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Abstract We present a model for simulating normal forces arising during a grind-
ing process in cement for single diamond grinding. Assuming the diamond to have
the shape of a pyramid, a very fast calculation of force and removed volume can be
achieved. The basic approach is the simulation of the scratch track. Its triangle pro-
file is determined by the shape of the diamond. The approximation of the scratch
track is realized by stringing together polyhedra. Their sizes depend on both the
actual cutting depth and an error implicitly describing the material brittleness.
Each scratch track part can be subdivided into three three-dimensional simplices
for a straightforward calculation of the removed volume. Since the scratched min-
eral subsoil is generally inhomogeneous, the forces at different positions of the
workpiece are expected to vary. This heterogeneous nature is considered by sam-
pling from a Gaussian random field.

To achieve a realistic outcome the model parameters are adjusted applying
model based optimization methods. A noisy Kriging model is chosen as surrogate
to approximate the deviation between modelled and observed forces. This devia-
tion is minimized and the results of the modelled forces and the actual forces from
conducted experiments are rather similar.
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1 Introduction

Core drilling with diamond impregnated tools is a widely used method in the
construction industry. The various components of the machined material and the
tool results in a very complex process. For better understanding of this process
simulation models are developed in addition to conducted experiments. Due to
the high complexity, the models and experiments often focus on a part of the
process to reduce the number of influencing factors. Brinksmeier et al. [3] give an
overview about the various models for the description of forces, material removal
and temperature in grinding processes. Despite the existence of various models,
the many different constellations of material, tool production parameters and the
kinds of processes result in a need for further research.

In this work we will focus on the forces arising in a grinding process with
a pyramidal diamond. Inspired by the work of Raabe et al. ([13], [14], [15]) we
derive a force model based on the removed material volume and the material
heterogeneity (see sec. 3). Contrary to the model of Raabe et al., we reduce the
simulation of the complete workpiece to the scratch track produced by the diamond
in order to reduce the time complexity (see discussion in sec. 4).

To achieve realistic outcome the model parameters are adjusted in order to
minimize the deviation between the modelled and observed forces of conducted
experiments (see sec. 2). For the parameter adjustment, model based optimiza-
tion methods for stochastic black box functions are applied, in which the chosen
deviation measure is approximated by the noisy Kriging model (sec. 5). Since the
results of the optimization are very promising, the optimized model is used for the
optimization of the drilling process (sec. 6). Thereby, the two process parameters
cutting speed and feed speed are optimized in order to minimize the work needed
to drill a predefined total depth.

2 Experiments

In core drilling a diamond tipped drill core bit consisting of several segments is
used. These rectangular segments are manufactured in a powder metallurgical
process route by sintering a mixture of diamonds and metal powder. The finished
segments are attached to a circular body in equally spaced intervals. During the
drilling process the role of the metal matrix surrounding the diamonds is to pro-
tect the diamonds against an early break out, whereas the diamonds remove the
material.

Since in the core drilling process many different factors influence the strength
of the arising forces [4], experiments with only one diamond are conducted. The
so called single grain scratch tests keep the number of influencing factors small
due to the absence of diamond break outs, interactions between diamonds and the
influence of the metal matrix surrounding the diamonds in a segment. A further
reduction of influencing factors is carried out by the application of dressing dia-
monds, which have the shape of a pyramid with angle α = 110◦ (fig. 1(a)). During
the test a dressing diamond scratches into the material sample on a circular path
with radius r [mm], a constant feed speed vf

[
mm
min

]
and a constant cutting speed

vc
[
m
min

]
(fig. 1(b)). We consider the 16 speed combinations of the 42−full facto-

rial design with the factor levels vc ∈ {40.5, 117, 193.5, 270} and vf ∈ {2, 4.5, 7, 9.5}.
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On each of five circular disks (material samples) twelve scratch tests can be con-
ducted using the radii r ∈ {16, 17, . . . , 27}. Since scratch tests are destructive tests
repetitions on the same sample with the same radius and speed combination are
not possible. Therefore, we use every second radius for the repetition of the speed
combination applied on the adjacent radius. That means that the two experiments
on the radii r and r + 1 for r ∈ {16, 18, 20, 22, 24, 26} have the same speed param-
eters

