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ABSTRACT 

Aromatase inhibition is an effective treatment strategy for breast cancer. Currently, several in silico methods 
have been developed for the prediction of aromatase inhibitors (AIs) using artificial neural network (ANN) or 
support vector machine (SVM). In spite of this, there are ample opportunities for further improvements by de-
veloping a simple and interpretable quantitative structure-activity relationship (QSAR) method. Herein, an effi-
cient linear method (ELM) is proposed for constructing a highly predictive QSAR model containing a spontane-
ous feature importance estimator. Briefly, ELM is a linear-based model with optimal parameters derived from 
genetic algorithm. Results showed that the simple ELM method displayed robust performance with 10-fold 
cross-validation MCC values of 0.64 and 0.56 for steroidal and non-steroidal AIs, respectively. Comparative 
analyses with other machine learning methods (i.e. ANN, SVM and decision tree) were also performed. A thor-
ough analysis of informative molecular descriptors for both steroidal and non-steroidal AIs provided insights in-
to the mechanism of action of compounds. Our findings suggest that the shape and polarizability of compounds 
may govern the inhibitory activity of both steroidal and non-steroidal types whereas the terminal primary C(sp3) 
functional group and electronegativity may be required for non-steroidal AIs. The R code of the ELM method is 
available at http://dx.doi.org/10.6084/m9.figshare.1274030. 
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INTRODUCTION 

Cancers are important health issues due 
to their life-threatening consequences and 
impacts on the quality of life. Breast cancer 
is the most common cancer in women and is 
ranked as the second most common cause of 
death in women worldwide (Yeo et al., 
2014). The incidence of breast cancer has 
continuously increased despite improved di-

agnostic and surgical techniques (May, 
2014). Therefore, worthy attention has been 
drawn to the treatment and prevention of this 
cancer to improve the survival rates and 
quality of life. Estrogen is a steroidal hor-
mone that is essential for many physiological 
functions (Couse and Korach, 1999; Cutolo 
and Wilder, 2000; Martín-Millán and 
Castañeda, 2013; Michet Jr et al., 1985; 
Pettersson and Gustafsson, 2001; Straub, 
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2007). However, estrogen can facilitate the 
growth of many estrogen-dependent cancers, 
including breast (Osborne, 1998; Simpson et 
al., 2000) and endometrial cancer (Watanabe 
et al., 1995; Yamaki et al., 1985; Yang et al., 
2002). The synthesis of estrogen is a multi-
step process in which the rate-limiting step 
of production is facilitated by the aromatase 
enzyme (Recanatini et al., 2002). Thus, the 
inhibition of the aromatase enzyme leads to a 
decreased amount of estrogen products and 
is considered an effective treatment strategy 
for breast cancer (Brueggemeier et al., 2005). 
Recently, many aromatase inhibitors have 
been developed and clinically used for breast 
cancer treatment with favorable treatment 
outcomes (Sainsbury, 2013). Aromatase in-
hibitors are classified according to their che-
mical structure and mechanism of action into 
steroidal and non-steroidal types (Recanatini 
et al., 2002). It should be noted that the in-
herent properties of each type might govern 
the interaction with the aromatase enzyme, 
rendering the inhibitory activity. 

Computational approaches have become 
versatile tools in drug development. Recent-
ly, quantitative structure-activity relationship 
(QSAR) was utilized for predicting the aro-
matase inhibitory activity of steroidal and 
non-steroidal AIs using a decision tree meth-
od with acceptable prediction results 
(Nantasenamat et al., 2013). Although useful 
and interpretable, the aforementioned model 
affords performance with significantly dif-
ferent values between the training and 10-
fold cross-validation (10-fold CV) sets with 
accuracies of 92.22 % and 71.67 % for ste-
roidal AIs as well as 93.88 % and 76.79 % 
for non-steroidal AIs. It can be assumed that 
either the molecular descriptors or the learn-
ing method (Nantasenamat et al., 2013) was 
not optimal for predicting the activity of ste-
roidal and non-steroidal AIs. Previously, 
support vector machine (SVM) had been 
successfully used to model a wide variety of 
biological activity. In fact, such SVM-based 
model is well recognized as one of the most 
powerful learning approach outperforming  
 

other learning methods such as artificial neu-
ral networks (ANN) and multiple linear re-
gression (MLR) (Attar and Bulun, 2006; 
Brueggemeier et al., 2005, 1990). The limita-
tion of this model is its low interpretability 
whereby prediction is performed in a black-
box manner, i.e., practitioners may not gain 
insights into which molecular descriptors 
highly influenced the activity/inactivity of 
chemical compounds.  

