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Chapter 1

Motivation

The worthwhile problems are the ones you can really solve or help
solve, the ones you can really contribute something to.
— Richard Feynman

When I began the work on this thesis, my aim was to develop tools and
techniques to better understand the structure of optimization problems. Before
I discuss what that structure might be and how it might be used to better
solve an optimization problem, I will fix a minimal amount of notation. Given
f: X — Y and the partial order < over ) I will call the 2-tuple (f,=<) an
optimization problem. The function f is called the objective or fitness function,
X the search space and Y the objective space. Depending on the research
community, X may also be called the parameter space or the domain of the
optimization problem. Given an element x of X', its associated objective value
f(z) is often referred to as the fitness of . Many of these terms reflect that
I mostly work with researchers from the field of evolutionary computation.
Other communities have different terms for the above concepts.

The aim of any optimization procedure, given a problem (f, <) is to find
an z* € X such that

Ve e X: f(z¥) < f(z).

That is, the aim of the optimization process is to find an element of the search
space that maps to the minimal element of {f(z):z € X} C ) with respect
to the given partial order <. To simplify the following discussion, I implicitly
assume that such an element exists. If in fact the problem is not bounded
below, an ideal optimization procedure would deduce this somehow and return

this fact to the user. Clearly this is not possible in the general setting described
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4 CHAPTER 1. MOTIVATION

above. Also note that my choice of minimizing (finding a minimal element)
is arbitrary. By redefining the ordering any maximization problem (finding
the maximal element) can be reformulated into a minimization problem and
vice-versa.

The above definition looks rather abstract at first. When someone thinks
of an optimization problem, they often implicitly assume that the objective
space is the real numbers and that the natural order is used to judge the fitness
of a solution. While this is often the case, the above definition also includes
the class multi-objective optimization problems. Similarly, many assume that
X is a metric space and again this does not have to be the case. A well known
class of an optimization problems where X is not a metric space are travelling
salesperson problems. There X is the set of all routes the salesperson may
travel.

Using the mathematical structure of the domain X and the objective space
Y an optimization problem can be assigned to any one of a broad set of problem

classes. Some examples of problem classes are

Discrete problems: the search space is a finite set such as in the travelling

salesperson problem mentioned above.

Continuous problems: the search space is a metric space. An example
would be optimizing the proportions of certain assets in a portfolio or

the variance parameter of the Gauss kernel in kernel logistic regression.

Multi-objective problems: the objective space is a product space. In fea-
ture selection one might want to minimize the number of features and
the model error at the same time. The objective space would then be
the product of the natural numbers less than the maximal number of

features and the positive real numbers.

A problem may belong to more than one of these classes and there are problems
which do not belong to any of the above classes. Nevertheless, the above classes
are roughly speaking the main subdivisions of optimization. Methods which
are applicable to discrete problems will in most cases fail to work on continuous
problems. Solvers for continuous problems often exploit the neighborhood
structure induced by the metric over X and are therefore not usable for all
classes of discrete problems. Both continuous and discrete solvers usually

assume that the objective space is a subset of the real numbers. Therefore



specialized methods are needed for multi-objective problems or problems where

no total order of the objective space is given.

Within these broad classes there are further subdivisions based upon char-
acteristics of the problems. In discrete optimization it is customary to classify
problems based on their concrete domain. There are the already mentioned
travelling salesperson problems, the more general vehicle routing problems,
problems related to the satisfiability of Boolean clauses and many more such
classes. Given that a discrete optimization problem can always be solved us-
ing exhaustive search, it is not surprising that the difficulty of a subclass of
discrete optimization problems is most often judged by the complexity class
in which the corresponding decision problem lies. Much theoretical work has
therefore been performed to establish the complexity of many common and not
so common discrete optimization problems and to find approximation schemes

for these problems.

Continuous problems on the other hand are often further classified based
on the structure of the mapping between the search space and the objective
space. The most prominent subclass of continuous optimization problems are
convex problems. This is the class of all optimization problems in which both
the search space X and the fitness function f are convex. The reason this class
is so prominent is that it is possible to derive simple to check necessary and
sufficient conditions to prove that a point x is a (local) minimum of f using
convex analysis. Combined with the fact that any local minimum is also a
global minimum. In addition, if f is strictly convex then the global minimum
is unique. It is therefore possible, given convex X and f and a point = € X,
to prove that x is a local minimizer of f and therefore a global minimum of
f and a solution to the continuous convex optimization problem (f, <). The
structure of a convex function f can often be exploited further to derive efficient
algorithms to solve the associated optimization problem. In fact, in some cases
the solution can be derived analytically, something that is not possible for many
other types of optimization problems. Convex optimization plays a key role
in statistical estimation. Many classical estimation procedures are formulated
or can be reformulated as convex optimization problems. These include least
squares and least absolute deviation estimation and many maximum likelihood
estimation problems but also more modern methods such as support vector

classification or regression.

For mutli-objective optimization I know no established further subclasses



6 CHAPTER 1. MOTIVATION

that are prominent. Some authors define the subclass of many-objective opti-
mization as any multi-objective optimization task where the objective space is
the product of more than a few sets. This subdivision is motivated less by theo-
retical consideration and more by practical necessity because most established
multi-objective optimization algorithms do not scale to tens or hundreds of
objectives. Other characterizations exists that are based on the solution strat-
egy. An example of such a subdivision would be the so called scalarization
methods which transform the multi-objective problem into a single objective
problem by combining the objectives into a single new objective that is then
minimized using a single objective optimization algorithm. Much of the cur-
rent research focuses on finding structures in the objective space that can be
exploited by an optimization strategy. It is odd that little research focuses on
exploiting the structure of the search space. The work done in this area largely
relies on the existing body of work from single objective discrete or continuous
optimization.

Given that there is already an extensive body of research into the struc-
ture and characteristics of many subclasses of optimization problems, what
prompted me to work on this topic in my thesis? My initial interest was
sparked by a class of problems called black-box continuous optimization prob-
lems. This subclass is characterized by the fact that f is considered to be a
black box, that is apart from the domain and objective space nothing else is
known about the structure of f. These types of problems often arise in en-
gineering or other natural sciences where f might be a simulation or even a
real experiment. Much of the mathematical community ignores this problem
class because little can be proven about them theoretically. An exception is
the result by Auger and Teytaud (2010) which applies to all continuous op-
timization problems and states that the well known No-Free-Lunch theorems
do not apply to this domain.

Given the practical relevance of the problem class, I set out to use ex-
perimental methods to empirically characterize the structure of a black-box
function. The aim of my work was to derive a characteristic fingerprint for a

function. In turn, such a fingerprint is a useful tool in several different settings:

Function grouping: finding similar functions with almost the same charac-

teristics is essential for validation purposes in benchmark studies.

Algorithm selection: instead of relying on theoretical properties of a func-



tion, the empirically determined characteristics can be used to select a

set of candidate optimization algorithms for the task at hand.

User insight: By comparing the characteristics of an unknown function with
those of functions with known theoretical properties it should be possi-
ble to gain insight into the true theoretical properties of the unknown

function without its analytic form.

Together with my coworkers I have made progress in all three areas. The
corresponding articles are summarized in Chapter 2.