(
vc, vf

)
. We allocate the 16 speed combinations to the six blocks (number

of radii without radii for repetitions) of size five (number of material samples) by
optimizing the D−criterion [16]. Let denote R

(
vc, vf

)
the set of radii with the

same speed combination
(
vc, vf

)
and nR

(
vc, vf

)
the number of elements in this

set. Since each speed combination is repeated on the adjacent radius, each set
contains at least two elements.
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Fig. 1 (a) Dressing diamond, (b) experimental setup for single diamond scratching, (c) normal
forces on cement for the speed combination vc = 193.5 m

min
, vf = 7 mm

min
.

During each experiment the arising normal forces are recorded with a sampling
rate of 200 kHz. The experiment is terminated when a total depth of 0.08 mm is
reached. Since the diamond is pyramidal, the profile of the resulting scratch track
has the shape of a triangle. If the diamond only removes the material in front
of it, the removal mechanism is exact and the resulting scratch track profile is a
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triangle with a height of h = 0.08 mm and a base width of w = 2h tan α
2 . This

removal mechanism can be observed on ductile materials, e.g. steel. Mineral sub-
strates, like basalt or cement, tend to brittle fracture and therefore generally show
a more irregular removal. In the experiments, we consider the materials basalt,
cement, concrete (mixture of cement and basalt), steel and reinforced concrete.
The described design of experiments is applied to each material.

The resulting normal forces show a linear increase in time and an increase in
variance (see fig. 1(c)). Both characteristics can be explained with the shape of
the used diamond and the increasing contact area between workpiece and diamond
during the experiment. The seasonal component has two causes. Material inhomo-
geneity leads to different force values. Since the diamond scratches on a circular
path this pattern is repeated in each revolution in more or less the same way de-
pending on the degree of the occurring inhomogeneity. Moreover, the sinusoidal
course can be explained by the workpiece tilting. This phenomenon is particularly
well detectable at the beginning of the force time series when the signal temporarily
drops to zero, because the contact between workpiece and diamond is interrupted.

3 Simulation Model

In this section we will introduce a model for the simulation of normal forces
Ft, t ∈ [0, T ], arising during a scratch test with the known parameter settings(
vc, vf , r

)
. Assuming that the majority of the time series course can be explained

with the material heterogeneity and the contact area between diamond and work-
piece (sec. 2) or removed volume, respectively, we model the normal forces

Ft =
gzv
r
· zt · vt +

gv
r
· vt, t ∈ [0, T ] (1)

as a sum of removed volume vt and the interaction ztvt of removed volume and
material heterogeneity zt. In the following implementation we consider the dis-
cretization in time ti (i = 0, . . . , Nν) with t0 = 0 and tNν = T , where N is the
number of revolutions and ν the number of simulated observations per revolution.

The basic approach is the approximation of the scratch track produced by
the dressing diamond. For this purpose we place ν equally spaced triangles on the
diamond’s circular path with radius r for each revolution (fig. 2(a)). By connecting
each two adjacent triangles we can form a scratch track part representing one of
our observations (see fig. 2(b)). To complete the last revolution we have to place
a further triangle at the identical angle on the circular path as the first triangle,
after which Nν+1 scratch track triangles are placed in total for N revolutions with
ν observation. Let D =

{
Dj | 1 ≤ j ≤ νN + 1

}
denote the set of all these triangles.

