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SUMMARY 

This dissertation is concerned with the problem of estimating 

a signal contained in noisy discrete measurements. The signals con

sidered are those which may be expressed as the sum of a random noise 

component and a nonrandom component. The nonrandom component is assumed 

to consist of the sum of known functions of time with unknown coeffi

cients. The random component of the signal and the measurement noise 

are assumed to have autocorrelation and cross-correlation functions 

which are known at the sampling instants. This study is restricted to 

the consideration of linear realizable discrete estimators. Particular 

emphasis is on the sensitivity of linear estimators to errors in the 

assumed model of the nonrandom component of the signal. A new estima

tion technique is presented which is shown to have a combination of 

mean-square error and modeling error sensitivity properties which 

represent an improvement over currently available methods. 

The discrete Kalman estimator is known to minimize mean-square 

estimation error for the class of signals considered in this disserta

tion. A detailed discussion of the Kalman estimator is given, with 

emphasis on the sensitivity of the estimates to errors in the model of 

the nonran4om characteristic of the signal. Various modifications,of 

the Kalman estimator which attack the sensitivity problem are discussed. 

An interpretation of the Kalman estimator as a weighted least squares 

curve fitting procedure is used to relate the signal model of the 

Kalman estimator to an alternative modeling technique which is more 
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suitable for implementing a fixed memory estimator.: The fixed memory 

estimator computes estimates based on data obtained over a fixed length 

of time immediately preceding the most recent measurement. It is shown, 

that the fixed memory estimator has an advantage over the :Kalman 

estimator in its relative insensitivity to errors in the signal dynamical 

model. 

A new estimation technique, called the augmented memory estima

tor, is formulated with the objective of computing estimates which are 

relatively insensitive to errors in the signal dynamical model while 

making use of all available data. The augmented memory estimator uses 

a computational structure similar to that,of the fixed memory estimator, 

but with a fixed number,•of•past estimates retained rather than past 

measurements. The resulting estimate is linear in all past data but 

has sensitivity properties comparable to those of the fixed memory 

estimator. The mean-square error which results from the use of an 

accurate signal model lies between that of the Kalman and the fixed 

memory estimators. 

The mean-square error and the sensitivity properties of the aug

mented memory estimator are illustrated by digital computer simulations. 

Linear models for nonlinear signals are included in the examples. 



CHAPTER I 

INTRODUCTION 

The purpose of this research is to develop a new technique for 

estimating signals contained in discrete noisy measurements. The class 

of signals considered consists of signals containing both a nonrandom 

component and a random noise component. A suboptimal linear estimator 

structure is used so as to obtain estimates which are relatively 

insensitive to errors in the assumed model of the signal dynamical 

characteristics. The uniqueness of the technique to be developed is in 

the method used to combine all available measurement data in such a way 

that errors due to an inaccurate signal model do not accumulate. 

Subject to the constraints imposed by the structure of the estimator 

and the unbiased property imposed on the estimate, the estimator 

variables are chosen to minimize mean-square estimation error. 
. • • • • • • . ' • , • . . . • • 

Signals and measurements having the assumed properties arise in 

controls and communications applications. For example, the trajectory 

of an airborne vehicle has a deterministic nature which may be altered 

by random noise forcing functions or disturbances. Discrete time radar 

measurements of such a trajectory contain an additional random noise 

component due to the limitations of the equipment. The problem then 

may consist of estimating the true position of the vehicle at the time 

of the most regent measurement. 

..-." While methods exist for optimally combining all past measurement 
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data so as to give estimates which minimize mean-square error for a 

large class of signals, the additional consideration of the sensitivity 

of the estimates .to errors in the assumed model of the nonrandom com

ponent of the signal may be very important. In fact, in the presence 

of errors in the signal dynamical model, a suboptimal method of com

puting estimates can give considerably improved performance over the 

theoretically optimum method for the model used. The errors in the 

signal dynamical model may be of an unknown nature or may be intentional 

inaccuracies imposed to reduce the complexity of the model. 

Statement of the Problem 

The signal estimation problem consists of determining methods 

for combining measurements to obtain an estimate of the desired signal 

in a way that will extremize some criterion of effectiveness, or cost 

function. The estimate computed is an estimate of the signal at the 

time of the most recent measurement. In addition to cost function 
• . . ' • * . " ' • • • ' . ' 

minimization, other constraints may be imposed on the estimator in order 

to satisfy, certain performance criteria, 

Various types of discrete estimators differ primarily with 

respect to four initial assumptions: the model used by the estimator 

for the structure of the signal generator, information assumed known 

about the statistics of noise sources in the signal and measurement 

models, the cost function to be minimized, and assumptions or con

straints on the; structure of the estimator. An estimator which is 

optimum with respect to one combination of these four initial assump

tions is not in general optimum with respect to any other combination. 
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The class of signals considered in this dissertation consists of 

signals which contain the sum of a deterministic, or nonrandom, com

ponent and a random noise component. The nonrandom component is 

assumed -to be expressible as an unknown linear combination of known 

functions of time, as follows: 

x(t) - ajpjt) + r(t) (1.1) 

where a is an n-vector of unknown coefficients j p_(t) is an n-vector of 

known functions of time, and r(t) is the random noise component pf the 

signal x(t), The p(t) vector of time functions constitutes the model 

of the dynamic characteristics of the signal. Measurements are assumed 

to consist of discrete samples of the signal with additive measurement 

noise, as follows: 

y(kT) = x(kT) + v(kT) (1.2) 

where T is the sample period, k is the sample number,' and v(kT) is 

random measurement noise, It is assumed that the autocorrelation func

tions and the cross-correlation function of r(t) and v(t) are known at 

the- sampling instants. Stationarity is not a requirement for either 

noise process. 

The cost function used in this study is mean-square estimation 

error taken at the time pf the estimate, so. the problem consists of 

minimizing 
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J(kT) = E{[x(kT) - x(kT)]2} (1.3) 

for each succeeding value of k, where x(kT) is the estimate of x(kT). 

Estimators considered in this dissertation are assumed to be 

linear and realizable, meaning that each estimate is a linear combina

tion of past and present measurements only. It is desirable to include 

the requirement that the estimate is an unbiased estimate of x(kT), so 

that ..• 

E[x(kT) - x(kT)] = 0 (1.4) 

It will be shown that additional constraints on the linear estimator 

structure will lead to an estimation procedure which is less sensitive 

to errors in the;modelof the signal dynamic characteristics than the 

optimum, unbiased, unconstrained linear estimator. 

History of the Problem 

The estimation of a signal imbedded in measurement noise has 

been a subject of research for many years. The most well known of the 

• . i t -
early work is that of Wiener (1) , who derived minimum mean-square error 

continuous filters for smoothing, estimating, and predicting a signal 

in a noisy measurement. Both signal and measurement noise are assumed 

to be sample functions of stationary random processes with both auto

correlation functions and the cross-correlation function known. 

Numbers in parentheses following a citation refer to items in' 
the Bibliography. 
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The resulting estimator is the output of a linear system described by 

its transfer function or impulse response. Wiener's methods have also 

been extended to discrete signal estimations as in Freeman's (2) work. 

The signal estimation problem was solved by state variable 

techniques by Kalman (3) and Kalman and Bucy (4). In the state variable 

formulation the signal is a state vector which is describable as the 

output of a linear system forced by a white noise input. Measurements 

are described by the sum of a linear transformation on the signal state 

vector and a measurement noise vector. The signal noise and measurement 

noise processes are assumed to be independent zero mean white Gaussian 

noise processes with known variance. The state variable formulation can 

be used to describe signals containing both random and nonrandom com

ponents, so the Kalman estimator is applicable to a large class of 

signals. The Kalman estimator for discrete measurements and discrete 

time signals containing a nonrandom component is of primary importance 

in this dissertation, and is discussed in more detail in Chapter II, 

particularly with respect to the sensitivity of the estimates to errors 

in the signal dynamical model. 

Both the Wiener and Kalman estimators are growing memory linear 

estimators, in the sense that as new estimates are generated they are 

expressible as a linear combination of an increasing quantity of 

measurement data. Much research has also been done with finite, fixed 

memory linear estimators which generate estimates expressible as a 

linear combination of measurement data ,taken over a fixed period of 

time up to and including the time at which the estimate is being 

computed. This type of estimator is useful for the estimation of 
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signals containing a nonrandom component because it tends to be less 

sensitive to errors in the model of the nonrandom component than is a 

growing memory estimator. 

A fixed memory linear estimator for the estimation of a signal 

containing a nonrandom component was derived by Zadeh and Ragazzini (5). 

They derived equations for obtaining the transfer function of a fixed 

memory continuous filter which minimizes mean-square error. The filter 

input is continuous and consists of the signal and measurement noise. 

The signal is assumed to consist of the sum of a random noise component 

and a polynomial of known degree with unknown coefficients. Blum (6) 

extended Zadeh and Ragazzini's method to include a nonrandom signal 

component consisting of an unknown linear combination of any finite 

set of known functions of time. With the same signal model as that of 

Zadeh and Ragazzini, Lees (7) and Johnson (8) each extended the 

continuous filter to the discrete measurement case. Blum (9) and 

Hsieh (10) each extended the discrete fixed memory estimator to include 

signals with a nonrandom component consisting of an unknown linear 

combination of any finite set of known, linearly independent, functions 

of time. Each of these solutions to the fixed memory discrete estima

tion problem consists of determining weights for the most recent 

measurement and the measurements contained in the fixed length time 

interval immediately preceding the most recent measurement. The weights 

are chosen to minimize mean-square error in the estimate of the signal 

at the ;time of the most recent measurement. The weights also must 

satisfy constraints imposed by requiring the estimate to be unbiased. 
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Attempts at using fixed memory estimators to estimate signals 

having both random and nonrandom components have not been limited to 

the use of the mean-square error cost function. For example, Johanson 

(11) derived equations for computing the transfer function of a contin

uous fixed memory estimator which minimizes the maximum expected squared 

error. The signal is assumed to consist of the sum of a noise com

ponent and a polynomial of known degree, with a known bound on the 

highest order nonzero derivative of the polynomial. The estimator in 

this method is constrained to be distortionless, meaning that for 

noise-free measurements of a polynomial signal only, the estimate is 

without error. Zahl (12) derived equations for computing weights for a 

fixed memory linear discrete signal estimator which minimizes the maxi

mum expected squared error. In this method, the signal model is the 

sum of a random component and a nonrandom component which is any known 

function of a vector of unknown constants. The vector of unknown con

stants is assumed to be contained in a known set of vectors, which 

could be either a finite or an infinite set. This approach results in 

a quadratic programming problem which generally must be solved by 

iterative methods. 

The linear discrete signal estimators described above, and others 

in the literature, all result in an estimate which is expressible as a 

weighted sum of past and present measurements. The various methods 

mentioned are separated as to growing memory or fixed memory estimator 

structures. This separation is exploited in ^ater chapters of this 

dissertation as a means of comparing sensitivity of various discrete 

estimation techniques to errors in the assumed model of the nonrandom 



characteristic of the signal. Existing approaches to this sensitivity-

problem are discussed in detail in Chapter II. 



CHAPTER II 

OPTIMUM DISCRETE SIGNAL ESTIMATION— 

THE KALMAN ESTIMATOR 

In Chapter I it was stated that Kalman (3) presented a par

ticularly compact solution to the signal estimation problem for a large 

class of signals. This chapter will examine the discrete Kalman 

estimator in more detail. Of particular importance in this disserta

tion is the behavior of the Kalman estimator in the presence of 

inaccuracies in the assumed model of signals having a nonrandom com

ponent. Various techniques for correcting the adverse effects of such 

errors will be presented and discussed. 

The emphasis of this chapter on the Kalman estimator as opposed 

to other estimation techniques is warranted for several reasons. 

First, the Kalman estimator minimizes mean-square error for a larger 

class of signals than most methods. Also, state variable formulations 

of discrete signal systems are compact and especially suitable for 

digital signal processing. The assumptions regarding knowledge of 

noise statistics in the Kalman estimator correspond to those of most 

other linear estimators, including the new method presented in this 

dissertation. Finally, since there is only one linear estimate which 

minimizes mean-square error for a given class of signals, the estima^ 

tion error behavior of the Kalman estimator will be the same as the 

error behavior of any other method which minimizes mean-square error 

subject to the same assumptions. 
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The Kalman Estimator Equations 

In the Kalman estimator formulation, the signal to be estimated 

is described recursively by 

x_(kT) = 4>(kT,(k-l)T)x_((k-l)T) + G((k-l)T)u((k-l)T) (2.1) 

where x_(kT) is the signal state vector of dimension n, 4>(kT,(k-l)T) is 

the state transition matrix, G((k-1)T) is a known multiplying matrix, 

u_((k-l)T) is a zero mean white noise process with a known covariance 

matrix, and T is the sampling period. Measurements consist of the sum 

of measurement noise and a linear product of the state vector: 

v_(kT) = H(kT)jc(kT) + v(kT) (2.2) 

where v_(kT) is the measurement vector of dimension m, H(kT) is a known 

measurement matrix, and y_(kT) is zero mean white noise with a known 

covariance matrix. In the remainder of this dissertation, it will be 

assumed that the sampling period is normalized to T=l second, sp that 

the signal and measurement models become 

x(k) = $(k,k-l)x(k-l) + G(k-l)u(k-l) (2.3) 

v_(k) = H(k)x(k) + v(k) (2.i+) 

The white noise covariance matrices are given by 



11 

E[u(k)uT(j)] 

R(k), k=j 

ICG] , k^j 

(2.5) 

E[v(k)vT(j)] = 

V(k), k=j 

ICO-] , M j 
(2.6) 

The measurement noise and signal noise are assumed to be uncorrelated, 

so that 

E[Ui(k)vq(j)] = 0 (2.7) 

for all k, j, i, and q. Bryson and Johanson (13) have derived a method 

for handling colored noise processes with the Kalman estimator, but the 

white noise restriction is not important to the problem considered in 

this dissertation. 

The; problem solved by the Kalman estimator consists of deter

mining the linear estimator which minimizes mean-square error P(k) at 

time k, based on measurements up to and including y_(k). Mean-square 

error is minimized for the entire state vector, so 

T-P(k) = E{[x(k) - x(k)][x(k) - x(k)] } = minimum (2.8) 

where x(k) i s the estimate of x_(k). Kalman showed that the estimate 

which minimizes mean-square error for s ignals representable in the form 
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of Equations (2.3, 2.t0, when u_(k) and.v(k) are white Gaussian noise 

processes, can be written in the form 

x(k) = $(k,k-l)^(k-l) (2.9) 

+ K(k)[y_(k) - H(k)$(k,k-l)x>(k-l)] 

The matrix K(k), defined as the "gain" of the estimator, is computed 

-by ;' 

and 

K(k) = P,(k)HT(k)[H(k)P?(k)HT(k) + V(k)]"1 (2.10) 

PMk) = $(k,k-l)P(k-l)$T(k,k-l) (2.11) 

+ G(k-l)R(k-l)GT(k-l) 

P(k) = [I-K(k)H(k)]P,(k)[I-K(k)H(k)]T (2.12) 

t K(k)V(k)KT(k) 

where I is the unit matrix, P'(k) is considered defined by Equation 

(2.11), and the other terms are as previously defined. Equations 

(2.9) through (2.12) constitute the Kalman estimator for the signal 

and measurement models of Equations (2.3) through (2.7). Inspection of 

Equation (2.9) shows that the Kalman estimator generates the optimum, 
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estimate as the sum of two terms. The first term, $(k,k-l)x(k-l)., is 

the best estimate of £(k) based on all measurements prior to y_(k). The 

second term consists of the product of the gain K(k) and the difference 

of the latest measurement yjk) and the best estimate of y_(k) before it 

is obtained. Another way to interpret the estimator is as a weighted 

sum of the latest measurement y_(k) and the previous estimate x_(k-l). 

These interpretations will be discussed in greater detail in Chapter 

III. 

The Kalman estimator must be initialized by using a priori 

information to assign values to x(0) and P(0). These quantities should 

be chosen to be 

x(0) = E[x(0)] (2.13) 

P(0) = E[x(0)xT(0)] (2.14) 

to insure optimum performance. 

A block diagram representation of the signal and estimator equa

tions is shown in Figure 1. This figure illustrates the feedback 

structure of the estimator, the presence of the signal model in the 

estimator, and the presence of the gain, K(k), in the estimator 

structure. 

