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Abstract

To evaluate the fatigue behavior of prestressed concrete, bridges for instance, it is necessary
to determine the built in tendons’ fatigue strength. Therefore, prestressing steel samples
(strands), obtained from an existing bridge built in 1957, were examined and tested by TU
Dortmund University, see [1, 2]. Additionally, similar prestressing steels were tested in comparable
experiments. As large experiments on prestressed concrete beams under cyclic load with small
stress range are very time-consuming and expensive, an early prediction of failure trend in the
experiment is desirable. Here, it is shown that a crack width function can be evolved dependent
on the process of single wire failures. This process will differ for each experiment because of the
randomness of single wire failure. Description of this uncertainty is the first step and is achieved
by a predictive distribution for the counting process of wire failure. The second step is to include
these results into the model for the crack width process for which a nonlinear regression model
based on a physically evolved function depending on the counting process is suitable. For both
modeling steps, we present a Bayesian estimation and prediction procedure.

Keywords: Crack growth, fatigue experiments, prestressing steel, long-term tests, counting
process, nonlinear regression, Bayesian estimation and prediction.
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Nomenclature

uv = circumference for transfer of bond stress (mm)
Ap = surface of prestressing steel (mm2)
Ap(n) = surface of prestressing steel after n (load) cycles (mm2)
τbm = bond stress (MPa)
fctm = mean value of concrete tensile strength (MPa)
ξ = bond correction factor for post-tensioned strand
σpm0 = initial tension in prestressing steel (MPa)
σp,max = maximum stress in prestressing steel as result of maximum load (MPa)
σp,min = minimum stress in prestressing steel as result of minimum load (MPa)
∆σpr = difference σp,max − σpm0 (MPa)
∆σp = stress range, difference σp,max − σp,min (MPa)
lt = load influence length (mm)
εcm = mean strain of concrete
εpm = mean strain of prestressing steel
εp,max = maximum strain of prestressing steel as result of load
kt = value to consider loading condition and time
Ep = Young’s modulus of prestressing steel (MPa)
n = applied number of cycles
wk(n) = crack width after n cycles (mm)
Cn = number of broken wires after n cycles
m = total number of wire failures
Nj = number of cycles up to the jth wire failure, j = 1, ...,m
N = number of cycles at failure time of the concrete beam, i.e. last observation point

(usually equal to nI)
I = total amount of observations
yi = crack width after ni cycles, i = 1, ..., I
N (µ, σ2) = normal distribution with mean µ and variance σ2

Pois(λ) = Poisson distribution with parameter λ
Λ(n) = cumulative intensity function of the Poisson process, expected number of broken

wires after n cycles
α, β = parameters of function Λ(n)
w̃(n,Cn, θ) = crack width function evolved from wk(n) with parameter θ
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1 Introduction
Scientific studies of traffic volume on the Ger-
man Autobahn uncovered that the current loads
exceed the applicable loads based on former
traffic load models for calculation of bridges,
see [3, 4]. The fact of ongoing traffic growth in
Germany can be relayed to many other coun-
tries worldwide, for example see [5, 6]. In [7] is
described, that Germany has an over-average
share in European fright transport, which un-
derlines the especial importance in this case.

There are several approaches to assess the
fatigue strength and remaining lifetime of ex-
isting prestressed concrete bridges, see, e.g.,
[8, 9, 10]. To obtain a better understanding
of the fatigue behaviour of bridges, it is neces-
sary to study the fatigue behaviour of compo-
nents of bridges like, for example, cast-in-slabs,
precast beams or prestressing steel. There-
fore, many studies deal with executed fatigue
experiments with prestressed concrete beams
([11, 12, 13, 14, 15, 16, 17, 18]).

In particular, prestressing steel needs to be
tested in embedded conditions taking into ac-
count friction corrosion, as prestressing steel
tested in air possesses higher fatigue strength.
For this purpose, various experimental and
theoretical research projects have been con-
ducted with post-tensioned concrete beams, see
[19, 20, 21]. The aim of these investigations
is to provide basics, in the form of S-N curves
for post-tensioned steel, in order to make state-
ments on the fatigue strength of prestressed
concrete bridges. Having the same aim, pre-
stressing steel samples, obtained from an ex-
isting bridge built in 1957, were examined and
tested by TU Dortmund University, see [1, 2].
However, cyclic tests of post-tensioned concrete
beams are very time-consuming and expensive.
Especially at very low stress ranges, which are
of particular interest, test time often is several
months per test. Therefore, an early prediction
of failure is desirable.

