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Abstract

Elastic link robot manipulators are an exciting field, with many possible future ap-
plications. Previous work into force control of elastic link robots has often been of
significant mathematical complexity. The goal of this thesis is to present a frame-
work by which standard robot dynamics equations can be used to calculate payload
estimates, tip-force estimates, and perform force control tasks with elastic link manip-
ulators. This greatly simplifies the task of applying elastic link manipulators to real
world problems.

This thesis begins by building a general framework for translating static torque-
referenced robot equations into strain-referenced equations. The experimental perfor-
mance for predicting strain is evaluated. The need for further dynamic components
is shown and added to this model. Joint angle Kalman filtering is applied and shown
to additionally improve this model.

Various techniques are applied to the estimation of payload mass for both static
and dynamic manipulators. The performance of each is discussed, and a sensor fu-
sion scheme for static payload estimation is demonstrated. Further work estimating
payload mass while in motion is presented, and a dual extended Kalman filter is
shown to provide accurate results.

Similar approaches are taken to estimate effector tip forces. These estimates, in
combination with an existing active vibration damping algorithm, are used to exper-
imentally demonstrate the effectiveness of simple force controllers traditionally used
for rigid link manipulators. From the results of this thesis, it can be concluded that,
in combination with vibration damping algorithms, standard rigid-link models and
force control algorithms can be adapted for use with elastic link manipulators.
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1
Background

1.1. Motivation

Industrial robotics have traditionally been large and heavy, utilizing structurally stiff
rigid links to minimize vibrations and deflections. The mass of these rigid links poses
safety risks, and in most settings, humans and robots must be strictly separated. Al-
lowing humans to work safely in proximity to robots could increase the opportunities
for the application of automation.

Flexible or elastic robot manipulators are a promising avenue to allow humans to
inter-operate with robots. While often referred to as elastic links, this thesis will focus
on elastically deforming links and will refer to both elastic and elastic links as elastic.
Manipulators with elastic links tend to be cheaper and use less material. Reduced
link mass can also increase actuation speeds, reducing cycle times in factory settings
(Benosman et al. 2004; Lew et al. 1993). By increasing compliance, elastic link robots
increase safety during collisions, due to a reduction in impact energy (Garcia et al.
2001).

The reduced weight of elastic manipulators makes them ideal for space applications
where the mass of a launch is a primary cost. Link elasticity is a phenomenon that also
occurs in existing machinery such as cherry pickers, fire rescue ladders, and cranes.
Being able to better deal with vibration in these systems could have immediate real-
world benefits. Link elasticity can also be exploited in a biologically inspired ways to
provide a tactile sense of obstacles (Malzahn et al. 2014c).

In real-world applications of robot manipulators, it is often necessary to not only
control the position but also the force of contact. Tasks such as painting, polishing,
grinding, or feeling for randomly placed parts in a workspace are all common tasks
that could be performed with an elastic link manipulator.

As will be shown in Section 1.2, the field of elastic link robot force control is an
exciting avenue of research due to the benefits listed above. This thesis will develop
a method for using standard rigid link robotic dynamics equations with elastic links
to predict link strain in static and dynamic conditions. These equations will then be
applied to payload and force estimation tasks. Lastly, simple force control tasks will
be performed using an elastic link manipulator.
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1. Background

1.2. Related Works

A large body of work exists for rigid link robotic manipulators as well as force control
with these rigid link manipulators. A smaller, but still extensive, body of work exists
on positioning control and modeling of elastic link manipulators. A survey of position
control techniques for elastic link robot manipulators can be found in Benosman et al.
(2004). The amount of research combining the topics of elastic link robot manipulators
and force control is quite sparse. It is also worth noting that there appear to be
limited experimental setups for elastic link manipulators, with many papers relying
on only simulations. Most experimental setups are only single-link, and most are
horizontal to the ground so as to negate gravitational effects. Wherever possible, this
thesis will focus on presenting real results from TUDOR, a 3 degree-of-freedom robot
manipulator with two elastic links (described in Section 1.3).

A large category of the control strategies used for problems involving force control
of robotic manipulators could be classified as those employing singular perturbation
method to divide variously modeled systems into slow and fast subsystems before
applying control algorithms to each.

Matsuno et al. (1994) is one of the first to do this with elastic link manipulators,
approximating a horizontal, single, elastic link manipulator in contact with b-splines,
and subsequently applying singular perturbation method to reduce the model order
and find a fast and slow subsystem. Hybrid force/position torque controllers for the
slow and fast subsystems are then designed. Matsuno et al. (1994) further notes that
the slow subsystem is equivalent to the dynamic equations of a similarly dimensioned
rigid manipulator , while the fast subsystem encompasses the vibrational dynamics
of the elastic link. This was also noted in Siciliano et al. (1988) for elastic link robots
not in contact. This is an important observation that this paper will take advantage
of.

Yang et al. (1995) go on to adapt a similar strategy to horizontal manipulators with
two elastic links by employing an adaptive hybrid force/position control structure.
More recently, Park et al. (2002) applied a similar strategy to an effector with one elas-
tic link, actuated by pneumatic air muscles. A control structure built from a compos-
ite scheme based on sliding mode H-infinity controllers and pole placement is used
and tested experimentally. Similarly, Lin et al. (2003) apply the singular perturbation
method and then use hierarchical fuzzy controllers for a similar task of force/position
control with a surface constraint.

Others have developed control strategies that don’t rely on the singular perturba-
tion method. Matsuno et al. (1991) derived equations for a horizontal manipulator
with one rigid and one elastic link using Hamilton’s principle. This system is then
simplified by assuming it is quasi-static and used to build a hybrid/position force
controller which is tested experimentally.

Lew et al. (1993) modeled multiple-link, redundant, elastic manipulators with mul-
tiple points of contact. A control strategy employing bracing against the environment
to damp vibrations, while satisfying control constraints, is developed. Dynamic sys-
tem models are transformed into constrained and unconstrained subspaces using sin-
gular value decomposition, reduced in order, and position and force controls designed
in these subspaces.
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Yim et al. (1993) presents a hybrid position/force control method using an elastic
manipulator and constraint surface with non-linear inversions of an input-output map
and linear feedback stabilization.

Suzuki et al. (2002) modeled a single, elastic link, horizontal manipulator as a two
mass resonance system. A resonance ratio control method, with a reaction torque ob-
server, was then applied. A reaction torque and force feedback controller is then used
in combination with disturbance rejection methods. This was applied experimentally
to a single elastic link manipulator.

Some papers on force control with elastic link manipulators have covered the vari-
ous stability and bandwidth controller issues common to this type of system. Chiou et
al. (1988) used models based on modal analysis of a one-link elastic manipulator with
proportional force controllers. It was demonstrated that link elasticity contributes to
control instability for force control. In Li (1990), the inherent bandwidth and per-
formance limitations of force controlled elastic link systems are covered. Looking at
single link elastic manipulators, the possibility of adding additional actuation to re-
duce bandwidth limitations is discussed. Bazaei et al. (2011) used output redefinition
with a horizontal, single, elastic link to improve the force control bandwidth.

Another group of papers for force control of elastic link manipulators deal with
topics of collision and impact of manipulators with an external environment. Chapnik
et al. (1990) built a single elastic link finite-element model with friction and impact
modeling. An open loop computed torque controller is built and shown to damp
external impacts.

Ueno et al. (1998) developed a method for sensing the position of contact on a single
elastic beam by examining the beam’s natural oscillation frequencies.

Garcia et al. (2000) developed elastic antennae that can be attached to existing, rigid
link, industrial robots for collision detection. Assuming a single vibration mode and
simple contact model, 3 different force control schemes are presented for a single
elastic link. These include collision detection/impact, direct (using PID) and indirect
force control methods.

Ching et al. (2003) focused on the fact that most modal modeling efforts for elastic
ignore higher frequency modes. An infinite-dimensional model of a single elastic link
colliding with the environment is presented while under control from a proportional
derivative force controller.

Malzahn et al. (2011) developed a proportional strain and input shaping damping
algorithm for use with flexible link manipulators. This was successfully applied to
the 3 degree-of-freedom, 2 link elastic manipulator TUDOR (described in Section 1.3).
This damping algorithm will be discussed further in Section 1.3.1. Malzahn et al.
(2014c) used model identification to build a linear parameter model of joint torques
from strain of TUDOR. Generalized momentum is then used to detect collisions and
react with various behaviors including indirect force control. Details of this model-
ing method is expanded upon in Malzahn et al. (2014a) where a horizontal, analytic,
Euler-Bernoulli beam model for elastic links is made linear in parameters and com-
pared in performance to a data-driven approach using an extreme learning machine
(ELM) for the tasks of strain and motor current prediction. Chapters 2 and 3 of this
thesis extend the linear parameter model, developed in these papers, by allowing the
analytic Euler-Bernoulli beam model to account for varying link angles. Additionally,
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1. Background

a framework for translating typical rigid link equations for robot joint torque into
equations related to strain on elastic link robot arms will be presented in Chapter 2.