The size of the jth (j = 1, . . . , Nν + 1) triangle

Dj =

d3j−2

d3j−1

d3j

 =

(−wj + r) · cos (kj) (−wj + r) · sin (kj) 0
(wj + r) · cos (kj) (wj + r) · sin (kj) 0

r · cos (kj) r · sin (kj) −hj

 ∈ R3×3 (2)

with the half width wj=tan
(
α
2

)
hj at the angular frequency kj= 2π

ν [(j − 1) mod ν]
basically depends on the intrusion depth hj and the angle α of the diamond. The in-
crease of the intrusion depth per observation can be calculated as
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a =
vf
vcν

2πr10−3 [mm]. If the removal mechanism is realized exactly as described
in section 2, the jth intrusion depth is just hj = a (j − 1). To enable the simu-
lation of brittle material the intrusion depth is modelled as hj = a (j − 2) + a?j
for j = 2, . . . , νN + 1 (h1 = 0), where a?2, . . . , a

?
Nν+1 are i.i.d. Beta (0, aν, p, q)-

distributed intrusion depth innovations. The parameters of this generalized beta
distribution determinate the degree of the material brittleness. While the first two
parameters limit the intrusion depths to the interval [0, aν], the parameters p and
q specify the shape of the distribution.

(a) (b)

Fig. 2 (a) Scratch track triangles for the first revolution and (b) tessellation of one scratch
track part into three simplices (red, green and blue).

For the approximation of the removed volume, the space between each two
adjacent triangles and thus the volume of each scratch track part is considered.
The volume of the ith scratch track part can be determined by subdividing the
space between the corresponding triangles Di and Di+1 into three 3−dimensional
simplices (fig. 2(b)). Let

Si =

s3i−2

s3i−1

s3i

 =

3 · i− 2 3 · i− 1 3 · i 3 · i+ 1
3 · i+ 1 3 · i+ 2 3 · i+ 3 3 · i− 1

3 · i 3 · i− 1 3 · i+ 3 3 · i+ 1

 ∈ N3×4 (3)

be the matrix with the indices of the triangle points corresponding to the sim-
plices. Since the volume of a 3−dimensional simplex with vertex indices sl =
(sl1, sl2, sl3, sl4), l = 1, . . . , 3Nν, can be calculated as

V (sl) =
1

3!
|detMl| with Ml =


1 dsl1
1 dsl2
1 dsl3
1 dsl4

 =


1 dsl1,1 dsl1,2 dsl1,3
1 dsl2,1 dsl2,2 dsl2,3
1 dsl3,1 dsl3,2 dsl3,3
1 dsl4,1 dsl4,2 dsl4,3

 (4)

we can derive the volume of this scratch track part as

V (Si) = V (s3i−2) + V (s3i−1) + V (s3i)

=
1

3!

[
|2hiwi (wi+1 − r)|+ |2hi+1wi+1 (wi + r)|

+ |hi+1wi (wi+1 − r)− hiwi+1 (wi + r)|
]

sin

(
2π

ν

) (5)
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with wi = tan
(
α
2

)
hi. After the first revolution the previously removed volume has

to be considered, so that the effectively removed volume is obtained by

vi =


0, i = 0

V (Si) , i ≤ ν
V (Si)− V (Si−ν) , i > ν

(i = 0, . . . , Nν) . (6)

Since the scratch track is a model of the removed material, each point of the
scratch track can be considered as a material sample at the corresponding point
of the workpiece. Therefore, the material heterogeneity can be taken into account
by sampling values for each point from the process

Z (d) = µ+G (d) + ξ, (7)

where G is a Gaussian process with E (G (d)) = 0, V ar (G (d)) = σ2, exponential
correlation function

Rij = Cor (G (di) , G (dj)) = exp

(
−
∥∥di − dj∥∥

ψ

)
(8)

and ξ ∼ N
(

0, σ2ξ

)
. The range parameter ψ states the strength of the correlation

of two variables regarding their distance from each other. Thus, lower values of ψ
result in smaller correlations which in turn can be interpreted as a higher degree
of heterogeneity. Conversely, a big range allows the modelling of uniform material
structure without sudden changes. The range parameter is only relevant, if the
variance σ2 is large enough. For the heterogeneity model of the ith observation
the mean value

zi =

{
0, i = 0
1
6

∑3·i+3
j=3·i−2 Z (dj), i > 0

(i = 0, . . . , Nν) (9)

is computed (fig. 3(a)). Figure 3(b) shows a scratch track of the first revolution
with ν = 100 observations and heterogeneity values z1, . . . , z100 represented by
different color shades.