Although it is well known that fatigue be-
haviour is a random process, there are only a
few articles using stochastic models and sta-
tistical analysis of reliability of bridges as in
[22, 23, 24]. A good overview of stochastic mod-

els for fatigue behavior is given in [25]. But
for data like the ones underlying this paper,
it lacks research because such expensive and
time-consuming experiments were not done yet.
This work fills this gap with a combination of
engineering and statistics research. The engi-
neering research provides a functional relation-
ship between the crack width and the amount
of broken wires and past load cycles. Statistics
research takes this information into a model
describing the uncertainties and yields infer-
ence that provides a reliable forecast for future
observations. Key inputs for that model are a
nonhomogeneous Poisson process (NHPP) de-
scribing the wire failure process and a nonlinear
regression model based on the crack width func-
tion characterizing the behavior of the crack
width conditional on that wire failure process.
For example, [26] employ a NHPP modeling
crack initiation in bone cement, [27] adapt a
Poisson process to the number of failures of
dual-phase steel specimen, and [28] present a
Bayesian estimation method for a NHPP and
apply it on pitting damage.

The remainder of this work is structured as
follows. In the second section, the underlying
experiments will be described in detail. The
third section contains the development of the
function describing the crack width that will be
the main object in the fourth section that covers
the statistical methods and their application to
the data.

2 Experimental procedure
As part of the demolition of an existing pre-
stressed concrete bridge, built in 1957, there
was a chance to extract prestressing steel sam-
ples. Theses samples were built in 5 test beams
(TR01-TR05) to run fatigue tests. 5 strands
were embedded in each test beam. Likewise,
two further test beams (SB01, SB02) contain-
ing strands of new production were prepared
and tested up to now. The new strands had
similar properties compared to the extracted
strands. All prestressing strands used were 7-
wire 3/8" strands. Each strand had a diameter
of 9.3mm, a cross-sectional area of 52mm2 and
a grade St1570/1770. The prestressing steel
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was deflected in a shear force free region of the
test beam at a length of 2m with a minimum
radius of r = 5m. This considered the influ-
ence of fretting corrosion between the tensioned
strand and steel duct. The dimensions of the
test beams were 4.50m× 1.00m× 0.30m.

Figure 1: Experimental set-up

An essential component of the test beam
was a large circular recess in the center. In con-
trast to a solid cross-section beam, the inner
lever arm is almost constant after the test beam
changes over in cracked condition. The exper-
imental set-up was designed as a four point
bending test. The cyclic loading was realized
by a four-column testing machine which can
realize a maximum test load of +/-2500kN (Fig-
ure 1).

The press force was applied by a spreader
bar and two roller bearings into the prestressed
concrete beams. The bearing of the beams
was almost free of constraint forces by using
very stiff swings. At the beginning of each
test, an initial crack was induced below the

Figure 2: Schematic situation of embedded
strand

recess in midspan (Figure 2). After that, the
fatigue strength of the embedded prestressing
steels was tested under a constant cyclic loading.
Testing was performed until a critical number
of tension wires failed. The applied stress range
∆σp, compare Figure 3, in relation to the cor-
responding fatigue life N denotes the fatigue
strength of the tested steel samples embedded
in the test beam. For crack width measure-
ment displacement transducers were placed on
both sides of the crack at approximately the
same level with the tendon. Sudden increase in
the periodic measured values serve as a good
indicator of broken wires (Figure 3). Due to
different crack widths at the beginning of each
test (wk(n = 0)) it is senseful to focus only on
the growing with start value 0. This leads to
the function

w0
k(n) = wk(n)− wk(0). (1)

To define exactly the number of load cy-
cles at the failure of a wire, a microphone
and an accelerometer were placed at the wedge
plate of the stressing anchorage. The micro-
phone recorded the structure-borne noise, the
accelerometer the pulse of a wire breakage.
Both systems were used redundantly.
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Figure 3: Test results TR01-TR05 and SB01-
SB02

3 Mathematical determination
of crack width

The damage process of single wire failures can
be simulated by calculating the crack width,
taking into account the breaking times. This
calculation is based on the crack formula for cal-
culating crack widths of a single crack. The test
beams have the positive effect that in cracked
condition the tension zone only contains pre-
stressing steel and no further reinforcement,
which otherwise need to be taken into account
for strain determinations in calculations, too.
The crack opening wk corresponds exactly to
the difference in expansion between the affected
prestressing steel and the surrounding concrete
within the load influence length lt of the crack
(Figure 5, subimage ’Strain’). In this area,
the tensile stress is transferred from the undis-
turbed cross section into the prestressed steel.
This length includes both sides of the crack.
The crack width can now be calculated by deter-
mining the mean strain and the load influence
length of the crack. In cyclic load tests sin-
gle wires gradually fatigue over time. In these
tests the external load stress is kept constant
by the force control of the machine. Thereby
the stress increases in the remaining prestressed
steel wires with each wire break. In comparison
to reinforcing steel the composite properties of
prestressing steel are not fundamentally dif-
ferent. Using one tendon, several strands are
closely spaced together (Figure 5, subimage
’Cross section’). Therefore, calculations must
be done using an equivalent diameter φp of pre-
stressing steel. According to [24, 29, 30] the

equivalent diameter is given by

φp = 1.6 ·
√
Ap

for bundles and the circumference for transfer
of bond stress by

uv = φp · π = 1.6 ·
√
Ap · π.

