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SUMMARY 

This dissertation develops design procedures for improved MTI 

(Moving Target Indication) radar processors for systems utilizing 

PRF's (Pulse Repetition Frequencies) which are either constant or 

varying. 

Early MTI radar processors had outputs which varied signifi

cantly with changes in target radial velocity or Doppler frequency. 

The interpulse period was often varied from pulse-to-pulse (stagger

ing the PRF) to reduce these fluctuations, but appreciable variations 

remained. 

The advent of modern radar systems employing step scan antennas 

and large scale digital signal processing offers a new flexibility 

which permits design of MTI systems having substantially improved per

formance. However, many processors used with these systems continue 

to use designs which are holdovers from earlier, less flexible, MTI 

sys terns. 

Improved design procedures which utilize the flexibility and 

capability of modern radar systems are described. These design pro

cedures specify a desired and achievable value of MTI Improvement, I, 

and, subject to this constraint, minimize variations of processor 

response as a function of target Doppler frequency. Processors have 

been designed for both the staggered and the unstaggered PRF case. 

While the unstaggered PRF case may be considered a special 
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case of the staggered PRF case for which the interpulse period is con

stant, there are certain mathematical simplifications which are possible 

for the unstaggered PRF case. These simplifications permit some classes 

of processors to be specified which are unique to unstaggered PRF's. 

Three classes of processors have been designed for the unstaggered PRF 

case. These processors are: the Equal Ripple Processor, the Maximally 

Flat Processor, and the Constrained Improvement Processor. The first 

uses simplex methods for a solution, the second involves solution of a 

set of simultaneous linear equations, while the third makes use of 

Lagrange multiplier techniques. Each of these processors offers con

siderable improvement in uniformity of response when compared with 

earlier designs. 

Two classes of staggered PRF processors have been developed; the 

Maximum Improvement Processors (MIP's), and the Constrained Improvement 

Processors(CIP's). Lagrange multiplier methods are used to design the 

processors, and the Fletcher-Powell method to arrive at a solution. 

The MIP's maximize I while keeping the average response equal to one. 

Examination of the resulting responses shows significant increases in 

I over previous designs, with no degradation (and in some cases an 

improvement) in uniformity of Doppler frequency response. The CIP's 

limit I to some desirable (and achievable) value, and subject to this 

constraint, minimize the mean square deviation of processor response 

from unity with changes in target Doppler frequency. The design pro

cedure involves selection of both processor weight functions and inter

pulse periods. 

Representative CIP's are compared with earlier processors, and 
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a considerable improvement in uniformity of frequency response is 

achieved with a CIP. A complete absence of blind speeds may often be 

achieved over the desired range of target Doppler frequencies, and fluc

tuations in processor response with changes in target Doppler frequency 

are considerably reduced over previous designs. A number of representa

tive processor parameters are tabulated, and effects on processor per

formance of such variables as clutter spectral width, number of pulses 

processed, and maximum and minimum interpulse spacing are considered. 
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CHAPTER I 

INTRODUCTION 

This dissertation develops improved Moving Target Indication 

(MTI) processor design techniques for use in modern radar systems. 

These systems often employ advanced digital signal processing tech

niques and utilize step-scan phased array antennas to search, acquire, 

and track a number of targets simultaneously. For these high perfor

mance radars, it is desirable that the MTI processor (or filter) have 

sufficient clutter rejection to operate in a heavy clutter environment, 

that the target detectability remain relatively constant over the 

expected range of target Doppler frequencies, and that the processing 

be performed using some specified number of received pulses from the 

target. Conventional MTI processor designs usually have adequate 

average clutter rejection, but evidence substantial variations in tar

get detectability as target Doppler frequency changes. If conventional 

digital filter design techniques are applied in an attempt to develop 

processors having more uniform detectability, an unacceptably large 

number of pulses usually need to be processed and radar performance in 

a clutter environment is degraded. 

The design procedures which are developed in this work emphasize 

processing a specified (small) number of received pulses, achieving the 

required value of MTI improvement, I, for acceptable system performance, 
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and, within these constraints, minimizing variations in detectability 

as a function of target velocity. Improved designs have been developed 

for both the staggered and unstaggered PRF case. 

The unstaggered PRF processors which have been developed are 

the following: Equal Ripple Processors, which maximize I while bound

ing variations in processor response; Maximally Flat Processors, which 

constrain I to some specified value and then set appropriate derivatives 

of processor response equal to zero; and Constrained Improvement Pro

cessors which minimize the mean square fluctuations in frequency re

sponse while keeping I equal to a specified constant. 

The staggered PRF processors which have been developed are the 

following: Maximum Improvement Processors (MIP's), which maximize I 

while keeping the average response equal to one; and Constrained Improve

ment Processors (CIP's), which minimize the mean square fluctuations in 

processor response while keeping I equal to some specified value. 

Chapter II of this thesis reviews the basics of the MTI radar 

problem in some detail and summarizes previous work in MTI processor 

design. Chapter III discusses the development and performance of im

proved MTI processors for both unstaggered and staggered PRF systems. 

Comparisons of performance of improved processors with earlier designs 

are also given in Chapter III as are some tables of representative pro

cessor designs. Chapter IV presents Conclusions and Recommendations 

based on these investigations. 
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CHAPTER II 

BACKGROUND 

This chapter presents background information on MTI radar in 

general, and on pertinent previous investigations in particular. 

First, MTI radar operating principles are reviewed with emphasis on 

MTI processor performance. During this review, limitations on system 

performance of earlier MTI systems are outlined, and characteristics 

of modern step-scan digital MTI radars are discussed. 

Second, the use of techniques from statistical detection theory 

to develop optimum unstructured MTI processors is reviewed. This un

structured approach has not been successful in developing MTI proces

sors for more than two received pulses, so a more structured approach 

has been used by a number of investigators. 

Third, several previous structured approaches to MTI processor 

design are discussed. The optimization of MTI processors using weighted 

sums of sampled signals is one example of such a structured approach, 

but these processors suffer from a lack of uniformity of processor re

sponse with changes in target Doppler frequency. Another example of 

such a structured approach is the consideration of processor design as 

a digital filter optimization problem. Unfortunately, conventional 

digital filter design procedures do not: emphasize processing a fixed 

number of pulses nor achieving the required value of MTI improvement. 
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Finally, several specialized MTI processor design procedures 

which have been developed by earlier investigators for both staggered 

and unstaggered PRF systems are discussed. 

This chapter shows that practical MTI processor design procedures 

must: (1) achieve the required value of MTI improvement for operation 

in a clutter environment, (2) minimize variations in processor response 

with changes in target: Doppler frequency, (3) process a specified num

ber of received pulses, and (4) bound pulse spacings in a staggered 

PRF system. Previous design methods have not emphasized one or more 

of these criteria. The material presented in this chapter leads to 

the topics treated in Chapter III, which discusses improved processors 

which incorporate these requirements into the design procedures. 

MTI Radar Systems 

The problem of the detection of desired radar targets in the 

presence of unwanted signals is one of continuing interest to the radar 

designer. These unwanted signals may arise from a number of sources, 

such as thermal noise, interference from nearby radars, or reflections 

from such objects as trees, ground, and precipitation. The problem of 

reliable detection of targets of interest in the presence of the sig

nals reflected from trees, water, and various natural features on the 

earth's surface is especially difficult. These unwanted signals, com

monly called clutter, normally fluctuate with time and may vary over 

a dynamic range as large as 70 dB; in many situations of interest the 

average clutter signal may be much larger than the signals from desired 

targets. Thus, these clutter returns may severely limit radar system 

performance. 
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Fundamental Operating Principles 

If the desired target has an appreciable radial velocity with 

respect to the radar, it is possible to use the fact that the target 

and clutter have different Doppler frequency shifts in order to differ

entiate between the desired targets and the unwanted clutter. Systems 

which utilize this concept have been built for a number of years; a 

representative block diagram of one such MTI (Moving Target Indication) 

radar is shown in Figure 1. The basic frequency of operation is estab

lished by the rf oscillator; energy from this rf oscillator is fed 

through a pulsed rf amplifier and duplexer to the antenna where it is 

radiated. The rf energy propagates through space and is reflected from 

both the desired targets and the unwanted clutter and the back-scattered 

energy is received by the antenna. This received energy then passes 

through the duplexer to a phase-sensitive detector. There the received 

signal is mixed with a reference signal derived from the rf oscillator. 

The output of the phase-sensitive detector is a bipolar video signal; 

signals corresponding to stationary targets will be unchanging with 

time, while the video signals corresponding to targets having a non

zero radial velocity with respect to the radar location will exhibit 

amplitude fluctuations at the Doppler frequency of the target. These 

video signals then go to a MTI processor (also called a MTI canceller 

or MTI filter). One such processor, shown in Figure 1, successively 

subtracts the video signals on a pulse-to-pulse basis. 

This processor, or filter, is a crucial portion of the MTI radar. 

The first such processors used analog signal processing and analog 
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Figure 1. Simplified Block Diagram of an MTI Radar System. 
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delay lines in order to suppress the clutter returns. In practice, in 

order to more fully suppress clutter, MTI processors often process more 

than two received pulses; these higher order cancellers are obtained 

by cascading additional processors as shown in Figure 2. The transfer 

function of these higher order processors may be easily derived using 

z-trans form methods. The transfer functions of some of these higher 

order processors are tabulated in Table 1. These will be referred to 

as conventional processors in the remainder of the thesis. The fre

quency response of a conventional three pulse processor is given in 

Figure 3. 

Limitations on System Performance 

An MTI radar system which incorporated an MTI processor as 

described above represented a substantial improvement over systems 

without MTI. However, a number of factors limit its performance. 

Clutter returns from such features as trees, the sea, or weather are 

not truly stationary, that is, they have some non-zero spectral width 

and, therefore, the canceller does not remove all of the clutter and 

some residue remains. Barlow [1]*, Nathanson [2], and Kerr [3] all 

note that much of this type of clutter is composed of a non-fluctuating 

and a fluctuating component and the relative magnitudes of the two com

ponents are a function of the type of clutter being considered. The 

non-fluctuating component may be cancelled completely, but the fluc

tuating component cannot: be completely suppressed, and may considerably 

degrade system performance. 

*Numbers in brackets refer to references in the bibliography in the 
back of this thesis. 
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Figure 2. Higher Order MTI Processors Obtained by 
Cascading Two Pulse MTI Processors. 
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Table 1. Transfer Functions for Conventional MTI Processors 

Number of Pulses Transfer Function 
Processed (z-transform) 

2 1 - z"1 

-1 -2 
3 1 - 2z + z 

-1 -2 -3 
4 1 - 3z + 3z - z 

^ i / - 1 j. A " 2 / - 3 j. " 4 

5 1 - 4z + 6z - 4z + z 
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0 -50 

Figure 3. Frequency Response of Conventional Three Pulse 
MTI Processor. The Frequency Axis is Presented 
as the Ratio of the Doppler Frequency to the Pulse 
Repetition Frequency (PRF). 
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Barlow [1], Nathanson |2], Kerr [3], Barton [4], and Shrader [5] 

have all observed that: the shape of the spectrum for clutter associated 

with woods, the sea or with rain clouds is approximately zero-mean 

Gaussian, with a spectral spread which is related to operating fre

quency, clutter type, and environmental conditions. It has been ob

served that the standard deviation of clutter spectrum, expressed in 

meters/sec, av, is approximately independent of frequency. Then the 

standard deviation of the clutter spectrum, ac, expressed in Hz, is 

2a 
v 

CTc = T~ ' 
' c 

where \ is the operating wavelength in meters. For scanning systems, 

this width may be further broadened by scan-modulation, but this effect 

is absent in step-scan systems. Some representative values of av are 

summarized in Table 2. 