Based on the promising results obtained characterizing and grouping black-
box continuous optimization problems, I developed the idea of generating sim-
ilar optimization problems to a given problem. The core idea was to search for
functions with similar characteristics and assume that they should also show
similar behaviour during the optimization. In the continuous domain this is a
daunting task. The search space would be the set of all computable functions
from the parameter space to the objective space. Adding strong assumptions
such as continuity or differentiability do not make the search space signifi-
cantly smaller. Therefore my attention turned to discrete problems. More
specifically T chose to work with travelling salesperson problems (TSPs) be-
cause I had colleagues with expert knowledge in this domain. Here a problem
instance is well defined and it is trivial to generate new instances. There are
also plenty of characteristics for TSPs in the literature so no new features
had to be developed. Using a guided search procedure, I, together with my
colleagues, created instances with varying characteristics spanning the space
complete feature space. Sadly it turned out that the characteristics and the
performance of a simple TSP solver heuristic on these generated instances did
not correlate. We did however manage to generate “easy” and “hard” instances.
Based on this observation we reworked our guided search procedure to specifi-
cally generate both easy and hard instances for the employed search heuristic.
More details on the procedure and the obtained results we published are given
in Chapter 3.

Finally in Chapter 4 I present joint work with a former student on rare
anomalies discovered during the systematic evaluation of a multi-objective op-
timization algorithm. While it may seem that this is not related to the previous
work, it builds on the same principles. The algorithm under test, the so called

SMS-EMOA, is theoretically well studied. We were able to experimentally ver-
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ify many properties of the algorithm that had theoretically been derived for
simpler versions of the algorithm. One crucial property however was violated.
The dominated hypervolume, a measure for the progress of the optimization,
is supposed to monotonically decrease over the course of an optimization run
when employing the SMS-EMOA. In our dataset we found sporadic increases.
Our initial suspicion was that there was an implementation error or that nu-
merical instabilities were the root cause. One by one we could eliminate these
until we had a small and concise test case that could reliably reproduce the
observed increase!. Starting from there, we found the true root cause and
studied it. The results of this work can be found in Chapter 4.

The rest of this thesis is structured as follows. The following three Chap-
ters cover three distinct areas of my thesis work. There is a chapter on the
characterization of continuous black box optimization problems (Chapter 2).
Following this there is a body of work on the systematic generation travelling
salesperson problems (Chapter 3). Finally there is a chapter that covers the
study of hypervolume decreases in SMS-EMOA runs (Chapter 4). Before the
conclusion, Chapter 5 covers the accompanying software I (co)developed dur-
ing the course of my thesis work. After the conclusion there is an appendix
containing copies of all the peer-reviewed articles that I submit as part of my

thesis work.

!This may sound simpler than it is given that the SMS-EMOA is a randomized algorithm



Chapter 2

Characterization of Continuous

Optimization Problems

2.1 Contributed Material

e Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape

Analysis (Mersmann et al., 2010a)
e Exploratory Landscape Analysis (Mersmann et al., 2011)

e Algorithm selection based on exploratory landscape analysis and cost-

sensitive learning (Bischl et al., 2012a)

2.2 Benchmarking Evolutionary Algorithms:
Towards Exploratory Landscape Analysis

In Mersmann et al. (2010a) we laid out a generic framework to systemati-
cally benchmark evolutionary algorithms for black-box continuous optimiza-
tion. The design of this framework is based on the work presented in (Mers-
mann et al., 2010c). We then applied this methodology to results of the 2009
Workshop on Black-Box Optimization Benchmarking (BBOB) (Hansen et al.,
2009). The organizers of the BBOB workshop selected a testbed of 24 noise
free continuous functions for the benchmark. Each function was chosen for a
particular challenge that it poses for an optimization algorithm. For example,

for the sphere function (function 1 in the BBOB function set), we would like

9



10 CHAPTER 2. CHAR. OF CONT. OPTIMIZATION PROBLEMS

to observe quadratic convergence towards the global minimum. In addition

the functions are assigned to one of five subgroups (Finck et al., 2009):

Separable functions (Functions 1 — 5)

Functions with low or moderate condition (Functions 6 — 9)

Functions with high condition and unimodal (Functions 10 — 14)

Multi-modal functions with adequate global structure (Functions 15 —
19)

Multi-modal functions with weak global structure (Functions 20 — 24)

The idea behind these groups is that they are somewhat homogeneous and it
is expected that an algorithm performs equally well on all candidate functions
in a subgroup.

In addition, each function is scalable, that is, the dimensionality of its
parameter space can be chosen at will. In the BBOB setting, the sizes of the
parameter space were fixed to 2, 3, 5, 10, 20 and optionally 40 dimensions.
This gives 120 (optionally 144) base functions which an algorithm has to solve
to participate in the benchmark. Furthermore, each function in composed
with a random transformation (rotations and/or affine mappings) of the input
parameters to generate a so called function instance. This is done 5 times to
obtain a total of 600 (720) unique function instances that have to be solved.
These transformations are applied under the assumption that an algorithm
should be invariant under these transformations of the input space. Finally,
because most of the optimization algorithms for these types of problems are
randomized, a participant is expected to submit three runs on each function
instancel.

Compared to the work in Mersmann et al. (2010c) we extend ranking based
approach to the analysis of benchmark experiments in Mersmann et al. (2010a)
with several novel visualizations. Given the structured nature of the function
set used in BBOB, we also advocate the analysis of subsets of the benchmark
data instead of solely relying on consensus rankings as described in Mersmann
et al. (2010c). For this we combine the results of an optimization algorithm

on functions with the 2 and 3 dimensional parameter spaces into a group of

In later workshops the three repetitions were replaced and instead 15 function instances
had to be solved.
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low dimensionality and the 5, 10 and 20 dimensional functions into a group of
moderate dimensionality. Then a ranking is computed for each function and
parameter space size combination based on the expected running time (ERT)
of each optimization algorithm. From this we obtain 120 ranks, 48 for the
low dimensionality group and 72 for the moderate dimensionality group, for
each participating optimization algorithm. The distribution of these ranks is
shown in Figure 2.1. The algorithms are sorted according to their mean rank
which corresponds to their position in a Borda consensus ranking. From the
figure it is clear that, depending on the dimensionality of the search space,
a different class of algorithms should be chosen. In low dimensions, classical
algorithms such as Nelder-Mead variants do exceedingly well. For higher di-
mensional problems these methods fail. Instead randomized search heuristics,
in particular variants of the covariance matrix adapting evolutionary strategy
(CMA-ES) are very competitive. An influence of the search space dimension-

ality on the choice of algorithm is to be expected.

We can also deduce that for the moderate dimensional group of functions,
if we chose to always use the BIPOP-CMA-ES, we would never do worse than
an average ranked algorithm, i.e. the worst case performance of the BIPOP-
CMA-ES places it around the 15th place in the ranking. On the other hand we
can see some very specialized algorithms that excel at some functions but fail
on the majority of functions. Examples for these are the LSstep and LSminbnd

procedures.

In the second half of Mersmann et al. (2010a) we tackled the problem of
finding subsets of the functions on which the observed performance of the opti-
mization algorithms is similar. Here we defined similar behavior to mean that
the rankings induced by the functions are similar. To measure the similar-
ity between the rankings we employed the symmetric difference (SD) between
the binary relations induced by the rankings. We focused on the moderately
dimensional problem instances because we feel this is the current sweet spot
for black-box optimization. Lower dimensional problems can often be solved
using a combination of visualization and existing conventional algorithms and

higher dimensional problems are often intractable with current methods.