The Sensitivity Problem 

As shown in Figure 1, the Kalman estimator structure contains a 

model of the signal generating system. When the signal has a nonrandom 



v(k) 

I Signal and Measurement Generator j | __The Kalraan Estimator 

Figure 1. The Kalman Estimator 
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component, that component is described by the state transition matrix, 

<&(k,k~l). Errors in the assumed nature of the signal dynamics are 

therefore characterized by errors in the state transition matrix. The 

sensitivity of ,the estimate to such errors is of primary concern in 

this dissertation. 

Much of the recent literature has been concerned with the causes 

and nature of the Kalman estimator sensitivity problem. It is generally 

known that the actual estimation error, or the actual error variance, 

can diverge when an inaccurate state transition matrix is used in the 

Kalman estimator equations. Fagin (14) has determined expressions for 

the actual error variance resulting when an inaccurate state transition 

matrix is used in the Kalman estimator equations. Griffin and Sage (15) 

have derived algorithms for computing sensitivity coefficients assocî -

ated with errors in the state transition matrix. Similar expressions 

were derived by Price (16), who included sufficiency conditions for 

uniform asymptotic stability in the large of the actual error covariance 

matrix. These contributions are useful for analyzing the behavior of 

the estimate when an approximation to a known state transition matrix 

property is used, but they do not give any alternative estimation 

techniques to use in the presence of unknown errors in the signal 

dynamical model. 

Error divergence in the Kalman estimator can be related to the 

behavior of the computed error covariance P(k) and the estimator gain 

K(k). For signals which contain no random noise (u(k)=£ and R(k)=0), 

the gain and the computed error covariance both tend to vanish as k 

gets large. 0'Donnell(17) has proven this for scalar signals and 
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Sorenson (18) has derived sufficiency conditions for the vanishing of 

the gain and computed error covariance matrix. The vanishing of the 

gain matrix means that new measurements are ignored in favor of the 

past estimates. After a large number of noisy measurements of a 

deterministic signal (no signal noise component), the estimator has 

effectively matched the data with the assumed model and therefore 

computes each new estimate by using only the preceding estimate and 

the assumed state transition matrix. This behavior corresponds to 

open loop operation in the block diagram of Figure 1, as the feedback 

loop has no effect when the gain vanishes. Since the gain and the 

computed error covariance are proportional, the vanishing of the gain 

corresponds to the fact that after a large number of noisy samples 

of a noiseless signal the error covariance computed using the assumed 

model becomes arbitrarily small, Therefore, the estimator can be 

computing estimates having a computed error covariance which decreases 

with time while the actual error covariance is diverging. 

The literature contains many examples of.the behavior of the 

Kalman estimator in, the presence of an inaccurate signal dynamical 

model. Schlee, Standish, and Toda(19) showed that error divergence 

can occur in a Kalman estimator used for autonomous navigation using 

known landmark tracking in a low earth orbit. The error sources which 

they showed can cause error divergence are small), errors in drag 

acceleration and computational errors due to finite word length computer 

computations. Brogai* and LeMay (?0) also illustrated error divergence 

in a similar orbit navigation system. Error divergence can also result 

when ground radar range measurements of an earth orbit trajectory are : 



17 

processed with an inaccurate model. Jazwiriski (21) showed tha t er ror 

divergence can occur in th i s problem due to small errors in the assumed 

gravity constant. 

To i l l u s t r a t e e r ror divergence in a Kalman est imator , consider 

the problem of estimating a nonrandom signal having the form 

x ( t ) = 'a + at + a3t4 (2.15) 

where a . , a«» and a» are unknown constants. Discrete measurements have 
1 Z <$ 

the form 

y(k) = x(k) + v(k) (2.16) 

where v(k) is a white Qaussian noise sequence with unit variance. The 

signal of Equation (2.15) may represent the range of an airborne vehicle 

having constant acceleration. If discrete time state variables are 

defined by x (k) = x(k), x (k) = x (k), x^(k) = x1(k), then the 

accurate model for the Kalman estimator would be 

x(k+l) = 

•1 1 h 

0 1 1 

0 0 1 

x(k) (2.17) 

y_(k) = [1 0 0] x(k) + v(k) (2.18) 

This model used in the Kalman estimator equations would result in the 
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minimum mean-square error estimate of x (k ) . Now suppose tha t the 

s ignal of Equat ion(2.15) i s modeled by assuming tha t x(k) i s a poly

nomial s ignal having constant ve loci ty : 

x . ( t ) = cT + c_t (2.19) 
m 1 2 

where x ( t ) i s the assumed model for x ( t ) , and c-. and c_ are unknown m i i 

constants . This model has a s t a t e variable formulation given by 

x j k + l ) = 
—TO 

1 1 

0 1 
x (k) (2.20) 
—m 

Figure 2 i l l u s t r a t e s the error divergence resu l t ing from the use of the 

model of Equations (2,20, 2.16) for the signal and measurement of 

Equations (2.15* 2.16). For c l a r i t y , only every tenth error value i s 

shown on the curve. The constants used to generate the s ignal for 

Figure 2 a r e a , = 10«0» a = -0 .16 , and a . = 0.0008, so tha t x(k) i s a 

parabolic arc of magnitude ten at k = 6 and k•= 200, with a minimum 

value of two at k = 100. 

As another example of the Kalman estimator behavior, consider 

the problem of estimating the a l t i tude of an object re-enter ing the 

e a r t h ' s atmosphere. Measurements consist of noisy s lant range.radar 

outputs as shown in Figure 3 . 



Estimation 

Error 

= ^(lO-x^k) 

Sample Number, k 

Figure 2. Kalman Estimator Error, Second Degree Polynomial Signal 
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Figure 3. Configuration for Re-entry Tracking Problem 

The t ra jec tory i s described by a nonlinear s ta te variable d i f fe ren t i a l 

equation of the form 

x ( t ) = f ( x ( t ) ) (2.21) 

where 

x ( t ) = 

xx(ty 

x 2 ( t ) 

^3 ( t i 

a l t i tude (feet) 

velocity (feet/second) 

a. constant b a l l i s t i c parameter, 

( 2 .22 ) 

and 

f ( x ( t ) ) = 

- x 2 ( t ) " 
0 -yx ( t ) 

X2 ( t ) x 3 ( t )e X (2 .23 ) 

For purposes of simulation, the drag constant y i s chosen to be 0.000050 
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xCO) • = 

300,000 

20,000 

0.001 

(2.24) 

Radar range measurements are taken each second, so 

y_(k) = £(x(k)) + v(k) (2.25) 

where in this example g(x(k)-).= r(k) =/l010 + x^(k) and v(k) is white 

i+ 2 
noise with variance V(k) =10 feet . The resulting altitude and range 

are shown in Figure 4. The above model and numbers coincide with those 

used by Athans, Wishner, and Bertolini (22) in their recent contribution 

to the application of the Kalman estimator to nonlinear signal estima

tion. They showed that the inclusion of second order as well as first 

order terms in a Taylor expansion linearization of a nonlinear estima

tion problem could result in estimates which are better than those 

obtained using only the first order terms. They were not concerned 

with the.sensitivity problem being considered in this dissertation. 

In the absence of accurate information about the model of 

Equation (2.23)j one approach to the altitude estimation problem might 

be to apply a Kalman estimator by assuming that the range variable 

r(k) is a second degree polynomial with unknown coefficients: 

r (k) = a.+ a.k + aQk
2 (2*26) 

m 1 2 3 
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where the subscript m indicates that Equation (2.26) is the assumed 

model for r(k). Then the Kalman estimator, using the transition matrix 

of Equation (2.17), with r (k), r (k), and r (k) as the state variables, H m m m 

would generate estimates r (k) of r (k). From these estimates, the 
^ m m 

a l t i tude could then be estimated by 

^(k) = fc_(k)l2 - 1G10 (2.27) 
m 

The resulting error diverges, as shown in Figure 5. For clarity, the 

error values are shown for even sample numbers only. The initial 

estimate used to obtain the data for Figure 5 was accurate, so the 

divergence results because of the inaccurate model of the dynamics of 

the .range variable. 

If the accurate model of Equations (2.21 through 2.25) is known, 

the accurate model can be used in a variation of the Kalman estimator. 

This method, common in the literature, is discussed by Sorenson (25), 

Schmidt (?'+), Athans (22), and others. The signal and measurement are 

first linearized for small variations by taking only the first order 

terms in a Taylor series expansion. The variations are then,described 

by ' 

6x(t) = A6x(t) (2.28) 

6v_(t) = H6x_(t) + v(t) (2.29) 

with 6x(t) and 6y(t) defined by 
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6x(t) = x(t) - x (t) 
— — —o 

(2.30) 

6£(t) = v_(t) - g(x (t)) (2.31) 

A and H are found from Equations (2.21, 2.25) by 

af'(x) 
A = 

8x 
x=x 
-»- —o 

(2.32) 

8g(x) 
H = 

8x 
x=x 

o 

(2.33) 

where x is,the value of the reference trajectory. In the case of 

estimation, x, is the most recent estimate, of the state vector. To 

apply the discrete Kalman estimator technique, Equations (2.28, 2.29) 

must be written in terms of their equivalent discrete system: 

6x(k) = $(k,k-l)Sx(k-l) (2.3*0 

6^(k) = H(k)6x(k) + v(k) (2.35) 

Once this is accomplished, a modification of the Kalman estimator is 

applied by computing the estimate of 6x(k) by 

6x(k) = 6x_f(k) + K(k)[6y_(k) - H(k) 6x'(k)] (2.36) 
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where jSx'(k) is the estimate of 6x(k) obtained from Sx(k-1) by 

numerically integrating Equation (2.28). Comparison of Equation (2.36) 

with Equation (2.9) shows that j>x.'(k) merely replaces $(k,k~l) 6x(k-l) 

as the estimate of frx(k) obtained without the use of the measurement 

yjk). The gain K(k) in Equation (2.36) is computed by Equations (2.10, 

2.11, 2.12),'where 'R(k)=0 and $(k,k-l) and H(k)'are the discrete ver

sions of Equations (2.32, 2.33). The estimate of the signal x_(k) is 

obtained from 6x(k) by 

x(k) = 6x(k) + x (k) (2,37) 

where x is the reference trajectory value. In the: estimation problem 

x is not known exactly but is replaced by the best estimate of ?c(k) 

prior to receiving yjk). This best estimate is obtained by integrating 

Equation (2.21) initialized by x(k-l). This technique applied to non

linear signals gives excellent results when an accurate model is known 

and the signal variations are adequately small between samples so that 

Equations (2.28, 2.29) are good approximations. Athans (22) illustrated 

the behavior of this method with the re-entry body tracking problem. 

The sensitivity of this method to errors in the nonlinear signal model, 

which corresponds to errors in the linearized state transition matrix, 

can be illustrated by examining the altitude error behavior resulting 

when the drag constant is inaccurate. Figure 6 illustrates the altitude 

error behavior when the drag constant used by the Kalman estimator is 

in error by 10 per cent of the actual value. For clarity, the error 

values are shown for even samples only. While the error does not 
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it 

diverge in this case, a considerable bias is present in the estimate 

and this bias is not detectable by inspection of the estimator equa

tions. * 

Modifications of the Kalman Estimator 

The examples discussed above serve to point out some results of 

the sensitivity problems encountered in the application of the Kalman 

estimator. Many of the recent publications on the sensitivity problem 

have suggested modifications of the Kalman estimator intended to make 

it less sensitive to errors in the signal dynamical model. One of the 

most common of these methods, as presented in Sorenson (23) and Schmidt 

(24-) for example, is the method of state augmentation. This method 

consists of including unknown parameters in the state vector so that 

they are estimated along with the desired signal. The augmented system 

will have the same form as Equations (2.3 ,2.4) but the state vector 

will have a larger number of terms. The Kalman estimation equations 

retain the form of Equations (2.9)through (2.12), but the augmented 

estimate includes estimates of the unknown parameters. In order to use 

this method, the state transition properties for the unknown parameters 

must be known. 

A method which is,similar to the state augmentation method is 

given by;Schmidt (24). In this method the state vector to be estimated 

and the measurements are described by „ 

x(k) =.*(k,k-l)x(k-r) + U(k,k-l)u(k-l) (2.38) 
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v_(k) = H(k)x(k) + F(k)u(k) + v(k) (2.39) 

where u(k) is a vector of unknown parameters described by; 

u(k) = ̂ (kjk-DuXk-l) (2.40) 

v(k) is white measurement noise with known covariance matrix V(k)* and 

• (k-jk-l')-,: U(k,k-1), H(k), F(k), and ^(kjk-l) are known matrices. This 

method has an advantage over the state augmentation method in that the 

unknown parameters are not estimated. The state vector estimate is 

computed by 

fc(k) = <Kk,k-l)xXk-l) + K(k)[̂ (k.)--H(k)*(k,k-l)xi(k-l)]̂ -(2..'+l> 

which is the same as Equation (2.9). To compute the gain K(k), first 

define the following matrices: 

P(k) = E{[x(k) - x(k)][x(k) - x(k)]T} (2.42) 

C(k) = E{[x(k) - x(k)]uT(k)} (2,43) 

D(k) = E[u(k)uT(k)] (2.44) 

The gain is then computed by 



K(k) = CP«(k)HT(k) + C'(k)FT(k)][H(k)P»(k)HT(k) 

+ V(k) + F(k)D(k)FT(k) + H(k)C »(k )FT(k ) 

+ F(k)CfT(k)HT(k)] 

where P!(k) and C'(k) are defined by 

C'(k) * *(k,k-l)C(k-l)H'T(kjk-l.) 

+ U(k,k-l)D(k-l)¥T(k,k-l) 

P'(k) = *(k,k-l)P(k-.l)*T(k,k-l) 

+ $(k,k-l)C(k-l)UT(k,k-l) 

Vu(k,k-l)CT(k-l)$T(k,k-l) 

+ U(k9k-l)D(k-l)U
T(k,k-l) 

and P(k), C(k), and D(k) are updated for the next sample 

P(k) = [I-K(k)H(k)] Pf(k)-K(k)F(k)Cf(k) 

C (k) = [I-K(k )H(k) ] C ' (k )-K(k )F(k )D(k) 
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D(k) = ̂ (k.k-DDCk-D^Ck.k-l) (2.50) 

Another approach to the problem of estimating signals by using 

an inaccurate state transition matrix was presented by Neal (25). In 

his method, the actual signal and measurement have the form 

x(k) = [*(k,k-l) + 6$(k,k-l)] x(k-l) + u(k-l) (2.51) 

y_(k) = H(k)x_(k) (2.52) 

where u_(k) is a white noise process having known covariance matrix 

R(k). The model x (k) assumed for the signal is 
—m • o 

x (k) = *(k,k-l)x (k-l) + u(k-l) (2.53) 
—m —m — 

and the estimate has the form 

x(k) = $(k,k-l)x(k-l) + K(k)[y_(k) - H(k)*(ksk-l)x.(k-l.)3 (2.54) 

This is the form of the Kalman estimator obtained by using $(k,k-l) as 

an approximation to the actual transition matrix $(k,k-l) + 6<&(k,k-l). 

Neal presented equations for computing the gain K(k) in Equation -(2,5*0 

in such a way that the resulting estimate is closer to the optimum 

estimate than that which would be obtained by using the mode± of Equa

tion (2.53) in the Kalman estimator equations. This procedure is 

equivalent to making the signal noise covariance R(k) larger than its 
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actual• value, a technique to be described below. Neal's method and the 

other modifications discussed above all require that the sources of 

error in the signal dynamical model be known and have a known model. 

Therefore, these models do not represent useful modifications to the 

Kalman estimator applied to signals with an unknown model or unknown 

error source behavior. 

A modification of the Kalman estimator which does not assume 

knowledge of all error sources was given by Schmidt (26). This method? 

referred to here as the e-method, has the effect of preventing the 

estimator gain and error covariance matrices, from losing numerical 

significance. The Kalman estimator for a noiseless signal can be 

written in the form 

x(k) = $(k,k-l)x(k-l) + Ax(k) (2.55) 

where 

Ax(k) - P'(k)HT(k>[H(k)P'(k)HT(k) + VXk);-]"1'.' (2.56) 

Cy_(k) - H(k) $(k,k-l)x(k-l)] 

The terms in the above equations are the same as those in Equations 

(2.9, 2,10). Rather than using Equation (2.56), the e-method computes 

AxXk) as the sum of Ax.(k) and Ax_(k), where 

Ax1(k) = P'(k)H
T(k)[H(k)P'(k)HT(k) + V(k)]"1 (2.57). 
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[yjk) - H(k)$(k,k-l)x(k-l)] 

A£2(k) = eH
T(k)[H(k)P,(k)HT(k) + V(k)]"1 (2.58) 

[y_(k) - H(k) <Kk,k-l)x(k-l)] 

The Ax_ (k) component is the same as the Ax_(k) computed for the Kalman 

estimator and the Ax9(k) component is proportional to the gain for a 

Kalman estimator for which no a priori information is available. The 

estimator computed by the e-method can then be written 

x(k) = 4(k.,k-l)x(k-l) + [P,(k)HT(k) (2.59) 

+ eHT(k)][H(k)PV(k)HT(k) 

+ V(k)]"1 [v_(k)"- H(k) $(k,k-l)x(k-l)] 

The equations for updating the P'(k) matrix become 

P'(k) = $(k,k-l)P(k-l) $T(k,k-l) (2.60) 

P(k) = P'(k) - P,(k)HT(k)[H(k)P,(k)HT(k) (2.61) 

+ V(k)]"1 H(k)P'(k) 

+ £2[H(k)P'(k)HT(k) + V(k)]"1 HT(k)H(k) 
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where P(k) i s def ined as in Equation ( 2 . 8 ) . For t he case of e=0, t he 

above equa t ions can be shown t o b e . e q u i v a l e n t t o the Kalman e s t i m a t o r 

of Equations ( 2 . 9 ) through (2 .12 ) with R(k) = [ 0 ] (no s i g n a l n o i s e ) . 

