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Abstract

The analysis of next-generation sequencing (NGS) data is a major topic in bioinfor-
matics: short reads obtained from DNA, the molecule encoding the genome of living
organisms, are processed to provide insight into biological or medical questions. This
thesis provides novel solutions to major topics within the analysis of NGS data, focusing
on parallelization, scalability and reproducibility.

The read mapping problem is to find the origin of the short reads within a given reference
genome. We contribute the q-group index, a novel data structure for read mapping with
particularly small memory footprint. The q-group index comes with massively parallel
build and query algorithms targeted towards modern graphics processing units (GPUs).
On top, the read mapping software PEANUT is presented, which outperforms state of
the art read mappers in speed while maintaining their accuracy.

The variant calling problem is to infer (i.e., call) genetic variants of individuals compared
to a reference genome using mapped reads. It is usually solved in a Bayesian way. Often,
variant calling is followed by filtering variants of different biological samples against
each other. With state of the art solutions, the filtering is decoupled from the calling,
leading to difficulties in controlling the false discovery rate. In this work, we show
how to integrate the filtering into the calling with an algebraic approach and provide
an intuitive solution for controlling the false discovery rate along with solving other
challenges of variant calling like scaling with a growing set of biological samples. For
this, a hierarchical index data structure for storage of preprocessing results is presented
and compression strategies are provided. The developed methods are implemented in
the software ALPACA.

Depending on the research question, the analysis of NGS data entails many other steps,
typically involving diverse tools, data transformations and aggregation of results. These
steps can be orchestrated by workflow management. We present the general purpose
workflow system Snakemake, which provides an easy to read domain-specific language
for defining and documenting workflows, thereby ensuring reproducibility of analyses.
The language is complemented by an execution environment that allows to scale a
workflow to available resources, including parallelization across CPU cores or cluster
nodes, restricting memory usage or the number of available coprocessors like GPUs. The
benefits of using Snakemake are exemplified by combining the presented approaches
for read mapping and variant calling to a complete, scalable and reproducible NGS
analysis.
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1 Introduction

The genome of a living organism encodes its hereditary information. It serves as a
blueprint for proteins, which form living cells, carry information and drive chemical
reactions. Differences between populations, species, cancer cells and healthy tissue, as
well as syndromes or diseases can be reflected and sometimes caused by changes in
the genome. This makes the genome an major target of biological and medical research.
Today, it is often analyzed with next-generation sequencing, producing gigabytes of data
from a single biological sample. Analyzing this data entails creating complex workflows
with tens of steps, applying various tools and converting between diverse representations
of information. Two steps common to many such analyses are read mapping and variant
calling. This thesis presents novel algorithms and data structures for read mapping and
variant calling, and a workflow system that supports the analysis of next-generation
sequencing data in a reproducible way.

For read mapping, we present the q-group index, a novel index data structure with a
particularly small memory footprint, complemented by parallel algorithms for querying
and building the index, targeting graphics processing units (GPUs). On top, we provide
the novel read mapper PEANUT. By effectively exploiting parallelization on GPUs, it
outperforms other read mappers while maintaining their accuracy.

With the variant caller ALPACA, we present an algebraic approach to variant calling,
that is the first to allow intuitive control of the false discovery rate in complex filtering
scenarios. ALPACA is designed to parallelize well on both central processing units
(CPUs) and GPUs. We explore the use of hierarchical index data structures and their
compression, ensuring scalability with the number of considered biological samples.

Finally, we present the workflow system Snakemake. While being designed with next-
generation sequencing analysis in mind, it provides a general purpose, text-based, easy
to read domain-specific language for workflow definition. Snakemake workflows entail
implicit parallelization and scale from single-core workstations and multi-core servers
to compute clusters without changing the workflow definition. The scheduling of Snake-
make can be made aware of arbitrary resources, e.g., restricting the number of available
GPU devices. Support for documentation and data provenance further enhance the
reproducibility of Snakemake workflows.

The chapters 2 to 4 contain the three major topics of the thesis. Each chapter has its own
introduction, providing the foundations needed for that chapter and a separate discus-
sion summarizing the findings and outlining future work. Chapter 2 describes the read
mapping problem and presents the q-group index data structure in combination with
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1 Introduction

the read mapper PEANUT as a massively parallel, efficient solution exploiting modern
graphics cards. Chapter 3 describes the variant calling problem and shows how to solve
it with the variant caller ALPACA in an algebraic approach, while keeping paralleliza-
tion and scalability in mind. Chapter 4 introduces the workflow system Snakemake,
defining the entailed domain-specific language and the scalable scheduling. The chapter
ends with an example workflow which models a complete next-generation sequencing
analysis combining the approaches from Chapter 2 and 3. The thesis is closed with
the concluding Chapter 5. In the appendix, co-authored articles and the software pub-
lished with this thesis are summarized. In the following, we introduce biological and
algorithmic foundations that are particularly important in the context of this work.

1.1 The genome

We briefly introduce the necessary biological foundations based on the description of
Alberts, Johnson, and Lewis (2008). The genome is encoded by deoxyribonucleic acid
(DNA) molecules. DNA is a sequence of smaller units, the nucleotides. A nulceotide
consists of a sugar (here deoxyribose), a phosphate group and an organic base. Within
DNA, nucleotides with the bases adenin (A), cytosin (C), guanin (G) and thymine (T)
occur. The nucleotides are connected via covalent bonds between the sugar of one and
the phosphate of the next nucleotide. Hence, a DNA molecule has a direction, starting
with a free sugar and ending with a free phosphate. The two ends are called 5’ and 3’.
When encoding the genome, DNA molecules occur double stranded, forming a helical
structure, called the double helix. In this form, the two DNA strands are connected
to each other via hydrogen bonds between their bases: A can bind to T, and C can
bind to G. We say that A is complementary to T, and C is complementary to G. One
strand is the reverse complement of the other, i.e., the 5’ (first) base of the first strand
is complementary to the 3’ (last) base of the second strand, and so on. This maximizes
the number of bonds between the two strands. From computer science perspective, a
DNA strand can be seen as a string over the alphabet {A,C,G,T}. We interchangeably
refer to A,C,G and T as bases, nucleotides or basepairs (referring specifically to their
paired form in the double strand).

The storage of genomic DNA within a cell allows to divide species into prokaryotes (e.g.,
bacteria) and eukaryotes (e.g., mammals). The former consist of a single cell and their
hereditary information is carried by a circular double stranded DNA molecule that may
exist in multiple copies. In contrast, the DNA of eukaryotes is contained in a membrane
surrounded structure, the nucleus, and occurs as chromosomes. A chromosome is a sin-
gle, coiled, double stranded DNA molecule. Eukaryotic cells can have multiple copies of
each chromosome. The number of copies is called ploidy. Diploid organisms like humans
have in general two copies of each chromosome. An exception are the sex chromosomes
X and Y: female individuals have two X chromosomes and no Y chromosome, males
have an X and a Y chromosome. One copy of each chromosome is inherited from the
mother, one from the father.

10



1.1 The genome

C T C G A G G A A T C G C A G C G C A T C A A C A

C T C G A G G A A T C G C A G C G A A T C A A C A

Figure 1.1: Example DNA sequences within two copies of the same chromosome of a
diploid genome. We omit the sequence of the reverse complementary strands.
The dashed box depicts a homozygous locus, the dotted box shows a het-
erozygous locus. The former has genotype GG, the latter exhibits the geno-
type CA. Combinations of alleles on the same chromosome depicted by solid
lines are two haplotypes that can be observed here (GC and GA).

Each chromosome hosts a set of genes. Genes are segments in the DNA that encode
instructions for creating a product. Usually, this product is a protein. Proteins are chains
of amino acids, that execute various functions within the cell, build organelles and
signalling channels, and form complexes. They are synthesized from genes in two steps.
First, a gene is transcribed into an intermediate copy of itself in the form of ribonucleic
acid (RNA) via the RNA polymerase enzyme. RNA is similar to DNA, having a ribose
instead of deoxyribose sugar and a uracil (U) nucleotide instead of thymine. Second,
the RNA molecule, called messenger RNA (mRNA) is translated into a protein by
the ribosome, which itself is a complex of proteins. Each three consecutive nucleotides
(called codon) in the mRNA encode for one amino acid. Genes are partitioned into exons
and introns. Exons are the coding regions of a gene: during transcription, intronic regions
are spliced out, i.e., they do not encode the amino acids that end up in the protein. The
set of all exons of a genome is called exome.

The terms explained in the following are illustrated in Figure 1.1. Depending on the
ploidy, each gene can be present in one or more copies of a chromosome. The different
copies of a gene are called alleles. In this thesis, following DePristo et al. (2011), we
also apply the term allele to individual positions on a chromosome, independently of
the genes. In other words, alleles can also be the different bases occurring at the same
position in all copies of a chromosome. With locus, we refer to a particular position
on all copies of a chromosome. In a diploid organism, except on the sex chromosomes,
each locus hosts two alleles. In an individual, the combination of all alleles of the same
gene or locus is called genotype. In contrast, the combination of alleles of different
loci on the same copy of a chromosome is called haplotype. The genomes of different
individuals of the same species are, while being similar, not entirely the same. Mutations
can cause nucleotide-level or even larger changes from one to the next generation (see
Chapter 3). Even within a single individual, a locus may exhibit different alleles. We call
such loci heterozygous. Loci which host the same allele on all chromosomes are called
homozygous.

Eukaryotic genomes can be huge: e.g., the human genome has about 3.2 billion bases
distributed to 24 different chromosomes and 25 thousand genes (Alberts, Johnson, and
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1 Introduction

Lewis 2008). Hence, the sequencing of genomes and the analysis of the obtained data
is particularly challenging.

1.2 Next-generation sequencing

Sequencing of DNA is the determination of the nucleotide sequence of a DNA molecule.
For long, the primary method of DNA sequencing was Sanger sequencing, proposed by
Sanger, Nicklen, and Coulson (1977). In a huge and costly effort, the Sanger method al-
lowed to initially sequence the human genome (Lander et al. 2001). From 2005 to 2008, a
new class of sequencing methods emerged, which are commonly referred to as second- or
next-generation sequencing (NGS). Shendure and Ji (2008) identify three steps common
to all NGS approaches. First, the DNA subject to sequencing is fragmented randomly,
and artificial adapter DNA molecules are attached. The resulting sequences are ampli-
fied (i.e., duplicated several times) with a polymerase chain reaction (PCR; see Mullis,
Ferre, and Gibbs (1994)) and localized in clusters of duplicate single stranded fragments
on some carrier material. Finally, the sequencing of the fragments is performed by cycles
of biochemical treatment and imaging based data acquisition. The PCR amplification
is necessary to make the signal detectable by the imaging. Together, n cycles yield the
sequence of the first n nucleotides of all fragment clusters in parallel. We call these
sequences reads. Read lengths range from 32 to a few hundred, with 100 to 200 being a
common size in current studies.

Today, the most popular (Lam et al. 2012) implementation of next-generation sequenc-
ing is sold by Illumina1. With this technology, also called SBS (sequencing by synthesis),
each cycle works as follows. First, a solution of free nucleotides is flooded over the frag-
ment clusters. A DNA polymerase now synthesizes at each originally single stranded
fragment another nucleotide of the reverse complementary strand (synthesis). The nu-
cleotides are equipped with a fluorescent label, with different colors for A, C, G and T.
The label prevents the synthesis of more than one nucleotide per cycle. At the end of
each cycle, remaining free nucleotides are washed away (washing), the fluorescent color
of each cluster is measured, providing information about the nucleotide attached in that
cycle, and the nucleotide labels are removed (label removal), allowing the synthesis of
another nucleotide in the next cycle. Figure 1.2 shows an example.

Compared to Sanger sequencing, NGS is less accurate: the observed error rates with
Sanger sequencing range from 0.01% to 0.001% (Kircher and Kelso 2010). With Illumina
sequencing, error rates of 1% are observed (Ross et al. 2013). In return, NGS yields more
reads (hundreds of millions) at low costs.

An important variant of the sequencing protocol is paired-end sequencing. Here, frag-
ments are sequenced from both ends. This results in two reads per fragment cluster,
which are known to come from the same fragment. Usually, the size of the fragments

1http://www.illumina.com, visited 11/2014

12

http://www.illumina.com


1.2 Next-generation sequencing

fragment G A A T C G C A G C G C A

read C T T A G

A
G

T synthesis

washing

label removal

Figure 1.2: Next-generation sequencing cycle with Illumina SBS. Free labelled nu-
cleotides are used to synthesize the next read base. Then, remaining free
nucleotides are washed away and the synthesized read base is determined
by its label. Finally, labels are removed.

(called insert size) is controlled, such that a certain distance between the read pairs
can be expected. Paired-end sequencing has several advantages: e.g., it helps to find
the true origin of ambiguously mappable reads (see Chapter 2). It can also be used to
detect structural variants (Marschall et al. 2012) or help to infer transcript expressions
(Trapnell et al. 2010).

With automated sequencing technologies being in place since about 30 years, the genomes
of many species are well known by now. These reference genomes are representative
mixtures, assembled from several individuals. Various applications of NGS have been
developed that make use of an already known reference genome. Here, the read map-
ping problem occurs: for the reads obtained from the biological sample, the origin in
the genome is unknown. The read mapping problem is to determine this origin by find-
ing the most likely position of each read within the reference genome (see Chapter 2).
When sequencing DNA, comparisons of the differences between reads and the refer-
ence genome can be used to detect genomic variants (see Chapter 3). Further, e.g.,
RNA can be sequenced to quantify the expression of genes and transcripts (RNA-seq;
Wang, Gerstein, and Snyder 2009), and binding sites of transcription factors can be
determined by combining NGS with antibody-based selection of fragments (ChIP-seq;
Park 2009). The sequencing of DNA can also be targeted towards exonic regions (exome
sequencing). With only about 1.5% of the 3.2 billion bases of the human genome being
exonic (Alberts, Johnson, and Lewis 2008), the capacity of the sequencer can be used
to generate a much higher read depth at the expense of loosing intronic and intergenic
regions, without increasing or even lowering sequencing costs.

Reads are typically provided in the FASTQ format (Cock et al. 2010). The format pro-
vides read bases as a string over the IUPAC alphabet2 which encodes in addition to
Σ = {A,C,G,T} classes of uncertain bases with additional letters, e.g., an N represents
that the base is entirely unknown, a W represents uncertainty between A and T. Typi-
cally, only Ns occur in addition to Σ. Along with each base, a base quality is provided.

2http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html, visited 11/2014
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1 Introduction

The quality is the probability that the base was miscalled by the sequencer, given in
the so-called PHRED scale: Let p be a probability, then the PHRED scaled probability
is obtained as

q := −10 log10 p.

With FASTQ, the PHRED-scaled base qualities are stored in single bytes, allowing to
encode miscall probabilities from 1.0 to 10−9.3.

In the context of this thesis, the term sample will, if not stated otherwise, usually
describe a sample from some biological tissue that has been sequenced by some NGS
technology to obtain reads.

1.3 Designing for efficient GPU usage

Chapter 2 and 3 present parallel algorithms targeted towards GPUs. This requires
architecture specific considerations, which we elaborate here based on the work of Köster
and Rahmann (2014). We first describe the GPU architecture and its implications. Then,
we define the parallel random access machine (PRAM) that serves as an abstraction
for assessing the time complexity of parallel algorithms. Finally, we introduce the prefix
scan programming pattern that is used widely in this work.

We use the terminology of NVIDIA3, while the general concepts are also applicable to
the hardware of competitors like AMD4. A GPU is partitioned into Streaming Mul-
tiprocessors (SMs), each of which has its own on-chip memory, cache and processing
cores. By adjusting the thread block size it can be controlled how threads are distributed
among the SMs. One thread block is executed on one SM and stays resident until all
threads in the block are completed. Once a thread block is finished, another will be
scheduled to the SM if any blocks are left. An SM can execute 32 threads in parallel
(restricting the thread block size to be a multiple of 32); such a group of threads is
called a warp or wavefront. At any time, each of these threads has to execute the same
instruction in the code, but may do so on different data; this concept is called sin-
gle instruction, multiple threads (SIMT). Hence, conditionals with diverging branches
should be avoided, since threads taking an if-branch have to wait for threads taking the
corresponding else-branch to finish and vice versa. All SMs may access a slow common
global memory (often less than 3 GB) in addition to their fast on-chip cache and mem-
ory. While the size of the fast cache is extremely limited, accessing global memory is
slow and should be minimized. The memory latency can be reduced by coalescing the
access, i.e., letting threads in a warp access contiguous memory addresses, such that
the same memory transaction can serve many threads. In addition, an SM can execute
a different warp while waiting on a transaction to finish, thereby hiding the latency. For
the latter, threads should minimize their register usage such that the number of warps

3http://www.nvidia.com, visited 11/2014
4http://www.amd.com, visited 11/2014
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1.3 Designing for efficient GPU usage

that can reside on an SM is maximized. Finally, data transfers from the main system
memory to the GPU’s global memory are comparatively slow. Hence, it is advisable to
minimize them as well.

To implement parallel algorithms for both GPU and CPU, we use OpenCL5. With
OpenCL, parallel algorithms are implemented as kernels in OpenCL-C, a dialect of the
C language. For given input data, typically in the form of one or more arrays, a kernel
is executed with potentially many threads. Each thread executes the kernel code on
one or more data points of the input data: e.g., a kernel executing with n threads can
replace a loop over n items of an array. The kernel code would be equal to the body of
the loop here. OpenCL provides an API for accessing various compute devices (e.g., the
CPU or the GPU), managing memory and launching kernels. As all provided software
is implemented in the Python programming language6, we use the Python package
PyOpenCL (Klöckner et al. 2012) to access OpenCL from within Python.

1.3.1 Parallel random access machines

A parallel random access machine (PRAM) is a theoretical model for analyzing parallel
algorithms, defined as a collection of synchronous processors that have random access
to a common shared memory (Dehne and Yogaratnam 2010; Reif 1993). The behavior
of different processors accessing the same memory unit classifies PRAMs into

1. the EREW (exclusive-read, exclusive-write) PRAM, which allows only one pro-
cessor at a time to read from and write to a memory unit,

2. the CREW (concurrent-read, exclusive-write) PRAM, which allows multiple pro-
cessors at a time to read from a memory unit and only one to write,

3. the CRCW (concurrent-read, concurrent-write) PRAM, which allows multiple
processors at a time to read from and write to a memory unit.

The PRAM abstracts from caching and communication between threads. In principle,
a GPU could be seen as an CRCW PRAM, since it has multiple processors that can
concurrently write to and read from a common memory. We choose to assess time
complexity of the algorithms presented in this work with the PRAM model. Some of the
presented algorithms require exclusive access to a memory unit (e.g., an entry within an
array) for certain operations like counting, which we implement with OpenCL atomic
operations7. Hence, we conservatively decide to assess complexity under the CREW
PRAM model.

In practice, there are differences between the PRAM and a GPU (Dehne and Yogarat-
nam 2010). First, the processors of a GPU are grouped into SMs, the processors of which

5https://www.khronos.org/opencl, visited 11/2014
6http://www.python.org, visited 11/2014
7https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/atomicFunctions.
html, visited 11/2014
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can only work in parallel if they execute the same instruction. Second, memory accesses
that do not coalesce between the processors can impact the performance. Hence, we
complement the PRAM-based theoretical complexity results with discussions of GPU
specific optimizations.

1.3.2 Prefix scans

A useful programming pattern that is used extensively in the algorithms presented in
this work are parallel prefix scans (see Cormen et al. 2001; Blelloch 1990). A special
case of prefix scans is the computation of a cumulative sum, which at first appears to be
a serial process. Parallel prefix scans are used to solve these problems in a data parallel
way with a minimum amount of branching, thus nicely fitting above considerations for
GPU programming. In the following, we first define the prefix scan operation and then
discuss its parallel implementation on a PRAM as presented by Blelloch (1990).

Definition 1.1 (Prefix scan). Let A = (a1, a2, . . . , an) be a sequence of n elements and
⊕ be an associative operator. Then, the prefix scan on A with operation ⊕ is given as

(a1, a1 ⊕ a2, . . . , a1 ⊕ a2 ⊕ · · · ⊕ an).

In the following, we refer to this operation as the scan operation. We further call a
scan on A′ = (e, a1, a2, . . . , an−1) with e being the neutral element of ⊕, the prescan on
A. While scan and prescan appear to be inherently sequential, they can be efficiently
parallelized on a PRAM with ρ processors. In the following, we outline a parallel im-
plementation of the prescan (Blelloch 1990). The scan can be obtained from this by
removing the leading e and appending the ⊕-sum of an and the last element of the
prescan.

The idea is to explore the levels of a binary tree with height dlog2 ne over the sequence.
The nodes of the binary tree shall represent intermediate results of our computation.
Initially, the leaves of the tree are determined by the values of the sequence. We calculate
the values of each level iteratively, overwriting previous results in place, i.e., we map the
value of the i-th node (from left to right) with height h at element ak with k = 2hi. On
each level, the values of each node are calculated in parallel from those of the previous
iteration. To obtain a prescan, we perform three steps (see Figure 1.3):

1. Explore the binary tree bottom-up, and set the value of each vertex to the ⊕-sum
of its children.

2. Set the root to the neutral element.

3. Explore the binary tree top-down in preorder. For each node with value v set (a)
the value of the right child to the ⊕-sum of the value of the left child and v and
set (b) the value of the left child to v.

16



1.3 Designing for efficient GPU usage

25

11 14

4 7 5 9

3 1 7 0 4 1 6 3

⊕
=

0

0 11

0 4 11 16

0 3 4 11 11 15 16 22

11 ⊕
=

Figure 1.3: Example for the parallel implementation of the prescan operation with ⊕
being the addition and neutral element 0. The algorithm first calculates the
left tree bottom up and then the right tree top down. The node values of
each level are calculated in parallel.

After step one, element k = 2hi of the sequence contains the result of a1 ⊕ · · · ⊕ ak.
In step three each node shall be set to the sum of all leaves preceding it according to
the preorder traversal. Since the root is preceded by no leaf, we set the root node to 0
in step two. After step two, the sum of the leaves preceding the right child is always
equal to the sum of the left child after step one and the value of the parent. Hence,
substep (a) of the third step sets the right child to that value. The left child has the
same preceding leaves as the parent, therefore the value of the parent can be copied in
substep (b). A detailed proof for this concept is presented by Blelloch (1990).

Usually, there will be more values in the sequence than processors on the PRAM,
i.e., n > ρ. Then, the sequence can be divided into partitions of size dnρ e. For each
partition, the ⊕-sum and the prescan can be calculated sequentially by one of the
PRAM processors and used as leaves of the tree. The prescan of the ⊕-sums can then
be used as an offset for a prescan over each partition. This leads to a time complexity
of

O
(
n

ρ
+ log2 ρ

)
(1.1)

composed of the time for calculating the partition sums and calculating the h = log2 ρ
levels of the tree in parallel on an EREW PRAM (Blelloch 1990).

An example application of a prefix scan is to calculate a predicated copy of a sequence:
from a sequence A = (a1, a2, . . . , an) and a predicate f : A→ {0, 1} assigning a boolean
value to each element of A we want to generate the sequence A′ of exactly those el-
ements ak ∈ A where f(ak) = 1. To achieve this, we calculate the prescan over the
sequence (f(a1), f(a2), . . . , f(an)). This generates a sequence B where the k-th element
denotes the target address of element ak with f(ak) = 1 in the predicated copy A′: e.g.,
consider a sequence A = (1, 7, 3, 4, 5) with predicate f(ak) = 1ak>3 being the indicator
function selecting all elements greater than 3. A prescan is calculated over the sequence
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(0, 1, 0, 1, 1), resulting in the sequence B = (0, 0, 1, 1, 2). By copying elements a2, a4 and
a5 to the corresponding addresses specified in B we obtain A′ = (7, 4, 5).

PyOpenCL (see Section 1.3) provides a flexible mechanism of defining prefix scans using
templates. Further, it implements various primitives via prefix scans, e.g., cumulative
sums and predicated copies.
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Next-generation sequencing produces millions of small reads that represent the DNA
sequence of a biological sample (or specific parts thereof; see Section 1.2). The read
lengths range, depending on the technology and biological question, from tens to sev-
eral hundreds of bases. Today, read lengths of 100 – 200 are common. Typically, a
genomic region is covered by more than one read but the information about the orig-
inating position of each read in the genome is lost during the sequencing process. For
many species, a reference genome, representing a consensus among several individuals
is already known (see Section 1.1). The read mapping problem is to find the origin of
each read in the reference genome. Here, we present a novel data structure that helps
to solve the read mapping problem efficiently on GPUs. On top of this, we introduce a
new read mapping algorithm.

2.1 Introduction

In the following, we denote the set of strings over an alphabet Σ as Σ∗. Depending on
the context, we call a string also word or text. We denote with s[i] the i-th character (or
letter) of a string s ∈ Σ∗. Further, s[i, i+k] denotes the substring of length k beginning
at position i. The term |s| refers to the size of string s. The empty string is denoted as
ε and ◦ is the string concatenation. We denote the set of k-combinations over a set M
as Mk.

The reference genome usually consists of multiple sequences (i.e., chromosomes). We
denote these as the reference sequences. We interpret the reference sequences and any
read as strings over the alphabet Σ = {A,C,G,T}. Since a read can come from ei-
ther strand of the chromosome (see Section 1.1) we also have to consider the reverse
complement of each reference sequence.

An exact occurrence of the read in a reference sequence or its reverse complement is
the most likely origin of a read. Therefore, at first sight, the read mapping problem can
be approached by finding all occurrences of a pattern P in a text T , namely applying
classical pattern matching (see Cormen et al. 2001), with P being a read, and T being a
reference sequence or its reverse complement. Pattern matching searches for all positions
i in a text T such that P is a substring of T beginning at position i.

In practice, many reads will not match exactly to their origin because of two reasons.
First, the sequenced sample will have local differences to the reference due to the natural
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genetic variation (see Section 1.1). Second, the sequencing itself can introduce technical
errors and artifacts. Within reads, these differences manifest as substitutions, insertions
and deletions of bases compared to the reference sequence. Therefore, the matching has
to be approximate (or error tolerant), leading to alignments (see Gusfield 1997) of the
reads against the reference sequences:

Definition 2.1 (Alignment). Let s, t ∈ Σ∗ be two strings over an alphabet Σ. A global
alignment A of s and t is a string over the alphabet Σ′ = (Σ ∪ {−})2 \ {(−,−)} with
π1(A) = s and π2(A) = t. Here, π1 and π2 are homomorphisms with π1((a, b)) := a,
π1((−, b)) = ε, π2((a, b)) := b, π2((a,−)) = ε and πi(B◦C) = πi(B)◦πi(C) for a, b ∈ Σ,
B,C ∈ Σ′∗ and i ∈ {1, 2}.

We call the global alignment of substrings of s and t a local alignment, and the global
alignment of s against a substring of t a semi-global alignment.

When printing the pairs of the alignment alphabet as columns, one (but not necessarily
the best) global alignment between the strings EAT and PEANUT is:

-EA--T
PEANUT

The quality of an alignment can be assessed using a distance measure d that typically
quantifies the amount of edit operations needed to turn one string into the other. In
the following, we will sometimes call edit operations errors and use the term error rate
as a synonym for a distance measure. For the read mapping problem, it suffices to con-
sider substitutions, insertions and deletions as edit operations. The edit or Levenshtein
distance (Levenshtein 1966) weights each operation equally, and can be written as

d(sa, tb) = min


d(s, t) + 1a6=b,

d(s, tb) + 1,

d(sa, t) + 1

(2.1)

with d(s, ε) = |s|, d(ε, t) = |t|, s, t ∈ Σ∗ and a, b ∈ Σ (Navarro and Raffinot 2008). Here,
1a6=b is the indicator function evaluating to 1 if a 6= b and 0 otherwise. Further, sa and
tb are the strings s and t extended by the letters a and b, respectively. In the recurrence,
the first case handles substitution and match, followed by deletion from and insertion
into s. Alternatively, the quality can be calculated via an alignment score. Alignment
scores often weight matching characters with 1, penalize substitutions with −1 and use
affine costs for insertions and deletions (also called affine gap costs), i.e., opening a gap
has a higher cost than extending it. Edit distances or alignment scores and (optionally)
the concrete alignment can be calculated by variants of the Smith-Waterman algorithm
(Smith and Waterman 1981), which makes use of the score (or edit) matrix E. For
strings s and t, the matrix contains one row for each letter a ∈ s and one column for
each letter b ∈ t. The value Eij is the maximal score (or minimal distance) between
a prefix of s of length i and a prefix of t of length j. Interpreted as a graph with a
node for each matrix entry and directed edges from (i, j) to (i+ 1, j + 1), (i, j + 1) and
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(i + 1, j), a path in E represents a local alignment between s and t. A path from the
top to the bottom row represents a semi-global alignment whereas a path from the top
left to the bottom right represents a global alignment. The variant that finds the latter
path is also called Needleman-Wunsch algorithm (Needleman and Wunsch 1970). The
Smith-Waterman Algorithm explores the score matrix with dynamic programming in
time complexity O(|s| · |t|) to find the best alignment score. Backtracking can be used
to reconstruct a concrete alignment for the best score.

Now, the read mapping problem can be solved by finding the best semi-global alignment
(according to some distance measure) of a read against the reference sequences and their
reverse complements. Sometimes, the reads are expected to exhibit larger differences
to the reference than local substitutions or small insertions or deletions. For example,
they may contain technical adapters at one end (see Section 1.2), or a read may span
a structural variant (e.g., a fusion of two chromosomes) that occurs in the sequenced
sample. When this can be expected, it is advisable to look for local alignments instead
of semi-global alignments, allowing to omit larger parts of a read without penalizing
them in the distance measure.

The sizes of genomes (approximately 3.2 billion basepairs for human, 2.7 billion base-
pairs for mice; see Section 1.1) and the hundreds of millions of reads produced by a
single modern next-generation sequencing experiment, render the application of the
Smith-Waterman algorithm for each read against the complete reference prohibitive.
Hence, various filtering methods and approximations have been developed. These can be
roughly classified into methods based on backward search using the Burrows-Wheeler
Transform (BWT; see Section 2.2) and methods based on q-gram indexes (see Sec-
tion 2.3). Examples for the former are BWA (Li and Durbin 2009) and Bowtie 2 (Lang-
mead and Salzberg 2012), examples for the latter are RazerS 3 (Weese, Holtgrewe, and
Reinert 2012) and MrFast (Alkan et al. 2009).

