual stations complete
this section.

We always calculated both test statistics H1 and H2, but the results of H1 were superior to the
results of H2 in nearly every aspect (Viglione at al. (2007) experienced similar results). The
statistic H2 is therefore neglected in the following simulations.

In all simulation studies the proportion of rejections of the null hypothesis over all replications,
i.e.

1
B

B∑
i=1
1(H(i)

1 ≥ 2) (10)

is calculated, with 1(·) denoting the indicator function, which takes the value 1 if H(i)
1 ≥ 2

and the value 0 otherwise. H(i)
1 indicates the test statistic in replication i and B denotes the

amount of replications. In case that the given group of observations is truly homogeneous
the proportion of rejections of the null hypothesis (10) describes the probability of making a
type-I-error and is subsequently called size of the test. Otherwise, if the group is heterogeneous,
this proportion measures the power of the test.

4.1 Comparison to Castellarin

Castellarin et al. (2008) proposed an empirical corrector applied afterwards to the Hosking-
Wallis test statistic to adjust for cross-correlation. We replicated their simulation with 20
stations of which 19 follow a GEV (1, 0.4, 0) and one station follows a GEV (1, 0.7, 0) as marginal
distribution. Each station consists of n = 25 years of measurements. Because the authors used
a multivariate normal distribution to generate cross-correlated data and then transformed the
margins to the above-mentioned distributions, we utilised a Gaussian copula to generate similar
dependence structures. Rank correlations of ρ = 0, 0.1, . . . , 0.8 were considered. To simulate
the case of homogeneity, data sets in which each margin follows a GEV (1, 0.4, 0) distribution
are considered as well.

For each setting 25,000 data sets are simulated. We apply the original Hosking-Wallis procedure,
the corrected version (with correction coefficient C = 0.122 calculated by Castellarin et al.
(2008)), and the generalized Hosking-Wallis procedure using L-moments and the Gaussian
copula model.

9
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Figure 2: Comparison of size and power between original, corrected, and generalized Hosking-
Wallis procedure for different correlations.

Figure 2 contains the size and power of the three procedures depending on the rank correlation
coefficient. The size and power rates are similar in the independence case (ρ = 0), but differ
with increasing correlation. The size of the original and corrected version shrinks with higher
correlations, while the size of the generalized version stays higher and exceeds 5% at the highest
correlation. The power of the original procedure decreases, but the corrected version is able to
compensate and leads to a stable curve. The generalized procedure, however, is able to increase
the power with increasing correlation.

This shows that in the settings considered here the generalized version can be more suited to
face cross-correlation, because it not only compensates the power reduction but instead can
incorporate the dependence to increase the power. It has to be noted that in this simulation
we specified the copula model accurately, which is difficult in practice. The problem of
misspecification of the copula model will be analysed later.

4.2 Comparison to Viglione

Viglione at al. (2007) compared the Hosking-Wallis procedure to two rank-based procedures,
the Anderson-Darling test and the Durbin-Knott test. Their final recommendation is to choose
the Hosking-Wallis procedure if the L-skewness coefficient is below 0.23, and the Anderson-
Darling-test otherwise. We redid most of their simulation study including our new approach.
For this, several combinations of L-CV and L-skewness are considered as the mean of a group
of stations. Sets of 11 stations are built with varying either L-CV, L-skewness, or none (which
corresponds to the homogeneous case). Each station consisting of n = 30 measurements is
simulated using the generalized extreme value distribution with parameters corresponding to
the specific L-CV and L-skewness.

Besides the original Hosking-Wallis procedure and the Anderson-Darling test, we included the
generalized Hosking-Wallis procedure using TL(0,1)-moments and an independence copula to
the simulation.

Figure 3 (top panel) gives the size when analysing homogeneously built data sets. Comparing
the new procedure (GHW) to the others, it can be observed that the size is comparable or
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smaller, and that there are no regions in which the new procedure exceeds 5% drastically.

In the bottom panel of Figure 3 the power rates are given for the case that the station’s L-CV
τ varies equally over a span of ∆τ = 0.5τR, with τR denoting the groups mean L-CV. The
generalized Hosking-Wallis procedure is the best among these tests when L-skewness is roughly
larger than or equal to 0.2. The original Hosking-Wallis procedure outperforms the other
procedures when L-skewness is lower than 0.2. The Anderson-Darling test provides the highest
power rates when the groups centre lays on the upper edge of L-CV, but in this region the size
(see upper panel) is increased simultaneously.