To alleviate those problems, building a 
QSAR model should greatly concern the fol-
lowing: (i) develop a generalized QSAR 
model that is established from the efficient 
optimization approach; (ii) construct a 
QSAR model that can automatically identify 
informative features from a large pool of mo-
lecular descriptors for providing a better un-
derstanding of the mechanism of chemical 
compounds; and (iii) provide a white-box 
approach that is simple, user-friendly and af-
ford acceptable prediction results.  

In this study, we propose an efficient lin-
ear method (ELM) that can be utilized for 
both estimating the feature importance and 
constructing the QSAR model. Particularly, 
the ELM method estimates informative fea-
tures from their score usage. Consequently, 
the ELM model is constructed in a straight-
forward fashion by considering only the 
weighted-sum product and the threshold. 
Prediction results indicated that the proposed 
ELM method was comparable to that of the 
SVM-based method and yielded an outstand-
ing performance when compared to ANN-
based method. Remarkably, these results in-
dicated that the selected molecular de-
scriptors provided improvements over the 
previous study (Nantasenamat et al., 2013). 
The molecular descriptor importance was 
analyzed to provide insights in correlating 
molecular descriptors with their aromatase 
inhibitory activity. Results from performance 
comparison demonstrated that the proposed 
ELM method is an efficient and effective 
learning approach for predicting the aroma-
tase inhibitory activity for steroidal and non-
steroidal AIs thereby improving upon the  
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previous approach. Furthermore, the ELM 
method could be used to analyze other chem-
ical compounds a priori. 

 
MATERIALS AND METHODS 

Data set 
A large dataset of compounds affording 

aromatase inhibitory activities was obtained 
from our previous compilation (Nantaseamat 
et al., 2013). This set contained 973 non-re-
dundant compounds in which 280 and 693 
were steroidal and non-steroidal AIs, respec-
tively. Removing the intermediate activity 
with pIC50 values in the range of 5 to 6 re-
sulted in a final set of 180 steroids (81 active 
and 99 inactive) and 474 non-steroids (349 
active and 125 inactive) as summarized in 
Table 1. 

Molecular descriptors were also obtained 
from the aforementioned study in which they 
were based on low-energy conformers com-
puted at the semi-empirical AM1 level. The 
descriptors constituted two subsets: (i) quan-
tum chemical and (ii) molecular descriptors. 
Briefly, the former subset was comprised of 
mean absolute charge (Qm), energy, dipole 
moment (μ), highest occupied molecular or-
bital (HOMO), lowest unoccupied molecular 
orbital (LUMO) and the energy gap of the 
HOMO and LUMO states (HOMO-LUMO). 
The latter set is made up of 3,224 molecular 
descriptors that were computed from Dragon 
version 5.5. 

 
Efficient Linear Model 

The proposed ELM is a general-purpose 
method for establishing a QSAR model by 
identifying important descriptors that are 
well correlated with the activity. The predic-
tive result was directly obtained from the 
weighted-sum product and threshold. A 
flowchart of the proposed ELM method is 
shown in Figure 1 and its pseudocode is 
shown in Table 2. The R code of the ELM 
algorithm is available at http://dx.doi.org/ 
10.6084/m9.figshare.1274030. The procedu-
re of the ELM method consists of the fol-

lowing steps: (i) selecting informative mo-
lecular descriptors, (ii) calculating an initial 
parameter using a statistical approach, (iii) 
estimating an optimal parameter for enhanc-
ing the performance of the ELM method, and 
(iv) predicting steroidal and non-steroidal 
AIs. Establishing the ELM model for pre-
dicting steroidal and non-steroidal AIs was 
very simple by replacing the compound data 
of steroidal AIs with those of non-steroidal 
AIs without significantly modifying the ar-
chitecture of the QSAR model. 

Selecting informative molecular descriptors 
The identification of informative molecu-

lar descriptors provides an accurate and non-
overfitting predictive QSAR model while al-
so providing deeper insight into steroidal and 
non-steroidal AIs of the aromatase inhibitor 
(Nantasenamat et al., 2009; Saeys et al., 
2007; Shoombuatong et al., 2012).  