Gaussian clutter power spectra have been reported by the major

ity of researchers. However, Fishbein, et al., [6], report that 

clutter spectra of a wooded area measured using a relatively short 

pulse, high frequency, radar exhibited high frequency components larger 

than would be predicted by Gaussian spectra. Fishbein found that a 

1/(1 + (F/Fc) ) (where F is the frequency and Fc is the "corner fre

quency") frequency dependence more closely fitted these experimental 

data. For this reason, a brief examination of the consequences of 

this type of clutter spectra was conducted. As correctly stated by 

Fishbein, system performance is degraded from what would be achieved 

if the clutter spectra were Gaussian. However, this degradation 
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Table 2. Summary of Standard Devia t ions of 
C l u t t e r Spectra [ 4 , 5 ] 

C l u t t e r Source Wind Speed, Knots crv, m/sec 

Sparse Woods 

Wooded Hills 

Wooded Hills 

Wooded Hills 

Wooded Hills 

Sea Echo 

Sea Echo 

Sea Echo 

Sea Echo 

Rain Clouds 

Rain Clouds 

Calm 

10 

20 

25 

40 

8-12 

Windy 

0.017 

0.04 

0.22 

0.12 

0.32 

0.7 

0.75-1.0 

0.46-1.1 

0.89 

1.8-4.0 

2.0 

*Not included in original references. 



13 

becomes appreciable only if large numbers of pulses are being pro

cessed. Therefore, since our concern is primarily with systems pro

cessing small numbers of pulses, the performance of processors dis

cussed in this thesis is not particularly sensitive to which spectral 

shape accurately describes the clutter. However, if desired, all of 

the design procedures carried out in this thesis may be modified for 

3 
use with 1/(1 + (F/Fc) ) clutter spectral shapes, but only minor 

changes in results would be produced. 

One widely used measure of the ability of an MTI system to 

operate in a clutter environment is the Improvement Factor, or MTI 

Improvement, I. I is "...a power ratio which is defined as I = rQ/v^, 

where rQ is the output ratio of target to clutter, and r^ is the 

target-to-clutter ratio at the input to the receiver, averaged over 

all target speeds." [5] 

If the frequencjr region of interest is given by 0 < F < F', 

the input clutter power spectral density by C-(F), and the power re

sponse of the processor by G(F), then the total time-average clutter 

power at the receiver input is 

C =jf ^(F) dF, 
—co 

and the t o t a l power a t the ou tpu t of the MTI processor i s given by 

= r 
t j C o u t = J C i ( F ) G(F) dF" 

-GO 

The input time-average target-to-clutter ratio is given by T. /C, 
in' 
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where T- is the input target signal s trength. Taking the frequency 

average of the t a rge t - to -c lu t t e r r a t io a t the input (assuming a l l tar

get ve loci t ies are equally probable), 

i rF' i rF' 

r. = 
-F1 "o 

i G 

If T^n is defined as 

"in F1 J T. = ir I T. dF. in F1 J in 
o 

r. may be expressed as 

T. 
in 

ri = ~r 

For most cases of interest, T. = T. . 
in in 

Similarly, rQ may be expressed as 

F f Tm G(F> dF 
O 

ro = c 
out 

Defining the quantity T as 
• y out 

- ± r T = -~ I • T. G(F) dF, 
out F' J in 

r becomes 
T 
out 

ro = ~ 
out 

Then the definition of I becomes 
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r T / T. T 
_o out / in out r i C o u t / C T in °out 

us ing t he n o t a t i o n 

T 
out 

1 
F ' 

0 
Ln G ^ F ) d F 

T. 
i n 

1 
F1 A 

j 0 

. dF 
Ln 

C 

/•OO 

•ico 
( ^ ( F ) dF 

C 
o u t 

/•CO 

•L C.(F) 
l 

G(F) d F , 

where 

T. is the input signal power 

C.(F) is the clutter power spectral density 

G(F) is the power gain of the MTI processor. 

I is sometimes expressed in decibels as 10 l°8in of the quantity 

defined above. Also, T is often referred to as the (frequency) aver-
out ^ 

age target power output, and T. as the (frequency) average target 

power input. 

The use of the Improvement, I, (also called the improvement 

factor, or the Reference Gain, G) rather than some of the earlier per

formance measures is recommended, since I is independent of any con

stant gain factors in the MTI processor. 

The response of an MTI system to targets having a wide range of 

Doppler frequencies is a function of the specific target Doppler shift; 



for some radial velocities for which the Doppler frequency equals an 

integral multiple of the PRF (pulse repetition frequency) the system 

is "blind" (the response is zero). This problem may be avoided by 

changing the interpulse period from pulse-to-pulse (commonly called 

"staggering" the PRF). However, in systems which employ analog delay 

lines, there is little flexibility in the choice of interpulse period 

Thus, simple analog MTI systems have a number of limitations. 

Among these limitations are: limited values of I due to clutter 

spectral width or antenna beam motion; blind speeds and phases; 

amplitude instabilities in receiver signal processing circuits; 

variations in time delays; and variations in target detectability 

with changes in radial velocity. 

Modern Step-Scan Digital MTI Radar 

The introduction of step-scan phased array antennas and the 

advent of large scale digital signal processing in recent years has 

revolutionized MTI radar systems. The use of phased array antennas 

provides a step-scan capability which permits the rapid examination 

of a large area without the degradation in performance due to beam 

motion during the time the received signals are being processed. The 

use of digital techniques for signal storage and processing has per

mitted significant flexibility in both processing of the received 

signal and in the choice of the interpulse periods in PRF stagger 

sequences. 

These step-scan MTI systems which utilize digital processing 

have a number of advantages including: elimination of fluctuations 
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due to antenna beam motion; increased amplitude stability in signal 

processing circuits; stability of time delays; compatibility with 

other digital operations; flexibility in antenna beam scanning format; 

and compatibility with staggered PRF. 

However, the performance of the digital MTT processor may be 

limited by the neied to minimize the number of pulses processed, by 

variations in target detectability with changes in target radial 

velocity, and by system cost and complexity. There is another limita

tion on performance which is due to the conversion of analog signals 

to digital format. This limitation is due to quantization errors 

and may appreciably limit the achievable value of I; this effect has 

been analyzed [7] and is a function of the number of bits in the digi

tal word. Table 3 presents these improvement limits due to analog-

to-digital quantization errors. For smaller numbers of bits, one 

can see that the achievable improvement could easily become limited 

by quantization errors rather than by uncancelled components of 

clutter. 

With this background in MTI radar systems, previous work in the 

design of MTI processors will now be reviewed. 

Use of Statistical Detection Theory 
in Developing Optimum Receivers 

Development of optimum receivers has been of substantial in

terest since radar was first developed. The earliest optimum receiver 

was for detection of a single pulse in white noise. This concept led 

to the development of the so-called '"matched filter" [8,9,10], namely, 
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Table 3„ Limi ta t ion of MTI Improvement, I , Due to 
Ana log- to -Dig i t a l Quant iza t ion Errors 

Number of Bi t s Maximum Value of I 
( inc lud ing sign) (dB) 

4 22.3 

5 28.6 

6 34.7 

7 40.8 

8 46.9 

9 52.9 

10 59.0 
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one which maximizes the peak signal-to-noise ratio, and has a frequency 

response given by the complex conjugate of the voltage spectrum of the 

received pulse. 

If the power spectrum of the noise plus received clutter varies 

with frequency (so-called colored noise), then the optimum filter re

sponse becomes (except for a constant: time delay) the complex conjugate 

of the voltage spectrum of the received pulse divided by the power 

spectrum of the received clutter [11,12]. This fact was used by 

Urkowitz [13] to derive optimum receivers for detection of targets in 

clutter. 

Rihaczek [14] has pointed out that the class of filters devel

oped by Urkowitz is optimum only when thermal noise may be neglected, 

and that the presence of both fluctuating clutter and thermal noise 

requires more complex filters than those developed by Urkowitz. 

If desired targets and unwanted clutter returns are separated 

in time (range) and/or in frequency, substantial improvement in per

formance is possible using combined signal and filter optimization. 

Delong and Hofstetter [15,16] consider the problem of detection of a 

point target in random clutter using combined signal-receiver optimiza

tion. The detection of a target: of known Doppler shift has been 

treated by Westerfeld, et al., [17] and by Van Trees [18]. Spafford 

[19,20], Stutt and Spafford [21], and Rummler [22] have treated the 

optimum receiver when clutter and target signals have different areas 

of occupancy on the range-frequency plane. 

In many cases the expected Doppler shift of the received signal 
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is not known, a priori, and the expected range of signals overlaps 

the clutter in both range and in frequency. The optimum estimation 

receiver for this case becomes essentially a bank of matched filters, 

one for each expected Doppler frequency [23]; this configuration is 

very similar to the pulse Doppler radar which employs a comb filter 

or filter bank followed by a threshold for both velocity estimation 

and target detection. 

The optimum detection receiver corresponding to the conventional 

MTI radar system appears to have been first discussed by Wainstein and 

Zubakov [24]. The optimum receiver derived by Wainstein and Zubakov 

for processing the received signal for the two-pulse case consists of 

optimum processing of both the in-phase and quadrature components of 

the received signal, pairwise subtraction of these in-phase and quadra

ture samples, formation of the square of each of these differences, 

and comparison of the sum of these squares with the threshold [25]. 

This processing corresponds to the conventional two channel, two 

pulse MTI canceller,. Extension of these results to cases involving 

more than two pulses has not been successfully carried out for cases 

of practical interest. 

Selin [26] has obtained some optimum detection receivers for 

the case when the interfering signal is largely uncorrelated from 

pulse-to-pulse; unfortunately, clutter does not normally exhibit such 

behavior. Brennan, Reed and Sollfrey [27] have performed analyses for 

more practical cases, but their approximations resulted in receiver 

structures which are extremely complex due to the large number of 
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comb filters required. 

From this review, it becomes evident that the specification of 

the optimum processor from the point of view of statistical detection 

theory is a formidable task, and one which has been solved exactly 

only for the case of the two pulse processor. Because of the diffi

culty in specifying the performance of the optimum receiver, consider

able attention has been focused on the design of MTI receivers which 

form optimum weighted sums for processing sampled signals from moving 

targets in a clutter environment. 

Optimization of MTI Processors 
Using Weighted Sums of Sampled Signals 

It was brought out in the previous section that the optimum MTI 

receiver, from the point of view of statistical detection theory, is 

known only for the two-pulse case. The receiver for larger numbers 

of received pulses has often been approximated as a linear combination 

of a number of sample values of either the in-phase or the quadrature 

component of the received signal. 

Maximization of the ratio of average output signal (averaged 

over all expected values of Doppler frequency shifts) to interfering 

signal (for unstaggered PRF processors) has been treated by Capon [28], 

Capon shows that the optimum weight functions, defined as those which 

maximize the average, increase in signal-to-interfering signal ratio 

(called the reference gain, Gn, or more commonly the MTI improvement 

I) depend only upon the covariance matrix of the interfering signal. 

For highly correlated pulse-to-pulse interference, such as that due to 
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slowly moving clutter, these optimum weight functions reduce to the 

conventional three-pulse canceller for the case of processing three 

received pulses. Capon also shows that the improvement for the three-

pulse canceller closely approximates the improvement achieved using 

a large number of received pulses when processing signals in a back

ground of strongly correlated clutter. 

There are three objections to Capon's approach. First, Capon 

did not demonstrate that the optimum processor may be realized in the 

assumed linear processing format. It is perhaps appropriate to note 

that if the linear processing format discussed by Capon were the con

figuration of the optimum processor, then the optimum Neyman-Pearson 

test would be the one which maximizes I (see, for example, Spafford 

[20]). 

The second objection is that the improvement, I, is maximized by 

increasing gain at frequencies where clutter return is small and de

creasing gain at frequencies where clutter is significantly present, 

resulting in substantial variations in response with changes in tar

get Doppler frequency. The response for two and five pulse processors 

is given in Figure 4, clearly showing these fluctuations which are 

characteristic of both conventional processors and those of Capon. 

Increasing the number of pulses does not reduce these fluctuations, 

but rather increases them. Capon observed that as the number of pulses 

increases, the response approaches an impulse located at the minimum 

of the sampled clutter power spectrum. Thus, processors designed to 

maximize I may have unacceptably small responses to targets with 
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Doppler frequencies in or near the same region as the clutter. 

The third objection is that there are substantial practical 

limitations which are not included in the theory. Most modern high-

performance MTI processors utilize digital processing. While round

off error in the computational process does not usually appreciably 

limit performance, as pointed out earlier in this chapter, analog-

to-digital quantization errors usually constrain I to be substan

tially less than its theoretically achievable maximum value. 