By considering a single crack, there is the same
strain in the prestressing steel and concrete
at the end of the load influence length lt. As-
suming a constant bond stress, the additional
stress in the prestressing steel must be initiated
across the influence load length to the undis-
turbed area, in order to establish the following
equilibrium condition

∆σpr ·Ap = ξ · τbm · lt · uv. (2)

∆σpr is the difference between the maximum
prestressing steel stress σp,max in the crack as
a result of load and the initial tension σpm0 in
the prestressing steel (∆σpr = σp,max − σpm0),
see Figure 4.

Figure 4: Graphical definition of stress range
∆σp and ∆σpr

The complex composite behavior is deter-
mined by a variety of influences. Hence, there
is no universal bonding rule covering all con-
straints equally well. Experimental evaluations
of other reports indicate that the bond stress
τbm may assumed to be 1.8-times the mean
value of the tensile strength of concrete fctm
(simplification).

Because the normative bond stress value
τbm refers to the composite properties of rein-
forcing steel, it must be adjusted with a correc-
tion factor ξ = 0.5 for post-tensioned strands
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[29]. If these approaches and the effective com-
posite scale are taken into account, it follows
by converting and substituting from equation
(2)

lt = ∆σpr ·Ap
1.44 · π · fctm ·

√
Ap
. (3)

In accordance with [29, 30] the integration
length of a single crack results from the double
value of the load influence length (Figure 5,
subimage ’Strain’)

wk = 2 · lt · (εpm − εcm). (4)

Neglecting the concrete strain (εc = 0), it fol-
lows for the differential strain

εpm − εcm = (1− kt) ·∆εpr,

εpm − εcm = (1− kt) ·
∆σpr
Ep

. (5)

Among others, loading conditions and time
have an influence on the bond strength. This
effect is taken into account by the value kt. As
experimental tests in other reports showed, the
value for short-time loads is recognized as a
good approximation to kt = 0.6. A cyclic or
long-time load decreases the bond strength sig-
nificantly. It comes to bond creep between pre-
stressing steel and concrete and consequently
to an increase in crack width. This creep ef-
fect decreases over time and is reduced during
long or cyclic loading to kt = 0.4. This rep-
resents about 70% of the applicable value for
short-time loads. Thus, value kt depends on
the number of load cycles and can be described
easily over time by an exponential function

kt(n) = kt→∞ + (kt=0 − kt→∞) · en·c. (6)

At first the function kt starts with the value
of a short-time load (kt=0) and approaches later
to the value for a long-time load (kt→∞). The
parameter c controls the speed of this composite
loss. It was found that in these experiments
the value of c = −2 · 10−5 generally provides
good results. With each wire rupture the cross-
sectional area Ap of the prestressing steel will
be reduced. Because the stress difference ∆σpr
is directly related to the cross-sectional area Ap,

Figure 6: Calculated crack width in comparison
to measured values

it is possible to describe ∆σpr for any number
of cyclic loads n by

∆σpr(n) = σp,max ·
Ap

Ap(n) − σpm0

= σp,max ·
1

1− Cn
35
− σpm0

with Ap(n) representing the residual cross-
sectional area Ap after n load cycles, i.e. Ap ·(
1− Cn

35

)
, and Cn being the number of broken

wires after n load cycles. Taking into account
temporal effects, equation (3) and (5) can be
inserted into equation (4) resulting in the time-
dependent crack width function

wk(n) = (1− kt(n)) · (∆σpr(n))2 ·Ap(n)
0.72 · π · fctm · Ep ·

√
Ap(n)

(7)

with kt(n) the function in (6).
Based on equation (7) and material input

parameters the measured crack width can be
calculated and displayed as can be seen in Fig-
ure 6.

As can easily be imagined, these experi-
ments depend on stochastic error. This uncer-
tainty can be described by a stochastic model.

4 Statistical theory and appli-
cation

The first important step is to model the wire
failure process which by construction is a count-
ing process. When resorting to the most widely
used one, i.e. the Poisson process, it is clear
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Figure 5: Strain and load influence length of crack in midspan
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that a nonhomogeneous specification should be
used. When a wire fails, the load distributes
on fewer wires and, therefore, the probability
that another wire fails grows. Denoting the
number of broken wires after n load cycles with
Cn we assume the process to start in 0, for
arbitrary 0 ≤ n1 < ... < nI the increments
Cn2 − Cn1 , ..., CnI − CnI−1 are assumed to be
independent. Cn − Cl is Poisson distributed
with parameter

∫ l
n λ(u) du for all 0 ≤ n < l,

which leads to a nonhomogeneous Poisson pro-
cess {Cn, n ∈ [0,∞)} with intensity rate λ(n).
A good overview of a Bayesian analysis for
such a process can be found in [31] whereas
[32] display Bayesian estimation for the case
of the power law process used in the following.
Mathematically, n is a natural number and a
Poisson process is a time-continuous process
by construction. For our calculations we will
divide the number of load cycles by one million
to obtain numbers that are easier to handle and
have lower risk of rounding errors. Here, we will
assume the power law for the expected number
E[Cn] of broken wires after n load cycles as

E[Cn] =
∫ n

0
λ(u) du = Λ(n) =

(
n

β

)α
,

which is also used in [27] and [28]. Λ is called
cumulative intensity rate. Its derivative is the
hazard rate of the Weibull distribution. The
homogeneous case is nested by setting α = 1,
but here we expect α to be greater than 1 which
leads to a growth higher than linear. Obviously
we assume β > 0.