The e term in Equation (2 .61) has the e f f e c t of i n c r e a s i n g t h e e igen 

va lues of P(k) over t h e i r optimum v a l u e s . The value of e would be a 

choice of the use r of the e-method. If e were chosen t o be NV(k), then 

N r e p r e s e n t s the f r a c t i o n of the va r i ance of an i n d i v i d u a l measurement 

wi th in which one can,expect t o e s t ima te the s i g n a l a f t e r a very l a rge 

number of measurements. The advantage of the e-method i s t h a t . i t al lows 

the use of a bound on accep tab le accuracy computed by the e s t i m a t o r . 

The va r i ance in the e s t ima te of [ H ( k ) x ( k ) ] , given by 

E{[H(k)x(k) - H(k)k(k) ] [H(k)x(k) - H(k)x(k) ] T } (2 .62) 

= H(k)P(k)HT(k) 

has the p rope r ty t h a t i n the l i m i t of an i n f i n i t e number of measurements 

the e-method g ives 

l im[H(k)P(k)H T (k)] = e ' (2 .63) 
k-*» 

i f the model i s a c c u r a t e . This l i m i t would be zero f o r the Kalman 

e s t i m a t o r app l ied t o a n o i s e l e s s s i g n a l . The e-method has the e f f e c t 

of keeping the g a i n , [P*(k)HT(k) + eH T (k) ] [H(k)P ' (k)H T (k) + V ( . k ) ] " 1 , ' 

nonzero r e g a r d l e s s of how long measurements are t a k e n . Since t h i s 

means t h a t new measurements w i l l never be ignored , the e-method i s l e s s 
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sensitive to dynamical model errors than;is the Kalman estimator. 

However, Schmidt has shown that an inaccurate transition matrix used 

with the e-method can result in a steady-state bias when the Kalman 

estimator would diverge. 

Any modification of the Kalman estimator which preserves the 

form of Equation (2.9) and produces a gain or computed error covariance 

larger than the optimum values results in an estimate which is less 

sensitive to modeling errors than is the Kalman estimator. As mentioned 

above, the e-method:computes a gain larger than that computed by the 

Kalman estimator equations. Other methods of computing larger than 

optimum gains have also been used. Schmidt (26), Schlee (19), and 

Brogan (20) each show that an effective modification of the Kalman 

estimator equations is to multiply the diagonal terms of the error 

covariance matrix by (1 + e) after each computation of P(k), where e 

is chosen by the user of the method. This technique tends,to keep 

P(k) nonnegative definite while making the gain larger than the 

optimum. Another method is to impose predetermined lower bounds on 

the gain or the diagonal terms of the error covariance matrix. 

A common method of keeping the estimator gain from vanishing is 

to include in the. signal model a noise component which does not 

actually exist, or increase an existing signal noise covariance matrix. 

Inspection of Equations (2.11, 2.12) verifies that this procedure will 

increase the eigenvalues of the computed error.covariance matrix and 

therefore increase the gain. The choice of the artificial signal 

noise covariance matrix can be made experimentally by simulating the 
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types of signals expected, as discussed by Brogan (20) and Neal (25). 

The technique of introducing an artificial signal noise component can 

be related to the magnitude of estimation error expected. To illustrate 

this relationship, first.combine Equations (2.11) and (2.12) to obtain 

P(k) = [I-K(k)H(k)3 <&(k,k-l)P(k-l) $T(k ,k-l)[I~K(k)H(k)]T (2.64) 

+ [I-K(k)H(k)] G(k-l)R(k-l)GT(k-l)[I-K(k)H(k)]T 

+ K(k)V(k)KT(k) 

Suppose that in computing the $(k ,k-l)x_(k~l) term in Equation (2.9), an 

error is introduced. This error is described by a zero mean process 

n. , so the actual $(k9k-l)x(k-l) term is replaced by $(k 9k-l)x(k-l) + 

n . The estimate computed using the Kalman estimator equations then 

becomes 

x(k) = $(k,k-l)x_(k-l) (2.65) 

+ K(k)[v_(k) - <Kk,k-l)H(k)£(k-l)] 

+ [I - K(k)H(k)]n 

The error covariance resulting from this estimate is given by 

P(k) =.E{[x(k) - x(k)][x(k) - x(k)]T} (2.66) 
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Assuming that n is independent of x_(k-l) and y_(k), the error covariance 
—x 

resulting from the estimate of Equation (2.65) becomes 

P(k) = [I - K(k)H(k)] $(k,k-l)P(k-l) $T(k,k-l)[I - K(k)H(k)]T (2.67) 

+ [I - K(k)H(k)] R [I - K(k)H(k)]T 

+ K(k)V(k)KT(k) 

where R is the covariance matrix of the n noise process. Comparison 

of Equation (2.67) with Equation (2.64) shows that R contributes to 

the error covariance matrix in the same manner as the covariance of a 

signal noise component. The terms in R can be chosen by simulation or 

by a knowledge of the round-off error in the computing system. 

An additional method for preventing error divergence in the 

Kalman estimator is to "reset" the estimator before the error becomes 

too large. Such a method was proposed by Jazwinski (21). His method 

consists of using the Kalman estimator for 2N samples, then recomputing 

new initial conditions based on the last N measurements, where N is a 

fixed integer. This technique results in a finite memory estimator 

whose memory varies from N to 2N. The error resulting from the use of 

this method will remain relatively small if the assumed signal model 

is an adequate approximation to the actual signal over time periods of 

2N samples. Data collected more than 2N samples in the past is ignored. 

It is evident from the above discussion that the designer of a 

signal estimator has a wide selection of available modifications to the 
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Kalman estimator. Each of the techniques available will result in a 

suboptimal estimator which is less sensitive than the Kalman estimator 

to errors in the signal dynamical model. Chapter III will contain a 

useful interpretation of the Kalman estimator, which will imply an 

alternative signal modeling technique. Comparison of the structure and 

modeling techniques available for fixed memory estimators and the 

Kalman estimator will lay the framework for a new estimation technique 

presented in Chapter IV. 
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CHAPTER III 

INTERPRETATIONS OF DISCRETE SIGNAL ESTIMATION 

In Chapter II the Kalman estimator was discussed in terms of its 

sensitivity to errors in the model of the signal dynamics, and various 

techniques for modifying the estimator were described. In this chapter 

the Kalman estimator will be interpreted as a curve fitting algorithm 

which minimizes a deterministic least squares cost function. In addi

tion to providing more insight into the sensitivity problem discussed 

in the previous chapter, the curve fitting interpretation verifies that 

the Kalman<estimator equations represent a computational simplification 

of a growing memory estimator which computes estimates which are 

expressible as weighted sums of all available measurements. The compu

tational simplification is a result of the recursive signal model used 

in the Kalman estimator equations. The curve fitting interpretation of 

the Kalman estimator also serves as motivation for the use of an 

alternative signal model presented in this chapter. The alternative 

signal model will be shown to result in computational simplicity when; 

a fixed memory estimator is formulated. It will be shown that the fixed 

memory estimator using the alternative signal model is also interpret-

able as a least squares curve fitting procedure, but with the least 

squares cost function depending only on errors at sampling instants 

contained in a time interval of fixed length. The curve fitting 

interpretations of the Kalman estimator and the fixed memory estimator 
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will be shown to imply an advantage of the fixed memory estimator in 

its relative insensitivity to errors in the signal model. 

The results of this chapter will be used in Chapter IV to postu>-

late an estimator which will be shown to have properties which represent 

the desirable features of the Kalman and fixed memory estimators. 

Least Squares Curve Fitting and the Kalman Estimator 

As described in Chapter II, the Kalman„estimator minimizes mean-

square error when the signal and measurement are described by Equations 

(2.3) and (2.4) and the noise processes are white and Gaussian. When 

the signal is deterministic, so that u_(k)E0_ in Equation (2.3), the 

Kalman estimator is also obtained by minimizing a deterministic least 

squares cost function rather than mean-square error. The Kalman 

estimator is therefore interpretable as a curve fitting algorithm. 

This relationship was proven by Sage and Masters (27), and a different 

proof is given below, 

Consider a dynamic signal described by 

x(k) = $(k,k-l)x(k-l) (3.1) 

with discrete measurements given by 

v_(k) = H(k)x(k) + v(k), k=G,l,2,... (3.2) 

where y_(k) is white noise with covariance matrix V(k). The problem is . 

to compute a linear estimate x_(k) which minimizes the cost function 

given by 
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X.,-1 J(k) = Iv_T(k) - HT(k)x(k)]
x VT"(k)[v_T(k) - HT(k)x(k)] (3.3) 

This cost function is a weighted sum of the squares of deviations 

between all past measurements and the estimates of the measurements. 

The terms in J(k) are defined by 

£T(k) = 

2.(0) 

2.(1) 
1(2) 
• 
• 
• 

pk)_ 

(3.4) 

HT(k) = 

H(l)*(l,kT 

H(2)*(2,k) 

H(3)*(3-,k) 

H(k)$(k,k) 

(3.5) 

where x_(j ) and v_ (k) can be written as 

x('j) = $(j,k)x(k) (3.6) 

v_T(k) = HT(k)x(k) + vT(k') (3.7) 

and v_(k) is defined by 



vT(k) = 

v(0) 

v(l) 

v(2) 

v(k) 

(3.8) 

with covariance matrix V"T(k) given by 

vT(k) = 

V(0) 0 0 ••• 0 

0 V(l) 0 ••• '' 0 

0 0 V(k) 

(3.9) 

To minimize J(k), set • = 0_, giving 
9x(k) 

0_ - -2Hj(k)V^1(k)[y_T(k) - HT(k)x(k)J (3.10) 

which gives as the estimate 

£(k) = [H^k^I^k)^ (k)]"1 Ĥ (k)v:1(k)v_ (k) (3.11) 

In this form, the estimate is expressed as a weighted sum of all 

measurement data. To obtain a recursive form for the estimate, con

sider the addition of a new measurement, y_(k+l). Equation (3.7) can 

then be replaced by 
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ITqo" 
£Tic+I"J 

H T (k)*(k ,k+l ) 

H(k+1) 
x(k+l ) + 

v T (k ) 

v (k+ l ) 
(3 .12) 

Then the e s t ima te of x_(k+l), given by Equation (3 .11) eva lua ted a t 

(k+1) becomes 

x(k+l ) = 
H T (k)*(k ,k+l ) 

H(k+1) 

V T ( k ) | 0 
•i i 

- i - l 

r — " 
0 jV(k+l) 

H T (k )$(k ,k+l ) 

H(k+1) 

- 1 

(3 .13) 

HT (k)$(k,k+lT 

H(k+l) 

V T ( k ) | 0 
T ~ 

0 |V(k+l) 

V -T ( k ) 

yjk+ll 

Equation (3*13.)' can be reduced to 

x(k+l) = [«T(k,k+l).H^(k)V'1(k')Hir'(k)*(k.,k+i) (3.14) 

+ HT'(k+l')V"1(k+l)H(k+l)]"1 

C$T(kJk+l)H^(k)V^
1(k)Y_T(k) 

+ HT(k+I)V~1(k+l)y_(k+l)] 

A property of the state transition matrix is that $(k,k+l) = • *'. (k+l,k), 

so that x(k+l) can also be written 



x(k+l) = F(k)[$T (k+I,k)H^(k)V^1(k)vJr(k) (3.15) 

+ HT(k+l)V""1(k+l)Y_(k+l)] 

where F(k) is defined by 

F(k) = [$T '(k+l,k)Hj(k)V^1-(k)HT(k)*
,1(k+l,k-) (3.16) 

+ HT(k-l-l)V""1(k+l)H(k+l)]"1 

I t i s now use fu l t o apply the fo l lowing Matrix Inve r s ion Lemma (27) : 

(A"1 + B ' V ^ B ) ' 1 = A - ABT(BABT + Cf^BA (3 .17) 

After apply ing the Matrix Invers ion Lemma t o Equation (3 .16) , F(k) 

becomes 

F(k) = $ (k t l , k ) [H^(k )V~ 1 (k )H T (k ) ] V ( k + l , k ) (3 .18) 

$ (k+ l ,k ) [Hj (k )V^ 1 (k )H T (k ) ]~ 1 $ T (k+ l ,k ) 

HT(k+l) { H ( k + l ) $ ( k + l , k ) [ H ^ ( k ) V ^ 1 ( k ) H T ( k ) r 1 

$ T (k+l ,k )H T (k+l ) •+ .VCk+l)}""1 H(k+l )*(k+i ,k ) 

[H^(k)V~ 1 (k)H T (k)]~ 1 * T ( k + l , k ) 
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Now define two new matrices, P(k) and P'(k+1), by 

P(k) = [H^(k)V^1(k)HT(k)]"
1 (3.19) 

P'(k+1) = $(k+l,k)P(k)$T(k+l>k) (3.20) 

It will be verified below that P(k) and P'(k) are the same as defined 

for the Kalman estimator in Chapter II. Substituting Equations (3.18), 

(3.19), and (3.20) in Equation (3.15) and rearranging gives 

£(k+l) = $(k+l,k)CH^(k)V^1(k)HT(k)]"
1$T(k+l,k) (3.21) 

$T (k+l,k)H^(k)V^1(k)v_T(k) +-{P«(k+i) 

- P,(k+l)HT(k+l)[H(k+l)P'(k+l)HT(k+l) .+ VXk+l)]"1 

H(k+l)P,(k+l)}HT(k+l)V"1(k+l)v_(k+l) 

{P'(k+l)HT(k+l)[H(k+l)P,(k+l)HT(k+D + V(k+1)]"1 

H(k+l)$(k+l,k)[H^(k)V^1(k)HT(k)]"
1$T(k+l,k) 

$T (k+l,k)H^(k)V^1(k)}v_T(k) 

Using Equation (3.11) to substitute in Equation (3.21) gives 

x(k+l) = *(k+l,k)x(k) + {P'(k+D - Pf(k+l)HT(k+l) (3.22) 



[H(k+l)P 1 (k+l)H T (k+D + VCk+Dl^HCk+DP'Ck+l) 

HT(k+l)V""1(k+l)} y_(k+l) 

- {P ' (k+ l )H T (k+ l ) [H(k+l )P , (k+ l )H T (k+ l ) + VCk+l) ]" 1 

H(k+l )$(k+l ,k )} x(k) 

The coefficient of v_(k+l) in the above equation can be written 

F(k)HT(k+l)V"1(k+l) = P»(k+l)HT(k+l) {V'^k+l) (3. 

- [H(k+l)P'(k+l)HT(k+l) +V(k+1)]"1 

H(k+l)P'(k+l)HT(k+l)V"1(k+l)} 

= P'(k+l)H'i:(k+l)[H(k+l)P,(k+l)HT(k+l) + V(k+1)]" 

Combining Equations ( 3 . 2 2 , 3.23) g ives 

£ ( k + l ) = <3>(k+l,k)j£(k) ( 3 . 