Among the best alignments of a read, it is sometimes not obvious which one represents
the true origin of the read. In the following, the candidate origins of a read reported
by a read mapper are called hits. Weese, Holtgrewe, and Reinert (2012) categorize read
mapping implementations into best-mappers that try to find the (or any) best hit of
a read (e.g., BWA-MEM) and all-mappers that provide a comprehensive enumeration
of all possible locations (e.g., RazerS 3 or MrFast) up to a given error threshold. While
all-mappers can be much slower (depending on the number of hits), their strategy is
beneficial whenever suboptimal hits are of relevance. For example this is the case when
the originating genome of the reads is unknown (e.g., when sequencing a mixture of
samples). Roberts and Pachter (2013) mention the mapping to alternative transcripts
(see Section 1.1) and Alkan et al. (2009) motivate all-mapping with the detection of
copy number variations (i.e. duplications of parts of chromosomes). An intermediate
strategy is to report all hits of the best stratum, i.e., all hits with the same lowest error
level (instead of only the first or a random such hit).

Recently, exploiting the parallelization capabilities of GPUs for read mapping has be-
come popular and GPU-based BWT read mappers appeared, e.g., SOAP3 (Liu et al.
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2012), SOAP3-dp (Luo et al. 2013) and CUSHAW2-GPU (Liu and Schmidt 2014). Using
a q-gram index on a GPU is not a common choice because of its large size. Therefore,
to the best of our knowledge, q-gram based mappers so far only use the GPU for cal-
culating the alignments and keep the index on the CPU, e.g., NextGenMap (Sedlazeck,
Rescheneder, and von Haeseler 2013) and Saruman (Blom et al. 2011).

Here, by introducing the q-group index, a new approach to solving the read mapping
problem on the GPU is presented. The q-group index is a variant of the traditional
q-gram index, with a smaller memory footprint. We show how the q-group index can be
efficiently built and queried on GPUs using parallel algorithms. The q-group index is
used in a filtration and validation approach: Exact matches of a given length q between
each read and each reference sequence are detected quickly and alignments are computed
only where such matches are found. The resulting read mapper is called PEANUT
(ParallEl AligNment UTility) and available as open source software under the MIT
license (see Section A.1).

This chapter is based on previously published work (Köster and Rahmann 2014). First,
related work is summarized (Section 2.2). Then, the traditional q-gram index is intro-
duced (Section 2.3). Next, the novel q-group index (Section 2.4) and the read mapping
algorithm of PEANUT (Section 2.5) are defined. The chapter ends with evaluations
of the performance and accuracy, comparing PEANUT with other read mappers (Sec-
tion 2.6) and a discussion (Section 2.7).

2.2 Related work

We describe BWA and RazerS 3 as representatives of BWT and q-gram index based
approaches. Additionally, we describe the two GPU based read mappers CUSHAW2
and NextGenMap.

BWA A popular read mapper is BWA, the Burrows-Wheeler-Aligner (Li and Durbin
2009), which simulates an error tolerant search in a suffix array using the BWT. For a
text T over an alphabet Σ ended by a sentinel $ that is lexicographically smaller than
all other letters in the text, the suffix array S is a permutation of the text positions
such that S[i] is the start position of the i-th suffix according to lexicographical order.
The BWT B of the text T is a permutation of T such that the i-th position contains
the character before the i-th suffix in the suffix array, i.e., B[i] = $ when S[i] = 0 and
B[i] = T [S[i]− 1] otherwise. For each sequence read, BWA searches for intervals in the
suffix array, which represent all occurrences of the read in the text. This happens using
the following observation of Ferragina and Manzini (2000). For a letter a ∈ Σ, let C(a)
denote the number of letters lexicographically smaller than a in the text without the
sentinel (T [0, |T | − 1]) and O(a, i) denote the number of occurrences of letter a in the
prefix of the BWT B[0, i]. If a string W is a substring of T , then the lower bound of the
suffix array interval containing all occurrences of aW is l(aW ) = C(a)+O(a, l(W )−1)+1
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and the upper bound is u(aW ) = C(a)+O(a, u(W )−1). The BWT together with C and
O represented as tables is also called the FM-Index. Since O can become huge for large
genomes, it is usually sampled into entries at regular intervals and the intermediate
values are calculated on the fly using the BWT. By performing a backward search from
the end of the string W, updating the interval iteratively with the FM-Index, all exact
occurrences of W in the text T can be found. To obtain error tolerance, BWA explores
substitutions, insertions and deletions in W in a breadth-first way. A precomputed lower
bound for the number of differences in the remaining portion of W is maintained and
used for canceling the search early. The time complexity for finding an exact match
of a single string (i.e., read) W is O(|W |), independently of the text size. The time
complexity of the error tolerant version is exponential in the number of allowed errors.
Therefore, backward search is typically divided into two phases, the seed and the extend
phase. The error rate is limited to a small value during the seed phase (e.g., the first 32
letters) and relaxed in the extend phase. Newer versions of BWA provide an additional
mode that finds maximal exact matches (MEMs, see below) as seeds over a variant of
the FM-Index and extends these using the Smith-Waterman algorithm.

CUSHAW2 Similar to BWA, CUSHAW2 (Liu and Schmidt 2012) is based on BWT
and FM-Index. Here, the FM-Index is used to find MEMs between the read and the
reference sequence. The string W (i.e., the read) is evaluated from left to right. At
position i in the string, an exact backward search (see above) is performed on the FM-
index and stopped at the first mismatch. The result is the suffix array interval for the
MEM between the prefix W [0, i] and the text. All MEMs larger than a predetermined
threshold are extended to local alignments with the Smith-Waterman algorithm. The
GPU variant of CUSHAW2 (Liu and Schmidt 2014) performs both the MEM search
and the extension to local alignments on the GPU.

RazerS 3 RazerS 3 (Weese, Holtgrewe, and Reinert 2012) uses the filtration and val-
idation approach outlined above. It builds a q-gram index (see Section 2.3) over the
sequence reads and searches for exact q-gram matches between the reference sequences
and the index. These matches are projected onto a potential starting position of the
read in the reference. Each potential starting position is validated using a bit-parallel
algorithm (Myers 1999) to determine the edit distance for the semi-global alignment
between the read and the reference at that position. If the distance is small enough, the
alignment is calculated and reported. With a configurable sensitivity, RazerS 3 reports
all alignments of a read up to a given distance. The PEANUT algorithm presented in
this work borrows two ideas of RazerS 3, namely to build the index data structure over
the reads instead of the reference (see Section 2.5.1) and to use a bit-parallel algorithm
for the validation of potential hits (see Section 2.5.2).

NextGenMap In a preprocessing step, NextGenMap (Sedlazeck, Rescheneder, and von
Haeseler 2013) builds a hash table over the q-grams of the reference sequences, storing
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their occurrence positions. To map a read, the occurrences of its q-grams in the reference
are obtained from the hash table. For regions with sufficiently many matching q-grams
the best possible alignment score is calculated. For the region with the best alignment
score, the alignment is computed and reported. The latter step uses the alignment
library MASon (Rescheneder, von Haeseler, and Sedlazeck 2012) and can optionally be
performed on the GPU.

2.3 Q-gram index

A q-gram is a string of length q over the DNA alphabet Σ = {A,C,G,T}. A classical
DNA q-gram index of a text T stores for each q-gram at which positions in T it occurs
and allows to retrieve each position in constant time. It is commonly implemented via
two arrays that we call the address table A and the position table P .

Q-grams are encoded as machine words of appropriate size with two subsequent bits
encoding one genomic letter (i.e., A = 00, C = 01, G = 10, T = 11). Unknown nu-
cleotides (usually encoded as letter N) are converted randomly to A, C, G or T, and
larger subsequences of Ns are omitted from the index. Hence, a q-gram needs 2q bits
in hardware and is represented (encoded) as a number g ∈ {0, . . . , 4q − 1}. The ad-
dress table provides for each (encoded) q-gram g a starting index A[g] that points into
the position table such that P [A[g]], P [A[g] + 1], . . . , P [A[g+ 1]− 1] are the occurrence
positions of g.

Deciding about the q-gram length q entails a trade-off between specificity of the q-
grams and the size of the data structure. Array A needs 22q = 4q integers and thus
grows exponentially with q, while array P needs |T | integers, independently of q. Larger
values of q lead to fewer hits per q-gram that need to be validated or rejected in later
stages. Further, the choice of q determines the sensitivity or error-tolerance. Following
directly from the pigeonhole principle, we observe (Jokinen and Ukkonen 1991):

Lemma 2.2 (Q-gram lemma). Let s, t ∈ Σ∗ with |s| ≥ |t| be two strings with edit
distance e according to their optimal global alignment. Then, at least |t|+ 1− (e+ 1)q
of the |t| − q + 1 q-grams in t occur in s.

In other words, each edit operation leads to q q-grams less to be shared between s
and t.

2.4 Q-group index

The idea of the q-group index is to have the same functionality as the q-gram index (i.e.,
to retrieve all positions where a given q-gram occurs in constant time per position), but
with a smaller memory footprint for large q. This is achieved by introducing additional
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layers in the data structure. In the following, we always consider a q-gram as its numeric
representation g ∈ {0, . . . , 4q − 1}.

We divide all 4q q-grams into groups of size w, where w is the GPU word size (typically
w = 32). Q-gram g is assigned to group number bg/wc. Thus, the i-th group is the
set Gi = {g | bg/wc = i} of w consecutive q-grams according to their numeric order.
The set of all q-groups is Gq := {G0, G1, . . . , Gd 4q

w
e−1}. We write gij for the j-th q-gram

in Gi.

For a given q and text T , the q-group index is a tuple of arrays

IT,q := (I, S, S′, O). (2.2)

Array I consists of |Gq| words with w bits each (overall w 4q

w = 4q bits). Bit j of I[i]
indicates whether gij occurs at all as a substring in the text, i.e.,

I[i]j =

{
1 if gij is a substring of T,

0 otherwise.
(2.3)

The array O corresponds to the position table P of a regular q-gram index: it is the
concatenation of all occurrence positions of each q-gram in sorted numeric q-gram order.
To find where the positions of a particular q-gram g begin in O, we first determine the
group index i and j such that g = gij . With the bit pattern of I[i], we determine whether
q-gram gij occurs in the text T . If not, there is nothing else to do. If yes, i.e., I[i]j = 1,
we determine j′ such that bit j is the j′-th one-bit in I[i]. We call j′ the group-rank of
the q-gram. The group-rank can be also seen as the number of smaller q-grams of the
q-group that occur in the text.

The address array S contains, for each q-group i, an index into another address array S′,
such that S′[S[i] + j′] is the starting index in O where the positions of gij can be found.
This implies that S[i] is defined as the number of one bits in all previous entries of S,
i.e.,

S[i] =

i−1∑
i′=0

Popcount(I[i′])

with the population count Popcount(x) returning the number of one-bits in x. All
occurrence positions are now listed as

O[S′[S[i] + j′]], O[S′[S[i] + j′] + 1], . . . , O[S′[S[i] + j′ + 1]− 1].

See Figure 2.1 for an illustration. Similar to a plain q-gram index, access is in constant
time per position.

Theorem 2.3. For a text T , let IT,q := (I, S, S′, O) be a q-group index and g be an
arbitrary q-gram with n occurrences in the text. With 0 ≤ k < n, accessing the k-th
occurrence of g has complexity O(1).
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GAAA

I 0101 0000 0010 . . .

S 0 2 2 3 . . .

S′ 0 1 5 8 . . .

O 15 22 11 17 308 3 52 31 . . .

Figure 2.1: The q-group index consists of four arrays I, S, S′, O. The dashed and dotted
areas show the search spaces in the data structure for q-grams assigned to
the first and the third q-group, respectively. The arrows illustrate how the
four layers of the index are traversed to reach the occurrences of the queried
q-gram GAAA.

Proof. To determine (i, j) such that g = gij , we simply compute i = bg/wc and j =
g−wi = g mod w in constant time. To compute the group-rank j′, i.e., find how many
one-bits occur up to bit j in I[i], we use the population count instruction with a bit
mask

j′ = Popcount(I[i] & (2j − 1)).

Given that w is set to the GPU word size (see above), population counts are available
as a hardware instruction. Hence, this needs constant time as well. The k-th occurrence
(starting from zero) of g can then be calculated as

O[S′[S[i] + j′] + k]

with complexity O(1).

Comparison with rank data structures For a sequence of bits, the rank of the k-th
bit is the number of 1-bits up to position k. A rank data structure provides the rank
for the k-th bit in constant time. Jacobson (1988) calls it succinct, if it needs n+ o(n)
bits for a bit sequence of length n. The classical succinct rank data structure uses the
following strategy (González et al. 2005). The bit sequence is partitioned into equally
sized superblocks which are themselves divided into blocks. For each superblock, the
rank of the first bit is stored in a table. For each block, the rank of the first bit within
the superblock is stored. Finally, the rank of each bit in a block can be computed using
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the two tables and either the population count operation or an additional table. Since
the tables have to store ranks for fewer bits, properly chosen block sizes render their
space requirements sublinear in the number of bits in the sequence. When interpreting
I as a sequence of bits, I and S implement a rank data structure, with S[i] + j′ + 1
being the rank of the g-th bit in I for q-gram g with i = bg/wc and j = g mod w.
While the implementation is not succinct, a single query needs less table lookups. This
is beneficial on the GPU since accessing memory is expensive (see Section 1.3).

2.4.1 Size

We note that both I and S consist of d4q/we words, S′ contains an index for each
occurring q-gram and hence of up to min{4q, |T |} words, and O is a permutation of
text positions consisting of |T | words. The size of the q-group index follows directly as
the sum of its components:

Theorem 2.4. Let T be a text and IT,q := (I, S, S′, O) be the corresponding q-group
index. Then, IT,q needs up to 2

⌈
4q

w

⌉
+ min{4q, |T |}+ |T | words.

We evaluate how above worst case size of the q-group index behaves compared to the
size of the q-gram index (i.e., 4q + |T |; see Section 2.3). Both depend on the size of the
underlying text and the value of q, manifesting in the number of possible q-grams 4q.
Therefore, we consider the ratio K between the possible q-grams and the text size, i.e.,
4q = K|T |. We further assume a word size of w = 32 bits.

If 4q / |T |, the conventional q-gram index has a small advantage because each q-gram
can be expected to occur (even multiple times). With K ≤ 1, the size ratio between
q-group index and q-gram index is

2
324q + 4q + |T |

4q + |T |
=

K
16 |T |+K|T |+ |T |

K|T |+ |T |

=
K
16 +K + 1

K + 1

= 1 +
K

16(1 +K)
.

For K = 1 (or |T | = 4q), this means a small size disadvantage of 3% for the q-group
index.

If q becomes larger for fixed text size (such that q-grams become sparse), the q-group
index saves memory, up to a factor of 16. The size ratio is

2
324q + |T |+ |T |

4q + |T |
=

K
16 |T |+ |T |+ |T |
K|T |+ |T |

=
K
16 + 2

K + 1
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Figure 2.2: Ratio between the worst case size of the q-group index and the size of the q-
gram index for different K = 4q/|T |. The dashed line marks the break-even
point, i.e., the K beyond which the q-group index guarantees to be smaller
than the classical q-gram index.

for K > 1 and tends to 1
16 for large K. The break-even point is reached for K = 16

15 .
Figure 2.2 shows the behavior of the index size ratio depending on K.

In practice, we use q = 16 because of the following reasons. First, a bit-encoded 16-gram
exactly fills a 32-bit word and hence avoids wasting bits. Second, todays usual reads
contain 100 bases or more and the tendency is to produce rather larger than shorter
reads. In this scenario q = 16 offers reasonable error tolerance and high specificity. With
current GPU memory size, we use |T | = 108, i.e., we process 100 million nucleotides at
a time. In the worst case, this results in a q-group index size of approximately 1.8 GB.
The ratio between q-grams and text size is K = 42.95, and the q-group index needs in
the worst case 42.95/16+2

42.95+1 ≈ 10% of the memory of the conventional q-gram index.

2.4.2 Construction

Algorithm 1 shows how the index is built. The outline of the algorithm is as follows.
First, I is created from the q-grams of the text (line 2). Then, S is calculated as the
cumulative sum over the population counts of I (line 6). Next, the number of occurrences
for each q-gram is calculated (line 10) and S′ is created as the cumulative sum over
these counts (line 14). Finally, the q-gram positions are written into the appropriate
intervals of O (line 16).

Each step is implemented on the GPU with parallel OpenCL kernels (see Section 1.3).
The cumulative sums are implemented with parallelized prefix scan operations (see Sec-
tion 1.3.2). Importantly, the algorithm needs hardly any branching (hence maximizing
concurrency) and makes use of coalescence along the reads to minimize memory latency.
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2.4 Q-group index

Algorithm 1 Building the q-group index. For a q-gram g, the function
Group-And-Bit(g) computes (i, j) with group i := bg/wc and bit j := g mod w. The
function Group-Rank(I, i, j) computes j′ := Popcount(I[i] & (2j − 1)), as explained
in the text.
Input: a text T , machine word size w, q-gram size q
Output: the q-group index (I, S, S′, O)
1: initialize I with d4q/we zeros
2: for p← 0, . . . , |T | − q in parallel
3: (i, j)← Group-And-Bit(q-gram at position p in T )
4: I[i]j ← 1

5: allocate S with space for |I|+ 1 integers
6: for i← 0, . . . , |I| − 1 in parallel
7: S[i+ 1]← Popcount(I[i])

8: S ← cumulative sum of S
9: initialize S′ of length S[|I|] + 1 with zeros

10: for p← 0, . . . , |T | − q in parallel
11: (i, j)← Group-And-Bit(q-gram at position p in T )
12: j′ ← Group-Rank(I, i, j)
13: increment S′[S[i] + j′ + 1] by 1

14: S′ ← cumulative sum of S′

15: Allocate O of length |T |
16: for p← 0, . . . , |T | − q in parallel
17: (i, j)← Group-And-Bit(q-gram at position p in T )
18: j′ ← Group-Rank(I, i, j)
19: k ← next free entry in O after S′[S[i] + j′]
20: O[k]← p

All major data structures are kept in GPU memory. Therefore, between the steps, only
constant amounts of data (e.g., a single integer defining the size of an array; see line 9)
have to be transferred between the GPU and the host.

Theorem 2.5. For a text T and a machine word size w, Algorithm 1 calculates the
q-group index IT,q := (I, S, S′, O) with time complexity

O
(

1

ρ

(
4q

w
+ min{4q, |T |}+ |T |

)
+ log ρ

)
on a CREW PRAM (Section 1.3.1) with ρ processors. If |T | < 4q, complexity is

O
(

1

ρ

(
4q

w
+ |T |

)
+ log ρ

)
.

Proof. We first prove the time complexity for the general case. Each initialization of
an array A with zeros needs |A| operations. Hence, line 1 and 9 need |I| = 4q/w and

29
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|S′| = min{4q, |T |} operations. The operations in all kernels (lines 2, 6, 10 and 16)
need constant time (see Theorem 2.3). Therefore, the kernels need O(|T |) and O(|I|) =
O(4q/w) operations. Considering a CREW PRAM with ρ processors and excluding
the cumulative sums, we obtain a time complexity O ((4q/w + min{4q, |T |}+ |T |) /ρ).
A cumulative sum on an array A has time complexity O(|A|/ρ + log ρ) on an EREW
PRAM (see Section 1.3.2) and therefore also on a CREW PRAM. Since the cumulative
sums (line 8 and 14) are calculated on S and S′, the total time complexity is

O
(

1

ρ

(
4q

w
+ min{4q, |T |}+ |T |

)
+ log ρ

)
.

If |T | < 4q, the minimum can be eliminated, resulting in

O
(

1

ρ

(
4q

w
+ |T |

)
+ log ρ

)
.

For correctness, we first observe that array I is build correctly by the definition of
Group-And-Bit. Any q-gram g not contained in the text T does not occur in the
other data structures. It remains to show by induction that O[S′[S[i] + j′] + k] contains
the k-th occurrence1 of an arbitrary q-gram gij contained in the text T with group-rank
j′ after executing Algorithm 1.

We first consider the smallest q-gram g(0) = gij contained in the text T as basis. Since
g(0) is the smallest occurring q-gram, S[i+1] is the first nonzero entry in S set in line 7.
Therefore, the cumulative sum of S in line 8 yields S[i] = 0. Further, the rank of g(0)

is j′ = 0, such that line 13 increments S′[1] by 1. The cumulative sum in line 14 yields
S′[0] = 0. The last step of the algorithm fills consecutive entries of O beginning with
S′[0] = 0 with the occurrence position p. Hence, the k-th occurrence of g(0) is located
at O[S′[S[i] + j′] + k] = O[k].

Now, we assume that the algorithm is correct for the n-th smallest q-gram g(n) =
ginjn occurring m times in the text with group-rank j′n. By induction, we know that
O[S′[S[in] + j′n] + m − 1] contains the last occurrence of q-gram g(n). Let g(n+1) = gij
be the (n+ 1)-th smallest q-gram occurring in the text with group-rank j′. It suffices to
show that S′[S[i] + j′] = S′[S[in] + j′n] +m, which follows directly from the observation
that the cumulative sum over S′ may only increase by m between S′[S[in] + j′n] and
S′[S[i] + j′], because there is no occurring q-gram between g(n+1) and g(n).

In practice, the memory requirements for the q-group index can be reduced further
without changing access (Theorem 2.3) and construction (Theorem 2.5) time com-
plexities. By storing every even position of S, the q-group index needs only up to⌈

4q

w

⌉
+
⌈

4q

2w

⌉
+ min{4q, |T |} + |T | words. The values of the odd positions i of S can be

obtained as S[i− 1] + Popcount(I[i− 1]) in constant time.

1Note that, in practice, the synchronization between threads when writing of O does not guarantee
that the k-th occurrence in the index is also the k-th occurrence of the q-gram in the text. The
sequence of occurences of a q-gram in O is rather a permutation thereof.
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Figure 2.3: The PEANUT algorithm. Read sequences are buffered and a q-group index
is created from them on the fly. Filtration (detection of q-gram hits) and
validation are performed on the GPU until all reference sequences (e.g.,
chromosomes) are processed. The hits are postprocessed and streamed out
in SAM format. All steps (here shown as boxes) operate independently in
parallel and communicate via queues. Arrows between the steps represent a
data transfer via a queue.

2.5 Algorithm

On top of the q-group index, we define the PEANUT algorithm for read mapping. The
algorithm consists of three main steps:

1. filtration,

2. validation,

3. postprocessing.

The first two steps, filtration and validation, are handled on the GPU, while the postpro-
cessing is computed on the CPU. The steps are conducted on a stream of reads. Reads
are collected until buffers of configurable size are saturated. Then, any computation is
done in parallel for all buffered reads (see Figure 2.3).

In the filtration step, potential hits between the reference sequence and the reads are
detected using the q-group index. Next, the potential hits are validated using a variant
of Myers’ bit-parallel alignment algorithm (Myers 1999). The validated hits undergo a
postprocessing that annotates them with a mapping quality and calculates the actual
alignment. The postprocessed hits are streamed out in SAM format (Li et al. 2009).
Because of memory constraints on the GPU, all steps are performed per reference se-
quence (e.g., chromosome) instead of using the reference as a whole (see Section 2.5.1).
Paired-end reads (see Section 1.2) are handled independently during filtration and val-
idation. During postprocessing, read-pair information is used to sort hits into strata of
decreasing confidence and obtain mapping qualities (see Section 2.5.3). In the following,
each step is described in detail.
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2.5.1 Filtration

For a given subset of reads loaded into the buffer (see above), the filtration step aims
to yield a set of potential hits, i.e., candidate origins of each read. For this, we seek
for matching q-grams between each reference sequence and the reads using the q-group
index (Section 2.4).

Following Weese, Holtgrewe, and Reinert (2012), we decide to build the q-group index
over the concatenation of the buffered reads. At first sight, it would be more reasonable
to build the index over the reference. However, building the q-group index over the
whole reference (i.e., the concatenation of all reference sequences) would exceed the
memory of most GPUs, since most q-grams would occur and the size advantage of the
q-group index would vanish (see Section 2.4.1). Alternatively the index could be build
over parts of the reference (as, e.g., naturally given by the reference sequences). Since
not all indexes for all reference sequences could stay in memory, either building them
online or loading them from a preprocessed storage would be necessary. Hence, either
|R| large data transfers or |R| index builts would have to be repeated for each set of
buffered reads and |R| reference sequences. Since the q-group index is per definition
larger than the underlying text, it is better to keep the reference sequences in GPU
memory and build the index once over the set of buffered reads.

Given the q-group index (I, S, S′, O), we assume that there is a function Indexpair(g)
that returns, for a q-gram g, an index pair (kstart, kend) such that the occurrence posi-
tions in the indexed text are all O[k] with kstart ≤ k < kend. The function Indexpair(g)
is implemented as follows. Let (i, j) := Group-And-Bit(g) and the group-rank j′ :=
Group-Rank(I, i, j). Then kstart = S′[S[i] + j′] and kend = S′[S[i] + j′+ 1]. We further
assume that kstart = kend if g does not occur in the index, i.e., I[i]j = 0.

Algorithm 2 shows how putative hits are generated by querying the q-group index of
buffered reads with q-grams of a reference sequence. Instead of considering all positions
within the reference sequence, we allow to only use q-grams starting at a given subset P
of reference positions. This allows to omit uninformative regions (see below). First, the
number of hits per reference position is counted in parallel and stored in the array C
(line 2). In the following, only positions with at least one hit are considered (line 5). The
cumulative sum of the counts generates an interval for each position that determines
where its hits are stored in the output array of the algorithm (line 6). Finally the
occurrences for each reference q-gram are translated into hits that are stored in the
corresponding interval of the output array (loop in line 8). We translate the position
inside the text of concatenated reads into a read number (line 12) and a “hit diagonal”
that denotes the putative start of the read in the reference (line 13, see Figure 2.4).
For the read number, we assume that all reads are of the same length m. The practical
implementation uses padding where this is not the case.

Each step of Algorithm 2 is implemented on the GPU with parallel OpenCL kernels.
The filtering of P (line 5) and the cumulative sum (line 6) uses parallel prefix scans
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Algorithm 2 Filtration of reference positions.

Input: reference sequence, ordered set P of considered reference positions with pl ∈ P
being the l-th element of P , maximum read length m, q-group index (I, S, S′, O)

Output: array H of hits as pairs (d, r) of diagonal d and read id r
1: Initialize array C of length |P |+ 1 with zeros to count hits
2: for pi ∈ P in parallel
3: (kstart, kend)← Indexpair(q-gram at reference position pi)
4: C[l + 1]← kend − kstart

5: P ← {pl ∈ P | C[l + 1] > 0}
6: C ← cumulative sum of C
7: Allocate array H of length 2 · C[|P |] to store hits
8: for pi ∈ P in parallel
9: (kstart, kend)← Indexpair(q-gram at reference position pi)

10: for k ← 0 . . . , kend − kstart − 1 do
11: p′ ← O[kstart + k]
12: r ← bp′/mc
13: d← p− (p′ mod m)
14: H[C[l] + k]← (d, r)

(see Section 1.3.2). All data structures reside in GPU memory; between the steps, at
most constant amounts of data have to be transferred between host and GPU (e.g., a
single integer). When fixing the number of PRAM processors, Algorithm 2 has the best
possible time complexity, becoming linear in the number of investigated positions and
obtained hits:

Theorem 2.6. For a reference sequence with positions P , a q-group index (I, S, S′, O)
over reads of maximum length m and a machine word size w, Algorithm 2 calculates
putative hits H between reads and reference sequence with time complexity

O
(
|H|+ |P |

ρ
+ log ρ

)
on a CREW PRAM with ρ processors.

Proof. The array initializations in line 1 and 7 need |P | + 1 and |H| operations. The
first parallel kernel (line 2) has time complexity O (|P |/ρ) on the CREW PRAM. The
second kernel (line 8) calculates each hit in constant time (see Theorem 2.3) and hence
has time complexity O (|H|/ρ) on the PRAM. Finally the position filtering (line 5),
implemented using a prefix scan (see Section 1.3.2), and the cumulative sum have time
complexity O (|P |/ρ+ log ρ), resulting in above total complexity.

For correctness, we show that the resulting array H contains exactly all hits between
the reference sequence at positions P and the reads. For the l-th position pl ∈ P , we
say that it occurs in the reads if the q-gram starting at position pl occurs in the reads.
Analogously, we say that pl does not occur if the q-gram does not occur in the reads.
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Figure 2.4: Determining the putative start position of a read from a matching q-gram
via a hit diagonal (Rasmussen, Stoye, and Myers 2006). In the edit matrix
between the reference sequence (top) and the read (left), a matching q-gram
(solid line) induces (under the assumption that the read does not contain
insertions or deletions before the q-gram) a diagonal that points to a putative
start position of the read in the reference (dashed arrow).

We observe that before line 6, C[l + 1] contains the occurrence counts of the q-gram
at the l-th position pl ∈ P by definition of the function Indexpair. Then, it follows
directly that the cumulative sum in line 6 results in C[l] to contain the sum of the
occurrence counts of positions pl′ ∈ P with l′ < l. Hence, the array H has the same
number of entries as there are hits between the reference sequence at positions P and
the reads (line 7). It remains to be shown that all hits of occurring positions are written
into disjoint entries of H and that no hits are generated from positions that do not
occur in the reads.

We first consider the second case: Let pl ∈ P be any non-occurring position. We note
that C[l + 1] = 0 because kstart = kend and pl is removed from the set P in line 5. It
therefore does not occupy any entries in H.

We prove the other case by induction. As basis, let pl ∈ P be the first reference position
occurring in the reads. Let m be the number of occurrences of the q-gram starting at
position pl. Since pl is the first occurring reference position, it holds C[l] = 0. Hence,
the k-th hit (with 0 ≤ k < m) determined from the q-group index is stored in entry
H[k] and all m hits are stored in H[0], . . . ,H[m− 1].

Now, we assume that the n-th position pn ∈ P occurs mn times in the reads. We consider
the (n + 1)-th position pn+1 ∈ P with mn+1 occurrences. Without loss of generality,
we assume mn > 0 and mn+1 > 0 (which can always be achieved by reordering the set
P ). Since there are no occurring positions in between, the cumulative sum ensures that
C[n+ 1] = C[n] +mn. By induction, we know that H[0] . . . H[C[n] +mn − 1] are filled
with correct hits. Finally, the k-th hit of pn+1 is stored in H[C[n + 1] + k] such that
H[0], . . . ,H[C[n+ 1] +mn+1 − 1] is correct, too.

The filtration step can lead to clusters of multiple potential hits pointing to the same
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starting position by their diagonal (see Figure 2.4). This occurs in regions where the
identity between read and reference is high. Instead of reducing these to a single hit,
we found it to be faster to validate all hits and perform the removal of duplicates on
those remaining after the validation step (see Section 2.5.3).

