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Abstract

We compare and generalize various partial orderings of probability

forecasters according to the quality of their predictions. It appears that

the calibration requirement is quite at odds with the possibility of some

such ordering. However, if the requirements of calibration and identical

sets of debtors are relaxed, comparability obtains more easily. Taking

default predictions in the credit rating industry as an example, we show

for a data base of 5333 (Moody’s) and 6505 ten-year default predictions

(S&P), that Moody’s and S&P cannot be ordered neither according to

their grade distributions given default or non-default or to their Gini-

curves, but Moody’s dominate S&P with respect to the ROC-criterion.

Keywords: probability forecasts, rating systems, partial ordering
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1 Introduction

When talking about prediction, statisticians and econometricians usually con-

sider point forecasts: the rate of inflation next year, the population of the

earth in 2050, the coming budget deficit and so on. Of course, such point

forecasts (usually: of the first moment of a distribution) are rather crude sum-

maries of possible future events. Historically, this underlying insecurity has

mostly been dealt with by attaching a probability distribution to these point

forecasts, whereas forecasting the complete distribution of future events is of

rather recent origin (See Gneiting (2008) or Gneiting and Katzfuss (2014) for

a survey, in particular with respect to applications in meteorology, or Groen

et al. (2013) for an application in economics).

This paper considers the special case of forecasting a Bernoulli variable

with values 0 and 1. Other than in the case of continuous variables, fore-

casting the distribution has engendered an enormous literature here. Obvious

applications are default predictions in consumer credit scoring and in the credit

rating industry, or weather forecasts, where statements like: "The probability

of rain in Chicago tomorrow is 20%" have been common for quite a while.

Other applications are forecasting the probability of a recession (see Kauppi

and Saikkonen (2008)). For concreteness, however, most of the discussion

below will be phrased in terms of defaults and non-defaults. While the pro-

duction of such forecasts has been heavily discussed both in the statistics and

economics literature (see e.g. Creal et al. (2014) for a new method based on

credit default swaps), much less is known about evaluating their relative perfor-

mance. Section 2 summarizes previous results and suggests various extensions.

It appears that the concept of calibration (DeGroot and Fienberg (1983)) is

a rather tough requirement which prevents most probability forecasters from

being unequivocally comparable. Section 3 extends previous comparability re-
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sults to nonidentical sets of debtors and section 4 applies our results to default

prediction made by the leading rating agencies Moody’s and S&P.

2 Partial orderings of probability forecasts

There are two ways of comparing probability forecasters A and B. First, by

computing scoring rules such as the well-known Brier-Score

S =
1

n

n∑
i=1

(θi − pi)2, (1)

where n is the number of forecasts made, θi ∈ {0, 1} denotes whether the

event in question has occurred (θ = 1) or not (θ = 0), and where pi is the

forecasted probability of the event in trial no. i (Winkler 1996). Second, by

comparing complete distributions of forecasts, as will be done below. This

allows statements such as "A is better than B irrespective of any scoring rule

from some class of scoring rules" (see Krämer (2006)), but has the disadvantage

that certain pairs of forecasters cannot be ranked (e.g. this method provides

only a partial ordering). It can be shown that it is then possible to find sensible

(in the sense of "proper", see Krämer (2006)) scoring rules such that A is better

than B according to rule no. 1 and B is better than A according to rule no.

2. Krämer and Güttler (2008) provide an example where, for an identical set

of private enterprises, Moody’s provides better default forecasts than S&P for

some scoring rules, while S&P is better for others.

Let 0 = a1 < a2 < . . . < ak = 1 be the probabilities that are available as

forecasts for the future event in question. We take k to be small and finite

here (for generalizations see Schervish (1989)). For instance, the US National

Weather Service has only multiples of 10% as predicted probabilities of rain,

so k = 11 (including 0% and 100%). In the credit rating industry, the major

agencies have 7 different rating categories with up to three rating modifiers
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each resulting in a maximum of 21 different grades including a default category.

Typically, the worst four categories are combined into one, so there are usually

17 categories.

We are not concerned here with the methods by which default forecasts are

produced. Rather, we take forecasts as given and take forecasters to be defined

by the discrete bivariate probability function r(θi, aj), i = 1, 2, j = 1, . . . , k,

resulting from some such method, whichever it may be, with θ = 1 indicating

default and θ = 0 indicating non-default.