Figure 1.1.: TUDOR touching the contact force
cube
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Figure 1.2.: Equivalent rigid body kinematics
diagram for TUDOR
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xs31

xs32

Figure 1.3.: TUDOR top view, showing strain
gage placement on links 2 and 3

1.3. Experimental Setup with TUDOR

TUDOR (Technische Universität Dortmund Omni-elastic Robot) is an elastic link
robot arm driven by 3 brush-less DC motors with low-backlash planetary gearing.
The first joint is located in the base, and the second and third joints drive the two
elastic links. This can be seen in the equivalent rigid body kinematics diagram in Fig-
ure 1.2. The elastic links are built from clamped steel springs with a height of 4mm
and a width of 15mm as described in Malzahn et al. (2014b).

The primary TUDOR sensors used in this paper are joint encoders and 4 strain gage
pairs attached to the elastic links. The link 2 strain gages are placed at 46 and 260 mm
from joint 2 and the link 3 strain gages are placed at 5 mm and 235 mm from joint 3 as
in Figure 1.3. The strain gages are numbered in this paper as 21, 22, 31, and 32, where
the first numeral describes the link, and the second is the index of the strain gage. As
the clamped steel springs for links 2 and 3 are not ideally clamped, unknown effects
may be present in the strain gage behavior.

A contact force measurement cube is also attached to the control systems of TU-
DOR. This is a pedestal with a 6-axis force-torque sensor mounted inside of a 30 cm
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1.4. MERIt Dataset

diameter metal cube. This can be used for recording collision and contact forces with
a resolution of 0.05 N during experiments.

As much previous work with force control and elastic link robots has been in sim-
ulation or with horizontal single link experimental setups, this thesis will focus on
experimental results with TUDOR. While TUDOR will be used throughout this pa-
per, the same techniques can be applied to serial elastic link robot manipulators with
different numbers of links in different configurations.

1.3.1. Damping Algorithm

Depending on the current payload, TUDOR’s effector will oscillate roughly 10 cm,
with eigenfrequencies ranging from 1 to 13Hz in the x-z plane of the 2nd joint frame
(Malzahn et al. 2014c). To damp these oscillations, an active damping scheme com-
posed of strain feedback is used. Before strain feedback can be used, the static strain
is removed by using a moving average. The loop is then closed with a proportional
strain feedback being fed into the velocity controller. This strain feedback method has
been shown to be quite effective for robustly damping vibrations on TUDOR under
varying payloads and external stimuli. More details on the vibration control of TU-
DOR can be found in Malzahn et al. (2011). During the experiments conducted in
thesis, this vibration control algorithm remained enabled.

As shown in Section 1.2, a common technique in previous work is to divide an
elastic link into slow and fast subsystems using the singular perturbation method for
model order reduction. As shown in Siciliano et al. (1988) and Matsuno et al. (1994),
for force control problems, using the singular perturbation method can result in a slow
subsystem of the same order, and often similar in structure to, the equivalent rigid link
robot dynamics. The fast subsystem then uses the slower subsystem’s state variables
as parameters and usually can be said to characterize the vibrations of the system.
This is extremely advantageous as it has been shown that once the fast subsystem
controller is designed, typical control strategies used for rigid link robot manipulators
can be used for the slow subsystem (Siciliano et al. 1988). The damping algorithm
described above will be used throughout this paper and in Chapter 6, when the topic
of force control is approached, simple rigid link force control methods will be shown
to be effective when using this form of composite control architecture.

1.4. MERIt Dataset

MERIt (Multi-Elastic-Link Robot Identification Dataset) is a freely available dataset fo-
cused on providing researchers with data to investigate elastic link robotics (Malzahn
et al. 2014b). At the time of this paper, MERIt contains 3 datasets recorded on the TU-
DOR robot and summarized in Table 1.1. The first, TUD01, referred to in this paper as
MERIt01, contains 80 second long runs with payloads between 0 and 400 grams with
the robot in motion without active damping. In the second dataset, TUD02, referred
to in this paper as MERIt02, contains similar data but with the active damping algo-
rithm designed by Malzahn et al. (2011) activated. The third dataset, TUD03, referred
to in this paper as MERIt03, contains 15 seconds of data from the robot at rest in var-
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1. Background

ious poses in the working space with weights from 0 to 500 grams. In total, MERIt03
contains 2940 15 second clips of data.

Name Description
MERIt01 Undamped motion with various payloads
MERIt02 Damped motion with various payloads
MERIt03 Static poses with various payloads

Table 1.1.: Overview of the datasets available in MERIt.

1.5. Overview

In Chapter 2, the Euler-Bernoulli beam theory and process behind building equations
for predicting elastic link strain in static conditions is covered. Starting from basic
assumptions, a general process for generating equations for predicting strain on multi-
link robot arms is developed. This is then used to formulate models that are linear in
their parameters, which are trained with linear regression against experimental data.

Chapter 3 starts by justifying the need for further additions for predicting strain in
dynamic conditions. It then covers the development of these additional components
and details the performance improvement against experimental data. Further perfor-
mance improvements are also demonstrated through the use of Kalman filtering for
joint angle derivatives.

Chapter 4 discusses payload estimation. It begins with a discussion of the problems
inherent in payload estimation and moves on to the problem of payload estimation
with a robot arm at rest. Sensor fusion schemes are investigated for reducing payload
estimation error. Payload estimation of a robot arm in motion is then investigated and
various methods are evaluated on experimental data.

Chapter 5 covers the the estimation of strain when in the robot’s effector is in con-
tact. In addition, it covers the estimation of contact forces from strain. The collection
process for two contact force datasets is discussed. Strain and force estimate equa-
tions are then derived and tested against the two datasets. The results and accuracy
are discussed, as the effectiveness of these force estimation is relied upon for force
control applications.

Chapter 6 covers the topic of force control. A general overview of force control is
given and two force controllers are designed. These two force controllers are tested
experimentally using TUDOR against 4 force control tasks and the results are dis-
cussed.

Chapter 7 finishes by covering various conclusions as well as the outlook of elastic
link robots and the possibilities for future work.

6



2
Static Link Strain Prediction

In this chapter the basics of Euler-Bernoulli beam internal bending moments and
strain models are first presented and applied to TUDOR’s link 3. Combined with an
experimental dataset MERIt, this will yield a model of strain for TUDOR’s link 3. It
will also provide insights which will lead to the development of a general method
for converting standard torque-referenced robot equations to strain-referenced equa-
tions. This method will then be used to build equations for TUDOR’s second link.
A demonstrably accurate model will be derived by making the equations linear with
respect to the parameters and applying linear regression. The methods developed in
this Chapter will often refer the TUDOR robot, but are designed to be general and
applied to other situations and joint configurations.

2.1. Internal Bending Moment

In this paper, robot links at rest will be viewed as a cantilever Euler-Bernoulli beams
with various forces and moments applied. This relies on the following assumptions
being true (Carrera et al. 2011; Malzahn et al. 2014a):

• Any tip deflections should be small in relation to the beam’s length.

• The beam’s neutral fiber is treated as having constant length.

• All deflections are elastic and cause no deformation.

• Cross-sections of the beam, a differential distance apart, can be treated as paral-
lel because deflections are small.

• Angular distortion of differential beam elements is small in relation to transverse
distortion.

• The beam’s material and properties are treated as uniform and homogeneous.

The internal bending moment relates external forces and moments on a beam to
internal stresses in the beam (Beer et al. 2012; Gere et al. 2012). For the purposes of
this paper, using the principle of superposition, the internal bending moment M(x)
of a beam at distance x from the cantilever will be considered to be composed of
the bending moment from the beam’s weight due to gravity Mg(x), a force applied

7



2. Static Link Strain Prediction

perpendicular to the beam tip M f (x), and a possible moment applied at the beam tip
MM(x) as shown in Figure 2.1. The total internal bending moment of the beam is
constructed from the sum of these effects (Ruina et al. 2014; Young et al. 2002).

M(x) = Mg(x) + M f (x) + MM(x) (2.1.1)

By successive integration along a length l, internal shear force V, and internal bend-
ing moment M can be found for any distribution of forces along a beam w(x) at
distance x from the cantilever (Ruina et al. 2014; Young et al. 2002).

V(x) = −
∫ l

x
w(x′)dx′ (2.1.2)

M(x) = −
∫ l

x
V(x′)dx′ (2.1.3)

Applied Tip Force

The generalized forces applied to the beam tip can be viewed as the 6-dimensional
vector F in Equation 2.1.4. This vector is composed of forces in each of the 3 Carte-
sian axes of the beam tip and moments about those axes. Based on the previous
assumptions, only the fx, fy and nz components of the generalized force vector will
be considered to effect beam bending.