Reference sequence preprocessing The set P of reference positions to investigate
and the reference sequences are retrieved from a precomputed data structure stored in
HDF5 format2. First, this speeds up access to the reference. Second, we omit exceedingly
frequent q-grams and stretches of unknown nucleotides (i.e., subsequences of Ns, see
Section 2.3) from the set P . For q-gram index implementations this is common to avoid
uninformative hits (Weese, Holtgrewe, and Reinert 2012). Further, we choose P such
that the considered q-grams are disjoint, i.e., we investigate only every q-th position.
Finally, P is sorted in numerical order of the q-grams. This increases the memory
coalescence when accessing the q-group index, since subsequent threads will have a
higher probability to access the same region in the index and hence the same memory
bank in the global GPU memory.

2.5.2 Validation

The validation step takes the potential hits of the filtration step and calculates the
edit distance (see Section 2.1) between a read and the reference sequence at its putative
start position. If the edit distance is below a configurable threshold, the hit is considered
good enough for being a possible origin of the read and will be postprocessed in the
next step.

The edit distance is calculated with Myers’ bit-parallel algorithm (Myers 1999) that
simulates the edit matrix E between reference sequence and read. Myers’ algorithm cal-
culates the edit matrix column-wise, making use of bit-parallelization to obtain linear
running time compared to the quadratic running time of the Smith-Waterman Algo-
rithm. In contrast to the Smith-Waterman Algorithm it is though limited to report
the minimal edit distance, not the actual alignment. The algorithm makes use of two
observations: First, calculating the j-th column needs only column j − 1. Second, each
transition changes the edit distance by at most 1. Therefore it can maintain distance
deltas between columns in bit vectors. A transition from one column to the next hap-
pens via a constant amount of bit-parallel operations on the bit vectors. In iteration j,
the minimal distance between the read and any substring of the reference sequence
that ends at position j can be retrieved. If the accepted error rate is limited, only a
part (i.e., a band) of the edit matrix is needed to calculate the optimal edit distance.
Our implementation of the algorithm follows a version that calculates only the relevant
diagonal band of the edit matrix (Weese, Holtgrewe, and Reinert 2012; Hyyrö 2003).
The implementation keeps the considered part of each column in a single machine word

2http://www.hdfgroup.org/HDF5, visited 11/2014

35

http://www.hdfgroup.org/HDF5
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of size w (currently 32 bits). Thereby it provides a time complexity of O(|r|) with |r|
being the read length. While the reduction to the diagonal band restricts the maximum
insertion or deletion size in a single alignment, mismatches are not affected. Hence, the
procedure allows to discover partial matches of the read, as needed for local alignments.
Large insertions or deletions can be rescued later in the postprocessing if a sufficiently
large portion of the read aligns in this step.

Similar to Weese, Holtgrewe, and Reinert (2012), we use the algorithm to calculate
the edit distance of a semi-global alignment in backward direction, thereby obtaining
the best starting position of the alignment. For each hit, the fraction of matches or
percent identity is obtained which we define here in compliance with Weese, Holtgrewe,
and Reinert (2012) as 100 · (|r| − k)/|r| where k is the edit distance and |r| is the
read length. Hits with a percent identity less than a given threshold are discarded.
The default for this threshold is 80 percent which provides a decent sensitivity in our
benchmarks (see Section 2.6). Decreasing it hurts performance, since more hits have to
be postprocessed and written to disk.

2.5.3 Postprocessing

The goal of the postprocessing is to prepare the hits remaining after the validation step
for output. Subsequent tools expect a read mapper to provide one or several hits in
terms of positions in the reference along with the actual alignment to the positions.
The alignments are then for example used for variant calling (see Chapter 3).

First, the postprocessing removes duplicate hits generated by clusters of matching q-
grams (see Section 2.5.1). Intuitively, a particular hit is more likely to be the true origin
of a read the fewer hits with the same or with a better score occur. Therefore, the next
step sorts the hits into strata of the same percent identity. Upon invocation, PEANUT
can be configured to discard hits based on their stratum, e.g., providing only the best
stratum, all strata (in the following called best-stratum and all-mode) or a given number
of strata. Let s be the desired number of strata. The sorting can be implemented by
iterating over the hits of a read and adding the percent identity to a binary search tree.
If the tree has already s nodes and the percent identity of the next hit to add is smaller
than all values in the tree, the hit is discarded. This procedure is faster than sorting
n hits and discarding afterwards (with complexity O(n log n)), because hits with a too
low percent identity can be skipped beforehand. Since the height of the tree is limited
by the desired number of strata, we obtain a time complexity of O(n log s), scaling with
the number of strata and reaching linear time when reporting only the best stratum.

For the remaining strata, we strive to provide for each hit a score for the confidence
that this hit is the true origin of the read. In the desired output format SAM (Li et al.
2009), this is called mapping quality. Let O be the random variable denoting the true
origin of the read r within all reference positions P . For each hit, the mapping quality
(given in PHRED-scale) is expected to approximate the probability 1 − Pr(O = p | r)
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that the hit position p is not the true origin of the read r in the reference. Li, Ruan,
and Durbin (2008) define Pr(O = p | r) in a Bayesian way as

Pr(O = p | r) =
Pr(r | O = p)∑

p′∈P Pr(r | O = p′)
. (2.4)

with P being the set of all reference positions. This assumes that reads are uniformly
sampled from the reference. The likelihood Pr(r | O = p) of read r having been sampled
from position p (in the following called the sampling likelihood) is estimated as the
product of the base qualities of mismatching bases (see Section 1.2), i.e.,

Pr(r | O = p) ≈
∏
i∈Sr,p

qr,i

with qr,i being the base quality of the i-th base in the read and Sr,p being the positions in
the read with a substitution according to the optimal alignment of the read at position p.
Above estimation assumes that a substitution compared to the reference is most likely a
sequencing error. In practice, directly calculating the posterior probability Pr(O = p|r)
is infeasible since the optimal alignments over all reference positions would be needed.
Many best-mappers (Li, Ruan, and Durbin 2008; Li and Durbin 2009; Li and Durbin
2010; Liu and Schmidt 2012) apply rough approximations3, considering only the best
and the second best hit of a read.

Since PEANUT shall be able to provide mapping qualities for all hits in the extreme,
these techniques are not applicable. However, in contrast to best-mappers, we have ac-
cess to the percent identities of all hits down to a given threshold (see Section 2.5.2).
We choose to approximate the sampling likelihood based on the percent identity and
calculate the mapping quality as shown above (Equation (2.4)). We first approximate
the sampling likelihood for a single hit with percent identity s ∈ [0, 100]. Each edit
operation in the underlying (but unknown) alignment is either a substitution, inser-
tion or deletion. If the alignment represents the true sampling position of the read, all
three may occur either due to genetic variation in the sequenced sample compared to
the reference sequence (see Section 1.1) or due to a sequencing error. Both cases are
unlikely and dominated by the expected sequencing error rate (see Section 1.2). Hence,
the sampling likelihood decays exponentially in the number of edit operations in the
alignment. Therefore, we approximate it as

Pr(r | O = p) ≈ Ce−λk

with k being the error rate of the read alignment obtained as 100− s from the percent
identity s ∈ [0, 100] (see Section 2.5.2). Per default, λ and C are set to 1. This is a
rough but conservative and quite general approximation. Under the assumption that
this estimate is almost 0 for hits discarded during validation (since they will have a small

3For example, CUSHAW2 (Liu and Schmidt 2012) estimates the mapping quality as 250a ·(s1−s2)/s1

with s1 and s2 being the best and second best local alignment score and a being the ratio between
the length of the best local alignment and the read length.
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percent identity) we do not consider all reference positions P . Instead, we approximate
the posterior probability Pr(O = p | r) as

Pr(O = p | r) ≈ Pr(r | O = p)∑
p′∈P ′ Pr(r | O = p′)

with P ′ being the validated hit positions of the read r. The PHRED-scaled mapping
quality is then obtained as −10 log10(1−Pr(O = p | r)). Per default, we cap the mapping
quality at 60 and force it to 0 for ambiguous hits (i.e., two or more best hits with the
same percent identity) to generate values comparable to other read mappers like BWA
(Li and Durbin 2009). This is useful to satisfy the expectations of downstream analysis
steps (e.g., a mapping quality of 0 is often used to filter ambiguously mapping reads).
Section 2.6.5 evaluates the quality of the approximation.

When mapping paired-end reads (see Section 1.2), it is beneficial to consider the hits of
the mate read for determining the most likely origin of a read: two hits that lie within
the expected insert size on the same chromosome are more likely the true origin of
both reads than hits that appear alone. We call such hits properly paired. For these,
we consider the sum of their scores (i.e., percent identities) in all above computations.
The sampling likelihood for paired-end hits is estimated as Pr(r|p) ≈ es−200 since the
maximum obtainable score is 200 for a properly paired hit. This results in properly
paired hits appearing in better strata than other hits. The expected insert size is a
configurable parameter of PEANUT.

2.6 Results

We evaluate the efficiency of GPU resource usage, the accuracy and the run time per-
formance of PEANUT. Further, we evaluate the ability of the mapping quality measure
defined in Section 2.5.3 to separate true hits from others. To ensure reproducibility and
documentation, all analyses were implemented as a Snakemake workflow4 (see Chap-
ter 4).

2.6.1 GPU resource usage

To maximize utilization of the GPU hardware, idle cores have to be avoided. The two
most important reasons for idle cores are branching and memory latency (see Sec-
tion 1.3). The latter can be hidden if the SM (see Section 1.3) can execute a different
warp while waiting on a memory transaction. The capability to do so can be measured
as occupancy, that is the fraction of active warps among the maximum number of warps
on an SM. The more active warps exist on an SM, the higher is the chance that latency
can be hidden by executing another warp. Figure 2.5 shows the occupancy patterns of

4http://peanut.readthedocs.org/analysis.html, visited 11/2014
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Figure 2.5: The occupancy of GPU cores depending on the thread block size. Shown
are representative patterns for OpenCL kernels from the three main steps
of the algorithm: index construction, filtration and validation.

the implemented OpenCL kernels, as measured with the NVIDIA
TM

CUDA command
line profiler depending on the used thread block size (see Section 1.3). The thread block
size influences the occupancy by limiting the number of potentially active warps and
determining the amount of used registers and shared memory on the SM. Since the
latter are limited, a bigger thread block size does not necessarily lead to a higher occu-
pancy. As can be seen, the occupancy for all steps is high. For building of the q-group
index (index construction) and the filtration step, it even reaches 1.0 which illustrates
the benefit of the q-group index being tailored toward the GPU architecture.

2.6.2 Sensitivity

First, we strive to evaluate the sensitivity of PEANUT in terms of its ability (and hence
that of the q-group index) to detect all alignments up to a given error rate. For this, we
use the Rabema benchmark (Holtgrewe et al. 2011) that allows to compare mapping
results based on a formalized framework. Rabema uses equivalence classes of ambiguous
alignments, thereby letting the genomic origin of a read itself define how tight a mapping
has to be in order to be considered correct. First, 10,000 Illumina reads (see Section 1.2)
of length 100 were simulated using the read simulator Mason (Holtgrewe 2010) with
the Saccharomyces cerevisiae genome (as provided by the Rabema data package5),
default parameters and error rates. Second, the simulated reads were mapped to the
genome using RazerS 3 (Weese, Holtgrewe, and Reinert 2012) with full sensitivity. In
this configuration, RazerS 3 guarantees to report all alignments of a read up to a given
error rate. For above notion of sensitivity, it would be insufficient to consider only the

5http://www.seqan.de/projects/rabema, visited 11/2014
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true origins of a read as they are known from the simulation with Mason. The mapped
reads were used to generate gold standards for Rabema to test against.

The sensitivity of the PEANUT algorithm is analyzed using q-grams of length 16,
because it is computationally optimal on the current GPU hardware. PEANUT is con-
figured to provide all semi-global alignments of a read and all other parameters are
left at their default values. Sensitivity is assessed by the Rabema measure ”Normalized
found intervals“ (Holtgrewe et al. 2011) and all alignments of a read are considered
(all-mode). We investigate the relation between sensitivity and error rate of the gold
standard alignments. Rabema defines the error rate as 100− i with i being the percent
identity as defined in Section 2.5.2. With a percent identity threshold of 60 (see Sec-
tion 2.5.2) our algorithm provides 100% sensitivity for error rates below 5%, at least
99.86% sensitivity for error rates up to 10% and still 98.86% sensitivity with an error
rate up to an unrealistically high 20%. With a stricter threshold of 80, PEANUT still
reaches 98.81% sensitivity for the latter.

In general, the percent identity threshold should be set slightly more permissive than
the expected error rate. This is because the replacement of N-characters in the reads and
the reference (see Section 2.4) with random bases can introduce additional mismatches.
Above rates are far better than the worst case sensitivity that can be expected by
applying the pigeonhole principle (i.e., with reads of length 100 and q-grams of length 16,
we can expect to find at least one perfectly matching q-gram for all alignments with
at most 5 errors; see Section 2.3), such that using 16-grams appears to be a reasonable
default choice in practice.

2.6.3 Comparison with other read mappers

We compare run time and accuracy of the PEANUT algorithm with other state of the
art read mapping algorithms. The evaluation is conducted on 4 datasets:

1. 5 million simulated Illumina HiSeq 2000 reads,

2. 5 million real Illumina HiSeq 2000 reads from the human exome,

3. 10 million real paired-end Illumina HiSeq 2000 reads from the human exome,

4. 50 million real paired-end Illumina HiSeq 2000 reads from the whole human
genome.

The simulated reads (dataset 1) were created from the ENSEMBL human reference
genome6 version 37 with Mason (see Section 2.6.2). The read length is set to 100 and
all other parameters of Mason are left at their default values, such that reads with a
typical error profile and mutation rate are generated. The second and third datasets
are generated from real paired-end exome sequencing reads7 (Martin et al. 2013) of

6ftp://ftp.ensembl.org/pub/release-74/fasta/homo_sapiens/dna, visited 11/2014
7http://www.ebi.ac.uk/ena/data/view/ERR281333, visited 07/2014
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length 100 obtained from a patient suffering from uveal melanoma (a cancer of the
eye) sequenced with an Illumina HiSeq 2000 sequencer. Dataset 2 consists of the first
5 million forward reads. Dataset 3 consists of both the first 5 million forward and
backward reads, i.e., 10 million reads in total. Dataset 4 is generated from real paired-
end whole genome reads of length 200 obtained from an african male8. The reads are
part of the Illumina Platinum Genomes9. The first 25 million forward and backward
reads were chosen, i.e., 50 million reads in total.

The benchmark was conducted on an Intel Core i7-3770
TM

system (4 cores with hyper-

threading, 3.4 GHz, 16 GB RAM) with an NVIDIA Geforce
TM

780 GPU (12 SMs, 3 GB
RAM) and a 7200 rpm hard disk. We evaluated two modes of PEANUT. First, PEANUT
was configured to find the best stratum of semi-global alignments (best-stratum mode)
for each read. Second, PEANUT was configured to find all semi-global alignments (all
mode) for each read. For comparison, we benchmarked the newest generation of BWA
(BWA-MEM, version 0.7.5; Li (2013)), Bowtie 2 (version 2.0.2; Langmead and Salzberg
(2012)), CUSHAW 3 (version 3.0.3; Liu, Popp, and Schmidt (2014)), CUSHAW2-GPU
(version 2.1.8; Liu and Schmidt (2014)), NextGenMap (version 0.4.11; Sedlazeck, Resch-
eneder, and von Haeseler (2013)), RazerS 3 (version 3.2; Weese, Holtgrewe, and Reinert
(2012)) and MrFast (version 2.6.0.1; Alkan et al. (2009)). All tools were configured to
use 8 threads (the reasonable choice in case of 4 cores with hyperthreading). For Mr-
Fast, which does not support multithreading directly, this was achieved by partitioning
the input files containing the reads into 100 equally sized chunks and running 8 par-
allel instances of MrFast with the Unix command parallel (the time for merging the
resulting output was not included into the run time). NextGenMap was used in GPU
mode, such that it makes maximum use of the available hardware. All read mappers
were configured to output alignments in SAM format (Li et al. 2009) directly to the
hard disk.

We outline the reasons for excluding several available read mappers from the bench-
marks. At the time of writing (07/2014), no working installations of SOAP3 (Liu et al.
2012), SOAP3-dp (Luo et al. 2013) and BarraCUDA (Klus et al. 2012) could be ob-
tained. A binary compiled against the setup of the test system (Ubuntu Linux 12.04
64-bit with NVIDIA CUDA 6) was not available for SOAP3 and SOAP3-dp. The compi-
lation of SOAP3-dp-r177 and SOAP3-r146 failed on the used test system. BarraCUDA
compiles but refuses to run on CUDA 6. Finally, read mappers specialized on RNA-
Seq (see Section 1.2), e.g., STAR (Dobin et al. 2013) or TopHat (Trapnell, Pachter,
and Salzberg 2009) were excluded, as this exceeds the scope of PEANUT. In principle,
STAR (Dobin et al. 2013) could be applicable to DNA reads, and the authors claim
speedups compared at least to other RNA-Seq focused read mappers. However, this
comes at the cost of extensive memory usage by an uncompressed suffix array, which
exceeds the capacity of the used test system.

8http://www.ebi.ac.uk/ena/data/view/ERR091787, visited 07/2014
9http://www.illumina.com/platinumgenomes, visited 07/2014
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Figure 2.6: The obtained recall for different best-mappers given a maximum edit dis-
tance.

In the following, we distinguish between all-mappers and best-mappers (PEANUT oc-
curs in both categories, using the all-mode and the best-stratum mode). Best-mappers
only strive to find the single origin of a read on the reference sequence of a single or-
ganism. All-mappers provide all alignments of a read down to a given error rate. Hence,
all-mapping is computationally more intensive.

Run time performance is measured three times as the total wall clock time for processing
a dataset on the test system. Table 2.1 shows the run times for PEANUT and its
competitors on all datasets. First, PEANUT in best-stratum mode outperforms all
best-mappers (including the other GPU based mappers NextGenMap and CUSHAW2-
GPU) on all datasets. On the biggest (and therefore most realistic) dataset, PEANUT
is 2 times faster than the best competitor (BWA-MEM). Second, PEANUT in all-mode
is 3 to 10 times faster than the all-mapper RazerS 3 and 4 to 6 times faster than the
all-mapper MrFast. While Bowtie 2 provides an all-mode, too, it did not terminate in
competetive time due to extensive memory requirements exceeding the capabilities of
the test system.

The accuracy of the obtained alignments is assessed using Rabema (see Section 2.6.2).
For best-mappers, using the simulated dataset 1, we measure precision and recall with
Rabema as defined by Siragusa, Weese, and Reinert (2013): Recall is the fraction of
reads correctly mapped to their original location. This location is known from the
read simulation with Mason (see above). Precision is the fraction of correctly mapped
reads among all reads that were mapped unambiguously (i.e., for which the mapper
only provided exactly one hit). Figures 2.6 and 2.7 show the results with increasing
maximum edit distance of the reads. Except when restricting to reads with zero errors
(there, CUSHAW3 is slightly better), PEANUT slightly outperforms all other best-
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Table 2.1: Performance of PEANUT and other read mappers on the human reference
genome on four different datasets as defined in the text. Dataset sizes are
given in gigabasepairs (Gbp; e.g., 1 Gbp is 10 million reads of length 100).
Run times are listed for three consecutive repetitions. Dashes indicate that
no run times could be obtained due to execution errors.

mapper type time [min:sec]

d
a
ta

se
t

1
(0

.5
G

b
p

)

PEANUT best-stratum 1:51 1:51 1:53
BWA-MEM best 3:35 3:20 3:16

Bowtie 2 best 5:13 5:12 5:12
NextGenMap best 3:06 3:08 3:06
CUSHAW3 best 9:06 9:07 9:07

CUSHAW2-GPU best 2:38 2:38 2:39
PEANUT all 22:26 22:37 22:42
RazerS 3 all 200:13 200:12 199:55
MrFast all 103:04 106:28 107:45

d
at

as
et

2
(0

.5
G

b
p

)

PEANUT best-stratum 1:40 1:45 1:41
BWA-MEM best 1:58 1:57 1:57

Bowtie 2 best 3:30 3:14 3:12
NextGenMap best 2:28 2:38 2:29
CUSHAW3 best 7:44 7:45 7:44

CUSHAW2-GPU best 2:20 2:22 2:21
PEANUT all 13:43 13:57 13:57
RazerS 3 all 91:02 90:38 89:38
MrFast all 77:11 77:51 77:27

d
a
ta

se
t

3
(1

G
b

p
)

PEANUT best-stratum 3:17 3:15 3:13
BWA-MEM best 4:56 4:51 4:44

Bowtie 2 best 8:20 8:18 8:20
NextGenMap best 4:46 4:42 4:45
CUSHAW3 best 76:38 76:25 76:29

CUSHAW2-GPU best 6:30 6:09 6:07
PEANUT all 28:05 28:11 28:11
RazerS 3 all 150:59 151:13 151:36
MrFast all - - -

d
a
ta

se
t

4
(1

0
G

b
p

)

PEANUT best-stratum 18:22 18:36 18:31
BWA-MEM best 36:46 36:33 36:35

Bowtie 2 best 54:38 54:22 55:51
NextGenMap best - - -
CUSHAW3 best 390:20 390:15 390:41

CUSHAW2-GPU best 30:23 30:30 30:34
PEANUT all 254:43 254:49 254:19
RazerS 3 all 900:27 901:33 900:50
MrFast all - - -
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Figure 2.7: The obtained precision for different best-mappers given a maximum edit
distance.

mappers in this benchmark. For best-mapping, the GCAT10 provides an alternative,
less formal approach to measure the accuracy of a mapper by testing whether a mapped
read lies within 5 base pairs of its known origin in given simulated datasets. Köster and
Rahmann (2014) additionally provide an evaluation of PEANUT with GCAT.

All-mappers are compared by their ability to find all alignments of a given edit distance
or error rate. Here, we again use the sensitivity provided by Rabema (see Section 2.6.2).
This involves creating a gold standard with RazerS 3 configured to full sensitivity, which
is computationally expensive. We therefore perform this on only 1000 reads simulated
with the same parameters as dataset 1. The gold standard is calculated for an edit
distance of at most 15. Figure 2.8 shows that up to an edit distance of 4 PEANUT
provides a sensitivity of almost 100%, similar to RazerS 3 and nearly as good as MrFast.
Beyond an edit distance of 5, the sensitivity of PEANUT is superior to RazerS 3 and
MrFast. This is due to RazerS 3 and MrFast being restricted to low error rates per
default to achieve acceptable performance. In summary, at default settings, PEANUT
provides similar or even better sensitivity than RazerS 3 and MrFast while being 3 to
10 times faster (see above).

While PEANUT requires at least 2.5 GB of GPU memory for filtration and validation,
it is not restricted to running on high-end GPU models like the Geforce 780 used
above. Table 2.2 shows that an advantage can be maintained when benchmarking on a
different test system with an Intel Core i7-2600 (3.4 GHz, 16 GB RAM) and a four years

old NVIDIA
TM

Geforce 580 GPU. We see that the older system is about 9% slower and
still faster than the best competitor in Table 2.1 on the newer test system.

10http://www.bioplanet.com/gcat, visited 08/2014
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Figure 2.8: Sensitivity to find all alignments of a read given a maximum edit distance
for different all-mappers with default parameters.

Table 2.2: Performance of PEANUT on a secondary test system with a four years old
Geforce 580 GPU. See also Table 2.1.

dataset type time [min:sec]

1
best-stratum 2:05 2:06 2:08

all 24:04 24:33 24:50

2
best-stratum 1:56 1:43 1:47

all 14:31 14:32 14:26

3
best-stratum 3:37 3:20 3:18

all 29:55 30:06 30:13

2.6.4 Profiling algorithm steps

We profile the different steps of the PEANUT algorithm by recording the run time
(as wall clock time) of indexing, filtration, validation, postprocessing and writing for
each of above test datasets in best-stratum mode. Figure 2.9 shows the fraction of each
run time. In practice, postprocessing runs in parallel to the other steps. The figure
shows that this is reasonable, since it takes about 50% of the run time. Hence, during
postprocessing of one set of buffered reads, we can perform the writing step for the
last, as well as the indexing, filtration and validation steps for the next set of buffered
reads.
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Figure 2.9: Run time fractions for steps of the PEANUT algorithm in best-stratum
mode on dataset 1 to 4.

2.6.5 Evaluation of mapping qualities

Finally, the mapping qualities obtained by PEANUT are evaluated. These are intended
to encode the probability of a read not being sampled from the reported position (see
Section 2.5.3). The mapping qualities are given in PHRED scale (see Section 1.2), such
that a value of 0 corresponds to a probability of 1. The higher the mapping quality, the
smaller is the probability. In other words, if a hit has a small mapping quality, it shall be
likely that the hit is a false positive, while a high mapping quality indicates a high con-
fidence for the hit to be a true positive. Here, true positives are the correctly identified
true sampling positions of the reads, whereas false positives are reported mapping loca-
tions that may have the same alignment score but are not the true origins of a read. For
each PHRED-scaled mapping quality Q, the corresponding probability 10−Q/10 equals
the expected false positive rate. Figure 2.10 shows the measured and expected false
positive rate (i.e., the fraction of false positives among all hits) at increasing mapping
qualities for the hits reported by PEANUT in all-mode on dataset 1. As can be seen,
the measured false positive rate rapidly decays when increasing the mapping quality
from zero. A mapping quality above 10 (i.e., a probability of 0.1) already guarantees
almost no false positives. Comparison with the dashed line, depicting the expected false
positive rate for each mapping quality, suggests that the mapping qualities provided
by PEANUT are conservative in the sense of underestimating the true probabilities.
Despite that, they provide a reasonable way to distinguish between true and false pos-
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Figure 2.10: Mapping quality versus measured false positive rate for the hits reported
by PEANUT in all-mode on the simulated dataset 1. The dashed line
depicts the false positive rate as it would be expected from the probabilities

encoded by the PHRED scaled mapping qualities (i.e., 10−
Q
10 for mapping

quality Q).

itives without the computational overhead needed for calculating concrete alignments
of many suboptimal hits (see Section 2.5.3).

2.7 Discussion

In this chapter, we presented the q-group index, a variant of the q-gram index with a
particularly small memory footprint, along with parallel algorithms for index building
and querying. The algorithms fit nicely to the GPU architecture by using a combination
of parallel element-wise and prefix scan operations over large arrays and requiring hardly
any data transfer between the host and the GPU during their execution. We showed
that the q-group index needs significantly less memory in practical scenarios than a
conventional q-gram index while maintaining constant access time. The q-group index
has been adopted by NVIDIA and is implemented in their NVBIO library11.

On top of the q-group index we implemented the read mapper PEANUT. The q-group
index enables the mapper to be the first that can perform both filtration and validation
of hits on the GPU. So far, the GPU was leveraged only by BWT-based read map-
pers, e.g., by Liu and Schmidt (2014), or for calculating alignments, e.g., by Sedlazeck,
Rescheneder, and von Haeseler (2013). PEANUT can be configured to either find all
hits of a read or the best stratum. In both categories, it outperforms its competitors
in terms of speed. It is 3 to 10 times faster than other all-mappers. Further, it is faster

11http://nvlabs.github.io/nvbio, visited 09/2014
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than all other evaluated best mappers; in particular, it is 2 times faster than the fastest
best-mapper on the most realistic dataset. The speed improvements do not come at
the cost of mapping quality. In fact, our Rabema benchmarks show PEANUT to be
even slightly more sensitive than the other all-mappers with default parameters and
to have a slightly better recall and precision compared to the other best-mappers. In
general the results suggest that PEANUT provides an accuracy comparable to other
read mappers.

Apart from the GPU algorithms (i.e., filtration and validation) which have been im-
plemented with PyOpenCL (Klöckner et al. 2012), other performance critical parts of
the algorithm (reading, writing and postprocessing) have been implemented in Cython
(Behnel et al. 2011). Cython compiles Python code to plain C or C++ which, among
other optimizations, avoids the overhead generated by the Python interpreter. Still, the
profiling in Section 2.6.4 identifies postprocessing as the current bottleneck of PEANUT.
Future versions might therefore also parallelize parts of the postprocessing on the GPU
with OpenCL.

In the current implementation, PEANUT requires the preprocessing of the reference
into an HDF5 file (see Section 2.5.1), eliminating highly frequent q-grams, and sorting
considered reference positions to maximize coalescence. Since the reference genome is
often the same for many samples (e.g., the human genome), this is reasonable to save
time during the mapping. Future work will try to eliminate this need by porting these
steps to the GPU as well. For example, the q-group index itself can be used to efficiently
count the occurrences of q-grams in the reference sequences to mask those being highly
frequent.

The implementation of PEANUT in OpenCL allows it to be executed on other devices
than the GPU. Here, coprocessors like field programmable gate arrays (FPGAs), as
provided, e.g., by Altera12 or the Intel Xeon Phi13 architecture should be evaluated.

For the concept of the q-group index, other applications than plain read mapping are
thinkable. Decoupled from validation, it can be used to, e.g., estimate contamination in
a sample, by counting hits between a set of reads and a collection of bacterial or viral
genomes, compared to the hits between the reads and the target organism. For this
purpose, it is intended to separate the q-group index into a library that can be used
independently from PEANUT.

12http://www.altera.com/products/software/opencl, visited 11/2014
13http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.

html, visited 11/2014
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3 An algebraic variant caller

Mutations are alterations in the genomic sequence of an individual that occur, e.g.,
during cell division. We distinguish between germline mutations, appearing in the germ
cells, which are responsible for sexual reproduction, and somatic mutations, occurring in
other cells. Germline mutations are inherited by the next generation, but do not affect
the originating individual. Somatic mutations behave vice versa: while they usually
cannot be passed to the next generation, they can affect the individual. Mutations
range from the substitution of single nucleotides (also called point mutations) over
small insertions and deletions to large-scale structural alterations (e.g., inversions or
duplications).

When sequencing a sample with NGS, mutations themselves are not directly observ-
able. Instead, we can only infer variants compared to a given reference genome (see
Section 1.1). In this context, single nucleotide variants (SNVs; a single nucleotide be-
ing different to the reference sequence), indels (small insertions and deletions), and
structural variants (large insertions or deletions, inversions or duplications) can be con-
sidered. The process of finding such variants is commonly referred to as variant calling.
Here, we focus on the calling of small variants (i.e., SNVs and indels) and present a
novel approach to variant calling that is motivated by several problems with current
solutions.

3.1 Introduction

Current variant callers for small variants often rely on a Bayesian approach to estimate
at any genomic locus (see Section 1.1) the posterior probability for the null hypothesis
of having no variant given the data. Then, a variant is called (i.e., reported), if the
probability is small enough. The data consists of the pileup of reads mapped to this
locus.