+ {P , (k+ l )H T (k+ l ) [H(k+ l )P t (k+ l )H T (k+D + VCk+l)]"1} 

[y_(k+l) - H(k+l)$(k+l,k)x_(k)] 

Defining the gain as the coefficient of y_(k+l), 
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K(k+1) = P,(k+l)HT(k+l)[H(k+l)P,(ktl)HT(k+l) + V(k+1)] 1 (3.25) 

the estimate becomes 

x(k+l) = <Kk+l,k)x(k) (3.26) 

+ K(k+l)[y_(k+l) - H(k+l)$(k+l,k)£(k)] 

Equations (3.25, 3.26) have the same form as the Kalman estimator, but 

it remains to derive equations for computing P(k) and P'(k+1) recur

sively. By Equation (3.19), and using the results of Equations (3.13 

through 3.16), P(k+1) has the form 

P(k+1) = [$T (k+l,k)P"1(k)$"1(k+l,k) (3.27) 

+ HT(k+l)V(k+l)H(k+l)]""1 

which by the Matrix Inversion Lemma of Equation (3.17) becomes 

P(k+1) = «(k+l,k)P(k)«T(k+l,k). (3.28) 

- $(k+l,k)P(k)$T(k+l,k)HT(k+l) 

[H(k+l)*(k+l,k)P(k)*T(k+l,k)HT(k+l). + VC'k+1)]"1 

H(k+l)$(k+l,k)P(k)$T(k+l,k) 



48 

= P'(k+1) - P,(k+l)HT(k+l)[H(k+l)P,(k+l)HT(k+l) 

+ •V(k+l)]"1H(k+l)P*(k+l) 

where P'(k+1) is defined by Equation (3.20). The matrix P(k+1) can be 

written in a different form by adding and subtracting an additional 

term, as follows: 

P(k+1) = P'(k+1) - P'(k+l)HT(k+l) (3.29) 

CH(k+l)P,(k+l)HT(k+l) + V(k+l)]~1H(k+l)P'(k+l) 

+ P,(k+l)HT(k+l)[H(k+l)PV(k+l)HT(k+l) + V(k+1)]"1 

{[H(k+l)P,(k+l)HT(k+l) + V(k+l)][H(k+l)P,(k+l) 

HT(k+l) + V(ktl)]"1 - 1} H(k+l)P'(k+l) 

= P'(k+1) - K(k+l)H(k+l)P,(k+l) 

+ Ktk+DEHtk+DP' (k+l)HT(k+l)KT(k+l) 

+ V(k+l)KT(k+l) - H(k+l)P'(k+l)] 

[ I - K(k+l)H(k+l)]P'(k+l)[I - K(k+l)H(k+l)]T 

+ K(k+l)V(k+l)KT(k+l) 
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Equations (3.26, 3.25, 3.20, 3.29) constitute a complete recursive 

algorithm for computing the estimate which minimizes the J(k) cost 

function given by Equation (3.3), and this algorithm is identical to 

that of the Kalman estimator of Equations (2.9 through 2.12) for a 

deterministic signal. The equivalence of the Kalman estimator equations 

and Equation (3.11) verifies that the recursive signal model used by the 

Kalman estimator results in recursive estimation equations which compute 

estimates which are expressible as weighted sums of all past measure

ments . 

The P(k) and P'(k+1) matrices defined by Equations (3.19, 3.20) 

can be shown to have the same meaning as in the Kalman;estimator. The 

mean-square error of the estimator in the form of Equation (3.11) is 

given by 

E{[x(k) - £(k)][x(k) - x(k)]T} (3.30) 

'= E[x(k)xT(k)] - {[Ĥ - Ck )V^1(k)HT(k)]"
1 

H^(k)V^(k)} E[Lr(k)x
T(k)]. 

- E[x(k)v^(k)] {V^1(k)HT(k)[H^(k)V^
1(k)HT(k)]"

1} 

+'•{ [H*(k )V^(k )HT(k )]"
1H^(k )V^(k )} 

E[£T(k)y^(k)] {V^
1(k)HT(k)CH^(k)V^

1(k)HT(k)]"
1} 

Using Equation (3.7), E[v_T(k)v^(k)], E[v_T(k)x
T(k)], and E[x(k)Ak)] 
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can be written as 

E[y4,(k)y^(k)] = HT(k)E[x(k)x
T(k)] H^(k) + VT(k) (3.31) 

E[y_T(k)x
T(k)] = HT(k)E[x(k)x

T(k)l (3,32) 

E[x(k)y^(k)] = E[x(k)xT(k)]H!!(k) (3.33) 

Substituting the three above equations in Equation (3.30) and combining 
T ' 

the terms involving E[x(k)x (k)] gives 

E{[x(k)-£(k)][x(k)-x(k)]T} = CH^(k)V^1(k)HT(k)]~
1 (3.34) 

which is the, expression defined as P(k).in Equation (3.19). 

The significance of the P'(k+1) matrix defined in Equation (3.20) 

can be shown by computing the mean-square error of $(k+l,k)>c(k) as an 

estimate of x_(k+l). This mean-square error is given by 

E{[x(k+1) - $(k+l9k)x(k)]Cx(k+l) - $(k+l9k)x(k)]
T} (3.35) 

= $(k+l,k)P(k)$T(k+l,k) 

where the r e su l t i s obtained by replacing x(k+l) by $(k+l ,k)x(k) . 

Comparison of Equations (3.20, 3.35) shows tha t P'(k+1) represents the 

mean-'Square er ror in the estimate of x_(k+l) obtained by using measure

ments through y(k) only. In Equation (3 .35) , i f x(k+l) i s replaced by 
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$(k+l,k)x(k) + G(k)upO, representing a signal with a white noise term 

as treated in Chapter II, then Pf(k+1) would have the same meaning if 

it were defined by 

P'(k+1) = *(k+l,k)P(k.)«T(k+l,k) •+ G(k)R(k)GT(k) (3.36) 

with P(k) defined as the mean-square error of x(k). Comparing; Equation 

(3.36) with Equation (2.11) shows that the least squares curve fitting 

interpretation of the Kalman estimator is also valid when a signal 

noise term is present. 

The above interpretation of the Kalman estimator also provides 

another interpretation of the sensitivity problem discussed in Chapter 

II. The Kalman estimator computes an estimate which represents a 

weighted least squares curve fit of the assumed model to all past data. 

If the model is inaccurate, error divergence can result as the curve 

fit becomes progressively worse as more data is taken. One way to 

avoid error divergence is to use a fixed memory estimator, which com

putes each estimate as a weighted sum of data taken over a fixed period 

of time immediately preceding the most recent measurement. This par

ticular approach is easily implemented by using a signal model which 

has a different form than the model used in the Kalman estimator 

equations. This alternative model is discussed below, and the resulting 

estimator is discussed in terms of a curve fitting interpretation. 
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An Alternative Model Approach 

The state variable representation of a signal is not a unique 

model. The transition matrix and choice of state variables for a 

signal with a nonrandom,component requires some knowledge of the form 

of the signal. This knowledge can also be used to express the signal 

model in other forms. In the particular case of scalar measurements 

being linearly combined to estimate a scalar signal, the following 

model is useful: 

x(k) = a_£_(k) + r(k) (3.37) 

y(k) = x(k) + v(k) (3.38) 

In these equations, x(k) represents the s ignal to be estimated, y(k) i s 

the measurements r (k ) and v(k) are s ignal and measurement noise 

processes, a_ i s an n-vector of unknown constants , 

a = ( 3 . 3 9 ) 

n 

and 
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P_(k) 

P-LOO 

P 2 ( k ) 

P n (k ) 

( 3 .40 ) 

i s a v e c t o r of known func t ions of t i m e , r e p r e s e n t i n g the model of the 

s i g n a l dynamics. In an example in Chapter I I , the Kalman e s t i m a t o r was 

app l i ed t o a s i g n a l of the above form. The s i g n a l , r ep resen ted by 

2 
x(k) = a + a 2 k.+ a_k r equ i r ed the t h r e e - s t a t e Kalman e s t i m a t o r model 

given by Equations ( 2 . 1 7 , 2 . 1 8 ) . 

With t h e model of Equations ( 3 . 3 7 , 3 . 3 8 ) , the e s t ima te of x (k) 

can be w r i t t e n 

x (k ) = c (k)m(k) (3 .41) 

where 

m(k) = 

yOO 

y ( k - i ) 

_y(k-L)_ 

( 3 .42 ) 

i s a v e c t o r of p a s t measurements and 
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c ( k ) •= 

c (k) 
o 

c ^ k ) 

c L ( k ) 

(3 .43 ) 

i s a vector of coefficients to be computed by the estimator equations. 

Then x(k) i s a weighted sum of past measurements, as i s the Kalman 

estimator in the form of Equation (3.11). The parameter L, called the 

"memory" of the est imator , can be e i ther fixed or increasing with time. 

If L increases with time, say L•= k, then the estimator i s a growing 

memory est imator , computing each estimate as a weighted sum of a l l past 

data. If L i s a fixed in teger , then the estimator i s a fixed memory 

estimator which computes each estimate as a weighted sum of data taken 

over a fixed time in te rva l of length L immediately preceding the l a t e s t 

measurement y (k ) . The fixed memory estimator i s often referred to as a 

"moving-window" or "s l id ing-arc" est imator. If the cross-correlat ion 

and autocorrelation functions of r (k) and v(k) are known, then the 

minimum mean-square er ror growing memory estimator must be equivalent 

to the Kalman estimator (with zero a p r io r i information), since both 

would minimize mean-square error under the same assumptions. The fixed 

memory estimator i s a suboptimal s t ruc tu re , so that i t s minimum mean-

square error estimate would have a larger mean-square er ror than the 

Kalman est imator. 

The equations for computing £(k) so as to minimize mean-square 

er ror were derived by Blum (9) . The estimate i s computed by Equation 

(3 .41) , with 
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where 

cOO = Q_1(k) (l.(k) + D(k)[DT(k)Q"1(k)D(k)]"1 (3.44) 

C£(k) - D
T(k)Q"1(k) y(k)]} 

and 

T 
E

T ( k ) 

D(k) * 
£ T ( k - l ) 

• 

£.T(k-L) 

(3.45) 

L(k) = E[r(k)m(k)] = E 

r^(k) + r(k)v(k) 

r(k)r(k-l) + r(k)v(k-l) 

r(k)r(k-L) + r(k)v(k-L) 

(3.46) 

Q(k) = E 

r(k) t v(k) 

r(k-l) + v(k-l) 

r(k-L) + v(k-L) 

r(k) + v(k) 

r(k-l) + v(k-l) 

r(k-L) + v(k-L) 

•-it 

(3.47) 
A 

Equation (3.47) represents a slight extension to Blum's method. 
Blum assumed that the signal,and measurement noise sequences were inde
pendent and stationary, which are not necessary assumptions in the 
above equation. 
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A useful interpretation of,the estimator of Equations (3.41, 

3.44) can be obtained by considering the estimation of a deterministic 

signal. This,requires r(k)HQ, so Equation (3.44) becomes 

£(k) =y"1(k)D(k)[DT(k)V"1(k)D(k)]"1 £(k) (3.48) 

where V(k) is the covariance matrix given by 

V(k) = E 

v(k) . 

v(k-l) 

v(k-L) 

v(k) 

v(k-l) 

v(k-L) 

(3.49) 

The estimate then becomes 

x(k) = £T(k)[DT(k)V"1(k)D(k)]"1 DT(k)V 1(k)m(k). (3.50) 

This estimate can now be related to a curve fitting algorithm for the 

same signal by determining the estimate a(k) of a_ which minimizes the 

weighted least squares cost function 

J(k) = I W35[aT(k)£(k-i) - y_(k-i)]: 

.1=0 1 
(3.51) 

where the ,W. coefficients are weights given to the squares of devia-

T 

tions between measurements y(k-i) and estimates a_ (k)g_(k-i). Equation 

(3.51) can also be written as 
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J(k) = [D(k)a(k) - m(k)] W(k)[D(k)a(k) - m(k)] (3.52) 

where D(k) and m(k) are as previously defined and W(k) is defined by 

W(k) = 

k-1 

k-L 

(3.53) 

Choosing the a{k) which makes — = £ gives 
8a(k) 

a(k) = [DT(k)W(k)D(k)]"1 DT(k)W(k)m(k) (3.54) 

The resulting estimate of x(k) = a_£(k) becomes 

x(k) = £T(k)£(k) = £_T(k)£(k) (3.55) 

£T(k )[DT(k )W(k )D(k) T1 D^Ck )W(k )m(k) 

Comparison of Equations (3.50, 3.55) shows that the minimum mean-square 

er ror estimate and the weighted l eas t squares curve f i t estimate are 

iden t ica l if the leas t squares cost function i s weighted by W(k) = 

- 1 h 
V (k) and v(k) i s a white noise sequence. In t h i s case, W; = 

l / ^E[v 2 (k ) ] . This resu l t corresponds t o that proven earlier, in t h i s 
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chapter for the Kalman estimator. 

The curve fitting interpretation discussed above for the esti

mator of Equation (3.HI) is valid for both the,growing memory estimator 

(L=k) and the fixed memory estimator (Inconstant). As discussed above, 

the growing memory estimator is equivalent to the Kalman estimator with 

no a priori information, and each is interpretable as a curve fitting 

procedure which fits the assumed signal model to all past data in a 

least squares sense. The fixed memory estimator, interpreted as a 

curve fitting technique,. fits the assumed signal model to only those 

measurements contained in a fixed length time interval immediately 

preceding the most recent measurement. In this case the signal model 

is used only over the.latest time interval of length L sample periods, 

and information obtained by measurements more than L samples in the 

past is ignored. The bias resulting in an estimate due to an inaccurate 

signal model is only a function of the accuracy of the model over the 

last L sample periods. Therefore, the fixed memory estimator is not as 

sensitive to errors in the signal model as is the Kalman or growing 

memory estimator. Also, since the fixed memory estimator is computed 

by using fewer measurements than the Kalman or growing memory estimator, 

its resulting mean-square error will be larger than the optimum when 

an accurate signal model is used. 

The curve fitting interpretation of the fixed memory estimator 

illustrates the dependence of the estimator error behavior on the choice 

of the memory length L, The value used for L determines the mean-

square error of the estimates when an accurate signal model is used and 

determines the amount of bias in the estimates when an inaccurate signal 
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model is used. In order to make the estimates relatively insensitive 

to errors in the signal model, the user of the fixed memory estimator 

must choose a value for L so that the assumed model is an adequate 

approximation of the signal over time periods of length ,L sample periods. 

Small values pf L imply less sensitivity to signal modeling errors, at a 

cost in mean-square estimation error over periods of time when the model 

is accurate. 

The conclusions obtained in this chapter will be used in Chapter 

IV to postulate an estimator which will be shown to have mean-square 

error and modeling error sensitivity properties which represent a com

promise between those of the Kalman and fixed memory estimators. That 

is, the estimator will be less sensitive to modeling errors than the 

Kalman estimator, while resulting in smaller mean-square error than the 

fixed memory estimator<when an accurate signal model is used. 
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CHAPTER IV 

THE AUGMENTED MEMORY APPROACH,TO 

DISCRETE SIGNAL ESTIMATION 

Previous chapters have contained discussions of the growing 

memory or Kalman estimator and the fixed memory estimator with respect 

to mean̂ -square error and various interpretations of the sensitivity 

problem. It was pointed out in Chapter III that while the Kalman 

estimator results in minimum mean-square error when an accurate model 

is used, the fixed memory estimator has an advantage in its relative 

insensitivity to signal modeling errors. 

This chapter will present a development of equations for a• difr». ' 

ferent linear discrete estimator, which will be shown to have mean-*-

square error and modeling error sensitivity properties which represent 

a compromise between those of the Kalman and fixed memory estimators. 

Interpretations of the new estimation technique developed in this chap

ter and the numerical results presented in Chapter V will be shown to 

imply that the mean-square error resulting when an accurate model is 

used will be smaller than that of the comparable fixed memory estimator, 

and the estimation error will be relatively insensitive to modeling 

errors when compared with the Kalman estimator. 

The procedure used in this chapter to develop the new estimation 

technique is to first postulate an estimator structure based on intui

tive arguments supported :by the results of the previous chapter. After 
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the estimator equations are developed, the resulting estimator will 

then be interpreted in terms of an equivalent constrained growing 

memory estimator and in terms of the sensitivity of the estimates to 

errors in the signal model. The sensitivity properties of the estimator 

will be interpreted by considering the bias which results in the estî -

mates when an inaccurate signal model is used. 

