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Abstract

We suggest a simple improvement of recent VaR-backtesting procedures

based on time intervals between VaR-exceedances and show via Monte

Carlo that our test has more power than its competitors against empir-

ically relevant clustering alternatives.
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1 Introduction

Despite various well known shortcomings, value at risk (V aR) is still the most

popular measure of portfolio risk in practice. Therefore, there is interest in

the statistical properties of methods employed in its production.

Ideally,

P (yt ≤ V aRt(p)) = p ∀t (1)

1Research supported by DFG-Sonderforschungsbereich 823 (projects A1,Z)
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where yt is the sequence of returns of the security or the portfolio of securities

in question, p is the probability (usually 1%) specified by the user of an extreme

event, V aRt(p) is an estimator of the p-quantile of the return-distribution at

t based on information available up to t− 1, and

P (yt ≤ V aRt(p), ys ≤ V aRs(p)) = P (yt ≤ V aRt(p))× P (ys ≤ V aRs(p)).

(2)

Condition (1) (unconditional coverage) requires that VaR does what it is sup-

posed to do, while condition (2) implies that information available up to t− 1

is used efficiently. Both conditions combined can also be rephrased as

Pt−1(yt ≤ V aRt(p)) = p ∀t, (3)

where Pt−1 is the probability conditional on information up to t−1 (conditional

coverage).

While there is a large literature on how V aRt is best produced (see Ardia et al.

(2014)) or Herwartz et. al. (2015) for recent contributions), and various tests

of (1) have also been around for quite a while, testing the condition (2) or (3)

has received less methodological attention. Below we build upon Christoffersen

(1998), Christoffersen and Pelletier (2004), Haas (2005), Candelon et al. (2011)

and Ziggel et al. (2014) to construct a simple procedure to test this indepen-

dence requirement which has high power to detect violations which occur in

clusters. This appears important in practice, since a correct forecast of VaR

is extremely important in periods of financial turmoil, where large losses often

happen in succession. Then a cluster of exceedances implies that the particular

VaR-measure employed has not been sufficiently adjusted downwards, risking

losses that are even larger than expected. The practical relevance of weeding

out VaR-procedures which are prone to this type of mistake is obvious.
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2 A new test for independent VaR-violations

Let y1, ..., yT be the returns under consideration, let t1, ..., tn be the times where

VaR-violations occur, and let t0 = 0. Unconditional coverage requires that

E
(n
T

)
= p. (4)

Independence of VaR-violation requires, that, in addition, waiting times be-

tween violations (durations) follow a geometrical distribution, in particular,

that

E(ti − ti−1) =
1

p
. (5)

Christoffersen and Pelletier (2004) and Haas (2005) propose twin tests of (4)

and (5) against parametric alternatives. Ziggel et al. (2014) improve upon

these procedures by looking at squared durations, which are better able to

detect various nonparametric deviation from the null. In this paper we propose

another nonparametric improvement which is focused on condition (5). To that

extent, let

di := ti − ti−1, i = 1, . . . , n (6)

be the n durations between successive VaR-violations. We include the waiting

time up to t1, but exclude the time elapsing from tn to the end of the sample

period, as this does not follow a geometric distribution. We suggest to look

at the inequality of the di’s (as measured by any inequality coefficient such as

the Gini-index) as an indicator of possible violations of independence. As all

conventional inequality measures g are both homogeneous of degree zero, i.e.

g(d1, . . . , dn) = g(ad1, . . . , adn) (a > 0), (7)

and population invariant, i.e.

g(d1, . . . , dn) = g(d1, . . . , dn, d1, . . . , dn), (8)
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this test is asymptotically insensitive to violations of unconditional coverage,

and focused on violations of independence. To the extent therefore that joint

tests of unconditional coverage and independence involve some trade-off of

power, our new test might be better able to detect violations of independence

alone.

For concreteness, we argue in terms of the Gini-coefficient, which may be

defined (among various equivalent definitions) as

g(d1, ..., dn) =
1
n2

∑n
i,j=1(di − dj)

2d̄
, (9)

i.e. Gini’s mean difference divided by twice the arithmetic mean. For geomet-

rically distributed d’s, the population Gini coefficient is

g(d) =
1− p
2− p

(10)

(Dorfmann (1979)), which is between 0 (p→ 1) and 1/2 (p→ 0). Therefore we

suggest a one-sided test of independence which rejects whenever g(d1, . . . , dn)

is too large. While independence might also be violated by having the observed

VaR-violation too equally spaced in the [1, T ]-interval, this does not seem to

induce a problem in practice, as illustrated by Figure 1.

0 T
a) Gini-coefficient of waiting time "large"

t

0 T
b) Gini-coefficient of waiting time "small"

t

Figure 1: Two types of violation of the independence assumption
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3 Finite sample power

It is certainly possible to base an asymptotically valid test on the limiting dis-

tribution of the difference between sample and population Gini (after plugging

an estimator of p into formula (10)), i.e., to rely on the test statistic

√
T

(
g(d1, . . . , dn)− 1− n/T

2− n/T

)
.

Instead, we here use the simulated finite sample null distribution. This appears

preferable as, even for large T , the number n of VaR-violations is rather small,

and asymptotic arguments are hard to justify. Therefore, for fixed T and n,

we obtain critical values by simulating the Gini-index 10, 000 times.

For ease of comparison with previous results, we repeat the simulation setup

of Ziggel et al. (2014) who consider two types of alternatives; on the one hand

dependent VaR-violations, on the other hand non-identical distributions. The

first type of violation is the one our test is designed to detect. The second type

of violation is added to check its performance also in situations where clusters

are possibly induced by time-varying expectations of the durations.