Of course, the true bivariate probability function r(θi, aj) is known only

after infinitely many trials. In practice we take its empirical counterpart as a

suitable approximation. As this paper is focused on fundamental problems of

comparability, this sampling issue is ignored below (see however Krämer and

Güttler (2008) for some discussion of the statistical significance of observed

differences in ranking quality).

Without loss of generality, the set A = {a1, ..., ak} of available probabilities

can be taken as identical for all forecasters involved. If not, define A :=

AA ∪ AB. Following Vardeman and Meeden (1983), the following additional

notation will be used:

p(1) :=
∑

j r(1, aj) = overall probability of default (PD)

p(0) :=
∑

j r(0, aj) = overall probability of no default (probability of

survival PS).

q(aj) := probability with which default forecast aj is made.

p(1|aj) := r(1,aj)

q(aj)
= conditional probability of default given forecast aj.

p(0|aj) := r(0,aj)

q(aj)
= conditional probability of survival given forecast aj.

q(aj|1) := r(1,aj)

p(1)
= conditional probability of prediction aj given default.

q(aj|0) :=
r(0,aj)

p(0)
= conditional probability of prediction aj given no

default.
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The problem is: given two forecasters A and B, characterized by their re-

spective bivariate probability functions rA(θi, aj) and rB(θi, aj), which one is

"better"?

One sensible requirement is that among borrowers with predicted default

probability aj, the relative percentage of defaults is equal to aj. Formally:

aj
!
= p(1|aj) =

r(1, aj)

q(aj)
(2)

whenever q(aj) > 0. Such forecasters are called "well calibrated" (DeGroot

and Fienberg (1983)).

This calibration requirement has various consequences for the bivariate

probability function r(θi, aj). For instance, it is obvious from (2) that, given

predicted aj of the future event and the r(1, aj), the marginal frequencies

q(aj) and therefore also the q(aj|0) and the r(0, aj) are fixed. These limited

degrees of freedom for obtaining a bivariate probability function r(θi, aj) that

is compatible with calibration are further reduced by the requirement that

∑
q(aj) = q(0) +

k∑
j=2

r(1, aj)

aj
= r(0, 0) + r(1, 0)︸ ︷︷ ︸

=0

+
k∑

j=2

r(1, aj)

aj
= 1. (3)

These relationships are probably best clarified via a numerical example.

Assume that among the aj’s, there is 0.2 and 0.4 and that r(1, 0.2) = 0.1 and

r(1, 0.4) = 0.2, as in the following table:
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Table 1: A well calibrated probability forecaster

aj

. . . 0.2 . . . 0.4 . . .

r(1, aj) 0 0.1 0 0.2 0

q(aj) 0 0.5 0 0.5 0

r(0, aj) 0 0.4 0 0.3 0

q(aj|1) 0 1/3 0 2/3 0

q(aj|0) 0 4/7 0 3/7 0

Then the first 4 entries in the table completely determine the rest. In partic-

ular, there can only be zeros in the columns where aj /∈ {0.2, 0.4}. Also, the

marginal probabilities p(1) = 0.3 and p(0) = 0.7 follow immediately from

r(1, 0.2) = 0.1 and r(1, 0.4) = 0.2.

These restrictions will be vital in establishing various relationships between

partial orderings below.

The first such partial ordering relies on "refinement" (DeGroot and Fien-

berg (1983)). We say that A is more refined than B, in symbols A ≥R B, if

there exists a k × k Markov matrix M (i.e. a matrix with nonnegative entries

whose columns sum to unity) such that

qB(ai) =
k∑

j=1

Mijq
A(aj), and (4)

aiq
B(ai) =

k∑
j=1

Mijajq
A(aj), i = 1, . . . , k. (5)

Equation (4) means that, given A’s forecast aj, an additional independent

randomization is applied according to the conditional distribution Mij(j =
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1, . . . , k) which produces forecasts with the same probability function as that

of B. Condition 5 ensures that the resulting forecast is again well calibrated.

The concept of refinement easily extends to forecasters which are not nec-

essarily well calibrated. Again following DeGroot and Fienberg (1983), we say

that A is sufficient for B - in symbols: A ≥s B - if, for some Markov matrix

M ,

qB(ai|θ) =
k∑

j=1

Mijq
A(aj|θ), i = 1, . . . , k; θ = 0, 1. (6)

Vardeman and Meeden (1983) suggest to alternatively order probability

forecasters according to the concentration of defaults in the "bad" grades.