Besides variation in L-CV, Viglione at al. (2007) examined variation in L-skewness τ3. With
∆τ3 denoting the group’s spread in L-skewness, Figure 4 gives the power rates at four specific
points in the τ − τ3-grid depending on the relative spread. As we can see, the new procedure
can compete with the Anderson-Darling test, which was superior to the original Hosking-Wallis
procedure in this setting.

In summary, the new procedure outperforms the Anderson-Darling test when analysing highly
skewed data sets. When the skewness is low and variations at L-CV scale are expected, the
original Hosking-Wallis procedure is still to be recommended.
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Figure 3: Size and power of the Anderson-Darling, Hosking-Wallis, and generalized Hosking-
Wallis procedure in the τ − τ3-space. Position on the grid determines the group’s
mean L-CV and L-skewness. Heterogeneity is constructed varying L-CV. Bordered
tiles indicate the procedure with the highest power at each position in the bottom
panel.
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Figure 4: Rejection of the null hypothesis using the Anderson-Darling, Hosking-Wallis, and
generalized Hosking-Wallis procedure at specific points of L-CV and L-skewness.
Heterogeneity is constructed varying L-skewness.

4.3 Analysis of the new procedure by a simulation study

After these direct comparisons to existing approaches we want to investigate some characteristics
of the new procedure. First we want to examine the choice of trimming parameters and of
the copula model prior to the analysis. Afterwards a sensitivity analysis is performed to show
the differences in detection of heterogeneity between L- and TL-moments and a final study
investigates the robustness against outliers at single stations.

In all subsequent studies a situation with n = 50 years of measurements for each of five
stations is considered. The rather small number of five stations is chosen due to computational
reasons. The fitting of complex, high dimensional copula models can be very time-consuming,
therefore the analysis of large groups is impractical in simulation studies. In less comprehensive
simulations we ensured that our results are valid for larger groups as well.

The simulated network of stations can contain intersite dependence and can either be homo-
geneous or heterogeneous. The joint distribution of the sites is constructed with the copula
approach, which means that the marginal distributions and the copula are specified separately.

The generalized extreme value distribution is selected for every marginal distribution. Four of
the stations always have the same GEV parameters, while the parameters of the last station
are allowed to vary. Similarly to Viglione at al. (2007) we do these modifications in the space
of L-moment ratios, which means that we either modify the L-CV τ or the L-skewness τ3 of
the fifth station. These modifications are indicated as τ ↓, τ ↑, τ3 ↓, and τ3 ↑. Figure 5 shows
the τ − τ3-combinations chosen as well as the corresponding GEV parameters. We consider
three parameter combinations as a base point (filled circles; parameters of station 1-4) and vary
them at the τ - and τ3-scale (unfilled circles; possibly modified parameter of station 5 in the
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Figure 5: Distributions employed in the simulation studies characterized by their L-CV and
L-skewness and their corresponding GEV (µ, σ, γ) parameters.

main study). These three combinations represent common distributions we found in real data
and feature high, medium, or little skewness.

To model the intersite dependence of these stations copula models are utilised. Table 1 contains
all copula models of the following simulations, their parameters and if they are extreme value
copulas (EVC) and capture upper tail dependence (UTD). The independent, Gumbel and
mixed Gumbel copula are extreme value copulas of increasing complexity (the independent
copula is a special case of the Gumbel copula which is a special case of the mixed Gumbel
copula). The mixed Gumbel copula is constructed using two Gumbel copulas and the result of
formula (6) of Section 2.3. The Clayton copula is neither an extreme value copula nor captures
upper tail dependence. It is included to simulate a severe case of copula misspecification.

Each of the subsequently described settings is replicated B = 5000 times. Size and power are
calculated like in the previous studies (see formula (10)).

