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Abstract

In this paper we propose methods for inference of the geometric features of a multi-

variate density. Our approach uses multiscale tests for the monotonicity of the density

at arbitrary points in arbitrary directions. In particular, a significance test for a mode at

a specific point is constructed. Moreover, we develop multiscale methods for identifying

regions of monotonicity and a general procedure for detecting the modes of a multivari-

ate density. It is is shown that the latter method localizes the modes with an effectively

optimal rate. The theoretical results are illustrated by means of a simulation study and

a data example. The new method is applied to and motivated by the determination

and verification of the position of high-energy sources from X-ray observations by the

Swift satellite which is important for a multiwavelength analysis of objects such as Active

Galactic Nuclei.
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1 Introduction

This work is concerned with the development of a statistical toolbox which is useful for data

analysis in many problems of applied sciences. As a specific example we consider a problem

from X-ray astronomy, namely the determination of the positions of objects of BL Lacertae

type with statistical significance. Those objects form a specific subclass of blazars and hence

active Galactic Nuclei (AGN), where high-energy relativistic jets arise perpendicular to the

accretion disc and (in this case) point in the general direction of the Earth. They are among

the brightest extragalactic sources in X-rays and gamma-rays in the sky. Determination and

verification of the position of such objects from an observed distribution of origin positions of

X-ray photons from the object is of paramount importance for a multiwavelength analysis of

the object to understand and compare the appearance of photons of different energies in the

object.

From a statistical point-of-view, problems of this type are fundamental and refer to a proper

understanding of the shape of a density f based on a sample of multivariate observations.

Numerous authors have worked on the detection of qualitative features, such as modes and

regions of monotonicity of a density, in particular on tests for the existence and the localization

of modes. For example, it was pointed out by Chan and Tong (2004) that the presence of modes

can yield to a less precise forecasting. Similarly, a precise localization of modes can be used for

non-parametric clustering [see for example Pollard (1981) for an early reference and Li et al.

(2007), Chacón and Duong (2013) and Chaudhuri et al. (2014) for more recent work].

As pointed out by Romano (1988) and Grund and Hall (1995), estimation of modes of a density

is a very complex problem, even more difficult than the estimation of the density itself. In fact,

the problem is closely related to the estimation of the first derivative of the density. There exists

a large amount of literature about statistical inference on modes of a density in the univariate

setting, which can be roughly divided into four different categories: tests on the number of

modes, the localization of modes, significance testing of candidate modes and tests that allow for

inference about monotonicity. Donoho and Liu (1991) provide the minimax rate for estimating

a single mode. The problem of estimating the number of modes is considered in Silverman

(1981) and Hall and York (2001). These authors investigate a test that uses bootstrap methods

based on the so-called critical bandwidth of a kernel density estimator [see also Mammen

et al. (1991) and Chan and Tong (2004) for an asymptotic analysis and an extension to the

dependent case]. In Hartigan and Hartigan (1985), the distance of the empirical distribution

function to the best-fitting unimodal density is used as test statistic. Hartigan (1987) and

Müller and Sawitzki (1991) propose the excess mass approach for statistical inference of (multi-

) modality, which is also used by Polonik (1995); Minnotte (1997) and Fisher and Marron

(2001) to construct nonparametric tests for the existence of modes. Chaudhuri and Marron

(1999) introduce the SiZer-map as a graphical tool for the analysis of the local monotonicity

properties of a density. In this paper, the derivative of a kernel density estimator is tested

locally for a significant deviation from zero. A particular characteristic of the SiZer map is that
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these tests are performed simultaneously over a fixed range of bandwidths. A multicsale test

for the monotonicity of a univariate density, which allows simultaneous confidence statements

about regions of increase and decrease, can be found in Dümbgen and Walther (2008). In

the univariate deconvolution model, Schmidt-Hieber et al. (2013) propose a multiscale test for

qualitative features of a density such as regions of monotonicity.

On the other hand, for multivariate densities there are just a few results on modality and

even less on monotonicity. Tsybakov (1990) proves that the optimal minimax rate for mode

detection over a β-Hölder class is n−(β−1)/(2β+d) (β > 0). The excess mass approach can also

be used in the multivariate case, but most authors concentrate on one dimension because -

as pointed out by Burman and Polonik (2009) - there is usually a trade-off between practical

feasibility and theoretical justification. Abraham et al. (2004) use kernel smoothing to construct

consistent estimators of the single mode of a multivariate density, while Klemelä (2005) suggests

an adaptive estimate which achieves the optimal rate. Burman and Polonik (2009) do not pre-

specify the total number of modes and propose a method for locating modal regions by means

of formal testing for the presence of anti-modes. A rate-optimal algorithm for the localization

of the modes of a multivariate density based on a k-nearest neighbour estimator of the density

can be found in a recent paper of Dasgupta and Kpotufe (2014).

A test about local monotonicity properties of a bivariate density can be found in Godtliebsen

et al. (2002) generalizing the SiZer-map. In a multivariate setting Duong et al. (2008) test

locally whether the norm of the gradient of the density vanishes using a kernel density estimate

with a fixed bandwidth. In a recent paper Genovese et al. (2015) suggest an algorithm for

mode estimation of a d-dimensional density. These authors construct non-parametric confidence

intervals for the eigenvalues of the Hessian at modes of a density estimate, which can be used

for the construction of a significance test. The method is based on a sample splitting, where

the first half of the data is used to localize the modes by means of the mean-shift algorithm and

the second half of the data is used for the significance test. Genovese et al. (2015) also point

out that the multiscale approach of Dümbgen and Walther (2008) for constructing confidence

intervals for modes is only applicable to one-dimensional densities.

The goal of the present paper is to fill this gap by providing a multiscale method to identify

regions of monotonicity of a multivariate density. In Section 2 we briefly review the approach

of Dümbgen and Walther (2008). We also define a concept of monotonicity in the multivariate

case and introduce a multiscale test for this property at a pre-specified point x0 ∈ Rd. The main

idea is to investigate monotonicity properties of the density in “various” directions e ∈ Rd by

projecting observations from a wedge centered at x0 onto the line {x0+te | t ≥ 0}. A multiscale

test is provided that allows for a simultaneous inference of the monotonicity properties at a given

confidence level α. Section 3 extends the approach to the situation where no prior information

regarding the location and the number of the modes is available. The theoretical results of this

paper establish the consistency of this approach and show that modes can be detected with the

optimal rate (up to a logarithmic factor). The finite sample properties of the multiscale test are
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investigated in Section 4 and in Section 5 we apply our proposed method to the determination

and verification of the positions of the blazars Markarian 501 and S3 0218+35. Finally, all

technical details and proofs are deferred to Section 6.

2 Local testing for a mode

In this Section, we present a test for the presence of a mode of the density f at a pre-specified

candidate point x0 ∈ Rd based on a sample of independent random variables X1, . . . , Xn with

density f . We begin with a brief review of the work of Dümbgen and Walther (2008), who

investigate regions of monotonicity of a univariate density (that is d = 1).

2.1 Multiscale inference about a univariate density revisited

For one-dimensional independent identically distributed random variables X1, . . . , Xn with den-

sity f letX(1) ≤ . . . ≤ X(n) denote the corresponding order statistics and consider the associated

local spacings

X(i;j,k) =
X(i) −X(j)

X(k) −X(j)

, j ≤ i ≤ k.

Dümbgen and Walther (2008) propose to use the local spacings

Tjk(X) =
k−1∑

i=j+1

β(X(i;j,k))

to construct a test statistic for (local) monotonicity of the density f on the interval (X(j), X(k)),

where the function β is defined by β(x) := (2x− 1)1(0,1)(x). Note that Tjk(X) has mean zero

if f is constant on (X(j), X(k)). Let X denote a random variable with density f independent of

X1, . . . , Xn, and denote by

F̃ (x) = P
(
X ≤ x | X ∈ [X(1), X(n)]

)
the conditional distribution function of X given X ∈ [X(1), X(n)]. Define U(i) = F̃ (X(i)),

then U(2), . . . , U(n−1) correspond in distribution to the order statistics of a sample of (n − 2)

independent uniformly distributed random variables on the interval [0, 1] (note that U(1) = 0

and U(n) = 1). It can be shown that the statistic

Tjk(U) =
k−1∑

i=j+1

β(U(i;j,k)) for 1 ≤ j < k ≤ n, k − j > 1, (2.1)

satisfies

Tjk(X)

{
≥ Tjk(U), if f is increasing on (X(j), X(k)),

≤ Tjk(U), if f is decreasing on (X(j), X(k)).
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Define Γ(δ) :=
√
2 log( exp(1)

δ
),

Tn(U ) = max
1≤j<k≤n,k−j>1

(√
3

k − j − 1
|Tjk(U)| − Γ

(
k − j

n− 1

))
, (2.2)

and denote by κn(α) the (1−α)-quantile of the statistic Tn(U). The multiscale test for mono-

tonicity proposed by Dümbgen and Walther (2008) now concludes that the density f is not

increasing on every interval (X(j), X(k)) with

Tjk(X) < −cjk(α) :=

√
k − j − 1

3

(
Γ
(k − j

n− 1

)
+ κn(α)

)
, 1 ≤ j < k ≤ n, k − j > 1

and that f is not decreasing on every interval (X(j), X(k)) with Tjk(X) > cjk(α). The overall

risk of at least one false-positive decision within the simultaneous tests on all scales (i.e. for

1 ≤ j < k ≤ n, k − j > 1) is at most α.

2.2 Assumptions and geometrical preparations

Throughout this paper ∥x∥ denotes the Euclidean norm of a vector x ∈ Rd. The function

f : Rd → R has a mode at the point x0, if for every vector e ∈ Rd with ∥e∥ = 1 the function

fe : t 7→ f(x0 + te), t ≥ 0, is strictly decreasing in a neighbourhood of t = 0. The aim of the

test for the presence of a mode defined below is to investigate the monotonicity of functions of

this type in different directions e. The number of directions is determined by the sample size n.

As the set {x0 + te | t ≥ 0} has Lebesgue measure 0, we also have to consider observations in a

neighbourhood of this line for inference about monotonicity of the function fe. For this purpose,

we introduce a signed distance of the projection of a point x ∈ Rd onto the line {x0+ te | t ∈ R}
and introduce so-called wedges. For the following discussion we denote by {e1, . . . , ed−1} an

arbitrary but fixed orthonormal basis of (span{e})⊥, ⟨x, y⟩ is the standard inner product of the

vectors x, y ∈ Rd and “
d
=” denotes equality in distribution.

Definition 2.1. Let x0 ∈ Rd and e ∈ Rd with ∥e∥ = 1.

(1) The projected signed distance of a point x ∈ Rd from x0 in direction e on {x0+ te | t ∈ R}
is defined as

Pex := ⟨x− x0, e⟩.

(2) The wedge with vertex x0, direction e, length l > 0 and angle φ ∈ (0, π
2
) is defined as

K ≡ K(x0, e, φ) :=
{
x ∈ Rd

∣∣ 0 < Pex ≤ l and ⟨x− x0, ei⟩ ∈ [− tan(φ)Pex, tan(φ)Pex]

for i = 1, . . . , d− 1
}
.
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(3) For a wedge K ⊂ Rd let X(1), . . . , X(N) be those random variables among X1, . . . , Xn

which are located in K, arranged in ascending order with respect to their signed projected

distances from x0, i.e. X(j) ∈ K for j = 1, . . . , N and PeX(1) ≤ . . . ≤ PeX(N). The wedge

KN is defined as KN :=
{
x ∈ K : 0 < Pex ≤ PeX(N)

}
.

K

KN

el

X(N)×

PeX(N)

×x0

φ

Figure 1: The wedges K and KN for d = 2.

A typical wedge is displayed in Figure 1 in the case d = 2. We are now able to define mono-

tonicity properties of the function f on the wedge K that will play a crucial role in following

discussion.