The Augmented Memory Estimator 

The linear discrete estimator developed below, designated the 

"augmented memory estimator," assumes,a signal model and estimator, 

computational structure similar to that of the fixed memory estimator 

discussed in the previous chapter. The signal and measurement models 

have the form 

x(k) =' a_£(k) + r(k) (4.1) 

y(k) = x(k) + v(k) (4.2) 

where, as for the fixed memory estimator, a_ is an unknown vector of n 

constants and £(k) is a vector of known;* linearly independent, functions 

of time: 

£(k) = 

P^k) 

P2(k) 

Pn(k) 

(4.3) 
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The noise sequences r(k) and v(k) may be zero mean colored noise 

processes with a nonzero cross-correlation function. The noise 

processes are not required to be stationary. It.is assumed that the 

correlation functions defined below are known at all sampling 

instants: 

p(k,j) = E[r(k)r(j)] (4.4) 

cr(k,j) = E[v(k)v(j)] (4.5) 

• (k,j).= E[r(k)v(j)] (4.6) 

One additional assumption must be made on the nature of the correlation 

functions in order to assure that"the augmented memory estimator will 

not require an increasing number of computations as k increases. This 

assumption is that the correlation functions defined by Equations 

(4.4, 4.5, 4.6) are zero when the noise product terms are separated in 

time by more than M. That is, p(k,j), a(k,j), and <f>(k,j) are all zero 

for all (k,j) such that' |k-j| > M. This restriction becomes necessary 

in the derivation of equations given in the Appendix. 

The augmented memory estimator computes an estimate of x(k) by 

x(k) = wT(k)m(k) (4.7) 

where w_(k) is a vector of L + 1 weighting coefficients which must be 

computed, 
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w(k) = 

w (k) 
o 

w1(k) 

wL(k) 

(4.8) 

and in(k) is a vector containing the latest measurement and the last L 

estimates: 

m(k) ̂  

y(k) 

x(k-l) 

x(k-2) 

• 

x(k-L) 

(4-9). 

Equations (4.1, 4.2, 4.7, 4.9) show that with L constant the 

augmented memory estimator uses the signal model and computational 

structure of the fixed memory estimator discussed in Chapter III. The 

important difference is that the m(k) vector of Equation (4.9) contains 

a fixed number of past estimates where the fixed memory estimator used 

past measurements. If past estimates are better statistical approxima

tions to past values of the signal than are past measurements, then the 

augmented memory estimator with an accurate signal model should produce 

estimates having smaller mean-square error than those computed by the 

fixed memory estimator. Also, the computational structure of the aug

mented estimator implies error sensitivity properties comparable to 

those of the fixed memory estimator. The use of past estimates improves 
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the information in the time interval over which the signal model is to 

be used, but the time interval remains fixed in length. At this point 

in the development, these conclusions are based on intuitive arguments. 

Later in this chapter the augmented memory estimator will be inter

preted in greater detail in terms of its structure and sensitivity to 

signal modeling errors. 

The constant parameter Lin Equation (4.9) is analogous to 

thermemory length in the fixed memory estimator, but for the augmented, 

memory estimator L will be defined as the "interval of confidence." 

Later in this chapter, it will be shown that L can be interpreted as 

a parameter which is chosen to represent the number of sample periods 

over which the assumed model can be used with confidence. 

Subject to the assumed estimator structure of Equation (4^7), 

the weighting coefficients w_(k) are chosen so as to minimize mean-

square estimation error defined by 

P(k) = E{[x(k) - x(k)]2} (4.10) 

Ah additional constraint is imposed on the choice of w(k) by requiring 

the resulting estimate to be unbiased,,so that 

E[x(k) - x(k)]•= 0 (4.11) 

This requirement insures that the estimator give perfect estimates of 

the signal when the r(k) and v(k) noise processes are identically zero. 
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Equations for choosing the weighting coefficients which minimize 

P(k) subject to the constraint of Equation (4.11) are derived below. 

Interpretations of the augmented memory estimator will then be pre-

sented to illustrate its properties and compare its structure to that 

of the growing memory and fixed memory estimators. 

Computation of Weighting Coefficients 

Consider first the conditions imposed on the weighting coeffi

cients by the requirement that the estimate be unbiased. Combining 

Equations (4.1, 4.7, 4.11) results in a constraint of the form 

E[wT(k)m(k)] = wT(k)E[m(k)] (4.12) 

where 

= w (k)D(k)a 

= aTDT(k)w(k) 

D(k) £ 

•T 

E.T(k-i) 

£T(k-L) 

(4.13) 

Combining Equations (4.11, 4.12) gives 

aV(k)wCk) = £T£(k) (4.14) 
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Equation (4.14) must be true for any vector ̂ , so the resulting con

straint relation is 

DT(k)w(k) =£(k) (4.15) 

The weight ing c o e f f i c i e n t s w_(k) must be computed so as t o mini

mize the me an--square e r r o r of Equation (4 .10) while s a t i s f y i n g the 

c o n s t r a i n t s Of Equation ( 4 . 1 5 ) . Expanding Equation (4 .10) with x(k) 

and x(k) i n t h e forms given by Equations ( 4 . 1 , 4 .7) r e s u l t s in the 

mean-square e r r o r having the form 

P(k) = wT(k) E[m(k)mT(k)]w(k) (4 .16) 

- 2a_T£(k) E[mT(k)w(k)] 

- 2E[ r (k)m T (k ) ] w(k) + [a i T £(k) ] 2 

+ 2 E [ r ( k ) ] a T £ ( k ) t E [ r 2 ( k ) ] 

Using the assumed properties of the noise process r(k) and the con

straints of Equation (4.15), the terms in Equation (4.16) can be 

written 

wT(k)E[m(k)mT(k)]w(k) = wT(k)D(k)aaTDT(k)w(k) (4.17) 

+ wT(k)S(k)w(k) 



= Ca_T£(k)]2 + wT(k)S(k)w_(k) 
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aT£(k) ECmT(k)w(k)] = CaT£(k)]2 (4.18) 

E[r(k)mT(k)]w(k) = yT(k)w(k) (4.19) 

E[r(k)]a1£(k) = 0 (4.20) 

where S(k) and y(k) are defined by 

S(k) = E 

r.(k') + v(k) 

r(k-l) + n(k-l) 

r(k-2) + n(k-2) 

• • 

r(k-L) + n(k-L) 

r(k) + v(k) 

r(k-lj + n(k-l) 

r(k-2) + n(k-l) 

r(k-L) + n(k-L) 

(4.21) 

Y(k) = E[r(k)m(k)] (4.22) 

and n(j) is defined as the estimation error by 

n(j) = x(j) - x(j) (4.23) 

Substituting Equations (4.17) through (4.20) in Equation (4.16) gives 

P(k) = wT(k)S(k)w(k) - 2xT(k)w(k) + p(k,k) (if. 24) 

In order to minimize P(k) subject to the constraints of Equation, (4.15), 
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the constraints are adjoined to P(k) by a Lagrange multiplier vector 

2A(k), producing a function Pf(k) defined by 

P».(k) = wT(k)S(k)w(k) - 2yT(k)w(k) + p(k9k)
 ; (C.25) 

+ [DT(k)w(k) '* £(k)]T[2Uk)] 

The function P'(k) is minimized with respect to w_(k) by computing the 

w(k) and A(k) which give 

f ^ = £ 

and 

•3£1M= o (4 27) 
3Mk) - ^4.2/; 

Substituting Equation (4.25) in Equations (4.26, 4.27) gives 

S(k)w(k). - [y(k) + D(k)X(k)] = 0 (4.28) 

£(k) - DT(k)w(k) = 0_ (4.29) 

Combining Equations (4.28, 4.29) to eliminate w(k) gives 
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A_(k) = [DT(k)S"*1(k)D(k)r1 [£.(k) (4.30) 

- DT(k)S"1(k) Y(k)] 

Substituting Equation (4.30) for X_(k) in Equation (4.28) gives the , 

desired equation for w_(k): 

w(k) = S_1(k) (x.(k) (4.31) 

+ D(k) CDT(k)S"1(k)D(k)]"1C£(k) 

- DT(k)S"1(k)1(k)]} 

This value of w_(k) is used in Equation (4.7)'to produce the augmented 

memory estimator. 

The above derivation does not include equations for computing 

either S(k) or y(k). Inspection of Equations (4.21, 4.22) shows that 

S(k) and yCk) require correlation terms involving the error n(k-j) 

for j=l,2,...,L. The evaluation of S(k) and ĵ (k) is accomplished by 

a recursive algorithm which computes the necessary error correlation 

terms. This algorithm is derived and related to digital computer 

implementation in the Appendix. The recursive algorithm is entered 

after L measurements have been taken, with the first L measurements 

being considered to be the first L estimates. If measurements start 

with y(0), this means that the recursive algorithm is first used to 

compute x(L), with m(L)9 £(L), and S(L) initialized by 
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m(L) = 

yCL) ~ 

y(L-l) 

b(o) J 

(4.32) 

yCL) = E[r(L)m(L)] = 

p(L,L) + (|>(L,L) 

p(L,L-l) + <|>(L,L-1) 

_g(L,0) + <J>(L,0) _ 

(4.33) 

S(L) = E 

r(L) + v(L) 

r(L-l) + v(L-l) 

• • 

r(0) + v(0) 

r(L) + v(L) 

r(L-l) + v(L-l) 

r(0) + v(0) 

-iT 

(4.34) 

For k > L, the vector in(L) stores the estimates x(k) rather than meas

urements y(k), and the recursive algorithm is used to compute S(k) and 

Y(k). 

The procedure for computing estimates by the augmented memory 

estimator method is summarized by the flow diagram of Figure 7. This 

diagram is especially suitable for implementation of the augmented 

memory estimator by a digital computer program. The necessary equations 

and procedures are referenced on the diagram. 

Interpretations of the Augmented Memory Estimator 

The augmented memory estimator expressed by Equation (4.7) and 

computed by the above procedure insures a fixed number of computations 

after each sample. However, the above representation of the augmented 
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MEASUREMENTS y(k) 
(Equation 4.2) 

no 

COMPUTE S(k) AND J((k) 

(|>ee Appendix) 

UPDATE m(k) 

(Equation 4.9) 

COMPUTE w(k) 

(Equation 4.31) 

COMPUTE x(k) 

(Equation 4.7) 

STORE y(k) 

SET x(k) = y(k) 

UPDATE STORAGE MATRICES 

A(k), B(k), WM(k), VN(k) 

(See Appendix) 

-* x(k) 
for k<L 

INITIALIZE m.(l), jT(L), S(L) 

(Equations 4.32, 4.33, 4.3*0 

INITIALIZE STORAGE MATRICES 

A(L), B(L) , WM(L), VN(L) 
(See Appendix) 

•> x(k) for k*L 

Figure ?• Plow Diagram of the Augmented Memory Estimator 
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memory estimator only partially explains its advantages or justifies its 

use as opposed to the fixed memory or Kalman estimator. It remains to 

interpret the augmented memory estimator in ways which will permit an 

evaluation of its performance with respect to mean-square error and 

sensitivity to errors in the dynamical model of the signal. 

Because of its dependence on past estimates contained in m(k), 

the augmented memory estimator may be interpreted in terms of an 

equivalent growing memory estimator. The nature of the equivalent 

growing memory estimator can be illustrated by considering the augmented 

memory estimator with an interval of confidence of L = 3. Then the 

augmented memory estimator computes x(k) by 

x(k) = WQ(k)y(k) + w1(k)x(k-l) .(I+.3.5)' 

+ w (k)x(k-2> + w (k)x(k-3) 

where w (k), w..(k), w~(k), and w (k) are coefficients computed after 

the measurement y(k) is obtained. The estimator is initialized by 

using the first L measurements as the first L estimates, so 

x(0) = y(0) (4.36) 

x(l) = y(l) (.4.37) 

• • ' • • • • ' • • • • • . . . . , , . ; 

' • * • ' • 

The bar over a coefficient in this and later equations repre
sents a coefficient which is computable. All other terms .which appear 
are predetermined. 
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x(2) = y(2) (4.38) 

Then x(3) has the form 

x(3) = wG(3)y(3) + Wl(3)x(2) + w2(3)x(l) (4.39) 

+ w3(3)x(0) = w0(3)y(3) + w1(3)y(2) 

+ w2(3)y(l) + w3(3)y(0) 

This estimate. x(3) is identical to the estimate which would be computed 

by the fixed memory, unbiased, minimum mean-square error estimator with 

a memory of three samples. However, the fixed memory estimator and the 

augmented memory estimator cease to be equivalent for k > L. For the 

case being considered, x(4) has the form 

x(4) = w0(4)y(4) + w1(4)x(3) (4.40) 

+ w2(4)x(2) + w3(4)x(l) 

Substituting Equations (4.39, 4.38, 4.37) for x(3), x(2), and x(l) in 

Equation (4.40) gives 

x(4) = w (4)y(4) + [w1(4)wQ(3)]y(3) (4.41) 
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+ [w (4)w1C3) + w2(4)]y(2) 

+ Cw1(4)w2(3) + w3(U)]y(l) 

+ Cw1(4)w3(3)]y(0) 

Continuing the process of substituting for past estimates in Equation 

(4.35) to produce estimates as weighted sums of past measurements 

results in • 

x(5) = wQ(5)y(5) + w1(5)x(4) + w2(5)x(3) +'w3'(5)x(2.) (4.42) 

= wQ(5)y(5) + Cw1(5)w()(4)]y(4) 

+ Cw1(5)w1(4)w()(3) + w2(5)w0(3)]y(3) 

+. Cw1(5)w1(4)w1(3) + w1(5)w2(4) + w2(5)w1(3) 

+ w3(5)]y(2) + Cw1(5)w1(4)w2(3) + ^ ( 5 ^ ( 4 ) 

+ w2(5)w2(3)]y(l) + [w1(5)w1(4)w3(3) + w2(5)w3(3)]y(0) 

x(6) = w (6')y(.6) + w (6)x(5).+ w2(6)x(4) + w3(6)x(3) (4.43) 

= wQ(6)y(6) + [w1(6)wG(5)]y(5> 



+ [w1(6)w1(5)w0(4) + w2(6)w0(4)]y(4) 

+ [w1(6)w1(5)w1(i+)w0(3) + wx(6)w2(5)w0(3) 

+ w2(6)w1(4)w0(3) + w3(6)w0(3)]y(3) 

+ t;w1(6)w1(5)w1(i+)w1(3) + w1(6)w1(5)w2(H) 

+ w1(6)w2(5)w1(3) + w1(6)w3(5) + ^ ( 6 ^ ( 4 ^ ( 3 ) 

+ w2(6)w2(4) + w3(6)w1(3)]y(2) 

+ [w1(6)w1(5)w1(4)w2(3) + w1(6)w1(5)w3(4) 

+ wJL(6)w2(5)w2(3) + w2(6)w1(4)w2(3) 

+ w2(6)w3(4) + w3(6)w2(3)]y(l) 

+ Cw1(6)w1(5)w1(4)w3(3) + w1(6)w2(5)w3(3) 

+ w2(6)w1(4)w3(3) + w3(6)w3(3)]y(0) 

Using the above procedure, the augmented memory estimator for L=3 can 

be expressed as a growing memory estimator which computes estimates 

having the form 
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x(k) = wQ(k)y(k) + [w1(k)w0(k-l)]y(k-D (4.44) 

+ Cw1(k)w1(k-l)w0(k-2) +
 :w (k)w0(k-2)]y(k-2) • 

+••[wi(k')d13(k); + w2(k)d23(k) + w3(k)d33(k)]y(k-3) 

+ [w1(k)d11+(k) + w2(k)d21+(k) + w3(k)d31+(k)]y(k-4) 

+ [w^kyd^Ck) + w2(k)d2k(k) + w3(k)d3k(k)]y(0) 

The d..(k) cQefficients in the above equation represent numbers which 

are computed prior to the kth sample. Therefore, as far as the kth 

estimate is concerned, the d..(k) terms are predetermined constants. 

Inspection of Equation (4.44) leads to an interpretation of the 

augmented memory estimator in terms of an equivalent growing memory 

estimator. The augmented memory estimator is expressed as a weighted 

sum of all past data in the same form as the optimum growing memory 

estimator described earlier, namely 

k 
x(k) = I • c.(k)y(k-i) (4.45) 

i=0 

With both types of estimators required to be unbiased, the only dif

ference is in the values of the c.(k) coefficients used in Equation 

(4.45). For either estimator, the c.(k) coefficients must satisfy the 

constraint relation represented by an extension of Equation (4.15) 
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obtained by replacing w_(k) in that equation by c_(k)9 the vector of the 

T 
c.(k) coefficients, and allowing the D (k) matrix to include the model 

over the entire past. The constraint relation becomes 

D'(k)£(k) = £p<) (4.46) 

with DT(k) defined by 

LT(k) 

£ T (k- l ) 

DT(k)i-; £T(k-2) 
• 
• 

E.T(0) 

(4.47) 

The difference between the augmented memory estimator and the . 

optimum growing memory estimator is evident in Equations (4.44, 4.45). 