MTI Processor Design as a Filter Optimization Problem 

As discussed in the preceding section, maximization of the MTI 

Improvement, I, is often not a satisfactory method for optimizing the 

processing scheme for an MTI radar, since this results in poor detect-

ability of targets having some particular range of Doppler frequency 

shifts. This fact leads one to consider uniformity of response of the 

processor as a function of Doppler frequency as an important considera

tion in system design. This approach leads naturally to considering 

the processor to be a filter having as inputs a signal at the Doppler 

frequency and a signal from clutter plus thermal noise with known 

power spectral density. Then the filter output: can be plotted as a 

function of input Doppler frequency; one such representation was shown 

in Figure 4 for conventional processors. 

The following discussion of digital filtering will be largely 

confined to consideration of transversal filters [29,30] (nonrecursive 

filters or those with no internal feedback loops), because in any 

practical application only limited numbers of pulses may be processed 
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from each target. Several constraints determine the number of pulses 

that may be processed from a given target. In a beam-agile radar such 

as a phased array system, minimizing the number of pulses from a given 

target maximizes the number of targets the radar can accommodate. If 

frequency agility is used, the radar must remain at a given frequency 

for a sufficient number of pulses to extract the desired information 

concerning a target; minimizing the number of pulses on target thus 

maximizes the number of available frequencies the radar may radiate 

in a specified time. While a recursive filter (one containing feed

back loops) could be used and its transient response truncated after 

the desired number of pulses, the response of such a truncated recur

sive filter may always be realized as a transversal filter. The dif

ference between the two lies in the practical implementation of the 

filter. 

Various methods have been developed for designing digital fil

ters [31-33]. Their design is often approached by defining an analog 

filter prototype and appropriately transforming the response to obtain 

the z-transform of the desired filter. Another approach uses direct 

search methods to minimize a distance function between actual filter 

response and desired filter response. In general, either of these 

approaches yields recursive filters; while these filters' outputs may 

be truncated after the desired number of pulses, there is generally 

little control over the number of pulses required to closely approxi

mate the desired steady-state response. 

To illustrate the errors in filter response which may occur due 
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to truncation of a recursive filter designed for a certain steady-state 

response, a four-pole Butterworth filter response was considered. Its 

-1 
z-transform was expanded in powers of z by long division and the 

series truncated after a selected number of terms. The impulse re

sponse of the filter represented by this series was then calculated 

to determine the truncated frequency response. Figure 5 compares the 

steady-state response with the response truncated after 3, 5, and 7 

pulses. As can be seen, the response of the truncated series is a 

poor approximation to the steady-state value. Admittedly, this is 

an extreme case, due to the rapid low-frequency roll-off of the fil

ter, but it serves to illustrate the need for specialized design pro

cedures where the number of available samples is limited. 

Three procedures are commonly used in designing transversal 

digital filters [37-40].. The first involves specifying the sampled 

finite impulse response of a filter (obtained as an input specifica

tion or as a transform of a frequency-sampled response) and utilizing 

an impulse-invariant transformation to specify the digital filter. 

Various weighting windows may be used to smooth the ripples in the 

resulting frequency response. The second method uses a Fourier series 

approximation (with appropriate windows often incorporated) to a de

sired response, while the third method is a direct-search method 

using linear programming techniques to optimize the desired response. 

These techniques are not particularly applicable to the design of MTI 

processing filters, since they do not incorporate clutter characteris

tics into the filter design procedure as a design specification. In 
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many cases they accept a specific filter response as the design goal, 

rather than developing optimum processing for a predetermined number 

of received pulses, a constraint which is determined by the performance 

requirements of the overall radar system. 

The fact that conventional digital filter design techniques are 

not entirely suitable for the design of MTI processors has led to the 

development of some specialized procedures for this application. 

Several of these specialized procedures for unstaggered PRF MTI pro

cessors are discussed in the next section. 

MTI Processors for Unstaggered PRF Systems 

Filter Initialization Techniques 

Fletcher and Burlage [41] have observed that a substantial re

duction in the settling time of conventional recursive filters may be 

obtained by setting appropriate initial conditions into the various 

filter elements. VJhile this technique effectively reduces the settling 

time of the filter, this approach offers no guarantee that the result

ing responses are optimum. In addition, this approach depends upon 

conventional filter design techniques to produce the basic filter de

signs, such as Butterworth filters, and clutter rejection is usually 

not a design parameter of such filters. 

"Cost" Minimization MTI Processors 

Jacomini [42] has developed a design procedure that takes into 

account the clutter attenuation in the pass band, the response in a 

stop-band, and ripple in the pass band. A "cost" is assigned to each 
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of these factors, and designs developed which minimize the overall 

"cost" of the filter. This approach has the disadvantage that there 

is no straightforward means for selecting the various costs. In prac

tice, when the filter is being designed, the improvement, I, is con

strained to be some constant, and the cost is apportioned between the 

pass and stop bands; relative costs are then adjusted until an intu

itively satisfying filter response is obtained. More straightforward 

means for obtaining the same types of results are described in the 

next chapter. 

Staggered PRF MTI Processors 

The MTI processors discussed earlier still exhibit blind speeds; 

the conventional method for reducing the effects of these blind speeds 

is to stagger the PRF, that is, to change the interpulse period in 

a systematic method from pulse to pulse. Roy and Lowenschuss [43] 

discuss the selection of PRF stagger sequences for a specific integral 

weight processor but do not consider the clutter rejection of the fil

ter as one of the design criteria. Rihaczek [44] discusses choice of 

PRF stagger for a Doppler system employing a comb filter of known 

characteristics. Prinsen [45] discusses the maximization of I with

out regard for the shape of the processor response as a function of 

target Doppler frequency. Brennan and Reed [46] discuss a procedure 

for maximizing the average improvement for a given PRF stagger 

sequence but do not carry out the required analysis. Shrader [47] 

presents some empirical, rules of thumb for designing staggered PRF 

systems which use processors of the type described by Roy and 



30 

Lowenschuss. 

Watters [48] has investigated the problem of minimizing the low 

frequency response of an MTI processor employing integral weights (a 

conventional four pulse canceller) by selection of appropriate PRF 

stagger sequences. He determined that a sinusoidal variation in the 

interpulse period minimized the low frequency response of the filter 

when conventional integral weights were used in the processor. Taylor 

[49,50] investigated the problem of minimizing the low frequency re

sponse by varying the signal processor weights when a sinusoidal vari

ation in interpulse period was employed. However, neither of these 

investigations considered uniformity of response to various target 

Doppler returns as a design criterion and did not consider the clutter 

rejection, per se, as a design parameter. In addition, the problem of 

the joint optimization of filter weights and PRF stagger sequences 

has not been considered in these investigations. 

Jacomini [51] has developed processors for the staggered PRF 

case which are similar to those he discussed for the unstaggered PRF 

case. That is, a "cost" is assigned to a number of factors and filter 

weights and PRF stagger sequences selected which minimize the overall 

filter "cost": The problem of selecting various "costs" for accept

able performance is still a trial and error procedure with this method. 

In addition, no bounds are placed on the PRF stagger sequence, result

ing in required pulse spacings which may be impractically small. 

The responses of processors suggested by Shrader, Taylor, and 

by Jacomini will be discussed in more detail in the next chapter where 

these processors are compared with improved MTI processors. 
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CHAPTER III 

DESIGN OF IMPROVED DIGITAL MTI RADAR PROCESSORS 

A number of factors enter into the design and specification of 

the MTI processor for a radar system. Among the design requirements 

are: (1) the system must have sufficient MTI improvement for operation 

in a heavy clutter environment; (2) target detectability should remain 

relatively constant for the range of expected Doppler frequencies; and 

(3) processing should be performed using some specified number of re

ceived pulses. The motivation for the first two requirements is 

rather obvious, and the third requirement is dictated by the desire to 

minimize the number of pulses required on a given target (and conse

quently to maximize the number of targets which can be investigated) 

in a beam-agile radar such as a phased-array radar, or by the desire 

to optimize performance when frequency agility is used (by minimizing 

the number of pulses transmitted at one frequency). 

Staggered PRF systems have the additional requirement that the 

pulse spacing variations must be carefully controlled in order to 

preserve the required unambiguous range of the radar, or to remain 

within the duty cycle limits of the transmitter. These unique re

quirements call for specialized design procedures. Several design 

procedures for improved structured MTI processors which emphasize 

the above criteria are developed in this chapter. First, unstaggered 

designs are discussed, since their mathematical development is more 

straightforward and provides insight into the more complex designs 
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which follow. Three types of unstaggered processors are discussed: 

the Equal Ripple Processors; the Maximally Flat Processors; and the 

Constrained Improvement Processors. The performance of these proces

sors is presented, and it is observed that their performance is no 

longer optimum when the PRF is staggered. 

Second, design procedures for staggered PRF systems are pre

sented. Two classes of processors are developed; Maximum Improvement 

Processors (MIP's) and Constrained Improvement Processors (CIP's). 

MIP's provide a substantial increase in MTI improvement over pre

vious designs, but more satisfactory processors result from applying 

CIP design procedures. These CIP's emphasize uniformity of processor 

response and achieve the required value of MTI improvement for desired 

system performance. The performance of CIP's is compared with previous 

designs and representative CIP designs are tabulated. 

Unstaggered PRF MTI Processors 

The unstaggered PRF MTI processors may be considered to be 

special cases of staggered PRF processors for which the pulse spacing 

is constant. However, the fact: that the pulse spacing is uniform per

mits simplification of a number of mathematical expressions describing 

processor performance. This simplification permits development of 

certain classes of processors for the unstaggered PRF case only, and 

a significant simplification in the mathematical design procedures 

for others. 

The processors described in this section all were designed 

using a "structured" approach; that is, a transversal filter form was 
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assumed, and weights determined which produced the desired filter 

characteristics. The design criteria which were .used emphasize pro

cessors which have the required MTI improvement (which is consistent 

with the quantization limit discussed earlier) and which minimize vari

ations in processor response while processing a fixed number of pulses. 

As mentioned earlier, three classes of improved processors for 

unstaggered PRF systems are discussed in this section. The first are 

the Equal Ripple Processors, the second are the Maximally Flat Proces

sors, and the third are the Constrained Improvement Processors. There 

are several properties of the unstaggered processors which are used in 

the development of all of these processors; they are derived in the 

following section. 

Properties of Unstaggered PRF MTI Processors 

The frequency response of the processor is a characteristic 

of considerable importance. The general form of the processor is 

given in Figure 6„ It follows directly from Figure 6 that h(t), the 

impulse response of the processor, is given by 

h(t) = Xx 6(t) + X2 6(t-T) + X 3 6(t-2T) + ... + X 5 (t-(N-l)T) 

N 

= ̂ \ 5(t-(k-l)T), (1) 

k=l 

where 6(t) represents a unit impulse, X„ is the weight of the n t h 

sample, and T is the interpulse period, 1/PRF. 

To compute the complex frequency response of the network, H(u>), 

the Fourier Transform is applied to (1), yielding 



Input Output 

Delay = (N-l)T Weight X^ 

Figure 6. General Form of Unstaggered PRF MTI Processors. T = 1/PRF. 
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H(u>) = £ ^ e-^TO-D (2) 
N 

k=l 

The power response of the filter, G(uu), is then 

N-l 
G(ao) = H((JD) H(U))* = C Q + 2 V " C cos(qU)T), (3) 

q=l 

N-q 

where C = > X. X* , 0 < q < N-l. 
q Z-s j J+q 

j=l 

It is appropriate to note that since T = 1/PRF, and since the 

Doppler frequency is given by F = U)/2TT, the response may be expressed 

in terms of f = F/PRF. In the remainder of this thesis, this normal

ized frequency will be used when discussing frequency response charac

teristics. It is the combination of the weighting coefficients, the 

X's, to form the C's which permits the simplifications in the unsdag

gered PRF expressions. 

Another characteristic of unstaggered PRF MTI processors is the 

MTI improvement, I. As discussed in Chapter II, a Gaussian clutter 

power spectral density is assumed. 