F =
[

fx fy fz nx ny nz
]T (2.1.4)

A force at the beam tip fy, perpendicular to the beam’s length l, produces a con-
stant internal shear force with respect to the beam length as in Equation 2.1.5 and an
internal bending moment as in Equation 2.1.6.

Vf (x) = fy (2.1.5)

M f (x) = fy(l − x) (2.1.6)

lθ

fy
fx

Mappl
w(x)

Figure 2.1.: An angled cantilever beam with a distributed force w(x) due to the beam’s mass
under gravity, tip forces fx and fy, and an applied moment about the z-axis Mappl = nz.
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2.1. Internal Bending Moment

Beam Distributed Mass

The beam’s distributed mass contributes to the internal shear force of the beam and
subsequently to the internal bending moment. The force per unit length ρb is calcu-
lated as in Equation 2.1.7 for a beam of mass m and gravitational constant g. The
beam is allowed to rotate about one end (as in Figure 2.1) to approximate a static
revolute joint. It is assumed that, under typical loading conditions, the beam will not
act as a buckling column. To account for the dependence of the distributed load on
the beam angle with respect to horizontal θ, a cosine term can be added as seen in
Equation 2.1.8 which carries over in to Equations 2.1.9 and 2.1.10.

ρb =
mg

l
(2.1.7)

w(x) = ρb cos θ (2.1.8)

Vg(x) = ρb(l − x) cos θ (2.1.9)

Mg(x) =
−ρb

2
(l − x)2 cos θ (2.1.10)

Applied Moment

The bending moment applied to the tip of a beam about the z-axis can be considered
to distribute evenly throughout the beam’s internal bending moment (Young et al.
2002).

MM(x) = Mappl (2.1.11)

Column Buckling

The assumption that the beam does not experience any column buckling would clas-
sify the beam as a long column and means effects from compressive loading can be
considered negligible. The lack of column buckling can be justified further by es-
timating the buckling critical load for the beam. The critical load force Fxc can be
calculated in Equation 2.1.12 for a beam with Young’s Modulus E, area moment of
inertia I, length l, and column effective length factor K (Gere et al. 2012). Using the
beam in Figure 2.1, this represents the case of a force applied in the Fx direction, while
angle θ is 90◦.

Fxc = −
π2EI
(Kl)2 Fxc,2 ≈ −213.5N (2.1.12)

The estimate of the critical column buckling load for TUDOR’s second link Fxc,2 is
estimated above in Equation 2.1.12, using a effective length factor of 2, as -213.5 N. To
reach this amount of force the link would have to be vertical and a roughly 21.8 kg
weight applied. This is clearly outside the scope of the normal operating conditions
of a robot of such stature whose typical loads range from 0 to 500 grams.

Beam slenderness ratio λ is used as a method to classify columns (Gere et al. 2012).
It can be calculated from the effective length and least radius of gyration as in Equa-
tion 2.1.13 with beam cross-sectional area A.

λ =
Kl√
I/A

λ2 ≈ 745 (2.1.13)

9



2. Static Link Strain Prediction

An estimate of TUDOR’s second link slenderness ratio λ2 is 745, much higher than
the typical minimum value of 200 required for a steel beam to be classified as a long
column (Gere et al. 2012).

2.2. Relating Internal Bending Moment To Strain

The internal bending moment M(x) of a beam at position x can be related to strain
E(x) at that position as in Equation 2.2.1, with Young’s modulus E, area moment of
inertia I, and distance of beam surface from the neutral fiber yb (Ruina et al. 2014).

M(x) =
EI
yb
E(x) (2.2.1)

2.3. Modeling TUDOR Link 3 with Tip Force

The last link of the TUDOR robot (link 3) with a single perpendicular tip force fy,
presents the simplest case for estimating strain from a known tip force.

As this is the last link, with no external moment applied, the internal bending
moment of the static case can be represented as in Equation 2.3.1 below with link 3
strain gage position xs3.

M3(xs3) = M f (xs3) + Mg(xs3) (2.3.1)

Additionally, the static behavior of link 3 with a perpendicular tip force fy is nearly
identical to its behavior with a payload mass m4. As previously mentioned in Sec-
tion 2.1, compression of the beam by a payload mass is negligible and not detectable
by the strain gage configuration on TUDOR.

The bending moment can then be related to strain using Equation 2.2.1 as seen in
Equation 2.3.2. As E, I, and yb are all assumed to be constant, the strain can be related
to the internal bending moment by a proportional constant. The ability to pull out
constants and treat them as proportional constants will be used extensively in the
following sections.

E3(xs3) =
EI
yb

(M f (xs3) + Mg(xs3)) (2.3.2)

2.4. Linear Relationship Between Payload and Link 3 Strain

The MERIt03 dataset (presented in Section 1.4) of the TUDOR robot with various
payloads in various static configurations is examined. In Figures 2.2 and 2.3 the
strains from link 3 are plotted with respect to link 3 angle to the horizontal (joint 2
and 3 angles added together). Each payload is plotted as a separate line series. It
can be clearly seen that there is a trigonometric relationship between the link angle
and strain. Additionally, for a given link angle, the payload increases the magnitude
of strain. The plots for strain gages 31 and 32 are almost identical plots, with the
exception of the magnitude. The values of strain from strain gage 32 in Figure 2.3 are
a less than than half of the strain values from strain gage 31 in Figure 2.2.
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Figure 2.2.: Link 3 strain gage 1 strains from varying payloads.
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Figure 2.3.: Link 3 strain gage 2 strains from varying payloads.

In Figure 2.4 the same graph is transformed as the x-axis becomes the cosine of the
link angle with respect to horizontal. As this removes the trigonometric effects seen
in Figure 2.2 it is clear this can be represented by a cosine. The resulting data can now
be seen to have a clear linear relationship between strain and payload.

From link 3 the component for the internal bending moment of the applied perpen-
dicular tip force components in Equation 2.3.2 can be found in Equation 2.4.1. This
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Figure 2.4.: Link 3 strains graphed against the cosine of the link angle with respect to horizon-
tal. Linear regression lines of fit for each payload are also shown.

can then be converted to a component of strain of link 3 resulting from the applied
force as in Equation 2.4.2.

M f (xs3) = fy(l − xs3) (2.4.1)

E f (xs3) =
yb
EI

fy(l − xs3) (2.4.2)

fy = −m4g cos θ (2.4.3)

By substituting Equation 2.4.3 into Equations 2.4.1 and 2.4.2, it can be seen that at
any given joint angle configuration the internal bending moment due to the payload
mass can be found. As a result, in a given angle configuration, the change from
nominal link strain (with no mass) due to an added payload is proportional to the
payload mass applied.

Further substitutions of the beam mass internal bending moment can produce an
equation for a strain gage in link 3 with a fixed payload. This can be made linear
in the parameters by putting it in the form of Equation 2.4.4. It should be noted
that from this point on, equations for TUDOR will begin using the notation for the
TUDOR robot as opposed to the notation used previously for a single beam model.
Joint 2 and 3 angles q2 and q3 and link 3 length a3 are substituted for beam angle θ

and length l. A reference for symbols and notation used in each chapter of this thesis
can be found in Appendix A.

E3 =
[
1 cos(q2 + q3)

] [ fyyb(a3−x3)
EI

−g m3yb(a3−x3)
2

2EIa3

]
=
[
1 cos (q2 + q3)

] [β1
β2

]
(2.4.4a)

= β1 + β2 cos (q2 + q3) (2.4.4b)
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2.5. Modeling Link 3 Strain for Varying Payloads

Lumping the various fixed parameters together gives the added benefits of both
simplifying the relationships between and reducing the number of parameters that
need to be found. This is discussed further in Section 3.3.

To demonstrate the validity of this model, using the MERIt03 static dataset a linear
regression was performed for each payload to find the lumped parameters β1 and β2
seen in Equation2.4.4b. The results for the linear regression can be seen in Table 2.1
and the lines of fit in Figure 2.4. Overall, the fit for both strain gauges on TUDOR’s
link 3 is very good for all payloads, with the exception of 0 grams on strain gage 32.
This is the result of the lower signal to noise ratio of the second strain gage. With no
payload, as the link becomes perpendicular to the ground, the magnitude of strain
due to gravity becomes less than the magnitude of strain gage sensor noise.