(a) (b)

Fig. 3 (a) Scratch track part with sampled heterogeneity values for the six points represented
by different color shades for the points and the mean value (color of track part) and (b)
scratch track of the first revolution with ν = 100 observations (scratch track parts) with
assigned heterogeneity values.

In our force model the removed volume vt determines the slope of the resulting
forces. Since the volume of a scratch track part depends on the resolution ν of the
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simulation, the volumes are weighted by the factor gv, which has to be estimated.
For the same reasons, the interaction zivi is multiplied with the factor gzv. By
the multiplication of the heterogeneity time series with the volume time series, we
achieve a continuous increase in the variance of the modelled force.

4 Comparison of time complexity

In this section we discuss the time complexity of the presented scratch track model,
the Raabe et al. ([13], [14], [15]) model and the Herbrandt et al. [5] model, which
includes first simplifications of the Raabe et al. [13] model in order to reduce the
time complexity.

In the model of Raabe et al. ([13], [14], [15]) the workpiece is simulated with
two sets of nR and kR points, where nR < kR (coarse and fine lattice). For each
point of the first set a value from a Gaussian random field (time complexity O

(
n3R
)
,

[9]) is sampled. The values for the points of the finer lattice are interpolated from
the coarser lattice with ordinary Kriging (time complexity O

(
n3R + nRkR

)
, [9]).

The workpiece (as well as the diamond) is described by triangulating the corre-
sponding point sets of size kR (mR for the diamond) into 3-dimensional simplices
by applying the Delaunay tesselation (O

(
k2R
)

and O
(
m2
R

)
, respectively, [10]). The

interaction between diamond and workpiece is determined by examining if one
of the workpiece points is inside of one of the diamond simplices (O

(
IRkRm

2
R

)
).

This results in a worst case time complexity of O
(
n3R + nRkR + k2R + IRkRm

2
R

)
.

To reduce this complexity we developed a model where only the workpiece surface
is modelled with kH points [5]. This approach reduced the worst case complexity
to O

(
n3H + nHkH + IHkHm

2
H

)
, since we do not tesselate the kH points of the finer

lattice. Additionally, the typically used numbers nH ,mH and IH are smaller than
the numbers in the Raabe et al. model (see table 1).

Table 1 Typically used numbers of the modelled observations I, points in coarse lattice n,
points in fine lattice k and points in diamond m for the three models.

Raabe et al. [13] Herbrandt et al. [5] Scratch track based model

process I IR = 57803 IH = 6800 IS = 3400

workpiece
n nR = 6500 nH = 496 nS = 10203
k kR = 9400 kH = 16960 −

tool m mR = 54500 mH = 33 −

The scratch track based model presented in this section needs the sampling
from the Gaussian random field for the nS = 3IS + 3 points, where IS = νN ,
and thus has a time complexity of O

(
n3S + IS

)
. From the numbers of table 1 it

seems that the scratch track based model has the worst runtime. In the practi-
cal application, however, the cubic term of the random field generation does not
dominate the execution time. For the two faster models table 2 shows the average
total runtimes for the computation of the models and the average runtimes for the
generation of the Gaussian random field. In the scratch track based model about
85% of the time is used for the random field. Despite the high number of points
nS , the computation is done in less than two seconds. In the Herbrandt et al. [5]
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model the random field part accounts for less than 1% of the total runtime. This
small percentage is firstly due to the small number nH , but especially it results
from the high computation time in total.

Table 2 Average runtimes (in seconds) for the generation of the Gaussian random field and
the computation of total model.

Herbrandt et al. [5] Scratch track based model

Gaussian random field 0.055 1.58
total 367 1.93

The difference between the total runtimes of the two models suggests that the
generation of the Gaussian random field is not the dominant factor concerning the
runtime of the Herbrandt et al. model. Therefore, applying the presented method
is faster by orders of magnitude.