C - 2 / * c 2 

C - — e 

CTC-VJ2TT 

The c l u t t e r output power i s given by C , where 
G 

• / 

Cout - / G ( F ) C I d F -

Making the s u b s t i t u t i o n 2rr F = ou in Equation 3 , the above r e l a t i o n 

becomes 
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N - l 

C = 2 / (C + 2 ~ Y C COS(2TT FqT)) 
o u t / o x—/ q n l nr~ 

° q = 1 \ C T C V 2 T T 

2 2 
C - F Z / 2 a c dF, 

o r 

2C 

ou c ^V^" 

• - 0 0 2 . 2 AT 1 0° 

-F / 2 a N - 1 /• 2 2 
e C dF + 2 Y * / (C cos (2TrFqT) ) (e" F / 2 c j c )dF 

J ~ q ^ i q 

o ^ o 

fc, 
/ ° 

and 

C = C 
o u t 

N - l o„^ 2^2 ^ 
" x -Iq TT T CT C + 2 V " C e 

o Z—f q 
q=l 

The a v e r a g e t a r g e t o u t p u t power, T , i s 

"out 
* / 

T. G(F) dF 
in 

T. 
in 

/ 

N - l 

C + 2 ^ C cos 2TrFqT 
o .<-/ q 

q = l 

dF 

= C T. . 
o i n 

Then, s u b s t i t u t i n g i n t o t h e d e f i n i t i o n of improvement , one o b t a i n s 

I = o  
N^T 2 2 2 2 

C + 2 V C e"2q 1T T ac 
o L—t q 

q=l 

(4) 
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This expression checks with results obtained by other authors 

for conventional processors, if the exponentials are expanded in a 

Taylor series and the first non-zero terms retained. Consider the 

three-pulse canceller where C = 6, C, = -4, C0 = 1. Then 
o 1 2 

i = I 
I 6 

2 2 2 2 2 2 
-2TT T a c -8TT T a c 

6 - 8 e + 2e 

oc oc 
s u b s t i t u t i n g e « 1 + a + ^ » 

f 4 

i = r 

4 4 
8TT CJ 

c 

which agrees with, the result given by Nathanson [52], where f = 1/T. 

It is appropriate to note that, from Equation (4), the effects 

of clutter spectrum width may be expressed as a normalized variable a, 

a = a T. c 

The use of this form in data presentation permits a large range 

of PRF and a to be summarized v/ith a few carefully chosen values of a. 

Equal Ripple Processors 

A simplex procedure was implemented using a well-known linear 

programming scheme [53] to design equal ripple MTI processors. The 

procedure used was to identify a number of frequencies at which the 

frequency response would be controlled. At each of these frequencies, 
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minimum and maximum values of frequency response were specified. In 

addition, a linear objective function (LOF) was defined. For this 

procedure, CQ divided by I was chosen as the LOF; since C0 j=a 1 for 

most practical filters, minim:i.2!:ing the LOF corresponded to maximizing 

I. The linear programming technique which was used minimized the LOF, 

subject to the constraint that the frequency response remain within 

the bounds established earlier. 

One substantial problem encountered in designing equal ripple 

processors was that roundoff error seriously influenced the maximum 

value of I which could be calculated. Nevertheless, practical filter 

responses were developed using these techniques. A second difficulty 

involved the large number of equations that had to be entered into 

the program. Successful results were obtained for three- and five-

pulse processors, but processors for more than five pulses were be

yond the scope of this computer program. 

This linear programming scheme has been used to design a num

ber of equal ripple processors. Most of the results discussed here 

will be for five pulse processors. The filter responses for these 

five pulse processors were specified in 250 Hz intervals from zero 

to 2500 Hz, and the constraint at zero frequency was that the response 

be non-negative. 

Figure 7 shows three of the Equal Ripple Processor responses 

developed using the program. The tradeoff between ripple and improve

ment can be seen clearly. The 3-dB ripple processor has sharper low-

frequency cutoff than the 0.8- and 1.8-dB ripple processors, thus 
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increasing the attenuation for clutter and slowly moving targets. 

With more available pulses, the cutoff slope could be further in

creased (thus increasing I) while retaining constant ripple. 

The ripple constraint in the pass band can be made so restric

tive that the processor provides essentially no improvement, as is 

seen in Figure 8. When the ripple constraint for this particular 

filter was changed from 3 dB to 0.8 dB, it failed to provide appre

ciable attenuation for low frequencies. The minimum specified fre

quency was 250 Hz. 

This relationship between ripple and improvement was investi

gated for five pulse processors, resulting in the relationship shown 

in Figure 9. The curves show the ripple vs improvement relationship 

for 500 Hz and 750 Hz low frequency cutoff processors. 

These cases show the relationship which exists between ripple 

and improvement for some practical processors and give guidelines for 

processor performance. In all of these Equal Ripple Processors, per

formance was ultimately limited by the number of pulses available, 

and processing larger numbers of pulses would have resulted in pro

cessors having more desirable performance. 

Maximally Flat Processors 

In order to develop processors which circumvent some of the 

difficulties associated with the Equal Ripple Processors, a set of 

Maximally Flat Processors were developed. 

By a "Maximally Flat" processor is meant one having a number 

of its derivatives with respect to frequency set equal to zero at 
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some specified frequency or frequencies [54], For the MTI case, it 

is also required that these processors have a certain specified 

amount of MTI improvement. In addition, the filter must have a non« 

zero amplitude response specified at a given frequency, in order to 

prevent a solution which is identically equal to zero. 

The procedure which was used to derive the Maximally Flat 

non-recursive digital MTI processors is described below. From 

Equation (3), the power response of the filter is given by 

N-l 

G(ou) = C + 2 y ^ C cos qci)T , 
o £-4 q H » 

and the MTI improvement, I, is given by 

C 
o 

N-l 

C Q + 2 J2 Ĉ  exp (-2q rr a ) 
q 

q=l 

Following the above discussion, choose a value for I = 1/y, and choose 

G(TTF ) = 1, where Fr = PRF. Then there are N-2 derivatives which may 

be set equal to zero. The points at which to set these derivatives 

equal to zero were chosen to be u) = 0 and/or u) = TTF . The way that 

these derivatives are apportioned between these two frequencies deter

mines the shape of the filter characteristic. 

A three-pulse canceller has only one derivative to set equal 

to zero; in order to obtain a high-pass filter characteristic this 

derivative must be zero for uo = iTFr. For the three-pulse canceller, 
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the equat ions become 

G(rrFr) = 1 

--= 0 

U) = rrF 
r 

I - i " . 
Y 

A four-pulse Maximally Flat Processor has two derivatives which may 

be set equal to zero. Responses for three and four pulse Maximally 

Flat Processors are shown in Figure 10, illustrating the improved 

flatness obtainable over conventional processors. 

Constrained Improvement Processors 

While the Maximally Flat Processors provide a more uniform 

response than conventional processors, and require much less computa

tion time than the Equal Ripple Processors, the Maximally Flat Pro

cessors do not make an attempt to directly minimize variations in 

processor response. Therefore, a class of processors, called Con

strained Improvement: Processors (CIP's), have been developed. The 

procedure used was to constrain I to be some selected value while 

minimizing the function 

Fr/2 

f (G(F) - G 7 ? ) ) 2 dF , 
T(Fr 

duo 
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where 

F = the pulse repetition frequency, 

T] = a fraction 0 < T] < 0.5, 

G(F) = the power response of the filter, and 

G(F) = average response of the filter. 

The choice of T] amounts to establishing a pass band of interest, and 

the value of G(F) was chosen equal to one. 

This problem is one which may be attacked by Lagrange multiplier 

techniques. It is worth noting a related analysis has been performed 

by Martin [55]. Martin evaluated the integrals leading to Equation 

(4) numerically, and his analysis is a special case of the work which 

follows for T] = 0. 

The error to be minimized over the region T]F to F /2 is the 

function 

Fr/2 

E = f (G(F) - l ) 2 dF, 

T]Fr 

where F is the PRF. r 

Making the substituti on ut) = 2TTF in Equation (3), 

N-l 

[G(F) - l ] 2 = [C - 1 + l \ ^ Ĉ  cos (2-nFqT)]2 

q=l C^ 
N-l N-l / 

= (C - l ) 2 + 4C X ^ C cos(2TrFqT)-4\^cos(2TTFqT) + 

q=l q=l 
N-l N-l 

4 S ] C C c
k

 c o s(2TTFqT) cos(2rrFkT). 
q=M=i q 
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r
F r / ^ 

E = / [G(F) - l ] 2 dF 

N-l N-l 

(Co - l)2(Fr/2)(l - 21)) - 2 C 0 £ £ VkVqk -
q=l ^=1 

f l . 

where 
s i n 2TTH (g - k) s i n 2TTT1 (q + k) 

4TT(q - k) 4n(q + k) 

a qk 

i _ 2Ti - s i n 4 T M 
1 2qTT 

q + k 

q = k 

Next, using s tandard Langrange m u l t i p l i e r t echn iques , minimize 

P = E + \ (H-rco. 
sub jec t to the c o n s t r a i n t t ha t 

r- = cons tan t = y • 

In these expressions, \ is the Lagrange multiplier. This is done by 

solving the system of equations 
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d P = 0 
dC o 

* P = 0 
N-A 

H = 0 . 
Noting that a , = a , these expressions are somewhat simplified; for 

a three-pulse processor, they become 

C (1 - 2Tj) - 2Cn S i a - M . 2C0
 S i n 4TTT^ + X ( l - Y) = 1 - 2Tj 

o 1 TT 2 TT 

^ + CX 8 „ u + C28„22 + X ^ " 8 " 2 ^ ^ -2 ^ -2C 
O 17 

2 2 2 2 2 2 
-2TT T O-C -8TT T ac 

(1 - v) C + Cn 2e + C0 2e = 0 . 
o 1 i 

The system of equations readily expands for larger numbers of 

received pulses. A computer program was written to solve for the C's 

for an arbitrary number of pulses. 

Responses for a conventional three-pulse MTI processor and a 

CIP designed for I = 60 dB is shown in Figure 11. The improvement in 

detectability for targets having low-frequency Doppler returns is 

evident. 

The ideal response of any of these processors would be a con

stant, independent of frequency. The requirement that the processor 
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have a degree of MTI improvement requires the response be reduced over 

the frequency range of the clutter spectrum, thus preventing this 

ideal response from being attained. In order to make meaningful com

parisons of the non-uniform responses of the various processors, some 

measures of uniformity of response are desirable. One measure is to 

make a direct comparison of the shapes of the responses for processors 

under consideration, but this approach generally requires considerable 

effort, particularly for processors which have complex frequency re

sponses. Since one objective of the design procedures is to increase 

the fraction of the frequencies of interest for which responses stay 

within certain bounds, it is appropriate to use the fraction of fre

quencies for which the response stays within some small range of 

values as a measure of uniformity. In particular, if this informa

tion is graphically displayed with the fraction of frequencies for 

which the response stays within some small interval as the abscissa, 

and with the response as the ordinate, the way in which the response 

is distributed over its range of values is illustrated. The ideal 

constant response would be represented by an impulse at the value of 

processor response; deviations from constant response are shown by a 

spreading or redistribution of the response over the range of its 

excursion. Since this presentation bears some similarity to the 

familiar probability density function, in the rest of this thesis it 

will be referred to as the probability density function of response, 

and the ordinate will be labeled as probability. 

The fraction of frequencies for which the response is less than 
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some specified value is another suitable measure to determine the 

uniformity of processor response. In particular, if the relationship 

between response and the fraction of frequencies for which the return 

is less than the specified response is presented graphically, with the 

response as the abscissa and the fraction of frequencies as the ordinate, 

a particularly useful presentation is obtained. If a uniform response 

were obtained with a value of 0 dB, this presentation would be a step 

function at 0 dB; deviations from ideal behavior are indicated by a 

"tilting" or "smearing" of this ideal step (see Figures 13 and 15, 

for example). For these non-uniform responses, reduction of the 

fraction of frequencies for which the response lies below any value 

less than 0 dB would be a desirable feature. This form of presenta

tion bears some similarity to the more familiar cumulative probabil

ity distribution; such presentations will be referred to as cumulative 

distributions of response, and the ordinate will be labeled as 

probability. 

These two measures have more than an incidental similarity to 

more familiar measures from probability theory. If the input to the 

processor were single frequency sinusoids whose frequency was a random 

variable having a uniform probability density over the frequencies 

of interest, then the two measures would represent the probability 

density function of response, and the cumulative probability distri

bution of response, respectively. This is an additional reason for 

referring to these two measures as the cumulative distribution of 

response and the probability density function of response. Rather 
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than calculate these functions in continuous form, they will be 

approximated in the form of histograms. 