Definition 2.2.

(i) The function f is called increasing on the wedge K, if f(x0 + t̃2e0) ≥ f(x0 + t̃1e0) for all

e0 ∈ Rd with ∥e0∥ = 1 and t̃2 > t̃1 ≥ 0 such that x0 + t̃2e0 ∈ K.

(ii) The function f is called decreasing on the wedge K, if f(x0 + t̃2e0) ≤ f(x0 + t̃1e0) for all

e0 ∈ Rd with ∥e0∥ = 1 and t̃2 > t̃1 ≥ 0 such that x0 + t̃2e0 ∈ K.

2.3 A local test for modality

Let x0 ∈ Rd denote a candidate position for a mode. The construction of a local test for the

hypothesis that f has a mode at x0 is based on an investigation of the monotonicity properties

of f on pairwise disjoint wedges Ki (i = 1, . . . ,Mn) with common vertex x0. We begin with the

case Mn = 1 and use the notation K := K1 for the sake of simplicity. Throughout this paper

1A denotes the indicator function of a set A.

Theorem 2.3. Let X be a d-dimensional random variable with density f independent of

X1, . . . , Xn and denote by

F̃ (z) = P(PeX ≤ z|N,X ∈ KN , X(N)) (0 < z ≤ PeX(N))
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the distribution function of PeX conditional on N =
∑n

i=1 1K(Xi), {X ∈ KN} and X(N). Then,

conditionally on N , F̃ (PeX(1)), . . . , F̃ (PeX(N−1)) are distributed as the order statistics of N − 1

independent uniformly distributed random variables on the interval [0, 1].

The first step in the construction of a test for a mode at the point x0 is to investigate mono-

tonicity in the sense of Definition 2.2. For this purpose, we use a comparison of the projected

distances PeX(1), . . . , PeX(N−1) with the distribution of projected distances of random variables

U1, . . . , UN−1 which are uniformly distributed on the wedge KN . For a random variable U which

is uniformly distributed on K and independent of X1, . . . , Xn, U1, . . . , UN−1, we have

F̃U(z) = P(PeU ≤ z|N,U ∈ KN , X(N)) =
zd

(PeX(N))d
(0 < z ≤ PeX(N)),

and by Theorem 2.3, the random variable F̃U(PeUj) =
( PeUj

PeX(N)

)d
, j = 1, . . . , N−1, has a uniform

distribution on the interval [0, 1], conditionally on N and the event {Uj ∈ KN}. Consequently,
we propose the test statistic

TK =
N−1∑
j=1

β

(
(PeX(j))

d

(PeX(N))d

)
(2.3)

for testing monotonicity properties of the density f on the wedge K, where β(z) = (2z −
1)1(0,1)(z). If f is constant on K, we have E[TK ] = 0 as

(PeX(1))
d

(PeX(N))
d , . . . ,

(PeX(N−1))
d

(PeX(N))
d have the same

distribution as an order statistic of uniformly distributed random variables on the interval [0, 1].

On the other hand, if f is increasing on the wedge K, the observations in KN tend to have large

projected distances from x0, which results in positive values of the test statistic TK . Similarly,

if f is decreasing on K, it is more likely that the test statistic is negative.

Theorem 2.4. Let F̃ denote the conditional distribution function defined in Theorem 2.3, TK

be defined in (2.3) and TU
K :=

∑N−1
j=1 β(F̃ (PeX(j))).

(i) If f is increasing on K, then TU
K ≤ TK (a.s.) conditionally on N .

(ii) If f is decreasing on K, then TU
K ≥ TK (a.s.) conditionally on N .

By Theorem 2.3, conditionally on N , the statistic TU
K has the same distribution as the random

variable
∑N−1

j=1 β(U(j)), where U1, . . . , UN−1 are independent uniformly distributed random vari-

ables on the interval [0, 1]. Therefore, Theorem 2.4 is the key result to obtain critical values for

a multiscale test.

In the second step, we combine test statistics of the form TK for different wedges to construct

a test for a mode at the point x0. For this purpose, define

ln :=
( log(n)

n

) 1
d+4

(2.4)

7



and construct a family Kn of Mn pairwise disjoint wedges K1, . . . , KMn with common vertex

x0, length C1 log(n)
d−1
d+4 ln and angle φn := C2

2
log(n)−1 (for some constants C1, C2 > 0) and by

specifying the central directions {e1n, . . . , eMn
n } as follows

(1) Choose a direction e1n with ∥e1n∥ = 1

(2) If e1n, . . . , e
i−1
n have been specified, then - whenever possible - choose a vector ein with

∥ein∥ = 1 such that for some ε > 0

|angle(ein, ejn)| ≥ (2 + ε) arctan
(√

d− 1 tan(φn)
)
for all j < i.

Note that this procedure does not define Kn in a unique way. However, if Kn has been fixed

for the central directions e1n, . . . , e
Mn
n , then the following property holds. For any normalized

vector e ∈ Rd there exists a direction ein such that

|angle(e, ein)| < (2 + ε) arctan
(√

d− 1 tan(φn)
)
= O

(
log(n)−1

)
.

This can be seen easily by deriving a contradiction from the opposite assertion using the ex-

pansion tan(z) = z(1 + o(1)) = arctan(z) for z → 0.

Now define for each Ki ∈ Kn

N i :=
n∑

j=1

1Ki(Xj)

as the number of observations in the wedge Ki and consider the corresponding statistics TKi

and TU
Ki defined in (2.3) and Theorem 2.4, respectively. An application of Theorem 2.3 on each

wedge Ki shows that, conditionally on N1, . . . , NMn ,

TU
Ki

d
=

N i−1∑
j=1

β(U i
(j)) (i = 1, . . . ,Mn), (2.5)

where {U i
j | j = 1, . . . , N i − 1, i = 1, . . . ,Mn} are independent uniformly distributed random

variables on the interval [0, 1]. In particular, the statistics TU
K1 , . . . , TU

KMn are conditionally

independent.

By means of the representation (2.5), the quantile κ̃n(α) defined by the condition

P
(

max
i=1,...,Mn

(√ 3

N i − 1
|TU

Ki| − Γ
( N i

n− 1

))
≤ κ̃n(α)

∣∣∣N1, . . . , NMn

)
= 1− α (2.6)

can be obtained by numerical simulation, as soon as the numbers of observations N1, . . . , NMn

in the wedges K1, . . . , KMn have been specified. We note that a calibration by the term Γ( N i

n−1
)

for various scales (i.e. different values of N i) is necessary to show that the quantile κ̃n(α) is

asymptotically bounded [see Section 6 for details].
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In a third step, we consider on each of the wedges K1, . . . , KMn two hypotheses, that is

H incr
0,i : f is increasing on Ki versus H incr

1,i : f is not increasing on Ki (2.7)

(i = 1, . . . ,Mn), and

Hdecr
0,i : f is decreasing on Ki versus Hdecr

1,i : f is not decreasing on Ki (2.8)

(i = 1, . . . ,Mn), where the the notation of an increasing (decreasing) function on the wedge Ki

is introduced in Definition 2.2. The ith hypothesis in (2.7) is rejected, whenever

TKi < −c̃Ki(α) (2.9)

(i = 1, . . . ,Mn), where the quantile c̃Ki(α) is defined by c̃Ki(α) =
√

N i−1
3

(
κ̃n(α) + Γ( N i

n−1
)
)

(i = 1, . . . ,Mn). Similarly, the ith hypothesis in (2.8) is rejected, whenever

TKi > c̃Ki(α) (2.10)

(i = 1, . . . ,Mn). The final result of this section specifies the error of at least one false decision

among these 2Mn local level α-tests on monotonicity.

Theorem 2.5. Assume that all tests (2.9) and (2.10) for the hypotheses (2.7) and (2.8) are

performed (i = 1, . . . ,Mn). The probability of at least one false rejection of any of the tests is

at most α.

We conclude this section by showing that the results presented so far can be used to obtain

a consistent multiscale test for the hypothesis that the density f has a mode at a given point

x0 ∈ Rd. The test decides for the presence of a mode at x0 if every test (2.9) for the null

hypothesis that f is increasing on the wedge Ki, i = 1, . . . ,Mn, rejects the null. Note that in

this case we use the one-sided quantiles c̃′Ki(α) =
√

N i−1
3

(
κ̃′
n(α)+Γ( N i

n−1
)
)
in (2.9), where κ̃′

n(α)

is defined by the condition

P
(

max
i=1,...,Mn

(
−
√

3

N i − 1
TU
Ki − Γ

( N i

n− 1

))
≤ κ̃′

n(α)
∣∣∣N1, . . . , NMn

)
= 1− α. (2.11)

Theorem 2.6. Assume that the density f is twice continuously differentiable in a neighbourhood

of x0 with f(x0) ̸= 0, gradient ∇f(x0) = 0 and a Hessian Hf (x0) satisfying e
⊤
0 Hf (x0)e0 ≤ −c <

0 for all e0 ∈ Rd with ∥e0∥ = 1. Consider the family of wedges Kn defined in Section 2.3 with

constants C1, C2 satisfying

Cd+4
1 Cd−1

2 >
4D2

c2
f(x0)

d+ 4
, (2.12)

where

D =

√
2(2d+ 2)(d+ 2)(

1− d
d+2

)(d+2)/d
[
1− d2

2(2d+2)2

(
− 1 +

{
1 + 4(2d+2

d
)2
}1/2)]1/2 . (2.13)

Then, all Mn tests defined in (2.9) (using the quantiles c̃′Ki(α) instead of c̃Ki(α) (i = 1, . . . ,Mn))

reject the null hypothesis with asymptotic probability one as n → ∞.
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Note that the constant D in (2.13) depends only on the dimension d. Hence, the lower bound

on the constants C1 and C2 is determined by the shape of the modal region (more precisely

the largest eigenvalue of the Hessian Hf (x0) at x0) as well as by the value of the density at the

point x0.

3 Global inference on monotonicity

In this section we extend the local inference on modality at a fixed point to the situation where

no specific candidate position for the mode can be defined in advance. This is particularly

important since there exist several applications where at most approximate information about

the position of the modes is available. As in the previous section, let X1, . . . , Xn denote inde-

pendent d-dimensional random variables with density f . The proposed test for the detection

of modes proceeds in several steps.

The first step consists in a selection of the candidate modes. Here, we choose these as the

vertices of an equidistant grid in Rd. Secondly, we introduce a generalization of the multiscale

test on monotonicity presented in Section 2, where we divide the wedges in subsections that

are determined by the data. The latter approach can be very useful in settings without a priori

knowledge about the modes, as a true mode obviously has not to be located at the vertex

of a wedge. Figure 2 provides a graphical representation of the results of the global test on

modality in the bivariate case where the multiscale generalization has been omitted. Here,

on every dotted wedge K, the test has rejected that f is decreasing on K. Accordingly, the

cross-hatches refer to a rejection that f is increasing on K. Non-marked wedges indicate that

no significant result has been found. For a detailed description of the settings used to provide

Figure 2 and an analysis of the results, we refer to the end of this section.

3.1 Geometrical preparations

Throughout this section let bj denote the jth unit vector in Rd (j = 1, . . . , d) and define

⌈x⌉ := inf{z ∈ Z| z ≥ x}. Recall the definition of ln in (2.4) and denote (for given constants

C1, ε > 0) by Gn the grid consisting of the vertices

d∑
j=1

(ij(2 + ε)C1 log(n)ln − n)bj

(
i1 . . . id ∈

{
0, . . . , ⌈ 2n

(2+ε)C1 log(n)ln
⌉
} )

. Note that the grid Gn covers the cube [−n, n]d and that

the sequence log(n)ln (which determines the order of the mesh size) is chosen such that the test

of modality defined below is consistent.

