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 Interference Alignment
 increased channel capacity in multi-user scenarios
 Physical layer technique

 MMSE Interference Alignment Algorithm
 Hardware architecture
 Parallelization
 Low-latency operations

 Implementation results
 Conclusion

Outline
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 Dedicated hardware accelerator for Minimum Mean Square Error  
(MMSE) Interference Alignment (IA)

 Digital baseband processing
 Low-latency real-time operation (latency < 1 ms)

Objectives
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Multi-User MIMO Communication System, TDMA

 MIMO spatial multiplexing: multiple antennas per user, one
data stream per antenna

 Channel capacity shared by all users
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Multi-User MIMO Communication System, IA

 MIMO spatial multiplexing: multiple antennas per user, one
data stream per antenna

 Channel capacity shared by all users
 Interference Alignment: simultaneously transmitting users
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Multi-User MIMO System: Goal
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 Channel capacity scales with
number of users K
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 Scenario: multi-user point-to-point communication system
 Linear precoding and decoding at TX and RX, respectively

Interference Alignment System Model
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Received signal:

 K: #users, d: datastreams / user
Nt: antennas / TX, Nr: antennas / RX

 Problem formulation:
Determine ܄௞	and ܃௞	for given ۶௞௝

 Several approaches feasible:
Max SINR, Max Sum-Rate, MMSE, …
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 Channel coherence time depends on scenario
 Precoding matrices need to be adapted to the channel within 

channel coherence time
 High data throughput AND low-latency realtime computation 

required

  Low-latency computation of ܄௞	and ܃௞	(< 1 ms)
 Additional system latencies: channel estimation, transmit CSI,

distribute ܄௞	and ܃௞

Fast-changing channels
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 MMSE criterion: minimize overall interference + noise
Algorithm[1]:
1. Start with arbitrary ܄௞
2. Update

3. Compute system MSE
4. Repeat steps 2 and 3 until convergence

Lagrange multiplier	ߣ௞ iteratively determined
to satisfy TX power constraint

MMSE-IA Algorithm
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[1]: D. Schmidt, C. Shi, R. Berry, M. Honig, and W. Utschick, “Minimum Mean Squared Error Interference Alignment”, 2009
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Inherent data dependencies limit parallelization

Parallelization
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Dedicated accelerator for
integration in SDR SoCs

Hardware System Architecture

Top-level

 All communication via OCP or AXI 
on-chip busses

 Local matrix cache (BRAM)

 ۶௝௞ channels

 ௞܄ precoders
 ௞܃ decoders

 Variable number of processing
elements (PE) for computing ௞܄
and ܃௞

 Controller
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 Compute V or U for one user at a 
time (mode select)

 Main complexity: Gaussian
elimination, shared by V and U 
modes

 Mode V
 Iterative root-finding for ௞ߣ

 Mode U
 No iterations required

Processing Element

PE detail
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 Inner loop contains matrix inversion
 Solve equation system instead

 Candidates: SVD, LU, QR, …
 Criterion: low-latency
 Gaussian elimination
 Small matrix sizes sufficient precision
 Latency: one multiplication per eliminated unknown

Low-Latency Equation System Solver
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Augmented System: 

 Variation of Gaussian elimination
 Integer-preserving, division-free (elimination loop)
 Eliminate two unknowns per step
 Row-wise normalization after each elimination step
 One final division required per result coefficient

Two-Step Bareiss Algorithm
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Two-Step Bareiss Algorithm Result
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 Two unknowns eliminated after one step

11 11 1

22 21 2

1

0

0

 
 
 
 
 
 

 
 

   
 

d

d

NN N Nd

d u u
d u u

d u u

 Repeat to obtain diagonal form

Final division required for
each result coefficient u

One common factor per row
 Skip multiplication
Fewer operations compared
to single step elimination
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 Fixed-point representation
 Only multiplications and additions/subtractions required
 Data shifted diagonally by two elements per elimination step

Two-Step Bareiss Systolic Array Processor
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 Eliminate two unknowns
 Critical path: 2 MUL + 4 ADD
 Row-wise block renormalization

(shift) after each elimination step

Systolic Array Processor Critical Path

( )AB CD E  
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 Channel capacity within 0.1% vs. floating-point MATLAB reference
 FPGA synthesis
 Target: Xilinx Virtex-6 XC6VLX550T-2
 Software: ISE 14.7
 Clock constraint: 50 MHz
 Latency 520 μs for worst-case system (Nt = Nr = 11, K = 19) 

K Nt,r d nPE nMM FF LUT DSP48E1

3 2 1

3
3

51531 7.50% 81560 23.73% 364 42.13%

1
20942 3.05% 32702 9.52% 148 17.13%

1 16585 2.41% 25682 7.47% 80 9.26%

5 3 1 1
3 32980 4.80% 56974 16,58% 330 38,19%

1 24916 3.62% 43514 12.66% 232 26,85%

Implementation Results
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 Hardware acceleration required for very low-latency MMSE-IA
 Resource requirements prohibitive for large system configurations
 Worst-case processing latency < 520 μs is achievable

Conclusion
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Thank you for your attention!

Questions?