Figure 12 shows the probability density and Figure 13 the 

cumulative probability of the response for a conventional three pulse 

processor. Figures 14 and 15 show the same measures for a CIP three 

pulse MTI processor. 

The utility of the use of cumulative probabilities and probabil

ity densities of response as a means of comparing uniformity of pro

cessor response is clearly shown by a careful consideration of Figures 

11 through 15. Figure 11 clearly shows the additional uniformity ob

tained with a constrained improvement processor over a conventional 

processor. Comparison of the probability density functions of response 

for these same processors (Figures 12 and 14) clearly shows the in

creased uniformity obtained with the constrained improvement processor, 

providing approximately a three-to-one increase in occurrence of re

sponses close to unity, with a substantial reduction in occurrence of 

responses near zero. Comparison of the cumulative distributions of 

response given in Figures 13 and 15 again illustrate both the superior

ity of constrained improvement processors and the utility of the cumu

lative distribution of response as a means of comparing processor re

sponses. The fact: that the curve in Figure 15 more closely approaches 

the ideal step function indicates the desirability of the constrained 

improvement processor over conventional designs. For example, from 

Figures 13 and 15, use of a constrained improvement processor results 

in a reduction of approximately three-to-one in the fraction of 
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frequencies for which the response is less than -10 dB, certainly a 

most desirable feature. 

Thus, not only does the constrained improvement processor pro

vide a more uniform response as a function of frequency than conven

tional processors, but the probability density function of response 

and the cumulative distribution of response clearly point out this 

increased uniformity. While not absolutely essential for these rela

tively simple response shapes, these measures will be extremely use

ful when comparing the more complex responses obtained with staggered 

PRF processors. 

The shape of the CIP response for a Constrained Improvement 

Processor is a function of the exact value of I specified; Figure 16 

gives results for I = 10 dB, 30 dB, and 60 dB, showing the increased 

ripple associated with larger values of I. This illustrates the de

sirability of choosing I no greater than necessary because of the 

consequent compromises in processor response. 

The flatness of the response increases as the number of pulses 

processed increases, but the number of ripples also increases. This 

is illustrated in Figure 17 which shows responses for I = 60 dB for 

three, five, and seven pulses processed. 

Differences in responses for 7] = 0 and T| = 0.1 are not par

ticularly great, but the case T| = 0.1 does show a slight improvement 

in flatness of response. Figure 18 compares results for a five-pulse 

CIP with I = 60 dB for T| = 0 and T\ = 0.1. 
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Blind Speeds 

The improved processors designed up to this point, while pro

viding more uniform detectability than conventional processors, still 

exhibit blind speeds. This is a characteristic of any unstaggered 

PRF system which operates at a single frequency. Figure 19 shows the 

response of a conventional four pulse processor for an unstaggered PRF 

system. 

If the requirements on the radar system are such that Doppler 

frequencies higher than the system PRF are anticipated, some means 

of reducing or eliminating these blind speeds is required. Two 

methods of reducing these blind speeds are the use of frequency agility 

and staggered PRF. 

The effects of frequency agility on blind speeds have been 

.1 
analyzed by Ewell [&J, and, in addition to requiring a large number 

of pulses be processed, frequency agility is only effective in elim

inating the higher blind speeds. 

The other commonly used method for eliminating these blind 

speeds is to "stagger" the PRF (vary the inter-pulse spacing). 

Figure 20 shows the effects on the frequency response of a conven

tional processor of changing the interpulse period by a fraction, e. 

As one can see, this approach does eliminate the first blind speed. 

Figure 21 shows the effect of PRF stagger on the response of the 

three pulse Constrained Improvement Processor developed earlier. 

This would lead one to believe that these improved processors are no 

longer optimum when they are used in a staggered PRF system. In fact, 
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the response might be considered inferior to the conventional case, 

illustrating the need for specialized design procedures for staggered 

PRF systems. 

Staggered PRF Mil Processors 

The design of staggered PRF MTI processors is somewhat more 

complicated than the unstaggered PRF case described in the preceding 

sections. The mathematical simplifications which were possible for 

the unstaggered PRF case no longer are possible for the staggered PRF 

case; in fact, a number of the resulting equations are nonlinear. The 

second difficulty is that there is an additional set of parameters, 

the pulse spacings, to be optimized. The pulse spacings must be con

trolled to fall within certain limits; if the interpulse spacings be

come too small, either the unambiguous range requirement of the system 

will be violated, or the transmitter duty cycle limits will be exceeded. 

In spite of these additional difficulties, two general classes 

of improved structured MTI processors have been developed during the 

course of this research: the first are called Maximum Improvement 

Processors (MIP's), and the second are called Constrained Improvement 

Processors (CIP's). 

The design procedure for MIP's involves maximizing the MTI 

improvement, I, while keeping the average response equal to one. The 

method of solution involves the use of Lagrange multiplier techniques 

and the Fletcher-Powell method to solve the resulting sets of simul

taneous nonlinear equations in order to determine the required filter 

weights for a specified PRF stagger sequence. 



The CIP's are designed by specifying a desired value of MTI 

improvement, I, and selection of processor weights and/or PRF stagger 

sequences which minimize the mean square deviation of processor re

sponse from a constant. Again, the procedure involves use of Lagrange 

multiplier techniques and the Fletcher-Powell method to solve the re

sulting sets of simultaneous nonlinear equations. 

Since a number of general, properties of staggered PRF MTI pro

cessors are used in development: of both classes of processors, they 

will be discussed in the next section, followed by a discussion of 

MIP's, and the chapter concludes with the treatment of the CIP's. 

Properties of Staggered PRF MTI Processors 

The structured processor format which is being considered is 

illustrated in Figure 22, which shows the i pulse displaced from 

its unstaggered position by an amount AT.. The general form of the 

MTI processor is also shown in Figure 22, illustrating the delays 

t-\i 
(i-l)T+ AT. of the i pulse, which is weighted by an amount X.. 

1 I 

It follows directly from Figure 22 that h(t), the impulse re

sponse of the processor, is given by 

h(t) =X 16(t-AT 1) + X 2 6(t-(TMAT2)) +. . . + X N 6 (t-((N-l)T + ATN)) 

The frequency response of this processor, H(uo), is given by 

-juuCAT ) -ju)(T-MT ) -ju)((N-l)T4AT ) 
H(u)) = X.e + X0e +. ..+ X..e 

1 2 N 

^ -ju)((i-l)T + AT.) 
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Pulse Stagger Sequence 

AT T-lAT2 
• • • 

(i-l)T-hVr, 
• • • J L 

(N-l)T-fAT NT4AT 

Time 

Input 
# »• 

Processor Configuration 

Weight X 
Delay == ATX 

G elay = T + AT, Weight X 

Delay = (N-l)T + ATi N Weight X N 

Figure 22. Pulse Stagger Sequence and Processor Configuration for 
Staggered PRF Processors. 
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The power response of the processor, G (UQ) , is given by 

G(co) = H(u))-H(u)) 

where * denotes complex conjugate. Substituting, 

G(UJ) 

-juu((i-l)T-tATi) 
IN 

Ev 
juu((i-l)T+AT.) 

=Ev 
i=l J |i=l 
N N 

= V ^ V ^ X.X. cos[uu((i-j)T-fAT. -AT.Y] . 
i=l j = l 

It is possible to simplify this notation somewhat by noting uu = 2rrF, 

where F is the Doppler frequency, and that T = 1/PRF. Dividing the 

argument of the cosine by T, one obtains 

N N 
G(F):=Z5xiV°s 

i=l j: 

2TTF 

PRF 

AT. AT. \ 

a- j ) +-?--?>•) 

Making the substitution 

f = F/PRF 

A ( i ) = AT. /T 

A ( j ) = A T . / T , 

G(f) may be e x p r e s s e d a s 

N N 

G(f) = > 7 X.X. c o s [ 2 T r f ( ( i - j ) + A ( i ) 

i = l j = l 

- A ( j ) ) ] . (5) 

Due to the fact that the cosine is an even function, Equation (5) may 

be rewritten as 
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N N-l N-k 

G(f) = y ^ x^ + y ^ y ^ 2xixi+k ^ ( ^ f o ^ d ) + Au+k))). (6> 

i=l k=l i=l 

While Equations (5) and (6) are numerically equivalent, Equation (6) 

requires approximately one-half the computation time required by 

Equation (5) to evaluate G(f) for a given set of parameters. 

The average value of G(f), G(f), assuming the averaging is per

formed over a frequency interval much greater than the PRF, is given 

hy N 

G(f7 = V * X.2 . (7) 

i=l 

The MTI improvement, I, for the staggered PRF case is derived 

in a manner similar to the unstaggered case discussed earlier. A 

Gaussian clutter spectrum is assumed, 

2 2 
r C -f /2a 
^>-r = ~_ e 

1 < J ^ 

where f = F/PRF and CT = tfcT. 

The c l u t t e r output power i s given by C , where 

oo 

C == / G(f) CT df 
out J I 

•»oo 

° r „ / N N-l N-k . 

Cout = 2 / ( S X i 2 + Z Xi2XiXi+kCOs(2" f (1(-A(i)4A(1+k))^ 
o \ i = l k=l i=l 

S - e-f2/2^ | df , 
o-fiH 
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thus, 
U j K ^ 

r- N 

c = c 
out 

E - 2 X. + 2 
i=l 

N-l N-k 

E E 
k=l i=l 

,y 
-2rrV(k-A(i) + A(i+k)) 

. (8) 

The average target output power, T , is 

ou 
, = f l / T -
t J in 

G(f) df, 

where f is the highest Doppler frequency of interest. Assuming f » 1, 

T . = T. 2 x-2 out in 7~r I i=l 
(9) 

Then directly from the definition of MTI improvement, I, by the use of 

Equations (8) and (9), 

I = 
E -
i=l N-l N-k" 

. (10) 

Z xi2 + 2 £ 1\ xixi+k 
i=l k=l i=l 

-2rrV(k-A(i) + A(i+k))2 

These expressions will be used in the MTI processor designs outlined in 

the following sections. 

Maximum Improvement Processors 

As noted earlier, Maximum Improvement Processors (MIP's) are 

those which maximize I while keeping G(f) equal to a constant. Using 

properties of staggered PRF processors developed in the preceding sec

tion, the MIP design methods are set forth, and results verified, in 
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the next section. Then the design methods are used to specify some 

MIP's and results compared with those of earlier designs. A brief 

discussion showing how results of this comparison form part of the 

motivation for the design procedures for the CIP's (which are the 

other class of staggered PRF processors discussed in this chapter) 

concludes the discussion of MIP's. 

MIP Design Methods. The design procedure which was used was to 

minimize l/I while keeping G(f) = 1. One approach was to directly mini

mize the function 

cp = ~ + (i - cTf))2 . ( I D 

The second approach was to use Lagrange mul t ip l ier techniques to solve 

a t ruly constrained problem. 

Using Lagrange mult ipl ier techniques, i t i s desired to minimize 

the function 

t = l / I +X(1 - G"(fT)2 , (12) 

where \ is the Lagrange multiplier. 

In principle, minimization of Equations (11) and (12) should 

yield equivalent results, since l/I « 1. In practice, the Lagrange 

multiplier approach converged more rapidly with smaller error, and was 

used for the subsequent analysis. 

The minimization of Equation (12) is attacked by setting partial 

derivatives with respect to the desired variables equal to zero, and 
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solving the resulting set of simultaneous nonlinear equations. Noting 

that since 

N 

G(f) =]rx. 2 = 1, (13) 

i=l 

from E q u a t i o n (10) 

N N - l N-k 2 2 2 

l /I . y X.2 + 2 V T X.X. , e"2lT CT ( k " A ( i ) + A< 1 *» , (14) 
-t—/ i ^—y Z_^ l l+k 
i = l k=l i = l 

Substituting Equations (13) and (14) into Equation (12), the function 

to be minimized becomes 

( N N - l N-k ? 2 2 \ 2 

E xi2 + 2 E E xixi+k
e"2n CT (k"A(i) + M14k)) ) 

i=l X k^l i=l X ' 
/ N 

+ X (' "S *<) 
where k is a constant to adjust the initial size of the terms. 

Taking appropriate partial derivatives, the minimum will be a 

set: of values for which, using notation of Van Trees [56], 

V, t|r == 0 T , (15) 

where A = (X X2, ..., X^9 \ ) , and £ = (0, 0, ..., 0). 