We now define by Kn a family of wedges (cf. Definition 2.1) with length l = C1 log(n)ln, an angle

φ = φn = C2

2
log(n)−1 for a given constant C2 > 0, vertex in Gn, and a direction contained in

the set of given directions {e1n, . . . , eMn
n } (cf. Section 2.3). For an arbitrary but fixed element K

10
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Figure 2: Example of a global map for monotonicity of a density.

of Kn let X(1), . . . , X(N) denote those random variables among {X1, . . . , Xn} which are located

in K and ordered with respect to their signed projected distances from the vertex x0 of K. For

0 ≤ j < k ≤ N with k − j > 1 we define

K(j, k) := {x ∈ Rd
∣∣ x ∈ K and PeX(j) < Pex ≤ PeX(k)}

as a subsection of the wedge K, where X0 := x0 and x0 denotes the vertex of K. A typical set

is depicted in Figure 3. We conclude this section with a definition of a concept of monotonicity

on subsections of a wedge.

Definition 3.1. Let K be a wedge with vertex x0 and K(j, k) ⊆ K be a subsection. The

function f : Rd → R is

(i) increasing on K(j, k), if f(x0 + t̃2e0) ≥ f(x0 + t̃1e0) for all e0 ∈ Rd with ∥e0∥ = 1 and all

t̃2 > t̃1 ≥ 0 such that x0 + t̃ℓe0 ∈ K(j, k) (ℓ = 1, 2).

(i) decreasing on K(j, k), if f(x0 + t̃2e0) ≤ f(x0 + t̃1e0) for all e0 ∈ Rd with ∥e0∥ = 1 and all

t̃2 > t̃1 ≥ 0 such that x0 + t̃ℓe0 ∈ K(j, k) (ℓ = 1, 2).

3.2 Regions of monotonicity and mode detection

The approach proposed here consists of simultaneous tests for monotonicity of the density f on

every subsection of every wedge in Kn. For the definition of these tests we will proceed similarly

11



K(j, k)

K

elx0

X(k)×

X(j)×

PX(k)

×
PX(j)

×

Figure 3: The subsection K(j, k) for d = 2.

as in Section 2.3. We begin by introducing a multiscale test statistic on the subsection K(j, k)

of a wedge K ∈ Kn which is defined by

TK(j,k) :=
k−1∑

l=j+1

β

(
(PeX(l))

d − (PeX(j))
d

(PeX(k))d − (PeX(j))d

)
, (3.1)

where 0 ≤ j < k ≤ N, k− j > 1. Note that TK(0,N) = TK , where TK is the test statistic defined

in (2.3).

Now, let Kn = {Ki | i = 1, . . . , Ln} denote the family of wedges defined in Section 3.1. For

the multiscale approach, we use for each subsection Ki(ji, ki) of the wedge K
i the test statistic

TKi(ji,ki) defined by (3.1) (0 ≤ ji < ki ≤ N i, ki − ji > 1, i = 1, . . . , Ln) and consider

TU
Ki(ji,ki)

=

ki−1∑
l=ji+1

β
( F̃ i(P i

eX(l))− F̃ i(P i
eX(ji))

F̃ i(P i
eX(ki))− F̃ i(P i

eX(ji))

)
,

where P i
e denotes the signed projected distance and F̃ i denotes the conditional distribution

function with respect to Ki (0 ≤ ji < ki ≤ N i, ki − ji > 1, i = 1, . . . , Ln). Using similar

arguments as in Section 2.3, it follows that (conditionally on N i)

TU
Ki(ji,ki)

≤ TKi(ji,ki) (a.s.) if f is increasing on K(ji, ki),

TU
Ki(ji,ki)

≥ TKi(ji,ki) (a.s.) if f is decreasing on K(ji, ki)

(0 ≤ ji < ki ≤ N i, ki − ji > 1, i = 1, . . . , Ln). Moreover,

TU
Ki(ji,ki)

d
=

ki−1∑
l=ji+1

β
( U i

(l) − U i
(ji)

U i
(ki)

− U i
(ji)

)
conditional on N1, . . . , NLn ,

where {U i
ji

| ji = 1, . . . , N i − 1, i = 1, . . . , Ln} are independent random variables which are

uniformly distributed on the interval [0, 1], and U i
(1) ≤ . . . ≤ U i

(N i−1) is the order statistics of

12



U i
1, . . . , U

i
N i−1 (i = 1, . . . , Ln). Finally, let κn(α) denote the (1− α)-quantile of the conditional

distribution of the random variable

max
i=1,...,Ln

max
0≤ji<ki≤N i, ki−ji>1

(√ 3

ki − ji − 1
|TU

Ki(ji,ki)
| − Γ

(ki − ji
n− 1

))
(3.2)

given N1, . . . , NLn . We consider on each subsection Ki(ji, ki) of the wedge Ki the hypotheses

H incr
0,i,ji,ki

: f is increasing on Ki(ji, ki) versus H incr
1,i,ji,ki

: f is not increasing on Ki(ji, ki), (3.3)

Hdecr
0,i,ji,ki

: f is decreasing on Ki(ji, ki) versus Hdecr
1,i,ji,ki

: f is not decreasing on Ki(ji, ki)

(0 ≤ ji < ki ≤ N i, ki − ji > 1, i = 1, . . . , Ln). The hypothesis H incr
0,i,ji,ki

is rejected if

TKi(ji,ki) < −cKi(ji,ki)(α) (3.4)

(0 ≤ ji < ki ≤ N i, ki−ji > 1, i = 1, . . . , Ln), where cKi(ji,ki)(α) :=
√

ki−ji−1
3

(
κn(α)+Γ(ki−ji

n−1
)
)
.

Similarly, Hdecr
0,i,ji,ki

is rejected if

TKi(ji,ki) > cKi(ji,ki)(α) (3.5)

(0 ≤ ji < ki ≤ N i, ki − ji > 1 i = 1, . . . , Ln). Following the line of arguments in the proof of

Theorem 2.5, we obtain the following result.

Theorem 3.2. If all tests (3.4) and (3.5) are performed simultaneously (0 ≤ ji < ki ≤ N i, ki−
ji > 1, i = 1, . . . , Ln), then the probability of at least one false rejection is at most α.

3.3 Mode detection

We consider the following asymptotic regime. For n ∈ N let Kn denote the family of wedges

defined in Section 3.1 and define In as the set of indices i corresponding to the wedges Ki
n ∈ Kn

whose vertices x0,n fulfill C1 log(n)ln ≤ ∥xn
0 − x0∥ ≤ mnC1 log(n)ln for a mode x0 of f and

mn = (log(n))
5
2 and whose direction en fulfills angle(xn

0 − x0, e
n
0 ) = O(log(n)−1). Then, every

test (3.4) for the hypothesis H incr
0,i,0,N i defined (3.3) (i.e. f is increasing on Ki

n) with i ∈ In ⊆
{1, . . . , Ln}, rejects the null with asymptotic probability one.

Theorem 3.3. Let

D =
2
√
2(2d+ 1)(d+ 1)(

1− d
d+1

)(d+1)/d
[
1− d2

2(2d+1)2

(
− 1 +

{
1 + 4(2d+1

d
)2
} 1

2
)] 1

2

.

Assume that for any mode x0 ∈ Rd the density f satisfies c1 ≥ f(x0) > 0 and that there exist

functions gx0 : Rd → R, f̃x0 : R → R such that the density f has a representation of the form

f(x) ≡ (1 + gx0(x))f̃x0(∥x− x0∥) (3.6)
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(in a neighbourhood of x0). Furthermore, let gx0 be differentiable in a neighbourhood of x0

with gx0(x) = o(1) and ⟨∇gx0(x), e0⟩ = o(∥x − x0∥1+γ) (for some γ > 0) if x → x0 and all

e0 ∈ Rd with ∥e0∥ = 1. In addition, let f̃x0 be differentiable in a neighbourhood of 0 with

f̃ ′
x0
(h) ≤ −ch(1 + o(1)) for h → 0. If Kn is the family of wedges defined in Section 3.1 with

Cd+4
1 Cd−1

2 >
D2

c2
c1

d+ 4
, (3.7)

then every mode x0 of f will be detected with asymptotic probability one as n → ∞.

Theorem 3.3 shows that the proposed procedure can find all modes with (up to the logarithmic

factor) optimal rate. Note that we proceed in two steps: the verification of the presence of a

mode and its localization. With probability one the presence of every mode will be detected

(by means of the asymptotic regime introduced at the beginning of this section). The rate for

the localization of a mode is given by the mesh size of the grid Gn, which is determined by the

length of the wedges.

4 Finite sample properties

In this section we illustrate the finite sample properties of the proposed multiscale inference. In

particular, we study the power of the local test for a mode at a given point x0 ∈ Rd. We also

present an example illustrating how the results of Section 3 can be used to obtain a graphical

representation of the local monotonicity properties of the density.

4.1 Local test for modality

Here, we investigate the finite sample properties of the local test for a two-dimensional density,

where the level is given by α = 0.05. The corresponding quantiles κ̃′
n(0.05) defined in (2.11) are

determined from 1000 simulation runs based on independent and uniformly distributed random

variables on the interval [0, 1] and are listed in Table 1 for the sample sizes n = 100, 500, 5000 in

the situation considered in Table 2 (note that κ̃′
n(0.05) depends on the number of observations in

every wedge and hence both on the number and on the size of the wedges). By its construction,

observations κ̃′
n(0.05)

100 0.126

500 -0.319

5000 -0.854

Table 1: Simulated quantiles κ̃′
n(0.05) in the situation considered in Table 2.

the local test is conservative, and therefore we also investigate a calibrated version of the new
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test. The quantiles of the calibrated test are chosen such that the level of the test coincides

with α = 0.05 for the data obtained from a uniform distribution on the set [−2.5, 2.5]2. Note

that this calibration does not require any knowledge about the unknown density f . However,

the procedure requires the choice of the length and the angle of the wedges and according to

Theorem 2.6 we used

ln = C1

( log(n)
n

) 1
d+4

log(n)
d−1
d+4 , φn =

C2

2
log(n)−1,

where C1, C2 > 0 are constants. In the following, the power and level of the test with respect

to different choices of C1 and C2 is investigated. We also consider different numbers Mn of

wedges in our study. Recall from the discussion in Section 2.3 that the constants C1 and C2

have to satisfy (2.12) in order to guarantee consistency of the test. All results presented below

are based on 1000 simulation runs.

We begin with a comparison of the test introduced in Section 2 (based on the critical values

κ̃′
n(0.05)) and a calibrated version of this test. In Table 2 we present the simulated level and

power of the local test for a mode at the point x0 = (0, 0)⊤ for different sample sizes. The

constants in the definition of the length and the angle are chosen as C1 = 2 and C2 = 9.65.

For the investigation of the level we consider a uniform distribution on the square [−2.5, 2.5]2,

since it represents a “worst” case scenario. For the calculation of the power, we sample from the

standard normal distribution. We observe that the test proposed in Section 2 is conservative

but it has reasonable power with increasing sample size. On the other hand, the calibrated

version of the multiscale test keeps its nominal level and rejects the null hypothesis of no mode

at x0 in nearly all cases.

observations ln Mn level power level (cal.) power (cal.)

100 1.54 3 0.0 36.8 4.8 97.6

500 1.31 4 0.0 50.0 4.5 98.4

5000 0.99 5 0.0 72.7 5.0 100

Table 2: Simulated level and power of the local test for a mode at x0 = (0, 0)⊤ of a 2-dimensional

density.