This will here be called the VM-default order. Formally:

A ≥VM(d) B :⇔
j∑

i=1

qA(ai|1) ≤
j∑

i=1

qB(ai|1), j = 1, . . . , k. (7)

Or to put this differently: A dominates B in the Vardeman-Meeden default

ordering if its conditional distribution, given default, first-order stochastically

dominates that of B.

The same can be done for the non-defaults. A is better than B in the

VM-non-default sense if survivors are more frequent in the "good" grades.

Formally:

A ≥VM(nd) B :⇔
j∑

i=1

qA(ai|0) ≥
j∑

i=1

qB(ai|0), j = 1, . . . , k. (8)

Finally, A dominates B in the Vardeman-Meeden sense (in symbols A ≥VM B)

if both A ≥VM(d) B and A ≥VM(nd) B obtain.

Table 2 provides an example. It extends table 1 to the case where an

additional forecaster is involved. It is easily checked that both forecasters are

well calibrated and that B dominates A in the Vardeman-Meeden-non-default-

ordering. However, A and B cannot be ranked according to VM(d) (it will

emerge below that this is no coincidence).
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Table 2: Two well calibrated forecasters

aj

0.2 0.25 0.4 1

Forecaster A

rA(1, aj) 0.1 0 0.2 0

qA(aj) 0.5 0 0.5 0

rA(0, aj) 0.4 0 0.3 0

qA(aj|1) 1/3 0 2/3 0

qA(aj|0) 4/7 0 3/7 0

Forecaster B

rB(1, aj) 0.1 0.05 0.1 0.05

qB(aj) 0.5 0.2 0.25 0.05

rB(0, aj) 0.4 0.15 0.15 0

qB(aj|1) 1/3 1/6 1/3 1/6

qB(aj|0) 8/14 3/14 3/14 0

It is also easily seen that B is more refined than A: Putting all of B’s

forecasts from the 0.25 and 1 brackets into the 0.4 bracket yields forecasts

which are identical in distribution to A.

A related criterion which seems to be favoured in the banking community

is based on joining the points

(0, 0), (

j−1∑
i=0

q(ak−i),

j−1∑
i=0

q(ak−i|1)), j = 1, . . . , k (9)

by straight lines. The resulting plot is variously called the power curve, the

Lorenz curve, the Gini curve, or the cumulative accuracy profile (see e.g. En-

gelmann and Hayden and Tasche (2003)), and a forecaster A is considered

better than a forecaster B in this - the Gini-default-sense (formally: A ≥G B)

- if A’s Gini curve is nowhere below that of B. It is easily checked that then
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A’s Gini-curves for survivors is nowhere above that of B, so arguing in terms

of survivors does not add anything new.

As figure 1 shows, B is in the above example also Gini-dominating A:

Although both curves coincide from 0.5 upwards, A’s curve is below that of B

to the left of 0.5.

Figure 1: Gini-ordering of forecasters A and B from table 2
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Finally, rather than looking at the Gini-curve, it is common in medical

applications to consider the ROC-curve instead, defined by the points

(0, 0), (

j−1∑
i=0

q(ak−i|0),
j−1∑
i=0

q(ak−i|1)), j = 1, ..., k . (10)

With identical right marginals, this does not imply anything new. Figure 2

shows the ROC-curves corresponding to the Gini-curves from figure 1. It is

seen that both Gini-curves shift leftwards, and that B keeps dominating A.

Our first result shows that this is no coincidence:
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Figure 2: ROC-curves of forecasters A and B from table 2
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Theorem 1:

For probability forecasters A and B with pA(1) = pB(1), the Gini-curves in-

tersect if and only if the ROC-curves intersect.

Proof:

For ease of notation, let p be the overall default probability and let Aj =∑j−1
i=0 q

A(ak−i), A1j =
∑j−1

i=0 q
A(ak−i | 1), A0j =

∑j−1
i=0 q

A(ak−i | 0).

Similarly for B. Then the Gini-curve and the ROC-curve are defined by the

points (Ai, A1i) (Gini) and (A0i, A1i) (ROC) respectively. Similarly for B.
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And A dominates B in the Gini- and ROC-sense, respectively, if and only if

A1i
Ai

≥ B1i
Bi

(Gini) or (11)

A1i
A0i
≥ B1i
B0i

(ROC) (12)

However, from

Ai = pA1i + (1− p)A0i

we have

A1i
Ai

=
A1i

p(A1i + (1− p)A0i

=
1

p+ (1− p)A0i
A1i

,

which is monotonously increasing in A1i
A0i

. The same holds for B1i
B0i

. Therefore,

the relationships (11) and (12) are equivalent.