5 Model based Optimization

To obtain a realistic outcome, the model parameters θ =
(
gz , gv, µ, σ

2, σ2ξ , ψ, p, q
)T
∈

Θ ⊂ R8 have to be adjusted. The forces from the conducted experiments (see sec. 2)
are used as reference. To achieve an appropriate correspondence between modelled
and observed forces, the parameters are adjusted for each speed combination. For
this purpose the expected deviation

E
(∥∥f (vc, vf , r)−F (θ, r)

∥∥
D

)
= E

(
D
(
f
(
vc, vf , r

)
,F (θ, r)

))
(10)

of a measured force f
(
vc, vf , r

)
from the model force F (θ, r) is minimized. By

estimating the expectation with the arithmetic average of M (here: M = 25)
realizations F of the force model F and nR

(
vc, vf

)
observed forces f

(
vc, vf , r

)
with radii r ∈ R

(
vc, vf

)
, the optimal parameter settings for one speed combination

are obtained as

θ?
(
vc, vf

)
= arg min

θ∈Θ
D̄
(
f
(
vc, vf

)
, F (θ)

)
= arg min

θ∈Θ

1

3MnR
(
vc, vf

) ∑
r∈R(vc,vf)

M∑
m=1

[
dR

(
f̃
(
vc, vf , r

)
, F̃ (θ, r)

)
+ dβ

(
f?
(
vc, vf , r

)
, F ? (θ, r)

)
+ dS

(
f̃
(
vc, vf , r

)
, F̃ (θ, r)

) ]
,

(11)

where the terms are discussed in the following. The considered deviation mea-
sure D̄ is the mean of measures for the comparison of the three characteristics
slope, range, and spectrum. For the comparison the forces f = f

(
vc, vf , r

)
={

fti
(
vc, vf , r

)
| 0 ≤ ti ≤ Tf , i = 1, ..., L, L number of observations

}
and F =

F (θ, r) = {Fti (θ, r) | 0 ≤ ti ≤ TF , i = 1, ..., Nν} have to be aligned. Due to the
different sampling rates and since the sampling rate of f is very high, we decide
to exploit the characteristics of the time series, rather than applying very time
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consuming methods like the dynamic time warping. Therefore, the forces f and F

are aligned by the intercepts of the corresponding linear models

f = βf0 + βf1t+ εf and F = βF0 + βF1t+ εF . (12)

Therefore, the force with the smaller estimated intercept (β̂f0 or β̂F0) is shifted
by redefining the starting time

f? =

f, β̂f0 > β̂F0{
fti | 0 ≤ ti −

β̂F0−β̂f0

β̂f1

≤ Tf −
β̂F0−β̂f0

β̂f1

= Tf?

}
, β̂f0 ≤ β̂F0

(13)

(F analogue). For the comparison of range and spectrum the forces are additionally
detrended, so that

f̃ =
{
f?ti − β̂f?0 − β̂f?1ti | 0 ≤ ti ≤ min

{
Tf? , TF?

}
= Tf̃

}
(14)

with f? = βf?0 + βf?1t+ εf? (F analogue). Then the range difference is

dR

(
f̃ , F̃

)
=

∣∣∣∣∣ max
0≤t≤Tf̃

f̃t − min
0≤t≤Tf̃

f̃t − max
0≤t≤TF̃

F̃t + min
0≤t≤TF̃

F̃t

∣∣∣∣∣ (15)

and the slope difference is

dβ
(
f?, F ?

)
=
∣∣∣β̂f?1 − β̂F?1

∣∣∣ . (16)

Since the modelled sampling rate

νF =
νvc103

2πr60

[
1

s

]
(17)

is much smaller than the sampling rate νf
[
1
s

]
and we consider both time series

on the same time interval, the number of considered observations n
F̃

of F is also
smaller than n

f̃
. Therefore, the spectral differences are only calculated at the

Fourier frequencies

ϕj =
j

n
with n = n

F̃
+

∣∣∣∣ min
(a,b,c)∈N3

n
F̃
− 2a3b5c

∣∣∣∣ and j = 1, . . . ,
⌊n

2

⌋
(18)

of the shorter time series F̃ . This approach allows the application of the fast Fourier
transform (FFT, [2]) algorithm, which by itself enables a fast computation of the
periodogram

I
F̃ (ϕj) =

1

νFnF̃

∣∣∣∣∣
nF̃∑
k=1

F̃k exp (−i2πϕjk)