Strain Gage 31 Strain Gage 32
Payload [g] β1 β2 R2 β1 β2 R2

0 0.3371 16.5780 0.988 0.8763 1.5579 0.464
100 0.9446 39.3558 0.994 1.7129 12.0486 0.981
200 0.9005 61.1981 0.994 0.5759 22.1149 0.990
300 1.3640 83.2644 0.992 0.6615 32.3906 0.990
400 1.8959 105.3615 0.991 1.6466 42.6422 0.989
500 2.3647 127.4683 0.989 1.2852 52.9138 0.987

Table 2.1.: Linear regression models for estimating link 3 strain at various angles with a fixed
payload with their R2 coefficient of determination values.

2.5. Modeling Link 3 Strain for Varying Payloads

The models built in Section 2.4 work well, but only for a fixed payload. It would be
beneficial to be able to model link 3 strain for any potentially varying tip force or
payload.

If Equation 2.4.4a is examined, it can be seen that the perpendicular tip force fy only
appears in the first parameter term and is simply multiplied by the other parameters.
It can therefore be moved algebraically into the regressor terms as in Equation 2.5.1.

E(xs3) =
[

fy cos(q2 + q3)
]


yb(a3 − xs3)

EI
− g m3yb(a3 − xs3)

2

2EIa3

 (2.5.1)

The perpendicular tip force fy can be calculated as a component coming from a
payload mass m4 as well as a possible extra force applied by the environment Fly as
in Equation 2.5.2

fy = −g m4 cos (q2 + q3) + Fly (2.5.2)

Equation 2.5.2 is then substituted into Equation 2.5.1 and rearranged. In addition,
a constant term R1 can be added to compensate for any offset or modeling error that
may be present before performing a linear regression to produce Equation 2.5.3.
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2. Static Link Strain Prediction

E(xs3) =
[
1 g m4 cos (q2 + q3)− Fly g cos (q2 + q3)

]


R1

−
yb(a3 − xs3)

EI

−
m3yb(a3 − xs3)

2

2EIa3

 (2.5.3)

The linear regression can be re-run for all payloads, and now can be represented in
Equation 2.5.4, with parameters R1, R2 and R3 for a fixed strain gage position.

E(xs3) = R1 + R2(g m4 cos (q2 + q3)− Fly) + R3 g cos (q2 + q3) (2.5.4)

The linear regression (with a 60-40 training and test split) across the the MERIt03
dataset for all payloads yields very accurate estimates of strain. Results and param-
eters can be seen in Tables 2.2 and 2.3. Both strain gages show high R2 values above
0.98 indicating that these models perform quite well for predicting link 3 strains while
at rest.

Training Performance Test Performance
Strain Gage R2 RMSE [µm/m] NRMSE R2 RMSE [µm/m] NRMSE

31 0.991 5.49 0.0217 0.990 5.64 0.0223
32 0.988 2.56 0.0242 0.987 2.58 0.0244

Table 2.2.: Performance of a linear regression for estimating link 3 strain in various link con-
figurations using Equation 2.5.4. NRMSE is normalized by the range of the dataset strain
measurements.

Parameters
Strain Gage R1 R2 R3

31 1.2087 22.5658 1.7145
32 1.0742 10.4553 0.1634

Table 2.3.: Parameters of the linear regression for estimating static link 3 strain in various link
configurations.

2.6. Generalized Analytic Equations for Elastic Link Robots

Link 2 presents a much more complicated case than link 3. A tip force applied at the
robot’s effector applies only a force to link 3, but that same force can apply a force as
well as a moment to link 2. This makes interpreting and predicting a strain readings
from link 2 more complex. Additionally, the mass of link 3 can apply an additional
force and a moment to the tip of link 2. If a payload at the effector is considered, this
too can apply both a force and moment to the tip of link 2.

This more general case will be considered and link 2 equations will be formulated
for both a perpendicularly applied effector force and an effector payload. This method

14



2.6. Generalized Analytic Equations for Elastic Link Robots

could then be used to find analytic strain equations for other elastic link manipulators
with alternate link configurations.

2.6.1. Relating Joint Torque To Strain

Joint torque is frequently found in equations related to robotics. The internal bending
moment at distance x = 0 from the beam cantilever as pictured in Figure 2.1 is equiv-
alent to joint torque τ. As strain gages are common on flexible link robots as they aid
in tip position estimation, being able to translate between joint torque and strain ref-
erenced equations would allow the application of many existing tools currently used
in robotics.

For example, the recursive Newton-Euler formulation can be used to build a static
joint torque model for an n joint robot in generalized coordinates as in Equation 2.6.1,
with vector of joint torques T , generalized joint coordinate q dependent gravity model
g(q), Jacobian J(q) and generalized effector force F (Spong et al. 2005).

T = g(q) + J(q)TF (2.6.1)

The difference between joint torques T (which is equivalent to M(x = 0) ) and the
internal bending moment at any point in the beam M(x) can be defined by the vector
of differences ∆τ(x) as shown in Equation 2.6.2 where xs is the vector of strain gage
positions in link beams. Using Equation 2.2.1, the internal bending moments of the
beams can then be converted to the equivalent strains in Equation 2.6.3.

M(xs) = T − ∆τ(xs) (2.6.2)

E(x) =
yb
EI

(M(xs)) =
yb
EI

(T − ∆τ(xs)) (2.6.3)

The ∆τ(xs) difference term vector is further split into components ∆τg(xs), ∆τf (xs),
and ∆τM(xs) in Equation 2.6.4 corresponding to the internal bending moments from
the beams’ weight due to gravity, the vector of perpendicular beam tip forces for each
beam fy, and applied moments respectively (from Equation 2.1.1).

∆τ(xs) = ∆τg(xs) + ∆τf (xs) + ∆τM(xs) (2.6.4)

The individual difference terms are defined below in Equations 2.6.5, 2.6.6 and 2.6.7.
For ∆τg in Equation 2.6.5, ρb is the vector of gravitational force per unit length of each
link when horizontal, l is the vector of link lengths, and θ is the vector of beam angles
with respect to horizontal.

∆τg(xs) =
1
2

diag(ρb)diag(xs)diag(cos θ)(xs − 2l) (2.6.5)

For ∆τf in Equation 2.6.6, fy is the vector of perpendicular tip forces applied to
each link and x is the vector of strain gage positions on each link (zero being closest
to the joint).

∆τf (x) = fy xs (2.6.6)

It is worth noting that τM(xs) in Equation 2.6.7 is zero due to an applied moment
being constant in the internal bending moment of the beam as in Equation 2.1.11.
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2. Static Link Strain Prediction

∆τM(x) = 0 (2.6.7)

Together these equations will serve as a starting part for connecting equations in
terms of joint torque with strain measurements.

The torque seen at a joint n resulting from the recursive Newton-Euler formulation
will be referred to as Tn. To build a strain model for link n, 2 difference terms must
be applied so that the internal bending moment in link n can be calculated as in
Equation 2.6.8.

Mn(xsn) = Tn − ∆τf ,n(xsn)− ∆τg,n(xsn) (2.6.8)

The difference term ∆τg,n accounts for link n’s distributed mass in Equation 2.6.9
with link mass mn, link n strain gage position xsn, link length an, and angle to hor-
izontal θn. The difference term ∆τf ,n in Equation 2.6.10 accounts for perpendicular
forces applied at the tip of link n .

∆τg,n(xsn) =
mnxsn(xsn − 2an)

2an
cos θ (2.6.9)

∆τf ,n(xsn) = fy,nxsn (2.6.10)

Where fy,n is the sum of the perpendicular force applied to the tip of link n by
successive links and any applied external effector forces. To calculate this, a method
to determine the effect a 6-dimensional force or wrench on the effector has on each
subsequent link is needed.

2.6.2. Relating Wrenches to Joint Torques

The transpose of the robot Jacobian J(q) allows a generalized force F (as seen before
in Equation 2.1.4) applied to the effector to be transformed into the vector of joint
torques required to balance it as in Equation 2.6.11. (Corke 2011). This is easy to use
when joint torque can be directly sensed (Craig 2004, p. 158). However, when using
only strain gages, joint torques cannot be directly measured as various forces acting
on the beam distribute differently along the length.

T = J(q)TF (2.6.11)

A force applied perpendicular to the effector will result in an equivalent moment
and force applied to each link. The moment and force resulting from a given force
depend on the link of interest and the current pose of the robot. For the link closest to
the effector, the models presented previously in Section 2.5 for TUDOR’s link 3 can be
used. For other links a means to determine the equivalent moment and perpendicular
force applied to each link is needed to be able to use the beam models developed so
far.
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2.6. Generalized Analytic Equations for Elastic Link Robots

2.6.3. Force Moment Transform

The force-moment transform allows for the transformation of a 6-dimensional gener-
alized static force F in one frame to its equivalent in another frame. Simply rewriting
the components of the force in the other frames’ coordinates would not be sufficient
as the point of application of the force would have to change for the work to be equiv-
alent. The force-moment transform allows this mapping while keeping the point of
application of the force the same (Murray et al. 1994).