Definition 3.1 (Pileup). Let Σ = {A,C,G, T} the alphabet of DNA bases, i be a
genomic locus and s be a sample. The pileup of sample s at locus i is the pair

Ps,i := (Rs,i,Ms,i)

where Rs,i is the sequence of read alignments overlapping locus i, and Ms,i is the se-
quence of corresponding mapping qualities (see Section 2.5.3). For any pileup, we further

49



3 An algebraic variant caller

A T C G C A G C G A A T C A A

A A T C A C A G C G A A T C A

A G G A A T C A C A G C G A A

G G A A T C A C A G C G A A T

G A G G A A T C A C A G C G A

C T C G A G G A A T C G C A G C G A A T C A A C A

i

Figure 3.1: Pileup of reads mapped to a reference sequence (the dotted box at the
bottom) over locus i for an exemplary sample s. Mapping qualities are
omitted. The dashed column is the sequence Bs,i of read bases composed of
matches and substitutions over the locus. Here, four of five reads report the
base A instead of G, indicating a variant.

denote the sequence of read bases within the alignments being either a match or a sub-
stitution at locus i as Bs,i = (b1, b2, . . . , bn) with bi ∈ Σ. By Qs,i = (q1, q2, . . . , qn) with
qi ∈ [0, 1] we denote the corresponding base qualities (see Section 1.2). For a set of
samples S, let PS,i denote the set of pileups of all samples s ∈ S at locus i.

Figure 3.1 provides an example. The number of read alignments in a pileup, i.e., |Rs,i|
is also called the read depth or coverage of sample s at locus i. In the following, we will
make use of Bs,i and Qs,i. As defined, these do not contain insertions or deletions, i.e.,
it holds |Bs,i| = |Qs,i| ≤ |Rs,i|.

Auxiliary scores Bayesian approaches to detect variants rely mainly on the base qual-
ities within the pileup. Sometimes, sequencing errors are poorly reflected by the base
qualities, though. Therefore, auxiliary scores have been proposed to exclude such ar-
tifacts. On average, sequencers can be expected to sequence both DNA strands (see
Section 1.1) equally well. Hence, for a locus exhibiting a variant, the null hypothesis is
that the strand should be independent from the allele supported by a read. A deviation
from the null hypothesis is called strand bias and a significant strand bias indicates a
technical problem rather than a true variant. DePristo et al. (2011) test the null hy-
pothesis using Fisher’s exact test (Fisher 1922) by setting up a contingency table with
a row for the reference and the alternative allele and a column for the forward and
reverse strand reads supporting the alleles. Apart from the strand bias, other measures
to avoid artifacts have been proposed (DePristo et al. 2011), mostly based on testing
for independence of distributions. This includes the read position bias and the mapping
quality bias. The read position bias describes that observing the alternative allele is not
independent of the position within the read: e.g., if all alternative alleles in a pileup
occur at the end of their supporting reads, they might be caused by a technical problem
that occured in the last cycles of the sequencing. The mapping quality bias describes
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whether reads supporting a variant have a systematically lower mapping quality. Such
reads might in reality come from another locus with a similar sequence.

In the end, a variant caller provides a list of putative variants. Often, these variants
are further processed in a call and filter approach. For example, to obtain the somatic
mutations contained in a certain tumor sample, one can remove all variants that also
occur in the corresponding healthy blood sample. Alternatively, one might strive for
the de novo mutations of a patient with a certain syndrome and healthy parents. Such
mutations are either somatic mutations of the patient himself or inherited from the
germline mutations of the parents (and hence not affecting the parents). They can
be obtained by subtracting those variants that are also present in the genomes of the
parents. We identify three major problems with call and filter approaches that shall be
outlined in the following.

FDR problem When calling variants over, e.g., the human genome, we have to con-
sider up to three billion loci (see Section 1.1). With Bayesian approaches, similar to
frequentist hypothesis testing, a multiple testing or multiple comparison problem oc-
curs (Wasserman 2004; Müller, Parmigiani, and Rice 2006). For each locus, we reject
the null hypothesis (i.e., report a variant) if the posterior probability falls below a given
threshold. Doing this for many loci, we can expect a considerable amount of false dis-
coveries depending on the used threshold. Without the filtering, controlling the false
discovery rate (FDR) using the posterior probabilities is almost straightforward (Müller,
Parmigiani, and Rice 2006). With filtering though, the obtained posterior probabilities
do not properly reflect the significance of the variants since the used null hypothesis does
not consider the filtering scenario. Hence, controlling the false discovery rate becomes
difficult. We call this the FDR problem.

Insufficient evidence problem Both the calling and the filtering are sensitive to the
used thresholds, e.g., the threshold used to decide about the null hypothesis. Consider
a call and filter scenario where the variants of a sample s′ shall be subtracted from
the variants of a sample s, such that variants exclusive to sample s remain. Here,
insufficient read depth in sample s′ can lead to a true variant not being called, maybe
with a confidence only slightly beyond some threshold. In turn, that variant might
remain after subtraction if it is also called in sample s. Hence, insufficient evidence in
the filter sample s′ leads to a wrongly predicted variant. We call this the insufficient
evidence problem.

N+1 problem The third problem arises when trying to fix the second: errors caused by
insufficient evidence can be avoided by performing a joint calling of multiple samples,
obtaining the probability of the event that no sample contains a variant at a given
genomic locus. Often, studies seeking for mutations causing a certain disease use tens
or hundreds of samples. It can happen that certain samples are added during a later
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stage. When performing a joint calling, this leads to redundant computations, since the
whole calling has to be repeated when adding a new sample. This is called the N+1
problem.

This chapter presents an algebraic approach for calling single nucleotide variants that
overcomes above limitations. The N+1 problem is solved by creating per-sample indexes
of precomputed likelihoods. Before the actual variant calling, the sample indexes are
merged into an optimized index, which omits loci without any evidence for variation.
This is a lightweight and massively parallel step that can be repeated with little overhead
upon the addition of new samples. On top of the optimized index, we implement a novel
algebraic SNV calling procedure that allows to estimate the posterior probability for
having a variant that behaves like specified in a given algebraic query expression. The
query expression can be used to flexibly model filtering scenarios. Since the posterior
probability reflects the filtering, we can easily control the false discovery rate. The usage
of the optimized index makes the variant calling fast, such that different filter scenarios
and thresholds can be explored within seconds. The approach is implemented in the new
variant caller ALPACA (ALgebraic PArallel CAller), available as open source software
under the MIT license (see Section A.1).

The chapter first summarizes related work (Section 3.2). Then, a Bayesian approach
to joint variant calling over multiple samples is described (Section 3.3). Section 3.4
presents the novel algebraic variant calling method, followed by a description of its
applications (Section 3.5). In Section 3.6, a description of efficient data structures and
parallel algorithms for the approach is presented. The chapter is closed by an evaluation
of the method (Section 3.7), a description of the software (Section 3.8) and a discussion
(Section 3.9).

3.2 Related work

Many variant callers have been published so far. We focus on those being most popular,
namely GATK, SAMtools and FreeBayes. While all three can solve the insufficient
evidence problem by allowing to jointly call variants in multiple samples together, only
GATK provides a mechanism for solving the N+1 problem, and none addresses the
FDR problem.

Apart from traditional variant calling, we review two specialized algorithms for detecting
somatic mutations in tumors called MuTect and Strelka. In a sense, these solve the three
identified problems by restricting themselves to a limited setup: instead of allowing to
jointly call variants on arbitrary sets of samples, both tools expect a pair consisting of a
tumor and a normal sample (e.g., unaffected blood of the same patient). Tumors can be
heterogeneous, can develop metastases or reoccur after treatments. In such cases, the
ancestry of a tumor sample is often unclear and it has to, e.g., be compared to various
other instances of the tumor. In consequence, general approaches are even useful when
studying somatic mutations in tumors.
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Variant calling is usually embedded into a larger workflow, responsible for the filtering
but also for annotating the variants with biological knowledge and compiling results
into a human readable form. We describe Exomate as an example of such a system.

GATK The Genome Analysis Toolkit, GATK (DePristo et al. 2011), is a general frame-
work for the analysis of next-generation sequencing data. Part of GATK is the Bayesian
variant caller UnifiedGenotyper, which allows to jointly call all variants of a given set
of samples. The Bayesian variant calling presented in Section 3.3 is based on the pro-
cedure of UnifiedGenotyper, while introducing some changes. UnifiedGenotyper uses a
modified version of that procedure to also call indels. Recently, GATK was extended by
the HaplotypeCaller. Instead of investigating each genomic locus independently, it cre-
ates local assemblies of reads and derives haplotypes (see Section 1.1) over a putatively
variant region. This allows to provide phasing information for the reported variants
(i.e., whether two variants occur on the same or different chromosomes; see Chapter 1).
HaplotypeCaller entails a solution to the N+1 problem: preprocessing results can be
written to a per-sample text file in the genomic variant call format1 (GVCF), which also
contains averaged information about non-variant genomic regions. The actual calling
combines these intermediate results for calculating posterior probabilities. If a sample is
added, the preprocessing results of the other samples can be reused for another calling.
Further, GATK provides two commonly used preprocessing steps. First, it provides a
base quality recalibration by learning systematic deviations between the reported base
qualities and the empirical base quality for several covariates, including the machine
cycle (i.e., the position of the base within the read) and the dinucleotide context (i.e.,
the preceding base). Under the assumption that most loci do not host a variant, the
empirical base quality for each covariate is estimated by considering substitutions be-
tween the read and the reference as sequencing errors. Second, GATK allows to perform
a local multiple sequence realignment over loci which host indels (indel realignment).
Since read mappers align each read separately, the optimal alignment of the same in-
del within different reads might differ. The multiple sequence realignment considers all
reads covering a locus together, thereby increasing the consistence between the reported
indels. Finally, GATK provides a method to estimate the false discovery rates of the
reported variants using gaussian mixture model trained with a set of high confidence
known variants (variant quality score recalibration). However, this approach does not
consider filtering between samples, such that the reported false discovery rates are only
accurate when jointly calling all variants in a single set of samples without performing
additional filtering.

SAMtools Li et al. (2009) provide SAMtools as a collection of tools for handling
mapped reads. Among other features, it implements a Bayesian variant calling procedure
similar to that of GATK. Around loci which contain an indel, reads are often misaligned.
Especially if the indel is small, assuming one or more substitutions might attain a better

1https://sites.google.com/site/gvcftools/home/about-gvcf, visited 06/2014
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alignment score (see Chapter 2) than assuming an insertion or deletion. Such misaligned
read bases can occur systematically around an indel and cause spurious variant calls.
With a Hidden Markov Model (Li 2011), SAMtools calculates a base alignment quality
(BAQ) that is used to lower the base qualities of likely misaligned read bases such that
they contribute less to variant calls. ALPACA uses SAMtools to obtain read pileups
together with the recalibrated base qualities (see Section 3.6.5) from a BAM file of
mapped reads.

FreeBayes Similar to GATK’s HaplotypeCaller, FreeBayes (Garrison and Marth 2012)
performs a local assembly of haplotypes: the genotypes used in FreeBayes contain multi-
ple loci and are inferred from the assembled haplotypes. FreeBayes considers the poste-
rior probability for concrete genotype combinations of the investigated samples instead
of allele frequencies. At the expense of increased computational complexity, this allows
to find the set of genotypes that maximizes the posterior probability in a gradient search.
The authors argue that this is superior to only considering allele frequencies, where the
maximum likelihood genotype of each sample has to be reported (see Equation (3.6) in
Section 3.4).

MuTect Instead of calling variants, MuTect (Cibulskis et al. 2013) tries to directly
detect somatic point mutations. It does so for pairs of tumor and normal samples (i.e.,
a sample from unaffected tissue of the same patient). MuTect considers the family of
modelsMm

f withm being the assumed sequenced allele and f ∈ [0, 1] being its frequency.
At each genomic locus i, for the tumor sample t with pileup Pt,i, it determines the log
odds score

log10

Pr(Pt,i |Mm
f )

Pr(Pt,i |Mm
0 )

of the model likelihoods for the case of observing alternative allele m at frequency f
against observing only the reference allele (i.e., observing allele m at frequency 0).
The alternative allele m and the alternative allele frequency f is determined heuristi-
cally from the distribution of read bases at that locus. For the normal sample n with
pileup Pn,i, the log odds score for observing no variant against a heterozygous variant

log10

Pr(Pn,i |Mm
0 )

Pr(Pn,i |Mm
0.5)

is calculated analogously. A somatic mutation in the tumor is reported if both scores
exceed thresholds motivated by the expected mutation rates. Cibulskis et al. (2013)
claim to provide superior sensitivity on tumor samples that are contaminated or a
heterogeneous mixture of more than one tissue, because the expected allele frequency is
estimated from the data. In contrast to the prior assumption of a ploidy (see Section 3.3)
this does not weight down (and thereby allows to detect) mutations that only occur
in a small subset of the reads. However, deviations from the expected ploidy can also
indicate sequencing errors, which are henceforth not properly reflected in the log odds
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scores. MuTect introduces an extensive set of auxiliary scores to avoid that this causes
too many false positives.

Strelka Similar to MuTect, Strelka (Saunders et al. 2012) detects somatic mutations
by investigating allele frequencies in a tumor and a normal sample. At any genomic lo-
cus i, Strelka calculates likelihoods Pr(Pt,i|ft) and Pr(Pn,i|fn) to observe the pileup Pt,i

of the tumor and Pn,i of the normal sample given the alternative allele frequencies
ft, fn ∈ [0, 1]. Then, the posterior probability for a somatic mutation is approximated
by integration over all combinations of unequal alternative allele frequencies, i.e.,

1∫
0

1∫
0

1ft 6=fn Pr(Pt,i | ft) Pr(Pn,i | fn) Pr(ft, fn) dftdfn

with 1ft 6=fn being the indicator function for ft 6= fn and Pr(ft, fn) being the prior prob-
ability of observing the two allele frequencies in a tumor and a normal sample. The
case of ft ≈ fn is not handled explicity. It is rather avoided by sampling the space of
considered allele frequencies in practice. Further, the obtained posterior probability is
multiplied by the probability for having the reference genotype in the normal sample
(calculated in a Bayesian way; see Section 3.3). This is necessary to avoid false posi-
tives caused by copy number variations, i.e., mutational changes duplicating parts of a
chromosome.

Exomate Practical implementations of variant calling workflows need to perform var-
ious additional steps. We exemplify this by describing the Exomate framework (Mar-
tin 2014). Exomate consists of three parts: a variant calling workflow, a PostgreSQL2

database and a web frontend. The variant calling workflow is implemented with Snake-
make (Chapter 4). It uses BWA to map the sequence reads to the reference genome.
Afterwards, it performs various preprocessing steps on the mapped reads proposed by
DePristo et al. (2011), e.g., PCR duplicates are detected, indels are realigned and base
qualities are recalibrated. The removal of PCR duplicates (see Section 1.2) is useful
since they can bias the distribution of alleles at a locus. Variants are called with GATK’s
UnifiedGenotyper. Unlike the new HaplotypeCaller (see above), UnifiedGenotyper does
not handle the N+1 problem. The Exomate workflow therefore does not jointly call
all samples together, but calls samples of the same patient and its family jointly in a
group. This partially solves the insufficient evidence problem, and largely avoids the
N+1 problem since the addition of a new sample only causes one group to be called
again. The called variants are imported into the PostgreSQL database. The information
about a variant alone is often not sufficient to judge over its biological impact: e.g., a
variant that lies within a gene (see Section 1.1) and leads to truncation of the encoded
protein is more likely the cause of a disease than a variant that occurs in the intron of
a gene. Hence, Exomate annotates variants with biological information using the tool

2http://www.postgresql.org, visited 11/2014
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VEP (McLaren et al. 2010). Finally, a web frontend allows to access the called variants
easily, filter variants of samples against each other and evaluate the consequence of a
variant by its annotation.

3.3 Bayesian variant calling

Given a set of samples S = {s1, s2, s3, . . . , sn} and an arbitrary genomic locus i, we
first describe how to estimate the probability of having a single nucleotide variant in
any of the samples. Here we assume that all samples have the same ploidy Φ ∈ N (i.e.,
the number of copies of each chromosome; see Section 1.1). Human samples are diploid,
i.e., the ploidy is Φ = 2. It is common practice to ignore the different ploidy of the sex
chromosomes in male samples (see Section 1.1) and correct the obtained calls in later
steps (DePristo et al. 2011). Since we are only interested in single nucleotide variants
we can observe the alleles Σ = {A,C,G,T} and the genotypes ΓΦ as the set of all
Φ-combinations of alleles with replacement. For a ploidy Φ = 2, there are 10 possible
genotypes, namely

AA, CC, GG, TT, AC, AG, AT, CG, CT, GT.

Definition 3.2, Lemma 3.3 and Lemma 3.5 are taken from DePristo et al. (2011) and
Lemma 3.6 is inspired by Li (2010). For clarification, we add two proofs that have been
omitted in the literature. We first define the probability that a read base has been
sampled from a given allele, i.e., the likelihood of the read base given the allele.

Definition 3.2 (Allele likelihood). Let s ∈ S be a sample with pileup Ps,i at locus i.
Let A be the random variable indicating the true allele and B be the random variable
indicating the observed base. For any k, let b ∈ Bs,i be the k-th base in the pileup of
sample s at locus i. Let q ∈ Qs,i be the corresponding k-th base quality. Then, the
likelihood to observe base b given that A = a ∈ Σ is the true allele at the locus is

Pr(B = b | A = a) =

{
1− q if b = a,

q · ξb|a otherwise,

where ξb | a is the probability of base b to be observed given that allele a was miscalled.

The probability ξb|a can be obtained from a technology specific confusion matrix (see
Table 3.1). The rows of the confusion matrix sum up to 1. This is reasonable since,
given that the sequencer reported a wrong base, there are only three wrong choices for
each allele. In consequence, for a fixed base quality q and allele a, the sum of the allele
likelihoods for all four possible bases equals 1:∑

b∈Σ

Pr(B = b | A = a) = 1− q + q
∑

b∈Σ,b 6=a
ξb|a = 1.

Recalling that a genotype is composed of Φ alleles, we can use the allele likelihood to
infer the likelihood to observe a certain base under a given genotype.
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Table 3.1: Confusion matrix for base miscalls of Illumina HiSeq sequencers as reported
by DePristo et al. (2011). Column b in row a depicts the probability ξb|a to
observe base b given that the true allele a in the DNA sequence is miscalled.

A C G T

A - 0.58 0.17 0.25
C 0.35 - 0.11 0.54
G 0.32 0.05 - 0.63
T 0.46 0.22 0.32 -

Lemma 3.3 (Genotype likelihood). Let Φ be the expected ploidy of sample s ∈ S. Then
the likelihood to observe base b ∈ Bs,i under genotype G = g ∈ ΓΦ is

Pr(B = b | G = g) =
1

Φ

∑
a∈g

Pr(B = b | A = a).

Assuming independence between the sequence reads, the likelihood to observe the pileup
Ps,i under genotype G = g is

Pr(Ps,i | G = g) =
∏
b∈Bs,i

Pr(B = b | G = g).

Proof. Initially, we see that

Pr(B = b | G = g) =
∑
a∈g

Pr(B = b | A = a) Pr(A = a | G = g).

A priori, the read base could have been sampled from any of the alleles of the genotype
with equal probability, i.e., Pr(A = a | G = g) = 1

Φ , and therefore

Pr(B = b | G = g) =
1

Φ

∑
a∈g

Pr(B = b | A = a).

Then, Pr(Ps,i|G = g) follows directly from assuming independence between the reads.

We now want to calculate the likelihood of a pileup to be observed under a given
alternative allele frequency. Here, the alternative allele frequency is the number of non-
reference alleles in the genotype, denoted as |g| for g ∈ ΓΦ. For any ploidy Φ, there is
always one genotype g ∈ ΓΦ with |g| = 0. This genotype represents that no allele differs
from the reference. If assuming a uniform distribution, for a given alternative allele
frequency Ms = m ≤ Φ of sample s ∈ S at locus i, we can denote the prior probability
of a certain genotype G = g with |g| = m as

Pr(G = g |Ms = m) =

(
3 +m− 1

m

)−1

, (3.1)
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i.e., the inverse of the number of possibilities to draw m alternative alleles from the
set of possible alternative alleles with replacement. With four alleles A,C,G,T, the set
of possible alternative alleles has always a cardinality of three, since one allele is the
reference allele. In the diploid case (i.e., Φ = 2), this means that for an alternative
allele frequency of 1, the prior probability for any genotype g ∈ Γ2 with |g| = 1 is
Pr(G = g | Ms = 1) = 1

3 . For an alternative allele frequency of 2, the prior for any
genotype g with |g| = 2 is Pr(G = g | Ms = 2) = 1

6 , since all homozygous genotypes
except the one with the reference allele and three heterozygous genotypes have an
alternative allele frequency of 2 (recall that, in contrast to heterozygous, homozygous
means that all chromosomes carry the same allele; see Section 1.1). The likelihood of
the pileup given the allele frequency follows directly.

Lemma 3.4 (Allele frequency likelihood). For any sample s ∈ S, at any genomic
locus i, the likelihood to observe the pileup Ps,i given an allele frequency Ms = m is

Pr(Ps,i |Ms = m) =
∑

g∈ΓΦ,|g|=m

Pr(Ps,i | G = g) Pr(G = g |Ms = m).

Recall that PS,i = {Ps,i | s ∈ S} denotes the set of pileups at locus i for a set of
samples S. For multiple samples, the likelihood of observing no alternative allele in all
samples, i.e., a total alternative allele frequency M = 0 is given as

Pr(PS,i |M = 0) =
∏
s∈S

Pr(Ps,i |Ms = 0). (3.2)

Here, we assume that the samples are independent. Then, Bayes’ Theorem allows to
calculate the probability of having a total alternative allele frequency of zero given the
pileups of the samples.

Lemma 3.5 (Reference genotype probability). Let PS,i be the set of pileups of samples
S at any genomic locus i. The probability to have in total zero alternative alleles is

Pr(M = 0 | PS,i) =
Pr(M = 0) Pr(PS,i |Ms = 0)

Pr(PS,i)
.

The event M = 0 can be seen as our null hypothesis. A genomic locus with a small
probability for the null hypothesis can be considered to exhibit a variant in any of the
samples S. For Lemma 3.5, we need the prior probability Pr(M = m) for a total alter-
native allele frequency of m. Here, the following simplifying assumptions are made. It is
assumed that the samples S come from a certain population. The size of the population
is finite and constant over time. From one generation to the next, all individuals die
and are replaced by offspring. Reproduction is a random process: some individuals may
have no offspring, while some can have multiple. This is called the Wright-Fisher model
(Wakeley 2008). Further, during reproduction, mutations can appear, but only at a
locus previously not mutated. This is called the infinite-sites model (Wakeley 2008).
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Figure 3.2: The prior probability for zero alternative alleles depending on the number
of samples.

Using these assumptions, the prior probability of a total alternative allele frequency of
m is approximated as (Li 2010; DePristo et al. 2011; Wakeley 2008)

Pr(M = m) =

{
Θ
m if m > 0,

1−Θ
∑|S|·Φ

i=1
1
i otherwise.

(3.3)

The parameter Θ denotes the heterozygosity, the expected fraction of heterozygous loci.
For human samples, DePristo et al. (2011) propose to set Θ = 0.001. Figure 3.2 shows
the development of Pr(M = 0) for increasing number of samples with heterozygosity
Θ = 0.001 and ploidy Φ = 2. For a single sample, the probability is Pr(M = 0) =
1− (Θ + Θ/2) = 0.9985. With more samples, it decreases, since it becomes more likely
that a sample with a mutation at that locus is included. However, even when considering
large numbers of samples, we see that with the proposed heterozygosity Θ, most loci
are expected to exhibit the reference genotype.

We finally have to calculate the marginal probability Pr(PS,i) of all pileups. This could
be done using the law of total probability and summing over all combinations of geno-
types (DePristo et al. 2011), which becomes infeasible with larger numbers of samples.
Here, we adapt an approach of Li (2010) developed for the Bayesian model of SAMtools
(see Section 3.2) and present a proof by structural induction. It can be calculated by
dynamic programming (see Section 3.6.5) instead of having to sum over an exponential
set of genotype combinations.

Lemma 3.6 (Marginal pileup probability). Let S = {s1, s2, s3, . . . } be an ordered set
of samples with a set of pileups PS,i at an arbitrary genomic locus i. We define

zj,k := Pr(P{s1,...,sj},i |M = k)
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as the likelihood of the pileups given that k alternative alleles are contained in the first j
samples. Then, we claim

zj,k =
Φ∑

k′=0

zj−1,k−k′ Pr(Psj ,i |Msj = k′)

with z0,0 = 1 and zj,k = 0 for 0 > k > |S| · Φ or j ≤ 0 and k > 0. Then, the
likelihood to observe PS,i given an alternative allele frequency M = m can be calculated
as Pr(PS,i |M = m) = z|S|,m such that the law of total probability yields

Pr(PS,i) =

|S|·Φ∑
m=0

Pr(PS,i |M = m) Pr(M = m)

as the probability for observing the pileups PS,i.

Proof. It suffices to show Pr(PS |M = m) = z|S|,m by structural induction. Let S = {s}
be an arbitrary set of a single sample. It holds that

z1,m =

Φ∑
k′=0

z0,m−k′ Pr(Ps,i |Ms = k′)

= z0,0 Pr(Ps,i |Ms = m)

= Pr(Ps,i|Ms = m)

=
∑

g∈ΓΦ,|g|=m

Pr(Ps,i|G = g) Pr(G = g|Ms = m).

If m > Φ, there is no such genotype and the latter sum is 0 = Pr(PS,i |M = m). Else,
the sum describes the likelihood of the pileup of sample s given an alternative allele
frequency of m, which is exactly the definition of Pr(PS,i |M = m).

Let S = {s1, s2, . . . , sn−1, sn} be a set of multiple samples. We assume that

Pr(PS′,i |M = k) = z|S′|,k

holds for any k and subset S′ ⊂ S with |S′| = |S| − 1. Without loss of generality
we assume that S′ = {s1, s2, . . . , sn−1} (which can always be achieved by relabeling
samples). It holds

zn,m =
Φ∑

k′=0

zn−1,m−k′ Pr(Psn,i |Msn = k′)

=

Φ∑
k′=0

Pr(PS′ |M = m− k′) Pr(Psn,i |Msn = k′)

= Pr(PS,i |M = m)

by induction.
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Figure 3.3: Exemplary development of reference genotype probability depending on read
depth. Solid lines depict the heterozygous case, dashed lines the homozygous
case (see text) with ploidy Φ = 2, heterozygosity Θ = 0.001, reference
allele A and alternative allele C. For each case, base qualities are uniformly
set to 0.2, 0.02, 0.002 and 0.0002 (from top to bottom line). With zero reads,
the reference genotype probability equals the prior probability for an allele
frequency of zero, here Pr(M = 0) = 1− (0.001 + 0.0005) = 0.9985.

In the following, we consider some examples. First, we investigate the development of
the reference genotype probability depending on the read depth, the base quality and
the fraction of non-reference bases in the pileup. For this, we assume a pileup with
2n bases and investigate two cases. In the heterozygous case, n of these represent the
same alternative allele. In the homozygous case, all 2n bases represent the alternative
allele. Further, for both cases we consider a range of base qualities, namely 0.2, 0.02,
0.002 and 0.0002 which are set uniformly for all bases. Figure 3.3 shows the resulting
reference genotype probabilities. As expected, increasing the read depth increases the
degree of belief in observing a variant, reflected in decreasing the reference genotype
probability exponentially. Naturally, the homozygous case yields lower probabilities as
there is more evidence for the alternative allele. Further, the better the base qualities,
the lower the reference genotype probability.

Now, we investigate the influence of number and read depths of samples. We consider
an arbitrary locus with reference allele A and two samples s1 and s2, showing different
counts of allele A and alternative allele C in their pileup. Table 3.2 shows two aspects.
First, as long as the fraction of alternative bases over both samples remains constant,
the reference genotype probability is almost the same, independently of the depths of
the individual samples. Second, sample s2 showing a pileup of reference bases or having
no coverage at all causes almost no difference in the resulting probability. The first
observation indicates that shallowly sequenced samples can be rescued with others of
the same or better read depth. The second observation illustrates that the model works
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Table 3.2: Reference genotype probability for an example scenario of two samples with
varying support for a reference and an alternative allele. The pileup of each
sample is characterized as n + m with n being the number of A bases and
m being the number of C bases. A is assumed to be the reference allele. A
uniform base quality of 0.002 was assumed.

s1 s2 probability

18+18 2+2 3.6751e-43
10+10 10+10 3.6756e-43
15+15 5+5 3.6756e-43
20+20 40+0 6.1261e-44
20+20 0+0 3.3415e-44

as desired: we calculate the probability of having zero reference alleles at the considered
loci; with one sample showing evidence for a variant, subsequent samples that show no
evidence for a variant should not have a major effect on the probability. Only adding
more samples with evidence for a variant will further improve the probability.

3.4 Algebraic variant calling

On top of the posterior probabilities for having zero alternative alleles at a given genomic
locus, we can now define an algebraic variant calling procedure that allows to incorporate
a desired filtering scenario into the obtained posterior probabilities. This will allow us
to report, e.g., somatic mutations along with their probability while controlling the rate
of false discoveries.

A variant locus is a genomic locus that hosts a variant. We strive to model filtering in
terms of subtraction and union of variant loci. For this, we first define an algebra of
variant loci over the true variant genomic loci of a given set of samples. Further, we
define a set of expressions over this algebra that is restricted to the relevant operations
union and difference.

Definition 3.7 (Algebra of variant loci). For a finite set of samples S = {s1, s2, s3, . . . },
let VS = Vs1 ∪Vs2 ∪Vs3 ∪ . . . be the true set of variant genomic loci in the samples. The
algebra of variants is the set algebra AS := (2VS ,∪,∩, \) with powerset 2VS as carrier
set and binary operations union (∪), intersection (∩) and difference (\). Further, let
QS denote the smallest set of expressions over the algebra of variants with

Vs ∈ QS
φ1 ∪ φ2 ∈ QS
φ1 \ φ2 ∈ QS .

for φ1, φ2 ∈ QS and s ∈ S.
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Now, the desired filtering scenarios can be written as expressions of QS : e.g., all variant
loci that are exclusively in sample s1 compared to samples s2 and s3 are expressed as
Vs1 \(Vs2∪Vs3). In the following, depending on the context, we refer to these expressions
either as sets of variant loci (i.e., referring to the result of their evaluation) or queries
(i.e., referring to the syntactic construct). The set of allowed expressions QS does not
contain the empty expression. This would describe the empty set of variant loci, but is
of no use in combination with the other possible expressions. Further, intersections are
omitted. The intersection of the variant loci of multiple samples would describe those
loci that are variant in all samples. In practice, this is quite restrictive and of limited use:
a single sample not exhibiting a particular variant locus would remove the locus from
the result of the intersection, which might contain many other samples all exhibiting
the variant locus. Instead, we want to be robust against such outlier samples and opt
for providing a relaxed form of the intersection in a future work (see Section 3.9).