Only the four coefficients in the w_(k) vector are computed by the 

estimator equations, while there are k+1 measurements to be linearly 

weighted. The estimator has four degrees of freedom corresponding to 

the four coefficients to be computed. These four degrees of freedom 

can be interpreted as the freedom to choose the coefficients of the 

four most recent measurements, and once these four coefficients are 

chosen all the other kr-3 coefficients are fixed. In general, for any 

interval of confidence L, the augmented memory estimator has L+l 

degrees of freedom, corresponding to the choices of values for the 

coefficients of the most recent L+l measurements. The optimum growing 



78 

memory estimator has k+1 degrees of freedom, corresponding to the free

dom to choose the coefficients of all k+1 measurements. Therefore, the 

augmented memory estimator is suboptimal with respect to mean-square 

error minimization. A later interpretation and examples will be used 

to show that it has advantages over the optimal growing memory 

estimator in its sensitivity to signal modeling-errors. 

The augmented memory estimator in the form of Equations (4.44, 

4.45) is equivalent to an unbiased growing memory estimator which 

minimizes mean-square error subject to an increasing number of con

straints ,on the coefficients of past measurements. These constraints 

are the result of the decrease in the number of degrees of freedom as 

described above. The additional constraints can be written in the 

form 

Z(k)c(k) = 0 (4.48) 

where c_(k) i s the vector of coefficients in Equation (4*45), Z(k) i s 

defined by 

Z(k ) & 

'11 

'21 

'12 

'22 

Z k - 3 , 1 Zk-3,,2 

'13 

'23 

1 0 0 . . . 0 

0 1 0 ' ' • • • " . 0 

V3.3 ° ° ° "• X 

( 4 . 4 9 ) 
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and the z. . terms can be computed from the relationships given by Equa

tion (4.44). The above Z(k) matrix represents the L=3 case. In 

general, Z(k) is a (k-L) by (k+1) matrix and Equation (4.48) represents 

a set of k-L equations which the c(k) vector of coefficients must 

satisfy in addition to the unbiased constraints imposed by Equation 

(4,46). 

The equivalence of the augmented memory estimator and a con

strained' growing memory estimator only serves to show that the former 

is different from the optimum growing memory estimator. The original 

form for the augmented memory estimator, given by Equation (4.7), is 

the simplest way to implement the estimator because its computational 

complexity does not,depend on k. 

An additional interpretation of the augmented memory estimator 

can be used to illustrate the sensitivity of the error to inaccuracies 

in the signal dynamical model. This interpretation is obtained by 

computing equations for the error bias resulting from the use of an 

inaccurate signal dynamical model. Consider a signal having the 

form of Equation (4.1). The augmented memory estimator assumes a 

signal model x (k) of the form 
m 

x
m
(k) = 4ftn(k) + r(k) (4.50) 

where:the m;subscript emphasizes that this is a model of the actual 

signal, Suppose also that the noise and measurement models are 

accurate. The' augmented memory estimator computes an estimate of 
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x(k) by Equation (4.7), repeated here for convenience: 

x(k) = w (k)m(k) (4.51) 

The error bias resulting when E_(k) is not the same as g_(k) is given 

by :-' 

E[n(k)] = wT(k)E[m(k)] - a_T£(k) (4.52) 

with n(k) defined by Equation (4.23). But E[m_(k)] can be expressed as 

E[m(k)] = D(k)a + E[N(k)] (4.53) 

Where D(k) is defined by Equation (4.13) and N(k) is defined by 

N(k) = 

r(k) + v(k) 

r(k-l) + n(k-l) 

r(k-2) + n(k-2) 

• 

r(k-L) t n(k-L) 

(4.54) 

If a fixed memory estimator is used instead of the augmented memory 

estimator, m_(k) contains only measurements, all of the n(k-i) terms. 

in Equation (4.54) are replaced by v(k-i), and the expected value of 

N(k) becomes zero. In this case* the resulting bias, defined as b(k), 

would be given by 
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b(k)•'••= wT(k)D(k)a - .a.T£(k) (4.55) 

Therefore, b(k) can be considered a measure of the accuracy of the 

model over the time interval (k-L,k). The bias resulting in the aug

mented memory estimator can now be written in terms of present and 

past values of b(k). 

With x(k) = y(k) for k < L, the bias is zero for k < L. For 

k = L the augmented memory estimator is equivalent to the fixed memory 

estimator, so 

ECn(L)] = b(L) (4.56) 

Combining Equations (4.52, 4.53, 4.55) gives the bias in the augmented 

memory estimator for k > L in the form 

E[n(k)] = b(k) + wx(k)E[N(k)] (4.57) 

= b(k) + w (k) 

0 

E[n(k-1)] 

E[n(k-2)] 

ECn(k-L)] 

Therefore, the error bias in the augmented memory estimator for k>L is 

the sum of b(k) and a weighted sum of past error biases. To illustrate 

the nature of the bias, it is helpful to carry out some of the error 
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bias expressions, using Equations (4.56, 4.57) as follows: 

ECn(k)] = 0 for k=0*l,2,...,L-l (4.58) 

E[n(L)] = b(L)' (4.59) 

E[n(L+l)] = b(L+l) + w (L+l) E[n(L)] (4.60) 

= b(L+l) + w1(L+l)b(L) 

E[n(L+2)] = b(L+2) + w1(L+2)E[n(L+l)] (4.61) 

+ w (L+l)E[n(L)],= b(L+2) 

+ w (L+2)b(L+l) + [w1(L+2)w1(L+l) 

+ w2(L+l)]b(L) 

E[n(L+3)] = b(L+3) + w1(L+3)E[n(L+2)] (4.62) 

+ w2(L+3)E[n(L+l)] + w3(L+3)E[n(L)] 

= b[L+3) + w (L+3)b(L+2) 

+ [w1(L+3)w1(L+2) + w2(L+3)]b(L+l) 
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+ [w1(L+3)w1(L+2)w1(L+l) + w1(L+3)w2(L+l) 

+ w2(L+3)w1(L+l) + w3(L+3)]b(L) 

Continuing this procedure;results in a bias of the form 

k-L 
E[n(k)] = b(k) + £ • q, (k)b(k-i) (4.63) 

' • ' i = l - 1 

where the q.(k) are coefficient? which are sums of products of elements 

in w(k), w(k-l) ,... ,w_(L+l). Equations (4.55, 4.63) can be used Pre

determine-Whether • an unacceptable error bias results when an approxima

tion to a correct signal model: is used. The correct model must be known 

to obtain numerical bias results from Equations (4.55, 4.63). However, 

Equation (4.63) does show that the error bias in the augmented memory 

estimator is a weighted sum of b(k-i) bias terms, each of which is a 

measure of the inaccuracy of the signal model only over a time period 

of L,sample periods. 

The interpretations of the augmented memory estimator discussed 

above provide some insight into the structure of the estimator. The 

interpretation of the augmented memory estimator as a constrained 

growing memory estimator shows that the augmented memory estimator is 

suboptimal with respect to mean-square error minimization. However, 

the mean-square error of the augmented memory estimator is smaller than 

that obtained by the comparable fixed memory estimator when,the signal 

model is accurate, as will be illustrated in the following chapter for 

the case of polynomial signals. Equations developed for the bias 



84 

resulting from the use of an inaccurate signal model in the augmented 

memory estimator equations show that the bias is a weighted sum of 

terms which depend on the, accuracy of the signal model only over past 

time periods of length L sample periods. Since the results of Chapter 

III show that the Kalman estimator fits the assumed model to the data 

over the entire past, these bias equations imply sensitivity advantages 

over the Kalman estimator when the assumed model is an adequate approxi 

mation of the signal over all past time periods of length L sample 

periods. This conclusion must be verified by numerical,results, which 

could be,obtained by using the bias equations of this chapter or by 

simulating various combinations of signals and inaccurate models. The' 

following chapter uses, the latter approach, presenting the results of 

digital computer .simulations of various signals with inaccurate poly

nomial models. 



CHAPTER V 

NUMERICAL COMPARISONS AND EXAMPLES : 

In Chapter IV the augmented memory estimator was proposed and . 

its equations were derived. The estimator structure was interpreted 

terms of an equivalent growing memory estimator and in terms of the 

bias resulting from the use of an inaccurate dynamical model. This 

chapter will consist of numerical results of digital computer simula

tions which illustrate the (behavior of the augmented memory estimator 

with respect,to mean-square error when an,accurate model is used and 

the sensitivity of the estimator to errors in the signal dynamical 

model. 

As stated in Chapter IV, the purpose for using the augmented 

memory estimator is to obtain an estimate which has two desirable 

properties. First, the mean-square error of the augmented memory 

estimator should be smaller than that of the fixed memory estimator 

with a memory of L samples. Also, the estimator error should be less 

sensitive to dynamical modeling errors than is the estimation error 

of the growing memory or Kalman estimator. The numerical results 

presented below will verify that the augmented memory estimator has 

these properties for examples considered in this chapter. Each of 

these examples consists of a deterministic signal corrupted by white 

Gaussian measurement noise of constant variance. In each case the 

augmented memory estimator is used with a model which assumes a 

noiseless polynomial signal. 
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To i l l u s t r a t e mean-square error behavior when an accurate model 
T 

i s used, consider a polynomial s ignal of the form x(k) = a_£_(k) with 

£_(k) given by 

£.00 = 

1 

k 

k 2 

(5.1) 

Measurements are defined by Equation (4.2-), with v(k) a white Gaussian 

noise process with zero mean,and constant variance. For t h i s s igna l , 

the fixed memory estimator has a mean-square error which i s constant 

for a l l k > L. The Kalman estimator has a mean-square er ror which i s 

asymptotic to zero. The mean-square error of the augmented memory 

estimator i s the same as that of the fixed memory estimator for k = 1+, 

but decreases for k > L u n t i l a s teady-s ta te value i s obtained. Figure 

8 i l l u s t r a t e s the mean-square er ror improvement obtained by using the 

augmented memory estimator with an in te rva l of confidence L as opposed 

to the fixed memory estimator with a memory length L. The mean-square 

error improvement i s computed by subtracting the mean-square error in 

the augmented memory estimator at k = 10L from the mean-square er ror 

of the fixed memory estimator and expressing the difference as a per

centage of the mean-square error of the fixed memory es t imator . . 

Figure 9 shows the mean-square error improvement computed in the same 

T manner for a polynomial s ignal of the form x(k) = ja £_(k)( with £.00 

given by 



10-

8-

6-

h-

2-

Mean-Square Error 
Improvement (#) 

10 12 

Figure 8# Mean-Square Error Improvement in the Augmented 

Memory Estimator with Second Degree Polynomial 

Signal 

50-

ko-

30-

20-

10-

Mean-Square Error 
Improvement (%) 

T 
2 \ 

—i 1 1 p — • 
6 8 10 12 

Figure 9» Mean-Square Error Improvement in the Augmented 

Memory Estimator with First Degree Polynomial 

Signal 



88 

1 
£(k) = (5.2) 

k 

Figures 8 and 9 show that the improvement in mean-square error increases 

as the•.interval of confidence L increases. 

In order to illustrate the sensitivity of the augmented memory, 

estimator to dynamical modeling errors, three examples are presented 

below. In each example the augmented memory estimator assumes a noise

less polynomial signal model which is not a correct representation of 

the true signal. The first example uses a signal which is a polynomial 

of higher degree than that of the assumed model, and the last two 

examples consist of signals which are generated as solutions to nonlinear 

differential equations. For each example the error at each sampling 

instant is averaged over 30 computer runs, each run with a different 

measurement noise sequence. By averaging over 30 computer runs, any 

bias in the error.will be reinfor.ced and the random component of the 

error will be reduced. The error averages are plotted versus time to 

show the error bias behavior. In addition, the average error and 

sample error variance are computed for each computer run, and the 30 run 

averages of these quantities are computed. The averaged error is 

defined as y and averaged sample error variance by a . Two values for 

the interval of confidence L are used for each signal model in order 

to illustrate the dependence of the error bias on L. 

Consider first a noiseless polynomial signal described by 
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x(k) = 10.0 - 0.4k + 0.005k2 ( 5 . 3 ) 

This signal has the form a_£_(k) with 

p_(k) = ( 5 . 4 ) 

This s ignal i s iden t ica l to that used to i l l u s t r a t e Kalman estimator 

e r ror divergence in Chapter I I , except for a difference in sampling 

r a t e . The s ignal i s a parabola with value ten at k = 0 and.k = 80 and 

with a minimum value of two at k = 40. Assume the measurement y(k) i s 

given by 

y(k) = x(k) + v(k) ( 5 . 5 ) 

with v(k) white Gaussian noise having a constant variance of one. 

Figure 10 shows,the result of applying the augmented memory estimator 

to this signal with an inaccurate signal,dynamical model. The esti-

T 
mat or assumes the signal has the form x(k) = a_p(k) with P_(k) given 

by 

£,(><) = (5.6) 
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The curves of Figure 10 represent the errors averaged over 30 runs as 

previously discussed* with curves for L = 5 and L = 8 . For clarity, 

only the errors for even values of k are shown. Random effects are not 

completely eliminated by the averaging process, but a,bias is visible 

over certain ranges of timev such as over the range 40 < k < 60. The 

magnitude of the average error is confined to less than one-third the 

value of the measurement noise variance for both values of L. The 

average error for L = 8 has a larger range of values than for L = 5 

because the inaccurate model results in larger biases as L increases. 

The error which results when the Kalman estimator is applied to the 

same signal with the same inaccurate model, as shown in Figure 2, is 

also shown in Figure 10. The Kalman estimator error diverges in this 

case. 

As a second illustration of error behavior in the, augmented 

memory estimator, consider the problem of estimating the altitude of an 

object in an elliptical earth orbit. The position vector x.(t) of such 

an object is deterministic, satisfying the nonlinear differential 

equation 

x(t) + 

where x_(t) can be expressed as 

x3(t) 
x(t) = 0 (5.7) 

x(t) = x(t)ej9(t) % (5.8) 
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with x(t) and 0(t) the magnitude and angle of x_(t) in polar coordinates 

Substituting Equation (5.8) into Equation (5.7) gives the following 

simultaneous nonlinear differential equations: 

x(t) - x(t)[0(t)]2 + - r ^ — = 0 (5.9) 
x2(t) 

x(t)0(t) + 2x(t)6(t) = 0 ."(5.10) 

In the digital computer simulation, the units of x(t) are earth radii, 

abbreviated er, and 0(t) is in radians. The gravity constant $ used in 

the simulation is 8 = 19.9094165. Measurements are assumed to consist 

of discrete samples of x(t) taken once every 15 minutes, with additive 

. 2 
Gaussian measurement noise having a constant variance of 0.01 er . 

Then if k represents the sample number, with k = 0 for t "= 0, measure

ments are described by 

y(k) = x(k) + v(k) (5.11) 

For simulation purposes x ( t ) , x ( t ) , and 0 ( t ) are i n i t i a l i z e d by x(0) = 

2.0 e r , x(0) = 0.0 er/second, and 0(0) = 1.8 radians/second. The 

resu l t ing a l t i tude x ( t ) i s shown in Figure 11. In Figure 11 , time in 

minutes i s obtained by multiplying the value of k by 15. 

In order to use the augmented memory estimator t o estimate orbi t , 

a l t i t u d e , a l inearmodel must be assumed for x(k) . One pos s ib i l i t y i s 

to assume x(k) has the form of a noiseless second-degree polynomial, 
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T so t h a t x ( k ) = a B (k) with p_(k) given by 

An (k) = 
1 

k 

k2 

(5.12) 

The in te rva l of confidence L i s then chosen so that the assumed model 

of x(k) i s a reasonably accurate approximation of the true s ignal over 

time periods of length L sample i n t e rva l s . Figure 12 shows the r e s u l t s 

of computer simulations using the model of Equation (5.12) with L = 6 

and L = 1 0 . As in the previous example, the average er ror i s the r e s u l t 

of averaging the error for each sample over 30 computer runs and average 

e r r o r . i s shown for even samples only. Again, larger biases resu l t when 

the larger value of L i s used because of the inaccuracy of the model. 

Computer simulation has also shown,that the Kalman estimator which uses 

the second-degree polynomial model for x ( t ) has., an er ror larger than 

1,5 earth r ad i i for a l l k > 20. 

Figure 13 shows the average er ror in the augmented memory 

estimator when the, a l t i t ude model i s a noiseless f i r s t -degree polynomial 

T 

of the form x ( t ) = a_ £_(k) with p_(k) given by Equation (5 .6 ) . Simula

t ion r e su l t s are given for L = 3 and L •= 6. In the L = 6 case the model 

i s a worse approximation to the s ignal over the in te rva l of confidence 

than i s the second-degree polynomial approximation, as evidence by the 

larger e r ror b iases . 