Table 1: Copula models applied in the simulation studies, their parameters and if they are
extreme value copulas (EVC) and capture upper tail dependence (UTD).

copula model parameters EVC UTD

Independent - yes no
Gumbel θ = 1.5 yes yes
MixedGumbel C1 = Gumbel(3), yes yes
(see formula 6) C2 = Gumbel(1.5),

a = (.9, .7, .5, .3, .1)T
Clayton θ = 1.5 no no
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4.3.1 Influence of the trimming

This simulation study assesses which trimming parameters are appropriate, especially in the
presence of intersite dependence. A Gumbel copula with parameter θ = 1.5 generates the data,
and the Gumbel copula model is also applied in the generalized Hosking-Wallis procedure.
Fitting of the copula parameters is done through the maximum pseudo-likelihood approach.
Results for L-, TL(0,1)-, TL(0,2)-, TL(0,3)- and TL(0,4)- moments are given below. Other
trimmings like TL(1,1), TL(1,2) or TL(2,2) were calculated as well, but lead to inferior results
and are not reported here.

The results are depicted in Figure 6. The left panel contains the size and the right one displays
the power of the test for the different modifications. Both graphics are grouped row-wise by the
three grades of skewness. The different trimming parameters are indicated through different
grey scales.

The size using L-moments (TL(0,0)) exceeds 5% noticeably in the medium and highly skewed
setting. Application of trimmed L-moments can reduce this to acceptable levels. TL(0,1)-
moments leads to a low size, but for higher trimmings the rate raises again.

Because we want to ensure that the size does not exceed the significance level substantially,
these results suggests the use of TL(0,1)-moments. Higher trimmings lead to an increased size
and should therefore not be considered. L-moments can lead to an increased size when intersite
dependence is present.

Looking at the power of the test for the heterogeneous cases, the first finding is that there are
differences between the modifications. In the little skewed setting changes of L-CV τ are more
likely to be detected than changes of L-skewness τ3, while in the highly skewed setting the
detection rates are more similar.
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Figure 6: Size and power of the generalized Hosking-Wallis procedure with different TL-moments
and Gumbel copula. Synthetic data is generated with Gumbel(1.5) dependence
structure.
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In the little skewed setting higher trimmings can lead to a decrease in power when changing
L-CV, and to an increase when changing L-skewness. In the more skewed settings higher
trimmings always lead to an increased power rate, but the gain decreases with increasing
trimming.

Our simulation suggests that TL(0,1)-moments are superior when analysing dependent data,
especially when the data has high skewness. In comparison to regular L-moments the size is
reduced and the power rate is mostly increased. The use of higher trimmings can lead to better
detection rates but this comes along with higher sizes. It can be noted as well that, in our
settings, little can be gained by applying higher trimmings than TL(0,2).

With these results in mind, we will choose TL(0,1)-moments in the remaining studies to calculate
the modified Hosking-Wallis statistics, unless stated otherwise.

4.3.2 Influence of the choice of the copula model

This section deals with the influence of the chosen copula model. The independence copula or
the mixed Gumbel model were utilised to generate data sets. Then the generalized Hosking-
Wallis procedure was applied to each data set using either the independence copula, the Gumbel
copula, or the mixed Gumbel copula, whereat parameters of the latter two copula models had
to be estimated. As previously stated TL(0,1)-moments were chosen to calculate H1.

First we have a look at the results when there was no intersite dependence, depicted in Figure 7.
There are no big differences between the fitted copula models. All sizes are around 5% and all
power rates are quite similar between the different copula models. This demonstrates that there
is little harm in the assumption of a dependence structure when in fact there is no intersite
dependence present. Neither raises the size nor decreases the power. Of course, one reason for
this is that both the Gumbel copula and the mixed Gumbel copula include the independence
copula as a special case. It can be assumed that the estimated parameters are close to the
parameter values under independence.

Now we have a look at the opposite case, meaning that the real dependence structure is more
complex than the assumed ones (Figure 8). The independence copula is not able to provide
good results in this case of dependent data. Both the size and the power are low. The reason
for this is that neglecting the dependence structure in the bootstrap procedure leads to wrong
standardisation coefficients. Apart from that it is noteworthy that there are no big differences
between the Gumbel and the mixed Gumbel model regarding size and power. The Gumbel
model is much simpler than the mixed Gumbel model, but suffices to adjust the test statistic in
this setting. It seems that an exact modelling of the dependence structure may not be necessary
to adjust the test statistics adequately.