By calculating the pairwise distance between all rankings we obtain a dis-
tance matrix that captures the global structure of the set of all rankings. We
apply the PAM clustering technique to the distance matrix to find groups of

similar rankings in the data. The resulting clusters are visualized using MDS
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dot denotes the mean rank of each algorithm. Figure taken from Mersmann
et al. (2010a).
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to generate a two dimensional point cloud that has a similar distance struc-
ture as our ranking induced distance matrix. We observe that rankings for the
same function but with different parameter space sizes are closely grouped.
The two clusters we identified are clearly separated in the plot of the MDS re-
sults. Since we know that all the rankings within a cluster are similar, we can
sensibly choose a default algorithm for each cluster by calculating a consensus
ranking among all the functions assigned to one cluster and picking the best
or one of the top performers from the consensus ranking. While this will work,
it is of little practical value. Given a new black-box optimization problem,
we would have to run all algorithms to determine the ERT of each algorithm.
From the calculated ERTs we could then derive a ranking for the algorithms
and then, based on this ranking, assign the function to one of our clusters.
Given the cluster, we would now use the algorithm that performed best in
the cluster consensus ranking to solve our optimization problem. Clearly this
is nonsense! From the ranking we calculated to assign the function to one
of our clusters we already know which optimization algorithm is best for this
function.

What we want is a method to assign a function to one of the clusters with-
out having to perform a benchmark experiment. We proposed the following
approach. First, each (benchmark) function is assigned certain high-level char-
acteristics by a domain expert. A summary of these high-level characteristics
and their values for each of the 24 functions in the BBOB function set is shown
in Table 2.1. Next, we use the CART? methodology to create a simple clas-
sification rule which reproduces the boundary between the two clusters given
the high level characteristics of the functions. For this we combine the data
in Table 2.1 with the mapping of function to cluster we obtained using PAM.
The classifier is then trained to predict the cluster given the high-level prop-
erties of the function. Given a new function, a practitioner would now have to
derive the high-level characteristics of the function and could then predict the
cluster it belongs to using the decision tree. While this is more realistic and
much less labour intensive than rerunning the benchmark with all algorithms,
it is still cumbersome and prone to error. The assignment of the high-level
characteristics is not an exact science.

A remedy for this is what we call Exploratory Landscape Analysis (ELA).

It is introduced in Mersmann et al. (2011) and its main results are summarized

2(Classification and Regression Trees
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Table 2.1: Classification of the noiseless functions based on their properties
(multi-modality, global structure, separability, variable scaling, homogeneity,
basin-sizes, global-local contrast, plateaus). Predefined groups are separated
by horizontal lines

Function m.-mod. g.-str. sep. scal. hom. basins g.-loc. plat.
1: Sphere none none high none high none none none
2: Ellipsoidal separable none none high high high none none none
3: Rastrigin separable high strong  none low high low low none
4: Biiche-Rastrigin high strong  high low high med. low none
5: Linear Slope none none high none high none none none
6: Attractive Sector none none high low med. none none none
7: Step Ellipsoidal none none high low high none none small
8: Rosenbrock low none none none med. low low none
9: Rosenbrock rotated low none none none med. low low none
10: Ellipsoidal high conditioned none none none high high none none none
11: Discus none none none high high none none none
12: Bent Cigar none none none high high none none none
13: Sharp Ridge none none none low med. none none none
14: Different Powers none none none low med. none none none
15: Rastrigin multimodal high strong  none low high low low none
16: Weierstrass high med. none med. high med. low none
17: Schaffer F7 high med. none low med. med. high none
18: Schaffer F7 moderately ill-cond. high med. none high med. med. high none
19: Griewank-Rosenbrock high strong  none none high low low none
20: Schwefel med. deceptive none none high low low none
21: Gallagher 101 Peaks med. none none med. high med. low none
22: Gallagher 21 Peaks low none none med. high med. med. none
23: Katsuura high none none none high low low none
24: Lunacek bi-Rastrigin high weak none low high low low none

in the following section.

2.3 Exploratory Landscape Analysis

Starting from our initial success in characterizing the BBOB function set, we
extended the approach in Mersmann et al. (2011). Because, as detailed in the
previous section, it is difficult to obtain the high-level features for a black-
box function, we set out to predict the high-level features of a function using
easily derived properties of the function. We call these properties low-level
features or ELA features. Given a classification rule which predicts the high-
level properties of a function and given the (computable) ELA features of the
function, we can then construct a chain of decision rules that, given the ELA
features, predicts the cluster a (new) function belongs to. From the cluster
we can derive a good optimization strategy for the function. Therefore, if the

proposed ELA features provide adequate information to predict the high-level
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characteristics, we have a method that, without expert knowledge, can give a
practitioner a good algorithm recommendation using only function evaluations
of his black-box function.

The design of the FLA features was very much driven by intuition and
experimentation. Among the many proposed features are all kinds of sum-
mary statistics that characterize the distribution of the function values. To
approximate this distribution we generated a uniform random sample from the
parameter space and evaluated this sample. For many features, this is enough
to calculate their value. However, some features require additional function
values to estimate some property. One example of such a feature is the con-
vexity feature. It estimates the probability that a function is (locally) convex
on a randomly chosen line segment within the parameter space. To estimate
this probability, two points #; and &; from the uniform random sample and a
random « € (0, 1) are chosen. We then check if f(az; + (1 — a)Z;) is greater
than, less than or equal to af(Z;) + (1 — o) f(#;). This procedure is repeated
many times and the probability of observing a “greater than”, “less than” or
“equal” function value is estimated from the results.

Clearly this type of feature requires additional function evaluations. We
would therefore prefer not to use it in the prediction if we can obtain similar re-
sults using only features derived from the initial uniform sample. On the other
hand, once we have added the feature describing the probability of observing a
“oreater than” result, adding the feature for the “less than” probability is free
in terms of additional function evaluations. The cost of a classification rule
in terms of required function evaluations to calculate the features required by
said classification rule is non-trivial to calculate. Yet it is important to mini-
mize this cost because it is part of the overall cost, again in terms of number
of function evaluations, of the optimization procedure.

To minimize both the missclassification error (MCE) and the number of
function evaluations used to calculate the feature vector required by the classifi-
cation rule, we employed a multi-objective optimization algorithm — namely an
SMS-GA3. Because under certain circumstances no additional function evalu-
ations are required to add a feature, we also added an artificial third objective:
the number of features used by the classification rule. With this objective, we

wanted to avoid that our solutions become bloated with irrelevant but cost-free

33-Metric Selection genetic algorithm. A multi-objective optimization algorithm that
maximizes the dominated hypervolume of a set of solutions.
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features that do not harm the MCE.

Using the SMS-GA and a random forest as our classification procedure,
we built two sets of models. One set to predict the high-level features of the
24 BBOB functions and a second set to predict to which of the five function
groups a given function belongs. We discuss and visualize the results of the
two optimizations in detail. Overall we were able to predict both the high-level
features as well as the function group with high accuracy and few additional
function evaluations using several different combinations of our proposed ELA

features.

2.4 Algorithm Selection Based on Exploratory
Landscape Analysis and Cost-Sensitive

Learning

Given the success we had in predicting the high-level features of BBOB test
functions in Mersmann et al. (2011) and choosing a good optimization algo-
rithm from a small portfolio for a given BBOB test function based solely on
its high-level features (Mersmann et al., 2010b), the next logical step is to
use the ELA features introduced in Mersmann et al. (2011) to directly predict
the best algorithm for a given BBOB test function. In (Bischl et al., 2012b)
we combined the 2009 and 2010 BBOB datasets and then pruned the list of
algorithms in our portfolio down for this task. First we eliminated all algo-
rithms that were not best w.r.t the expected running time (ERT) for at least
one function. This left the algorithms listed in Table 2.2. From the median
and maximum relative ERT* values we can deduce that if we chose to always
rely on the IPOP-ACTCMA-ES algorithm, our median ERT would rise by a
factor of 3.72 and we would never need more than a factor of 2655.55 function
evaluations compared to the best algorithm in expectation.