Herein, GA was used to select important 
molecular descriptors (Scrucca, 2012). The 
foundations of GA were originally devel-
oped by Holland (1992) and were based on 
the evolutionary processes of biological or-
ganisms in nature. In this study, selection of 
informative molecular descriptors was per-
formed such that the ELM model was estab-
lished through the fitness function of the 
Akaike information criterion (AIC) and t-test 
(set at a p-value < 0.001). The compound 
was first encoded as molecular descriptors 
into 637-dimensional and 905–dimensional 
vectors for steroidal and non-steroidal AIs, 
respectively, as directly obtained from the 
previous study (Nantasenamat et al., 2013). 
Our proposed method offers an easy way to 
rank and identify informative molecular de-
scriptors using the usage frequency. In this 
study, the probability of the population size 
was set at 100 (Scrucca, 2012). Thus, molec-
ular descriptors with 100 and 0 feature usag-
es are the best and worst descriptors of im-
portance, respectively. Finally, a descriptor 
having high feature usages was then used as 
a set of informative descriptors to construct 
the ELM model. 
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Table 1: Dataset of steroidal and non-steroidal AIs 

Data set 
Initial number of 

compounds 
Number of  

compounds used 

Final dataset 

Active Inactive 

Steroidal AIs 280 180 81 99 

Non-steroidal AIs 693 474 349 125 

 
 
 
 

 
Figure 1: Workflow diagram of the efficient linear 
method (ELM) 
 

Calculating the initial parameter 
The proposed method ELM for predict-

ing a chemical compound C of aromatase in-
hibitor was simply formulated by establish-
ing with a weighted summation )(Cf  which 
was similar to a linear model, as calculated 
by: 

i

M

i
i xwCf 




1

)(  (1)

where iw  the ith parameter and ix  is a M-
dimensional vector of molecular descriptor. 
After obtaining descriptor importance, an 
initial parameter iw  of each selected de-

scriptor was calculated by minimizing the  
sum of squares (ESS) or residual sum of 
squares (RSS) between the actual and the 
predicted values as defined: 

  2)( predactual yyESS  (2)

Mathematically, the approximation formula 
of wi was given by: 
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where yi is a labeled class, x  and y  are the 
mean value of x1,…,xN and y1,…,yN, respec-
tively, and N is a number of compounds. 
 

Estimating the optimal parameter 
As ELM model constructed using initial 

parameters could not be guaranteed to afford 
an efficient QSAR model, therefore, it is de-
sirable for initial parameters W = w1,…,wM  
to be optimized using a genetic algorithm. 
Mathematically, the parameter of W = 
w1,…,wM   was obtained from 

)(min
1
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where p(x) = x2 is the sum of squares. In this 
study, the Andrews’ sine function fitness(x) 
(Andrews, 1974; Chatterjee et al., 1996) was 
applied to estimate the optimal parameter. 
Practically, the priority of W = w1,…,wM as
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Table 2: Pseudocode of ELM 

Input: ),(),...,,(),,( 2211 NN yxyxyxD  , where M
jx   is the ith compound, and iy  is a labeled 

class. 
Output: Optimal parameter Moptimal wwW ,...,1  

1. Selecting informative molecular descriptors by maximizing the fitness function of the Akaike 
information criterion (AIC) and t-test. 

2. Formulating the predictive QSAR model based on the ELM method )(Cf  from Eq. 1. 

3. Calculating the initial parameter Minitial wwW ,...,1  for encoding into the chromosome by 

minimizing the ESS. An unknown parameter iw  was estimated using Eq.2. 

4. Estimating the optimal parameter using a genetic algorithm while the terminal step is not sat-
isfied: 

I. Initialization: The initial parameter initialW  is obtained from step 3. 

II. Evaluation: Calculate the fitness value. 
III. Selection: Choose the top 5 % W  having the highest fitness values. 

IV. Crossover: Perform the probability of crossover between pairs of the top 5 % W  to 

find optimalW  by using the arithmetic crossover. 

V. Mutation: Use a real value (0.03) to randomly mutate W  from step IV. 

VI. Termination test: If a given terminal step is satisfied, then stop the ELM method. Oth-
erwise, go to step II. In this study, a population size of 100 was used as the stop con-
dition. 

5. Prediction of a chemical compound C using Eq. 6, if )(Cf  is lower than the given threshold 

value C is classified as an active class; otherwise, C is classified as an inactive class. 
 

 
 
ranked according to the fitness values that 
were calculated based on the fitness function 
p(x). By maximizing the fitness values gen-
eration by generation, the optimum parame-
ter with the highest fitness values could be 
found in the terminal process. To perform 
the proposed ELM method, the probability 
of mutation in the parent chromosome, the 
population size, and the maximum number 
of generations were set as 0.03, 100, and 
1000, respectively (Scrucca, 2012). 
 

Prediction of steroidal and non-steroidal AIs 
For predicting the aromatase inhibitory 

activity of a chemical compound C, the pre-
diction results (Pred(C)) were obtained using 
the weighted summation )(Cf  and conse-
quently discriminated using only the thresh-
old, as obtained from  

Pred(C)


 


otherwiseinactive

thresholdCfactive

,

)(,
(6)

where the threshold was obtained by sub-
tracting the average total weighted summa-
tion in the inactive class from the average of 
total weighted summation in the active class. 
Because active and inactive classes were en-
coded with 1 and 2, respectively, a com-
pound with a low-weighted summation 

)(Cf  tended to be an active class. 
 