Both the Gini-curve and the ROC-curves do not require predicted default

probabilities - sorting the debtors into classes with increasing default proba-

bility suffices. They are also both convex if forecasters are semi-calibrated, i.e.

if p(1 | ai) is a non decreasing function of ai. This is a minimum requirement

we will stick to in what follows.

As both the Gini and the ROC-curve are invariant under monotone trans-

formations of the predicted default probabilities aj, the ordering implied by

them is no longer a partial ordering: From A ≥ B and B ≥ A one can no

longer infer that A = B ("antisymmetry"). But transitivity persists. Or-

derings of this type are called pre-orderings, and it will be seen in the next

section that the VM-ordering likewise violates the antisymmetry-condition if

the restriction of identical right marginals is relaxed.
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3 Generalizations and relationships among the

orderings

Theorem 1 does not extend to pA(1) 6= pB(1), as can be shown by simple

counterexamples. Also, the calibration requirement severely restricts both the

entries in the r(θi, aj)-matrix and the chances that two probability forecasters

can be compared in the first place. In particular, Krämer (2005) shows that

for well calibrated forecasters A and B, if qA(0) = qB(0) = 0, then A and B

cannot be strictly ordered according to ≥VM(d). And if qA(1) = qB(1) = 0,

then A and B cannot be strictly ordered according to ≥VM(nd). The example

in table 2 where ≥VM(nd) obtains is therefore an artefact of qB(1) > 0.

Comparability is much easier if the calibration requirement is abandoned.

Even for identical right marginals, Krämer (2005) shows that the unrestricted

VM-ordering might then obtain, in which case it implies the Gini-ordering.

Given semi-calibration (i.e. p(1|aj) is non decreasing in a), the Gini-ordering

is also implied by sufficiency. The Gini-ordering is thus the least demanding

of the bunch in the case of identical right marginals. Still, in practice, most

forecasters do not seem to be comparable at all.

Therefore, we now also abandon the restriction pA(1) = pB(1). In practice,

this means that we can now consider non-calibrated forecasters for different

populations with different overall default probabilities. In particular, it can

now be shown via simple examples that the VM-ordering might obtain even

in case of calibration.

For the Gini-ordering, it can now happen that B’s Gini-curve is better than

A’s for defaults and worse for non-defaults, and we say that B dominates A in

the Gini-sense if it does so both for defaults and non-defaults. In that case, it

is easily seen that ≥G keeps on defining a preordering.
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As to the relationship between ≥VM and ≥Gini, neither implies the other

under these more general circumstances, as can be shown by simple counterex-

amples. Also, unlike in the case of identical right marginals, the Gini and ROC

orderings are no longer identical when right marginals are different. It is easy

to find examples where A ≥ROC B but A and B cannot be ordered according

to ≥G. Rather, we now have the following result:

Theorem 2:

For arbitrary bivariate probability functions rA(θi, aj), rB(θi, aj) and semi-

calibrated forecasters A and B, we have

A ≥G B ⇒ A ≥ROC B.

The converse does not hold.

Proof:

In the notation from Theorem 1, A ≥G B is equivalent to

A1i
Ai

≥ B1i
Bi

(19)

(i.e. A’s Gini-curve for defaults is above that of B’s) and

A0i
Ai

≤ B0i
Bi

(20)

(i.e. A’s Gini-curve for non-defaults is below that of B’s). However, from (20)

we have

Ai

A0i
≥ Bi

B0i
(21)

and multiplying the left and right side of (19) with the left and right side of

(21) yields

A1i
A0i
≥ B1i
B0i

, (22)

which by the definition means A ≥ROC B. That the converse is false can be

shown by simple counterexamples.
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From Theorem 2 it is clear that the ROC-ordering is the least demanding

in practice, as will also be verified by our empirical example below.