We could attempt to use the 14 algorithms in Table 2.2 for our portfolio.
Instead, we elected to simplify the task by selecting the optimal subset of
four algorithms from the 14 algorithms. These are Line Search-fminbdn, Line
Search - STEP, BFGS and BIPOP-CMA-ES. The two line search variants are
specialists for some of the functions, BFGS does well on smooth unimodal
functions (i.e. the convex functions in the set) and BIPOP-CMA-ES is a

4The relative ERT is obtained by dividing the ERT of an algorithm by the best observed
(minimal) ERT on that function over all algorithms.
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Table 2.2: List of algorithms which are best w.r.t ERT on at least one of
the 24 BBOB test functions. In addition to the algorithm name, the functions
it performed best on, and its median and maximum relative ERT over all
functions is given.

Best on med max
Algorithm Function (rel. ERT) (rel. ERT)
AVGNEWUOA 8 29.67 58731.09
BFGS 1,10 31.55 58731.09
BIPOP-CMA-ES 17 3.83 5873.11
DE-F-AUC 18 41.13 11867.07
FULLNEWUOA 6 39.36 58731.09
GLOBAL 12, 21, 22 22.60 58731.09
iAMALGAM 23 10.02 2287.43
IPOP-ACTCMA-ES 7,11, 13 3.72 2655.55
IPOP-CMA-ES 15, 16, 19 3.40 5743.86
Line Search-fminbnd 2 172.23 58731.09
Line Search - STEP 3,4 417.47 13494.28
MCS 59 39.55 58731.09
MOS 20, 24 4.27 1186.71
NEWUOA 14 28.01 58731.09

generally robust strategy from the CMA-ES family. If we had an oracle which
always picked the best algorithm from this subset, we would obtain a median
relative ERT of about 1.45 and a worst case relative ERT of 4.169 — both much
better than any single algorithm in the above table.

So how do we approximate such an oracle? This is generally coined the
algorithm selection problem and here we used a cost sensitive one-sided regres-
sion approach introduced by Tu and Lin (2010). Using this approach, we were
able to obtain an approximation of the oracle that had a median relative ERT
of between 1.54 and 2.70 depending on the feature set used and the granularity

of the cross-validation.

2.5 Outlook

My work on the characterization of black-box optimization benchmarking
started with the wish to formalize the benchmarking procedures used. From
there, it evolved into characterizing continuous black-box functions using al-

gorithmically defined instead of analytic properties. These low-level or ELA
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features were then used to successfully estimate the high-level properties of
black-box functions and select an appropriate optimization algorithm from a
small portfolio of algorithms. All of this work is based on the tremendous work
done by the BBOB team to assemble a large and diverse dataset with different
test functions and many different algorithms and algorithm variants.

One might think that after this work, there is little else which needs to
be researched in this area. The exact opposite is true! While the original 24
functions in the BBOB test set were picked with great care to cover different
typical functions, the set is far from complete. Looking at Table 2.1, it is
obvious that some combinations of high-level features are under represented
or not present at all in the current function set. In addition, during the training
and verification of the different classification rules, it became clear that a more
diverse function set would make hyperparameter tuning, cross-validation and
verification in general much easier. On the other hand, I observed that many
real world problems from statistics and engineering are not similar to any of the
BBOB functions when compared using the ELA features. All of this suggests
that it would be nice to have a generator that is able to create a collection of
functions which have similar given ELA properties. Given such a procedure,
it would be possible to use classical design of experiment methodologies to
systematically explore the space of all black-box optimization problems by
generating functions which fill the ELA feature space. This project is my
main research focus for the foreseeable future.

The work my colleagues and I have published has encouraged others to
adopt this data-driven approach to problem characterization (see Abell et al.,
2012; Morgan and Gallagher, 2012; Malan and Engelbrecht, 2013; Munoz et al.,

2013). I sincerely hope that other groups continue their work in this area.



Chapter 3

Travelling Salesperson Problem

(zeneration

I am a travelling salesman. I deal in ideas.

— Martin Kippenberger

3.1 Contributed Material

e Local Search and the Traveling Salesman Problem: A Feature-Based Char-

acterization of Problem Hardness (Mersmann et al., 2012)

o A nowvel feature-based approach to characterize algorithm performance for

the traveling salesperson problem (Mersmann et al., 2013)

3.2 Local Search and the Traveling Salesman
Problem: A Feature-Based Characterization of

Problem Hardness

In Mersmann et al. (2012), my coauthors and I applied an idea similar to ex-
ploratory landscape analysis to travelling salesperson problems (T'SPs). In the
discrete optimization community, the idea of characterizing problem instances
using (empirical) features of the instance has already established itself. We
were therefore not burdened with the development of novel features but relied

on those introduced in the literature. At the same time, solving a (large) TSP
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to optimality is difficult or impossible using current techniques!'. This has led
to the development of many different heuristics that return approximations of
the optimal route of a TSP. But instead of choosing the optimal heuristic for
a given problem instance from a portfolio, as done in my study of continu-
ous black-box optimization algorithms in the previous chapter, our aim in this
paper was to generate TSP problem instances which a given heuristic, here
2-opt, solves well and instances on which it fails. Generating instances that 2-
opt solves well, also called easy instances, as well as instances on which it fails,
also called hard instances, requires a definition of difficulty. In previous stud-
ies, authors have chosen to measure the runtime of the heuristic algorithms to
characterize the difficulty of a problem. We felt that this approach falls short
of the intended goal and instead opted to use the approximation quality, i.e.
the length of the tour returned by the heuristic divided by the optimal tour
length, as our criterion to judge the difficulty of a problem instance. An easy
instance would have an approximation ratio of close to 1, i.e. the heuristic
almost solves the TSP instance optimaly. Large approximation ratios on the
other hand indicate that the heuristic is not able to find a reasonable route for

this instance.

Compared to black-box continuous problem instances, generating a TSP
instance is trivial, one only needs to generate a symmetric distance matrix
which gives the distance from each city to every other city. In our case, we went
one step further and opted to generate Euclidean TSP instances. For these, we
merely pick the coordinates of the cities within the unit square. One approach
to generate easy and hard instances would be to pick a large collection of
instances at random, calculate their optimal tour and the expected 2-opt tour
length and then sort them by their approximation ratio. It is unlikely that this
approach will yield extreme instances. We therefore opted to use a customized
genetic algorithm (GA) to evolve both easy and hard instances. Even this
approach has a considerable computational burden because the optimal tour
must be calculated for each generated instance. This also limited the size of
the instances which we were able to study.

Nevertheless this approach allowed us to generate a set of easy and hard
instances for the 2-opt heuristic. Characterizing these instances using the

empirical features from the literature allowed us accurately predict the problem

'Recall that the TSP is an NP-hard problem and that no efficient deterministic solver
is known for general TSPs.