As the true variant loci in each sample are unknown, so is the carrier set of our algebra.
Hence, an expression φ ∈ QS cannot be calculated directly. Instead, our goal is to
approximate φ by calculating posterior probability for any locus i not being in the set φ
given the read pileups PS,i, i.e., Pr(i 6∈ φ|PS,i). We rely on the Bayesian variant calling
method described in Section 3.3, which yields the probabilities for the base case, where
we want to know if any sample from a set of samples exhibits a variant. We assume
independence between the samples and demand that no sample occurs twice in φ. Then,
the following posterior probability can be obtained.

Theorem 3.8 (Posterior query probability). Let S = {s1, s2, s3, . . . } be a set of in-
dependent samples with pileups PS,i at genomic locus i and φ ∈ QS be a query. The
posterior probability for i 6∈ φ is

Pr(i 6∈ φ | PS,i) :=


Pr(M = 0 | PS′,i) if φ =

⋃
s∈S′⊆S Vs

1− Pr(i ∈ φ1 | PS,i) · Pr(i 6∈ φ2 | PS,i) if φ = φ1 \ φ2

Pr(i 6∈ φ1 | PS,i) · Pr(i 6∈ φ2 | PS,i) if φ = φ1 ∪ φ2

with Pr(i ∈ φ1|PS,i) = 1− Pr(i 6∈ φ1|PS,i).

Proof. We show the correctness by structural induction over φ. As base case, let φ =⋃
s∈S′⊆S Vs. Lemma 3.5 tells us that Pr(M = 0 | PS′,i) is the probability for the samples

S′ exhibiting zero alternative alleles at locus i. Hence, it holds Pr(M = 0 | PS′,i) =
Pr(i 6∈ φ | PS,i). By setting S′ = {s}, we see that this also holds for φ = Vs.

We now assume that Pr(i 6∈ φ1 | PS,i) and Pr(i 6∈ φ2 | PS,i) are correct for φ1, φ2 ∈ QS .
If φ = φ1 \ φ2, we see

1− Pr(i ∈ φ1 | PS,i) · Pr(i 6∈ φ2 | PS,i) = 1− Pr(i ∈ φ1 and i 6∈ φ2 | PS,i)

= 1− Pr(i ∈ φ1 \ φ2 | PS,i)

= Pr(i 6∈ φ1 \ φ2 | PS,i)

= Pr(i 6∈ φ | PS,i).
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Finally, if φ = φ1 ∪ φ2 and not φ =
⋃
s∈S′⊆S Vs for some S′, it holds

Pr(i 6∈ φ1 | PS,i) · Pr(i 6∈ φ2 | PS,i) = Pr(i 6∈ φ1 and i 6∈ φ2 | PS,i)

= Pr(i 6∈ φ1 ∪ φ2 | PS,i)

= Pr(i 6∈ φ | PS,i).

If the query probability Pr(i 6∈ φ | PS,i) at a genomic locus i is sufficiently small, we
can expect i to be contained in the set φ. We can use this to define the set of putatively
variant loci.

Definition 3.9 (Putatively variant loci). Let L be the set of all genomic loci. For a
query φ ∈ QS and a threshold α ∈ [0, 1], we denote the set of putatively variant loci as

φ∗α := {i ∈ L | Pr(i 6∈ φ | PS,i) ≤ α}.

The set φ∗α is an approximation of φ. Calculating φ∗α involves a collection of hypothesis
tests for each locus i ∈ L, with i 6∈ φ being the null hypothesis. For each test, we can
make two kinds of errors. The type I error is to erroneously reject the null hypothesis,
i.e., to state i ∈ φ∗α for a locus i not contained in the unknown set φ in reality. Such
a locus i would be called a false positive. The type II error is to falsely accept a null
hypothesis, i.e., to state i 6∈ φ∗α for a locus i which in reality is contained in the set φ. Such
loci i are called false negatives. The trade-off between these two errors can be controlled
with the threshold α. The set of genomic loci to be considered is very large, given that,
e.g., the human genome is about 3.2 billion basepairs long. With so many hypothesis
tests, the choice of α becomes crucial to avoid excessive amounts of false positives.
We choose to control the false discovery rate (FDR), i.e., the fraction of false positives
among all predicted loci. Here, in contrast to frequentist approaches based on p-values,
we use posterior probabilities in a Bayesian approach (see Wasserman 2004). While
controlling the FDR was originally introduced by Benjamini and Hochberg (1995) for
the frequentist approach, it is also possible, even more straightforwardly, with Bayesian
probabilities (Müller, Parmigiani, and Rice 2006).

First, as shown by Müller, Parmigiani, and Rice (2006), for a given α we calculate
the expected false discovery rate, assuming independence of the hypotheses, from the
posterior probabilities as the expected number of false positives divided by the total
number of positives, i.e.,

FDRα =
1

|φ∗α|
∑
i∈φ∗α

Pr(i 6∈ φ|PS,i). (3.4)

We can then control the expected false discovery rate by choosing the maximum α such
that the expected FDR does not exceed a given threshold α∗, i.e.,

α = max
α′:FDRα′≤α∗

α′. (3.5)
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Now, we can link the putatively variant loci to the set of true variant loci and describe
the approximation quality with the FDR, which follows directly from Equations (3.4)
and (3.5).

Corollary 3.10. For a query φ and a desired false discovery rate α∗, φ∗α with α from
Equation (3.5) is the largest set of putative variants with an expected FDR of at most α∗.

In general, the information about a locus being variant alone is of limited use. Since the
posterior probability only considers allele frequencies, it cannot be used to find the most
likely genotype. Therefore, at each predicted variant locus i, we estimate the concrete
variant in each sample s by calculating the maximum likelihood genotype as

arg max
g∈ΓΦ

Pr(Bs,i|GT = g). (3.6)

3.5 Applications of algebraic variant calling

The algebraic approach described above allows to flexibly define various filtering sce-
narios. The main applications shall be outlined in the following. The most simple ap-
plication is to call all variants in a set of samples, e.g., a population. For this, we obtain
all putative variants by formulating

φ = Vs1 ∪ Vs2 ∪ Vs3 ∪ . . .

the estimation of which is reduced to Bayesian variant calling by Theorem 3.8. To
estimate the variant loci that are exclusive to a group of samples S compared to another
group of samples S′, we can write

φ =
⋃
s∈S

Vs \
⋃
s′∈S′

Vs′ .

The sets of samples S and S′ could, e.g., represent two different outcomes of a dis-
ease. The resulting set of variant loci might contain the genetic reason for the different
outcomes, for example a certain variant that damages an important protein.

Such queries can also be used to infer mutations from variants: e.g., S can be a set of
children, whereas S′ can be their parents. Then, variant loci exclusive to the children
are putative de novo mutations occuring in the child generation. Note that, mutations
of a certain kind are missed here, namely when a locus hosts already a variant compared
to the reference genome in a parent and a mutation induces a further change to this
locus in the child. Such cases are rare though, because they would imply a mutation
event to happen twice at the same locus within some generations. In fact, in an in-house
database (Exomate; see Section 3.2) of 54,844,721 loci with single nucleotide variants
called in 326 human samples, only 424,752 loci, less than 1%, exhibit more than one
alternative allele.
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Algebraic variant calling can also be used to find somatic mutations that might explain
the development of a tumor. Such somatic mutations should have occurred at some
point during or before tumor development, and should not be present in the healthy
tissue of the same individual. Assume that t is a sample of the tumor, and h is a healthy
sample (e.g., from blood) of the same patient. Somatic mutations occuring in the tumor
can be estimated by writing

Vt \ Vh.

Tumors are often heterogeneous and may change over time. Algebraic variant calling
allows to flexibly select mutations of different tumor branches, e.g.,

((Vt1 ∪ Vt2) \ (Vt3 ∪ Vt4)) \ Vh

if t1, t2, . . . , t4 are samples of these different branches and we are interested in the first
two branches.

Often, investigating multiple instances of the same disease is advisable, which can be
accomplished easily with the query language. Let t′, h′ be another tumor-healthy sample
pair, then the somatic mutations in any of the two tumors can be estimated as

(Vt ∪ Vt′) \ (Vh ∪ Vh′).

This grouped filtering has the advantage that regions of weak evidence might be com-
pensated by the additional samples. Instead of pooling healthy and tumor samples, it is
sometimes advisable to investigate a paired scenario, i.e., only consider the correspond-
ing healthy sample and not all healthy samples for each candidate somatic mutation.
Such pairing can be formulated as

(Vt \ Vh) ∪ (Vt′ \ Vh′).

This combined query has still an advantage over creating two separate queries Vt \ Vh

and Vt′ \ Vh′ because the combined probability might be significant at loci where the
single probabilities are too weak to pass the FDR control.

Along with the putatively variant genomic loci, the procedure yields posterior proba-
bilities for each reported locus being in the set φ of true variants and controls the false
discovery rate, hence solving the FDR problem (see Section 3.1). Further, no separate
thresholds need to be applied for the calling of the filter samples, thereby solving the
insufficient evidence problem (see Section 3.1).

We investigate the behavior of the involved probabilities for a filtering scenario in an
example. Consider two samples s1 and s2 and the query φ := Vs1 \Vs2 . For an arbitrary
locus, we assume that s1 has a pileup with 20 bases equal to the reference allele, say A,
and 20 bases showing an alternative allele, say C. In other words, sample s1 shows strong
evidence for a heterozygous variant. For our filter sample s2, we now evaluate the depths
d = 0, 2, . . . , 8, 10 with an equal amount of A and C bases for each depth d. Figure 3.4
shows that, as expected, the reference genotype probability for the filter sample s2
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Figure 3.4: Example for the development of probabilities in a filtering scenario with
increasing depth. The solid line shows the query probability Pr(i 6∈ Vs1 \
Vs2 | Ps2,i) (see Definition 3.8) with s1 and s2 as defined in the text. The
dashed line depicts the reference genotype probability for the filter sample
Pr(M = 0 | Ps2,i). Base quality was uniformly set to 0.002.

decreases with increasing depth. In turn, this increases the overall query probability
for φ. With a depth of 4 in the filter sample, the query probability is already close
to one here. In other words, the better the evidence for the variant locus in the filter
sample is, the lower is the degree of belief for that locus to be in the set φ here.

3.6 Algorithm and data structure

Algebraic variant calling allows to retrieve a set of putatively variant genomic loci given
a query which describes a filtering scenario. We now investigate its algorithmic imple-
mentation. An important observation is that for a given set of samples, different queries
use the same allele frequency likelihoods (Lemma 3.4), while all following probabilities
like reference genotype probability (Lemma 3.5), pileup probability (Lemma 3.6) and
query probability (Theorem 3.8) differ. Hence, it is reasonable to avoid re-calculating
allele frequency likelihoods for different queries. We therefore split our algorithm into
three distinct steps:

1. sample indexing,

2. index merging,

3. calling.

The first step preprocesses a sample and stores the obtained information (e.g., the allele
frequency likelihoods) in an index. The second step merges the indexes of the samples
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sample indexing sample indexing sample indexing

index merging

calling

Figure 3.5: Outline of the ALPACA calling workflow for three samples. The dashed
arrows indicate the part of the work that has to be repeated upon adding
the third sample.

into a combined optimized index. Finally, the third step uses the optimized index to
satisfy a given query. Upon the addition of a sample, only steps two and three have
to be repeated. This solves the N+1 problem (see Section 3.1). The different steps are
described in the following. Figure 3.5 visualizes the idea.

3.6.1 Sample indexing

We process each sample separately, and store the information in an index in the hierar-
chical data format3 (HDF5). HDF5 provides facilities optimized for storing numerical
data in a hierarchical structure. The data is stored as datasets, that are organized in a
hierarchy of groups. Both groups and datasets can be accessed by names, and allow to
store additional attributes. HDF5 supports transparent compression and fast access to
slices of datasets.

For a sample s and each chromosome, we store five datasets. For each chromosome, we
consider all genomic loci i covered by at least one read base. Certainly, a single read
base could never yield a reliable variant call. Hence, one could think about storing only
loci with three or five read bases. However, we will later call jointly on multiple samples.
Here, that single read base is at least important to provide comprehensive information
if the locus is called due to other samples. First, a dataset P s of integers is stored, with
P si containing the position of genomic locus i in the chromosome. Second, a dataset Ls

of floats is stored: Entry Lsi,m := ln Pr(Ps,i | Ms = m) contains the allele frequency
likelihood (Lemma 3.4) at genomic locus i represented in logarithmic space with Ps,i
being the pileup at the genomic locus. Third, we store a dataset Gs of bytes, setting
Gsi := j with gj ∈ ΓΦ being the maximum likelihood genotype (see Equation (3.6)).
Fourth, we record for each genomic locus i and each allele a ∈ Σ the total number of
sequence reads d supporting it, i.e., Ds

i,a := d in a dataset Ds of bytes. Finally, we record
analogously the numbers of supporting sequence reads coming from the reverse strand

3http://www.hdfgroup.org/HDF5, visited 04/2014
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Table 3.3: Datasets stored per chromosome in the sample index. Each dataset has as
many rows as loci are covered by at least one read in the chromosome.

dataset data type bits per entry columns content

P s integer 32 1 positions
Ls floating point 32 Φ + 1 likelihoods
Gs integer 8 1 maximum likelihood genotypes
Ds integer 8 6 allele depths
Rs integer 8 6 reverse strand allele depths

(see Chapter 1) in a dataset Rs. Sometimes, the sequencer cannot properly determine
a read base. These bases are encoded as N (in contrast to A,C,G, T ) in the read. Since
many N bases can be an indicator for a technical problem, we store above two read
counts also for a virtual N allele. Analogously we store the read counts for a virtual
indel allele, counting all reads that support any insertion or deletion at that locus. We
use bytes for Ds and Rs since one can expect the number of sequence reads to be less
than 256 at most loci. Further, the confidence with 255 reads should be high enough.
Similar to DePristo et al. (2011) we take a random subsample of size 255 in cases where
the read depth is higher. Table 3.3 provides a summary of the datasets.

3.6.2 Index merging

Motivated by the following observation, this step merges the sample indexes together,
creating an optimized index in HDF5 format. The prior probability for an alternative
allele frequency greater than zero in a single sample is

Pr(M > 0) =
Φ∑

m=1

Pr(M = m) =
Φ∑

m=1

Θ

m

with Pr(M = m) from Equation (3.3). DePristo et al. (2011) propose an expected
heterozygosity of Θ = 0.001 for humans. Together with a ploidy Φ = 2, we obtain a
prior probability Pr(M > 0) = 0.0015 for a non-reference locus. In other words, loci that
host a variant are rare. Since loci that do not host a variant in any of the samples are not
relevant for calling, we can expect to save a considerable amount of space by including
only those with at least one sample exhibiting a variant according to the maximum
likelihood genotype. In practice, this makes the optimized index much smaller than the
sample indexes, although it contains information for multiple samples. Further, it is
much faster to process upon calling, since irrelevant loci are already filtered out.

For each chromosome, we store the datasets Ls, Gs, Ds and Rs of all samples s for
these loci and a dataset P of integers with the genomic positions of the loci. If a sample
has zero coverage (i.e., no reads) over any of the loci, the corresponding allele frequency
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likelihoods of that sample are set to 1. This results in the posterior reference genotype
probability (see Lemma 3.5) of that sample at such loci becoming equal to the prior
probability Pr(M = 0) for zero alternative alleles.

3.6.3 Calling

Finally, the optimized index can be used to serve putative variants for a specific query
φ ∈ QS . This entails calculating the query probability (Theorem 3.8) for each locus from
the merged index, using the allele frequency likelihood as stored in Ls and calculating
putatively variant loci as specified in Definition 3.9 and Corollary 3.10. The loci are
provided in the variant call format4 (VCF) along with the strand bias (see Section 3.1)
that is calculated using the sequence read counts from Ds and Rs. Further, the max-
imum likelihood genotype is read from Gs and shown along with the read counts for
each sample s occurring in the query φ.

3.6.4 Compression

The three steps of the algorithm involve accessing and creating two types of HDF5-based
indexes. The merged optimized index (see Section 3.6.2) contains only putatively variant
loci, and is therefore comparably small: e.g., the merged index for six exome sequencing
samples described in Section 3.7 with a total BAM file size of 43 GB takes only about
300 MB (i.e., 0.7%) of disk space. Since it will be accessed for each query (i.e., each
invocation of the calling step), it should be optimized for fast reading. Hence we choose
to store the merged index uncompressed. In contrast, the sample index is accessed less
often (only during the merge step), but can become huge because data for each covered
genomic locus has to be stored, making it a valuable target for compression strategies.
Table 3.3 shows that the sample index needs 4 + 4(Φ + 1) + 1 + 6 + 6 = 21 + 4Φ
bytes per locus. When expecting a ploidy Φ = 2, this results in 29 bytes for each
sample and locus. For the human genome with about 3.2 billion basepairs, in the worst
case with at least one read base covering each genomic locus the sample index would
therefore need about 86 GB. Of these, likelihood storage (dataset Ls) occupies about
41%, allele depth and depth of reverse strand reads (datasets Ds and Rs) require 21%
each, storing the chromosomal positions (dataset P s) occupies 14% and the maximum
likelihood genotypes (dataset Gs) require 3% of the storage. In the following, we discuss
compression strategies.

HDF5 allows to compress datasets with several compression algorithms. While we want
to compress numerical data, we talk about texts, words and characters in the following,
since it appears more natural in combination with compression. Here, a text can also be a
sequence of integers, the bytes of which are the characters and words being arbitrary sub-
sequences. H5Py5, the HDF5 bindings for Python used in our implementation, provide

4http://samtools.github.io/hts-specs/VCFv4.2.pdf, visited 11/2014
5http://www.h5py.org, visited 11/2014
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P s 60394 60395 60396 60397 60398 60399 61300 61301 61302 61303 61304

P s 60394 1 1 1 1 1 901 1 1 1 1

Figure 3.6: Transforming the position dataset P s to the incremental form P s. Dashed
boxes depict contiguously covered stretches, which are transformed into an
offset together with a sequence of ones.

GZIP6 and LZF7 compression by default. Both are variants of the LZ77 algorithm by
Ziv and Lempel (1977), while GZIP additionally performs a Huffman coding (Huffman
1952) to encode frequent characters with fewer bits. The LZ77 algorithm is a dictionary
based compression method (Salomon 1998). Such compression methods store a text as
a combination of uncompressed words and tokens that refer to a dictionary of frequent
words. The dictionary can be either static (i.e., pre-defined, like a dictionary of common
English words) or adaptively updated from the text to compress. LZ77 maintains an
adaptive dictionary by using a sliding window approach. The window is divided into
two parts, the search buffer and the look-ahead buffer. LZ77 identifies prefixes of the
look-ahead buffer that have a matching substring starting in the search buffer. Such
matches are encoded by a token denoting to the position in the search buffer and the
length of the match. In each step, the window advances by the match length plus one.
In consequence, within the scope of the sliding window each additional occurrence of
a word occupies only a single token. Naturally, LZ77 achieves the best compression if
patterns in the input data occur close together. In the extreme, a repeat limited by the
length of the look-ahead buffer can be encoded with a single token. Next, we discuss the
application of LZ77-based compression to the different datasets stored in the sample
index.

The dataset P s contains the chromosomal position of each locus covered by at least
one read. Hence, it will contain contiguously covered stretches of at least the length
of a single read (e.g., 100), where the positions are incremented by one at each entry.
Typically these stretches will be much longer, up to covering almost the whole chromo-
some in the extreme. This knowledge can be used to improve compression. Instead of
storing absolute positions, we choose to store the absolute position in the first entry of
the dataset and the increment in the subsequent entries, i.e.,

P si :=

{
P si if i = 0,

P si − P si−1 otherwise.

This results in covered stretches being represented as repetitions of the value 1, pre-
ceded by the distance to the last covered stretch (see Figure 3.6). When reading the
index, P s can be restored from P s by calculating the cumulative sum (Section 1.3.2).

6http://www.gzip.org, visited 11/2014
7http://oldhome.schmorp.de/marc/liblzf.html, visited 11/2014
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m = 0 m = 1 m = 2

-0.439842 -127.3984 -230.3234

-0.439842 -127.5699 -232.9806

-0.004961 -130.8980 -300.9984

-125.58412 -32.58962 -90.41858

-0.019537 -128.8984 -240.8698

Figure 3.7: Structure of the allele frequency likelihoods dataset Ls (likelihoods in loga-
rithmic space). Each column contains the likelihoods for one allele frequency
(m = 0, m = 1, m = 2). Within the columns, subsequent values are more
similar than between columns, which motivates the column-wise compres-
sion of the dataset.

Alternatively, directly storing only start positions and lengths of the covered stretches
would be possible. This is similar to a pure run-length encoding (see Salomon 1998) on
the dataset P s and would further increase compression since the detection of repeats
is not limited by the size of the look-ahead buffer of the LZ77 algorithm. However it
would increase the code complexity for reading the sample index by breaking with the
locus-wise storage necessary for the other datasets. Since P s only requires 14% of the
storage space in the uncompressed form, we decide against this.

The dataset Ls of allele frequency likelihoods has a column for each possible alternative
allele frequency (e.g., 0, 1, 2 for Φ = 2). While we cannot expect the read depth (i.e.,
the number of reads covering a particular locus) to be constant over a covered stretch,
it will still be similar for loci close to each other. This, together with the expectation
that most loci are not hosting a variant (see Section 3.6.2), implies that in each column
subsequent values will be at least similar. The likelihoods in the column for an alterna-
tive allele frequency of zero will be in a range close to 0 in logarithmic space for most
loci because most of the reads will support the reference allele. The likelihoods of the
other columns will have similar, larger negative values in logarithmic space, depending
on the read depth. HDF5 datasets are compressed in chunks of configurable dimension.
Above observations suggest that subsequent likelihoods in a column are more simi-
lar than subsequent likelihoods in a row. Therefore, we configure HDF5 to write the
columns of Ls into separate chunks. Figure 3.7 illustrates the idea. Optionally, we con-
sider two additional strategies. First, we allow to store the likelihoods in half-precision
(i.e., 16 bit) floating point format (IEEE 2008). Here, the minimum representable value
is −65504. As the likelihoods are stored in logarithmic scale, this is equivalent to a
likelihood of exp(−65504), which is essentially zero. Half-precision introduces a loss of
precision, which is less severe at values close to zero. Hence, in logarithmic space, we
will loose some precision only with very small probabilities. Section 3.7.1 shows that the
resulting posterior probabilities are almost not affected. Second, we allow to make use
of the shuffling filter provided by HDF5. This filter reorders the bytes of a chunk (see
above) such that the k-th bytes of each value are stored together. For single precision
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Gs 0 1 0 3 2 9 1 2 3 3 0 3 1 0

ref 0 1 0 3 2 1 1 2 3 3 1 3 1 0

Gs 0 0 0 0 0 8 0 0 0 0 -1 0 0 0

Figure 3.8: Transformation of dataset Gs. The middle row shows the reference geno-
type ri. Dashed rectangles depict loci with non-reference genotype. All loci
with reference genotype are transformed to zeros.

floating point values (consisting of 4 bytes), this means that we first store the first byte
of each value, then the second byte of each value, up to the fourth byte of each value.
This can increase the number of similar bytes within the search buffer of the LZ77
algorithm because values that are close together might only differ in their first bytes.
Our results show that shuffling does not help though, at least with the used test data
(see Section 3.7.1).

The maximum likelihood genotypes in dataset Gs are represented as 8 bit integers j
pointing to genotype gj ∈ ΓΦ. Since most of the loci can be expected to not host a vari-
ant, these integers will mostly point to the reference genotype. The reference genotype
is always homozygous (e.g., AA, CC, GG or TT with ploidy Φ = 2). Recalling that
genotypes are enumerated such that the homozygous ones come first (see Section 3.3),
most integers j will have a value between 0 and 3. This is already advantageous for
compression since we can expect recurrent patterns of bases and even larger repetitive
regions in the reference genome. We can do even better by storing the genotypes trans-
formed in the following way. Let gri ∈ ΓΦ be the the reference genotype at the i-th
covered locus on the chromosome. For each genotype, we store the difference to the
reference genotype as

Gsi := Gsi − ri.

Then, most of the entries will be zero, since most loci will not host a variant and
therefore the reference genotype will have the maximum likelihood (see Figure 3.8).
The original dataset can be restored by adding ri again, which can be easily obtained
from the reference sequence.

Datasets Ds and Rs are expected to be sparse without transformation. Each row rep-
resents a locus, and each column an allele. The two virtual alleles (encoding indels and
undetermined read bases; see Section 3.6.1) are rare. Hence, their columns will contain
almost entirely zeros. For the other columns we assume all alleles to be equally frequent
for illustration. Then, we can expect every fourth value to be greater than zero in each
column. We therefore expect the zero-words in all six columns to compress nicely when
configuring HDF5 to write each column into separate chunks.
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3.6.5 Implementation

Before evaluating the compression performance for the different strategies presented
above (see Section 3.7.1), we discuss the implementation of algebraic variant calling
in the software ALPACA. All three steps follow a common workflow. For each chro-
mosome, we iterate over intervals of loci. First, the data corresponding to the current
interval of loci is loaded (coming from BAM files of mapped reads in case of the sample
indexing and from the defined HDF5 index data structures in case of index merging
and calling). Then, calculations are performed in parallel over the loci, using OpenCL
kernels. Afterwards, we proceed to the next interval. In case of sample indexing and
index merging, resulting datasets are written to the HDF5 index data structure once
a chromosome has been processed. We delegate parsing of the BAM files and calcu-
lation of pileups to the SAMtools package (Li et al. 2009). Thereby, we also obtain
recalibrated base qualities which help to avoid artifacts (see Section 3.2). To improve
numerical stability, all probabilities are stored and handled in logarithmic space.

Fortunately, the calculations do not impose hardware specific considerations that would
exclude certain computational devices, such that all OpenCL kernels work well on both
CPU and GPU. For most calculations (e.g., Definition 3.2, Lemma 3.3 to 3.5 and The-
orem 3.8) parallelization is even straightforward. In principle, each kernel thread could
calculate the probabilities for a single genomic locus. While this might be efficient on
a GPU where switching between threads happens with almost no overhead, thread
scheduling, instantiation and switching can hurt performance on a CPU. Therefore it is
advisable to calculate some neighboring loci together in a loop if the computation per
locus is very fast. We delegate this decision to the PyOpenCL (Klöckner et al. 2012)
implementation. In the following, we outline the parallelization for the less obvious
cases of marginal pileup probability (Lemma 3.6) and controlling the false discovery
rate (Equation (3.5)).

Marginal pileup probability By storing the values for zj,k (see Lemma 3.6) in a ma-
trix, the marginal pileup probability Pr(PS,i) for a genomic locus i can be calculated
by dynamic programming. Figure 3.9 illustrates the idea. Importantly, only the last
Φ + 1 columns need to be remembered. Algorithm 3 provides an efficient implemen-
tation. Instead of accessing column k for zj,k, we access column k mod (Φ + 1) (see
line 5). With zj−1,k−k′ , we have to handle k − k′ becoming negative: we access column
|1k≥k′ · k − k′| mod (Φ + 1) (see line 8) and initialize the matrix with zeros. The result-
ing algorithm is executed in parallel for multiple genomic loci. Since it avoids branching
and thus divergent threads, it can be executed efficiently on a GPU.

Controlling FDR To choose the optimal probability threshold α such that the expected
FDR does not exceed a given α∗ (see Equations (3.4), (3.5) and Corollary 3.10), we
first sort the obtained posterior probabilities Pr(i 6∈ φ|PS,i) for all genomic loci i in
the merged index and query expression φ in ascending order. Then, we calculate the
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z k = 0 k = 1 k = 2 k = 3 k = 4

j = 0 1 0 0 0 0

j = 1 1.852e-085 3.025e-013 1.266e-090 0 0

j = 2 1.845e-085 3.013e-013 2.745e-025 1.148e-102 6.883e-265

Figure 3.9: Exemplary dynamic programming matrix z for calculating the marginal
pileup probability of two diploid (Φ = 2) samples S = {s1, s2}. Column
0 ≤ k ≤ |S|Φ represents the probabilities for k alternative alleles, row
0 ≤ j ≤ |S| represents the considered number of samples. Arrows depict
the values that have to be considered to calculate the dashed entry of the
matrix: i.e., only three columns of the matrix have to be kept in memory.
The pileup of sample s1 suggests a heterozygous genotype with 10 reference
bases and 10 bases supporting the alternative allele. The pileup of sample s2

suggests the reference genotype. The matrix reflects this scenario: column
k = 1 contains the largest probability which also dominates the resulting
marginal pileup probability Pr(PS,i) = 3.013e-16.

cumulative sum over the probabilities via a parallel prefix scan (Section 1.3.2). The j-th
element of the cumulative sum then contains the expected number of false positives
when reporting the j most significant putative variants. Since the cumulative sum is
monotonically increasing, we can determine the rightmost element j smaller or equal
to α∗ by binary search. The corresponding posterior probability Pr(j ∈ φ|PS,j) is the
desired threshold α.

Logarithmic probabilities In the implementation, all probabilities are stored and han-
dled in logarithmic space. First, this provides improved numeric stability with small
probabilities. Second, products and divisions are faster since they turn into addition
and subtraction. In contrast, calculating the sum of probabilities becomes challenging.
Consider calculating the sum p = p1 +p2 +· · ·+pn of probabilities which are represented
as their logarithmic space. The naive idea of taking the exponential before summing can
cause imprecision for small probabilities. Assuming that p1 ≥ p2 > · · · ≥ pn, Durbin
(1998) shows that p can be obtained as

log(p1 + p2 + · · ·+ pn) = log

(
p1

(
1 +

p2

p1
+ · · ·+ pn

p1

))
= log p1 + log1p(exp(log p2 − log p1) + · · ·+ exp(log pn − log p1))

with log1p(x) being the common implementation of log(1+x) as it is provided by many
standard libraries, avoiding a loss of precision for small x. If the difference log pi− log p1
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Algorithm 3 Dynamic programming algorithm for calculating the marginal pileup
probability Pr(PS,i) for a single genomic locus.