Performance evaluation 
Four measurements were used to assess 

the performance of our proposed ELM 
method, namely accuracy (Acc), sensitivity 
(Sen), specificity (Spec), and the Matthews 
correlation coefficient (MCC) defined as 
Sen=TP/(TP+FN)*100, Spec=TN/(TN+FP) 
*100 and Acc=((TP+TN)/(TP+FN+TN+FP)) 
*100, where TP, TN, FP and FN are the 
number of true positives, true negatives, 
false positives and false negatives, respec-
tively. The MCC parameter is used in ma-
chine learning for evaluating a computational 
method’s performance in binary classifica-
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tion (Vihinen, 2012). The performance of 
ELM was evaluated using a 10-fold cross-
validation (10-fold CV) procedure. For the 
10-fold CV process, a dataset was randomly 
split into ten subsets of roughly the same 
size. During the experiment with the 10-fold 
CV, nine of the ten subsets were used for 
training, and the remaining subset was used 
for validation. This is carried out iteratively 
and the final results were averaged across the 
10 validated subsets. 

 
RESULTS AND DISCUSSION 

In this study, we propose a simple and 
general-purpose learning method for predict-
ing active and inactive steroidal and non-
steroidal AIs. The ELM method was further 
used in selecting informative molecular de-
scriptors owing to its built-in function for 
descriptor importance estimation. Due to the 
non-deterministic characteristics of the ELM 
method, 10 individual experiments were 
used to optimize the ELM model. The ELM 
method was benchmarked with previously 
reported approach (Nantasenamat et al., 
2013). Furthermore, well-known learning 
methods, i.e., support vector machine (SVM) 
and artificial neural network (ANN), are also 
used for comparison with the proposed ELM 
method. Finally, important molecular de-
scriptors derived from the ELM method were 
analyzed to further gain insights into the mo-
lecular basis of the aromatase inhibitors. 
 
Prediction accuracy of steroidal AIs 

Informative molecular descriptors are 
critical for designing an accurate QSAR 
model and providing a good understanding 
of the aromatase inhibitory activity (Nanta-
senamat et al., 2009, 2010; Saeys et al., 
2007; Shoombuatong et al., 2012). After de-
scriptor selection, the list of selected molecu-
lar descriptors for constructing the ELM 
model is shown in Supplementary Table S1. 
The performance of ELM as a function of 
parameter optimization can be seen from the 
histogram and box plot (Figure 2) in which 
the distribution of the weighted summation 

)(Cf  between the initial (left) and optimized 

(right) parameters are shown. As observed, 
the box plot shows that the distribution of 

)(Cf  using the optimized parameter was 
well separable compared to using the initial 
parameter. Furthermore, the histogram clear-
ly shows the decrease of )(Cf  in the over-
lapping region when using the optimal pa-
rameter. It can be assumed that the ELM 
method could provide an improvement in the 
performance after optimizing the initial pa-
rameter. 

The performance of the ELM method us-
ing the initial parameter afforded 67.78 % 
accuracy, 90.12 % sensitivity, 49.49 % spec-
ificity, and 0.42 MCC. The QSAR model of 
ELM using the initial parameter is given be-
low:  

f (C)initial = 0.13(C-025) (7) 
+ 6.70(ESpm13r) + 2.95(ESpm14u)  
+ 5.84(ESpm10r) + 5.49(ESpm12x)  
+ 0.12(ESpm15d) + 6.33(ESpm10x)  
+ 0.07(H-050) + 0.04(nBM)  
+ 1.52(MATS6p) + 1.52(MATS6e)  
+ 0.94(GATS6m) + 1.03(GATS6p)  

+ 0.29(piPC07) + 0.08(GGI1) 

where the threshold was denoted as -0.883. 
After optimization, the prediction results 
from 10 individual experiments of ELM us-
ing the 10 sets of optimized parameters are 
given in Table 3. As observed, the 8th exper-
iment yielded the best performance on the 
full training data with 85.00 % accuracy, 
92.59 % sensitivity, 78.79 % specificity, and 
0.71 MCC, and the average result of those 10 
individual experiments was in the range of 
83.83 ± 0.76 % accuracy, 89.88 ± 1.82 % 
sensitivity, 78.89 ± 1.54 % specificity, and 
0.69 ± 0.02 MCC. As for the result of the 10-
fold CV procedure, the threshold of -0.025 in 
the 7th experiment showed superiority in pre-
dicting steroidal AIs by achieving the highest 
performance of 81.67 % accuracy, 88.89 % 
sensitivity, 75.76 % specificity, and 0.64 
MCC. Meanwhile, the average result of 
those 10 individual experiments was 80.83 
± 0.71 % accuracy, 87.78 ± 1.82 % sensitivi-
ty, 75.15 ± 2.90 % specificity, and 0.63 ± 
0.01 MCC. The efficient QSAR model de-
rived from ELM using the optimized para-
meter is given below:  