3.2. LOCAL SEARCH AND THE TRAVELING SALESMAN PROBLEM:
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Figure 3.1: Figure taken from Mersmann et al. (2012).

class (easy, hard) for each instance using a simple decision tree. Figure 3.1
shows a scatter plot of the instances by their two main features. The seven
misclassified examples are marked by an underlying circle. To extend our
result to other instance types that are neither easy nor hard, we devised a
scheme to generate many instances between two extreme instances. For this
we associated each city in an easy instance with a city in a hard instance.
Then we defined new problem instances where the coordinates of each city are
the convex combination of the coordinates of the easy and hard instance city.
Using this approach, we are slowly moving each city from its easy to its hard
position. Our conjecture was that these “in between” instances should be of
average hardness. We were able to verify this and also show that the feature
values of such instances smoothly interpolate between the feature vectors of
an easy and a hard instance. The method therefore allows us to smoothly
vary the difficulty of a problem instance and observe the changes in algorithm

behaviour, coupled with the changes in the instances features.

All of the software required for the experiments was published in the R

package tspmeta. See also the description of the package in Section 5.7.
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Figure 3.2: Example easy and hard instances for the two rounding schemes
studied in Mersmann et al. (2013). The line connecting the cities of each
instance depicts the optimal tour. Figure taken from Mersmann et al. (2013).

3.3 A novel feature-based approach to characterize
algorithm performance for the traveling

salesperson problem

Given our success in creating novel easy and hard to solve instances in Mers-
mann et al. (2012) and based on feedback from domain experts, we extended
the ideas in Mersmann et al. (2013). The changes compared to our previous
work include a revised genetic algorithm (GA) that has a modified normaliza-
tion step as well as an additional optional rounding step. The normalization
is necessary to ensure the cities in an instance are all within the unit square
and at the same time their convex hull should cover the maximal area of the
unit square. The reason we normalize at all is that some features are not scale
invariant, a property we would prefer in a feature but that is not given for
some of the features found in the literature. The other major change in the
GA was the addition of an optional rounding step. It was motivated by the
observation from a domain expert that in practice, the cities of a TSP instance
often lie on a grid. Examples of such instances are problems that arise in the
area of VLSI design and PCB production.

As in Mersmann et al. (2012), we were able to train an almost perfect clas-
sifier for the instance type (easy, hard), regardless of the rounding scheme used
or the size of the instance. Example instances are shown in Figure 3.2. The

morphing procedure was also enhanced by including a better point matching
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scheme. Here we chose to use a greedy scheme that matches points to their
closest neighbor in the other instance. In addition we also normalized the in-
stances w.r.t. their rotation by rotating each instance around its centroid such
that the eigenvector of the covariance matrix of the coordinates is parallel to
the X-axis and there are more points above and the right of the centroid. This
transformation does not change the optimal tour but may require a rescal-
ing of the instance because points may be rotated such that they lie outside
of the unit square. Using the morphing procedure we produce intermediate
instances of medium difficulty and study the influence of the features on the
performance for this larger dataset fitting a regression model that predicts the
approximation quality based on the feature vectors using the MARS method.
The results are analyzed and presented visually using partial dependency plots
and residual plots.

Finally we validated our results by applying a similar analysis to instances
of the TSPLIB library of standard TSP instances. Again we were able to
make an accurate prediction of the approximation quality which validates our
approach.

All source code used for the article is contained in the R package tspmeta

and can be downloaded from CRAN for further use by other researchers.

3.4 Outlook

After characterizing continuous black-box optimization problems using empir-
ically features, I turned my attention to the discrete domain more specifically
to the domain of travelling salesperson problems. The empirical characteriza-
tion of problem instances is already an established idea in this field and it was
therefore not necessary to invent novel features. Instead I focused my research
around a procedure to generate new problem instances that exhibited certain
properties. This lead to the development of a genetic algorithm that is able to
find instances that are either easy or hard w.r.t. the approximation quality for
a given heuristic. Here the methodology differs from my approach in the con-
tinuous case. Instead of using a set of instances that covers the feature space,
an algorithm specific set of instances was created to showcase the strengths
(easy instances) and weaknesses (hard instances) of the algorithm. To gener-
alize the results we devised a morphing strategy that is able to generate many

instances that lie in between the easy and hard set. These instances were then
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used to model the general behaviour of the algorithm and test.

The method presented here can be employed to analyze other TSP heuris-
tics. Nallaperuma et al. (2013) study an ant colony algorithm using the ideas
presented in Mersmann et al. (2012, 2013). Hutter et al. (2014) also extend
the work to the general problem of algorithm runtime prediction. In princi-
ple similar approaches should be feasible for almost all discrete optimization
problems. For these it is usually much easier to generate instances and find
meaningful mutation and cross-over operations. In the future I would like to
extend this work to the continuous domain where it is less clear how one would

“generate” a function for an optimization problem.



Chapter 4

Understanding unexpected

Hypervolume Reductions

Facts are the air of scientists. Without them you can never fly.

— Linus Pauling

4.1 Contributed Material
e On the Distribution of EMOA Hypervolumes (Mersmann et al., 2010b)

o [ffect of SMS-EMOA Parameterizations on Hypervolume Decreases (Judt
et al., 2012a)

e Non-monotonicity of Observed Hypervolume in 1-greedy S-Metric Selec-
tion (Judt et al., 2012b)

4.2 On the Distribution of EMOA Hypervolumes

In recent years the dominated hypervolume of a Pareto front approximation
has become the de facto standard to gauge the performance of multi-objective
optimization algorithms. This led to the investigation which is at the heart of
Mersmann et al. (2010b). For a benchmarking study, we performed many re-
peated runs of two popular multi-objective optimization algorithms, NSGA-II
and the SMS-EMOA, on three common 2D test problems (ZDT1 to ZDT3).

The partial results of the benchmark study are published in Mersmann et al.
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Figure 4.1: Figure taken from Mersmann et al. (2010b).

(2010c), here we are only interested in an exploratory analysis of the distribu-
tion of the obtained dominated hypervolumes. In an ideal setting, we would
expect the distributions to be unimodal and fairly concentrated around the
dominated hypervolume of the true Pareto front. Looking at Figure 4.1 we
can see that this is not always the case. For ZDT2 and ZDT3 there are outliers
in the distribution for the SMS-EMOA. Since the SMS-EMOA optimizes the
dominated hypervolume directly, it is plausible that these outliers are local
optima from which the algorithm cannot escape.

We were also able to show that the SMS-EMOA has a harder time in the
initial phase of the optimization to approximate the Pareto front. It is only
after around 10 000 function evaluations that the SMS-EMOA is able to com-
pete with the NSGA-II results. Again, this is surprising because the NSGA-II
does not care about the dominated hypervolume of the Pareto front approxi-
mation and instead optimizes the non Pareto compliant crowding distance of
the individual solutions.

While these are not great scientific discoveries, it is nevertheless interest-
ing. In particular it is surprising that no research team had observed these
phenomena previously. Not because they lacked the experimental data but

because exploratory data analysis is often neglected in these types of studies.
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The real value of these experiments will become apparent in the following two

articles.

4.3 Non-monotonicity of Observed Hypervolume in

1-greedy S-Metric Selection

Spurred by the observations made in Mersmann et al. (2010b), a larger bench-
mark study was performed that included a systematic variation of the hyper-
parameters of the SMS-EMOA. The aim of the study was to identify factors
that could inhibit the observed early convergence. During this study, further
data analysis revealed another surprising phenomenon. The core principle of
the SMS-EMO algorithm is the steady increase of the dominated hypervolume.
In every iteration of the algorithm a new solution is created and added to the
population. Then the solution with the smallest hypervolume contribution is
pruned from the population. This procedure should not result in decreases in
the dominated hypervolume. Nevertheless we were able to observe relatively
frequent small drops in the dominated hypervolume w.r.t. a fixed reference
point.