Next we investigate the influence of the shape of the modal region on the power of the local

test. To this end, we sample from normal distributions with expectation (0, 0)⊤ and covariance

matrix Σ ̸= I2. The results for

Σ1 =
(

0 0.5
−1 1.5

)
and Σ2 =

(−0.5 1
−2 2.5

)
(4.1)

are presented in Table 3. We conclude that the shape of the modal region (determined by the

absolute values of the eigenvalues of the covariance matrix) has a strong influence on the power

of the test. In the case Σ1 (eigenvalues 0.5 and 1), the absolute values of both eigenvalues
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Σ1 Σ2

observations ln Mn power power (cal.) power power (cal.)
100 1.54 3 65.4 98.7 38.8 94.3
500 1.31 4 95.6 100 80.1 99.6
5000 0.99 5 97.8 100 92.1 99.7

Table 3: Influence of the shape of the modal region on the power of the local test. The matrices

Σ1 and Σ2 are given in (4.1).

are smaller than one. For Σ2 the eigenvalues are given by 0.5 and 1.5. Hence, we observe a

(slight) decrease in power in comparison to the first case. However, due to the existence of an

eigenvalue with absolute value smaller than one, the test still performs better as in the case of

a standard normal distribution.

As the local test requires the specification of the point x0, we next investigate the influence of

its incorrect specification on the power of the test. For this purpose, we consider the same data

(two-dimensional standard normal distribution) and perform the tests under the assumption

that the modes are given by x0 = (0.2, 0.2)⊤ and x0 = (0.7, 0.7)⊤, respectively (which has to be

compared to the true position of the mode at (0, 0)⊤). The corresponding results are shown in

Table 4, and we conclude that a“small”deviation of the candidate mode from the true mode has

a very small effect on the power of the tests. In the case x0 = (0.7, 0.7)⊤, the distance between

the candidate and the true mode is very large in comparison to the length of the wedges. For

n = 100 observations the length of the wedges is still substantially larger than the distance

between the candidate and the true mode. Hence, the test detects the presence of a mode, but

we observe a decrease in its power. However, for n = 5000 observations the distance between

the candidate position and the true mode is approximately equal to the length of the wedges.

As a consequence, the multiscale test is performed with a finer triangulation and (correctly)

does not indicate the existence of a mode at the point x0 = (0.7, 0.7)⊤.

x0 = (0.2, 0.2)⊤ x0 = (0.7, 0.7)⊤

observations ln Mn power power (cal.) power power (cal.)
100 1.54 3 32.4 96.6 2.8 75.6
500 1.31 4 43.1 97.8 1.2 57.1
5000 0.99 5 47.2 98.3 0.1 10.8

Table 4: Influence of a misspecification of the mode on the power of the local test.

In the remaining part of this section we investigate the influence of the choice of the parameters

C1 and C2 on the power of the test. Note that the volume of every wedge is proportional to

ldn, where ln is the length of the wedge. This means that dividing the length in half yields a

wedge with a volume which is 2−d times smaller than the volume of the original wedge. Thus,

the number of observations in the smaller wedge is substantially smaller than the number of

observations in the larger wedge. Therefore, we expect that the constant C1 has an impact on

the power of the test. These theoretical considerations are reflected by the numerical results
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in Table 5, which show the power for a fixed sample size n = 500, different choices of C1

(represented by the different lengths) and fixed parameter C2. We observe a loss of power of

both tests with decreasing length of the wedge.

On the other hand, decreasing the constant C2 such that the number of wedges doubles has

the effect that the number of observations in every wedge decreases approximately by 50%.

In Table 6 we show the power for a fixed sample size n = 500, a fixed constant C1 = 2 and

varying values of C2 (represented by the different number of wedges). Here, the picture is not

so clear. While we observe a loss in power of the non-calibrated tests with an increasing number

of wedges, the power of the calibrated test changes only slightly. In both cases, the calibrated

version still performs rather well opposite to its uncalibrated version.

observations ln Mn level power level (cal.) power (cal.)
500 1.31 4 0.0 50.0 4.5 98.4
500 0.98 4 0.0 1.5 4.9 74.4
500 0.65 4 0.0 0.0 5.4 37.2

Table 5: Influence of the length of the wedges on the power.

observations ln Mn level power level (cal.) power (cal.)
500 1.31 4 0.0 50.0 4.5 98.4
500 1.31 6 0.0 0.7 5.3 92.7
500 1.31 8 0.0 0.0 4.9 89.8

Table 6: Influence of the number of directions tested on the power.

4.2 Identifying local monotonicity of a multivariate density

In this section we demonstrate how the results of Section 3 can be used to obtain a graphical

representation of the local monotonicity behaviour of the density (in the case d = 2). We

conduct the procedure to detect regions of monotonicity as proposed in Section 3.2. For the

sake of convenience, we use only the largest scales in the test statistic (3.1) (i.e. we test on

the entire wedges and not on the subsections introduced in Section 3.1). The significance level

is α = 0.05. We chose an equidistant grid covering [−3, 3] × [−1, 3] with points (i, j)⊤, i =

−3, . . . , 3, j = −1, . . . , 3, the length of any wedge is l = 1
2
and all angles are given by φ = π

4
.

Figure 2 presents the map of the local monotonicity properties on the basis of n = 100000

observations from a mixture of three normal distributions (i.e. f has three modes of different

shape) [see Figure 4]. Here, a cross-hatched wedge indicates that the local test rejected the

hypothesis that the density is increasing on the respective wedge. Similarly, a dotted wedge

implies that the test rejected the hypothesis that the density is decreasing. Non-significant

wedges are not marked.

The map indicates the existence of modes close to the grid points (−2, 0)⊤ and (2, 0)⊤ and in

a weaker sense indicates a mode close to the grid point at (0, 2)⊤. The marked geometrical
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Figure 4: The density of a (uniform) mixture of a N ((−0.05, 2.1)⊤, 0.5I),

N ((−1.9,−0.07)⊤, 0.2I) and N ((2,−0.1)⊤, 0.25I) distribution.

objects around these grid points are shown in Figure 5. In the grid point at (0, 2)⊤ we obtain

not so many significant rejections as in the wedges with vertex (2, 0)⊤. Still, the dotted wedges

show that there is a significant increase towards the mode which gives an indication for the

presence of a mode as well. An improved procedure with a direct focus on the modes will be

discussed in the following section.

Figure 5: Indications for the presence of a mode. Left panel: grid points (−2, 0)⊤ and (2, 0)⊤.

Right panel: grid point (0, 2)⊤.

4.3 Mode detection

In this section we demonstrate how the multiscale test can be successfully used for the localiza-

tion of modes if the inference on the local monotonicity behaviour of the density is not included

in the test statistic. More precisely, we consider the grid introduced in Section 4.2. Similar

to the local test on modality, we conclude that the density has a mode close to a grid point

if every test on every wedge whose vertex is given by the grid point rejects that the density

is increasing on the respective wedge. We again recommend a calibrated version of the global
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test, where the quantiles are chosen such that the probability of the discovery of a non-existing

mode is approximately 5% if the data comes from a two-dimensional uniform distribution. The

following results are based on n = 2500 observations and 1000 simulation runs.

We have investigated two densities, a constant density on the square [−3.5, 3.5] × [−1.5, 3.5]

and the density with three modes presented in Figure 4. For the uniform distribution the test

found a mode in 4.6% of the simulation runs. For the the tri-modal density the test detected in

78.9% cases a mode in the point (−2, 0)⊤, in 53.8% cases a mode in (2, 0)⊤ and in 7.4% cases

a mode in the point (0, 2)⊤.

5 Real data example

Active Galactic Nuclei (AGN) consist of a supermassive black hole at their centre surrounded

by an accretion disc. For some AGN classes, high-energy relativistic jets perpendicular to the

disc are produced. In case this jet is pointing in the general direction of the Earth, the object

is referred to as a blazar. The BL Lacertae type object Markarian (Mrk) 501 is such a blazar

and one of the closest (in a distance of 4.7×108 light years) and brightest extragalactic sources

in X-rays and gamma-rays. It is known as one of the most extreme blazars and features very

strong and fast variability, making Mrk 501 a perfect candidate for probing AGN. Due to the

strong emission over the entire electromagnetic spectrum, correlation studies between different

energy bands (parts of the electromagnetic spectrum) are particularly interesting and will give

insights into the processes inside an AGN, e.g. the emission models or the particle populations,

since different spatial regions of the object may emit radiation of diverse energies. Therefore,

the determination of the position of the radiation in a certain energy regime is of paramount

importance.

Here, 19 individual observations of Mrk 501 in the year 2015, performed in photon counting

(PC) mode by the Swift-XRT on board the Swift satellite, are analysed. The Swift satellite

was launched in 2004 and is a multiwavelength space observatory with three instruments on

board, the X-ray Telescope (XRT) being one of them, which is capable to observe X-rays in

the 0.3−10 keV energy regime. For each considered observation, the High Energy Astrophysics

Science Archive Research Center (HEASARC1) provides an image, based on Level 2 event files

that have been calibrated and screened by a standard pipeline. These images with a size of

1000×1000 pixels contain the information how many photons (i.e. which X-ray flux) have been

recorded in each pixel during the exposure time. The exposure times of the analysed images

range from about 100 s to 1000 s. Due to different positions of the satellite in space and different

alignments of its main axis, each image shows a slightly different region of the sky. Figure 6

provides an illustration of the data obtained from one observation.

By a combination of the 19 individual observations, we have at our disposal 49248 observations

of X-ray photons with known positions of origin on the sky. Our aim is the precise localiza-

1NASA/Goddard Space Flight Center, https://heasarc.gsfc.nasa.gov/.
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Figure 6: Observation of Mrk 501 from Sep. 4, 2015.2

tion of the mode of the distribution. To this end, we conduct the test presented in Section

4.3 for a significance level of 0.01. We chose an equidistant grid covering [253.446◦, 253.586◦]×
[39.64◦, 39.88◦] (corresponding to [16 h 53min 47.04 s, 16 h 54min 20.64 s]×[39◦ 38′ 24′′, 39◦ 52′ 48′′])

consisting of 961 grid points with mesh size 0.008◦. The length of any wedge is l = 0.004◦ and

all angles are given by φ = π
4
. Again, we used a calibrated version of the test where the quan-

tiles are chosen such that a non-existing mode for a uniform distribution on [253◦, 253.8◦] ×
[39.5◦, 40.1◦] has been found in less than 1% of the simulation runs (based on 1000 simulation

runs). Our test detected the mode of the distribution in (253.466◦, 39.760◦) (corresponding to

(16 h 53min 51.84 s, 39◦ 45′ 36′′)). The precision regarding the location of this mode is given

by the mesh size 0.008◦.

In contrast to the high confidence detection possible within short exposure times for the

brightest extragalactic sources, such as Mrk 501, the detection of fainter point sources is more

challenging. Often only few photons reach the detector due to, e.g., the large distance to the

source and the absorption of photons. Within the sky region of one Swift-XRT image, there

might be multiple point sources in X-rays, but even background fluctuations can look like faint

point sources. The study of the population of these point sources, the correlation to other

energy bands, and variability studies contribute enormously to the understanding of the X-ray

sky. This requires reliable methods for the detection and the determination of the position,

including the confidence of a given calculation. In the following, the capability to determine

multiple modes of faint point sources in Swift-XRT images is demonstrated. 18 images provided

2This picture has been created using HEAsoft, http://heasarc.nasa.gov/docs/software/lheasoft/.
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Figure 7: Observation of the sky region around the blazar S3 0218+35 from Sep. 8, 2012.3

by HEASARC of individual observations of the sky region around the blazar S3 0218+35 in

the years 2005, 2012, 2014 and 2016 performed in PC mode by the Swift-XRT are analysed.

The exposure times of the images provided by HEASARC range from 3000 s to 5000 s. Figure 7

shows one of these images. The two point sources are marked with a square. Figure 8 provides

detailed images of the two point sources.

For the detection and the localization of the two point sources we conduct the test presented

in Section 4.3 at a significance level of 0.01. Here, we have at our disposal 18061 observations.