For the l a s t example, consider the problem of estimating the 

a l t i tude of an object re-enter ing the ea r th ' s atmosphere. This problem 
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was discussed in detail in Chapter II. The deterministic signal and 

discrete noisy measurements are described in Equations (2.21) through 

(2.25) and Figure 3, with the resulting signal shown in Figure 4. The 

linear range model of Equations (2.26, 5.12) can be used with the-

augmented memory estimator to compute r(k), with the altitude estimate 

x.-(k) then being computed by Equation (2.27). This model corresponds 

to the assumption that the range variable can be approximated by a 

noiseless second-degree polynomial over time intervals of L sample 

periods. Figure 14 shows the average altitude error obtained by using 

the second-degree polynomial range model. Results are shown for L = 4 

and L = 6 with the average error for only the even values of k shown on 

the, figure. For both values of L, a bias is evident between k =10 and 

k = 20. Inspection of Figure 4 shows that the,se values of k are in the 

time interval in" which the signal is most nonlinear, so that the model 

is less accurate. For k > 30 the range variable appears to have a form 

which the model can fit well, as verified by the lack of error bias for 

k > 30. The most significant result obtained from this example is that 

the relatively large biases present in the; altitude estimates for k < 20 

do not prevent the estimator error from being relatively unbiased in 

the k > 30 range. 

Figure 14 also shows the result of applying the Kalman estimator 

to the re-entry problem with the noiseless second-degree polynomial 

range model. The result:9 also shown in Figure 5, is a diverging alti

tude estimation error. 

Figure 15 shows the average altitude estimation error obtained. 

when the first-degree polynomial model of Equation (5.6) is assumed for 



98 

Average Value of Altitude 

Error, x-j(k) - x-, (k) 

3000-J Cfeet) 

2000-

1000-

0 

-1000 -

-2000 -

-3000 -

Kalman estimator 
error (see 
Figure 3) 

L =* 6 
M = 2*612 

a-2 - l . 355x l0 5 

Sample Number, k 

^^T^^fyfl1 &Y>te-
^40 50 

Figure 14. Average Error of the Augmented Memory 

Estimator, Re-entry Signal with Second 

Degree Polynomial Model 



99 

Average Value of 
Altitude Error, 
x-^k) - x-^k) (feet) 

k 
lOOOO-

8000-

6000-

4-000-

2000-

-2000 

£ 2 = 1.586xl05 

ft 6ij^^jk^r^ft^4^> k 

Sample Number, k 

Figure 15. Average Error of the Augmented Memory 

Estimator, Re-entry Signal with First 

Degree Polynomial Model 



100 

the range variable. This model is even less accurate that the second-

degree polynomial model for k < 20, so the resulting biases are larger 

than those,of Figure 14. Simulation results are shown,in Figure 15 for 

L = 2 and L = 3. Again, it is significant to note that relatively 

large biases for k < 20 dp not prevent acceptable error behavior for 

k > 30, Where the model is more,accurate. 

The examples described above show that the augmented memory 

estimator with a polynomial signal model demonstrates the desired 

properties outlined at the beginning of this chapter. Figures 7 and 8 

verify that the augmented memory estimator with accurate polynomial 

models of noiseless polynomial signals results in a smaller mean-square 

error than the fixed memory estimator with the same models and memory 

length L. The other examples presented in this chapter illustrate that 

the augmented memory estimator with a polynomial signal model is less 

sensitive to signal modeling errors than is the Kalman estimator. They 

also show that the choice of the interval of confidence L can be of 

primary importance. Too large a value of L can result in considerable 

bias when the assumed model is very inaccurate over time periods of 

length L sample intervals. A significant result of the examples is 

that a large bias in estimates computed over one period of time do not 

necessarily cause biases in estimates in later time intervals. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This dissertation contains a detailed discussion of the problem 

of estimating signals which contain a nonrandom component. Attention 

is restricted to discrete measurement systems vand
;linear estimators. 

Particular emphasis in this dissertation is on the sensitivity of 

linear estimators to errors in the assumed model of the nonrandom 

component of the signal. After existing discrete estimation techniques 

are discussed and compared in terms of mean-square error and sensi

tivity to signal modeling errors, a new discrete estimator is derived. 

The new estimator satisfies the objective of computing estimates which 

have mean-square error and sensitivity properties representing an 

improvement over the existing methods. 

In Chapter II the Kalman estimator equations are discussed. It 

is shown there that errors in the signal dynamical model, or state 

transition matrix, can result in considerable error bias or even error 

divergence when used in the Kalman estimator equations. Error diver

gence is related to the loss of significance of the gain and computed 

error covariance matrix, resulting in decreased dependence of estimates 

on the most recent measurements. . 

Various modifications of the Kalman estimator are also discussed 

in Chapter II. These modified Kalman estimators are each intended to 
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reduce the sensitivity of the estimates to signal dynamical modeling 

errors. Common among these estimators is the requirement of a known 

model for the error sources in the signal model, or the use of assumed 

bounds on the gain or error c©variance. Only the limited memory method 

(21) allows direct use of a model which is only intended to represent 

an approximation to the signal over limited periods,of time chosen 

by the user. 

In Chapter III it is shown that the Kalman estimator can be 

interpreted as a weighted least-squares; curve fitting procedure which 

fits all past data with the assumed model of the signal. This inter

pretation further explains the error sensitivity problem in the Kalman: 

estimator. It also justifies the use of the alternative signal model 

of Equations (3.37, 3.38) when the measurement vector is first order. 

The alternative signal model leads directly to the fixed memory esti

mator which uses only the measurements obtained during the most recent 

fixed period of time. The fixed memory estimator has an advantage over 

the Kalman:estimator in its relative insensitivity to modeling errors, 

but it achieves this advantage by disregarding all data taken earlier 

than a fixed amount of time in the past. 

The augmented memory estimator equations are derived in Chapter 

IV and in the Appendix. The augmented memory estimator structure has a 

form similar to the fixed memory estimator, but with past measurements 

replaced by past estimates. This difference means that the augmented 

memory estimator depends on all past data, and in fact it is shown to 

be equivalent to a growing memory estimator which minimizes mean-square 

error subject to an increasing number of constraints. An interpretation 
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of the sensitivity of the error in the augmented memory estimator to 

errors in the signal model is also presented in Chapter IV. This 

interpretation proves that the bias in an estimate is expressible as a 

weighted sum of separate bias terms, each of which is a measure of the 

accuracy of the signal only over a period of time of length L sample 

periods. 

Illustrations of the error behavior in the augmented memory 

estimator which uses a polynomial signal model are presented in Chapter 

V. It is shown that the use of an accurate polynomial signal model 

results in a meanrsquare error improvement over the comparable fixed 

memory estimator. The percentage of mean-square error improvement 

increases as the, interval of confidence L increases. The results of 

simulation studies of particular examples are also presented in Chapter 

V in order to illustrate the error bias resulting from the use of 

inaccurate polynomial signal models. These examples indicate that the 

augmented memory estimator error is less sensitive to modeling errors 

than is the Kalman estimator. The amount of bias resulting from the 

use of an inaccurate signal model in the augmented memory estimator 

increases with the value chosen for the interval of confidence,L. 

Therefore, L must be chosen to satisfy a trade-off between the criteria 

of mean-rsquare error and sensitivity of estimator error to signal 

modeling errors, The examples also indicate that relatively large 

biases in estimates over a period of time do not necessarily prevent 

unbiased estimation at later times when the signal model is more 

accurate. 
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In addition to its sensitivity advantages, the augmented memory 

estimator has other advantages over the Kalman estimator. The presence 

of colored noise sequences in the signal and measurement, with a non

zero cross-correlation function, requires no changes in the estimator 

equations or the signal model. Also, the augmented memory estimator 

is easily reset when it is desirable to eliminate any effect of biases 

in past estimates. All that is required is to store L measurements and 

re-enter the estimator algorithm with new initialized storage matrices. 

Recommendations for Further Research 

There are several possible extensions of the augmented memory 

estimator presented in this dissertation. These include extensions of 

the class of signals to be estimated and modifications of the esti

mator to incorporate additional information about the signal to be 

estimated or to allow it to change itself adaptively. Some of the 

possible extensions are the following: 

1. The augmented memory estimator structure, or some variation 

of it, might be .applied to the estimation of arbitrary functions of the 

signal in addition to the signal itself. This extension might include 

the smoothing and prediction problems, in which estimates are computed 

for the signal or functions;of the signal at time instants prior to 

and later than the most recent measurement. 

2. Although this dissertation.'is concerned with signals con

taining a nonrandom component, the augmented memory estimator structure 

might be applied to the problem of estimating random signals with known 

power spectrum or autocorrelation function. Decreased sensitivity of 
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estimates to errors in the autocorrelation function would be an objec

tive of this approach. In this case, the signal model of Equation 
T •' 

(4.1) may be used with a_ jg_(k) = 0_, or the random signal may be expanded 

in a series with some of its terms described as the jaj)_(k) term in 

Equation (4.1) and the remainder described by the r(k) term. 

3. A logical extension of the augmented memory estimator is to 

determine a method of using vector measurements v_(k) rather that scalar 

measurements to estimate a sigria.1. For example, in an orbit determina-
' ' • ' . . . • i • 

tion problem like the one presented in Chapter V, noisy measurements,of 

both range and range rate may be available at each sampling instant. 

4. The form of the signal model used by the augmented memory 

estimator permits simple mathematical descriptions of known bounds on 

the signal or functions of the signal. Such known bounds might be 

incorporated in the equations of the augmented memory estimator. This 

procedure should have the effect of limiting the, biases which occur when 

an inaccurate signal model is used in the estimator equations without 

the consideration of known bounds. 

5. The augmented memory estimator might be made adaptive by 

causing it to automatically adjust its own structure. Adjustments 

could take the form of changes in the interval of confidence or in the 

degree of a polynomialvsignal model. To determine when and how to make 

such adjustments, an error sensor consisting of observations of the, 

differences between measurements and estimates might be used. 



APPENDIX 

DEVELOPMENT OF COMPUTATIONAL ALGORITHM FOR 

ERROR CORRELATION TERMS 

In Chapter IV the equations for the augmented memory estimator 

are derived. The resulting equation for the weighting coefficients 

involves two matrices, S(k) and 7(k), which contain correlation terms 

involving the estimation error n(k) and the noise sequences in the sig

nal and measurement. In this appendix the derivation of a computational 

algorithm for recursively computing the error correlation terms needed 

in S(k) and 7(k) will be presented. The algorithm will be described in 

a form which can be directly implemented by a digital computer program. 

Methods for initializing and updating required storage matrices will 

also be presented. 

The matrix S(k) is defined by Equation (4.21). Inspection of 

Equation (4.21) shows that S(k) is symmetric, with the first row and 

column containing the terms 

E {[r(k) + v(k)]2} = p(k,k) + 2<D (k,k) + a(k,k) (A.l) 

E {[r(k) +v(k)J [r(k-i) +n(k-i]} 

= p(k,k-i) + a(k,k-i) + s(k,k-i) (A.2) 

+ <|>(k-i,k) for i = 1,2, ...,L 

where p, <t>, and g are correlation functions defined by Equations 

(4.4, 4.5, 4.6) and a and s are error correlation functions defined by 



107 

a(k,j) d E [r(k)n(j)J (A.3) 

s(k,j) £ E [v(k)n(j)] (A.4) 

with n.(j) defined by Equation (4.23). The second row, columns two 

through (L+l), of S(k) contains terms of the form 

E ([r(k-l) + n(k-l)] [r(k-i) + n(k-i)]} (A.5) 

= p(k-l, k-i) + a(k-l, k-i) + a(k-i, k-1) + u(k-l, k-i) 

for i = 1, 2, ... .,L 

with (i(k,j) the error autocorrelation function defined by 

u(k,j) = E[n(k)n(j)] (A.6) 

In addition to the terms of the form of Equations (A.2, A.5), the last 

(L-l) rows of S(k) contain terms having the forms 

E {[r(k-i) + n(k-i)] [r(k-j) + n(k-j)]} (A.7) 

« p(k-i, k-j) + a(k-i, k-j) + a(k-j, k-i) +^(k-i, k-j) 

for I = 2,3, ..v,L and j = 2,3,...,L 

Replacing k in Equations (A.5, A.7) by k-1 reveals that the terms 

in S(k) having the form of Equation (A.7) can be obtained directly from 

terms in the S(k-l) matrix. The matrix remaining after deleting the 

first two rows arid columns of S(k) is identical to the matrix remaining 

after deleting the first and last rpws and columns of S(k-l). This 

leaves only the first two rows and columns of S(k) to be determined. All 

terms involving the correlation functions p, <|>, and a are assumed known, 

leaving only the terms involving the error n(k-i) in the first two rows 
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and columns to be computed. These terms consist of five types of 

expressions, so it is convenient to define the following five forms: 

Form 1: E[r(k)n(k-i)] « a(k,k-i) for i = 1,2,. ..,L 

Form 2: E[r(k-l)n(k-i)] •« a(k-l,k-i) for i = 1,2, ...,L 

Form 3: E[r(k-i)n(k-l)] = a(k-i,k-l) for i = 2,3,...,L 

Form 4: E[v(k)n(k-i)] = s(k,k-i) for i = 1,2, ...,L 

Form 5: E[n(k-l)n(k-i)] « n(k-l, k-i) for i = 1,2, ...,L 

(A. 8) 

(A. 9) 

(A.10) 

(A.11) 

(A.12) 

Algorithms for computing these terms will be derived below. After 

these terms are computed, the first two rows and columns of the S(k) 

matrix are completely determined by using Equations (A.l, A.2, A.5), 

The 7(k) vector defined by Equation (4.22) can be written 

7<k)- E[r(k)m(k)] = 

p(k,k) + d>(k,k) 

p(k,kri) +a(k,k-l) 

p(k,k-2) +a(k,k-2) 
• ' . . • • 

p(k,k-L) + a(k,k-L) 

(A.13) 

This result is Obtained by using Equations (4.1, 4.23) to replace the 

estimates x(k-i) in m(k) by 

x(k-i).-= £ £ (k-i) + r(k-i) + n(k-i) (A.14) 

Equation (A.13) shows that ?(k) can be determined after the Form 1 terms 

of Equation (A.8) are determined. 

In order to compute the error correlation terms of Equations 

(A.8-A.12) by a recursive algorithm it is necessary to store a fixed 
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amount of past information. It is convenient to summarize this infor

mation storage requirement by defining the storage matrices below: 

A(k)£ 

B(k) 

"a(k-l,k-2) 

a(k*l,k-3)' 

a(k-2,k-2) 

a(k-2,k-3) 

... a(k-L-l,k-2) 

... a(k-L-l,k-3) 

a(k-l,k-L-l) a(k-2,k-L-l) ... a(k-L-l,k-L-l) 

(A.15) 

n(k^2,k-2) 

u(k-2,k-3) 

u(k-2,k-4) 

n(k-2^k-L) 

u (k-'2,k-L-l) 

0 

u(k-3,k-3) 

u(k-3,k-4) 

0 0 ... 0 

0 0 ... 0 

^ - 4 , ^ 4 ) 0 ... 0 

|i(k-3,k-L) u(k-4,k-L) ... U(k-L,k-L) 

,i(k-3,k-L-l) u(k-4,k-L-l).. n(k-L,k-L-l) 

WM(k) « 

wT(k-l) 

wT(k-2) 

•T 
w (k-L) 

(A.16) 

(A.17) 

VN(k) -

s(k-l,k-2) 

s(k-l,k-3) 

s(kTl,k-L) 

(A.18) 

These storage matrices are considered to be available for the computa

tion of the error correlation terms of Equations (A.8-A.12). After the 

algorithms for computing the error correlation terms are derived below, 

the procedure for initializing and updating the storage matrices will 

be derived. 
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Computation of Form 1 Terms 

Define the vector ][l(k) containing the Form 1 terms by 

Fl(k) = 

a(k,k-l) 

a(k,k-2) 

_a(k,k-L)_ 

(A.19) 

Equation (A.14) solved for n(k-i) gives 

n(k-i) = -£T£(k-i) - r(k-i) + x(k-i) 

Then by Equations (A.3, A.20, 4.7) the last term of Pl(k) can be 

written as 

(A.20) 

a(k,k-L) = E (r(k)[-^ £(k-L) - r(k-L) (A.21) 

+ wT(k-L)m(k-L)]} 

= -p(k,k-L) + wT(k-L)E[r(k)m(k-L)] 

Substituting Equations (4.9, A.14) for m(k-L) in Equation (A.21) gives 

a(k,k-L) = -p(k,k-t) (A.22) 

+ w (k-L) 

p(k,k-L) + 0(k,k-L) 

p(k,k-L-l) + a(k,k-L-l) 

p(k,k-L-2) + a(k,k-L-2) 

p(k,k-2L) + a(k,k-2L) 

Each of the a(k,k-L-i) terms in the above equation could now be 

expanded in the same manner as a(k,k-L). In order to keep the number of 

computations constant for any value of k, it is necessary to make the 
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assumption that nonzero correlation time is bounded for the noise se

quences in the signal and measurement. A reasonable assumption is 

that no correlation exists between samples from either noise process 

which are separated in time by more than L sample periods, where L is 

the interval of confidence. This assumption means that p(k,j), a(k,j), 

and $(k,j) are zero for all (k,j) such that |k-j|>L. Since n(k-j) for 

j> 0 depends only on terms obtained no later than the k sample, it 

follows that <2(k,k-j) and s(k,k-j) are also zero for all j > L. 