In Judt et al. (2012b) the magnitude of these drops is correlated with the
parameterization of the SMS-EMOA and different root causes for the drops
are identified and studied. For the 2D case most drops can be attributed to
a “trick” the algorithm employs. The corners of a Pareto front approximation
are well defined in 2D, they are the two points that are extreme w.r.t. the
two objectives. These solutions are considered to be so important that they
are never eligible for selection during the population reduction. As such, it
is possible that the dominated hypervolume decreases but the spread of the
Pareto front increases. This is a trade-off that the original algorithm designers
chose in order to obtain more meaningful approximations. In the case of a 3D
objective space no such special case exists. Here there is a different cause but
it is again related to the points on the edge of the Pareto front approximation.
Their contribution to the total dominated hypervolume is governed by the lo-
cation of the reference point which is used for the hypervolume calculation.
For numerical reasons this reference point is constantly adapted. This entails
that the SMS-EMOA is in fact solving a dynamic optimization problem, each
change of the reference point entails a change in the fitness function the SMS-

EMOA is maximizing. While informal discussion of this property appears to
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have taken place between the algorithm designers®, its effect had been con-
sidered irrelevant. The practical implications may seem dire at first, but we
conjectured that they may indeed be one of the reasons that the elitist (u+ 1)
SMS-EMOA is so successful in practice even though theoretically it has been

proven that an elitist selection strategy cannot escape from local optima.

4.4 Effect of SMS-EMOA Parameterizations on

Hypervolume Decreases

To further characterize the observed hypervolume decreases described in Judt
et al. (2012b), a systematic analysis of the SMS-EMOAs hyper-parameters
was performed in Judt et al. (2012a). We were able to show that the mean
decrease in hypervolume is correlated with the mean increase in hypervolume
in successful steps of the algorithm. This suggests that tuning for “maximal
progress” also allows the algorithm to escape local optima by allowing for sel-
dom large decreases in hypervolume. At the same time we were able to show
that empirically smaller population sizes lead to a larger number of decreases
which is consistent with our expectations. Finally we were able to show that
the probability of a decrease is governed to a large extent by the parameteriza-
tion of the mutation operator. The cross-over operator has little or no influence
on the number of observed decreases. The biggest difficulty in extending these
results further is the lack of a numerically stable and accurate implementa-
tion of an algorithm to calculate the hypervolume of an arbitrary point set.
We conjecture but cannot prove that the overall impact of the decreases, while
measurable is marginal on the final result because of the highly non-linear scale
on which the hypervolume measures progress. Once the algorithm achieves a
good approximation of the Pareto front any progress w.r.t. the hypervolume

indicator is barely measurable.

4.5 Outlook

While studying the distribution of the dominated hypervolume of solutions
returned by different multi-objective optimization algorithms, I showed that

under certain conditions outliers could be observed. These outliers are artifacts

!Note that one of the coauthors of the article, Boris Naujoks, is one of the original
designers of the algorithm.
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which indicate early convergence to a local optimum by the algorithm. In turn,
this behaviour led to a more detailed study of the SMS-EMOAs behaviour un-
der different parameterizations. Here another unexpected phenomenon was
observed, namely decreases in the supposedly monotonically increasing hy-
pervolume of successive Pareto front approximations. Root causes for these
decreases were identified and the influence of the parameterization on their
occurrence studied. Further work in this area is hampered by the lack of

numerically stable algorithms for the hypervolume calculation.






Chapter 5

Accompanying Software

Publishing a paper without the code is not enough.

— L. Amber Wilcox-O’Hearn

In the course of my studies I have co-authored several free and open source R
packages. They can be categorized into two groups. On the one hand there are
helper packages which contain utility functions to ease software development
and help manage the large result sets produced by the experimental studies
presented previously. Packages in this category include microbenchmark, send-
mailR, soobench, BatchJobs and BatchExperiments. The other class of packages
contains core functions used during the experiments. These are the packages
ela, emoa and tspmeta. Often their development started as a loose collection
of R scripts which later turned into a package so that others can reproduce
and extend the work of my co-authors and my own work.

In what follows, each software package will be briefly described and its

relevance to my research will be highlighted.

5.1 ela

The ela package is, as of writing, unpublished because it is still under heavy
development. It contains robust implementations of the ELA (exploratory
landscape anaylsis) features as used in Mersmann et al. (2010a, 2011) and
Bischl et al. (2012a). The reason it has not been published to CRAN is that
work is underway to extend the ELA features to multi-objective problems.
For this, some of the public interfaces of the package needed and need to

be adjusted or extended in incompatible ways. Since I strive to not break
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backwards compatibility once one of my packages is publicly released, I opted

against an early release. Instead snapshots are available from on my website!.

5.2 emoa

Most evolutionary multi-objective optimization algorithms contain some com-
mon building blocks. The purpose of the emoa package is to provide these
building blocks so that authors may quickly implement new optimization algo-
rithms or create problem specific variants of an existing algorithm. It contains
functions to calculate different quality measures such as the hypervolume or
the R2 indicator, a routine to perform efficient non-dominated sorting, differ-
ent selection operators and a small collection of multi-objective test functions.
The package was instrumental for the work done in Mersmann et al. (2010b)
and Judt et al. (2012a,b). Initially we attributed the observed hypervolume
decreases to a bug in the software but through careful testing we were able to
construct a test case which produced the same effect. Instrumental for this
was the modular design of emoa which allowed us to focus on the selection

procedure instead of viewing the optimization algorithm as a black box.

5.3 sendmailR

Many of the experiments conducted during my thesis work require long running
simulations or numerous repetitions of some expensive calculation. Tradition-
ally I started these on a cluster, waited and checked every once in a while if
they were finished. This was both tedious and time consuming. Sometimes a
calculation would abort because of an error and I would “waste” a day or more
of time because I checked too infrequently if it was finished. Out of this need
the sendmailR package was born. It can send e-mails from within R without
any external utilities. I use it regularly to notify myself of errors or when a
compute job has completed. It is also the package I receive the most feedback

on.

"http://git.p-value.net/p/ela.git
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5.4 soobench

The contemporary literature is filled with collections of single objective op-
timization problems. What was missing, at least for R, was a package that
collected implementations of all these functions and their associated meta-
data such as the number of parameters, the global optima, its name and the
original paper in which the function was proposed. In addition soobench con-
tains functions that make it easy to conduct large scale experiments. These

include

functions to collect all evaluated parameter combinations

functions to measure the first hitting time for a given list of target levels

functions which transform the parameter space to generate variants of

existing functions

functions to perform an arbitrary optimization run with a fixed budget

Combined with the functions in the ela package, these functions and bench-
mark problem implementations were used to produce the results published in
Mersmann et al. (2010b, 2011) and Bischl et al. (2012a).

While it is a nice feature that the soobench package makes it easier to
perform large benchmark studies I also want to highlight another positive side
effect. If a large fraction of the scientific community decides to standardize
on the functions implemented in soobench results become comparable. Often
times benchmark functions are chosen at random and implemented without
any testing or verification. When one wants to compare results from different
publications one often finds that the used functions have subtle differences.
Even worse, some authors only use their three or four favourite functions in-
stead of a large and diverse collection. I therefore hope that soobench or a
similar package becomes a de facto standard in the scientific community. To
a certain extent the BBOB? and NumBBO? projects, to which I have con-
tributed, have achieved this for the comparison of black-box optimizers. The
scope of soobench is broader. It also includes experiments such as those de-

scribed in the papers from Chapter 2.