Based on the so called event times 0 < N1 <
... < Nm < N given by

Nj = min{l : Cl = j}, j = 1, ...,m,

the likelihood is given by

p(N1, ..., Nm| α, β) = exp(−Λ(N))
m∏
j=1

λ(Nj),

see [31], p. 119. Here, the information, that
after Nm up to the last observed load cycle N
no wire fails, slips in.

In Bayesian estimation, the parameters are
assumed to be random variables with unknown
distribution that needs to be estimated. If

one has prior knowledge, maybe from other
experiments or because of physical knowledge
from experts, one can take that into account
using a so-called prior distribution. Since we
do not have any specific prior knowledge for
the parameters α and β, we use a so-called
noninformative approach, where all parameters
have the same probability. That means, up to a
normalization constant, the likelihood becomes
the posterior of the parameters

p(α, β| N1, ..., Nm) ∝ p(N1, ..., Nm| α, β),

where ∝ means ‘proportional to’, i.e. we drop
the constant (

∫
p(N1, ..., Nm| α, β) d(α, β))−1

because it is not analytically calculable and,
therefore, unknown. The shape of the posterior
distribution is given by the likelihood and this
fact is used in a sampling method. Here, we
employ the widely used Metropolis-Hastings
(MH) algorithm, see [33] p. 130. In Figure 7 we
see boxplots for the drawn samples for α and
β for the seven experiments, which give a good
overview of the location and the variance of
the approximated posterior distributions. Ex-
periments 1-5 denote TR01-5 and numbers 6
and 7 belong to SB01 and SB02. As mentioned
before, for the calculations we take n as the
load cycles in millions. The posterior distribu-
tions each are approximated with K = 2000
samples. This will be the same in all following
evaluations.

Based on the MH-resulting samples

(α∗1, β∗1), ..., (α∗K , β∗K) ∼ p(α, β| N1, ..., Nm)

a predictive distribution can be approximated.
We are interested in the development of the
process up to a fixed number of nf load cycles,
i.e. in the forecast for a future experiment un-
der equal test conditions. Because the process
is uniquely defined by the event times, we will
sample N∗1 < N∗2 < ... iteratively. The density
of the first event time is

p(N∗1 | N1, ..., Nm)

=
∫
p(N∗1 | α, β) · p(α, β| N1, ..., Nm) d(α, β)

≈ 1
K

K∑
k=1

p(N∗1 | Nm, α
∗
k, β
∗
k),
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Figure 7: Boxplots of the posterior distributions
of α and β for the seven experiments

where p(N∗1 | α, β) is the density of the expo-
nential distribution with parameter Λ(N∗1 ). Af-
terwards, we iteratively sample

N∗j ∼
1
K

K∑
k=1

p(N∗j | N∗j−1, α
∗
k, β
∗
k), (8)

j = 2, 3, ... with

p(N∗j | N∗j−1, α, β)
=λ(N∗j ) exp(−{Λ(N∗j )− Λ(N∗j−1)}).

The number of event times differs for each tra-
jectory, because the number of jumps Cnf

is
random and varies for each path. The sam-
pled event times yield samples of the counting
process through

C∗(k)
n = {j : N

∗(k)
j ≤ n < N

∗(k)
j+1 }, (9)

where N∗(k)
j is the jth iteratively drawn event

time according to (8), k = 1, ...,K. The re-
sulting prediction for the counting process for
the seven experiments can be seen in Figure 8.
In the upper picture, the process of the first
experiment and its prediction is shown. The
solid line denotes the true observed process of
broken tension wires. The inner dotted line is
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Figure 8: Prediction of the wire failure pro-
cess, for the first experiment (top) and for the
six other experiments on a logarithmic scale
(bottom)

the pointwise median of the processes drawn
from the predictive and can be seen as a point
prediction. The outer dotted lines are the 0.05-
and the 0.95-quantiles which yield a 90% pre-
diction interval. In the lower picture, the six
other processes are shown where the x-axis is
transformed to log10(load cycles) for a better
overview. Except for the fifth series TR05, the
median curves mostly follow the true processes
and the prediction intervals cover them in all
cases except for small parts in the beginning of
SB01 and SB02. In the special case of TR05,
only four wire failures have been observed until
the experiment was stopped because several
month had passed. No increasing frequency
can be seen for these four points. Therefore, it
is not suprising, that our model has difficulties
in estimation and prediction for TR05.