The equations for the mapping of a generalized force or wrench F in frame A to
frame B can be seen in Equation 2.6.12, with vector offset BPAORG between frames
A and B, 3 component force vector k f in frame k, 3 component moment vector kn
in frame k, and rotation transform between frames A and B B

AR (Craig 2004, p. 158)
(Murray et al. 1994, p. 62).

[B f
Bn

]
=

[ B
AR 0

BPAORG × B
AR B

AR

] [A f
An

]
(2.6.12a)

BF = B
AT f

AF (2.6.12b)

2.6.4. Method for Determining Forces and Moments Seen by a Link

To convert a standard torque-referenced robot model to a strain referenced one the
difference terms found in Section 2.6.3 must be computed for each link of interest. To
compute the difference terms, the force perpendicular to the link tip, as well as the
link mass and length must be known. As the basic link properties are known, only the
tip force must be found. This is done by using the force-moment transform equation
in Section 2.6.3. The generalized effector force is transformed and the equivalent at
each link tip is found.

To shorten notation, the quantity ms,n is defined in Equation 2.6.13, for a robot with
number of links p, and link mass mn for link n. For a given link number n, this gives
the sum of the mass of any following links in the manipulator chain. For example for
TUDOR, ms,2 = m3. It should also be noted that for the last link, this quantity will
always be zero, so for TUDOR’s link 3 ms,3 = 0.

ms,n =
p−1

∑
k=n

mk+1 (2.6.13)

The rows of the robot Jacobian matrix J(q) are notated as per Equation 2.6.14 where
njk(q) is the kth row of the Jacobian with respect to link n.

n J(q) =


nj1(q)

...
njk(q)

 (2.6.14)

The unit vector ĵ∗n is defined as the unit vector in the y-axis for link n, augmented
with 3 additional zero elements to make a 6 element vector as per Equation 2.6.15.
The subscript 0 on vector ĵ∗0 refers to the global coordinate frame.
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2. Static Link Strain Prediction

ĵ∗n =
[
0 ĵn 0 0 0 0

]T (2.6.15)

The equation relating a static robot gravity torque model g(q) and internal bending
moment for all links of an n link robot can be found in Equation 2.6.16. Where B

AR
is the rotation transform from frame A to B, xn is the strain gage position on link n,
and · is the dot product, ml is the payload mass, n

ET is the force-moment transform
from Section 2.6.3 from effector frame E to the frame of link n. The difference terms
for link mass ∆τg,n can be calculated using the Equation 2.6.9, for each link n.

M(xs) = T − ∆τ(xs) (2.6.16a)

M(xs) = g(q) + J(q)TF − ∆τf (xs)− ∆τg(xs) (2.6.16b)M1(xs1)
...

Mn(xsn)

 = g(q) + J(q)TF −

 xs1((
1jT

1
1
ET F + 1

0R(−(ml + ms,1) g ĵ∗0)) · ĵ∗1)
...

xsn((
njT

n
n
ET F + n

0R(−(ml + ms,n) g ĵ∗0)) · ĵ∗n)

+ . . .

−

∆τg,n
...

∆τg,1


(2.6.16c)

This equation shows that the perpendicular force needed for the difference term
can be calculated as a result of a force-moment transform of the effector force, as well
as the force from the mass of following links. The force-moment transformed effector
force is then converted to a joint torque using the row of the Jacobian for that link’s
joint (with the Jacobian with respect to that link’s frame).

2.7. Formulating Internal Bending Moments of TUDOR

Equation 2.6.16 can be applied to calculate the internal bending moments of link
2 and 3 of TUDOR. Effector tip forces Flx and Fly as well as a payload mass m4 are
considered and the generalized effector force is represented as in Equation 2.7.1 where
θn is defined as the link n’s angle with respect to horizontal.

F =
[

fx fy 0 0 0 0
]T (2.7.1a)

fx = −g m4 sin θn + Flx (2.7.1b)
fy = −g m4 cos θn + Fly (2.7.1c)

The difference terms ∆τf ,n for links n are calculated using the method described in
Section 2.6.4 and can be found in Equation 2.7.2 with q2 + q3 substituted for θn for
TUDOR.

∆τf ,2(xs2) = xs2(Fly cos q3 + Flx sin q3 − g m3 cos q2 − g ml cos q2) (2.7.2a)

∆τf ,3(xs3) = xs3(Fly − g m4 cos (q2 + q3)) (2.7.2b)
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2.7. Formulating Internal Bending Moments of TUDOR

The difference terms ∆τg,n are calculated using Equation 2.6.9 and found below as
in Equation 2.7.3. For a reference of symbols used, see Appendix A.

∆τg,2(xs2) = −
g m2xs2 cos q2(2a2 − xs2)

2a2
(2.7.3a)

∆τg,3(xs3) = −
g m3xs3 cos (q2 + q3)(2a3 − xs3)

2a3
(2.7.3b)

The gravity model g(q) for the links 2 and 3 is built using the recursive Newton-
Euler model and is found in Equation 2.7.4 Craig 2004. This gravity model includes
the effects of payload m4 as an additional link with zero length to aid in equation
generation.

g2(q) =
a3 g m3 sin q2 sin q3

2
− a2 g m2 cos q2

2
− a2 g m3 cos q2 − a2 g m4 cos q2

− a3 g m3 cos q2 cos q3

2
− a3 g m4 cos q2 cos q3 + a3 g m4 sin q2 sin q3

(2.7.4a)

g3(q) = − a3 g m3 cos (q2 + q3)

2
− a3 g m4 cos (q2 + q3) (2.7.4b)

The Jacobian J(q) in Equation 2.7.5 below can be used to calculate the torques
resulting from the applied effector force. The payload mass m4 is omitted as this is
already captured in the gravity model g(q) in Equation 2.7.4.

J(q) =
[

Fly(a3 + a2 cos q3) + Flxa2 sin q3
Flya3

]
(2.7.5)

These equations can be assembled to build the standard rigid-link torque-referenced
model for TUDOR’s 2nd and 3rd joints as in Equation 2.7.6.

T2(q) = Fly(a3 + a2 cos q3) + Flxa2 sin q3 −
a3 g m3 cos (q2 + q3)

2
− a3 g m4 cos (q2 + q3)

− a2 g m2 cos q2

2
− a2 g m3 cos q2 − a2 g m4 cos q2

(2.7.6a)

T2(q) = −
a3(g m3 cos (q2 + q3)− 2Fly + 2 g m4 cos (q2 + q3))

2
(2.7.6b)

These equations can also be assembled to form the equations for the internal bend-
ing moment of TUDOR’s links 2 and 3 as in Equation 2.7.7. For brevity, abbreviations
for the sine and cosine functions of the generalized link angles q have been used such
that C23 represents cos (q2 + q3), and S2 represents sin q2.

M2(xs2) = Fly(a3 + a2C3)− xs2(FlyC3 + FlxS3 − g m3C2 − g m4C2) + Flxa2S3 −
a3 g m3C23

2

− a3 g m4C23 −
a2 g m2C2

2
− a2 g m3C2 − a2 g m4C2 +

g m2xs2C2(2a2 − xs2)

2a2
(2.7.7a)

M3(xs3) =
(a3 − xs3)(2Flya3 − a3 g m3C23 − 2a3 g m4C23 + g m3xs3C23)

2a3
(2.7.7b)
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2. Static Link Strain Prediction

It should be noted that when the strain positions xsn are zero the internal bend-
ing moment equations will be the same as the standard rigid-link model equations.
Performing this check on Equations 2.7.6 and 2.7.7 shows that this is true for the
calculated equations for TUDOR.

The strain model can now be built from the internal bending moment using Equa-
tion 2.2.1. As seen previously in Section 2.4, these equations can be made linear in
the parameters. While lumping the parameters, it can be seen that some parameter
terms will be quite similar and that keeping the gravitational constant g out of the
parameter terms will allow some to be lumped further. This reduces the number of
parameters for link 2 from 6 to 4, and for link 3 from 6 to 2. The results can be seen
in Equation 2.7.8 with additional offset parameters R1 added.

E2(xs2) =


1

g m4C23 − Fly
g C23

g m4C2 − FlxS3 − FlyC3
g C2


T



R1

−
a3m3yb

2EI

−
a3m3yb

2EI

−
yb(a2 − xs2)

EI

−
yb(a2 − xs2)(a2m2 + 2a2m3 −m2xs2)

2EIa2


(2.7.8a)

E3(xs3) =

 1
g m4C23 − Fly

g C23

T


R1

− yb(a3−xs3)

EI

−m3yb(a3−xs3)
2

2EIa3

 (2.7.8b)

This additional lumping of parameters has the added benefit of moving terms con-
taining Fly or Flx into terms containing m4. This will later prove highly beneficial later
as it will allow any models trained on payload data to also be used in the presence of
effector forces. Reliably applying perpendicular tip forces in a reproducible fashion is
much more difficult than applying fixed payloads; being able to use payloads to train
for tip forces is greatly beneficial.