http://www.excli.de/vol14/Nantasenamat_Supplementary_material_20032015_proof.pdf
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f (C)optimized  = 0.13(C-025) (8) 
–15.24(ESpm13r) + 9.23 ESpm14u)  
+ 5.30(ESpm10r) – 5.94(ESpm12x)  
+ 0.15(ESpm15d) + 5.43(ESpm10x)  
+ 0.13(H-050) + 3.85 (MATS6p)  
– 3.15(MATS6e) – 2.32(GATS6m) + 1.58  
(GATS6p) + 0.23(piPC07) – 0.03(GGI1) 

The prediction results of other experi-
ments and their optimal parameter sets are 
given in Table 3 and Supplementary Table 
S1, respectively. As observed from Table 3, 
the prediction results from the full training 
data and the 10-fold CV procedure were not 
obviously different. These results indicate 
that our proposed ELM method could allevi-
ate the overfitting problem. 

 
Prediction accuracy of non-steroidal AIs 

In this study, the establishment of the 
ELM model for predicting non-steroidal AIs 
was very simple by replacing the compound 
of steroidal AIs with non-steroidal AIs.  
The 15 important molecular descriptors were 
selected for designing an accurate ELM 
model, as shown in Supplementary Table S2. 
In the same way as in the analysis of steroi-
dal AIs, the distribution of the prediction re-
sults based on the weighted summation  f(C) 

 
Figure 2: Box and histogram plots of the 
weighted summation f(C) of steroidal AIs ob-
tained using the initial parameter (left) and the 
optimal parameter (right). 

 

(removed from Eq. 2) based on the weighted 
summation f(C) (removed from Eq. 2) using 
the initial and optimized parameters are rep-
resented with a histogram and box plot, as 
shown in Figure 2. The overview distribution 
between the active and inactive compounds 

 

 

Table 3: The 10 independent experiments of our proposed ELM method for predicting steroidal AIs 

Exp. Threshold
Full Train  10-fold CV  

Acc Sen  Spec MCC  Acc Sen  Spec MCC 

1 -0.023 84.44 92.59 77.78 0.70  81.11 88.89 74.75 0.64 
2 -0.024 83.33 90.12 77.78 0.68  81.11 90.12 73.74 0.64 
3 -0.024 83.89 87.65 80.81 0.68  81.11 88.89 74.75 0.64 
4 -0.023 84.44 90.12 79.80 0.70  80.56 85.19 76.77 0.62 
5 -0.020 84.44 87.65 81.82 0.69  79.44 90.12 70.71 0.61 
6 -0.024 83.89 90.12 78.79 0.69  81.67 82.72 80.81 0.63 
7 -0.025 82.78 90.12 76.77 0.67  81.67 88.89 75.76 0.64 
8 -0.022 85.00 92.59 78.79 0.71  80.00 82.72 77.78 0.60 
9 -0.020 83.33 90.12 77.78 0.68  81.11 92.59 71.72 0.65 
10 -0.023 82.78 87.65 78.79 0.66  80.56 87.65 74.75 0.62 

Mean -0.023 83.83 89.88 78.89 0.69  80.83 87.78 75.15 0.63 
Std. 0.002 0.76 1.82 1.54 0.02  0.71 3.26 2.90 0.01 

The 7th and 8th experiments yielded the highest accuracy and MCC for full train validation and 10-fold cross-validation. 
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showed that the distribution of f(C) was well 
separable and mitigated the overlapping re-
gion after the initial parameter was opti-
mized using the ELM method. This result 
demonstrates the ability of the ELM method 
to provide an efficient parameter. 