2http://coco.gforge.inria.fr/doku.php?id=bbob-2013
3http://numbbo.gforge.inria.fr/doku.php
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5.5 microbenchmark

When optimizing R functions for large simulations studies it is not enough to
use appropriate algorithms and data structures, the implementations must also
be tuned. Often even small changes to the code can lead to drastic reductions in
runtime. This is best illustrated by an example. Assume that x is a one million
element numeric vector filled with (uniform) random numbers between 0 and 1
and we want extract all elements less than or equal 0.1. Two simple approaches
are the R expressions x[x < 0.1] and x[which(x < 0.1)]. One would think
that the first expression would be faster since it avoids the allocation of an
additional result vector by the which function. Using microbenchmark I can

easily check this

> library("microbenchmark")
> x <- runif (1000000)
> microbenchmark(x[x < 0.1], x[which(x < 0.1)], times=100L)
Unit: milliseconds
expr min 1g median uq max neval
x[x < 0.1] 76.1717 77.2544 78.3319 79.7721 106.3057 100
x[which(x < 0.1)] 26.1653 27.1944 27.8998 29.0252 55.8956 100

Surprisingly the second expression is much faster. While it is possible to
conduct similar timing experiments using standard R facilities?, they lack pre-
cision. microbenchmark on the other hand tries hard to use the most precise
time source provided by the respective operating system. This allows precise
sub-millisecond timing and on some platforms even nanosecond accurate run-
time measurements. While this may seem extreme, it is often much easier to
benchmark small chunks of code with very short runtimes to understand its
performance characteristics instead of running benchmarks on larger chunks

of code.

microbenchmark played a crucial role in optimizing the implementations of
the benchmark functions and helpers in the soobench package. It was also used

to improve the performance of some functions in the ela and tspmeta packages.

4For example using the function system.time or the rbenchmark package which is based
on this function.
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5.6 BatchJobs and BatchExperiments

The computational experiments performed to obtain the results described in
Chapters 2 to 4 consume anywhere from several weeks to more than a year
of CPU time. Clearly these cannot be run on a local workstation or laptop.
Instead they require large high performance computing (HPC) clusters. While
HPC clusters have become a common tool and we are fortunate to have such
a cluster in Dortmund, they are also complex to use. Instead of writing a
single large program the experiment needs to be subdivided into many smaller
tasks that can be run in parallel. These tasks are then submitted on the HPC
system for execution. Some of them may fail for various reasons and need to be
rescheduled. Once all jobs have terminated, the results need to be aggregated
and analyzed. For all of these operations specialized knowledge of the software

used on the HPC cluster is required.

To aid fellow researchers I developed a series of shell scripts that could
submit, suspend, resume and terminate a series of R jobs on the LiDO cluster in
Dortmund. Soon the limitations of these scripts became apparent. They were
specific to our cluster in Dortmund and still required substantial modifications
of the user’s R code. At the same time my coauthors, Bernd Bischl and Michel
Lang, decided to implement similar functionality to my shell scripts in the form

of an R package. This resulted in the development of the package BatchJobs.

The core insight that lead to the design of BatchJobs is that almost all
computational experiments in statistics can be modeled as a series of map
and reduce steps. That is, a function is applied to every element of a list
and the result is stored in a new list. This is the map step. Then another
function reduces the result list to a final result value. This is the reduce step.
More formally, given functions m:I — O and a: R x O — R and an input set
{#1,...,in} C I we can apply m to each element of our input set to obtain
the output set {o01,...,0,} C O. This is the map step of the computation and
can be performed in parallel by the cluster. To compute the final result, we
recursively apply a to the output set. That is, we compute r; = a(r;—1,0;) for
i = 1 to n and take 7, as our final result. Note that we need to specify an initial
value r( for this computation. The recursive application of a to the output set
is called the reduce step. It cannot be executed in parallel because in order
to calculate r; we must first calculate r;_1. However, in most experiments

the computationally expensive operations are performed in the map step. For
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example the map step might train and test a particular parameterization of
an SVM on a dataset and return the observed missclassification error. Here
our input set would consist of the different parameter settings for the SVM
and our output set would be the observed missclassification errors. In the
reduce step we would want to find the minimum missclassification error so our
function a would return the smaller of r;_1 and o; and we would set rg = cc.
The vast majority of the computational burden lies in the map step where
for each parameterization an SVM must be trained. The fact that we cannot
parallelize the reduction step of calculating the minimum will have minimal

effect on the total wall time of the calculation.

Another feature of the BatchJobs package is that it is not specific to one
cluster setup or a single HPC software environment. Instead the user, or more
likely the administrator, provides a series of simple templates that describe
how jobs are submitted to the cluster manager and how they are removed.
Using these templates, BatchJobs generates all the required files and folders to
run the experiment, checks for jobs that terminated prematurely and provides
error reports and diagnostic outputs. All of these facilities do not require the

user to leave the R environment.

BatchExperiments builds on the infrastructure provided by BatchJobs. It
provides utilities to design and analyze certain types of statistical experiments
in a more natural form. Instead of defining an input set and mapping a function
over it, a set of algorithms, algorithm settings, data sets and hyperparameters
are defined and a (subset) of their Cartesian product is evaluated. That is each
algorithm configuration is applied to each data set and the result stored. In
the reduce step quality indicators or other measures are computed to asses the
fitness of each algorithm configuration. Because my particular experiments do
not quite fit the BatchExperiments regime I have not used the package outside

of toy examples.

We published a detailed description of both packages in the Journal of
Statistical Software (Bischl et al., 2015). Judging by the amount of feedback
and the number of e-mails we receive the packages seem to have been very
well received. Most of the heavy lifting when implementing both packages
was performed by my coauthors Bernd Bischl and Michel Lang. I merely
implemented some of the template functions in BatchJobs and consulted with
them on design decisions given my prior experience implementing the shell

script solution.



5.7. TSPMETA 37

5.7 tspmeta

tspmeta is an R package that contains all domain specific functions used for the
research presented in Chapter 3. Apart from the functions used to calculate all
the features of a T'SP instance it also contains a fast 2-opt implementation and
the various normalization procedures used in Mersmann et al. (2012, 2013).
For a detailed description of their purpose the reader is referred to the above
chapter or the original publications. The intended purpose of the publication
as a package instead of supplementary material is to enable other researchers

to more easily extend our work and improve on the existing ideas.






Bibliography

Tinus Abell, Yuri Malitsky, and Kevin Tierney. Fitness landscape based fea-
tures for exploiting black-box optimization problem structure. Technical
report, Technical Report TR-2012-162, IT University of Copenhagen, 2012.

Anne Auger and Olivier Teytaud. Continuous lunches are free plus the design
of optimal optimization algorithms. Algorithmica, 57(1):121-146, 2010.

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Mike Preufs. Algorithm
selection based on exploratory landscape analysis and cost-sensitive learning.
In Terence Soule and Jason H. Moore, editors, GECCO, pages 313-320.
ACM, 2012a.

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Claus Weihs. Resam-
pling methods for meta-model validation with recommendations for evo-

lutionary computation. FEvolutionary Computation, 20(2):249-275, June
2012b.

Bernd Bischl, Michel Lang, Olaf Mersmann, Jorg Rahnenfiihrer, and Claus
Weihs. BatchJobs and BatchExperiments: Abstraction mechanisms for us-
ing R in batch environments. Journal of Statistical Software, 64:1-15, 2015.

Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-
Parameter Black-Box Optimization Benchmarking 2009: Presentation of
the Noiseless Functions, 2009. URL http://coco.gforge.inria.fr/1ib/
exe/fetch.php?media=download3.6:bbobdocfunctions.pdf.

Youssef Hamadi and Marc Schoenauer, editors. Learning and Intelligent Op-
timization, 6th International Conference, LION 6, Paris, France, January
16-20, 2012. Selected Papers, 2012. Springer.

39


http://coco.gforge.inria.fr/lib/exe/fetch.php?media=download3.6:bbobdocfunctions.pdf
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=download3.6:bbobdocfunctions.pdf

40 BIBLIOGRAPHY

Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noisy Functions
Definitions. Technical Report RR-6869, INRIA, 2009.

Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm
runtime prediction: Methods & evaluation. Artificial Intelligence, 206:79—
111, 2014.

Leonard Judt, Olaf Mersmann, and Boris Naujoks. Effect of SMS-EMOA
parameterizations on hypervolume decreases. In Hamadi and Schoenauer
(2012) (see above).

Leonard Judt, Olaf Mersmann, and Boris Naujoks. Non-monotonicity of ob-
served hypervolume in 1-greedy s-metric selection. Journal of Multi-Criteria
Decision Analysis, 2012b.

Katherine Malan and Andries Petrus Engelbrecht. Ruggedness, funnels and
gradients in fitness landscapes and the effect on PSO performance. In IEEE
Congress on FEvolutionary Computation, pages 963-970. IEEE, 2013.

Olaf Mersmann, Mike Preuss, and Heike Trautmann. Benchmarking Evolu-
tionary Algorithms: Towards Exploratory Landscape Analysis. In Robert
Schaefer, Carlos Cotta, Joanna Kolodziej, and Giinter Rudolph, editors,
PPSN (1), volume 6238 of Lecture Notes in Computer Science, pages 73-82.
Springer, 2010a.

Olaf Mersmann, Heike Trautmann, Boris Naujoks, and Claus Weihs. On the
Distribution of EMOA Hypervolumes. In Christian Blum and Roberto Bat-
titi, editors, LION, volume 6073 of Lecture Notes in Computer Science, pages
333-337. Springer, 2010b.

Olaf Mersmann, Heike Trautmann, Boris Naujoks, and Claus Weihs. Bench-
marking evolutionary multiobjective optimization algorithms. In IEEE

Congress on Evolutionary Computation, pages 1-8. IEEE, 2010c.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs,
and Giinter Rudolph. Exploratory Landscape Analysis. In Natalio Krasno-
gor and Pier Luca Lanzi, editors, GECCO, pages 829-836. ACM, 2011.



BIBLIOGRAPHY 41

Olaf Mersmann, Bernd Bischl, Jakob Bossek, Heike Trautmann, Markus Wag-
ner, and Frank Neumann. Local Search and the Traveling Salesman Prob-
lem: A Feature-Based Characterization of Problem Hardness. In Hamadi
and Schoenauer (2012) (see above).

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob
Bossek, and Frank Neumann. A novel feature-based approach to charac-
terize algorithm performance for the traveling salesperson problem. Annals
of Mathematics and Artificial Intelligence, pages 1-32, 2013.

Rachael Morgan and Marcus Gallagher. Length Scale for Characterising
Continuous Optimization Problems. In Carlos A. Coello Coello, Vincenzo
Cutello, Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario
Pavone, editors, PPSN (1), volume 7491 of Lecture Notes in Computer Sci-
ence, pages 407-416. Springer, 2012.

Mario A. Munoz, Michael Kirley, and Saman K. Halgamuge. The Algorithm
Selection Problem on the Continuous Optimization Domain. In Christian
Moewes and Andreas Niirnberger, editors, Computational Intelligence in In-
telligent Data Analysis, volume 445 of Studies in Computational Intelligence,
pages 75—89. Springer Berlin Heidelberg, 2013.

Samadhi Nallaperuma, Markus Wagner, and Frank Neumann. Ant colony
optimisation and the traveling salesperson problem: hardness, features and
parameter settings. In Proceeding of the fifteenth annual conference compan-
ion on Genetic and evolutionary computation conference companion, pages
13-14. ACM, 2013.

Han-Hsing Tu and Hsuan-Tien Lin. One-sided support vector regression for
multiclass cost-sensitive classification. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), pages 1095-1102, 2010.






Appendix A

Contributed Material

List of all contributed material to this dissertation:

e Olaf Mersmann, Mike Preuss, and Heike Trautmann. Benchmarking
Evolutionary Algorithms: Towards Exploratory Landscape Analysis. In
Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Giinter Rudolph,
editors, PPSN (1), volume 6238 of Lecture Notes in Computer Science,
pages 73-82. Springer, 2010.

e Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus
Weihs, and Gilinter Rudolph. Exploratory Landscape Analysis. In
Natalio Krasnogor and Pier Luca Lanzi, editors, GECCO, pages 829—
836. ACM, 2011.

e Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Mike Preufs. Al-
gorithm selection based on exploratory landscape analysis and cost-

sensitive learning. In Terence Soule and Jason H. Moore, editors,

GECCO, pages 313-320. ACM, 2012.

e Olaf Mersmann, Bernd Bischl, Jakob Bossek, Heike Trautmann, Markus
Wagner, and Frank Neumann. Local Search and the Traveling Sales-
man Problem: A Feature-Based Characterization of Problem Hardness.
In Youssef Hamadi and Marc Schoenauer, editors. Learning and Intelli-
gent Optimization, 6th International Conference, LION 6, Paris, France,
January 16-20, 2012. Selected Papers, Springer, 2012.

e Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob

Bossek, and Frank Neumann. A novel feature-based approach to char-

43



44

APPENDIX A. CONTRIBUTED MATERIAL

acterize algorithm performance for the traveling salesperson problem.
Annals of Mathematics and Artificial Intelligence, pages 1-32, 2013.

Olaf Mersmann, Heike Trautmann, Boris Naujoks, and Claus Weihs.
On the Distribution of EMOA Hypervolumes. In Christian Blum and
Roberto Battiti, editors, LION, volume 6073 of Lecture Notes in Com-
puter Science, pages 333-337. Springer, 2010.

Leonard Judt, Olaf Mersmann, and Boris Naujoks. Effect of SMS-EMOA
parameterizations on hypervolume decreases. In Youssef Hamadi and
Marc Schoenauer, editors. Learning and Intelligent Optimization, Gth
International Conference, LION 6, Paris, France, January 16-20, 2012.
Selected Papers, Springer, 2012.

Leonard Judt, Olaf Mersmann, and Boris Naujoks. Non-monotonicity of
observed hypervolume in 1-greedy s-metric selection. Journal of Multi-

Criteria Decision Analysis, 2012.



	Contents
	Motivation
	Characterization of Continuous Optimization Problems
	Contributed Material
	Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis
	Exploratory Landscape Analysis
	Algorithm Selection Based on Exploratory Landscape Analysis and Cost-Sensitive Learning
	Outlook

	Travelling Salesperson Problem Generation
	Contributed Material
	Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness
	A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem
	Outlook

	Understanding unexpected Hypervolume Reductions
	Contributed Material
	On the Distribution of EMOA Hypervolumes
	Non-monotonicity of Observed Hypervolume in 1-greedy S-Metric Selection
	Effect of SMS-EMOA Parameterizations on Hypervolume Decreases
	Outlook

	Accompanying Software
	ela
	emoa
	sendmailR
	soobench
	microbenchmark
	BatchJobs and BatchExperiments
	tspmeta

	Bibliography
	Contributed Material