For this application, we chose an equidistant grid covering [35.2◦, 35.32◦] × [35.825◦, 35.945◦]

(corresponding to [2 h 20min 48 s, 2 h 21min 16.8 s] × [35◦ 49′ 30′′, 35◦ 56′ 42′′]) consisting of

961 grid points with mesh size 0.004◦. The length of any wedge is l = 0.002◦ and all angles

are given by φ = π
4
. The quantiles are chosen such that a non-existing mode for a uniform

distribution on [35◦, 35.5◦]× [35.7◦, 36.1◦] has been found in less than 1% of the simulation runs

(based on 1000 simulation runs). Our test detected the two point sources at (35.212◦, 35.829◦)

(corresponding to (2 h 20min 50.88 s, 35◦ 49′ 44.4′′)) and at (35.272◦, 35.937◦) (corresponding

to (2 h 21min 5.28 s, 35◦ 56′ 13.2′′)) at a precision of 0.004◦.
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Figure 8: Observations of the two points sources around S3 0218+35 from Sep. 8, 2012.4
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6 Proofs

The assertions of most of our results are split up in two parts, one for densities that are

increasing and one for decreasing densities. Often, the proof for one case can be transferred in

a straightforward way to the other one. In this situation, we only prove one case as the other

case follows immediately by similar arguments. Only if this transfer is not obvious, we give

details for both situations.

6.1 Proofs of the results of Section 2.3

Proof of Theorem 2.3: It is well-known that, given X(N) and N , the random variables

F̃ (PeX(1)), . . . , F̃ (PeX(N−1)) have the same distribution as the order statistics of N − 1 uni-

formly distributed and independent random variables on the interval [0, 1]. By an application

of the law of iterated expectations, the assertion follows.

Proof of Theorem 2.4: We only consider the case where the density f is increasing on K.

As F̃ (PeX(j)) ̸= 0 almost surely for j = 1, . . . , N − 1 (cf. Theorem 2.3) and PeX(j) = PeX(N)

implies F̃ (PeX(j)) = 1, it is sufficient to prove

F̃ (z) ≤ F̃U(z) =
zd

(PeX(N))d
(5.1)

for all z ∈ (0, PeX(N)]. For this purpose, notice that the distribution function F̃ in Theorem

2.3 is given by

F̃ (z) =
P(PeX ≤ z,X ∈ KN |N,X(N))

P(X ∈ KN |N,X(N))
=

G(z)

G(PeX(N))
,

where the function G is defined by

G(z) =

∫ z

0

∫ t tan(φ)

−t tan(φ)

. . .

∫ t tan(φ)

−t tan(φ)

f(x0 + te+ s1e1 + . . .+ sd−1ed−1) ds1 . . . dsd−1 dt .

We now prove (5.1) by contradiction and assume that there exits z∗ ∈ (0, PeX(N)] such that∫ z∗

0

f̃(t) dt =
G(z∗)

G(PeX(N))
>

(z∗)d

(PeX(N))d
=

d

(PeX(N))d

∫ z∗

0

td−1 dt, (5.2)

where f̃(t) := G′(t)
G(PeX(N))

is the density of F̃ . From (5.2) and the monotonicity of the integral it

follows that there exists a point t0 ∈ (0, z∗] with

f̃(t0) >
dtd−1

0

(PeX(N))d
. (5.3)
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For the following discussion, we introduce an alternative parametrization of the wedge K. As

{e, e1, . . . , ed−1} is an orthonormal basis of Rd, every x ∈ K can be represented as x = x0 +

t1e+s1e1+ . . .+sd−1ed−1 for some t1 ∈ (0, l] and si ∈ [−t1 tan(φ), t1 tan(φ)] for i = 1, . . . , d−1.

With the notation

e0 :=
t1e+ s1e1 + . . .+ sd−1ed−1

∥t1e+ s1e1 + . . .+ sd−1ed−1∥
and t̃1 := ∥t1e+ s1e1 + . . .+ sd−1ed−1∥, (5.4)

we have x = x0+ t̃1e0, and the mapping of (t1, s1, . . . , sd−1) to (t̃1, e0) defines a bijection. Hence,

any x ∈ K can also be uniquely represented by the vector e0 and the scalar t̃1 (see Figure 9).

K

e

e0

t1

x×
t̃1

s1
x0

Figure 9: Representation of x ∈ K for d = 2.

Let t1 ∈ [t0, PeX(N)] and consider a point

x = x0 + t1e+ s1e1 + . . .+ sd−1ed−1 = x0 + t̃1e0 ∈ KN ,

where e0 and t̃1 are defined in (5.4). Let t̃0 =
t0
t1
∥t1e+ s1e1 + . . .+ sd−1ed−1∥ ≤ t̃1 and define

y := x0 + t̃0e0 = x0 + t̃0
t1e+ s1e1 + . . .+ sd−1ed−1

∥t1e+ s1e1 + . . .+ sd−1ed−1∥
.

A straightforward calculation shows that y = x0 + t0e+ s̃1e1 + . . .+ s̃d−1ed−1, where s̃i =
t0
t1
si,

(i = 1, . . . , d − 1). Note that Pey = t0 and that f(y) ≤ f(x), as f is increasing on the wedge

K. We therefore obtain

f̃(t1) =

∫ t1 tan(φ)

−t1 tan(φ)

. . .

∫ t1 tan(φ)

−t1 tan(φ)

f(x0 + t1e+ s1e1 + . . .+ sd−1ed−1)

G(PeX(N))
ds1 . . . dsd−1

≥
∫ t1 tan(φ)

−t1 tan(φ)

. . .

∫ t1 tan(φ)

−t1 tan(φ)

f(x0 + t0e+
t0
t1
s1e1 + . . .+ t0

t1
sd−1ed−1)

G(PeX(N))
ds1 . . . dsd−1.

=

(
t1
t0

)d−1 ∫ t0 tan(φ)

−t0 tan(φ)

. . .

∫ t0 tan(φ)

−t0 tan(φ)

f(x0 + t0e+ s̃1e1 + . . .+ s̃d−1ed−1)

G(PeX(N))
ds̃1 . . . ds̃d−1

=

(
t1
t0

)d−1

f̃(t0).
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Using (5.3) we have f̃(t1) >
(
t1
t0

)d−1 dtd−1
0

(PeX(N))
d =

dtd−1
1

(PeX(N))
d for any point t1 ∈ [t0, PeX(N)], and

from (5.2) we conclude

1 =

∫ PeX(N)

0

f̃(t) dt >

∫ z∗

0

dtd−1

(PeX(N))d
dt+

∫ PeX(N)

z∗

dtd−1

(PeX(N))d
dt =

∫ PeX(N)

0

dtd−1

(PeX(N))d
dt = 1,

which is a contradiction and proves the first assertion of Theorem 2.4.

Proof of the representation (2.5): It follows from Theorem 2.3 that for fixed i, the random

variables F̃ i(Pein
X i

1), . . . , F̃
i(Pein

X i
N i−1) are independent and uniformly distributed on the in-

terval [0, 1], given {X i
j ∈ Ki

N i} (j = 1, . . . , N i − 1) and N i. Here, F̃ i denotes the conditional

distribution function of Pein
X on Ki. Recall that the wedges Ki

Ni
, i = 1, . . . ,Mn, are dis-

joint. Standard arguments and the law of iterated expectations yield stochastic independence

of observations lying in different wedges.

Proof of Theorem 2.5: Let a ∈ {−1, 1, 0}Mn be the vector determined by

ai =


1, if f is increasing on Ki,

−1, if f is decreasing on Ki,

0, else.

The probability of at least one false rejection among all tests in (2.9) and (2.10) can be estimated

by Theorem 2.4, that is

p := Pf

(
∃i ∈ {i | ai ̸= 0} : aiTKi < −c̃Ki(α)

∣∣N1, . . . , NMn
)

≤ Pf

(
∃i ∈ {i | ai ̸= 0} : aiT

U
Ki < −c̃Ki(α)

∣∣N1, . . . , NMn
)

≤ 1− P
(
|TU

Ki| ≤ c̃Ki(α) for all i = 1, . . . ,Mn

∣∣N1, . . . , NMn
)
.

Using (2.6) we further deduce

p ≤ 1− P
((√ 3

N i − 1

∣∣TU
Ki

∣∣− Γ
( N i

n− 1

))
≤ κ̃n(α) for all i = 1, . . . ,Mn

∣∣N1, . . . , NMn

)
= 1− P

(
max

i=1,...,Mn

(√ 3

N i − 1

∣∣TU
Ki

∣∣− Γ
( N i

n− 1

))
≤ κ̃n(α)

∣∣N1, . . . , NMn

)
= α.

6.2 Further Results

This section provides a general consistency result which is the main ingredient for the proof of

Theorems 2.6 and 3.3. The consistency result stated in Theorem 6.3 below is a more general

result. The following notation is used throughout this section for the precise statement of the

assumptions on the density f .
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Definition 6.1. Let K be a wedge with vertex x0 and j ∈ {1, 2}. We define

inf
K

f (j) := inf
x0+t̃e0∈K,0≤s̃<t̃

f(x0 + t̃e0)− f(x0 + s̃e0)

t̃j − s̃j
, (5.5)

sup
K

f (j) := sup
x0+t̃e0∈K,0≤s̃<t̃

f(x0 + t̃e0)− f(x0 + s̃e0)

t̃j − s̃j
.

For a better interpretation of Definition 6.1, let f be twice continuously differentiable in a

neighbourhood of x0. A straightforward application of the mean value theorem shows

inf
K

f (1) = inf
x0+t̃e0∈K

⟨∇f(x0 + t̃e0), e0⟩, sup
K

f (1) = sup
x0+t̃e0∈K

⟨∇f(x0 + t̃e0), e0⟩.

If we have a mode in x0, the gradient ∇f(x0) vanishes and supK f (1) vanishes as well. Similarly,

a Taylor expansion of order 2 yields

inf
K

f (2) =
1

2
inf
{
⟨e0, Hf (x0)e0⟩

∣∣{x0 + t̃e0, t̃ ≥ 0} ∩K ̸= ∅}
∣∣}+ o(1)

sup
K

f (2) =
1

2
sup

{
⟨e0, Hf (x0)e0⟩

∣∣{x0 + t̃e0, t̃ ≥ 0} ∩K ̸= ∅}
∣∣}+ o(1)

for l → 0, where Hf (x0) denotes the Hessian of f in x0. In the situation of Theorem 2.6, the

condition e⊤0 Hf (x0)e0 ≤ −c < 0 holds for all e0 ∈ Rd with ∥e0∥ = 1. Thus, only the case j = 2

is relevant for its proof. However, if the assumption is violated and the Hessian is indefinite,

the results can be generalized in a straightforward manner by considering orders j ≥ 3 as well.

For the proof of Theorem 3.3, the case j = 1 will be used.

To simplify notation, let

φ̃ = tan(φ) for φ ∈
(
0,

π

2

)
and F (K) =

∫
K

f(x) dx.

The quantities

Hj
+(f,K) :=

(2φ̃)d−1ld+j infK f (j)√
F (K)

, Hj
−(f,K) :=

(2φ̃)d−1ld+j supK f (j)√
F (K)

(j = 1, 2)

depend on the size of the wedge K through its length l and angle φ and on the monotonicity

of f on K and are the key objects in the following discussion. We begin by showing that the

quantiles κ̃n(α) and κn(α) defined in (2.6) and (3.2) are bounded from above by a constant

independent ofMn, N
i, i = 1, . . . ,Mn, and n. As a consequence, the same holds for the quantiles

κ̃′
n(α) defined in (2.11).