Input: a set of samples S = {s1, s2, . . . , sn} with ploidy Φ and pileups PS,i =
{Ps1 ,Ps2 , . . . ,Psn} at genomic locus i

Output: the marginal pileup probability Pr(PS,i)
1: initialize zj,k with 0 ≤ j ≤ n, 0 ≤ k ≤ Φ + 1 as a table of zeros
2: p← 0
3: for m← 0, . . . , |S| · Φ do
4: z0,0 ← m ≤ Φ
5: k ← m mod (Φ + 1)
6: for j ← 1, . . . , n do
7: for k′ ← 0, . . . ,Φ do
8: k∗ ← |1m≥k′ ·m− k′| mod (Φ + 1)
9: zj,k ← zj,k + zj−1,k∗ · Pr(Psj ,i |Msj = k′)

10: p← p+ zn,k Pr(M = m)

11: Pr(PS,i)← p

is small, taking the exponential is not a problem. If the difference becomes larger, this
is because pi is so small compared to p1 that the sum is dominated by p1 anyway and
a loss of precision when taking the exponential does not matter.

3.7 Results

Here, we evaluate our implementation of the presented algebraic variant calling in the
software ALPACA. For this purpose, we use two exome sequencing datasets of the
human individuals NA128788 and NA128929 (a daughter and her mother) from the
1000 genomes project (The 1000 Genomes Project Consortium 2012). The dataset of
NA12878 contains 237,938,160, the one of NA12892 contains 262,954,976 Illumina reads
of length 76 (see Section 1.2). The datasets come already mapped to a version of the
human reference genome (hs37d5) and are free of PCR duplicates. Further, base qualities
have been recalibrated and indels have been realigned with GATK (DePristo et al.
2011).

For the analysis, we generate virtual samples of NA12878 and NA12892. We subsam-
ple four times 25% of the reads of NA12878 with different random seeds and label the

8ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_
ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12878.clean.dedup.recal.
20120117.bam, visited 11/2014

9ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_
ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12892.clean.dedup.recal.
20120117.bam, visited 11/2014

76

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12878.clean.dedup.recal.20120117.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12878.clean.dedup.recal.20120117.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12878.clean.dedup.recal.20120117.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12892.clean.dedup.recal.20120117.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12892.clean.dedup.recal.20120117.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/CEUTrio.HiSeq.WEx.b37_decoy.NA12892.clean.dedup.recal.20120117.bam
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Figure 3.10: Frequencies of read depths of the virtual samples. Each virtual sample is
one line. The mean depth ranges from 8 to 10.

resulting datasets A0 to A3. We do the same for NA12892, but only two times, label-
ing the resulting datasets B0 and B1. The six resulting virtual samples have a similar
distribution of read depths over their covered loci, with a mean depth of 8 to 10 and a
maximum read depth of about 1800 (see Figure 3.10). Recall that with exome sequenc-
ing, only about 1.5% of the genome is covered with reads (see Section 1.2). In turn, the
same amount of reads can provide a much higher depth.

All evaluations were performed on a compute server with four 12-core AMD10 Opteron
6176 CPUs with 512 GB RAM, equipped with a RAID 6 storage. To ensure reproducibil-
ity and a comprehensive documentation of the steps, the analyses were composed into a
Snakemake workflow11 (see Chapter 4). Snakemake was further used to systematically
benchmark the run times.

3.7.1 Compression

As shown in Section 3.6.4, the sample index generated by ALPACA can become huge
if no compression is used. Here, we evaluate the different compression strategies. Even
in the uncompressed mode of ALPACA, we always apply the transformations on the
datasets P s and Gs, since they can be expected to not hurt performance compared to
the other computations that have to be performed for each locus. The optional strategies
are combined to 10 profiles listed in Table 3.4.

We perform sample indexing on the sample A0 with the 10 profiles and measure the
size of the resulting index and the run time. Then, we merge (see Section 3.6.2) each
version of the A0 index with a sample index of A1 compressed with the same profile

10http://www.amd.com, visited 12/2014
11http://alpaca.readthedocs.org/analysis.html, visited 12/2014

77

http://www.amd.com
http://alpaca.readthedocs.org/analysis.html
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Table 3.4: Evaluated compression profiles.

profile description profile description

n no compression ls LZF with shuffling
h half-precision likelihoods lsh LZF with shuffling and half precision
l LZF compression gh GZIP with half precision
g GZIP compression gs GZIP with shuffling
lh LZF with half precision gsh GZIP with shuffling and half precision

and measure the run time. To account for fluctuations, we repeat measurements three
times for the latter. Figure 3.11 provides the results.

We measure the efficiency of compression as compression ratio, the ratio between the
compressed and uncompressed index size (Salomon 1998): the better the compression,
the smaller the ratio (a ratio of 1 indicates no compression). The uncompressed sample
index can be expected to have about the same size as the BAM file it was created from
if its average read depth does not significantly increase over the amount of bytes needed
to store a single locus in the sample index. In fact, it might be even slightly bigger
since BAM files are compressed. Indeed, we find that the size of the sample index in
its uncompressed form (profile n) of sample A0 is 6.86 GB, whereas the BAM file of
the same sample occupies 6.81 GB. Storing half-precision likelihoods (profile h) already
reduces the index size to 5.5 GB, obtaining a compression ratio of 0.8. Compression with
LZF (profile l) reduces the index size to 2.7 GB (compression ratio 0.39). Compression
with GZIP (profile g) provides an index size of 1.9 GB and a compression ratio of 0.28.
The best compression is achieved by combining GZIP compression with half precision
likelihoods (profile gh), providing an index size of 1.2 GB. This is equivalent to a com-
pression ratio of 0.17, i.e. a size reduction by 83%. LZF compression combined with
half precision likelihoods (profile lh) still attains 1.7 GB index size, namely a compres-
sion ratio of 0.25 or a size reduction by 75%. Interestingly, shuffling does not provide
an improvement to the index size with the used samples. A likely reason is that the
likelihoods within the search buffer of the LZ77 algorithm are already similar enough.

Regarding the run time for sample indexing (rightmost column of Figure 3.11), GZIP
based compression profiles resulted in slightly higher run times and LZF compression
had almost no impact compared to the uncompressed version. While storing half pre-
cision likelihoods (profile h) does not affect index merging run time, LZF and GZIP
compression cause run time to increase by a factor of 1.4 to 1.5, with GZIP being
slightly slower than LZF.

Finally, the loss of precision introduced by storing half precision likelihoods was eval-
uated. On the two merged indexes generated from (a) the A0 and A1 sample indexes
with profile n and (b) the sample indexes with profile h, we performed an algebraic
calling of φ = VA0 \ VA1 controlling the FDR at 0.05 (see Section 3.6.3 and 3.5). The
resulting set of reported variants was identical for case (a) and (b). Of 1431 called
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Figure 3.11: Comparison of different compression profiles (see Table 3.4). Each profile
occupies a row. For each profile, the size of the resulting sample index (for
sample A0), the run time for merging the sample indexes of A0 and A1,
and the run time for indexing sample A0 is shown. Run time is measured
as seconds of wall clock time; ALPACA was configured to use 12 CPU
threads.

variants, 1384 (96%) had the same PHRED-scaled posterior probability. The other 47
variants exhibited a PHRED-scaled probability shifted by only 1. Hence, half precision
storage can be used without considerably affecting precision.

In summary, both profile lh and gh appear as good default choices for ALPACA. Where
the size of the index is critical, we advocate using profile gh, which imposes only slight
speed penalties compared to profile lh while providing the best compression ratio.

3.7.2 Comparison with other variant callers

Here, we compare ALPACA with GATK’s HaplotypeCaller 3.2, FreeBayes 0.9.18 and
SAMtools 1.1 (see Section 3.2) in terms of true and false positive rate as well as run
time performance in different sample filtering scenarios. We omit a comparison with
MuTect and Strelka, as these are specialized for calling somatic mutations from pairs
of tumor and normal samples. Based on the virtual samples A0 to A3 as well as B0
and B1, we formulate 8 filtering scenarios (in the following referred to as queries Q0 to
Q7) in Table 3.5. We evaluate all callers at their default parameters. For ALPACA, this
means to control the FDR at 0.05, to use the gh compression profile, and to perform
all computations on the CPU.
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Table 3.5: Evaluated filtering scenarios formulated as algebraic queries.

name query name query

Q0 VA0 \ VA1 Q4 VA0 \ VB0

Q1 VA0 \ (VA1 ∪ VA2) Q5 VA0 \ (VB0 ∪ VB1)
Q2 (VA0) \ (VA1 ∪ VA2 ∪ VA3) Q6 (VA0 ∪ VA1) \ VB0

Q3 (VA0 ∪ VA1) \ (VA2 ∪ VA3) Q7 (VA0 ∪ VA1) \ (VB0 ∪ VB1)

Since all callers use a Bayesian variant calling model, there should be a similar trade-off
between true positive rate and false positive rate, i.e., one caller might show a better false
positive rate at the cost of loosing true positive rate and vice versa. We expect ALPACA
to provide a better false positive rate at the expense of true positive rate since it controls
the FDR. From a global perspective, it should be possible to obtain similar behaviors
with all four callers by adjusting the default thresholds. We do not apply additional
filtering criteria like strand bias, since they are independent of the used variant calling
approach and can always be expected to reduce the false positive rate. In contrast to
ALPACA, the other callers GATK, FreeBayes and SAMtools also call indels by default.
Here, we only consider single nucleotide variants. Hence, we deactivate indel calling for
FreeBayes and SAMtools, and filter out indels called by GATK, as deactivation is not
possible there.

ALPACA is the only variant caller to include generic sample based filtering into the
calling process. For SAMtools, FreeBayes and GATK, we therefore apply a typical call
and filter approach: for any query Q0 to Q7, we first jointly call all samples together
with the respective caller; then, we remove all calls from the output that do not comply
with the query: e.g., for query Q3, we remove all variant loci that (a) are called in
neither A0 nor A1 or (b) are called in either A2 or A3. We do not distinguish between
heterozygous or homozygous calls. As all callers comply to the standardized output
format VCF (Variant Call Format), we can implement the filtering with the GATK
command “SelectVariants”.

First, we evaluate the false positive rate (FPR) that can be expected using the different
variant callers. FPR is defined as FP/(FP + TN) with FP being the number of false
positives and TN being the number of true negatives. Here, false positives are wrongly
predicted variants and true negatives are variants that are correctly not predicted. Cal-
culating FP and TN is challenging when dealing with variant calling, because of the
following rationale. By applying deep sequencing and using orthogonal validation tech-
niques, a highly confident set of variants for a sample can be determined. An example
for this is the set of highly confident variant calls for the NA12878 individual pub-
lished by Zook et al. (2014). This dataset is also called the NIST-GIAB gold standard.
However, such variant calls most likely represent only a subset of the true variants of
an individual. The values of TN and FP cannot be determined from these, since it is
unknown whether a variant is not present in such a set because of missing evidence or
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because a locus only hosts the reference allele in reality. One solution to overcome this
is to simulate a dataset from an artificial genome where all variants are known. The
interpretation of this is limited by the ability of the simulation to mimic a real next
generation sequencer with all its artifacts and errors, though. An alternative that can
use real data was proposed by Cibulskis et al. (2013), who subsampled two times the
same dataset of reads from a sequenced individual. Since both resulting samples come
from the same genome, any variant that is called to be in the first but not in the second
sample is essentially a false positive, although the real set of variants of the individual
can be entirely unknown. Likewise, the true negatives are all loci that are not called in
this setup. Noting that our virtual samples A0 to A3 come from the same individual,
we see that queries Q0 to Q3 generalize this approach towards the filtering of more than
two samples.

Figure 3.12 shows the FPR per variant caller estimated from the four queries Q0 to
Q3. For each caller, default parameters were used. We see that ALPACA and SAMtools
perform equally good for high depth loci, while ALPACA has advantages at low-depth
loci. In query Q1 and Q2, SAMtools is slightly better for depths between 10 and 40. In
part, this can be attributed to discrete effects: ALPACA calls in total only 35 and 29
variants for Q1 and Q2, respectively. GATK and FreeBayes provide a worse FPR for
all queries at default parameters.

Second, we evaluate the true positive rate (TPR) for the queries Q4 to Q7. TPR (also
called sensitivity) is defined as TP/(TP + FN) with TP being the number of true
positives and FN being the number of false negatives. All four queries should result
in a subset of the true variants of NA12878. Loci which are variant in NA12892 (i.e.,
virtual sample B0 or B1) should not occur in the resulting calls. Hence we define the
set of true single nucleotide variants by the NIST-GIAB gold standard and remove all
loci which are presumably variant in NA12892. For the latter, we use a set of calls from
deep sequencing published within the Illumina platinum genomes12. Here, TP is the
number of called variants that occur in the set of true variants, and FN is the number
of true variants that are not called. Figure 3.13 shows, that the TPR of ALPACA is in
general lower than the TPR of the competitors at low read depth. Beyond a read depth
of 15, sensitivities are essentially the same. In other words, as expected, the improved
FPR comes at the cost of losing TPR. To adjust TPR to the level of the other callers,
the FDR control of ALPACA has to be relaxed. For this, we set the threshold for
the minimum variant quality (i.e., the PHRED-scaled posterior query probability; see
Theorem 3.8) to 10, 20, 30, . . . , 70 instead of controlling the FDR. Figure 3.14 shows
the obtainable curves for the different thresholds. We see that lower thresholds allow
for a similar TPR as the competitors, while also shifting the FPR to similar curves.
Increasing the threshold beyond the one selected by controlling the FDR at 0.05 further
reduces the FPR, while also hurting the TPR.

Next, we compare the run time performance of the different callers. The run time per-
formance is measured as wall clock time (in min:sec) on the AMD Opteron system

12ftp://ussd-ftp.illumina.com/NA12892_S1.genome.vcf.gz, visited 11/2014
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Figure 3.12: False positive rate (FPR) of ALPACA and competitors at default settings
for query Q0 to Q3. FPR at minimum depth d is the FPR for all loci with
a read depth of at least d. Read depth is calculated as the sum of read
depths of all samples involved in the query.

described above, configuring each caller to use 12 CPU cores. For SAMtools, this was
achieved using GNU Parallel13 to process chromosomes in parallel, as the caller itself
does not support multi-threading. We separately measure the run times of the dif-
ferent steps involved in the calling of query Q0 to Q7 with all evaluated callers (see
Table 3.6). Recall that GATK, FreeBayes and SAMtools do not support calculating
a query directly, such that we call the union of the samples in the query and use a
filtering step afterwards: since run times are dominated by the calling and filtering
might be further optimized, we do not measure the additional time needed for filtering.
Both ALPACA and GATK preprocess each sample separately. With ALPACA, sam-

13http://www.gnu.org/software/parallel, visited 11/2014
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Figure 3.13: Sensitivity of ALPACA and competitors at default settings for query Q4
to Q7. See Figure 3.12 for a description of minimum depth.

ple indexing is performed, generating an HDF5 index (see Section 3.6.1); with GATK,
haplotype calling is performed, generating a GVCF file with per-sample information
(see Section 3.2). GATK haplotype calling can only use 2 threads, reflected in higher
run times. However, the preprocessing of the 6 virtual samples can be done in parallel,
saturating the 12 given cores. This results in a total preprocessing run time of 206:07
for ALPACA and 363:51 for GATK. FreeBayes and SAMtools do not allow separation
of the steps. Therefore, the run time for calculating the calls of each query entails the
whole calling process here. To better assess the benefits of the different approaches, we
elaborate on different scenarios in the following.

First, we assume a de novo calling of a single query (e.g., Q0) for a fixed set of samples
(e.g., A0 to B1). Here, for each caller, the sum of the run times of all steps matters,
such that ALPACA needs 224:48 for sample indexing, generating the merged index
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Figure 3.14: FPR and TPR for different variant quality thresholds. The solid line de-
picts the default behavior, controlling FDR at 0.05. See Figure 3.12 for a
description of minimum depth.

for all samples and calling, whereas GATK needs 376:11 for preprocessing and calling.
In contrast, FreeBayes and SAMtools need only 12:04 and 10:11, respectively. Even if
ALPACA and GATK would preprocess only the samples needed for the particular query,
this is much faster. The reason for this is that FreeBayes and SAMtools consider all
given samples together from the start: they can skip many irrelevant loci that, e.g., do
not host a read showing an alternative allele in any of the samples. GATK and ALPACA
cannot skip such loci during preprocessing because they might become relevant later
when the samples are considered jointly. Hence, callers like FreeBayes and SAMtools
provide superior speed for such static scenarios.

Second, we assume the calling of many queries on a fixed set of samples, say, A0 to B1.
With 8 queries (Q0 to Q7), ALPACA needs in total 226:07 and GATK needs 501:33.
FreeBayes (143:49) and SAMtools (147:22) are still faster. The advantage of ALPACA
becomes apparent when doubling the number of queries: then, since each query takes
only a few seconds, we can expect an almost unchanged run time for ALPACA, whereas
FreeBayes and SAMtools run times are doubled, exceeding that of ALPACA. The run
time of GATK increases by about a third. Heuristically, this advantage of ALPACA
compared to FreeBayes and SAMtools can still be minimized by not performing the
whole calling procedure for each query, but performing a joined calling for all samples
initially and only redo the filtering for each query. Such a strategy is, e.g., implemented
with Exomate (see Section 3.2).

Third, we assume that a single query is called on a fixed set of samples, but an addi-
tional sample is added (e.g., because the study was extended to another patient) after
the initial calls were calculated. First, we note that naturally the run time of FreeBayes
and SAMtools increases with the number of samples involved in the query (see Ta-
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Table 3.6: Run times of ALPACA and competitors. Dashes indicate that a step is not
necessary in that caller. Run times are given as [min:sec] wall clock time using
12 threads, except of the preprocessing with GATK: here, only 2 threads per
sample can be used.

task ALPACA GATK FreeBayes SAMtools
p

re
p

ro
ce

ss
in

g A0 32:14 297:04 - -
A1 32:37 302:03 - -
A2 32:30 302:13 - -
A3 32:07 297:06 - -
B0 37:52 360:18 - -
B1 38:47 363:51 - -

merging 18:41 - - -

ca
ll

in
g

Q0 0:07 12:20 12:04 10:11
Q1 0:06 16:29 16:25 14:04
Q2 0:08 21:34 21:13 18:41
Q3 0:09 21:32 21:13 18:49
Q4 0:12 12:06 12:52 11:52
Q5 0:14 15:58 18:36 33:38
Q6 0:15 16:24 17:51 16:44
Q7 0:15 21:19 23:35 23:23

ble 3.6). Here, the preprocessing of ALPACA and GATK becomes advantageous, once
the set of initial samples is large enough such that FreeBayes and SAMtools need more
time for calculating the query than ALPACA or GATK to preprocess (and merge) the
additional sample. This scenario is an example for the N+1 problem: the addition of
data leads to redundant computations with SAMtools and FreeBayes, whereas the ex-
plicit consideration of such cases via the preprocessing allows ALPACA and GATK to
be faster.

3.8 Command line interface

ALPACA implements a command line interface to invoke the three steps of the algo-
rithm. For all commands, the number of threads and the OpenCL device to use (e.g.,
CPU or GPU) can be defined. To limit memory requirements, ALPACA processes the
genome (and also the HDF5 indexes) in slices, which can be adjusted by modifying a
buffer size. Given mapped reads for sample A0 in BAM format and a reference genome
in FASTA format, a sample index can be created with:

$ alpaca index reference.fasta A0.bam A0.hdf5
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Here, various parameters can be adjusted. The expected ploidy of the sample can be
set (see Section 3.3), the sample name can be specified for later use in query expres-
sions, and the compression strategy can be configured by specifying one of the profiles
shown in Table 3.4. Since ALPACA delegates pileup calculation to SAMtools, this can
be configured, too: e.g., base alignment quality calculation (see Section 3.2) can be de-
activated and the minimum mapping quality for a read to be considered can be set.
Merging indexes for samples A0 and A1 into an optimized index is achieved with:

$ alpaca merge A0.hdf5 A1.hdf5 all.hdf5

Finally, calling can be performed on the optimized index. ALPACA allows to specify
query expressions at the command line by representing the union operator (∪) with
a plus sign and the difference operator (\) with a minus sign. The variant calls are
streamed out in VCF format14, which is here piped into a file:

$ alpaca call all.hdf5 "A0-A1" > calls.vcf

To assess the biological importance of a variant, it is useful to annotate it with additional
information like the gene it may be contained in, its effect on a protein that is encoded
by the gene or whether it is already known and maybe associated to some disease (see
Section 3.2). ALPACA can annotate a VCF file with such information, using the VEP
web service (McLaren et al. 2010). Since the VCF format is rather technical, ALPACA
can compose a human readable HTML file summarizing the calls. We can combine the
two commands using Unix pipes:

$ alpaca annotate < calls.vcf | alpaca show > calls.html

The HTML file lists the calls with their annotations in a table that can be sorted and
filtered. For each variant, links to external resources and details about allele counts and
effects are provided. An example is available online15.

3.9 Discussion

This chapter provides a novel solution to variant calling that entails filtering the variants
of one or more samples against that of another group of samples. We first identified three
major challenges of state of the art call and filter approaches: the FDR problem, the
insufficient evidence problem, and the N+1 problem. None of the established approaches
is able to solve them all. As a solution, we present an algebraic method for variant
calling and its implementation in form of the variant caller ALPACA. It is the first
variant caller to solve the FDR problem for arbitrary filtering scenarios. The key idea
is to integrate the filtering process into the calling process: this allows to calculate the
posterior probability for a locus to occur in an unknown set of true variant loci that is
described by an expression over an algebra of variant loci. Any evidence for a variant

14http://samtools.github.io/hts-specs/VCFv4.2.pdf, visited 11/2014
15http://alpaca.readthedocs.org/_downloads/show_example.html, visited 12/2014
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will affect the resulting probability, thereby solving the insufficient evidence problem.
Since the posterior probabilities reflect the filtering, they can be used to control the
FDR. The N+1 problem is solved by preprocessing each sample into a sample index,
avoiding the need of redundant computations upon the addition of new samples. In this
sense, ALPACA provides scalability especially for large, growing studies.

For the sample indexes, different compression strategies were developed, resulting in a
size reduction of up to 83% without major performance regressions. ALPACA allows to
obtain true and false positive rates (TPR and FPR) similar to other variant callers. At
default parameters, it provides an improved FPR at the expense of losing TPR at low
read depths. In contrast to the other variant callers, controlling the FDR with ALPACA
allows to calibrate the trade-off between TPR and FPR intuitively. ALPACA is faster
than GATK, while the run time performance of SAMtools and FreeBayes is superior
for static scenarios where no samples are added subsequently and a single query is
calculated. In more complex and larger studies with subsequently added samples (the
N+1 problem) or many different queries, ALPACA becomes faster than its competitors,
since the index data structure allows filtering queries to be calculated in seconds and
the addition of a new sample avoids redundant computations.

In its current form, query expressions allow to express union (∪) and difference (\) of
variant loci. In Section 3.4 we argue that the intersection (∩) would be of limited use
because it does not properly handle outlier samples. Instead, we will support a relaxed
version of the intersection in the future. We extend the algebra of variant loci AS with
a family of operators

⊗k and write φ =
⊗k

s∈S′ Vs to express the k-relaxed intersection
of the set of samples S′ ⊆ S. The parameter k denotes the minimum number of samples
s ∈ S′ in which a locus has to be variant in order to occur in the intersection: e.g., for a
set of samples S′ = {s1, s2, . . . , s10}, the 8-relaxed intersection

⊗8
s∈S′ Vs yields all loci

being variant in at least 80% of the samples. The expression
⊗|S′|

s∈S′ Vs is equivalent to the

ordinary intersection
⋂
s∈S′ Vs. Further, the 1-relaxed intersection

⊗1
s∈S′ Vs is equal to

the union ∪s∈S′Vs. The k-relaxed intersection can be computed efficiently via dynamic
programming. For this, at any locus i we can define yj,k as the posterior probability to
have k non-reference genotypes in the first j samples in S′. Then, it holds

yj,k = yj−1,k−1 Pr(M > 0 | P{sj},i) + yj−1,k Pr(M = 0 | P{sj},i)

with y0,0 = 1 and yj,k = 0 for 0 > k > |S′| or j ≤ 0 and k 6= 0. Finally, the posterior

probability for φ =
⊗k

s∈S′ Vs can be calculated as

Pr(i 6∈ φ | PS,i) =

k−1∑
k′=0

y|S′|,k′ .

Controlling the FDR with ALPACA provides an effective way of minimizing false pos-
itives. The current way (Corollary 3.10) maximizes the number of predicted variants
while ensuring that the FDR does not exceed the given threshold. Müller, Parmigiani,
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and Rice (2006) see this as one case in a class of loss functions that can be used to
optimize the prediction for various targets. Future work on ALPACA will entail the
evaluation of various alternative loss functions. It is possible to incorporate covariates
like the read depth or auxiliary scores (Section 3.1) into the loss function. This can
help to optimize the selection of individual variants. Imagine that two variants have the
same weak posterior query probability, and the exclusion of one of them would suffice
to reach the desired FDR. A loss function integrating, e.g., the strand bias as auxiliary
score might help to decide which variant to exclude here. Rather than globally removing
all variants based on a certain covariate (e.g., an auxiliary score measuring only a single
aspect), this approach could make use of the covariate only in cases where the decision
based on the posterior probabilities is not clear.

The calculation of the posterior query probability in Theorem 3.8 assumes independence
between the samples. This is a common simplification in variant calling (DePristo et al.
2011; Li et al. 2009; Garrison and Marth 2012), especially since the true dependencies
are often unknown. In the future, dependencies could be considered in the probability
model, e.g., by adjusting the prior probabilities.

The bayesian variant calling model of ALPACA assumes that the number of copies
sequenced at a genomic locus is determined by the given ploidy (i.e., the number of
chromosomes). However, copy number variations (CNVs) can violate this assumption.
CNVs result from structural alterations of the genome, that duplicate parts of a chro-
mosome or even a whole chromosome. Further, especially tumor samples can sometimes
be of poor quality, being contaminated with, e.g., healthy tissue. In such a case, mod-
eling a genotype as a pair of alleles (e.g., AA) might be misleading. Future work could
incorporate such prior information about CNVs or contamination into the model: e.g.,
if the number of expected copies differs from ploidy at a locus the genotype model can
consider these as additional alleles.
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Bioinformatics analyses typically involve the application of various command line tools
that convert raw data (e.g., from a sequencing experiment) into results (e.g., putative
mutations) via intermediate steps. The tools range from long-running optimized algo-
rithms performing computationally expensive tasks like read mapping or variant calling,
to filter utilities or format conversions and custom scripts for plotting or statistical tests.
Usually, every step is configurable, and a single analysis might need multiple adjust-
ments until the final results can be obtained. Often, the initial input data is subject to
change, e.g., because new samples become available.

Such analyses can be seen as workflows. Aalst, Hee, and Mylopoulos (2002) define a
workflow as a collection of tasks (also called jobs) needed to create a product. The tasks
are executed as a whole by a resource, e.g., a machine. In the context of that theory, a
process defines the order (induced by dependencies between the tasks) and necessity of
task execution. In addition, a process can be enriched by conditions which determine
subsequent tasks based on intermediate results. In this notion, a workflow management
system determines the process needed to create a product and manages the distribution
of tasks to the available resources until the product is created.

Workflow management is crucial for bioinformatics analyses: Apart from the automation
of the task execution, it helps to ensure reproducibility of the obtained results, and
documents the used data, methods and parameters. Here, we present an approach to
workflow management, introducing a text-based workflow definition language and a
flexible execution environment.

4.1 Introduction

Solutions to the workflow management problem that are of practical relevance in bioin-
formatics can be sorted into three categories. The first and most general solution is to
implement a workflow in a scripting language. Second, a text-based domain specific lan-
guage can be used to specify and execute a workflow. Among others, Ruffus (Goodstadt
2010), BPipe (Sadedin, Pope, and Oshlack 2012), Pwrake (Tanaka and Tatebe 2010)
and GXP Make (Taura et al. 2013) are examples of such systems. A common ancestor
of many text-based approaches is GNU Make1, which was originally developed for the
compilation of source code. The third way is to define the workflow by connecting the

1https://www.gnu.org/software/make, visited 04/2014
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tasks graphically, i.e., drawing a graph which visualizes the process. Examples for this
kind of workflow management are KNIME (Berthold et al. 2007), Taverna (Oinn et al.
2004), PegaSys (Shah et al. 2004), Biopipe (Hoon et al. 2003), GeneProf (Halbritter,
Vaidya, and Tomlinson 2011) and Galaxy (Goecks, Nekrutenko, and Taylor 2010).

Using plain scripting languages often involves writing boilerplate code for common tasks
that are already solved properly by workflow systems, e.g., parallelization and support
for resuming a previously paused execution. The choice between graphical and text-
based workflow systems is, apart from being a matter of taste, a question of the desired
development model. On the one hand, a workflow defined in a human readable text
file can be easily developed collaboratively via a version control system like Git2 or
Subversion3. Further, it is possible to quickly modify the workflow via a secure shell
terminal on a server or cluster. On the other hand, a graphical workflow definition
can be more intuitive in the sense that the definition already entails the graphical
representation of the dependencies between the tasks.

Workflow definition languages can be divided into explicit and implicit approaches. The
former (e.g., Ruffus, BPipe, and the graphical workflow systems) require the explicit
definition of dependencies between the steps. The latter (e.g., Pwrake and GXP Make),
whose common ancestor is GNU Make, allow the definition of generic rules with wild-
cards that describe how to obtain a single output file from one or several input files.
The dependencies between the rules are inferred automatically by the system. At the
expense of some control, this can be advantageous as less code is needed for the workflow
definition, especially if certain steps (i.e., rules) occur repeatedly in an analysis.

Here, we present the text-based workflow system Snakemake which generalizes the rule-
based implicit paradigm to multiple named wildcards and output files. Snakemake sets
itself apart from existing text-based workflow systems (see Section 4.2) in the following
way. Hooking into the Python interpreter, Snakemake offers a definition language that
is an extension of the Python programming language4 with syntax to define rules and
workflow specific properties. This allows to combine the flexibility of a plain scripting
language with a pythonic workflow definition. The Python language is known to be
concise yet readable and can appear almost like pseudo-code. The syntactic extensions
provided by Snakemake try to maintain this property for the definition of the work-
flow. Further, Snakemake supports implicit parallelization that can be constrained by
priorities, provided cores and customizable resources and it provides a generic support
for distributed computing (e.g., cluster or batch systems). Thereby, a Snakemake work-
flow scales without modification from single core workstations and multi-core servers
to cluster or batch systems. Snakemake is available as open source software under the
MIT license (see Section A.1).