∣∣∣∣∣
2

(19)

as an estimate of the spectrum of F̃ . By adjusting the angular frequencies 2πϕj
to the sampling rate of the measured signal f̃ , we obtain the periodogram

I
f̃

(ϕj) =
1

νfnf̃

∣∣∣∣∣∣
nf̃∑
k=1

f̃k exp

(
−i2πϕj

νF
νf
k

)∣∣∣∣∣∣
2

(20)
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of f̃ at the same frequencies ϕj and can determine the spectral differences

dS

(
f̃ , F̃

)
=

bn2 c∑
j=1

∣∣∣If̃ (ϕj)− IF̃ (ϕj)
∣∣∣. (21)

Due to the high sampling rate of f , the calculation of D̄ is time consuming.
For this reason we make use of model based optimization techniques, where the
objective function (here: D̄) is substituted with a surrogate model that allows a
fast evaluation of many parameter constellations θ ∈ Θ [7]. In the sequential op-
timization the three steps (1) estimation of the surrogate function, (2) prediction
of the best parameter setting, (3) evaluation of this setting with the objective
function are repeated in each iteration until a stop criterion (e.g. number of itera-
tions) is fulfilled. Before the first estimation is performed, the objective function is
evaluated on a space filling design (e.g. Latin hypercube) to provide data for the
estimation. In the following iterations this data set is supplemented by the points
evaluated in step (3). The procedure used for the model parameter adjustment is
summarized in the flowchart below (fig. 4).

Evaluate D̄ on initial design Θ0:
D̄ (θi) = yi with θi ∈ Θ0, i = 1, . . . , n0

Estimate surrogate func-
tion ŷ and uncertainty ŝ2

conditionally on y1, . . . , yn

Optimize infill criterion:
θn+1 = arg max

θ∈Θ
AEI (θ)

Evaluate objective function D̄ in θn+1:
D̄ (θn+1) = yn+1

n < N θ? = θargmin
1≤i≤N

yi

n = n0

n = n+ 1 no

y
es

Fig. 4 Steps of the model based optimization used for the adjustment of the model parameters
θ by minimizing the deviation measure D̄.

Since the modelled force F is stochastic, the measure D is also stochastic. In
order to take this fact into consideration, we choose the noisy Kriging model as
surrogate for D̄ [11]. Here the process

Y (θ) = κ+H (θ) + ε, θ ∈ Θ (22)

with constant trend κ, a Gaussian process H with E (H (θ)) = 0 and stationary ker-
nel function h (θi, θj) = δ2ρ (θi − θj , ϕ) and ε ∼ N

(
0, τ2

)
represents the underlying
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process of D̄. Let denote k (θi, θj) = δ2ρ (θi − θj , ϕ)+τ21θi=θj the covariance func-
tion of the process Y . For n design points θ1, . . . , θn the variables Y (θ1) , . . . , Y (θn)
follow the joint distribution

Y =

Y (θ1)
...

Y (θn)

 = 1κ+

H (θ1)
...

H (θn)

+

ε1...
εn

 = 1κ+H + ε

∼ N
(

1κ, δ2R (ϕ) + τ2In×n
)

= N (1κ,K)

(23)

with covariance matrix

K =


k (θ1)T

...

k (θn)T

 (24)

consisting of the covariance vectors k (θi) = [k (θi, θ1) , . . . , k (θi, θn)]T between the
observations corresponding to the points θi and θ1, . . . , θn. Minimizing the mean

squared prediction error under the condition E (Y (θ)) = E
(
Ŷ (θ)

)
provides the

Kriging predictor

Ŷ (θ) = E (Y (θ) | Y ) = κ̂+ k (θ)T K−1 [Y − 1κ̂] (25)

with the estimate κ̂ = 1TK−1Y
1TK−11

for κ and the Kriging variance

ŝ2 (θ) = V ar (Y (θ) | Y )

= k (x, x)− k (θ)T K−1k (θ) +

(
1− 1TK−1k (θ)