Theorem 6.2. There exists a constant A > 0, such that max{κ̃n(α), κn(α)} ≤ A.
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Proof : We only consider κ̃n as the result for κn can be shown similarly. From the discussion

in Section 2.3, it follows that

TU
Ki

d
=

N i−1∑
j=1

β(U i
j) for i = 1, . . . ,Mn

(conditionally on N1, . . . , NMn), where U i
j , j = 1, . . . , N i − 1, i = 1, . . . ,Mn, are independent

uniformly distributed random variables on the interval [0, 1]. Recall the definition of Tjk(U) in

(2.1), then we will show a the end of the proof that, conditionally on N1, . . . , NMn ,

T∑i−1
k=1 N

k,
∑i

k=1 N
k(U ) =

∑i
k=1 N

k−1∑
ℓ=

∑i−1
k=1 N

k+1

β
(
U(ℓ;

∑i−1
k=1 N

k,
∑i

k=1 N
k)

) d
=

N i−1∑
j=1

β(U i
j) (5.6)

(i = 1, . . . ,Mn). As the statistic Tn(U ) defined in (2.2) calculates the maximum over more

scales than the statistic defined in (2.6), we obtain κ̃n ≤ κn, where κn is the (1−α)-quantile of

the statistic Tn(U) defined in (2.2). By Theorem 3.1 in Dümbgen and Walther (2008), there

exists an upper bound A > 0 for κn, which is independent of n. This completes the proof.

For a proof of (5.6), we finally note that for a sample of independent uniformly distributed

random variables U1, . . . , Un on the interval [0, 1] and fixed 1 ≤ j < k ≤ n with k − j > 1,

the random variables U(l;j,k) = (U(l) − U(j))/(U(k) − U(j)) (l = j + 1, . . . , k − 1) have the

same distribution as the order statistic of k− j − 1 independent uniformly distributed random

variables on the interval [0, 1].

Following the notation from Section 2.3 (recall that Γ(δ) =
√
2 log( exp(1)

δ
)), we define the

quantiles

cKi
n
(α) =

√
N i − 1

3

(
A+ Γ

( N i

n− 1

))
(i = 1, . . . ,Mn) and provide a general consistency result for locally increasing and decreasing

densities.

Theorem 6.3. Let j ∈ {1, 2} and Kn = {K1
n, . . . , K

Mn
n } be a family of Mn pairwise disjoint

wedges with length ln > 0 and angle φn ∈ (0, π
2
).

(i) If (for all i = 1, . . . ,Mn) the condition Hj
+(f,K

i
n) ≥ D

(
Γ(F (Ki

n))√
2

+ bn
)

1√
n
holds for some

constant

D >
j(d+ j)2

√
2

(2d+ j)
(
− 1 +

{
1 + 2j2

(2d+j)2

} 1
2

)(
1− j2

2(2d+j)2

{
−1 +

[
1 + 4 (2d+j)2

j2

] 1
2
}) 1

2

(5.7)

and a positive sequence bn satisfying bn → ∞ and bn = o(
√
log(n)) as n → ∞, then

P
(
TKi

n
> cKi

n
(α) for all i = 1, . . . ,Mn

)
→ 1.
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(ii) If (for all i = 1 . . . ,Mn) the condition Hj
−(f,K

i
n) ≤ −D

(Γ(F (Ki
n))√

2
+ bn

)
1√
n
holds for some

constant

D >
2
√
2(2d+ j)(d+ j)

j
(
1− d

d+j

)(d+j)/d
[
1− d2

2(2d+j)2

(
− 1 +

{
1 + 4(2d+j

d
)2
}1/2)]1/2

and a positive sequence bn satisfying bn → ∞ and bn = o(
√
log(n)) as n → ∞, then

P
(
TKn < −cKn(α) for all i = 1, . . . ,Mn

)
→ 1.

Remark 6.4. It follows from the proof of Theorem 6.3 below, that the bounds on Hj
+(f,Kn)

resp. Hj
−(f,Kn) imply in particular that Mn = o(n) as n → ∞.

The proof of Theorem 6.3 is divided into eight parts: seven technical lemmas (Lemma 6.5 -

Lemma 6.11) and the main part of the proof. We first state and prove the technical lemmas

and finally combine the results in order to complete the proof of Theorem 6.3. For each of the

lemmas, we assume that the conditions of Theorem 6.3 hold. At first, we consider only one

fixed wedge K with length ln = l and angle φn = φ. To simplify notation, let

F
j

±(z) := z + c±

(
2d−1

d+ j
z

d+j
d − 2d−1

d+ j
z

)
for j ∈ {1, 2} and z ∈ [0, 1] with

cj+ :=
(tan(φ))d−1(PeX(N))

d+j infK f (j)

F (KN)
and cj− :=

(tan(φ))d−1(PeX(N))
d+j supK f (j)

F (KN)
.

Lemma 6.5.

(i) If infK f (j) > 0, then F̃ (z) ≤ F
j

+

(
zd

(PeX(N))
d

)
for z ∈ (0, PeX(N)].

(ii) If supK f (j) < 0, then F̃ (z) ≥ F
j

−
(

zd

(PeX(N))
d

)
for z ∈ (0, PeX(N)].

Proof : We only prove the first part and define the auxiliary function

f
j

+(s1, . . . , sd−1, t) :=1KN
(x0 + te+ s1e1 + . . .+ sd−1ed−1)

·
( 1

|KN |
+
( infK f (j)

F (KN)

)(
tj − d

d+ j
(PeX(N))

j
))

,

where |KN | :=
∫
KN

1 dx denotes the volume of KN . Note that∫ z

0

∫ t tan(φ)

−t tan(φ)

. . .

∫ t tan(φ)

−t tan(φ)

f
j

+(s1, . . . , sd−1, t) ds1 . . . dsd−1 dt

=
zd

(PeX(N))d
+

∫ z

0

(2 tan(φ)t)d−1
( infK f (j)

F (KN)

)(
tj − d

d+ j
(PeX(N))

j
)
dt

=
zd

(PeX(N))d
+ c+

( 2d−1

d+ j

zd+j

(PeX(N))d+j
− 2d−1

d+ j

zd

(PeX(N))d

)
= F

j

+

( zd

(PeX(N))d

)
.

(5.8)
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In particular, as F
j

+(1) = 1, the function f
j

+ defines a density on KN . We now prove assertion

(i) by contradiction and assume that there exists z∗ ∈ (0, PeX(N)], such that

F̃ (z∗) =

∫ z∗

0

f̃(t)dt =
G(z∗)

G(PeX(N))
> F

j

+

( (z∗)d

(PeX(N))d

)
=

∫ z∗

0

hj
+(t)dt, (5.9)

where f̃ and

hj
+(t) :=

∫ t tan(φ)

−t tan(φ)

. . .

∫ t tan(φ)

−t tan(φ)

f
j

+(s1, . . . , sd−1, t) ds1 . . . dsd−1

denote the density of F̃ and F
j

+, respectively. Due to the monotonicity of the integral, there

exists a point t0 ∈ (0, z∗] with

f̃(t0) > hj
+(t0), (5.10)

which implies

f̃(t1) > hj
+(t1) for all t1 ∈ [t0, PeX(N)]. (5.11)

For a proof of (5.11), let t1 > t0 and x = x0 + t1e+ s1e1 + . . .+ sd−1ed−1 ∈ KN . As in the proof

of Theorem 2.4, we use the representation x = x0 + t̃1e0, where t̃1 and e0 are defined in (5.4).

For t̃0 :=
t0
t1
t̃1 < t̃1, let

y := x0 + t̃0e0 = x0 + t0e0 +
t0
t1
s1e1 + . . .+

t0
t1
sd−1ed−1 ∈ KN .

Using infK f (j) > 0, we find

f(x)− f(y) = f(x0 + t̃1e0)− f(x0 + t̃0e0) = (t̃j1 − t̃j0)
f(x0 + t̃1e0)− f(x0 + t̃0e0)

t̃j1 − t̃j0
(5.12)

≥ (t̃j1 − t̃j0) inf
K

f (j) = t̃j1

(
1− tj0

tj1

)
inf
K

f (j) ≥ (tj1 − tj0) inf
K

f (j),

where the last estimate follows since t̃1 ≥ t1. Recall that G(PeX(N)) = F (KN), then we obtain

f̃(t1) =

∫ t1 tan(φ)

−t1 tan(φ)

. . .

∫ t1 tan(φ)

−t1 tan(φ)

f(x0 + t1e+ s1e1 + . . .+ sd−1ed−1)

G(PeX(N))
ds1 . . . dsd−1

≥
∫ t1 tan(φ)

−t1 tan(φ)

. . .

∫ t1 tan(φ)

−t1 tan(φ)

1

F (KN)

(
f(x0 + t0e+

t0
t1
s1e1 + . . .+ t0

t1
sd−1ed−1)

+ (tj1 − tj0) inf
K

f (j)
)
ds1 . . . dsd−1.
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A change of variables yields

f̃(t1) ≥
(
t1
t0

)d−1 ∫ t0 tan(φ)

−t0 tan(φ)

. . .

∫ t0 tan(φ)

−t0 tan(φ)

f(x0 + t0e+ s̃1e1 + . . .+ s̃d−1ed−1)

F (KN)
ds̃1 . . . ds̃d−1

+ (2 tan(φ)t1)
d−1(tj1 − tj0)

infK f (j)

F (KN)

=

(
t1
t0

)d−1

f̃(t0) + (2 tan(φ)t1)
d−1(tj1 − tj0)

infK f (j)

F (KN)
,

and straightforward calculations show that

hj
+(t1) =

(
t1
t0

)d−1

hj
+(t0) + (2 tan(φ)t1)

d−1(tj1 − tj0)
infK f (j)

F (KN)

<

(
t1
t0

)d−1

f̃(t0) + (2 tan(φ)t1)
d−1(tj1 − tj0)

infK f (j)

F (KN)
≤ f̃(t1),

where we used (5.10) to obtain the strict inequality. From (5.9) and (5.11) we also get∫ PeX(N)

0

f̃(t) dt >

∫ z∗

0

hj
+(t) dt+

∫ PeX(N)

z∗
hj
+(t) dt = F

j

+(1) = 1,

which contradicts the condition 1 = F̃ (PeX(N)) =
∫ PeX(N)

0
f̃(t) dt. This completes the proof of

Lemma 6.5.

Lemma 6.6.

(i) If infK f (j) > 0, we have
∑N−1

i=1 β
(
(F

j

+)
−1(F̃ (PeX(i)))

)
≤ TK .

(ii) If supK f (j) < 0, we have
∑N−1

i=1 β
(
(F

j

−)
−1(F̃ (PeX(i)))

)
≥ TK .

Proof : We only prove the first part and begin showing that the function z 7→ F
j

+(z) is strictly

increasing for z ∈ [0, 1]. Recalling the representation (5.8), it is sufficient to prove that the

inequality

f
j

+(s1, . . . , sd−1, t) > 0 for t ∈ (0, PeX(N)]

holds for all (s1, . . . , sd−1) ∈ [−t tanφ, t tanφ]. For the sake of simplicity, we suppress the

dependence of f
j

+ on (s1, . . . , sd−1) and note that the function t 7→ f
j

+(t) = f
j

+(t, s1, . . . , sd−1)

is strictly increasing. Therefore, it remains to show f
j

+(0) ≥ 0. We prove this inequality by

contradiction and assume that f
j

+(0) < 0. For x = x0 + te + s1e1 + . . . + sd−1ed−1 ∈ KN , it

follows (using t̃0 = 0 in (5.12))

f(x)

F (KN)
≥ f(x)− f(x0)

F (KN)
≥ tj

infK f (j)

F (KN)
= f

j

+(t)− f
j

+(0) > f
j

+(t). (5.13)
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Integrating both sides of (5.13) leads to a contradiction. Consequently, the map z 7→ F̄ j
+(z) is

strictly increasing on [0, 1], which implies (using Lemma 6.5 and the monotonicity of the function

β) that β((F
j

+)
−1(F̃ (PeX(j)))) ≤ β

( (PeX(j))
d

PeX(N))
d

)
, whenever F̃ (PeX(j)) ̸= 0 and PeX(j) ̸= PeX(N).