This chapter is based on previously published work (Köster and Rahmann 2012a; Köster

2http://git-scm.com, visited 04/2014
3http://subversion.apache.org, visited 04/2014
4http://www.python.org, visited 04/2014
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and Rahmann 2012b). In Section 4.2, other workflow systems are summarized. Next,
the workflow definition language of Snakemake and the implementation of the parser
is described (Section 4.3). Then, resolution of dependencies (Section 4.4), scheduling
of compute jobs (Section 4.5) and support for distributed computing (Section 4.6) is
presented. This is followed by a summary of data provenance support provided by
Snakemake (Section 4.7). Finally, we exemplify how the other software presented in
this work (PEANUT and ALPACA) can be combined into a Snakemake workflow that
provides a complete and flexible parallel solution to a major task in the analysis of
next-generation sequencing data (Section 4.8). The chapter is closed by a discussion
(Section 4.9).

4.2 Related Work

We briefly summarize representative implementations of the different approaches for
describing a workflow.

Pwrake Pwrake (Tanaka and Tatebe 2010) builds on top of Rake5, which is an imple-
mentation of GNU Make in the Ruby language6. Rake (and thereby also Pwrake) allows
to define rules (here called tasks) using special Ruby methods. Pwrake adds implicit
parallelization to Rake, and allows to execute tasks locally or in a distributed envi-
ronment. For the latter, in contrast to Snakemake, Pwrake does not support resource
management systems (see Section 4.6) but relies on secure shell (SSH) access to the
computing nodes of a distributed environment.

GXP Make GXP Make (Taura et al. 2013) uses GNU Make for workflow definition
and extends it with support for distributed computing. For this, it allows to run an ex-
ecution environment (the GXP daemon) on a collection of distributed machines. When
invoking a GXP Make workflow, the jobs determined by GNU Make are distributed
to these daemons. Thereby, the daemons can be instantiated using SSH or a resource
management system. GXP Make starts one daemon per machine, which keeps running
until the workflow is finished. On a resource management system, a submitted com-
mand usually has to wait in a queue before it is distributed and executed on a compute
node. Since GXP Make only needs to submit the daemons once, jobs can be executed
almost immediately. The downside is that an idle daemon still occupies a compute node.
Since the workflow is defined in the language of GNU Make, tasks are limited to shell
invocations and scripts.

5https://github.com/jimweirich/rake, visited 06/2014
6https://www.ruby-lang.org, visited 06/2014
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Ruffus Rather than introducing additional syntax like Snakemake, Ruffus (Goodstadt
2010) allows to specify a workflow in pure Python. It follows an explicit approach of
workflow definition, i.e., the dependencies between steps are part of the implemented
description. Tasks are defined by Python functions which can be decorated to define
parameters and dependencies. They can be parallelized automatically using the inter-
nal multiprocessing of Python. Further, Ruffus allows to execute jobs in a distributed
environment via the DRMAA API (see Section 4.6).

BPipe BPipe (Sadedin, Pope, and Oshlack 2012) provides a domain specific language
that allows to define a workflow via tasks that are shell commands. The tasks are
composed into a workflow using mathematical operators. Thereby, parallelism has to
be specified explicitly. BPipe allows to execute tasks in various distributed environments
(see Section 4.6).

KNIME KNIME (Berthold et al. 2007) is a commercial, graphical workflow manage-
ment system based on the Eclipse platform7. The main software is available for free. A
workflow can be defined by graphically arranging nodes. It comes with predefined nodes
that support, e.g., input and output, database functions and statistical tests. Custom
nodes can be implemented in JAVA8 and published in an online repository: e.g., there
already exists a collection of nodes for the analysis of next-generation sequencing data9.
Via a non-free extension, KNIME supports the execution of workflows in a distributed
environment.

Galaxy A popular workflow management platform targeted towards the analysis of
genomic data is Galaxy (Goecks, Nekrutenko, and Taylor 2010). Galaxy is a server
application that allows to define workflows via a web interface. One goal of Galaxy is
to provide an environment to perform analyses without programming skills. It offers
a wide range of predefined tools that can be connected to a workflow for analyzing
genomic data. Custom tools can be added by defining their invocation in an XML
document. Galaxy can execute steps in distributed environments. With “Galaxy pages”,
it supports the documentation of workflows by composing HTML pages in a web-based
editor. Together with a created workflow, these can be published for other researchers
within the framework.

4.3 Workflow definition language

A file containing a Snakemake workflow definition is called snakefile. The Snakemake
language extends the Python language, adding syntactic structures for rule definition

7http://eclipse.org, visited 11/2014
8http://java.com, visited 11/2014
9http://tech.knime.org/community/next-generationsequencing, visited 11/2014
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and additional controls. All added syntactic structures begin with a keyword followed
by a code block that is either in the same line or indented and consisting of multiple
lines. The resulting syntax resembles that of original Python constructs.

We first describe the mandatory language elements and elaborate on more special key-
words later in this chapter. A formal description of the language follows in Section 4.3.6.
The most important construct of the Snakemake language is a rule. A rule describes
how to obtain a set of output files from a set of input files. Typical rules have a name,
any number of input and output files given as comma separated lists of strings, and
either a shell command or python code that creates the output files from the input files.
The rule

rule alpaca_index:
input: "reference.fasta", "reads.bam"
output: "index.hdf5"
shell: "alpaca index {input} {output}"

describes how to obtain the output file "index.hdf5" from two given input files
via the command following the shell keyword. Here, the rule creates an ALPACA
sample index from the reads in the BAM file and the reference genome sequence (see
Chapter 3). Inside the shell command, braces are used to include variables into the
string, using the Python format mini-language10. Apart from local and global variables,
this allows especially to include parameters of the rule into the shell command. Here,
"{input}" and "{output}" are replaced by a space-separated list of the respective
files. The resulting shell command is the following:

$ alpaca index reference.fasta reads.bam index.hdf5

A rule can be generalized by including named wildcards into the files, e.g.,

rule alpaca_index:
input: "reference.fasta", "{sample}.bam"
output: "{sample}.hdf5"
shell: "alpaca index {input} {output}"

Here, the wildcard "{sample}" in the output file can be replaced by any string to let
the rule generate a certain output. We call this replacement the value of a wildcard. The
wildcard value is propagated to the input files, such that here, to generate the index for
sample A0, say "A0.hdf5", the resulting wildcard value "A0" would lead to the input
file "A0.bam", which contains the mapped reads (see Section 1.2) of the sample.

When a workflow is executed, Snakemake tries to generate given target files. Target files
can be specified via the command line, e.g.,

$ snakemake A0.hdf5 A1.hdf5

10https://docs.python.org/3/library/string.html#formatspec, visited 04/2014
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will try to generate the ALPACA index for samples A0 and A1. To generate the target
files, Snakemake applies the rules given in the snakefile. The application of a rule to
generate a set of output files is called job. For each input file of a job, Snakemake deter-
mines rules that can be applied to generate it, e.g., by replacing wildcards. This yields a
directed acyclic graph of jobs where the edges represent dependencies (see Section 4.4).
When no target files are provided via the command line interface, Snakemake tries to
apply the first rule in the snakefile. Hence, a common pattern for defining default target
files is to provide a rule all at the top of the snakefile which collects these, e.g.:

rule all:
input: "A0.hdf5", "A1.hdf5", "A2.hdf5"

Such a rule is called a target rule. In general, hardcoding data dependent values (like
sample names) into a snakefile should be avoided. Hence, it is possible to store these in
a config file in JSON11 format, e.g.,

{
"samples": ["A0", "A1", "A2"],
"reference": "path/to/reference.fasta"

}

and to load this file from the workflow by writing:

configfile: "path/to/config.json"

The contents of the config file are available as Python dictionary under the global
variable config. In summary, we can compose above features into a first complete
snakefile:

configfile: "path/to/config.json"

rule all:
input: expand("{sample}.hdf5", sample=config["samples"])

rule alpaca_index:
input: config["reference"], "{sample}.bam"
output: "{sample}.hdf5"
shell: "alpaca index {input} {output}"

The function expand is a helper to compose a list of strings from a pattern and given
values for the wildcards in the pattern. Here, it yields a list

["A0.hdf5", "A1.hdf5", "A2.hdf5"]

which ends up being the set of desired targets that is assigned to the input of our target
rule all. By issueing

$ snakemake --dag | dot -T pdf > dag.pdf

11http://www.json.org, visited 11/2014
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alpaca_index
sample: A0

all

alpaca_index
sample: A2

alpaca_index
sample: A1

Figure 4.1: DAG of jobs for example workflow. Each node represents a job that will be
scheduled for execution, annotated with the corresponding wildcard values.

Snakemake can be used in combination with the Graphviz dot command (Gansner and
North 2000) to visualize the DAG of jobs that would be executed by this workflow (see
Figure 4.1). The DAG shows that Snakemake would spawn three jobs to create each
of the index files which serve as input for the job created from the target rule. The
latter just finishes without execution since the rule does not specify a command. In the
following sections, we describe several additional features of the Snakemake language.

4.3.1 Defining resource usage

The scheduler of Snakemake considers the resource usage of jobs and can be constrained
to not exceed given resource limits (see Section 4.5). The most obvious resource is the
number of threads a job spawned from a rule will use. This can be specified by the
threads keyword:

rule alpaca_index:
input: config["reference"], "{sample}.bam"
output: "{sample}.hdf5"
threads: 8
shell:

"alpaca --threads {threads} index {input} {output}"

The value assigned to threads can be accessed from within the shell command, similar
to the input and output files. Arbitrary resources can be defined with the resources
keyword:

rule alpaca_index:
input: config["reference"], "{sample}.bam"
output: "{sample}.hdf5"
threads: 8
resources: gpu=1
shell:

"alpaca --dev gpu -t {threads} index {input} {output}"
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Here, we define that the rule needs one unit of the resource GPU. Together, both features
allow to flexibly scale the workflow upon invocation, without changing the snakefile. For
example, by invoking

$ snakemake --cores 16 --resources gpu=1

we tell the Snakemake scheduler to use up to 16 CPU cores and provide one unit of
the resource GPU. Since each job of the rule alpaca_index needs one GPU, only
one of them can run at a time, although the scheduler was given enough cores to run
two of the jobs (since each job also needs 8 threads). The threads given to a rule are
interpreted as a maximum. Hence, specifying

$ snakemake --cores 4 --resources gpu=1

will execute each job of the rule alpaca_index with only 4 threads.

4.3.2 Temporary and protected files

With Snakemake, almost every step of the workflow generates output files. Sometimes,
such intermediate results can be discarded once not needed any more. Other files might
be expensive to compute, such that their protection from accidental deletion is desirable.
Therefore, output files can be marked as temp or protected, e.g.:

rule alpaca_index:
input: config["reference"], "{sample}.bam"
output: protected("{sample}.hdf5")
shell: "alpaca index {input} {output}"

Files that are marked as protected are write protected in the file system, such that
neither Snakemake nor other processes can modify or overwrite them accidentally. A
file marked as temp is deleted by Snakemake once no job needing the file remains to
be executed.

4.3.3 Additional functionality

The input and output keywords accept single strings or comma separated lists of
strings. Apart from that, they also accept the output of arbitrary Python code if it
returns a string or a list of strings. Finally, they can be provided with a pointer to a
function, e.g.:

rule alpaca_index:
input: "reference.fasta", get_sample_path
output: "{sample}.hdf5"
shell: "alpaca index {input} {output}"

Such a function has to accept a single parameter that gives access to the wildcard values,
e.g.:
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def get_sample_path(wildcards):
return config["bam_files"][wildcards.sample]

Sometimes, it is necessary to access input or output files explicitly. For this purpose, it
is allowed to define names for them, e.g.:

rule alpaca_index:
input: ref="reference.fasta", reads="{sample}.bam"
output: "{sample}.hdf5"
shell: "alpaca index {input.ref} {input.reads} {output}"

Snakemake offers the params keyword that allows to separate parameters from the
shell command, using the same syntax as input and output:

rule alpaca_index:
input: config["reference"], "{sample}.bam"
output: "{sample}.hdf5"
params: name=get_sample_name
shell:

"alpaca index "
"--sample-name {params.name} "
"{input} {output}"

Here, a function get_sample_name retrieves the name of the sample from some con-
figuration. The resulting value is accessed from within the shell command. A rule can
be further annotated with various additional keywords, e.g.:

rule alpaca_index:
input: config["reference"], "{sample}.bam"
output: "{sample}.hdf5"
version: shell("alpaca --version")
log: "logs/{sample}.log"
benchmark: "benchmarks/{sample}.json"
shell: "alpaca index {input} {output} 2> {log}"

The version keyword allows to provide Snakemake with the version of the software
used in the rule. The version can be retrieved directly from the software using the
shell function provided by Snakemake. In a data provenance summary, Snakemake
allows to view the version an output file was created with along with other information
(see Section 4.7).

The log keyword allows to define a log file (which can be also generalized using wild-
cards). This file can be referenced in the shell command. Here, we pipe the output of
ALPACA into the log file.

Snakemake can be used for benchmarking by specifying the benchmark keyword. It
allows to define a JSON file that shall contain information about the run time of the
job. Per default, the run time of a single execution of the job is stored in the JSON
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file. If specified, Snakemake can execute a job multiple times to generate more reliable
measurements.

4.3.4 Python rules

Sometimes, the shell is not convenient to describe a workflow step, e.g., when plotting
some results. With the run keyword, Snakemake allows to define arbitrary Python code
for execution by a rule:

rule plot_index_size:
input: expand("{sample}.hdf5", sample=config["samples"])
output: plot="plots/index_size.pdf"
run:

plt.figure()
sizes = [os.path.getsize(f) for f in input]
plt.hist(sizes)
plt.savefig(output.plot)

Within the run block, all keywords previously defined in the rule are accessible, similar
to shell rules. Here we access input and output files and plot a histogram of index sizes
via matplotlib (Hunter 2007).

4.3.5 Modularization

For modularization, it is useful to separate a large workflow into building blocks. Snake-
make allows to include another snakefile into the current one, e.g.,

include: "path/to/other/Snakefile"

such that all code contained in the other snakefile is interpreted in the same namespace
as the current snakefile. Instead of a path, it is also possible to use a URL pointing to
a network resource (e.g., a snakefile on a server or in a source code repository).

A more separated way of modularization can be performed using sub-workflows. The
sub-workflow definition

subworkflow other:
workdir: "path/to/other"
snakefile: "path/to/other/Snakefile"

points to another Snakemake workflow residing in the directory "path/to/other"
with the snakefile "path/to/other/Snakefile". Inside the current workflow, one
can refer to the output files of a sub-workflow by its name, e.g.,
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rule alpaca_index:
input: config["reference"], other("{sample}.bam")
output: "{sample}.hdf5"
shell: "alpaca index {input} {output}"

assuming that the other workflow generates the BAM file for the sample (e.g., by per-
forming read mapping; see Chapter 2). Here, other("{sample}.bam") is replaced
by the appropriate path pointing to the sub-workflow. When a wildcard value is de-
termined for the rule, the corresponding input file is recorded as a target file for the
sub-workflow, e.g., "path/to/other/A0.bam". Before the current workflow is exe-
cuted, Snakemake executes the sub-workflow, thereby ensuring that up-to-date versions
of all recorded target files are generated. With sub-workflows, a hierarchical modulariza-
tion structure is enforced, i.e., when the current workflow depends on the sub-workflow,
the sub-workflow may neither directly nor indirectly depend on the current workflow.

4.3.6 Parsing

The syntax of the Snakemake language is defined with the extended Backus-Naur-
Form (EBNF) in Listing 4.1. The undefined non-terminals refer to the corresponding
constructs of the Python language12: statement is any Python statement, NEWLINE
and INDENT are the corresponding characters for a line break and indentation. In-
dentation is always relative to the line before. Further, stringliteral is a string,
integer is a Python integer, and identifier is a python compatible identifier,
i.e., a word containing any alphanumeric character or the underscore, starting with
an alphabetic character. The EBNF gives rise to three groups of keywords that ex-
tend Python in the Snakemake language: the top-level keywords include, workdir,
configfile, ruleorder, localrules, subworkflow and rule; the rule key-
words input, output, params, message, log, threads, resources, version,
run and shell; and finally the subworflow keywords workdir and snakefile.

Typically, a parser for a domain specific language is generated from a complete grammar.
The Snakemake language is an extension of Python, though, adding only few statements.
A full parser would have to be maintained for all Python versions Snakemake is com-
patible with. To avoid this, we use the following strategy to parse a snakefile. First, the
snakefile is tokenized with the Python tokenizer. Second, the stream of tokens obtained
from the tokenizer (containing the non-Python keywords of the Snakemake language) is
translated into plain Python tokens using a collection of Mealy automata (Mealy 1955).
A Mealy automaton A = (S, s0, F,Σ,Ω, δ, λ) with a set of states S, a start state s0 ∈ S,
a set of accepting states F , an input alphabet Σ, an output alphabet Ω, a transition
function δ : S × Σ → S and an output function λ : S × Σ → Ω can be seen as a
deterministic finite automaton that additionally emits a literal of the output alphabet

12https://docs.python.org/3/reference, visited 04/2014
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Listing 4.1: Extended Backus-Naur-Form of the Snakemake language.

snakemake = (statement | rule | include | workdir | ruleorder
| localrules | subworkflow)*.

include = "include:" param_string.
workdir = "workdir:" param_string.
configfile = "configfile:" param_string.
ruleorder = "ruleorder:" identifier > identifier (> identifier)*.
localrules = "localrules:" identifier (identifier)*.
subworkflow = "subworkflow" identifier ":"

NEWLINE INDENT subworkflow_params.
subworkflow_params = ["workdir:" param_string]

["snakefile:" param_string].
rule = "rule" (identifier | "") ":"

NEWLINE INDENT rule_params.
rule_params = [input] [output] [params] [message] [threads]

[log] [resources] [version] [(run | shell)].
input = "input:" param_list.
output = "output:" param_list.
params = "params:" param_list.
message = "message:" param_string.
log = "log:" param_string.
threads = "threads:" param_integer.
resources = "resources:" param_kwlist.
version = "version:" param_statement.
run = "run:" NEWLINE INDENT statement NEWLINE DEDENT.
shell = "shell:" param_string.
param_string = (NEWLINE INDENT stringliteral NEWLINE DEDENT) |

(stringliteral NEWLINE).
param_integer = (NEWLINE INDENT integer NEWLINE DEDENT) |

(integer NEWLINE).
param_statement = (NEWLINE INDENT statement NEWLINE DEDENT) |

(statement NEWLINE).
param_list = (NEWLINE INDENT statement_list NEWLINE DEDENT) |

(statement_list NEWLINE).
param_kwlist = (NEWLINE INDENT statement_kwlist NEWLINE DEDENT) |

(statement_kwlist NEWLINE).
statement_list = statement ("," statement)* [, statement_kwlist].
statement_kwlist = identifier "=" statement

("," identifier "=" statement)*.
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upon each transition. Finally, the resulting tokens are interpreted with the Python in-
terpreter. This strategy allows the Python language to evolve almost independently of
the Snakemake language.

In the following, let Σ be the alphabet of tokens and Σ∗ be the set of all words (i.e.,
sequences) of these with ε denoting the empty word. In Python as well as in the Snake-
make language, indentation has a semantic meaning as it determines code blocks (e.g.,
the body of a for loop). We make the indentation level a part of the input by considering
Mealy automata with pairs of tokens and indentation levels Σ × N as input alphabet
and Σ∗ as output alphabet. We further assume that the output function has access to
the type of a token. We first define the identity automaton which leaves the sequence
of tokens unmodified as the Mealy automaton

I = (S, s0, F,Σ× N,Σ∗, δ, λ) (4.1)

with a single state S = {s0}, F = ∅, δ(s0, (t, i)) = s0 and λ(s0, (t, i)) = t for any
(t, i) ∈ Σ × N. Next, we define the keyword automaton which shall accept the code
block of a keyword (see Section 4.3). The output of the automaton shall be the code
block translated to plain Python code. We call the Mealy automaton

Ki = (S, s0, F,Σ× N,Σ∗, δ, λ) (4.2)

an i-indented keyword automaton, if and only if it has at least one state s 6= s0 with
δ(s, (t, i)) ∈ F and t being the NEWLINE token. The intuition is that the i-indented
keyword automaton shall stop in an accepting state if the indentation returns to level i.
In between, it shall translate the code block of a Snakemake keyword into plain Python
tokens, allowing larger indentation levels. For each Snakemake keyword, an i-indented
keyword automaton accepting its code block follows directly from its EBNF definition
(see Section 4.3). Unexpected tokens can be reported as syntax errors. An i-indented
keyword automaton for the include keyword (see Section 4.3.5) is shown in Figure
4.2. The automaton first requires a colon, and then either a stringliteral or a
NEWLINE token. In the former case, it accepts if it is followed by a NEWLINE token. In
the latter case, an indented stringliteral token is expected.

To translate a snakefile into plain Python code, we apply, depending on the occurring
keywords, above Mealy automata to the sequence of tokens. Whenever a new Snake-
make keyword is reached, we recurse into the corresponding keyword automaton. Al-
gorithm 4 outlines the approach. We start the algorithm with the identity automaton
(Equation (4.1)), position k = 1 in the sequence of tokens and K (the set of valid
Snakemake keywords) being the set of top-level keywords. If the snakefile contains only
Python code, the algorithm does not recurse and just yields the identity. Else, whenever
a Snakemake keyword is reached (see line 8), the corresponding keyword automaton is
spawned and the algorithm recurses until the automaton accepts or the end of the file is
reached. Thereby, the set of expected Snakemake keywords is updated accordingly. For
example, when recursing into a rule code block, the keywords input, output, . . . are
expected.
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s0start

s1

s2

s3

s4

s5

s6

COLON t, i / ε

stringliteral t, i / workflow.inlcude(t)

NEWLINE t, i / t
NEWLINE t, i / t

INDENT t, i+ 1 / t

stringliteral t, i / workflow.inlcude(t)

DEDENT t, i / t

Figure 4.2: Keyword automaton for the include keyword. Input and output are de-
noted separated by a slash beside the transition. Input consists of a token
with its type (e.g., COLON, NEWLINE, stringliteral) and the current
indentation level. For simplicity, the output may refer to the input token
given as t. Unexpected input shall lead to an error.

To map the Snakemake language to Python code, the implemented keyword automata
make use of Python function decorators13. The example rule from above would be
translated to the following Python code:

@workflow.rule(name="alpaca_index")
@workflow.input(config["reference"], "{sample}.bam")
@workflow.output("{sample}.hdf5")
@workflow.run
def __alpaca_index(

input, output, wildcards, threads, resources, log, version
):

shell("alpaca index {input} {output}")

4.4 Dependency resolution

For a given set of target files, Snakemake determines rule applications (i.e., jobs) to
generate these. Multiple jobs with different wildcard values can be spawned from a
single rule. If the input files of a job are not present, they need to be created by other
jobs. Hence, jobs can depend on others. This gives rise to a directed graph of jobs,

13https://docs.python.org/3/reference/compound_stmts.html#
function-definitions, visited 06/2014
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4.4 Dependency resolution

Algorithm 4 Translating the sequence of tokens from a snakefile into plain Python
tokens using Mealy automata.

Input: The sequence of tokens t1, t2, t3, . . . , tn annotated with indentation levels
i1, i2, i3, . . . , in, a position 1 ≤ k ≤ n in the sequence, a Mealy automaton
A = (S, s0, F,Σ× N,Σ∗, δ, λ) and a set of expected Snakemake keywords K.

Output: Yields the translated tokens, returns the updated position k in the token
sequence.

1: s← s0

2: k′ ← k
3: while k′ ≤ n do
4: s← δ(s, (tk′ , ik′))
5: yield λ(s, (tk′ , ik′))
6: if s ∈ F then
7: return k′

8: if tk′ ∈ K then
9: k′ ← k′ + 1

10: K ′ ← ∅
11: if tk′ = rule or tk′ = subworkflow then
12: set K ′ to be set of Snakemake keywords that may occur in the code block

13: Kik′ ← keyword automaton for keyword tk′

14: k′ ← recursion with A = Kik′ , K = K ′, k = k′

15: k′ ← k′ + 1

16: return k′

with jobs as nodes and dependencies as edges. The graph needs four properties to be a
feasible solution that generates the desired target files.

1. For each target file, there has to be a job that creates it.

2. For each job in the graph, all input files need to be either present in the filesystem
or created by another job. Jobs that meet this requirement are called feasible.

3. No pair of jobs may exist in the graph that create the same output file. We call
such jobs ambiguous.

4. The graph has to be acyclic.

The latter requirement is implied by the design of the Snakemake language. A cycle
in the graph would mean a loop that executes the same jobs multiple times. As the
rule based definition (similar to GNU Make) does not provide a syntax for specifying
the number of iterations of such a loop, they are disallowed here. In practice, such a
loop can be moved inside a single rule. We call a directed acyclic graph (DAG) that
fulfills above four critera a Job-DAG. In the following we discuss how a Job-DAG can
be found.
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The dependencies of a job are determined by finding rules which generate output files
that match the input files of the job. Since output files may contain wildcards, we use
regular expressions for this matching. The basic idea is to replace wildcards with regular
expressions accepting any non-empty word. An output file then matches an input file if
the latter is contained in the corresponding regular language of the output file. In the
following, we use the extended regular expression syntax of Python14.

We first give a formal description of the wildcard notation in output files. A wildcard
w is a substring of an output file f that is in the language generated by the regular
expression {n(, c)?} with n = [a− zA− Z0− 9 ]+ being the name of the wildcard and
c being a constraint. Here, { and } are literals. Per default, a wildcard is replaced with
the regular expression .+, matching any non-empty word. The constraint is optional
and can be used to override the default regular expression that is used to replace the
wildcard. This is useful if a wildcard shall only allow certain values, e.g., it would be
possible to constrain the wildcard of the example alpaca_index rule (Section 4.3) to
lower case characters with {genome,[a-z]+}.hdf5. We denote with L(f) the regular
language obtained by replacing wildcards in the output file f as described above. Then,
a file f ′ matches f if and only if f ′ ∈ L(f). Now, the set of jobs Jf that can create a
file f can be determined by finding all rules with an output file f ′ such that f matches
f ′. In turn, we define the potential dependencies of a job j with input files Ij as

d(j) :=
⋃
f∈Ij

Jf (4.3)

For a given set of target files, the potential dependencies induce a directed graph of jobs
with dependencies as edges.

Definition 4.1 (Graph of jobs). For a job j, we define the dependency graph Gj =
(Vj , Ej) with nodes

Vj := d(j) ∪
⋃

j′∈d(j)

Vj′

and edges

Ej := {(j′, j) | j′ ∈ d(j)} ∪
⋃

j′∈d(j)

Ej′ .

Then, for a given set of target files T , the graph of jobs G = (V,E) is the union of the
dependency graphs for each j ∈ Jf with f ∈ T .

Above graph is the search space for the desired Job-DAG. The Job-DAG can be obtained
by traversing the graph in depth-first order as follows. We denote with G∗j the subgraph
of Gj satisfying the Job-DAG properties and obtained by the traversal starting from
j. First, an artificial sink node connected to all jobs that create target files is added to
the graph. The traversal starts at the sink node and moves along the edges in reverse
direction. Let j be the currently visited node. The subgraph G∗j is obtained by linking j
to the union of all G∗j′ with j′ ∈ J ′. The set J ′ is the set of all j′ with (j′, j) ∈ E and

14https://docs.python.org/3/library/re.html, visited 06/2014
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1. adding G∗j′ does not close a cycle in G∗j ,

2. j′ is feasible,

3. there is no feasible j′′ with j′ and j′′ being ambiguous for an input file f ∈ Ij .

Importantly, these constraints can also render the subgraph G∗j a singleton only con-
taining the node j. Further, we observe that unresolved dependencies can help to solve
ambiguities: if job j′′ is not feasible, it will not conflict with the ambiguous job j′. This
allows to have multiple rules generating the same output file but being sorted out based
on the present input files. If the resulting Job-DAG after complete traversal contains
non-feasible jobs, an error is reported. In the following, we call the jobs that (directly
or indirectly) depend on a job j, i.e., the set

{j′ ∈ V ∗ | there is a path from j to j′ in G∗},

downstream jobs of j. Figure 4.4 in Section 4.8 shows the Job-DAG for an example
workflow.

Sometimes above procedure does not suffice to sort out ambiguous jobs. One solution
in such a case is to constrain the wildcards (see above). Another solution provided by
Snakemake is to give rules an order. By defining

ruleorder: a > b

we can tell Snakemake to prefer jobs of rule a over jobs of rule b. Then, two jobs of
rule a and rule b that can create the same output file are no longer ambiguous. Instead,
the job of rule b is discarded if the one of rule a is feasible.

4.5 Job scheduling

Once the Job-DAG is created, Snakemake decides which jobs need to be executed. A
job shall be considered for execution only if

1. its output files are not present and either a target file or needed by another
executed job,

2. its input files are newer than its output files or will be updated by another job,

3. its execution is enforced by the user.

This avoids unnecessary job executions. For example, if a workflow has been completed
and all output files are present, the first case will not occur and hence no job will be
executed upon re-invocation of the workflow. If the initial execution has been aborted
at some step, the jobs whose output files are still missing will be scheduled for execution
in contrast to those who have been already successfully completed. If a certain input
file is updated in the filesystem, e.g., a biological experiment yielding some raw data
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Algorithm 5 A breadth-first search algorithm to determine jobs that shall be executed.

Input: The Job-DAG G∗ = (V ∗, E∗) as determined above (Section 4.4). The sets Oj
and Ij of output and input files for each job j.

Output: Jobs to execute.
1: J ← ∅
2: V ← J
3: init queue Q with jobs creating target files not present in file system
4: append jobs with at least one input file being newer than one output file to queue
5: append forced jobs to queue
6: while Q 6= ∅ do
7: j ← first job in Q
8: J ← J ∪ {j}
9: for j′ : (j′, j) ∈ E∗ do

10: if j′ 6∈ V and there is an f ∈ Oj′ ∩ Ij missing in file system then
11: append j′ to Q

12: for j′ : (j, j′) ∈ E∗ do
13: if j′ 6∈ V then
14: append j′ to Q

15: return J

has been repeated, the second case applies and leads to re-execution of the necessary
jobs.

Based on a breadth-first search (BFS) on the Job-DAG in two directions, Algorithm 5
efficiently implements the decision about the execution of jobs. First, the queue and
the set of visited nodes is initialized with forced jobs, those that create missing target
files, and those that have updated input files (lines 1-5). Next, the BFS is performed.
For a job taken from the queue, first the predecessors in the DAG (i.e., dependencies)
are investigated. A predecessor creating a missing input file is appended to the queue if
not already visited. Second, all successors of the job are appended to the queue, since
the job will be run and thus update its output files.

Above procedure yields a connected subgraph of the Job-DAG which contains only jobs
that need to be executed. In the following, we consider this subgraph as the Job-DAG.