These resulting equations are in general nonlinear and their 

solution was accomplished by use of the Fletcher-Powell search proce

dure [57,58]. The Fletcher-Powell method does not solve sets of simul

taneous linear equations, but instead minimizes the value of a single 
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function. Therefore, the relation 15 was transformed into a single 

function 

v = (VA t)-(VA t )
T • (16) 

The value of A for which v = 0, is a solution of Equation (15). Also, 

since v is non-negative (being the sum of squares of real numbers), 

v = 0 is also a minimum of v. 

The method of Fletcher and Powell is an iterative procedure for 

minimizing a function. It uses the fact that near a minimum of a func

tion the second order terms of its Taylor series dominate. Therefore, 

the class of methods which minimize quadratic functions rapidly should 

provide rapid convergence in the neighborhood of the minimum. If the 

function were indeed quadratic, a knowledge of the inverse of the 

Hessian matrix would enable one to arrive at the minimum in one step. 

Rather than calculate the inverse directly, in the method of Fletcher 

and Powell, it is approximated by an iterative procedure. If the func-

tion variables during the i iteration are denoted by A., the i 

approximation to the inverse of the Hessian matrix by H., and the 

gradient corresponding to the values A. by G_. = VA v, then one step 

of the iteration is summarized by [58]: 

(1) Compute 

d. = -H. ., G. 
— l • • l - l — l 

(2) Find \. which minimizes 

v(A. + \ . d.) 
—i l — i 
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(3) Set 

A . . = A, + \. d. 
— I + I —i 1 —1 

(4) Define 

Y. = G. ,-- G. 
—i —l+l —i 

(5) Compute 

±. d. 
H. == H + X. — — - ^ 
" X - a" 1 X G.1 H. , G. 

—l =i-l —i 

Then the iteration is repeated; the process was terminated when the 

magnitude of G_ became less than some specified value. The method of 

determining the \. is not critical; cubic interpolation was used for 

this implementation of the Fletcher Powell algorithm. Usually H is 

chosen equal to the identity matrix so that the first step is in the 

direction of steepest descent. 

The required equations were programmed on the UNIVAC 1108 com

puter, and a number of MIP designs were calculated. The first step 

in arriving at these MIP processors was to compare results with those 

of earlier investigations. The only earlier results which are avail

able are in an article by Capon [28], where the weights which maximize 

I were derived for the unstaggered PRF case. Capon's results are given 

in terms of the covariance matrix of the clutter spectrum, rather than 

the power spectrum of clutter discussed earlier. However, since 

Gaussian spectra were assumed, the transformation from power spectra 

to the autocovariance function, p, is straightforward. Nathanson [59] 

shows that the autocovariance function of the clutter, P ( T ) , is given by 

H. . Y. Y. H. . 
ggi-1 —i —i —l-l 

T 
Y. H. , Y. 
—i —l-l —i 
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2 2 
-T /2a 

p (T J == e 

where 

a T 2TTQC 

Noting tha t for the unstaggered PRF case , T = nT, then 

2 2 2 
-2n rr (nTcrc) 

p(nT) = e 

For the three pulse case , Capon's optimum weights for unstaggered PRF 

systems are given by [ 8 ] , 

-p(2T) +^/p2(2T) + 8p2 (T) 

In order to c a l c u l a t e some r e p r e s e n t a t i v e check c a s e s , cons ider 

an S-band system (one opera t ing a t 10 cm or 3.0 GHz) with a PRF of 

1000 Hz. Data summarized in Table 2 i n d i c a t e t y p i c a l values of a 
v 

from 0.01 to 2.0 meter/second. A value of 2.0 meters/second corresponds 

to cr„ of 40 Hz (<jr = 2a A ), where \„ is the wavelength or a = .04. c *- v c c 

Then 

p(T) = .968910791 

p(2T) = .881323137 

and the optimum weights become 

1, -1.961790501,1 

or renormalizing to H((ju) = 1, these become 

0.413497820, -.81119695, 0.413497820 
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Calculations for a three-pulse MIP using the method described 

in this section agree with these results to 4 significant figures and 

values of I calculated using the weights calculated by the two methods 

agree to within 0.2 dB. 

Comparison with Earlier Designs. Once the MIP design algorithms 

were verified, these MIP designs were used to calculate a number of im

proved processors, and performance of these MIP's compared with per

formance of earlier designs. Three general classes of previous designs 

were selected for comparison purposes; conventional integral weight pro

cessors, a processor of Shrader [5], and a processor of Taylor [45,46]. 

Initially, the performance of a conventional 3 pulse integral 

weight canceller was compared with that of the MIP designs when A(2) 

only was varied. Figure 23 compares MTI improvement, I, as a function 

of A(2) for both conventional processors and MIP's for a = 0.04. As 

can be seen, considerable improvements in I are possible using these 

MIP's. 

Rather than vary A(2) alone, the more conventional approach is 

to vary both A(2) and A(3) together by choosing A(2) = -e and A(3) = e, 

where 0 <_ e <_ 1.0. Plots of I vs e are presented in Figure 24 for both 

conventional processors and MIP's, again indicating substantial improve

ments using MIP's for e > 0.05. 

The amount of additional improvement obtainable by use of a MIP 

rather than a conventional processor is a function of both <j and g. 

In order to illustrate this dependence on a, I was plotted as a function 
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Figure 23. I for Conventional Three Pulse Processor and Three Pulse 
MIP as a Function of A (2). a = 0.04. 
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of G for both a conventional processor and a MIP for e = 0.3. The 

results are shown as Figure 25, indicating that the improvements in 

I are most significant for values of a > 0.02. For values of a less 

than this, conventional processors and MIP's have values of I which 

are relatively close to each other; however, this is also the region 

where I becomes so large as to be limited by the quantization errors 

discussed in Chapter II. 

A comparison of a four-pulse processor designed using procedures 

outlined by Shrader with a four pulse MIP has been carried out. 

Shrader's rule for selection of the stagger sequence for a four pulse 

processor is to add the values -3, 2, -1, 3 to the value of V^/PRF, 

where V^ is the desired first blind Doppler frequency [5]. Selecting 

V^/PRF = 8 (corresponding to the first blind speed at approximately 

the speed of sound for our earlier S-band example) results in ratios 

of 5:10:7:11 or values for A(i) of -0,06, 0.15, 0.0 and 0.33. Figure 

26 compares improvement for the design of Shrader and a MIP as a func

tion of a using the same PRF stagger sequence for each case. Again, 

for relatively large values of a, substantial increases in I over con

ventional design procedures are possible, approaching 20 dB in some 

cases. Thus, the behavior for the three pulse case is also reflected 

in this particular four pulse case, again showing significant improve

ment for large values of a and illustrating, since improvement becomes 

large for small a, the practicality of constraining improvement for 

small values of a in order to obtain more uniform response. 

The frequency response of the processor specified by Shrader is 
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presented in Figure 27, and it is interesting to compare this with the 

frequency response of the MIP shown in Figure 28 (a = 0.01). In spite 

of the fact that the processor of Figure 28 has approximately 26 dB 

more MTI improvement (for a = 0.01, see Figure 26) than processors de

signed with Shrader's procedure, frequency responses of the two systems 

are certainly comparable. In fact, due to lower high-amplitude ripples, 

some might find the MIP response, more desirable than that of Shrader. 

A four pulse processor proposed by Taylor [49,50] was selected 

for comparison purposes. Both exact and rounded weights are given 

by Taylor. Calculated improvement for the exact case (weights .3323, 

-.7796, .5893, -.1511) was 26.83 dB and for the rounded weights (.3207, 

-.7434, .5685, -.1458, after normalization) was 26.86 dB; also there 

was little difference in shape of the frequency response curves for 

the two cases, so the following discussion is applicable to both the 

exact and rounded processor of Taylor. The MIP design procedure was 

used to calculate optimum weights for the PRF stagger sequence of 

Taylor (-.25, 0, .25, 0) and a = 0.04. Resulting weights were .25521, 

-.63276, .67295, -.28532, resulting in an improvement of 34.56 dB. 

In order to compare performance of the Taylor processors and 

the MIP, frequency responses were calculated for both processors. 

Figure 29 compares the frequency response of the MIP with the response 

of Taylor's processor; the MIP used the same PRF stagger sequence as 

Taylor, and a value of a = 0.04 was assumed. In spite of the fact that 

the MIP has approximately 8 dB more improvement than Taylor's design, 

the frequency response of the MIP is even more uniform (and desirable) 
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than Taylor's, having approximately 1(3 dB shallower dips in response 

than the processor of Taylor. 

In order to more clearly illustrate the advantages of the MIP 

over the design of Taylor, cumulative distributions of response (dis

cussed earlier in Chapter 3 and in Figure 13) for the two processors 

are presented as Figure 30, showing the reduced frequency of occurrence 

of low amplitude responses for the MIP. For example, use of the MIP 

results in a 2:1 reduction in the occurrence of responses more than 

10 dB below the average response, and a slightly reduced probability 

of responses above 0 dB, These two facts indicate the MIP clusters 

more closely about the average value than the Taylor processor, cer

tainly a most desirable feature. 

Thus we can see that substantial increases in MTI improvement 

over previous design techniques are possible using these MEP design 

techniques, without an appreciable sacrifice (and in some cases, an 

improvement in) Doppler frequency response. The improvement in per

formance is largest for large values of a, which is the real problem 

area for MTI systems. For smaller values of a, the differences in 

improvement become less pronounced, but at the same time the improve

ment becomes sufficiently large that equipment-related problems (trans

mitter or receiver stability, analog-to-digital quantization errors, 

etc.) usually become the factor limiting MTI system performance. This 

fact is a portion of the motivation for the next step in the research. 

The next step will capitalize on the fact that there is an 

equipment related limit placed on MTI improvement, regardless of the 
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calculated improvement based on the clutter spectra and frequency re

sponse alone. The concept which will be used will constrain the MTI 

improvement to some practical and achievable value (often much less 

than the theoretical maximum), and use the resulting flexibility to 

optimize the shape of the frequency response curve. This concept is 

developed at length in the next: section. 

Constrained Improvement Processors 

Discussions in the preceding section show that a considerable 

improvement in performance over conventional processors is possible 

using MIP's. MTI improvement may be appreciably increased over con

ventional designs using MIP's with no degradationsand in some cases, 

an improvement in^the shape of the frequency response curve. As was 

discussed earlier, this fact leads one to the development of a class 

of MTI processors which limit improvement to some specified (and pre

sumably achievable) value, and uses the flexibility thus gained to 

achieve a more uniform amplitude response as a function of target 

Doppler frequency. Such a class of processors will now be discussed, 

and will be referred to as Constrained Improvement Processors (CIP's). 

While the staggered PRF CIP's are similar in many ways to un-

staggered PRF Constrained Improvement Processors, in addition to the 

weights, the PRF stagger must also be controlled. This spacing of 

the pulses may not be arbitrarily selected in order to optimize per

formance, but must remain within some bounds. If the interpulse perio 

becomes too small, the unambiguous range specification, or the trans

mitter duty cycle limitation, may be exceeded. 
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Thus, the design procedure for CIP's for staggered PRF systems 

is: first, specify a desirable and achievable improvement, I; second, 

specify the number of pulses to be processed; third, establish the 

desired characteristics of the PRF stagger sequence; and finally, sub

ject to these three constraints, minimize the mean square deviation 

from constant response for all frequencies of interest. 

There are two broad categories of CIP's which will be considered: 

for the first, the PRF stagger sequence is fixed and the filter weights 

allowed to vary to optimize response, while the second class of CIP's 

fixes the weights and allows the stagger sequence to vary within speci

fied limits in order to optimize performance. Both classes of proces

sors will be treated in detail in the following discussions. 

The section is subdivided into a number of separate, but related 

sections: first, CIP design methods are discussed; second, the search 

strategy for CIP's is presented; third, CIP's are compared with earlier 

designs; finally, some representative CIP's are presented and effects 

of changes in design parameters are investigated. 

CIP Design Methods. As outlined earlier, the design of CIP's 

uses Lagrange multiplier techniques to minimize the mean square devia

tion of processor response from constant over a specified frequency 

interval, while keeping I equal to some specified value. 