However, it is easy to see that these cases correspond to PeX(j) = 0 and F̃ (PeX(j)) = 1, where

there is in fact equality. Thus the proof of the first part is completed.

The conditional expectation considered in the following lemma is used to derive a bound on

the corresponding conditional probability via the Hoeffding inequality in Lemma 6.11 below.

Lemma 6.7.

(i) E
(∑N−1

i=1 β
(
(F

j

+)
−1(F̃ (PeX(i)))

)
|N,X(N)

)
= 2d−1j(N−1)

(2d+j)(d+j)
cj+.

(ii) E
(∑N−1

i=1 β
(
(F

j

−)
−1(F̃ (PeX(i)))

)
|N,X(N)

)
= 2d−1j(N−1)

(2d+j)(d+j)
c̃j−.

Proof : We only prove the first part. Let U1, . . . , UN−1 be independent uniformly distributed

random variables on the interval [0, 1]. Theorem 2.3 yields

N−1∑
i=1

β
(
(F

j

+)
−1(F̃ (PeX(i)))

)
d
=

N−1∑
i=1

β
(
(F

j

+)
−1(Ui)

)
,

given N and X(N). The assertion now follows from

E
(
β((F

j

+)
−1(U1))|N,X(N)

)
=

∫ 1

0

β(x)gj+(x) dx =
2d−1j

(2d+ j)(d+ j)
cj+,

where gj+(x) :=
d
dx
F

j

+(x) = 1 + cj+
(
2d−1

d
x

d+j
d

−1 − 2d−1

d+j

)
.

In the following, we consider a sequence of wedges (Kn)n∈N given by vertices xn
0 , directions e

n,

lengths ln > 0 and angles φn ∈ (0, π
2
). Furthermore, we denote by en1 , . . . , e

n
d−1 the orthonormal

basis of (span{en})⊥ and let δn = F (Kn), δNn = F (KNn). Lemma 6.8 and Lemma 6.9 below

ensure the feasibility of our procedure in an asymptotic sense. They show that the random

wedge KNn is of similar size than the deterministic, predefined wedge Kn, i.e. that its comple-

ment Kn\KNn is small. Note that the test procedure can only be consistent if the wedge Kn

contains a sufficiently large number of observations. Therefore, we introduce for γ ∈ (0, 1
2
] and

0 < ε < 1 the conditional probability PNn given the event

Nn =
{
Nn ≥ (1− γ)nδn,

|KNn |
|Kn|

≥ 1− ε
}
. (5.14)

The results of Lemma 6.11 below are only shown for PNn . However, the following Lemmas 6.8

and 6.9 demonstrate that these conditions are asymptotically negligible. For example, Lemma

6.8 shows that, with increasing n, the wedge KNn ⊆ Kn approximates Kn in probability at an

exponential rate.
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Irn

Kn

en
ln

ln(1− ε)
1
d

xn
0

Figure 10: The section Irn .

Lemma 6.8. Let j ∈ {1, 2} and 0 < ε < 1.

(i) If the assumptions of Theorem 6.3 (i) are satisfied, then

P
(
Nn = 0 or

|KNn |
|Kn|

< 1− ε
)
≤ exp

(
− D

d+ j

√
nδn
2

Γ(δn)
(
1− (1− ε)

d+j
d

))
.

(ii) If the assumptions of Theorem 6.3 (ii) are satisfied, then

P
(
Nn = 0 or

|KNn|
|Kn|

< 1− ε
)
≤ exp

(
− D

d+ j

√
nδn
2

Γ(δn)
(
(1− ε)

d+j
d +

d+ j

d
ε− 1

))
.

Proof : We only prove the first part. Since
|KNn |
|Kn| =

(PenX(Nn))
d

ldn
< 1−ε if and only if PenX(Nn) <

ln(1− ε)
1
d , we obtain{

Nn = 0 or
|KNn|
|Kn|

< 1− ε
}
=
{
Nn = 0 or PenX(Nn) < ln(1− ε)

1
d

}
.

Define

Irn := Kn ∩
{
x ∈ Rd : Penx ≥ ln(1− ε)

1
d

}
(see Figure 10), then {Nn = 0 or

|KNn |
|Kn| < 1 − ε

}
⊆ { no observation in Irn}. Now, recall for a

proof of part (i) from (5.12) that (with t0 = 0 and t1 = t) f(xn
0 + ten + s1e

n
1 + . . .+ sd−1e

n
d−1) ≥

tj infKn f
(j). Thus,

pf,Irn : =

∫
Irn

f(x) dx

=

∫ ln

ln(1−ε)
1
d

∫ tφ̃n

−tφ̃n

. . .

∫ tφ̃n

−tφ̃n

f(xn
0 + ten + s1e

n
1 + . . .+ sd−1e

n
d−1) ds1 . . . dsd−1 dt

≥
∫ ln

ln(1−ε)
1
d

∫ tφ̃n

−tφ̃n

. . .

∫ tφ̃n

−tφ̃n

tj inf
Kn

f (j) ds1 . . . dsd−1 dt =
(2φ̃n)

d−1

d+ j
ld+j
n

(
1− (1− ε)

d+j
d

)
inf
Kn

f (j).
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The assumptions of Theorem 6.3 (i) imply that Hj
+(f,Kn) ≥ DΓ(δn)√

2n
and therefore pf,Irn ≥

D
d+j

√
δn
2n
Γ(δn)(1 − (1 − ε)

d+j
d ). As the variables Zi = 1Irn (Xi) are Bernoulli distributed with

parameters pf,Irn , we have

P( no observation in Irn) ≤ exp
(
− D

d+j

√
nδn
2
Γ(δn)

(
1− (1− ε)

d+j
d

))
.

As the number Nn of observations in Kn is Bin(n, δn)-distributed, we obtain the following result

from Chernoff’s Inequality.

Lemma 6.9. P (Nn ≤ (1− γ)nδn) ≤ exp
(
− nδn

γ2

2

)
for any γ ∈ (0, 1

2
].

Lemma 6.10. Let j ∈ {1, 2}.

(i) If the assumptions of Theorem 6.3 (i) are satisfied, then

(a) nδn ≥ D2

(d+ j)2
Γ(δn)

2

2
=: c̃j+

Γ(δn)
2

2
,

(b) nδn ≥ Lnc̃
j
+ log(exp(1)n), where Ln ≥ 1− o(1) for n → ∞.

(ii) If the assumptions of Theorem 6.3 (ii) are satisfied, then

(a’) nδn ≥ j2D2

(d(d+ j))2
Γ(δn)

2

2
=: c̃j−

Γ(δn)
2

2
.

(b’) nδn ≥ Lnc̃
j
− log(exp(1)n), where Ln ≥ 1− o(1) for n → ∞.

Proof : We only prove the first part. As in the proof of Lemma 6.8, we obtain

δn =

∫
Kn

f(x) dx ≥ (2φ̃n)
d−1

d+ j
ld+j
n inf

Kn

f (j).

Hence,

Hj
+(f,Kn) =

(2φ̃n)
d−1ld+j

n infKn f
(j)

√
δn

≤ (2φ̃n)
d−1ld+j

n infKn f
(j)

(2φ̃n)d−1

d+j
ld+j
n infKn f

(j)

√
δn = (d+ j)

√
δn.

Therefore, it follows from the assumption Hj
+(f,Kn) that nδn ≥ D2

(d+j)2
Γ(δn)2

2
. Part (b) is a

consequence of Lemma 7.5 in Dümbgen and Walther (2008).

The following Lemma provides the key to prove consistency. Note that for the construction of

the test statistic TKn , it is necessary that at least two observations are contained in the wedge

Kn. Given the event Nn, we have that Nn ≥ 2 if nδn ≥ 4. If the assumptions of Theorem 6.3 (i)

hold, it follows from (a) that nδn ≥ 4 is fulfilled for D ≥ 2(d+ j). Similarly, if the assumptions

of Theorem 6.3 (ii) hold, then (a’) yields the condition D ≥ 2d(d+j)
j

.
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Lemma 6.11. Let j ∈ {1, 2} and PNn denote the probability conditional on the event Nn defined

in (5.14), and define for γ ∈ (0, 1
2
], 0 < ε < 1 and η > 0 the constant

Dj(η, δn) :=

(2d+j)(d+j)

j
√
3

(1− ε)
d+j
d

√
(1− γ)− 1

nδn

(
√
2 +

√
2
κn(α) + η

Γ(δn)
−

2
√
2 log

(
(1− γ)− 1

nδn

)
Γ(δn)2

)
.

(5.15)

(i) If Hj
+(f,Kn) ≥ DΓ(δn)√

2n
for some constant D ≥ Dj(n, δn) ∨ 2(d+ j), then

PNn

(
TKn ≤ cKn(α)

∣∣Nn

)
≤ exp

(
−η2

6

)
.

(ii) If Hj
−(f,Kn) ≤ −DΓ(δn)√

2n
for some constant D ≥ Dj(n, δn) ∨ 2d(d+j)

j
, then

PNn

(
TKn ≥ −cKn(α)

∣∣Nn

)
≤ exp

(
−η2

6

)
.

Proof : We only prove the first part and define

cjn,+ :=
φ̃d−1
n (PenX(Nn))

d+j infKn f
(j)

δNn

.

Then a tedious but straightforward calculation shows that the inequality

2d−1jcjn,+(Nn − 1)

(2d+ j)(d+ j)
− η

√
Nn − 1

3
≥ cKn(α)

holds for
|KNn |
|Kn| ≥ 1− ε and Nn ≥ (1− γ)nδn. This implies

PNn

(
TKn ≤ cKn(α)

∣∣Nn

)
= E

[
PNn

(
TKn ≤ cKn(α)|Nn, X(Nn)

)]
≤ E

[
PNn

(
TKn ≤

2d−1jcjn,+(Nn − 1)

(2d+ j)(d+ j)
− η

√
Nn − 1

3

∣∣∣ Nn, X(Nn)

)]
≤ E

[
PNn

(
RKn ≤

2d−1jcjn,+(Nn − 1)

(2d+ j)(d+ j)
− η

√
Nn − 1

3

∣∣∣ Nn, X(Nn)

)]
,

where we used Lemma 6.6 and the notation RKn =
∑Nn−1

i=1 β((F
j

+)
−1(F̃n(PenX(i)))). Therefore,

the assertion follows from Lemma 6.7 and Hoeffding’s inequality.

Proof of Theorem 6.3: For a proof of the first part we proceed in two steps: firstly, we

will find an upper bound for the probability that the test will not reject for one single wedge.

Secondly, we will consider the probability for simultaneous rejection on every wedge in Kn. For

a fixed wedge Kn ∈ Kn, 0 < ε < 1 and γ ∈ (0, 1
2
], we have

P
(
TKn ≤ cKn(α) for any single Kn ∈ Kn

)
≤ PNn

(
TKn ≤ cKn(α) for any single Kn ∈ Kn

)
+P(N c

n),
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where the event Nn is defined in (5.14). Notice that the assumptions of Theorem 6.3 imply

those of Lemma 6.11 and recall that F (Kn) = δn. We have from the assumption in Theorem

6.3 (i) with Kn = Ki
n

Hj
+(f,Kn) ≥ D

(
1 + bn

√
2

Γ(δn)

)
Γ(δn)√

2n
,

which relaxes the assumption on the constant D in Lemma 6.11 as follows. Let ηn,Kn > 0 and

D
(
1 + bn

√
2

Γ(δn)

)
≥ max

{
Dj(ηn,Kn , δn), 2(d+ j)

}
, (5.16)

where Dj is defined in (5.15). Therefore, it follows from Lemma 6.11, Lemma 6.8 and Lemma

6.9 that the probability under consideration can be bounded by

exp
(
− η2n,Kn

6

)
+ exp

(
− D

d+j

√
nδn
2
Γ(δn)(1− (1− ε)

d+j
d )
)
+ exp

(
− nδn

γ2

2

)
, (5.17)

which concludes the proof for any single wedge.