To investigate the case of complete misspecification of the copula model, data was generated
in the medium-skewed situation using a Clayton(2) copula. The Clayton copula describes
dependencies with a lower tail dependence and is therefore very different to the Gumbel model,
which features upper tail dependence.
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Figure 7: Size and power of the generalized Hosking-Wallis procedure with different copula
models and TL(0,1)-moments. Synthetic data is generated without dependence
structure.
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Figure 8: Size and power of the generalized Hosking-Wallis procedure with different copula
models and TL(0,1)-moments. Synthetic data is generated with mixed Gumbel model.
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Figure 9: Size and power of the generalized Hosking-Wallis procedure in the case of copula
misspecification. Real copula is Clayton(2); Gumbel and Clayton copulas are fitted
and different TL-moments are used.

Figure 9 shows the results of this situation, in which the H1 statistic was calculated under the
assumption of Clayton or Gumbel copulas. To analyse the role of the trimmed L-moments in
this setting, L, TL(0,1)- and TL(0,2)-moments were chosen.

The Gumbel copula is not to be recommended in the case of L-moments (TL(0,0)) because
of a very high size due to the copula misspecification. Fitting a Clayton copula leads to
reasonable size but poor power. The results change with trimmed L-moments in the test
statistic. The size is lower than 5% for both copula models. The best power can be achieved by
the Clayton copula, but a Gumbel copula can also lead to reasonable results (especially with
TL(0,1)-moments). Larger trimming leads to very conservative tests in this situation, but it
prevents from committing a type-I-error while giving at least some power.

These findings indicate that the application of trimmed L-moments leads to some robustness
against misspecification of the copula model. Even in this highly constructed case, in which the
copulas for generating the data and for fitting them differ a lot, the test maintains some power
while not exceeding the size if trimmed L-moments are used.

Three main conclusions can be drawn from these simulations. The first one is that there
is no big drawback when the sites are independent but a Gumbel or mixed Gumbel model
is fitted. The power as well as the size are comparable. The second conclusion is that for
these copula models it is sufficient to fit the ordinary Gumbel model, even when the true
model is of the more complex mixed Gumbel type. For computational reasons this is very
convenient, especially when analysing groups of higher dimension. The final conclusion is that
the application of TL-moments seems to reduce the impact of misspecification of the copula
model. Using TL(0,1)-moments we can get reasonable size and power even when we completely
misspecified the copula model.

4.3.3 Sensitivity Analysis

We have seen that the test’s power is influenced depending on whether the discordant station
differs in direction of L-CV τ or L-skewness τ3. It is important to investigate this further to be
able to decide if an assumed heterogeneity can be discovered by the procedure.
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Figure 10: Detection rates of the generalized Hosking-Wallis procedure depending on the position
of discordant site grouped by TL-moments.

For this, the medium skewed situation was regarded as base distribution (τ = τ3 = 0.35). Now
the modified station was not only varied to the four earlier modifications but to all possible
combinations of the grid (τ, τ3) ∈ {.25, .26, . . . , .45} × {0.15, .17, . . . , 0.55}. A Gumbel(1.5)
copula described the intersite dependence.

Figure 10 contains the rejection rate of the test statistic in the τ − τ3-space of the modified
station separated for different TL-moments. Differences in the structure of the rejection rates
between L and TL-moments become obvious. With L-moments, the power raises mainly when
the L-CV varies. The test statistic only incorporates the empirical L-CV, so this behaviour
is very expectable. With TL-moments a variation of lower L-CV and higher L-skewness or
inversely can easily be detected, but when L-CV and L-skewness changes in the same direction
nearly no detection is possible. The reason for this is that the modified statistic now incorporates
TL-moments and therefore can only detect variations in the TL-moment space.

4.3.4 Robustness against outliers

This final analysis concerns the robustness against outliers. An outlier can occur from a
measurement error but also from a rare event. The first type could be eliminated by simply
removing it, but the second one is a valid observation and removing it would alter the data.
Due to the normally short period of observations, already a few very high measurements can
have a big impact on the analysis of homogeneity. Therefore it is desirable that single events
do not change the results completely.