It should be noted that following this method, the analytic equations for link 3
found in equation 2.5.3 have been reproduced identically in Equation 2.7.8b. This
means that the results of the linear regression for link 3 found in Section 2.5 will be
identical as well.

2.8. TUDOR Link 2 Linear Regression Results

The analytic equation derived above (Equation 2.7.8a), shows that it can expected that
the strain from a payload and tip force will be a linear combination of g m4 cos (q2 + q3)−
Fly, g cos (q2 + q3), g m4 cos q2− Flx sin q3− Fly cos q3, and g cos q2. As done previously
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2.8. TUDOR Link 2 Linear Regression Results

with the link 3 linear regression in Section 2.5, a constant offset parameter is added
as well.

This can be demonstrated by performing a linear regression using the data from
the MERIt03 dataset. The effector tip forces Flx and Fly are set to zero and the payload
m4 is set. A 60-40 training and test split was used with the MERIt03 static dataset.
The performance and parameters of the linear regression can be found in Tables 2.4
and 2.5 for each strain gage.

Training Performance Test Performance
Strain Gage R2 RMSE [µm/m] NRMSE R2 RMSE [µm/m] NRMSE

21 0.997 17.29 0.0152 0.997 17.69 0.0155
22 0.997 9.25 0.0138 0.997 9.31 0.0139

Table 2.4.: Performance of linear regression for estimating link 2 strain
in various link configurations. The following equation E2 = R1 +

R2 g m4 cos (q2 + q3) + R3 g cos (q2 + q3) + R4 g m4 cos q2 + R5 g cos q2, which is linear in
the parameters Ri is used for the regression (and tip forces Flx and Fly were neglected for this
dataset). NRMSE is normalized by the range of the dataset strain measurements.

Parameters
Strain Gage R1 R2 R3 R4 R5

21 -19.3697 25.8985 2.6468 27.2239 31.4224
22 -1.4358 25.7291 2.4479 12.4543 13.8884

Table 2.5.: Parameters from the linear regression for estimating static link 2 strain in various
link configurations from strain gages 21 and 22.

From the error metrics for link 2 in Table 2.4 and link 3 in Table 2.1, it is clear that
the method for building a strain model from a standard torque model and fitting the
lumped parameters with a linear regression has worked very well. This will allow
accurate predictions of strain while the robot is at rest to be made and could be easily
adapted to other elastic link robot manipulators with differing joint configurations.
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3
Dynamic Link Strain Prediction

This chapter develops models for strain of elastic link robot manipulators in motion.
It begins by applying the static equations to dynamic data to demonstrate the need for
additional dynamic modeling. A dynamic model is built, applied and performance
is demonstrated against dynamic data. The dynamic model is further improved with
the application of Kalman filtering for the joint angle derivatives.

The use of the rigid link torque-referenced manipulator dynamics equations in this
chapter can be justified by the assumptions made in Section 1.3.1. When the elas-
tic link dynamics are split into slow and fast subsystems, and the fast subsystem
is sufficiently damped, the slow system will be sufficiently similar to the rigid link
torque-referenced robot dynamics. This chapter will also experimentally demonstrate
the validity of this approach by providing sufficiently accurate strain predictions for
a flexible link manipulator in motion.

3.1. Dynamic Strain Estimation Using Static Equations

In Chapter 2, static strain estimation equations were built, and then trained using lin-
ear regression against the MERIt03 dataset. This performed well, but as the MERIt03
dataset only contains data from the robot at rest, it does not give an idea of how these
same equations would perform while in motion. To test this, the performance of the
static equations and parameters from Chapter 2 against the MERIt02 dataset is sum-
marized in Table 3.1. As described in Section 1.4, MERIt02 contains runs of data with
TUDOR in motion with various payloads.

Strain Gage R2 RMSE [µm/m] NRMSE
21 0.948 74.57 0.0347
22 0.852 69.33 0.0595
31 0.883 19.00 0.0335
32 0.848 8.83 0.0358

Table 3.1.: Performance of the static strain equations and parameters against dynamic data
from the MERIt02 dataset. NRMSE is normalized by the range of the dataset strain measure-
ments.

The performance of the static equations and parameters is considerably worse
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3.1. Dynamic Strain Estimation Using Static Equations

against dynamic data than the static data (results of which can be found in Tables 2.4
and 2.2). Performance for strain estimates in dynamic conditions (from MERIt02)
compared to measured strains with a 300 gram payload can be seen in Figures 3.1
and 3.2.
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Figure 3.1.: Actual strain from dynamic data with 300g payload, and predicted values using
static equations trained on static data for strain gages 21 and 22.

When comparing the static MERIt03 and dynamic MERIt02 dataset, an offset be-
tween data can sometimes be seen for identical payloads and joint angles when at
rest. This can be linked to the method used for strain calibration offsets when data is
collected. Noise can sometimes cause a different offset to be applied during calibra-
tion. This appears more frequently in strain gage 22.

Table 3.1 clearly shows that performance for dynamic cases is substantially reduced.
Any attempt to use the static equations to predict payload mass would likely be very
problematic, as it will be later shown in Chapters 4 and 5 that small errors in strain
predictions can lead to large errors in mass and force estimates.
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3. Dynamic Link Strain Prediction
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Figure 3.2.: Actual strain from dynamic data with 300g payload, and predicted values using
static equations trained on static data for strain gages 31 and 32.

3.2. Training Static Equations With Dynamic Data

While the static dataset has a limited number of joint angles with very low noise, the
dynamic dataset offers much more data with more varied joint angles. Retraining
the static equations on the dynamic dataset could possibly provide a better fit for
dynamic situations.

The static model linear regression is redone using the dynamic MERIt02 dataset
with a 60-40 training and test split. The results of this can be seen in Tables 3.2.

Additionally, this model is then re-tested against the static dataset to determine how
the performance in static situations has been effected by training against dynamic
data. The results of this can be seen in Table 3.3.

The performance against the dynamic data improves some for strain gages 21 and
22, but only marginally for 31 and 32. The performance against the static dataset has
deteriorated, with RMSE increasing for all strain gages. The improvement against
dynamic data is not significant enough to warrant the loss of static performance.
Training a static model on dynamic data is not a viable option for predicting strain in
dynamic situations.
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3.3. Adding Dynamic Components

Training Performance Test Performance
Strain Gage R2 RMSE [µm/m] NRMSE R2 RMSE [µm/m] NRMSE

21 0.957 67.46 0.0314 0.957 67.70 0.0318
22 0.891 59.47 0.0520 0.890 59.71 0.0512
31 0.888 18.59 0.0330 0.888 18.61 0.0340
32 0.860 8.47 0.0349 0.859 8.48 0.0344

Table 3.2.: Static strain prediction linear regression trained and tested on dynamic data.
NRMSE is normalized by the range of the dataset strain measurements.

Static Performance
Strain Gage R2 RMSE [µm/m] NRMSE RMSE Increase

21 0.985 39.72 0.0348 2.24×
22 0.947 39.73 0.0592 4.27×
31 0.985 6.93 0.0274 1.23×
32 0.975 3.62 0.0341 1.40×

Table 3.3.: Static strain prediction linear regression trained on dynamic data and tested against
the static dataset. The increase in RMSE from the original static test is also included to illus-
trate the increase in error. NRMSE is normalized by the range of the dataset strain measure-
ments.

3.3. Adding Dynamic Components

In order to capture the dynamic behavior of the robot more accurately, additional
terms will need to be added to the equations used for linear regression. The typ-
ical state-space form of torque-referenced robot manipulator dynamics is found in
Equation 3.3.1 (Lewis et al. 2003).

T = I(q)q̈ + C(q, q̇)q̇ + g(q) + J(q)TF (3.3.1)

The dynamics of a robot arm are typically built using either the Euler-Lagrange for-
mulation or the recursive Newton-Euler formulation. Both formulations result in the
same equations, however for the Newton-Euler method can be applied recursively,
making computer implementation simpler. Both formulations are typically put into
the form seen above in Equation 3.3.1. The matrix of equations I(q) captures effects
related to inertia and is often termed the inertia matrix. The matrix of equations
C(q, q̇) captures centrifugal and Coriolis effects and is often termed the Coriolis ma-
trix (Spong et al. 2005). As seen before in Equation 2.6.1, g(q) represents the gravity
model of the robot, and J(q)TF the torques from an applied static generalized effector
force or wrench.