Classical scheduling problems (Brucker 2004) consider jobs and machines, with jobs
being partitioned into operations of known processing requirements (i.e., the number
of machine instructions needed). Typically, the machines are the cores of a CPU, with
a known instruction throughput. The scheduling problem is then to assign the jobs
to the machines, while jobs can optionally be preemptive (i.e., may be paused and
continued later) and may depend on each other (e.g., synchronization between threads).
We delegate these decisions to the system scheduler, and only decide which jobs to
execute at a specific time point. The Snakemake job scheduling can hence be thought
of as a meta-scheduling.
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A simple solution is to execute all jobs serially according to the topological sorting
of the Job-DAG. Here, the goal is to execute as many jobs as possible in parallel. A
path in the Job-DAG specifies a sequence of jobs that have to be executed serially,
while two not connected paths can be executed in parallel. At any time point during
execution of the workflow, we consider the set J of jobs ready for execution. A job is
ready for execution when the execution of its dependencies has been completed. The job
scheduling problem of Snakemake is to select a subset of these for immediate execution.
Snakemake allows to constrain this by specifying resources that shall not be exceeded
by the selection. The only default resource is the number of available CPU cores. The
resource usages of a job can be specified in the rule definition (see Section 4.3.1). Any
resource requirement defined in the Snakefile that exceeds a given limit is reduced
accordingly, i.e., r′ = min{r,R} with r being the original resource requirement and R
being the given limit.

Apart from the available resources, this selection shall be guided by three properties of
a job:

1. the priority,

2. the number of downstream jobs,

3. the total size of the input files,

while higher values are preferred. Per default, each job has a priority of 0, which can
be overwritten by its rule and via the command line; e.g.,

$ snakemake --prioritize homo_sapiens.hdf5

would ensure that homo_sapiens.hdf5 is created as fast as possible by setting all
needed jobs (i.e., the subgraph of the Job-DAG with homo_sapiens.hdf5 as output
of the sink node) to maximum priority. The second and third property are heuristics to
avoid idle cores. The intuition is that a job with many downstream jobs (see Section 4.4)
should be executed as early as possible, in order to have more choices in J to fill up the
available resources at a later time point. Finally, a job with a large total input file size
will likely be long running. It is therefore resonable to execute these jobs early to avoid
waiting on a single long running job at the end of the workflow execution. The complete
job scheduling problem can be defined as the following optimization problem.

Definition 4.2 (Job scheduling). Let J be the set of jobs ready for execution. Suppose
n ≥ 1 is the number of given resources and Ri ∈ N the free amount of resource i =
1, . . . , n. Among all subsets E ⊆ J we search the set of jobs E∗ that maximizes∑

j∈E
(pj , dj , ij)

T

under lexicographical order, subject to∑
j∈E

ri,j ≤ Ri for i = 1, 2, . . . , n
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with priority pj, number of descendants dj, input size ij and usage ri,j of resource i.

Here, (pj , dj , ij)
T , in the following called the job reward, shall be a vector with the usual

element-wise sum. The lexicographical order over the job reward is defined as

(a, b, c)T < (a′, b′, c′)T if and only if a < a′ ∨ (a = a′ ∧ b < b′)∨ (a = a′ ∧ b = b′ ∧ c < c′)

with ∧,∨ being the boolean logic operators “and” and “or”. We chose the lexicographical
order instead of weighting the components of the job reward, thereby generating a
combined score, because the components have different units and may appear in diverse
ranges. Hence, finding universally applicable weights appears difficult. In contrast, the
lexicographical order ensures that priority is the most and input file size is the least
important property for job selection.

Similar to other specialized scheduling problems (Vanderster, Dimopoulos, and Sobie
2006; Mounie, Rapine, and Trystram 1999), this problem can be seen as a knapsack
problem. We consider the multi-dimensional knapsack problem (MDKP), which Lin
(1998) defines as follows. Assume an n-dimensional knapsack with bi being the capacity
of the i-th dimension. For the k-th of m different items, let uk be the number of copies,
ai,k be its requirement of dimension i, and ck be the reward when including a copy of
item k in the knapsack. Then, the multi-dimensional knapsack problem is to

maximize
m∑
k=1

ckxk

subject to
m∑
k=1

ai,kxk ≤ bi for i = 1, 2, . . . , n

0 ≤ xk ≤ uk for xk ∈ N, k = 1, 2, . . . ,m

with xk being the decision variable selecting xk copies of item k for inclusion. For job
scheduling, the knapsack has n dimensions, one for each resource with bi = Ri. Each
job ready for execution becomes an item k with only a single copy uk = 1. This is also
called a 0-1 MDKP, analog to the 0-1 knapsack problem (Cormen et al. 2001). For each
item k, the resource usage of resource i is the requirement of dimension, i.e., ai,k = ri,k.
The item reward equals the job reward, i.e., ck = (pk, dk, ik)

T . This guarantees that the
selected items, i.e., jobs, do not exceed the given resources and maximize the reward.

The 0-1 MDKP is a generalization of the one-dimensional knapsack problem. Hence, it
is NP-hard (Lin 1998). While an exact solution via a dynamic programming algorithm
follows directly from the one-dimensional knapsack problem, it is much more challenging
since a table of sizeO(mbn) with b being the maximum capacity has to be filled (Kellerer,
Pferschy, and Pisinger 2004). Since scheduling has to be fast even for thousands of jobs
and arbitrary resources, it is advisable to use a heuristic approximation. Here, we use a
primal greedy heuristic (see Kellerer, Pferschy, and Pisinger 2004) published by Akçay,
Li, and Xu (2007) for approximating the 0-1 MDKP, namely we greedily select the jobs
with the maximum rewards that can be accepted with the remaining capacity of the
knapsack.
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4.6 Support for distributed computing

By default, Snakemake executes jobs on the local machine it is invoked on. Alterna-
tively, it can execute jobs in distributed environments, e.g., compute clusters or grids.
These are networked sets of possibly heterogeneous machines (nodes), controlled by a
resource management system (RMS) that manages shared resources and schedules sub-
mitted compute jobs (see Krauter, Buyya, and Maheswaran 2002). If the nodes share a
common file system, Snakemake supports two alternative approaches of using a resource
management system.

On such systems, compute jobs are usually submitted as shell scripts via commands like
qsub (e.g., Oracle/Univa Grid Engine15 and Torque16) or sbatch (e.g., SLURM17).
In a generic approach, Snakemake can compile each job into a shell script executing it.
A cluster submission command specified via the command line inteface, e.g.,

$ snakemake --cluster qsub

is then used to submit each job shell script to the resource management system. The
specified submission command can also be decorated with additional parameters taken
from the submitted job. For example, the number of used threads can be accessed in
braces similarly to the formatting of shell commands (see Section 4.3):

$ snakemake --cluster "qsub -pe threaded {threads}"

This way, Snakemake supports many resource management systems without the need
of specific implementations. Alternatively, Snakemake can use the Distributed Resource
Management Application API (DRMAA)18. This API provides a common interface to
control various resource management systems. The DRMAA support can be activated
by invoking Snakemake as follows:

$ snakemake --drmaa

A DRMAA supporting RMS registers itself as a backend to the DRMAA library. Snake-
make uses the Python bindings of DRMAA19 to submit jobs as shell scripts (see above),
which are automatically delegated to the registered RMS by the DRMAA library.

4.7 Data provenance

Documentation and reproducibility of computational scientific analyses has been iden-
tified as a major challenge (Mesirov 2010). This includes the automation as well as
documentation of the analysis steps and the ability to track the provenance of each

15 http://www.univa.com/products/grid-engine.php, visited 06/2014
16http://www.adaptivecomputing.com/products/open-source/torque, visited 06/2014
17https://computing.llnl.gov/linux/slurm, visited 06/2014
18http://www.drmaa.org, visited 06/2014
19http://drmaa-python.readthedocs.org, visited 11/2014
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generated result. The latter is also called data provenance. Snakemake provides data
provenance by various means. The source code describing the workflow is readable be-
cause of the simple pythonic syntax that splits the workflow into small, self-contained
parts. By issuing

$ snakemake --summary

a table associating each output file in a workflow with the rule used to generate it, the
creation date and optionally the version of the tool used for creation (see Section 4.3.3)
is provided. Further, the table informs about updated input files and changes to the
source code of the rule after creation of the output file.

An important part of data provenance is the communication of results together with the
performed analysis steps to researchers of other disciplines. Here, (similar to Goecks,
Nekrutenko, and Taylor 2010) Snakemake provides a method to compose rich HTML
reports that allow to semantically connect the results with each other and to describe
the analysis steps. The reports are written in RestructuredText20, a simple markup
language that can be converted to HTML. Typically a report is generated by an extra
rule:

rule report:
input: "benchmarks/A0.json"
output: report="report.html"
run:

snakemake.utils.report("""
===================
Benchmarking ALPACA
===================

A benchmark of ALPACA sample
indexing (see File F1_) shows...

""", output.report, F1=input[0],
metadata="Author: Johannes Koester")

Files (e.g., figures or tables) provided as keyword arguments (F1=input[0]) can be
referred from within the document. All provided files are embedded into a single HTML
file as base64 encoded data URLs21. The resulting report works as a self-contained
document storage. Instead for providing large archives or folders with many files, a
single, portable HTML file can be provided to collaborators that informs about the
performed analysis and provides the results as files that can be saved to the local
workstation, e.g., for use in a publication. Figure 4.3 shows the report generated from
above example.

20http://docutils.sourceforge.net/rst.html, visited 11/2014
21http://tools.ietf.org/html/rfc2397, visited 11/2014
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Benchmarking ALPACA
A benchmark of ALPACA sample indexing (see File F1) shows...

[F1] A0.json
Author: Johannes Koester | 2014-11-07

snakemake report

Figure 4.3: Example HTML report generated with Snakemake. Embedded files are pro-
vided as links at the bottom of the page. They can be referred to from
within the text, thereby allowing to connect results semantically with the
described analysis.

4.8 An example workflow

This work provides new algorithms for two major tasks in the analysis of NGS data,
i.e., PEANUT for read mapping (Chapter 2) and ALPACA for variant calling (Chapter
3). Now, we show how to combine these into a Snakemake workflow for finding variants
from genome sequencing data. We decide to divide the workflow into three modules:

1. Read mapping,

2. BAM file postprocessing,

3. Variant calling.

Apart from increasing the readability, this allows to replace parts of the workflow, e.g.,
with other tools or alternative strategies. A workflow always has to be adapted to the
underlying data, here the NGS reads obtained from the biological samples. We configure
the workflow with a JSON file, using the configfile keyword (see Section 4.3). In
the following we refer to this as the workflow configuration.

We distinguish between samples and units. A sample is a biological section of a tissue or
blood. The sequencing of such a sample yields a unit, a collection of sequence reads. A
unit is typically given as a FASTQ file (Cock et al. 2010). Sometimes, multiple units exist
for a single sample, e.g., if a sample was sequenced repeatedly to increase data quality.
We model the relation between samples and units in the workflow configuration.

The outline of the workflow is as follows. First, sequence reads of each unit are mapped
separately to a given reference genome with PEANUT. Second, the resulting BAM files
are postprocessed, preparing them for variant calling by sorting and indexing. Third,
the ALPACA sample index is built for each sample and merged before the variants
are called according to queries defined in the workflow configuration. We describe each
module separately.
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Listing 4.2: Read mapping module

UNIT_TO_SAMPLE = {
unit: sample for sample, units in config["samples"].items()
for unit in units}

rule peanut_map:
input:

lambda wildcards: config["units"][wildcards.unit],
lambda wildcards: config["references"][wildcards.reference]

output:
"mapping/{reference}/units/{unit}.bam"

params:
sample=lambda wildcards: UNIT_TO_SAMPLE[wildcards.unit],
custom=config.get("params_peanut", "")

log:
"mapping/log/{reference}/{unit}.log"

threads: 8
resources: gpu=1
shell:

"peanut map {params.custom} "
"--read-group ID:{wildcards.unit} "
"SM:{params.sample} PL:{config[platform]} "
"--threads {threads} {input} 2> {log} "
"| samtools view -Sbh - > {output}"

Read mapping The read mapping is handled with a single rule peanut_map (List-
ing 4.2). The rule maps the reads of a unit to a given reference using PEANUT (Chap-
ter 2). The input, consisting of FASTQ files with the reads of the unit and a FASTA file
with the reference are determined by evaluating lambda expressions, i.e., inline Python
functions22. They take the wildcard values determined from the output files as argument
and fetch the paths to the FASTQ and FASTA files from the workflow configuration.
The rule uses up to 8 threads and one GPU. The requirement of the GPU is modeled
by the custom gpu resource (see Section 4.3.1). PEANUT is made aware of the se-
quencing platform and the sample the unit belongs to by specifying a read group. This
information is stored inside the BAM file for later use.

BAM file postprocessing For processing with ALPACA, the BAM files created by
the mapping have to be sorted by position and indexed. This is achieved by two rules
bam_index and bam_sort (Listing 4.3). The rules are generic and can be applied
to any BAM file by using a wildcard {prefix} instead of requesting a more specific
path. Hence, they can be re-used in a different context. Here, an advantage of using a
rule-based system becomes apparent. Instead of having to model indexing and sorting
as a dependency at possibly multiple locations in the workflow, it is incorporated auto-
matically by requiring the .bai file as an input and adding sorted to the filename.

22https://docs.python.org/3/reference/expressions.html#lambda, visited 06/2014
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Listing 4.3: BAM handling module

rule bam_index:
input:

"{prefix}.bam"
output:

"{prefix}.bam.bai"
shell:

"samtools index {input}"

rule bam_sort:
input:

"{prefix}.bam"
output:

"{prefix}.sorted.bam"
shell:

"samtools sort {input} {wildcards.prefix}.sorted"

Variant calling Finally, the postprocessed BAM files containing the mapped reads of
each unit can be used for variant calling with ALPACA (Listing 4.4). We use ALPACA
in GPU computing mode (and therefore let the rules require the custom resource gpu).
As outlined in Section 3.6, ALPACA consists of three steps. First, each sample is in-
dexed (rule alpaca_index). Here, the expected ploidy (i.e., the expected number of
chromosome copies; see Chapter 3) is read from the workflow configuration. Second,
after all samples have been indexed, the indexes are merged and irrelevant genomic
sites are removed (see Section 3.6). In the third step, the merged index is used for cal-
culating the variant calls for a given query (see Section 3.4). The name of the query is
encoded into the name of the output file. The actual query expression is fetched from
the workflow configuration and stored in the rule parameter query.

The workflow can be stitched together by including above modules into a master snake-
file (Listing 4.5). Initially, the workflow configuration is parsed from the JSON config
file. Then, the modules are included. Instead of paths to local files, HTTP urls are al-
lowed here (see Section 4.3.5). This eases the distribution of a workflow, since rules can
be fetched directly from a trusted online repository. Since the includes can be placed
inside conditional statements, parts of the workflow could be replaced, e.g., depending
on some parameter. For example, the PEANUT module could be replaced by a mod-
ule using BWA (Li and Durbin 2009) for read mapping. Finally, a target rule all is
defined, that collects the VCF files with the variant calls for the queries and thresholds
defined in the workflow configuration. Figure 4.4 shows the Job-DAG for two samples
A and B, with one and two units and the queries A+B, A-B and B-A.
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Listing 4.4: Variant calling module. The helper functions _sample_units and _get_ref

return the corresponding paths from the workflow configuration.

rule alpaca_index:
input:

_sample_units("mapping/{reference}/units/{unit}.sorted.bam.bai"),
bams=_sample_units("mapping/{reference}/units/{unit}.sorted.bam"),
ref=_get_ref

output:
"snv_calling/{reference}/{sample}.index.hdf5"

log:
"snv_calling/log/{reference}/{sample}.index.log"

threads: 8
resources: gpu=1
shell:

"alpaca --dev gpu --threads {threads} index --ploidy {config[ploidy]} "
"--sample-name {wildcards.sample} {input.ref} "
"{input.bams} {output} 2> {log}"

rule alpaca_merge:
input:

_get_ref,
expand(

"snv_calling/{{reference}}/{sample}.index.hdf5",
sample=config["samples"])

output:
"snv_calling/{reference}/index.hdf5"

log:
"snv_calling/log/{reference}/merge.log"

resources: gpu=1
shell:

"alpaca --dev gpu merge {input} {output} 2> {log}"

rule alpaca_call:
input:

"snv_calling/{reference}/index.hdf5"
output:

"snv_calling/{reference}/{query}.vcf"
log:

"snv_calling/log/{reference}/{query}.call.log"
params:

query=lambda wildcards: config["alpaca_queries"][wildcards.query]
resources: gpu=1
shell:

"alpaca --dev gpu call --fdr {config[fdr]} "
"--max-strand-bias {config[max_strandbias]} "
"--heterozygosity {config[heterozygosity]} "
"{input} ’{params.query}’ > {output} 2> {log}"
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Listing 4.5: Master snakefile

configfile: "config.json"

include:
"peanut.rules"

include:
"samfiles.rules"

include:
"alpaca_calling.rules"

rule all:
input:

expand(
"snv_calling/genome/{alpaca_queries}.vcf",
alpaca_queries=config["alpaca_queries"]

)

4.9 Discussion

Among the text-based workflow systems (see Section 4.2), Snakemake provides novel
distinguishing features like the easy to read yet powerful pythonic language and the
advanced scheduling capabilities. Together with the cluster support, the scheduling
which considers priorities, threads and custom resources allows to scale a Snakemake
workflow from single core machines and multi-core servers to clusters or batch systems
without changing the workflow definition. Further, the custom resources allow flexible
incorporation of heterogeneous computing solutions like PEANUT and ALPACA. Apart
from the command line interface, Snakemake provides a Python API, that allows the
programmatic invocation of a workflow. The API supports custom log handlers, such
that the status of the workflow can be displayed, e.g., in a web interface. In the future,
this might lead to even tighter integration of Snakemake into analysis frameworks like
Exomate (Martin et al. 2013).

Snakemake is a reasonable tool to perform reproducible science. In the extreme, it
is possible to model the whole process from raw data to the figures and tables of a
publication, while providing documentation and provenance information, as well as self-
contained portable reports connecting the results with the description of the method.

Since its publication, Snakemake has been widely adopted and was used to build analysis
workflows for a variety of publications, e.g., by Patterson et al. (2014), Chang et al.
(2014), Marschall and Schönhuth (2013), Martin et al. (2013), Czeschik et al. (2013),
Rahmann et al. (2013), Althoff et al. (2013), and Marschall et al. (2012). With around
2200 homepage visits from January to April 2014 of around 850 different visitors23,
and more than 12,000 downloads since the first release24 it appears to have a stable

23http://www.google.com/analytics, visited 05/2014
24http://pypi-ranking.info, visited 06/2014

115

http://www.google.com/analytics
http://pypi-ranking.info


4 A scalable text-based workflow system

bam_sort
prefix: mapping/genome/units/B1

alpaca_index
reference: genome

sample: B

bam_index
prefix: mapping/genome/units/B1.sorted

peanut_map
reference: genome

unit: B2

bam_sort
prefix: mapping/genome/units/B2

bam_index
prefix: mapping/genome/units/A.sorted

alpaca_index
reference: genome

sample: A

alpaca_call
query: A+B

all

bam_index
prefix: mapping/genome/units/B2.sorted

alpaca_merge

peanut_map
reference: genome

unit: B1

alpaca_call
query: B-A

peanut_map
reference: genome

unit: A

bam_sort
prefix: mapping/genome/units/A

alpaca_call
query: A-B

Figure 4.4: Example Job-DAG automatically generated with Snakemake and Graphviz.

community of regular users.

Snakemake is complemented by the Snakemake Workflow Repository25, providing a col-
lection of high quality rules and workflows for common analysis tasks. So far, the repos-
itory is limited to the analysis of next-generation sequencing data, but contributions
might extend it to other fields and disciplines as well. The contained rules are grouped
into modules following conventions to allow for interchangeability. Among others, the
modules of above example workflow (Section 4.8) are contained in the repository.

25https://bitbucket.org/johanneskoester/snakemake-workflows, visited 11/2014
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5 Conclusion

This thesis contributes to three major topics in NGS analysis. Taken together, the three
presented approaches to read mapping, variant calling and workflow management can
execute a complete NGS analysis, focusing on parallelization, scalability and repro-
ducibility, providing various advances compared to competing solutions.

In Chapter 2, we present the q-group index, a variant of the q-gram index with partic-
ularly small memory footprint, making it feasible even for consumer level GPUs. We
show that the parallel algorithms for querying and building of the q-group index can
saturate GPU computing capabilities. The benefit of the q-group index is illustrated by
the implementation in the PEANUT read mapper, which outperforms state of the art
competitors while at least maintaining their accuracy. When requiring all alignments of
a read down to a given error rate, PEANUT is three to ten times faster than the best
competitor.

Chapter 3 introduces an algebraic variant calling approach and its implementation in
the variant caller ALPACA. We incorporate the filtering between samples into the call-
ing process. Based on expressions over the set algebra of unknown variant loci which are
approximated via posterior probabilities, algebraic variant calling is the first method
that allows to intuitively control the false discovery rate for arbitrary filtering scenarios.
Using preprocessed indexes, ALPACA avoids redundant computations upon the addi-
tion of new samples to an existing study and allows to calculate queries within seconds,
providing improved scalability compared to competitors.

Although being designed with NGS analysis in mind, the workflow system Snakemake
presented in Chapter 4 has become a generic approach to describe and execute work-
flows. It provides an easy to read workflow definition language and a flexible execution
environment that allows to implicitly parallelize a workflow. Providing a scheduling ap-
proach that can adapt to arbitrary given resources like the number of available CPU
cores or even GPUs, Snakemake workflows scale to the used hardware without the need
to modify the workflow definition. Data provenance support and HTML reports, that
allow to semantically connect results with the used methods, help to create reproducible
analyses.

While being an established technology, NGS still evolves and new approaches appear.
Therefore, it is reasonable to ask about the impact of new developments on the algo-
rithms presented in Chapter 2 and 3. A general tendency is to increase the length of the
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reads. An example is the emerging single molecule real time (SMRT) sequencing plat-
form of Pacific Biosciences1, which provides reads of length between 1000 and 40.000
bases. Today, the typical read depths do not allow variant calling with SMRT, but it can
be used to, e.g., infer haplotypes from called variants (Patterson et al. 2014), such that
it can be seen as a complement to Illumina NGS. When read depths become higher,
algebraic variant calling (Chapter 3) can be directly applied, profiting from the more
random error distribution of SMRT sequencing. With longer reads, the challenges dur-
ing read mapping are shifted. The handling of paired end sequencing is unnecessary and
ambiguous hits become less an issue. In contrast, it is more likely that the proper read
alignment is split over various regions, e.g., when sequencing RNA. Here, a read will
align to the exons of a gene while skipping introns (see Section 1.1). Still, the q-group
index (Chapter 2) is applicable: in an ongoing effort, we use it to find anchor points
for local alignments between the read and the reference, which will be combined to a
semi-global alignment in a later step, e.g., considering prior knowledge about exonic
and intronic regions and genes. In summary, the presented algorithms are not so tightly
coupled with the current technology that the foreseeable new developments will render
them obsolete.

1http://www.pacificbiosciences.com, visited 11/2014
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A Appendix

A.1 Software

The software presented in this thesis is available open source under the MIT license1.
In the following, we provide information about each software and refer to the imple-
mentations of the presented algorithms, together with the Git2 commits that contain
the state described in this thesis.

PEANUT The read mapper PEANUT, presented in Chapter 2, is available at

https://peanut.readthedocs.org

as a Python package. The implementation is located in the folder peanut in a cor-
responding Git repository3. This thesis describes version 1.3.1 of PEANUT (commit
61bae9f). The implementation of the q-group index with build and query algorithms
(Section 2.4, Algorithm 1, and Algorithm 2) can be found in filtration.py and
filtration.cl. The implementation of the validation (Section 2.5.2) can be found
in the files validation.py and validation.cl. Postprocessing (Section 2.5.3) is
implemented in the files postprocessing.pyx and alignment.pyx. The analysis
workflow implemented with Snakemake as it was used for this thesis (Section 2.6) can
be found in the file analysis-pipeline/Snakefile at commit 86f820d.

ALPACA The variant caller ALPACA, presented in Chapter 3, is available at

https://alpaca.readthedocs.org

as a Python package. The implementation is located in the folder alpaca in a cor-
responding Git repository4. This thesis describes version 0.2.2 of ALPACA (commit
695c66b). The implementation of the underlying Bayesian variant calling (Section 3.3)
and the index data structures (Section 3.6) can be found in the folder index. Algebraic
variant calling and FDR control (Section 3.4) is implemented in the folder caller.

1http://opensource.org/licenses/MIT, visited 12/2014
2http://git-scm.com, visited 12/2014
3https://bitbucket.org/johanneskoester/peanut.git, visited 12/2014
4https://bitbucket.org/johanneskoester/alpaca.git, visited 12/2014
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A Appendix

The file analysis-pipeline/Snakefile at commit 0e41d10 contains the analy-
sis workflow implemented with Snakemake as it was used to generate the results in
Section 3.7.

Snakemake The workflow system Snakemake, presented in Chapter 4, is available
at

https://bitbucket.org/johanneskoester/snakemake

as a Python package. The implementation is located in the folder snakemake in a
corresponding Git repository5. This thesis describes version 3.1.1 of Snakemake (commit
498db51). The file parser.py contains the implementation of the language parser
(Section 4.3.6). Dependency resolution (Section 4.4) and Algorithm 5 is implemented in
the file dag.py. The file scheduler.py contains the implementation of the scheduling
(Section 4.5).

A.2 Contributions to co-authored articles

Several articles were published together with co-authors during the work on this thesis.
Sven Rahmann assisted in all stages as advisor. The following three articles describe
research that is extended in this thesis. Chapter 2 is based on the article

J. Köster and S. Rahmann (2014). “Massively parallel read mapping on
GPUs with the q -group index and PEANUT”. In: PeerJ 2:e606

for which I developed the q-group index and the PEANUT algorithm and performed
a comparison with other algorithms. Sven Rahmann assisted in writing, analyzed the
index size (Section 2.4.1) and helped with the estimation of the mapping quality (Sec-
tion 2.5.3). Chapter 4 is based on the article

J. Köster and S. Rahmann (2012a). “Building and Documenting Workflows
with Python-Based Snakemake”. In: German Conference on Bioinformatics
2012. Ed. by S. Böcker et al. Vol. 26. OpenAccess Series in Informatics
(OASIcs). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, pp. 49–56

in which I present my first version of the scheduling (Section 4.5) and the parsing
mechanism of Snakemake (Section 4.3.6). The article

J. Köster and S. Rahmann (2012b). “Snakemake - a scalable bioinformatics
workflow engine”. In: Bioinformatics 28.19, pp. 2520–2522

5https://bitbucket.org/johanneskoester/snakemake.git, visited 12/2014
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A.2 Contributions to co-authored articles

is a shorter version, in which I present the workflow definition language (Section 4.3)
and major properties of Snakemake at a higher level. To both articles, Sven Rahmann
contributed by writing and discussions about functionality. An initial test framework
for Snakemake and various useful feature requests were contributed by Tobias Marschall
and Marcel Martin.

The following articles did not directly contribute, but shaped a general understanding
of biology, next-generation sequencing analysis and interdisciplinary research that has
helped with and inspired the research done in this thesis:

J. Köster, E. Zamir, and S. Rahmann (2012). “Efficiently mining protein
interaction dependencies from large text corpora”. In: Integrative Biology
4.7, pp. 805–812

A. Schramm, B. Schowe, K. Fielitz, M. Heilmann, M. Martin, T. Marschall,
J. Köster, J. Vandesompele, J. Vermeulen, K. d. Preter, J. Koster, R. Ver-
steeg, R. Noguera, F. Speleman, S. Rahmann, A. Eggert, K. Morik, and
J. H. Schulte (2012). “Exon-level expression analyses identify MYCN and
NTRK1 as major determinants of alternative exon usage and robustly pre-
dict primary neuroblastoma outcome”. In: British Journal of Cancer 107.8,
pp. 1409–1417

K. Althoff, A. Beckers, A. Odersky, P. Mestdagh, J. Köster, I. M. Bray,
K. Bryan, J. Vandesompele, F. Speleman, R. L. Stallings, A. Schramm, A.
Eggert, A. Sprüssel, and J. H. Schulte (2013). “MiR-137 functions as a tumor
suppressor in neuroblastoma by downregulating KDM1A”. In: International
Journal of Cancer 133.5, pp. 1064–1073

S. Rahmann, M. Martin, J. H. Schulte, J. Köster, T. Marschall, and A.
Schramm (2013). “Identifying transcriptional miRNA biomarkers by inte-
grating high-throughput sequencing and real-time PCR data”. In: Methods
59.1, pp. 154–163

A. Schramm, J. Köster, T. Marschall, M. Martin, M. Schwermer, K. Fielitz,
G. Büchel, M. Barann, D. Esser, P. Rosenstiel, S. Rahmann, A. Eggert, and
J. H. Schulte (2013). “Next-generation RNA sequencing reveals differential
expression of MYCN target genes and suggests the mTOR pathway as a
promising therapy target in MYCN-amplified neuroblastoma”. In: Interna-
tional Journal of Cancer 132.3, E106–E115
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González, R., S. Grabowski, V. Mäkinen, and G. Navarro (2005). “Practical implemen-
tation of rank and select queries”. In: Proceedings of WEA, pp. 27–38.

Goodstadt, L. (2010). “Ruffus: A Lightweight Python Library for Computational Pipe-
lines”. In: Bioinformatics 26.21, pp. 2778–2779.

124



Bibliography

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press.

Halbritter, F., H. J. Vaidya, and S. R. Tomlinson (2011). “GeneProf: analysis of high-
throughput sequencing experiments”. In: Nature Methods 9.1, pp. 7–8.

Holtgrewe, M. (2010). Mason – a read simulator for second generation sequencing data.
Holtgrewe, M., A.-K. Emde, D. Weese, and K. Reinert (2011). “A novel and well-defined

benchmarking method for second generation read mapping”. In: BMC Bioinformat-
ics 12.1, p. 210.

Hoon, S., K. K. Ratnapu, J.-M. Chia, B. Kumarasamy, X. Juguang, M. Clamp, A.
Stabenau, S. Potter, L. Clarke, and E. Stupka (2003). “Biopipe: a flexible framework
for protocol-based bioinformatics analysis”. In: Genome Research 13.8, pp. 1904–
1915.

Huffman, D. (1952). “A Method for the Construction of Minimum-Redundancy Codes”.
In: Proceedings of the IRE 40.9, pp. 1098–1101.

Hunter, J. (2007). “Matplotlib: A 2D Graphics Environment”. In: Computing in Science
Engineering 9.3, pp. 90 –95.
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