To check this property a small study of the robustness against outliers was done. A homogeneous
group of medium skewness and with a Gumbel(1.5) copula describing their intersite dependence
was simulated. After generating data, up to ten observations of one single station were changed
to the theoretical 99%, 99.9% or 99.99%-quantile of the chosen distribution. This reflects the
situation in which an extraordinarily large, but still possible, observation occurs.

The mean rejection rate, in this case equivalent to the type-I-error, was calculated applying
L-, TL(0,1)- and TL(0,2)-moments. The results, displayed in Figure 11, show that the use of
trimmed L-moments leads to better robustness against extreme observations. A small number of
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Figure 11: Size of the generalized Hosking-Wallis procedure depending on the number of artificial
outliers added to one single site, used TL-moments (linetype) and grouped by the
height of outlier.

values equalling the 99%-quantile can be handled by each method, but there are big differences
when the very high 99.99%-quantile (corresponding to a return period of 10,000 years) is chosen.
Applying L-moments already one of those events leads to a high size, while with TL(0,1)- or
TL(0,2)-moments two respectively five events can be handled without a drastic increase of the
size.

5 Case study

A small real data example is presented to illustrate the advantage of the modified procedure.
For this, maximum flood peaks in summer months (May to October) of five stations in Saxony,
Germany are used. The earliest records are from 1910 and the last ones are from 2013. At
least 78 years of measurements are available at each station. Table 2 contains basic information
about the stations. Besides mean and standard deviation of the summerly maximum flood
peak the coefficient of variation is given. The coefficient of variation of the first four stations
varies around a value of 1, the last station features a lower value. This discrepancy can be an
indication of heterogeneity.

Our task is therefore to assess the homogeneity of the given group of stations, e.g. in order to
check if a regional flood frequency analysis is reasonable. A difficulty that arises is the high

Table 2: Summary of maximum flood peaks at stations used in the case study.
Name catchment years of n mean standard coefficient
of station area [km2] measurements deviation of variation

Borstendorf 644 1929 - 2013 78 69.59 71.68 1.03
Hopfgarten 529 1911 - 2013 97 56.69 57.16 1.01
Rothenthal 75 1929 - 2013 82 11.99 11.44 0.95
Streckewalde 206 1921 - 2013 88 22.85 21.24 0.93
Goeritzhain 532 1910 - 2013 101 57.84 44.96 0.78
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Figure 12: Left: Matrix of pairwise rank correlations between stations. Right: L-moment
ratio diagram of L-skewness and L-kurtosis of five stations (dots) and their group
mean (cross). Curves give distribution families of generalized extreme-value (GEV),
generalized logistic (GLO), and generalized Pareto (GPA). Big circles give distributions
employed in the simulation study (M and H indicating medium and high skewness,
respectively).

intersite dependence. Spearman’s rank correlation coefficient was calculated for each pair of
stations and is displayed in the left panel of Figure 12. Coefficients between 0.5 and 0.92 verify
the existence of medium to strong dependencies.

The right panel of Figure 12 depicts a L-moment ratio diagram, which is commonly utilised to
assess which distribution is suitable to model the data (Vogel and Fennessey, 1993). The group
mean is near the GEV distribution line and inside the area covered by the four-parameter kappa
distribution, which contains all pictured combinations below the GLO curve (see Hosking and
Wallis, 1993; Hosking, 1994). Usage of the kappa distribution within the bootstrap procedure
seems therefore reasonable. Additionally it is observable that all stations lie between the
medium skewed and highly skewed setting of the simulation study. Hence, the recommendation
derived in this study is to choose asymmetrically trimmed L-moments.

The group was tested with the classical Hosking-Wallis procedure (i.e. with independence copula
and L-moments) as well as with the modified procedure using different copula models and
TL(0,1)-moments. The simulation studies showed that when trimmed L-moments are applied
the procedure is relatively robust against copula misspecification and that simple copulas can
be sufficient. To check this, different copula models are fitted: a simple one-parameter Gumbel
copula, a mixed Gumbel copula and a more complex pair-copula using a D-vine structure (see
Aas et al., 2009). Pair-copulas split the joint density into a combination of marginal densities
and bivariate copulas and are popular in financial applications. The pair-copula is added here
to compare the results of copula models, whose structure differ completely from our applied
models. Table 3 gives information about the fitted copula models. The pair-copula is given in
the notation of Aas et al. (2009).
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Table 3: Parameters of copula models fitted in the case study.
Model Parameters