The missing components in previous static equations are the Inertia and Coriolis
terms. Luckily these terms can be viewed as applying moments to the link beams.
As seen before in Section 2.6.1, this means that no difference terms will need to be
added to convert Equation 3.3.1 from a torque-referenced model to a strain refer-
enced model for use with elastic link robots. The Inertia and Coriolis terms need only
be computed and added to the existing models from Chapter 2. The general form
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3. Dynamic Link Strain Prediction

for strain-referenced robot dynamics equations built from standard torque-referenced
robot dynamics can be seen below in Equations 3.3.2, with vector of strain gage posi-
tions xs, and vector of generalized robot coordinates q.

E(xs) =
yb
EI

M(xs) =
yb
EI

(T − ∆τ(xs)) (3.3.2a)

E(xs) =
yb
EI

(I(q)q̈ + C(q, q̇)q̇ + g(q) + J(q)TF − ∆τ(xs)) (3.3.2b)

The Coriolis and inertia matrices for the TUDOR robot are generated using the
recursive Newton-Euler algorithm as implemented in the Robotics Toolbox for MAT-
LAB (Corke 2011). In addition, the friction and motor inertia terms that were ne-
glected in the static gravitational models due to a lack of motion are now included.
It is worth noting that the current version of the robotics toolbox uses a single static
friction model for all joints of a serial link robot, so only one friction coefficient is used
in these models.

The dynamic equations for the link 2 and 3 strain of TUDOR contain a total of 37
and 27 constant parameters (listed in Equation 3.3.3 and 3.3.4). This is a dramatic
increase from 4 and 2 parameters in the static strain equations of link 2 and 3. The
robot is physically limited by its kinematics, making the identification of each of these
parameters not just difficult, but in fact impossible. Parameters defining the robot
dynamics for torque-referenced models are often grouped as fully identifiable, iden-
tifiable only in linear combination, and completely unidentifiable (Verdonck 2004).
Those parameters that are completely unidentifiable are ones which do not effect the
torques (and hence the strains) of the model and can be safely ignored (Atkeson et al.
1986). These same grouping can be applied to the parameters in the strain referenced
robot models.

θall2 =

[
E I Ixx2 Ixx3 Ixx4 Ixy2 Ixy3 Ixy4 Ixz2 Ixz3 Ixz4

Iyy2 Iyy3 Iyy4 Iyz2 Iyz3 Iyz4 Izz2 Izz3 Izz4 Jm2 Tc
a2 a3 gR1 gR2 gR3 m2 m3 rx2 rx3 ry2 ry3

rz2 rz3 x2 yb
]T

(3.3.3)

θall3 =

[
E I Ixx3 Ixx4 Ixy3 Ixy4 Ixz3 Ixz4 Iyy3 Iyy4 Iyz3

Iyz4 Izz3 Izz4 Jm3 Tc a2 a3 gR1 gR2 gR3 m3

rx3 ry3 rz3 x3 yb
]T

(3.3.4)

Following the same procedure as with the static equations in Section 2.5, the robot
strain equations can be made linear in the parameters. This is a technique employed
frequently with the standard torque-referenced robot dynamics (Swevers et al. 2007).
In Equation 3.3.5 this can be seen, where the torque dynamics model is represented
as a regressor matrix Φτ and a parameter vector θτ,linear. As the strain referenced
model is mathematically very similar, these same tools can be easily applied as in
Equation 3.3.6.

T = M(q)q̈ + C(q, q̇)q̇ + g(q) + J(q)TF
= Φτ(q, q̇, q̈)θτ,linear

(3.3.5)
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3.3. Adding Dynamic Components

E(x) =
yb
EI

(T − ∆τ(x))

= Φ(q, q̇, q̈)θlinear

(3.3.6)

The procedure used is the same as in (Malzahn et al. 2014a) in which the generalized
link coordinates and trigonometric functions of link coordinates are factored from the
equations to produce a minimal set of identifiable parameters for each link. As before
in Section 2.5, the applied effector force, payload mass and gravity constant is factored
out in addition to the joint angles and joint angle derivatives. This allows the same
model to be used for varying effector forces and masses. The model can also be
trained on mass data and then used to estimate effector forces.

Following this process, the parameter vector θlinear for links 2 and 3 can be found.
The number of lumped linear parameters is greatly reduced from the original amount
in equations 3.3.3 and 3.3.4. For link 2 37 parameters are reduced to 24 and for link
3 27 parameters are reduced to 15. The contents of the regressor matrix Φ for links 2
and 3 can be seen in Tables 3.4 and 3.5.

1 1
2 q̇1

2(cos (2q2)− 3 cos (2q3) + cos (2q2 + 2q3)− 3)
3 m4(8q̈3 + q̇1

2 sin (2q2)− 3q̇1
2 sin (2q3) + q̇1

2 sin (2q2 + 2q3))
4 q̇1

2(sin (2q2)− 3 sin (2q3) + sin (2q2 + 2q3))
5 q̇1

2 cos (2q2 + q3)− 4q̇3
2 cos q3 − 3q̇1

2 cos q3 − 2q̈2 sin q3 − 4q̈3 sin q3 − 2q̇2q̇3 cos q3
6 −m4(3q̇1

2 sin q3 + 4q̇3
2 sin q3 − q̇1

2 sin (2q2 + q3)− 2q̈2 cos q3 − 4q̈3 cos q3 + 2q̇2q̇3 sin q3)
7 q̇1

2 sin (2q2 + q3)− 4q̇3
2 sin q3 − 3q̇1

2 sin q3 + 2q̈2 cos q3 + 4q̈3 cos q3 − 2q̇2q̇3 sin q3
8 q̇1

2(cos q2
2 − 2)

9 q̈1 cos (q2 + q3)
10 gm4 cos (q2 + q3)− Fly
11 g cos (q2 + q3)
12 m4q̇1

2 sin (2q2)
13 q̇1

2 sin (2q2)
14 q̈1 sin (q2 + q3)
15 g sin (q2 + q3)
16 q̈1 cos q2
17 gm4 cos q2 − Flx sin q3 − Fly cos q3
18 g cos q2
19 q̈1 sin q2
20 g sin q2
21 q̈1
22 m4q̈2
23 q̈2
24 q̈3

Table 3.4.: TUDOR link 2 dynamic regressors

If generalized joint coordinate derivatives q̇ and q̈ are set to zero in the above dy-
namic regressors in Tables 3.4 and 3.5 it can be verified that these will reduce to the
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3. Dynamic Link Strain Prediction

1 1
2 −q̇1

2(3 cos (2q2) + 3 cos (2q3)− cos (2q2 + 2q3)− 9)
3 m4(8q̈2 + 8q̈3 − 3q̇1

2 sin (2q2)− 3q̇1
2 sin (2q3) + q̇1

2 sin (2q2 + 2q3))
4 −q̇1

2(3 sin (2q2) + 3 sin (2q3)− sin (2q2 + 2q3))
5 q̇1

2 cos q3 + 2q̇2
2 cos q3 + q̇1

2 cos (2q2 + q3)− 2q̈2 sin q3
6 m4(q̇1

2 sin q3 + 2q̇2
2 sin q3 + q̇1

2 sin (2q2 + q3) + 2q̈2 cos q3)
7 q̇1

2 sin q3 + 2q̇2
2 sin q3 + q̇1

2 sin (2q2 + q3) + 2q̈2 cos q3
8 q̈1 cos (q2 + q3)
9 gm4 cos (q2 + q3)− Fly
10 g cos (q2 + q3)
11 q̈1 sin (q2 + q3)
12 g sin (q2 + q3)
13 q̈1
14 q̈2
15 q̈3

Table 3.5.: TUDOR link 3 dynamic regressors

same regressors found in Sections 2.5 and 2.6.4 for the static strain equations for links
2 and 3.

3.4. Dynamic Strain Linear Regression and Results

The quality of excitation signals in parameter identification can greatly effect the accu-
racy of the parameters identified (Armstrong 1989). The MERIt02 dataset contains the
TUDOR robot with an amplitude-modulated pseudo-random binary signal (APRBS)
applied as excitation. For parameter identification in non-linear systems, having a
signal that varies not just in frequency, but in amplitude such as an APRBS is of-
ten necessary to properly excite the system dynamics (Isermann et al. 2011). This
makes the signals in MERIt02 well suited for robot dynamics parameter identification
(Malzahn et al. 2014c).

The linear regression is performed on the MERIt02 dataset with the active damp-
ing described in Section 1.3.1 activated. A 60-40 split of training and test data was
used. The performance of the dynamic strain equations against dynamic data is better
than with only static equations (Section 3.1) and with static equations trained against
dynamic data (Section 3.2). The performance can be seen summarized in Table 3.6.
When compared to the identical test using the static equations on the same dynamic
data (Section 3.1), there is a 17-19% reduction in RMSE for link 2 strain gages and
9-10% for link 3 strain gages.