In the following we describe the crack width
dependent on the counting process. The first
step is to transform the function in (1) to a more
flexible parametric function with estimable pa-
rameters, because some of the constants in that

9



function are approximate values. We obtain

w̃(n,Cn, θ)
= (θ1 − θ2 · exp(−n · θ3)) · 1√

h(Cn)
(h(Cn)− θ4)2

− (θ1 − θ2)(1− θ4)2,

where θ1 = (1−kt→∞)·
√
Ap·σ2

p,max

0,72·π·fctm·Ep
,

θ2 = (kt=0−kt→∞)·
√
Ap·σ2

p,max

0,72·π·fctm·Ep
, θ3 = −c, θ4 =

σpm0
σp,max

and h(Cn) = 1
1−Cn

35
.

The corresponding calculation can be found
in the appendix. Of course, other parametriza-
tions are possible. However, if more than four
parameters are chosen, they will not be identi-
fiable.

The experiments have measurement errors
which can be taken into account by our model
additevely as follows

yi = w̃(ni, Cni , θ) + εi,

εi ∼ N (0, σ2),
Cni ∼ Pois(Λ(ni)), i = 1, ..., I.

Here, εi and Cni have to be stochastically inde-
pendent. Conditional on the counting process
Cni , we have a regression model whose param-
eters can be estimated based on the likelihood.
Bayesian inference for nonlinear regression mod-
els can be found in [33]. Following from

yi| Cni ∼ N
(
w̃(ni, Cni , θ), σ2

)
,

i = 1, ..., I, the conditional likelihood is a prod-
uct of normal distribution densities. Because
of the nonlinear function we have no closed
form of the posterior. Therefore, similar to the
estimation of α and β, we use a MH-algorithm
for the estimation of the parameters with the
difference that we can use the physically given
constants for an informative Bayesian approach
here. That leads to the posterior

p(θ| y1, ..., yI , σ
2) ∝ p(y1, ..., yI | θ, σ2) · p(θ),

where p(θ) is the prior density. If we denote
with θ0 the vector resulting from the physi-
cal constants given by an expert, we assume
θi ∼ N (θ0

i , θ
0
i ), i = 1, ..., 4, as prior distri-

bution. The variance is chosen equal to the

expected value, which represents a good com-
promise between the expert knowledge and the
large amount of data present. For the error vari-
ance σ2 we choose the inverse Gamma distribu-
tion IG(a, b) because then the conditional pos-
terior is an inverse Gamma as well, with param-
eters a+ I

2 and b+ 1
2
∑I
i=1(yi − w̃(ni, Cni , θ))2,

see [33], p. 35. In our calculations we use
a = b = 1. The joint posterior of θ and σ2 can
be approximated by drawing using a Metropolis-
within-Gibbs sampler, see [33] p. 141. Figure
9 shows boxplots of the posterior distributions
for the seven experiments. The black points
denote the starting, resp. prior, values. In most
cases, they differ from the estimated values. Of
course one could pull the posterior in the direc-
tion of the initial values with a smaller prior
variance, but the estimated variance would be-
come higher.

With the samples θ∗1, σ∗21 , ..., θ
∗
K , σ

∗2
K from

the posterior distribution we can approximate
the predictive distribution

p(y∗i | y1, ..., yI , Cn1 , ..., CnI ) (10)

=
∫
p(y∗i | θ, σ2, C∗ni

) · p(θ, σ2| y1, ..., yI)

· p(C∗ni
| Cn1 , ..., CnI ) d(θ, σ2, C∗ni

)

≈ 1
K

K∑
k=1

p(y∗i | θ∗k, σ∗2k , C∗(k)
ni

)

≈ 1
K

K∑
k=1

1
σ∗k
φ

(
y∗i − w̃(n∗i , C

∗(k)
ni , θ∗k)

σ∗k

)
,

i = 1, ..., I, where φ denotes the density of
the standard normal distribution. C∗(k)

ni , k =
1, ...,K are the samples from the predictive
distribution of the Poisson process defined in
(9).

The distribution in (10) can be approxi-
mated with rejection sampling, see [33], p. 116,
where one has to choose a candidate area. Here,
the interval [−0.5, yI + 5] is taken with a grid
of 0.002. In Figure 10 we see the pointwise
prediction results for the seven experiments. In
all cases, the 90% prediction intervals cover the
true process. Similar to Figure 8 the solid line
is the true process, the inner dotted line the
mean and the outer dotted lines the 5% and
95% quantiles of the predictive distribution. In
the cases of TR01, TR03, TR04 and TR05, the
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Figure 9: Boxplots of the posterior distribution
of θ = (θ1, θ2, θ3, θ4) and σ2, the black points
mark the starting, resp. prior, values given by
an expert

mean curve follows the true processes very well.
In the other cases – TR02, SB01 and SB02
– the last two or three true jump heights are
bigger than predicted. This result is not supris-
ing, because we fit a parametric function to the
data. Estimation yields the parameters that
fit the data with minimal variance under the
assumption of normal distributed errors. The
last few observations do not carry much weight
in this procedure.
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Figure 10: Prediction of the crack width, for
the first experiment (top) and for the six other
experiments on a logarithmic scale (bottom)

Next, we take a look at the function w̃ and
especially the role of θ2 and θ3. Figure 11 shows
that this part of the function only describes the
very beginning of the series and stays constant
for the rest, except for the second experiment.
However, we are mainly interested in the pre-
diction for the last part of the experiment and
we lose efficiency by estimating needless param-
eters.