Independence -
Gumbel θ = 1.77
Mixed Gumbel θ1 = 3.45, θ2 = 1.71
(see formula 6) a = (0.59, 0.11, 0.72, 0.13, 0.75)T

Pair-copula c12 = G(1.67), c23 = J(2.10),
c34 = N(0.58), c45 = G(1.50)

c13|2 = N(0.78), c24|3 = N(0.23),
c35|4 = G(3.21), c14|23 = G(1.77)

c25|34 = F (−0.82), c15|234 = N(0.42)
G, J , N , F : Gumbel, Joe, Normal, Frank copula, respectively.

The classical Hosking-Wallis procedure gives us the score H1 = −0.30 and is therefore not able
to detect heterogeneity. The corrected version of Castellarin et al. (2008) (see formula (7))
yields H1,adj = 0 putting in the correction coefficient C = 0.122 and the average squared
correlation ρ̄2 = 0.61. Determination of a customised correction coefficient for this situation
might be necessary. Our proposed generalized procedure using TL(0,1)-moments returns
H1 = 3.78, H1 = 3.36, and H1 = 3.68 assuming a Gumbel, mixed Gumbel, or pair-copula
model, respectively. Thus, all generalized procedures considering intersite dependence yield
heterogeneity within the given group of stations, even with quite similar values of the test statistic.
Actually, even the procedure using TL(0,1)-moments but assuming intersite independence
indicates heterogeneity (H1 = 2.16). Regardless of the chosen copula model, all procedures
yield homogeneity of the group only if the station “Goeritzhain” is excluded from the group.

6 Summary and conclusions

We have proposed a generalization of the Hosking-Wallis procedure that uses trimmed L-
moments and copula models to overcome the known disadvantages when highly-skewed or
cross-correlated data occurs.

First we compared it directly to results of former studies. This showed that the new procedure is
capable of improving drawbacks of the original procedure. In simulation studies we investigated
the choice of the degree of trimming of TL-moments and the selection of copula models, as
well as the robustness to unusual frequently appearance of extreme values. A small case study
illustrates that the classic procedure can fail to detect heterogeneity due to intersite dependence
and medium to high skewed distributions. The improved procedure, however, is able to detect
heterogeneity in this application.

Overall the generalized procedure offers an improvement to the original procedure in many
cases. The drawback, in exchange, is the need to specify a copula model and to select trimming
parameters of L-moments. The most important observations/recommendations are as follows:

1. In our simulations the test statistic H1 is superior to H2 in almost every setting.
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2. There is a disparity in the test’s power rate depending on the direction in which the
discordant site varies. It is important to keep in mind that some variations are not
detectable and that the detectable region differs depending on whether L- or TL-moments
are used.

3. Asymmetrical trimmed L-moments are beneficial in most settings. We recommend
the application of TL(0,1)-moments when analysing moderately skewed data. TL(0,2)-
moments could be superior when analysing highly skewed data, but tend to increase the
type-I-error.

4. The usage of copula models does not harm when analysing independent data when the
independence copula is a special case of the used copula model.

5. When analysing dependent data, simple copula models seem to be sufficient to calculate
adequate test statistics, even when the dependence structure is more complex. Trimmed
L-moments lead to a robustification against copula misspecification.

6. Application of trimmed L-moments also leads to a more robust behaviour when a station
experiences very high values unusually often. The degree of robustness increases with the
degree of trimming, which needs to be chosen prior to the analysis.

Based on our results, we can deduce appropriate trimming parameters depending on the
empirical regionalized L-CV and L-skewness. The use of these moment ratios is straightforward
since we have seen a strong connection to the optimal trimming in Section 4.2. Given a
new data set we calculate the regionalized L-CV and L-skewness and deduce the trimming
parameter based on Figure 3 (bottem middle and bottom right panel) by selecting the trimming
which leads to higher power at the computed position of L-CV and L-skewness. To check this
approach we have applied it to the same data sets used previously in Section 4.2. Except for the
border region shown in Figure 3 this leads us to the better trimming for most of the considered
parameter combinations. Even in the border region the power resulting from this approach
never drops below 90% of the better test, so that we recommend such an adaptive choice for
practical use.
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