)2
1TK−11

(26)

for each parameter constellation θ ∈ Θ. The parameters δ2, τ2, ϕ can be estimated
by maximizing the likelihood of Y . Let denote ŷ (θ) = Ê (Y (θ) | Y = y) the Kriging

prediction and ŝ2y (θ) = V̂ ar (Y (θ) | Y = y) the variance estimated on the values

y = (y1, . . . , yn)T of the objective function for the points θ1, . . . , θn. The next point
θn+1 for the evaluation with the objective function is chosen by maximizing the
augmented expected improvement [6]

AEI (θ) = EIθmin
(θ)

[
1− τ̂y

(
ŝ2y (θ) + τ̂2y

)− 1
2

]
(27)

over θ ∈ Θ where

EIθmin
(θ) = E (max {(ŷ (θmin)− Y (θ) |Y = y, 0})

= (ŷ (θmin)− ŷ (θ))Φ

(
ŷ (θmin)− ŷ (θ)

ŝy (θ)

)
+ ŝy (θ)φ

(
ŷ (θmin)− ŷ (θ)

ŝy (θ)

) (28)

is the expected improvement over the effective best solution

θmin = arg min
θ∈{θ1,...,θn}

ŷ (θ) + ηŝy (θ) (29)
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with Φ the Gaussian cumulative distribution function, φ the Gaussian density func-
tion, a parameter η (here: 1) and τ̂2y the estimated value for the error variance τ2.
The optimization of this infill criterion AEI is solved by the focus search proce-
dure [1]. In this procedure the parameter space Θ is gradually limited around the
points with high values of the augmented expected improvement. For the explo-
ration of the parameter space and each considered subspace points are sampled
from a random Latin hypercube design [8]. The next point is chosen as the point
of any subspace with the maximal observed infill criterion.

The described optimization is performed for each of the sixteen speed com-
binations of the full factorial design (see sec. 2) with the R package “mlrMBO”
([12], [1]). Each optimization starts with a Latin hypercube design consisting out
of n0 = 80 points θ1, . . . , θ80. During the optimization 720 further points are found
using the augmented expected improvement and evaluated with the objective func-
tion. As covariance function h the anisotropic Matérn(5/2) kernel with different
range parameters ϕ1, . . . , ϕ8 for the eight dimensions is chosen.

6 Results

Figure 5 shows 50 realizations of the force model with the optimal parameter
setting found with the model based optimization methods described in the previous
section. The fit between the observed force (black) and modelled forces (blue,
transparent) is very promising. The goodness of each fit is unfortunately related
to the degree of congruence of the observed forces for the repetitions of the radii
r ∈ R

(
vc, vf

)
(see sec. 2). If the discrepancies between the repetitions are too

strong, the radius parameter in the model is not able to smooth out the resulting
variation and the fit becomes poor. Since in the most cases this issue is not relevant,
we use the optimized model for the analysis of the influence between the speed
parameters and the conducted physical work.

n
o
rm

a
l

fo
rc

e
[N

]

time [sec]

0
5

1
0

1
5

2
0

0 0.2 0.4 0.6

Fig. 5 Fifty realizations of the force model with optimal parameter setting (blue, transparent)
and observed force (black) for the speed combination vc = 270 m

min
and vf = 7 mm

min
on the

radius of 18 mm.
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For this analysis we use the force model to predict the best speed combina-
tion with minimal work needed to drill a desired depth A (here: A = 0.07 mm).
Therefore, the work

W
(
vc, vf , r

)
=

∫ s(A)

0
F̄s
(
θ?
(
vc, vf

)
, r
)
ds (30)

with the covered distance

s (A) = 10−3A

a

√(
2πr

ν

)2

+ a2 (31)

in meters for the drilling depth of A mm is approximated. The force F̄s for the

covered distance s = s (t) =
(
t1000 vcν60 2πr −

1
2

)√(
2πr
ν

)2
+ a2 (s (t0) = 0) is calculated

in the same way as F , but with the expected triangle height E (hj) = (j − 2) a +
E (a?) (j > 1) in equation (2) and (5) and the expected heterogeneity zi = µ in
equation (9). In figure 6(a) the force F̄s (red curve) is shown exemplarily for one of
the parameter settings