Therefore, we simplify the function w̃ to

w̃s(Cn, θ) = θ̃1 ·
1√
h(Cn)

(
h(Cn)− θ̃4

)2

and estimate the parameters similar to the re-
gression model defined above, but noninforma-
tive, because the prior knowledge is lost with
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the transformation. This does not pose a prob-
lem as the estimations of the parameters dif-
fered from the prior values, confer Figure 9.
The resulting predictions can be seen in Fig-
ure 12. The only difference to the predictions
shown in Figure 10 is the beginning of the curve.
Therefore, this simplified curve is taken for the
prediction of the future development.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

6

TR01

load cycles in million

cr
ac

k 
w

id
th

observation
90%−prediction interval
mean

4.5 5.0 5.5 6.0 6.5 7.0

0
2

4
6

8

log10 (load cycles)

cr
ac

k 
w

id
th

TR02

TR03

TR04 TR05

SB01
SB02

Figure 12: Prediction of the crack width with
the simplified curve w̃s, for the first experiment
(above) and for the six other experiments on a
logarithmic scale (bottom)

The last open question is what happens, if
we observe the process up to nI load cycles and
are interested in some prediction for a point nf

with nf > nI . To that end, we truncate the ex-
isting series and compare the predictions with
the observed points. For the five experiments
TR01-TR05, we take 80%, for SB01 95% and
for SB02 90% of the observations for the estima-
tion. In Figure 13 we can compare the posterior
distributions with the whole series (‘all’) and
the posterior with the truncated series (‘first’).
Except for the second experiment TR02 and
the sixth experiment SB01, all α have a lower
location when using the truncated series, which
leads to a lower increasing frequency of the
jump process. It seems to be a good idea to use
an informative Bayesian estimation approach
for the prediction of the unobserved future pro-
cess. But until now, all experiments are made
under different conditions, which leads to very
different parameters. How knowledge of these
experiments can be used for following ones un-
der new experiment conditions is the subject
of future work.
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Figure 13: Comparison of the estimations of α
and β, each left for the whole series, right for
the truncated series

For the counting process we now accordingly
sample from

N∗m+i ∼
1
K

K∑
k=1

p(Nm+i| N∗m+i−1, α
∗
k, β
∗
k)

i = 1, 2, ... and starting valueN∗m = Nm. In Fig-
ure 14 we see the predictions for the counting
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process. The first impression of the parameter
posteriors is supported. Firstly, we can say that
in all cases except the seventh jump in TR04,
the prediction intervals cover the true process.
Secondly, in all cases the point prediction, i.e.
the pointwise median, lies a bit below the true
process. But considering the challenge predict-
ing such a process with that few observations
without using prior knowledge poses, this result
is suprisingly good.
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Figure 14: Prediction of the wire failure process
for nf > nI , for the first experiment (top) and
for the six other experiments on a logarithmic
scale (bottom)

In Figure 15 we compare the posterior distri-
butions of the parameters in w̃s and the corre-
sponding error variance of the regression model,
each for the estimation using the whole and the
truncated series. In all cases the estimated
variance is smaller for the estimations based
on the truncated series. As mentioned before,
the estimation of the parameter does not take
into account whether some points at the end
of the series are not well fitted, if the variance
averaged over all observations is small. If we
truncate just the last nonfitted points, the es-
timated variance gets smaller. For the curve
parameters, only for the third experiment TR03

and the last two SB01 and SB02, the posteriors
differ considerably.
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Figure 15: Comparison of the estimations of θ̃1,
θ̃4 and σ2, i.e. the parameters of the regression
model with the simplified curve w̃s, each left for
the whole series, right for the truncated series

The theroetical predictive distribution for
the crack width in this prediction procedure
stays the same as before, confer (10). In Figure
16 we see the predictions for the crack width
curve, which mainly depend on the prediction
of the wire failure process shown in Figure 14.
The parameters of the regression function can
vary to a certain extent, but the prediction
result for the crack width closely follows the
result for the counting process.

5 Conclusions
A stochastic model has been developed to de-
scribe and predict the fatigue process of pre-
stressed concrete beams. In this paper, a func-
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Figure 16: Prediction of the crack width for
nf > nI , for the first experiment (top) and for
the six other experiments on a logarithmic scale
(bottom)

tion with physical and mechanical background
has been developed. This function describes the
relation between number of load cycles, number
of broken wires in prestressed strands and crack
width in the concrete.

Furthermore, inference and prediction for
a regression model including a Poisson process
has been proposed for this problem. In a first
step, a nonhomogeneous Poisson process with
the Weibull hazard rate as intensity function
has been applied to the wire failure process.
It turned out that this process can be fitted
reliably by the presented approach. For the
prediction of the future development based on
a first part of the experiment, prior knowledge
should be included. It will be future work,
how to use information of existing experiments
under different conditions for reliable prior dis-
tributions.