The frequency response, G(f), of the processors, is given by 

Equation (6) as 

N N-l N-k 

G(f) = y^x
±

2 + y ^ Y ^ 2XiXi_rttcos[2TTf(k-A(i)-l4(i4k))] 

i=l k=l i=l 
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It is now desired to minimize the mean square deviation of the fre

quency response from a constant value over the range of normalized 

frequency from zero to f. The mean square error (mse) is given by 

mse = 

f 

•H (l-G(f)r df, (17) 

where f is the highest frequency of interest. Performing the indi

cated multiplication and integration, Equation (17) becomes 

N N 
mse =\^ \ ^ X. X, 

i= l j « l 

N 

N 
x . 2

 + i 
1 

1 = . 

N - l N-k 

+ 4 ( v x . 2 - D ^ y ; x 
T=l k=-i i s l 

s i n (2TTf' (k-A (i)+A ( i+k ) ) 
i i+k 2-rTf1 ( k - A ( i ) + A ( i + k ) ) 

N - l N-k N - l N- j 

"IIEE 
k = l i = l j = l L=l 

X. X. .. X X. . 
i i+k L L+j 

| s in(2TTf ( k - A ( i ) + A ( i+k ) - j + A (L) - A ( L + j ) ) ) 
2TTf!(k..A(:i) + A ( i - f k ) - j + A (L) - A (L+j ) ) 

(18) 

+ 
sin(2TTf ( k - A ( i ) + A ( i + k ) + j - A (L) + A ( L + i ) ) ) 

2TTf ' (k-A(i) + A ( i + k ) + j - A (L) + (L+j ) ) 

and t h e d e s i r e d v a l u e of I , d e s i g n a t e d by y, 

N 

i = l 
Y N 0 N - l N-k 0 2 2 A . - N ^ A / . n N x 2 

2 . « v—* *-*\ „ „ -2TT CT (k-A ( I ) + A ( i + k ) ) E v t 2 I E xixi*e 

i= l k=l i= l 

(19) 

i s a c o n s t r a i n t of the problem. 
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The Lagrange multiplier solution to this problem is obtained by 

introducing the Lagrange multiplier, \. The function to be minimized, 

designated by $, is given by 

= mse 

N N-l N-k o o o 
-2TT a (k-A(i)4A(i+k)) 

L i f x feu' x i * e 

N 

i=l 

(20) 

V 
where / is a constant introduced to adjust the relative initial size of 

the terms of Equation (20). 

The desired solution is obtained when the partial derivatives 

of Equation (20) are simultaneously equal to zero. The appropriate 

partial derivatives depend upon which set of variables are being used 

to minimize Equation (20). 

If the weights are being varied to minimize. Equation (20), the 

solution is obtained when 

VA $ = 0
T, (21) 

where A = (X.,X2, . . ,. , X^,\). 

If the PRF stagger sequence is being used to minimize Equation 

(20), the required condition is still given by Equation (21), but A 

would be given by A = (Aj,A2,...,AN,\) . 

Unfortunately, satisfying Equation (21) in general requires 

solution of a set of simultaneous nonlinear equations. As in the MIP 

case discussed earlier, the Fletcher-Powell algorithm [57,58] was used 
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to a r r i v e a t a s o l u t i o n . In order to use the F le tcher -Powel l a lgor i thm 

to solve Equation (2.1), as be fo re , def ine a new v a r i a b l e 

v = (VA *)-(VA $ ) T . (22) 

As was the case for Equation (21), if a solution of Equation (22) is 

being sought by varying the weights, A = (X ,X ,...,X , \ ) , and if the 

stagger sequence is to be varied, A = (A ,A , ... ,A ,\) . The solution 

v = 0, which is also a solution of Equation (21), was then determined 

using the Fletcher-Powell search procedure. Details are given in the 

earlier discussion of MIP design methods and in references 57 and 58. 

The Fletcher-Powell method easily located zeros (which are 

global minima; see Equation (22)) of Equation (22) with adequate accu

racy. The search was generally terminated when the magnitude of the 

gradient vector was less than .0001, corresponding to a value of the 

-8 —12 
function being minimized of between 10 and 10 

CIP Search Strategy. A zero of: Equation (22) does not neces

sarily define the CIP. There are several possible conditions which 

may correspond to a zero, including a minimum, a maximum, or an in

flection point of Equation (20). In case the zero corresponds to a 

minimum, this minimum may be either a local or a global minimum. 

Thus, a rational search strategy is required in order to arrive at 

reasonable processors. As an aid to identifying which condition 

exists at a given solution point, the mean square error and improve

ment, I, were calculated and printed when the search procedure terminated 
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The type of solution determined by the search procedure is depen

dent upon the initial starting point, and whether minimization is being 

accomplished by varying the X's or the A's. The minimization for the 

X's is generally more straightforward and will be discussed first. 

The solution obtained to Equation (21) by varying the X's is 

dependent on the initial values chosen to begin the search; note that 

there are at least: two global minima, the variables for one being the 

negative of the other (see Equation (20)). The choice of initial 

point strongly effects the type of solution which results; the choice 

of initial parameters is not entirely arbitrary, however, since it is 
N 2 N 

known that V* X. ' « 1 and V* X. & 0. The first of these conditions 
&. x i=i x 

is because the average response will usually lie close to one, while 

the second results from the fact that the processor must generally 

exhibit a substantial value of MTI improvement. It was found that for 

initial points which satisfied these two conditions, the proper choice 

of signs of the initial X's almost always resulted in a minimum being 

reached. The fact that this minimum is a global minimum has been veri

fied by exhaustive search for several test cases. Once a solution has 

been determined, CIP's for small variations in I or in the stagger 

sequence may be obtained by using the original CIP as the starting 

point for the new search. 

The question of achieving a minimum for Equation (20) by varying 

the stagger sequence (the A's) is somewhat more difficult. One reason 

for this difficulty is due to the fact that in order to preserve the 

unambiguous range of the radar or to stay within transmitter limitations, 
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the values of the interpulse period must be constrained, and the second 

reason is the highly oscillatory nature of Equation (20) as the A's are 

varied. 

The highly oscillatory nature of Equation (20) as the A's are 

varied is at least partially due to Gibbs phenomenon. These oscilla

tions may be reduced by the use of appropriate weighting functions, 

in a manner similar to conventional digital filter design practice [32]. 

It was found that a raised cosine weight function rather effectively 

reduced the tendency toward oscillatory behavior. It was also found 

that relaxing the improvement constraint, i.e., allowing the search 

to deviate slightly from the hypersurface I = constant during the 

search, produced the same end result. This was easily accomplished 

by selecting appropriate values of K < 1 in Equation (20). 

The second problem in minimization of Equation (20) was the 

need to bound the variation in interpulse period. If the variation 

was not bounded, the pulse spacing would adjust itself so that one 

interpulse period would become extremely small. This spacing would 

be selected so that a term in Equation (5) would be non-zero over the 

expected range of target Doppler frequencies. Such spacing would al

most certainly violate system specifications. 

In order to bound the interpulse period, initially certain A's 

(usually two) were held constant while the others were allowed to vary. 

This could have been accomplished by setting certain terms in the 

inverse of the Hessian matrix of the Fletcher-Powell algorithm equal 

to zero [60]. Equivalent results were obtained by setting selected 
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elements of the gradient matrix equal, to zero. This approach was suc

cessful, but required that a large number of fixed values be investi

gated in order to determine the optimum value which falls within the 

stated constraint. 

A more satisfactory approach to PRF stagger optimization was 

to select an initial set of A's which satisfy the design constraints, 

and then look for the local minimum of Equation (20) near this set of 

initial values. This local minimum then corresponds to the optimized 

PRF stagger sequence, closely corresponding to the constraints which 

were expressed in the initial values of A. 

Comparison with Earlier Processors. The selection of suitable 

earlier designs for comparison purposes presents some difficulties. 

While the concept of staggered PRF has been discussed by a number of 

authors, the question of optimization of processor design has been 

treated by only a few. Most of these earlier attempts at processor 

design have involved processing a large number of received pulses, 

which is not the case of most interest when discussing modern, high 

performance radars. 

Processors for staggered PRF systems proposed by Taylor [50], 

Shrader [5] and Jacomini [51] were selected for comparison with four 

pulse CIP's designed using parameters 

o- = 0.01 

f = 8 

I = 30 dB. 

The frequency response of a four pulse processor designed using 
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the procedures set forth by Taylor is given in Figure 31 and that of 

a four pulse CIP in Figure 32. The CIP was designed using the PRF 

stagger sequence of Taylor, and weights were selected to optimize the 

response. As can be clearly seen, the CIP has a response which clusters 

more closely about 0 dB with much shallower null depths than the pro

cessor of Taylor. Figures 33 and 34 give the probability densities 

of response for the two processors, and Figure 35 compares the cumula

tive distributions of response for the CIP and Taylor processors. From 

Figures 33 and 34, the CIP offers a significant reduction in probability 

of low frequency response and at the same time a corresponding increase 

in occurrence of responses near one. Figure 35 illustrates the fact 

that with the CIP there is approximately a three-to-one reduction in 

the fraction of frequencies for which the response is less than -10 dB. 

The PRF stagger sequence of Taylor is not optimum, however, since 

processors having even more uniform responses may be designed. Figure 

36 gives the frequency response of one such four pulse CIP, having a 

maximum variation of + 20% in interpulse period (a smaller variation 

than the variation for the processor of Taylor); comparison of this 

response with the response shown in Figure 31 clearly illustrates the 

advantage of the CIP, achieving more uniform response with smaller 

variations in interpulse period,. 

A ten pulse processor of Shrader was next selected for compari

son with a four pulse CIP. Response for the Shrader 10 pulse processor 

is shown in Figure 37, and may be compared with the CIP response shown 

in Figure 36. As is shown in Figures 36 and 37, all of the null depths 
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are substantially reduced with the CIP and the top of the CIP is flatter; 

again the CIP showing a more uniform (and desirable) response, but using 

only four pulses compared to the ten for Shrader. 

Figure 38 shows the frequency response of a processor discussed 

by Jacomini (a six pulse processor); comparison of this response with 

the CIP response in Figure 36 illustrates that, in spite of the fact 

that Jacomini used rather large variations in interpulse period (a 

totally unrealistic assumption for many cases), the responses are cer

tainly comparable. This is illustrated by the comparison of the cumula

tive distributions of response for the CIP and Jacomini's processor 

which is given as Figure 39. One can see the CIP has a lower probabil

ity of response below -5 dB than Jacomini's processor, and clusters 

more closely about the 0 dB point than the processor of Jacomini. 

Thus, a comparable (or superior) response is obtained using a CIP, 

while processing four rather than six pulses and using a more reason

able PRF constraint than the processor of Jacomini. 

These three comparisons serve to illustrate, the superiority of 

CIP's over previous processors. The CIP's generally; (1) achieve fre

quency responses which are more uniform than earlier designs, (2) re

quire fewer pulses to be processed, and (3) constrain the PRF stagger 

sequence to conform to reasonable system requirements. A number of 

representative CIP designs are presented in the next section. 

Some Representative CIP's,. The selection of a representative 

set of designs is rather difficult since each radar system has a unique 

set of requirements which require separate consideration. The use of 
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such normalized values as f and <j help reduce the number of cases to 

be considered, but many cases remain. A number of designs are dis

cussed in this section; design parameters of f' = 8 and a = 0.01 for 

these processors were taken from the representative systems discussed 

earlier in this chapter. A value of I = 30 dB was selected to be con

sistent with a six-bit analog-to-digital converter. These designs 

illustrate effects of various parameter choices and to serve as start

ing points for design of processors which are similar, but which have 

different design requirements. 

The selection of the PRF stagger sequence is first discussed, 

followed by presentation of a number of representative designs. In

fluences of changes in maximum and minimum interpulse period spacings, 

f , a, and a number of pulses processed are next investigated. Finally, 

the effects of optimization of the PRF stagger sequence are discussed. 

A central concept when specifying CIP's is the need for control

ling the interpulse period and the transmitter duty cycle. Both of 

these objectives may be satisfied by selecting suitable maximum and 

minimum interpulse periods, and then selecting the remaining pulse 

spacings to fall within these bounds. However, if the remaining spac

ings are inappropriately chosen, blind speeds may still exist. These 

blind speeds may be avoided by selecting spacings which are not simply 

related to each other; for example, selecting a sinusoidal or a exponen

tial variation of interpulse period, as opposed to a linear variation. 