(
vc, vf , r

)
. The red hatched area under the curve of F̄s is the

work corresponding to the drilling depth of 0.07 mm. After determining the work
for all different parameter settings

(
vc, vf , r

)
described in section 2, a generalized

linear model with the log-link and gamma distributed errors is fitted to the data
considering linear, quadratic and cubic effects as well as all interactions of vc, vf
and r. The predicted surface of the selected model

W =β1vc + β2vf + β3r + β4v
2
c + β5v

2
f + β6r

2 + β7v
3
c + β8v

3
f + β9r

3

+ β10v
2
cvf + β11v

2
fvc + β12v

2
f r + β13r

2vc + β14r
2vf

+ β15v
2
cv

2
f + β16r

2v2f + β17r
2v2c

+ β18v
3
cvf + β19v

3
c r + β20v

3
fvc + β21r

3vc + β22r
3vf + εW

(32)

(AIC, backwards, R2
pseudo = 0.994) is shown in figure 6(b).
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Fig. 6 (a) Realizations of the force model (blue), observed force (black) and the re-
sulting work (red hatched) to reach a total depth of A = 0.07 mm with

(
vc, vf , r

)
=(

270 m
min

, 7 mm
min

, 18 mm
)

and (b) Surface of the generalized linear model of the resulting
work split up by the radii r = 16 mm (yellow), ..., r = 27 mm (violet).
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The surface is plotted separately for the twelve radii. The minimal work needed
to drill A = 0.07 mm is identified for all radii at a cutting speed of vc = 40.5 m

min
and an average feed speed vf = 8.734 mm

min (sd = 0.074). This outcome suggests
that choosing a small cutting speed in combination with higher feed speed results
in benefits concerning the work. Since vf = 8.734 is not the maximal value of vf
considered in the design of experiments, it is assumable that values of vf higher
than the found optimum will cause more work. This result is plausible since too
small feed speeds lead to a long process time which results in higher work and
too high feed speeds lead to a high material removal rate which in turn results in
higher work as well.

7 Conclusion and future Work

In the presented work we derived a model for the simulation of forces arising
during a diamond drilling process. With the model based optimization techniques
for stochastic black box functions, a realistic outcome could be achieved for the
model with adjusted model parameters. Finally, the optimized force model was
used for the process optimization. It was determined that lower cutting speed
results in lower work needed to drill a predefined depth, while the feed speed
has to be chosen in average at vf = 8.734 mm

min . This result is nearly the same
for all examined drilling radii, which is a satisfactory outcome since in the most
situations the drilling radius is determined by the type of application and is not
freely selectable.

Due to the possibility of a fast computation of forces in a single diamond
drilling process, we will extend the model for the multiple diamond drilling. This
process is, as well as the diamond grinding, an often considered sub-process of the
core drilling, where multiple diamonds and metal powder form a segment. Seg-
ment drilling introduces further parameters for the description of the interaction
between diamond and workpiece. Not all diamonds have contact to the workpiece
from the beginning of the process and not all diamonds are still remaining in the
segment when the process is terminated. The diamond-workpiece-contact-time is
as important as the sizes and angles of the diamonds. Force time series of already
conducted segment experiments show a high increase of forces when multiple dia-
monds come into contact with the workpiece surface. Thus, it seems obvious that
the forces in a segment experiment can be explained as the sum of forces of the
single diamonds in this segment. The occurrence of stationary periods suggests
that the contact area between diamonds and workpiece is constant after reaching
a maximum which depends on the sizes and angles of the diamonds. The greatest
challenge in deriving the segment drilling model is thus to find an appropriate
model for the on- and offset of the diamond-workpiece contact.

Additionally, we are working on the extension of the model for composite ma-
terials like concrete. The presented optimized model is adjusted for data from
experiments on cement. Since concrete is a composite material consisting out of
cement and an aggregate, e.g. basalt, the model parameter adjustment results in
a multi-objective optimization problem, because the parameters gzv, gv have to
fit for both materials, while the others can be material specific.
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