Depending on the counting process, a non-
linear regression model based on the evolved
crack width curve has been applied to the seven
expriments. Here, we also predicted the crack
width. It turned out that the prediction of

the crack width curve mainly depends on the
prediction of the wire failure process. If this
prediction works well, the predictions of the
crack width in turn are reliable.

Acknowledgements
This work is supported by the Collaborative
Research Center “Statistical modeling of non-
linear dynamic processes” (SFB 823) of the
German Research Foundation (DFG) (Project
B5: “Statistical methods for damage processes
under cyclic load”). The first five experiments
described in Section 2 were carried out at TU
Dortmund University on behalf of Straßen.NRW
(FE No. 00 08 5001), see [1, 2].

References
[1] Maurer, R., and Heeke, G. (2010). Ermü-

dungsfestigkeit der Spannstähle einer Auto-
bahnbrücke von 1957 im einbetonierten Zu-
stand, Abschlussbericht Forschungsvorhaben
Straßen.NRW. (FE No. 00 08 5001)

[2] Maurer, R., Heeke, G., and Marzahn, G.
(2012). Fatigue strength of prestressing
steel tendons embedded in concrete of an
aged highway bridge/Ermüdungsfestigkeit
der Spannstähle einer Autobahnbrücke von
1957 im einbetonierten Zustand. Bauinge-
nieur 87 (5), 226–236.

[3] Kaschner, R., et al. (2009). Auswirkun-
gen des Schwerlastverkehrs auf die Brücken
der Bundesfernstraßen. Berichte der Bundes-
anstalt für Straßenwesen, Brücken- und In-
genieurbau. Heft B 68, Bergisch Gladbach.

[4] Naumann, J. (2010). Bridges and heavy
goods traffic - an inventory/Brücken und
Schwerverkehr - eine Bestandsaufnahme.
Bauingenieur 85 (1), 1–9.

[5] International Road Federation (2009). IRF
World Road Statistics, Geneva.

[6] Department for Transport (2011). Annual
Road Traffic Estimates. Road Traffic Statis-
tics, London.

14



[7] European Commission (2012). EU trans-
port in figures. Statistical Pocketbook. Pub-
lications Office of European Union, Luxem-
bourg.

[8] Al-Zaid, R. Z., and Nowak, A. S. (1988). Fa-
tigue strength of prestressed concrete girder
bridges. Canadian Journal of Civil Engineer-
ing, 15 (2), 199–205.

[9] Higgins, C., Farrow III, W., Nicholas, B.,
and Potisuk, T. (2006). High-cycle fatigue of
diagonally cracked reinforced concrete bridge
girders: Field tests. J. Bridge Eng. 11, SPE-
CIAL ISSUE: Methods of Monitoring and
Evaluating Structural Performance, 699–706.

[10] Wood, S. L., Hagenberger, M. J., Heller,
B. E., and Wagener, P. J. (2007). Evalua-
tion of serviceability requirements for load
rating prestressed concrete bridges. Research
Report FHWA/TX-07/0-1895-1. Center for
Transportation Research Bureau of engineer-
ing Research, The University of Texas at
Austin.

[11] Hanson, J. M., Hulsbos, C. L., and Van-
Horn, D. A. (1970). Fatigue tests on pre-
stressed concrete I-beams. Journal of the
Structural Division, 96 (11), 2443–2464.

[12] Zia, P., Mirza, J. F., and Riskalla, S. H.
(1976). Static and fatigue tests of composite
T-beams containing prestressed concrete ten-
sion elements. PCI Journal, 21 (6), 77–93.

[13] Harajli, M. H., and Naaman, A. E. (1985).
Static and fatigue tests on partially pre-
stressed beams. Journal of Structural Engi-
neering, 111 (7), 1602–1618.

[14] Shahawi, M. E., and Batchelor, B. D.
(1986). Fatigue of partially prestressed con-
crete. Journal of Structural Engineering, 112
(3), 524–537.

[15] Naaman, A. E., and Founas, M. (1991).
Partially prestressed beams under random-
amplitude fatigue loading. Journal of Struc-
tural Engineering, 117 (12), 3742–3761.

[16] Rao, C., and Frantz, G. C. (1995). Test on
prestresses concrete bridges beams-fatigue

tests of the bridges beams. Research Re-
port JHR 95-245, University of Connecticut
Department of Civil Engineering.

[17] Rao, C., and Frantz, G. C. (1996). Fa-
tigue tests of 27-year-old prestressed concrete
bridge box beams. PCI Journal, 41 (5), 74–
83.

[18] Carpinteri, A., Spangnoli, A., and Van-
tadori, S. (2005). Mechanical damage of
ordinary or prestressed reinforced concrete
beams under cyclic bending. Engeneering
Fracture Mechanics 72, 1313–1328.