4 Application

Our data are from the Moody’s and S&P websites, respectively, from where

we obtained the rating history of 5333 (Moody’s) and 6505 private compa-

nies (S&P), covering the periods 1971-2014 (Moody’s) and 1981 - 2014 (S&P)

(see Standard & Poor’s (2015) and Moody’s (2015)). For each company, we

recorded its first rating and its default state ten years after. Table 3 shows

the results. PD is the percentage of defaults, and q(ai) denotes the relative

frequency of rating class ai, as defined in section 1. For instance, 24.26%

of Moody’s costumers and 22.94% of S&P’s costumers were initially rated A

(among which 2.09% defaulted within 10 years in case of Moody’s and among

which 1.71% defaulted in the case of S&P). Overall, we recorded 2301 defaults

among debtors rated by S&P and 1938 defaults rated by Moodys, correspond-

ing to PM(1) = 15.43% and P S&P (1) = 12.74%.

Table 3: Empirical ten year default rates (PD) and distribution of debtors

among rating classes
Moodys S&P

Rating Class PD q(ai) PD q(ai)

AAA/Aaa 0.49 3.41 0.71 1.07

AA/Aa 0.89 11.50 0.78 7.13

A 2.09 24.26 1.71 22.94

BBB/Baa 4.95 23.18 4.98 26.15

BB/Ba 19.79 14.23 16.38 17.37

B 40.25 17.86 29.97 22.77

CCC/Caa-C 65.97 5.54 51.35 2.56
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Table 4 gives the resulting bivariate probability distribution if we view

the empirical default rates in the various rating classes as predicted default

probabilities (i. e. if we assume that both agencies are well calibrated), after

incorporating the respective distribution of creditors across rating grades.

From table 4, one readily obtains the conditional probabilities qMoodys(ai|1),

qS&P (ai|1), qMoodys(ai|0), qS&P (ai|1), and it emerges that none of the relation-

ships (7) or (8) obtains (see table 5). Thus, Moody’s and S&P cannot be

ranked in either the VM -default nor non-default sense. However, as figures 3

and 4 show, the Gini-curve for defaults of S&P is below and the Gini-curve for

survivors is above that of Moody’s, so Gini-domination obtains.

Table 4: Bivariate probability distribution across rating classes and default

states
Moodys S&P

ai q(ai) r(0, ai) r(1, ai) q(ai) r(0, ai) r(1, ai)

0.49 3.41 3.39 0.02 0.00 0.00 0.00

0.71 0.00 0.00 0.00 1.07 1.06 0.01

0.78 0.00 0.00 0.00 7.13 7.07 0.06

0.89 11.50 11.40 0.10 0.00 0.00 0.00

1.71 0.00 0.00 0.00 22.94 22.55 0.39

2.09 24.26 23.75 0.51 0.00 0.00 0.00

4.95 23.18 22.03 1.15 0.00 0.00 0.00

4.98 0.00 0.00 0.00 26.15 24.85 1.30

16.38 0.00 0.00 0.00 17.37 14.52 2.85

19.79 14.23 11.41 2.82 0.00 0.00 0.00

29.97 0.00 0.00 0.00 22.77 15.95 6.82

40.25 17.86 10.67 7.19 0.00 0.00 0.00

51.35 0.00 0.00 0.00 2.56 1.25 1.31

65.97 5.54 1.89 3.65 0.00 0.00 0.00
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Table 5: Cumulated sums of defaults and non-defaults
Moodys S&P

ai
∑j

i=1 q(ai|0)
∑j

i=1 q(ai|1)
∑j

i=1 q(ai|0)
∑j

i=1 q(ai|1)

0.49 4.01 0.11 0.00 0.00

0.71 4.01 0.11 1.22 0.06

0.78 4.01 0.11 9.33 0.50

0.89 17.49 0.77 9.33 0.50

1.71 17.49 0.77 35.17 3.57

2.09 45.59 4.06 35.17 3.57

4.95 71.65 11.49 35.17 3.57

4.98 71.65 11.49 63.65 13.80

16.38 71.65 11.49 80.30 36.13

19.79 85.15 29.74 80.30 36.13

29.97 85.15 29.74 98.57 89.68

40.25 97.77 76.32 98.57 89.68

51.35 97.77 76.32 100.00 100.00

65.97 100.00 100.00 100.00 100.00

17



Figure 3: Gini-ordering (default)
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Figure 4: Gini-ordering (non-default)
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From Theorem 2, it is therefore no surprise that Moody’s doimantes S&P

as with respect to the ROC-criterion, as shown in figure 5.
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Figure 5: ROC-curves
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