The performance of the proposed ELM 
method construction with the initial parame-
ter was 61.81 % accuracy, 71.35 % sensitivi-
ty, 35.20 % specificity, and 0.06 MCC. The 
QSAR model based on the ELM method us-
ing the initial parameter is given below: 

f (C)initial = 0.01(nAB) +  (9) 
0.31(piPC05)+ 0.37(BEHp4) +  
0.24(Yindex) + 0.02(F04[O-O]) + 
0.09(EEig09x) + 0.08(GATS5e) + 
0.03(nCp) + 0.16(ATS5p) + 
0.16(piPC08) + 0.14(EEig04x) + 
0.31(piPC06) + 0.53(ESpm01x) + 
0.13(F04[C-O]) + 0.38(BEHe4)  

where the threshold was set at -0.912. 
Meanwhile, Table 4 shows the prediction re-
sults of 10 individual experiments of ELM 
using the 10 sets of optimized parameters. 
After the optimization process, the 2nd exper-
iment provided the optimum performance of 
the full training data with 81.22 % accuracy, 

83.95 % sensitivity, 73.60 % specificity, and 
0.55 MCC, and the average results of those 
individual experiments were in the range of 
80.70 ± 0.29 % accuracy, 83.58 ± 0.49 % 
sensitivity, 72.64 ± 1.59 % specificity, and 
0.53 ± 0.01 MCC. For the performance of 
the ELM method with the 10-fold CV proce-
dure, the 4th experiment showed superiority 
in predicting non-steroidal AIs with a 
threshold of 0.104. The highest performance 
was 81.43 % accuracy, 83.67 % sensitivity, 
75.20 % specificity, and 0.56 MCC. The av-
erage results of accuracy, sensitivity, speci-
ficity, and MCC were 80.76 ± 0.33 %, 
83.38 ± 0.51 %, 73.44 ± 1.30 %, and 0.54 ± 
0.01, respectively. The QSAR model based 
on the ELM model using the optimized pa-
rameter is given below:  

f (C)optimized  = -0.02(nAB)  (10) 
+ 2.10(piPC05) -2.19 (BEHp4) +  
1.08 (Yindex) + 0.13 (F04[O-O]) + 
 0.23 (EEig09x) + 0.15 (GATS5e) + 
 0.11 (nCp) -0.46 (ATS5p) +  
0.95 (piPC08) -0.40 (EEig04x) – 
3.00 (piPC06) + 1.25 (ESpm01x) – 
0.01 (F04[C-O]) + 2.14 (BEHe4) 

 

Table 4: The 10 independent experiments of our proposed ELM method for predicting non-steroidal 
AIs 

Exp. Threshold
Full Training  10-fold CV  

Acc Sen  Spec MCC  Acc Sen  Spec MCC 

1 0.101 80.59 83.67 72.00 0.53  80.80 83.38 73.60 0.54 
2 0.101 81.22 83.95 73.60 0.55  80.38 83.38 72.00 0.53 
3 0.099 80.80 82.81 75.20 0.55  80.80 83.38 73.60 0.54 
4 0.104 81.01 84.53 71.20 0.53  81.43 83.67 75.20 0.56
5 0.101 80.80 83.09 74.40 0.54  81.01 84.24 72.00 0.54 
6 0.099 80.38 83.67 71.20 0.52  80.38 82.52 74.40 0.54 
7 0.104 80.38 83.67 71.20 0.52  80.59 83.09 73.60 0.54 
8 0.100 80.59 83.67 72.00 0.53  80.59 83.95 71.20 0.53 
9 0.100 80.38 83.67 71.20 0.52  80.59 82.81 74.40 0.54 
10 0.098 80.80 83.09 74.40 0.54  81.01 83.38 74.40 0.55 

Mean 0.101  80.70 83.58 72.64 0.53  80.76 83.38 73.44 0.54 
Std. 0.002  0.29 0.49 1.59 0.01  0.33 0.51 1.30 0.01 

The 2nd and 4th experiments yielded the highest accuracy and MCC for full train validation and 10-fold cross-
validation. 
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Figure 3: Box and histogram plots of the 
weighted summation f(c) of non-steroidal AIs ob-
tained using the initial parameter (left) and the 
optimal parameter (right). 

 
Table 4 and Supplementary Table S2 

provide details of other experiments and 
their optimized parameter sets, respectively. 
As observed in Table 4, the overall predic-
tion results from the full training data and the 
10-fold CV procedure were not only obvi-
ously different but also performed well in the 
10-fold CV procedure. 
 