With the above assumption on the noise processes, Equation (A.22) 

becomes 

a(k,k-L) = -p(k,k-L) (A.23) 

-p(k,k-L) + d>(k,k-L)" 

0 
0 

0 

Using the same procedure for expanding a(k,k-L) to expand a(k, k-L+1) 

gives 

a(k, k-L+1) = -p(k,k-L+1) (A.24) 

p(k,k-L+l) + <D(k, k-L+1) " 

p(k,k-L) + a(k,k-L) 

0 

0 

The a(k, k-L) term in the above equation is known from the immediately 

preceding computation of Equation (A.23). Expanding a(k,k-L+2) in the 

same manner gives 

+ wT(k-L) 

+ wT(k-L+l) 
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a(k,k-L+2) « -p(k,k-L+2) 

" p(k,k-L+2) + <D(k,k-L+2)' 

p(k,k-L+l) + a(k,k-L+l) 

(A.25) 

+ wx(k-L+2) p(k,k-L) •+ a(k,k-L) 

0 

0 

The a(k, k-L-fl and a(k,k-L) terms in the above equation are known from 

Equations (A.23, A.24). Continuing in this manner, all terms in Fl(k) 

are computed in sequence froma(k,k-L) to a(k,k-1), which has the form: 

a(k,k-l) = -p(H,k-l) (A.26) 

p(k,k-l) + <D(k,k-l) 

p(k,k-2) + a(k,k-2) 

.+ *f (k-1) p(k,k-3) + a(k,k-3) 

p(k,k-L) + a(k,k-L) 

0 

Summarizing the procedure described above, Fl(k) is computed 

term by term by the following equations, which must be used in the 

order given: 

FlL(k) - a(k,k-L) = -p(k,k-L) 

'+w1(k-L) [p(k,k-L) + <D(k,k-L)] 

Fli(k). = a(k,k-i) = -p(k,k-i) 

+ w^k-i) [p(k,k-i) + <D(k,k-i)] 

(A.27) 

L+l-i 

*I {w (k-1) [p(k,k+l-i-j) 
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•+ a(k,k+l-i-j)]} for i=L-l,L-2,...,1 

In terms of the storage matrix WM(k) defined by Equation (A.17), Equa-

tipn (A.27) becomes 

FlL(k) « a(k,k-L) = -p(k,k-L) 

+ W ^ 1(k)[p(k,k-L) + <D(k,k-L)] 

Fl^k) -a(k,k-i) = -p(k,k-i) 

+ WM ,(k)[p(k,k-i) + <D(k,k-i)] 

L+l-i 

+ Y .{WM ĵ(k)[p(k,k+l^i-j) 

J-2 

+ .Fli+J.1(k)); for i=L-l,L-2,...,l 

Computation of Form 2 Terms 

Define the vector ,F2(k) containing the Form 2 terms by 

(A.28) 

F2(k) 6' 

a(k-l,k-l)" 

a(k-l,k-2) 

a(k-l,k-L) 

(A.29) 

All but the first term of .F2(k) are available as values in the first 

column of the A(k) storage matrix defined by Equation (A.15). The 

a(k-l,k-l) term of .F2(k) can be expanded by the same procedure used for 

the Form 1 terms in the preceding discussion. The result is 

F2 (k) ya(k-l,k-l) = -p(k-l,k-l) (A.30) 
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+ wx(k-l) 

p(k-l,k-l)"+ d>(k-l,k-l) 

p(k-l,k-2) + a(k-l,k-2) 

p(k-l,k-3) + a(k-l,k-3) 

» 
p(k-l,k-L) + a(k-l,k-L) 

p(k-l,k-L-l) + a(k-l,k-L-l) 

The a(k-l,k-i) terms of the above equation are all contained in the 

T • 
first column of A(k). The w (k-1) vector is the first row of the WM(k) 

matrix defined by Equation (A.17). The procedure for computing F2(k) 

is summarized by the following equations: 

F2L(k) -.q(k-l,k-l) = -p(k-l,k-l) (A.31) 

+ WMr ^^[pCk-^k-l) + 4>(k-l,k-l)J 

L+l 

+ V (WM^jC^tpCk-^k-l) +'Aj..1>1(k)]} 

j=2 

F2jL(k) - a(k-l,k-i) = Ai_1 . (k) for i=2,3,...,L 

Computation of Form 3 Terms 

Define the vector J[3(k) containing the Form 3 terms by 

F3(k) = 

a(k-2,k-l) 

a(k-3,k-l) 

a(k-L,k-l) 

(A.32) 

Using Equations (A.3, A.20, 4.7), the first term in F3(k) can be 

written 
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a(k-2,k-l) «• -p(k-2,k-l) (A.33) 

p(k-2,k-l) + cD(k-2,k-l) 

p(k-2,k-2) + a(k-2,k-2) 

+ wA(k-l) p(k-2?k-3) + a(k-2,k-3) 

• ' ' # . • . 

p(k-2,k-L) + a(k-2,k-L) 

p(k-2,k-L-l) +a(k-2,k-L-l) 

The a(k-2, k-i).terms in the above equation are identical to the terms 

in the second column of A(k). By the same procedure used to obtain 

Equation (A.33), the second term in F3(k) can be written as 

a(k-3,k-l) = -p(k-3,k-l) (A.3A) 

p(k-3,k-l) + cD(k-3,k-l) 

p(k-3,k-2) + a(k-3,k-2) 

+ wA(k-l) p(k-3,k-3) +a(k-3,k-3) 

* 

p(k-3,k-L) + a(k-3,k-L) 

p(k-3,k-L-l) + a(k-3,k-L-l)_ 

The a(k-3,k-i) terms in the above equation are identical to the terms in 

the third column of A(k). Continuing the above procedure, each term in 

£3(k) can be written in terms of values in the first row of WM(k) and 

columns of A(k). The algorithm for computing F3(k) is summarized by the 

following equations: 

F3i-lOO = a(k-i,k-l) (A.35) 

•p(k-i,k-l) +mx 1(k)[p(k-i,krl) 
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L+l 

+ <Kk-l,k-l)]'+2J {W^ j(k)[p(k-i,k-j) 

j=2 

+ A (k)]} for i=2,3, ...,L 
J > 

Computation of Form 4 Terms 

Define the vector F4(k) containing the Form 4 terms by 

F4(k) = 

*s(k,k-l) 

s(k,k-2) 

_s(k,k-L)_ 

(A.36) 

Comparison of Equations (A.19, A.36) and the definitions of Equations 

(A.3, A.4) leads to the conclusion that F_4(k) can be computed in the 

same manner as Ft(k). The procedure is to start with the last term in 

J[4(k) and work up to the s(k,k-l) term. Again, the assumptions re

garding the correlation times described in the discussion of the Form 1 

terms are necessary to insure a fisced computational procedure. The 

resulting algorithm is summarized by the following equations: 

F4L(k) = s(k,k-L) = -<D(k-L,k) 

+ WK^ (k)[<Kk-L,k) + <j(k,k-L)] 

F4i(k) = s(k,k-i) = -0(k-i,k) 

+ WM ,(k)[(j>(k-i,k) + g(k,k-i)] 
1,1 

L+l-i 

+ V {WM.J(k)[ct»(k+l-i-j,k) +F4.+j_1(k)]} 

for i = L-l,L-2, ..., 1 

(A.37) 
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Computation of Form 5 Terms 

Define the Vector F5(k) containing Form 5 terms by 

F5(k) A 

"u (k-1, k-1)* 

u(k-l,k-2) 

U(k-l,k-L) 

(A.38) 

Since the first term of F5(k) is just the mean-square error of the 

estimate x (k-1), j.t can be computed by Equation (4.24) expressed 

at k-1: 

F5-(k) = u_(k-l,k-l) (A.39) 

= w (k-l)S(k-l)w(k-l) 

- 2 7T(k-l)w(k-l) + p(k-l,k-l) 

This term is computed after x(k-l) is obtained. 

The second term of F5(k) can be expanded by Equations (A.6, A.20, 

4.7) to obtain 

F52(k) = u(k 

= E{n 

= -a(k-l,k-2) + 

-l,k-2) 

(k-2)[-£TE(k-l) - r(k-l) + w
T(k-l)m(k-l)]) 

a(k-I,k-2) + s(k-l,k-2) 

a(k-2,k-2) '.+ u(k-2,k-2) 

a(k-3,k-2) + u(k-2,k-3) 

(A.40) 

Irl the above equation 

the first row of th 

WT(k-l) 

a(k-L-l,k-2) + u(k-2,k-L-l)^ 

all of the a(k-i,k-2) terms are available from 

A(k) storage matrix, the s(k-l,k-2) term is 
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the first term in the VN(k) storage vector, and all of the fi(k-2,k-i) 

terms are available from the first column of the B(k) storage matrix. 

Expanding the third term of F5(k) in a similar manner gives 

F53(k) = n(k-l,k-3) (A.41) 

= E{n(k-3)[-aT£(k-l)-r(k-l) + wT(k-l)m(k-l)]} 

a(k-l,k-3 + s(k-l,k-3) 

a(k-2,k-3) + |i(k-2,k-3) 

a(k-3,k-3) + fi (k-3, k-3) 

a(k-4,k-3) + ii(k-3,k-4) 

* -a(k-l,k-3) + w (k-I) 

a(k-L-l,k-3) + |i(k-3,k-L-l) 

The a(k-i,k-3) terms in the above equation are available in the second 

row of A(k), and s(k-l,k-3) is the second term in VN(k). The fi(k-i, k-3) 

terms are in the second row of B(k) and the fi(k-3,k-i) terms are in the 

second column of B(k). Continuing the same procedure of expanding terms 

in F5(k) results in a general expression of the form 

FS^k) =n(k-l,k-i) 

«• E{n(k-i)[-<a
T£(k-l)-r(k-l) + wT(k-l)m(k-l)]} 

~a(k-l,k-i) + s(k-l,k-i) 

a(k-2,k-i) + |i(k-2,k-i) 

a(k-3,k-i) + ji(k-3,k-i) 

(A.42) 

» -a(k-ljk-i) + w (k-l) 

a(k-i,k-i) + n(k-i,k-i) 

a(k-i-l,k-i) + n(k-i,k-i-l) 

_a(k-L-l,k-i) + |i(k-i,k-L-l)_ 
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The a(k-j,k-i) terms in the above equation are available from row 

i-1 of A(k), and the s(k̂ -l,k-i) term is available as the value of 

VN. (k). The u(k-j,k-i) terms are available from row i-1 of B(k) 

and the |j,(k-i,k-j) terms are available from column i-1 of B(k). 

The above procedure for computing F5(k) is implemented by 

the following equations: 

F51(k) = P(k-l) (A.43) 

= wT(k-l)S(k-l)w(k-l) 

-27T(k-l)w(k-l) + pCk-^k-l) 

F5.(k) = -A
±_i9lW +WM 1 1(k)[A1_i (k) + VNt-1(k)] 

ttlMi;j.(k)CAl-l.j(k)+BI-l,j-l(k)]) 

j=2 

L+l 

+ V im, (k)[A. ' (k) + B n . n(k)J} I l l,qx /L l-l,q q-l,i-lx /JJ 

q=i+l 

for i = 2,3,...,L . 

Procedure for Updating and Initializing the 

Storage Matrices 

After the above procedures are used to compute the terms needed 

for determining S(k) and ?(k), the storage matrices defined by Equations 

(A.15^A.18) must be updated to k+1 so that they contain terms needed to 

compute S(k+1) and ^(k+1). Substituting k+1 for k in the definitions 

of the storage matrices gives 
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A(k+1) « 

B(k+1) « 

a(k,k-l) | a(k-l,k-l) | a(k-2,k-l) ... a(k-L,k-l) 

a(k,k-2) | a(k-l,k-2) | a(k-2,k-2) ... a(k-L,k-2) 
* • 

a(k,k-L) | a(k-l,k-L) I a(k-2,k-L) ... a(k-L,k-L) 

^(k-l,k-l) I 0 0 0 ... 0 

M(k-l,k^2) | n(k-2,k-2) 0 0 ... 0 

n(k-l,k-3) | ̂ (k-2,k-3) n(k-3,k-3) 0 ... 0 

(A.44) 

(A,45) 

,j(k-l,k-L+l) | n(k-2,k-L+l) n(k-3,k-L+l) 

H.(k-l,k-t) | u(k-2,k-L) n(k-3,k-L)-- • 

"wT(k) " 

WM(k+l)•»" w T (k - l ) 
• 
• 
wT(k-L+l)_ 

" s ( k , k - l ) 

VN(k+l)•;. * 
s ( k , k - 2 ) 

s (k ,k -L+l ) 

H(k-L+I,k-L+1) 

H<k-L+l,k-L) 

(A.46) 

(A.47) 

The partitioning of A(k+1) and B(k+1) shown above is to clarify the 

following updating procedure. The first column of A(k+1) is equal to 

FjL(k) defined by Equation (A. 19). The second column of A(k+1) is equal 

to F2(k) defined by Equation (A.29). The first row, columns three 

through L+l of A(k+1) is equal to the transpose of F3(k) defined by 

Equation (A.32). Only the submatrix obtained by deleting the first row 

and first two columns of A(k+1) remains to be updated. This submatrix 

is equal to the submatrix obtained by deleting the last row and the first 
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and last columns of the A(k) matrix defined by Equation (A.15). 

The first column of B(k+1) is equal to Ff>(k) defined by Equation 

(A.38). The submatrix obtained by deleting the first row and first 

column of B(k+1) is equal to the submatrix obtained by deleting the 

last row and the last column of the B(k) matrix defined by Equation 

(A.16). 

The updated matrix WM(k+l) of Equation (A.46) is obtained by 

shifting each of the first L-1 rows of WM(k) down by one row and setting 

the first row of WM(k+l) equal to the transpose of w(k) computed by 

Equation (4.31). 

The updated VN(k-H) of Equation (A.47) is equal to the first 

L-1 terms of F4(k) defined by Equation (A.36). 

The above procedure completes the updating of the storage 

matrices. As mentioned in Chapter IV, the augmented memory estimator 

is initialized by storing the first L measurements and starting the 

recursive procedure at k=L. The initial values of m(L), ?(L), and S(L) 

are given in Equations (4.32-4.34). The storage matrices of Equations 

(A.15-A.18) must also be initialized for k=L. Since x(k) = y(k) = x(k) 

+ v(k) for k<L, the error n(k) for k < L becomes n(k) = v(k). Then the 

correlation functions involving the error become 

a(k,k-i) = E [r(k)v(k-i)] = <t>(k,k-i) (A.48) 

s(k,k-i) = E [v(k)v(k-i)] = a(k,k-i) 

u(k,k-i) = E [v(k)v(k-i)] = a(k,k-i) 

for k < L and i> 0. Then for k=L the initialized storage matrices are 

given by 
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A(L) = 

V(L- l ,L-2) *(L-2,L-2) . . . <D(-l,L-2) 

4i(L-l ,L-3) <D(L-2,L-3) . . . <t>(-l,L-3) 

j D ( L - l , - l ) <D(L-2,-l) . . . • • ( -1 , -1) _m 

(A.49) 

B(L) = 

a(L-2 ,L-2) 0 0 0 . 

a (L-2 ,L-3) g(L-3,L-3) 0 0 . 

C J ( L - 2 , L - 4 ) a (L-3 ,L-4) a (L-4 ,L-4) 0 . 

- • 

a(L-2*0) a (L-3 ,0 ) a (L-4 ,0 ) 

a ( L - 2 , - l ) a ( L - 3 , - l ) a ( L - 4 , - l ) 

WM(L) = 

1 0 0 

1 0 0 

VN(L) = 

1 0 0 . . . 0 

a (L - l ,L -2 ) ' 

a ( L - l , L - 3 ) 

a (L- l , '0 ) 

0 

0 

0 

a (0 ,0) 

a ( 0 , - l ) 

(A.50) 

(A.51) 

(A.52) 
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