We now consider the union of all wedges of Kn and define δ̃n := infKn∈Kn F (Kn). As the wedges

in Kn are pairwise disjoint, it follows from Lemma 6.10 that

Mn =
(
#{Kn : Kn ∈ Kn}

)
≤ 1

δ̃n
= o(n). (5.18)

Therefore, Kn consists of a finite number of wedges. From (5.17) and the monotonicity of the

function δ 7→ δ log
(
exp(1)

δ

)
, we obtain the estimate

P
(
TKn ≤ cKn(α) for at least one Kn ∈ Kn

)
(5.19)

≤
∑

Kn∈Kn

exp
(
− η2n,Kn

6

)
+Mn

(
exp

(
− D

d+j

√
nδ̃n
2
Γ(δ̃n)(1− (1− ε)

d+j
d )
)
+ exp

(
− nδ̃nγ2

2

))
,

if condition (5.16) is fulfilled for every Kn ∈ Kn. We now show that the right-hand side of

(5.19) vanishes as n → ∞ by investigating the asymptotic behaviour of every summand. For

the first summand, let ηn,Kn :=
(
6 log

(
1
δn

)
+ bn

) 1
2 , then∑

Kn∈Kn

exp
(
− η2n,Kn

6

)
=
∑

Kn∈Kn

δn exp
(
− bn

6

)
= o(1),

because
∑

Kn∈Kn
δn ≤ 1 and bn → ∞ as n → ∞. Next, we consider the second summand in

(5.19). An application of Lemma 6.10 (b) gives√
nδ̃n
2
Γ(δ̃n) ≥

√
c̃j+ log(exp(1)n)(1− o(1)).

Hence, by (5.18), if
D
d+j

√
D2

(d+j)2

(
1− (1− ε)

d+j
d

)
> 1, (5.20)
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Mn exp
(
− D

d+j

√
c̃j+ log(exp(1)n)

(
1− (1− ε)

d+j
d

)
(1− o(1))

)
= o(1).

Finally, by (5.18) and Lemma 6.10 (b), we have

o(1) exp
(
− nδ̃n

γ2

2
+ log(n)

)
≤ o(1) exp

(
− (1− o(1))c̃j+ log(exp(1)n)

γ2

2
+ log(n)

)
≤ o(1) exp

(
− log(n)

(
c̃j+

γ2

2
−
(
1 + o(1)

)))
= o(1),

if
D2

(d+ j)2
γ2

2
> 1. (5.21)

In this case, the third term vanishes as well as n → ∞.

It remains to show that condition (5.16) is fulfilled for every Kn ∈ Kn. With κn(α) ≤ A, we

have to prove that

D
(
1 + bn

√
2

Γ(δn)

)
(5.22)

≥ (2d+ j)(d+ j)
√
3j(1− ε)

d+j
d

√
(1− γ)− 1

nδn

(√
2 +

√
2
A+ ηn,Kn

Γ(δn)
−

2
√
2 log

(
1− γ − 1

nδn

)
Γ(δn)2

)
.

From Lemma 6.10 (b) it follows that nδn → ∞ for n → ∞ for all Kn ∈ Kn. Thus, using

ηn,Kn :=
(
6 log

(
1
δn

)
+ bn

) 1
2 , we find that for sufficiently large n an upper bound for the right

hand side of (5.22) is given by

(2d+ j)(d+ j)
√
3j(1− ε)

d+j
d

√
(1− γ)− o(1)

(√
2 +

A+
(
{6 log

(
1
δn

)
}1/2 +

√
bn
){

log
(

1
δn

)}1/2 )
≤ (

√
2 +

√
6)(2d+ j)(d+ j)

√
3j(1− ε)

d+j
d

√
1− γ − o(1)

+
(2d+ j)(d+ j)(A+

√
bn)√

3j(1− ε)
d+j
d

{
log
(

1
δn

)}1/2√
1− γ − o(1)

≤
(
1 +

o(bn)

{log
(

1
δn

)
}1/2

) 2
√
2(2d+ j)(d+ j)

j(1− ε)
d+j
d

√
1− γ − o(1)

.

(5.23)

Combining (5.20), (5.21) and (5.23), we obtain the following condition

D

d+ j
> max

{(
1− (1− ε)

d+j
d

)−1/2
,

√
2
γ
, 2

√
2(2d+j)

j(1−ε)
d+j
d

√
1−γ

}
. (5.24)

In order to minimize the restrictions imposed by condition (5.24), we now determine 0 < ε < 1

and γ ∈ (0, 1
2
], such that the lower bound on D is as small as possible. Balancing the second

and third terms in (5.24) we obtain

γ =
−j2 +

√
j4 + 4j2(2d+ j)2

2(2d+ j)2
<

j

2d+ j
≤ 1

2
,
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where we used (2d + j)2 ≥ 9 (note that d ≥ 1) for the first inequality. For the choice of ε we

introduce the notation a := (1− ε)
d+j
d and balance the first and third expression in (5.24) and

obtain

a = (2d+j)2

j2

(
− 1 +

√
1 + 2j2

(2d+j)2

)
.

Finally, inserting our choice of ε and γ in (5.24), we find the condition (5.7) since our calculations

also show that D is larger than all three terms of (5.24) simultaneously in this case.

6.3 Proof of Theorem 2.6 and 3.3

For the sake of simplicity, we prove both results for the case C2 = 1 and C := C1. The general

case follows by exactly the same arguments with an additional amount of notation.

Proof of Theorem 2.6: We note that it follows from Theorem 6.2 that cKi(α) ≥ c̃Ki(α)

for i = 1, . . . ,Mn. Hence, it remains to show that the assumptions for Theorem 6.3 (ii) are

satisfied. By assumption on f , we have supKi f (2) ≤ − c
2
+ o(1) for n → ∞ (i = 1, . . . ,Mn).

Moreover, from the approximation tan(x) = x(1− o(1)) for x → 0, we have

F (Ki) = f(x0)
1

d
Cd log(n)−d+1+d d−1

d+4

( log(n)
n

) d
d+4

(1 + o(1)) (i = 1, . . . ,Mn). (5.25)

Hence,

−H2
−(f,K

i) ≥
log(n)−d+1+(d+2) d−1

d+4Cd+2
( log(n)

n

) d+2
d+4 (c/2− o(1))√

f(x0)
1
d
C

d
2 log(n)

−d+1
2

+d d−1
2(d+4)

(
log(n)

n

) d
2(d+4) (1 + o(1))

= C
d
2
+2
(
log(n)

n

) 1
2
c/2− o(1)√

f(x0)
1
d

(i = 1, . . . ,Mn). Furthermore, we obtain from (5.25) and the assumption bn = o(
√
log(n)) that

D
(

Γ(F (Ki))√
2n

+ bn√
n

)
= D

√
d

d+4
logn
n

(1 + o(1)).

Therefore, the assumptions of Theorem 6.3 (ii) (for j = 2) are fulfilled as the constant C

satisfies C >
(

2D
c

√
f(x0)
d+4

) 2
d+4

by (2.12) and hence the assertion follows by an application of

Theorem 6.3. 2
Proof of Theorem 3.3: Note that it is sufficient to prove consistency for the largest scale.

By Theorem 6.2, we have to prove that the assumptions for Theorem 6.3 (ii) are satisfied for

the family of wedges {Ki
n | i ∈ In} introduced in Section 3.3. Let Kn ∈ {Ki

n | i ∈ In}. We

begin with the determination of an upper bound for the quantity supKn
f (1) defined in (5.5).

For this purpose, consider a point xn
0 + t̃e0 ∈ Kn with e0 ∈ Rd (∥e0∥ = 1) and t̃ > 0. Now, the

representation (3.6) and an application of the mean value theorem yields for 0 ≤ s̃ < t̃

∆n =
f(xn

0 + t̃e0)− f(xn
0 + s̃e0)

t̃− s̃
(5.26)

= f̃x0(∥xn
0 + s̃e0 − x0∥)⟨∇gx0(ξ2), e0⟩+ (1 + gx0(x

n
0 + t̃e0))f̃

′
x0
(ξ1)Rn
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for some ∥xn
0 + s̃e0 − x0∥ ≤ ξ1 ≤ ∥xn

0 + t̃e0 − x0∥ and ξ2 ∈ [xn
0 + s̃e0, x

n
0 + t̃e0], where

Rn =
∥xn

0 + t̃e0 − x0∥ − ∥xn
0 + s̃e0 − x0∥

t̃− s̃
.

A further application of the mean value theorem gives

Rn =

∑d
j=1(x

n
0,j + t̃e0,j − x0,j)

2 −
∑d

j=1(x
n
0,j + s̃e0,j − x0,j)

2

2
√
ξ(t̃− s̃)

=

∑d
j=1 2(x

n
0,j − x0,j)e0,j(t̃− s̃) + t̃2 − s̃2

2
√
ξ(t̃− s̃)

≥
∑d

j=1(x
n
0,j − x0,j)e0,j√

ξ

=
cos(angle(xn

0 − x0, e0))∥xn
0 − x0∥√

ξ
≥ C log(n)ln(1− o(1))

1√
ξ

for some ∥xn
0 + s̃e0 − x0∥2 ≤ ξ ≤ ∥xn

0 + t̃e0 − x0∥2. Moreover, we have

ξ ≤ ∥xn
0 + t̃e0 − x0∥2 ≤

(
∥xn

0 − x0∥+ t̃
)2 ≤ l2n(mnC log(n))2(1 + o(1)).

Hence, Rn ≥ 1−o(1)
mn

. With the same arguments as used before, one shows that ξ1 ≥ C log(n)ln

and ∥ξ2−x0∥ ≤ Cmn log(n)ln(1+ o(1)). Finally, by assumption on gx0 and f̃x0 and (5.26), this

yields

∆n ≤ (1 + o(1))(−c)C log(n)lnRn + f(x0)o((mn log(n)ln)
1+γ)

≤ (1− o(1))(−c)C log(n)
ln
mn

+ o((mn log(n)ln)
1+γ) = − cC

mn

log(n)ln(1− o(1)),

as mn

ln
o((mnln)

1+γ) = o(m2+γ
n lγn) = o(1) as n → ∞ by the choice of mn and ln. Consequently,

supKn
f ′ ≤ − cC

mn
log(n)ln(1− o(1)). As tan(x) = x(1− o(1)) (x → 0), we have

F (Kn) = f(xn
0 )
1

d
Cd(log(n))−d+1+d

( log(n)
n

) d
d+4

(1 + o(1))

= f(x0)
1

d
Cd log(n)

( log(n)
n

) d
d+4

(1 + o(1)).

It follows from the conditions c1 ≥ f(x0) ≥ 0

H1
−(f,Kn) ≤ −

Cd+1(log(n))3
( log(n)

n

) d+2
d+4 cC

mn
(1− o(1))√

f(x0)
1
d
C

d
2 (log(n))

1
2

(
log(n)

n

) d
2(d+4) (1 + o(1))

≤ −cC
d
2
+2
(
d
log(n)

n

) 1
2 1− o(1)

√
c1

(log(n))
5
2

mn

= −cC
d
2
+2
(
d
log(n)

n

) 1
2 1− o(1)

√
c1

.

If bn = o(
√
log n), we have

D
(

Γ(F (Kn))√
2n

+ bn√
n

)
= D

√
d

d+4
logn
n

(1 + o(1)),

and the assumptions of Theorem 6.3 (ii) are fulfilled if the constant C satisfies C >
(

D
c

√
c1
d+4

) 2
d+4

,

which is a direct consequence of (3.7). 2
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