[19] Wollmann, G. P., Yates, D. L., Breen, J.
E., and Kreger, M.E. (1996). Fretting fa-
tigue in post-tensioned concrete beams. ACI
Structural Journal, 93 (2), 172–179.

[20] Cordes, H., Hegger, J., and Neuser, J. U.
(2000). Untersuchungen zur Reibermüdung
bei teilweise vorgespannten Bauteilen. In:
Eligehausen, R., Kordina, K., Schießl, P.
(ed.). In: Bewehrte Betonbauteile unter Be-
triebsbedingungen, Weinheim, Wiley-VCH,
322–335.

[21] Empelmann, M., and Remitz, J. (2014).
Fatigue behaviour of post-tensioned tendons
/ Ermüdungsverhalten von Spanngliedern
mit nachträglichem Verbund. Beton- und
Stahlbetonbau 109 (11), 760–770.

[22] LeBeau, K., and Wadia-Fascetti, S. (2010).
Predictive and diagnostic load rating model
of a prestressed concrete bridge. J. Bridge
Eng. 15, SPECIAL ISSUE: Bridge Inspec-
tion and Evaluation, 399–407.

[23] Orton, S., Kwon, O., and Hazlett, T.
(2012). Statistical distribution of bridge re-
sistance using updated material parameters.
J. Bridge Eng., 17 (3), 462–469.

[24] Bocchini, P., Saydam, D., and Frangopol,
D. (2013). Efficient, accurate, and simple
Markov chain model for the life-cycle analysis
of bridge groups. Structural Safety 40, 51–
64.

[25] Sobczyk, K., and Spencer, B. F. (1992).
Random fatigue: From data to theory. Aca-
demic Press Limited, London.

15



[26] Heron, E. A., and Walsh, C. D. (2008).
A continuous latent spatial model for crack
initiation in bone cement. Appl. Statist., 57,
25–42.

[27] Doudard, C., Calloch, S., Cugy, P., Galtier,
A., and Hild, F. (2005). A probabilistic two-
scale model for high-cycle fatigue life pre-
dictions. Fatigue & Fracture of Engineering
Materials & Structures 28, 279–288.

[28] Yuan, X.-X., Mao, D., and Pandey, M. D.
(2009). A Bayesian approach to modeling and
predicting pitting flaws in steam generator
tubes. Reliability Engineering and System
Safety 94, 1838–1847.

[29] EN 1992-1-1 (2004). Design of concrete
structures – Part 1–1: General rules and
rules for buildings. European Standard.

[30] Comité Euro-International Du Béton
(1993). EPF Lausanne CEB-FIB Model Code
1990: Design Code.

[31] Rios Insua, D., Ruggeri, F., and Wiper,
M. P. (2012). Bayesian analysis of stochastic
process models. John Wiley & Sons, United
Kingdom.

[32] Yu, J.-W., Tian, G.-L., and Tang, M.-L.
(2007). Predictive analyses for nonhomoge-
neous Poisson processes with power law using
Bayesian approach. Computational Statistics
& Data Analysis, 51, 4254–4268.

[33] Carlin, B. P., and Louis, T. A. (2009).
Bayesian methods for data analysis. CRC
Press, Boca Raton.

16



Appendix
Beginning with the function wk in (7) we abbreviate ν = 0.72 · π · fctm · Ep, think of definition
Ap(n) = Ap ·

(
1− Cn

35

)
= Ap · h(Cn)−1 and ∆σpr(n) = σp,max · Ap

Ap(n) − σpm0 = σp,max · h(Cn)− σpm0

with h(x) = 1
1− x

35
. It is

wk(n)

= (1− kt(n)) · (∆σpr(n))2 ·Ap(n)
0.72 · π · fctm · Ep ·

√
Ap(n)

= 1
ν
· (1− kt(n)) · (∆σpr(n))2 ·

√
Ap(n)

= 1
ν
· (1− kt(n)) · (σp,max · h(Cn)− σpm0)2 ·

√
Ap · h(Cn)−1

=
√
Ap

ν ·
√
h(Cn)

· (1− kt(n)) · (σp,max · h(Cn)− σpm0)2

=
√
Ap

ν ·
√
h(Cn)

· (1− kt→∞ − (kt=0 − kt→∞) · en·c) · σ2
p,max ·

(
h(Cn)− σpm0

σp,max

)2

=
√
Ap · σ2

p,max

ν
· ((1− kt→∞)− (kt=0 − kt→∞) · en·c) · 1√

h(Cn)
·
(
h(Cn)− σpm0

σp,max

)2

= (θ1 − θ2 · exp(−n · θ3)) · 1√
h(Cn)

(h(Cn)− θ4)2

with

• θ1 = (1−kt→∞)·
√
Ap·σ2

p,max

0,72·π·fctm·Ep
,

• θ2 = (kt=0−kt→∞)·
√
Ap·σ2

p,max

0,72·π·fctm·Ep
,

• θ3 = −c,

• θ4 = σpm0
σp,max

.
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