Performance of ELM versus the existing 
and related QSAR methods 

A large QSAR model of steroidal and 
non-steroidal AIs was first proposed by us 
(Nantasenamat et al., 2013). The decision 
tree based on the 13 molecular descriptors 
was applied to discriminate between the ac-
tive and inactive steroidal and non-steroidal 
AIs. The prediction results of steroidal AIs 
yielded as high as 92.22 % accuracy, 
93.81 % sensitivity, and 90.36 % specificity 
when using the full training dataset of AIs, 
and the results of the 10-fold CV procedure 
dramatically decreased to 71.67 % accuracy, 
76.09 % the ELM method as given in Sup-
plementary Table S1 (7th experiment) and S2 
(4th experiment) for steroidal and non-ste-
roidal AIs, respectively. The comparison ac-

curacies of the full training dataset and the 
10-fold CV procedure were not very differ-
ent, ranging from 86.11 % to 81.11 % and 
from 85.44 % to 78. % for predicting steroi-
dal and non-steroidal AIs, respectively. The-
se results demonstrate that the QSAR model 
that was established from our selected de-
scriptors afforded significant improvements 
(Nantasenamat et al., 2013). Furthermore, 
the well-known learning methods comprising 
of SVM and ANN were also used to com-
pare with our proposed ELM method. For 
fair comparisons, the SVM and ANN model 
were constructed with our selected molecular 
descriptors and tuned with their optimum pa-
rameter. In this study, the SVM model with a 
radial basis kernel function exp(||xi  xj||2) 
from LIBSVM (Chang and Lin, 2011) was 
used, where xi and xj are the ith and jth com-
pounds of aromatase inhibitors, and  is a 
kernel parameter. The parameters y 

}2,...,2,2{ 878   and the cost parameter 

}2,...,2,2{ 878 C  were determined using the 
grid search method. Meanwhile, the ANN 
model was optimized by estimating the 
number of hidden layers (Kuhn, 2008). The 
comparison results are shown in Table 5.  

As observed, the QSAR model based on 
SVM using C = 4.0 and  = 0.0625 provided 
the best accuracy, specificity, and MCC, 
which were as high as 82.22 %, 80.81 %, 
and 0.64, respectively, as evaluated with the 
10-fold CV procedure for predicting the ac-
tivity of steroidal AIs. Meanwhile, the pro-
posed ELM method could afford a compara-
ble prediction results with 81.67 % accuracy, 
75.76 % specificity, and 0.64 MCC and also 
yielded a greater sensitivity. For predicting 
the activity of non-steroidal AIs, the QSAR 
model based on SVM using C = 32.0 and  = 
0.0312 and that of our proposed ELM meth-
od were comparable and provided higher 
performances than other QSAR models. The 
QSAR model based on SVM yielded the 
highest accuracy and sensitivity at 82.91 % 
and 93.70 %, respectively, and the ELM 
method achieved a specificity and MCC of 
75.20 % and 0.56, respectively.  
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Table 5: Performance comparison of the proposed ELM method with existing and other related meth-
ods 

Method 
 Full Training   10-fold CV  

Acc Sen  Spec MCC   Acc Sen  Spec MCC 

Steroidal AIs 

NN  89.44 97.53 82.83 0.80 78.89 77.78 79.80 0.57 
SVM  85.00 86.42 83.84 0.70 82.22 83.95 80.81 0.64 
J48  86.11 100.00 74.75 0.76 81.11 88.89 74.75 0.64 
ELM  85.00 92.59 78.79 0.71 81.67 88.89 75.76 0.64 

Non-steroidal AIs 
         

NN  90.30 90.26 90.40 0.77 79.54 85.96 61.60 0.47 
SVM  89.87 97.42 68.80 0.73 82.91 93.70 52.80 0.53 
J48  85.44 96.28 55.20 0.60 78.27 90.26 44.80 0.39 
ELM  81.22 83.95 73.60 0.55   81.43 83.67 75.20 0.56 

 

These results indicated that the proposed 
ELM method could address the following 
three characteristics: 1) achieve a simple 
model with acceptable performance at the 
specified threshold, 2) providing a built-in 
feature importance estimator and 3) prevent-
ing and alleviating the overfitting problem. 
 
Analysis of important molecular descriptors 

Molecular descriptors play an important 
role in improving the QSAR model and 
providing the essential information of a mol-
ecule in terms of its physicochemical proper-
ties (Nantasenamat et al., 2009). Thus, the 
identification of informative molecular de-
scriptors will provide insight into the under-
lying mechanism of aromatase inhibitors. In 
this study, a molecular descriptor with the 
largest feature usage was deemed to be the 
most efficient descriptor. Figure 4 shows the 
value of the feature usage: steroidal (left) and 
non-steroidal (right) AIs. The top-four in-
formative molecular descriptors of steroidal 
AIs were C-025, ESpm14u, ESpm13r, and 
MATS6p, with usage values that were great-
er than 90. The most important molecular 
descriptor was C-025, with a feature usage 
value of 96. Interestingly, 8 out of 15 in-
formative molecular descriptors of non-
steroidal AIs had usage values that were 