For the dependence case, we have

yt = σtzt, with σ1 = 1 and (11)

σ2
t = λσ2

t−1 + (1− λ)z2t−1, 0 ≤ λ ≤ 1, t > 1, (12)

where the zt are i.i.d. standard normal and λ measures the degree of depen-

dence: For λ = 1, we have serial independence (i.e., the null is true) and serial

dependence increases as λ → 0. We consider three different half-life intervals

(the interval in which the weight of an observed value of σ2 decreases to half

its original value) log(0.5)/ log(λ). (Half-life intervals 5, 40, 80 correspond to

λ = 0.8706, 0.9828, 0.9914.) VaR-violations are the points where the yt are

smaller than their empirical p-quantile.

5



Table 1 gives the results, based on 10, 000 simulation runs. LRmar
iid is the likeli-

hood ratio test proposed by Christoffersen (1998) against a first-order Markov

alternative, LRwei
iid is the test in the framework of the Weibull and Gamma dis-

tribution proposed by Christoffersen and Pelletier (2004), GMMiid is the test

in the GMM framework proposed by Candelon et al. (2011) andMCSiid is the

test based on Monte Carlo simulations proposed by Ziggel et al. (2014). The

empirical rejection probabilities of the latter tests are taken from Ziggel et al.

(2014) (Table 4,5). It is seen that our test outperforms its competitors when

dependence is large. As dependence decreases, this advantage drops and Ziggel

et al. (2014) becomes the most powerful among the procedures considered here.

Table 1: Empirical rejection probabilities for dependence in VaR-violations,

α = 0.05,

p Halflife T Our test LRmar
iid LRwei

iid GMMiid MCSiid

0.05 5 252 0.285 0.146 0.033 0.213 0.220
1000 0.728 0.217 0.160 0.591 0.552
2500 0.969 0.515 0.396 0.905 0.858

40 252 0.077 0.077 0.031 0.115 0.128
1000 0.180 0.052 0.024 0.219 0.251
2500 0.330 0.073 0.010 0.324 0.397

80 252 0.059 0.072 0.041 0.089 0.117
1000 0.105 0.047 0.026 0.224 0.263
2500 0.170 0.065 0.013 0.267 0.323

0.01 5 252 0.129 0.181 0.035 0.136 0.141
1000 0.250 0.230 0.137 0.211 0.182
2500 0.428 0.384 0.362 0.363 0.255

40 252 0.061 0.199 0.027 0.142 0.155
1000 0.135 0.083 0.077 0.154 0.176
2500 0.246 0.119 0.126 0.223 0.238

80 252 0.054 0.302 0.025 0.131 0.127
1000 0.095 0.083 0.085 0.157 0.181
2500 0.158 0.116 0.118 0.194 0.220

Next, we turn to non-identical distributions. This is not the alternative our

test has been designed for, but it might still be interesting to know about
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its performance here as well. Following Ziggel et al. (2014), non-identical

distributions are generated by

It =



i.i.d∼ Bern(p− 2δ), 1 ≤ t ≤ T
4

i.i.d∼ Bern(p+ δ), T
4
≤ t ≤ T

2

i.i.d∼ Bern(p− δ), T
2
≤ t ≤ 3T

4

i.i.d∼ Bern(p+ 2δ), 3T
4
≤ t ≤ T,

(13)

where It are indicator variables that are equal to 1 for a VaR-violation and

where the degree of instationarity is measured by δ; δ = 0 means identical

distributions, i.e., the null hypothesis is true. As δ increases, the expected

values of the It become more different over time.

Tables 2 gives the results. It shows that our test performs slightly worse

than the Ziggel et al. (2014) test, but still outperforms all the others. The

considerable power in these situations is reasonable because the changes in

expectations, as simulated here, facilitate cluster effects.

4 Conclusion

We have shown that it is easy to improve upon existing tests for independent

VaR violations when possible violations are highly clustered. As this is at the

same time the situation most dangerous in applications, our procedure seems

to have considerable practical appeal.
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Table 2: Empirical rejection probabilities for instationarities in VaR-violations,

α = 0.05,

p δ T Our test LRmar
iid LRwei

iid GMMiid MCSiid

0.05 0 · p 252 0.049 0.048 0.053 0.049 0.053
1000 0.049 0.046 0.046 0.046 0.050
2500 0.051 0.051 0.049 0.049 0.051

0.1 · p 252 0.057 0.052 0.048 0.058 0.060
1000 0.073 0.048 0.032 0.066 0.074
2500 0.083 0.049 0.037 0.078 0.093

0.3 · p 252 0.127 0.061 0.023 0.105 0.130
1000 0.397 0.054 0.024 0.386 0.456
2500 0.704 0.085 0.038 0.697 0.771

0.5 · p 252 0.372 0.104 0.028 0.317 0.378
1000 0.994 0.124 0.794 1.000 1.000
2500 1.000 0.311 1.000 1.000 1.000

0.01 0 · p 252 0.036 0.056 0.042 0.052 0.050
1000 0.045 0.048 0.046 0.049 0.051
2500 0.048 0.049 0.047 0.050 0.053

0.1 · p 252 0.036 0.054 0.042 0.049 0.050
1000 0.049 0.053 0.049 0.054 0.056
2500 0.061 0.055 0.042 0.056 0.064

0.3 · p 252 0.036 0.057 0.033 0.054 0.060
1000 0.095 0.064 0.034 0.076 0.091
2500 0.223 0.070 0.058 0.193 0.242

0.5 · p 252 0.046 0.069 0.011 0.066 0.081
1000 0.233 0.087 0.051 0.197 0.225
2500 0.786 0.099 0.437 0.822 0.926
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