In order to illustrate the above statements, CIP's for both 

sinusoidal and linear variation in interpulse period were designed. 



First, the spacings for linear and sinusoidal variation in interpulse 

spacing for a + 20% variation in interpulse period were selected as 

shown in Figure 40. Thus, for the four pulse processor, sinusoidal 

spacing results in a required normalized spacing of 0.8, 0.9, 1.1, 

and 1.2; corresponding A's are 0., -0.2, -0.3, and -0.2. Linear 

variation requires pulse spacings of 0.8, 0.93, 1,07, and 1.2, resulting 

in deltas of 0., -0.2, -0.27, and -0.2. Next, CIP processors were de

signed using these PRF stagger sequences for linear and sinusoidal 

variations. Response for the linear variations is given in Figure 41 

and for the sinusoidal variation in Figure 36. Finally, a comparison 

of these two responses illustrates the desirability of choosing a 

sinusoidal variation of interpulse period in order to produce a more 

uniform response, lacking blind speeds over the frequency range of 

interest. 

The detailed shape of the processor response is a function of 

bounds on interpulse period variation, f, a, and number of pulses 

processed. Table 4 presents four pulse CIP designs for a = 0.01, 

I = 30 dB and f' = 8 for a number of extreme variations in interpulse 

spacing from + 10% to + 90%. Figure 42 shows the processor response 

for + 10% variation and Figure 43 illustrates the response for the 

+ 90% variation. Figure 36 shows the response for the + 207o case; 

comparison of these three responses clearly shows the increased uni

formity in response shape and reduction in low frequency null depths 

obtained as the variation in interpulse period becomes larger. 

In order to illustrate dependence of processor response on 



T3 
O 
•H 
U 

a) 

<u 
CQ 
r-l a u 
<u 

(a) Linear Stagger. 

(b) Sinusoidal Stagger, 

Figure 40. Method for Determining Interpulse Periods for 
Linear and Sinusoidal PRF Stagger. Maximum 
Interpulse Period Variation is + 20% in Each 
Case. 



o 
o 

o _ 

- ^ O 

Q o " 

CO I / 
^ R 
Q • 
Q_o 
C071 
LJ 

o 
o 
o 
CxJJI 

I \ 

I \ \ r\ 

\ i 
\ / 

V 
\ A' V 

\y 

0 .00 1 .0( GO 3 -00 4 .00 5.CC 
DQPPLER FREQUENCYiF/PRF) 

s .00 00 

Figure 41. Frequency Response of a Four Pulse CIP Using Linear PRF 
Stagger with + 20% Interpulse Period Variation. 



Table 4. Representative CIP Parameters for a Range of Variation in Interpulse Period 
a = 0.01, f' = 8, I = 30 dB 

Variation in 
Interpulse 
Period 

Weigh ts PRF Stagger Variation in 
Interpulse 
Period h X2 X3 h Al *2 h A4 

+ 10% 0.3094 -0.7141 0S1391 0.2557 0.00 -0.10 -0.15 -0.10 

+ 20% 0.3082 -0.7514 0.2591 0.1677 0.00 -0.20 -0.30 -0.20 

+ 30% 0.3002 -0.7117 G.2005 0.2004 0.00 -0.30 -0.45 -0.30 

+ 40% 0.3105 -0.7276 0.2338 0.1691 0.00 -0.40 -0.60 -0.40 

+ 50% 0.3344 -0.7178 0.1838 0.1861 0.00 -0.50 -0.75 -0.50 

+ 60% 0.2935 -0.7264 0.2548 0.1717 0.00 -0.60 -0.90 -0,60 

+ 70% 0.3214 -0.7400 0.2399 0.1697 0.00 -0.70 -1.05 -0.70 

+ 80% 0.3106 -0.7036 0.2318 0.1530 0.00 -0.80 -1.20 -0.80 

+ 90% 0.4421 -0.6638 0.1054 0.0949 0.00 -0.90 -1.35 - .90 
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values of f, a CIP was calculated for f = 12, and response of this 

processor is shown in Figure 44. The response for a similar processor 

with f = 8 was given earlier in Figure 36. Comparison of responses 

for these two processors shows the responses are very similar, but 

there are some slightly deeper high frequency nulls in Figure 44, 

indicating desirability of making f' no larger than necessary. These 

two figures also point out that the shape of the response curve is 

partially due to the region over which minimization occurs, and par

tially due to the fact that this particular stagger sequence and 

optimization criteria were employed. 

CIP's have been designed for values of a = 0.001 and a = 0.0 

in order to investigate sensitivity of processor response to changes 

in values of a. The shape of the resulting response for a = 0.0 is 

shown in Figure 45. The shape of the response is virtually indis

tinguishable from that for a = 0.01 shown in Figure 36, indicating 

that, while the value of I achieved is a function of clutter spectral 

width, there is little sensitivity of the shape of the frequency re

sponse to the exact shape of the clutter spectra. This further illus

trates the statements made earlier in Chapter II, that for small num

bers of pulses processed, processor responses are not critically depen

dent on details of clutter spectral shape. 

In order to explore the effects of number of pulses processed 

on processor performance, CIP's were designed for a + 20% variation in 

interpulse period for three, four, five, and six pulses processed. 

The response for the three pulse CIP is given in Figure 46, for the 
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five pulse CIP in Figure 47, and the six pulse processor in Figure 48. 

The response of the four pulse CIP is given in Figure 36. The case 

for three pulses shows a blind speed, due to the fact that the sinu

soidal interpulse period variation and the linear interpulse period 

variation degenerate to the same case. The case for five pulses pro

cessed is rather similar to the four pulse response shown in Figure 36, 

which is reflected in the fact tha X_. = 0.0763. The small value for 

X_ indicates that improvement due to inclusion of this additional term 

is rather small. The response of the six pulse processor shown in 

Figure 48 shows somewhat increased uniformity of response when com

pared with processors having fewer numbers of pulses. This is pointed 

out in Figure 49 which compares the cumulative distributions of re

sponse for the six pulse CIP (response given in Figure 48) and the 

four pulse CIP (response given in Figure 36). The six pulse CIP has 

slightly reduced probability of low amplitude responses and clusters 

more closely about 0 dB, thus more closely approaching the ideal step 

function occurring at 0 dB. 

The local optimization of the PRF stagger sequence for the pro

cessors given in Table 4 was then carried out; the resulting designs 

are given in Table 5. The processor response for the + 20% nominal 

variation in interpulse period is shown in Figure 50. Comparison of 

responses in Figures 50 and 36 shows the detailed improvement in pro

cessor response shape, principally over the region 5 < f < 7, obtained 

by optimization of PRF stagger„ 

The representative processors discussed in the preceding 
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Table 5. Representative CIP Parameters for Processors Optimized Using Weights and PRF Stagger 
Nominal Interpulse Period Variations + 10% - + 907o 

a = 0.01, f = 8, I = 30~dB 

Nominal Variation 
of Interpulse 

Period 

Weigh ts PRF Stagger Nominal Variation 
of Interpulse 

Period x i X2 X3 X4 Al A2 h A4 

+ 10% 0.3094 -0.7141 0.1391 0.2557 0.0540 -0.1420 -0.1741 -0.0879 

+ 20% 0.3073 -0.7514 0.2590 0.1689 0.0275 -0.1911 -0.3223 -0.2142 

+ 30% 0.3002 -0.7117 0.2005 0.2004 0.0067 -0.3208 -0.4403 -0.2957 

+ 40% 0.3105 -0.7276 0.2338 0.1691 -0.0084 -0.4055 -0.5860 -0.4001 

+ 50% 0.3344 -0.7178 0.1838 0.1861 -0.1271 -0.7809 -0.6228 -0.5468 

+ 60% 0.2935 -0.7264 0.2548 0.1717 0.0243 -0.6198 -0.9121 -0.5923 

+ 70% 0.3214 -0.7400 0.2399 0.1697 -0.0298 -0.7272 -1.1390 -0.5540 

+ 80% 0.3106 -0.7036 0.2318 0.1530 -0.3221 -0.7516 -1.6200 -0.7506 

+ 90% 0.4421 -0.6638 0.1054 0.0949 -0.0103 -0.9120 -1.3340 -0.8942 
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paragraphs illustrate the results which are achieved with some repre

sentative design parameters, and effects of changes of these parameters 

on processor performance. Equally important is the fact that these 

representative designs provide a starting point for the designer who 

wishes to develop similar processors for differing sets of design 

requirements. 
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

The research reported in this dissertation resulted in design 

procedures for improved MTI processors for radar systems utilizing 

either staggered or unstaggered PRF's. These design procedures utilize 

the new flexibility and capability of modern step-scan radar systems 

employing digital signal processing in order to specify MTI processors 

of substantially improved performance. 

Three classes of processors for unstaggered PRF systems have 

been developed: the Equal Ripple Processor, the Maximally Flat Pro

cessor, and the Constrained Improvement Processor. The first uses 

simplex methods for a solution, the second involves solution of a set 

of simultaneous linear equations, while the third makes use of Lagrange 

multiplier techniques. Each of these processors offers considerable 

improvement in uniformity of response when compared with earlier designs. 

Two classes of staggered PRF processors have been developed; the 

Maximum Improvement Processors (MIP's), and the Constrained Improvement 

Processors (CIP's). Lagrange multiplier methods are used to design the 

processors, and the Fletcher-Powell method to arrive at a solution. 

The MIP's maximize I while keeping the average response equal to one. 

Examination of the resulting responses shows significant increases in 

I over previous designs, with no degradation (and in some cases an 

improvement) in uniformity of Doppler frequency response. The CIP's 

limit I to some desirable (and achievable) value and, subject to this 



constraint, minimize the mean square deviation of processor response 

from unity with changes in target Doppler frequency. The design pro

cedure involves selection of both processor weight functions and inter-

pulse periods. 

Representative CIP's are compared with earlier processors, and 

a considerable improvement in uniformity of frequency response is 

achieved with a CIP. A complete absence of blind speeds may often be 

achieved over the desired range of target Doppler frequencies, and 

fluctuations in processor response with changes in target Doppler fre

quency are considerably reduced over previous designs. A number of 

representative processor parameters are tabulated, and effects on pro

cessor performance of such variables as clutter spectral width, number 

of pulses processed, and maximum and minimum interpulse spacing are 

considered. 

Conclusions 

A number of significant facts concerning the design of improved 

MTI processors have been pointed out during this research. 

First, previous MTI processors have exhibited a number of un

desirable features, principally significant variations in processor 

response with changes in target radial, velocity and the need to pro

cess a large number of received pulses from the target. 

Second, practical MTI processor designs can be specified which 

emphasize both achieving the required value of MTI improvement and 

minimizing fluctuations in processor response with changes in target 

Doppler frequency. 
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Third, these improved processor designs offer substantial im

provements in uniformity of response when compared with conventional 

processor designs. 

Fourth, a number of factors, such as clutter spectral width, 

range of target velocities of interest, allowable minimum and maximum 

interpulse periods, and number of pulses processed all effect the 

shape of the processor responses. Uniformity of processor response 

generally improves as the desired range of target velocities and 

clutter spectral width decrease, and as the number of pulses pro

cessed and the allowable range of interpulse periods increase. 

Fifth, the designs developed are useful, not only as guide

lines for the system designer, but also as the starting point for 

development of new designs for the same types of processors having 

different sets of design requirements. 

Recommendations 

During the course of this research, it has become obvious that 

performance of many systems is limited by the quantization errors in 

the analog-to-digital conversion process. Improvements in speed and 

accuracy of analog-to-digital converters would substantially benefit 

system performance. 

The implementation of these improved processors is a non-

trivial problem. Computation algorithms and hardware implementation 

approaches require considerable sophistication in order to minimize 

cost, complexity, and processing time. The method of interfacing the 

processor output data with the central control and computational system 



is also a rather difficult problem. 

The extension of the results of Wainstein and Zubakov to deter

mine unstructured processors for more than two received pulses for 

both the staggered and unstaggered case would be a significant contri

bution to the MTI signal processing field. 

The extension of these results to include both the use of 

staggered PRF and frequency agility for blind speed reduction would 

considerably enhance performance of radars which must use frequency 

agility for other purposes, such as glint or multipath reduction. 

However, the meaningful specification of the additional variable of 

frequency, with all of its other constraints, is a formidable task. 
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