greater than 90, and the most important mo-
lecular descriptor was piPC08, with a feature 
usage value of 96. The definition of an in-
formative molecular descriptor is provided in 
Table 6. The steroidal and non-steroidal AIs 
exerted their inhibitory activity via a distinct 
mechanism. Steroidal AIs competitively and 
covalently bind the active site of the aroma-
tase enzyme in an irreversible manner 
(Brueggemeier et al., 1990), whereas non-
steroidal AIs coordinates with the heme iron 
(Fe) atom of the enzyme thereby giving rise 
to reversible inhibition (Graves and 
Salhanick, 1979). For the steroidal type, at-
om-centered-fragments, edge adjacency in-
dices and 2D autocorrelation descriptors 
were highlighted as informative descriptors 
with large usage values. C-025 is the most 
informative one and is defined by looking at 
the central carbon atom on an aromatic ring 
and its neighboring atoms. The edge adja-
cency indices descriptors, i.e., ESpm14u and 
ESpm13r, represent the connectivity or 
bonding relationships between the atoms, 
and MATS6p is involved with the polariza-
bility of molecules. Polarizability is the per-
manent or induced distortion of electron dis-
tribution within a molecule (Nogrady and 
Weaver, 2005), in other words, the ability of 
a molecule to be polarized. The presence 
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Figure 4: Important molecular descriptors for steroidal (left) and non-steroidal AIs (right), which are 
ranked according to their feature usages 
 
 

Table 6: Definition of informative molecular descriptorsa of steroidal and non-steroidal AIs 

 Descriptor Type Definition 

Steroidal  C-025 Atom-centered frag-
ments 

R--CR--R 

 ESpm14u Edge adjacency indices Spectral moment 14 from the edge adj. matrix 

 ESpm13r Edge adjacency indices Spectral moment 13 from the edge adj. matrix 
as weighted by resonance integrals 

 MATS6p 2D autocorrelations Moran autocorrelation of lag 6 as weighted by 
polarizability 

Non-steroidal piPC08 Walk and Path Counts Molecular multiple path count of order 8 

 piPC05 Walk and Path Counts Molecular multiple path count of order 05 

 piPC06 Walk and Path Counts Molecular multiple path count of order 06 

 Yindex information indices Balaban Y index 

 nCp Functional group counts Number of terminal primary C(sp3) 

 EEig09x Edge adjacency indices Eigenvalue 09 from the edge adj. matrix as 
weighted by edge degrees 

 BEHe4 Burden eigenvalue de-
scriptors 

Highest eigenvalue n. 4 of the Burden matrix / 
as weighted by atomic Sanderson electroneg-
ativities 

 BEHp4 Burden eigenvalue de-
scriptors 

Highest eigenvalue n. 4 of Burden matrix / 
weighted by atomic polarizabilities 

a The informative descriptors whose score usage values were greater than 90 are shown in the table. 
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and/or arrangement of the central carbon at-
om and its neighbors as well as the bonding 
relationships between atoms may indicate 
the size and shape of the compounds, where-
as the polarizability is closely related to the 
hydrophobicity of molecules, and their rela-
tionship was noted to be an influencing fac-
tor of biological activities (Cammarata, 
1967; Leo et al., 1969). For the non-steroidal 
type, most of the informative molecular de-
scriptors are related with the molecular 
graph, polarizability, electronegativity of the 
compound and a certain functional group, 
i.e., terminal primary C(sp3). The molecular 
graph represents the structural formula of the 
compound and may thereby indicate its size 
and shape. Therefore, it could be hypothe-
sized from our findings that the suitable 
shape and polarizability of a compound may 
be essential for both steroidal and non-
steroidal AIs in interacting at the enzyme ac-
tive site and may govern the process of cell 
entry in reaching the target site of action. In 
addition, the roles of certain functional 
groups were noted for the non-steroidal type. 
 

CONCLUSION 

Computational approaches for predicting 
steroidal and non-steroidal AIs can acceler-
ate the drug discovery effort and can poten-
tially save cost and time. The continual in-
crease in breast cancer prevalence drives the 
search for novel aromatase inhibitors. This 
study proposes the ELM method for the pre-
diction of aromatase inhibitory activity of 
steroidal and non-steroidal AIs as well as the 
estimation of its feature importance. This 
novel algorithm provides a user-friendly 
QSAR modeling approach with robust pre-
dictive performance. Informative molecular 
descriptors, which were revealed by the fea-
ture usage, provided a better understanding 
on the mechanism of action for the investi-
gated compounds. Our findings suggested 
that the shape and polarizability of com-
pounds may govern the inhibitory activity of 
both steroidal and non-steroidal types, 
whereas the terminal primary C(sp3) func-

tional group and electronegativity may only 
be required for the non-steroidal type. 
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