Looking at estimates of strain as compared to the actual measurements in Fig-
ures 3.3 and 3.4 we can see that performance is greatly increased as compared to
static strain reproduction in dynamic cases as in Figures 3.1 and 3.2. Whereas the
static equations tend to underestimate the strain heavily during changes in velocity,
the dynamic equations represent the peaks quite well. Large spikes can be seen in
the estimates that do not match the actual strain data. These can be seen in strain
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3.4. Dynamic Strain Linear Regression and Results

Training Performance Test Performance
Strain RMSE RMSE RMSE % Decrease
Gage [µm/m] NRMSE [µm/m] NRMSE from Static

21 60.62 0.0282 60.68 0.0285 18.63
22 57.13 0.0500 57.27 0.0491 17.39
31 17.19 0.0305 17.14 0.0313 9.80
32 7.93 0.0326 7.91 0.0321 10.41

Table 3.6.: Strain prediction error using dynamic equations tested against dynamic data. The
percentage of error reduced from the similar test using the static equations in Table 3.1 is
shown. NRMSE is normalized by the range of the dataset strain measurements.

predictions for all 4 strain gages and are caused by the angular acceleration signal
being very noisy due to being numerically differentiated twice from the joint angle
sensor measurements.
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Figure 3.3.: Actual strain from dynamic data with 300g payload, and predicted values using
dynamic equations trained on static data for strain gages 21 and 22
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Figure 3.4.: Actual strain from dynamic data with 300g payload, and predicted values using
dynamic equations trained on static data for strain gages 31 and 32

3.5. Improving Numerical Differentiation for Velocity and
Acceleration

The joint sensors only provide angle measurements and the angular velocity and
acceleration must be calculated in some way. The angular velocity and acceleration in
the MERIt datasets comes from the method of finite differences. This is quite noisy
and results in the singularities occurring in the strain estimates in Figures 3.3 and
3.4. Any noise in the angle measurement is typically greatly amplified by discrete
differentiation methods such as this.

3.5.1. Link Angle Kalman Filter and Results

To provide an estimate of the angular velocity and angular acceleration, an observer
such as a Kalman filter can be used. A continuous Wiener process acceleration
(CWPA) or white noise jerk model model was chosen. This makes the assumption
that acceleration is constant, but influenced by a jerk that is Gaussian distributed
noise. This is a common model for this type of system (Bar-Shalom et al. 2001). It
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3.5. Improving Numerical Differentiation for Velocity and Acceleration

should be noted that due to various friction effects there are in reality quite large
spikes in angular acceleration for this robot, but for the purposes of dynamic strain
prediction, it helps greatly to neglect this.

As an example with a single joint, the state space vector is chosen as in Equa-
tion 3.5.1 below.

x =
[
q1 q̇1 q̈1

]T (3.5.1)

The system is modeled as a linear time-invariant system as shown in Equation 3.5.2.

ẋ(t) = Ax(t) + Dv(t) (3.5.2a)

y(t) = Cx(t) (3.5.2b)

A =

0 1 0
0 0 1
0 0 0

 D =

0
0
1

 C =
[
1 0 0

]
(3.5.2c)

When designing an observer it is routine to check the observability. The rank of the
observability matrix is found to be always 3, meaning the system is observable. This
can be seen in Equation 3.5.3.

O =

 C

CA

CA2

 =

1 0 0
0 1 0
0 0 1

 rank(O) = 3 (3.5.3)

This continuous system is extended to 3 joints and then discretized for use with the
Kalman filter. For Kalman filtering related functions a library from Alto University’s
Biomedical Engineering and Computational Science department was used (Särkkä
et al. 2011). When using a Kalman filter, the tuning of process noise variance Q
and measurement noise variance R is a main concern. To deal with this, the RMSE
of the dynamic measurements was treated as a fitness and minimized using global
optimization against the Q and R parameters of interest.

For a global optimization algorithm Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) (Hansen et al. 2001) was chosen and a library from Universitè Paris-Sud
was used (Hansen 2012). A 60-20-20 percent split of the MERIt02 dynamic data was
used for training, cross-validation, and testing. The parameters for measurement and
process noise in Equation 3.5.4 were the best found after multiple runs of the search.

R =

2.0592× 10−08 0 0
0 2.0592× 10−08 0
0 0 9.0389× 10−11

 P =

0.1 0 0
0 0.1 0
0 0 0.1


(3.5.4)

The element of R corresponding to joint 1 was set to the same value as joint 2 due
to a lack of data to examine for joint 1 motion in the MERIt02 dynamic dataset.

Predicted strain with and without Kalman filtered angles can be seen in Figure 3.5.
The singularities seen previously are almost completely eliminated by the addition
of the Kalman filter. In addition, the tracking of the strain estimates is significantly
improved with respect to measured strain. This can be seen quantitatively in Table 3.7,
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3. Dynamic Link Strain Prediction

Unfiltered Kalman Filtered
Strain RMSE RMSE RMSE %
Gage [µm/m] NRMSE [µm/m] NRMSE Decrease

21 60.68 0.0285 42.80 0.0233 29.46
22 57.27 0.0491 37.91 0.0337 33.81
31 17.14 0.0313 12.07 0.0273 29.56
32 7.91 0.0321 5.91 0.0307 25.29

Table 3.7.: Improvements of dynamic strain prediction using Kalman filtered joint angles. A
percentage reduction of RMSE with Kalman filtering enabled is shown. NRMSE is normalized
by the range of the dataset strain measurements.

where the RMSE has been reduced by 25 to 33 percent as a result of the addition of the
Kalman filter. It can also be seen qualitatively as improved tracking of strain estimates
to actual measured values as seen in Figure 3.6 for strain gage 32.
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Figure 3.5.: Predicted strain values with 300g payload using dynamic equations trained on
dynamic data for strain gages 31 and 32 and angle variables found by finite differences. The
same values using Kalman filtered joint angles are shown.
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3.5. Improving Numerical Differentiation for Velocity and Acceleration
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Figure 3.6.: Predicted strain values with 200g payload using dynamic equations trained on
dynamic data for strain gage 32. Strain prediction values can be seen to track the measured
value more closely using Kalman filtered joint angles.
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4
Elastic Link Payload Estimation

4.1. Static Payload Estimation

The equations used in the linear regressions of static strain in Chapter 2 can be rear-
ranged so that for a given strain, joint angles, and effector force, the payload can be
estimated. This is synonymous with accounting for a given strain by a nominal strain
from the current robot geometry, and accounting for any remainder by a tip force and
payload. The assumption however must be made that both the strain and link angles
are perfect measurements. Any noise present in the measurements will be accounted
for by a tip force or payload which may or may not be physically plausible.

4.1.1. Link 3 Application and Experimental Results

Solving Equation 2.5.4 algebraically for payload m4 and assuming that the additional
effector perpendicular force Fly is known, Equation 4.1.1 can be found. This equation
uses the linear regression coefficients found in Section 2.5.

m4 = −
R1 − FlyR2 − E3(xs3) + g R3 cos (q2 + q3)

g R2 cos (q2 + q3)
(4.1.1)

Predictions of payload mass were made using Equation 4.1.1, the joint angles and
link 3 strain readings for the complete MERIt03 dataset containing static poses as
described in Section 1.4. The results can be found in Table 4.1. The errors are split by
payload and a total value for all payloads is also given. It can be seen that the error
metrics increase in magnitude as the payload increases. NRMSE is normalized by the
range of payloads in the dataset (0 to 500 grams).

Looking at equation 4.1.1, it can be seen that there is a cos (q2 + q3) term in the
denominator. This equation attempts to explain strain that is different from a nominal
model with an added payload mass. If there is any noise present in measurements,
this noise will be explained by a payload mass. As link 3 approaches vertical, the
strain gauges become less sensitive to an added payload and so any noise must be
explained by an increasingly larger payload mass. This dependence of the payload
estimation noise can be seen in Figure 4.1. NRMSE by joint angle is shown to approach
asymptotes at -90, +90 and +270 degrees (indicated by the dashed lines in the figure),
the cosines of which are zero. This leads to the relatively poor overall performance
seen in Table 4.1 as high errors at certain angles drastically increase the error. This
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4.1. Static Payload Estimation

Strain Gage 31 Strain Gage 32
Payload [g] RMSE [g] NRMSE RMSE [g] NRMSE

0 24.61 0.0492 41.48 0.0830
100 32.60 0.0652 37.98 0.0760
200 53.86 0.1077 59.99 0.1198
300 76.77 0.1535 75.78 0.1516
400 104.63 0.2093 97.16 0.1943
500 137.79 0.2756 129.76 0.2595
All 82.05 0.1641 80.39 0.1608

Table 4.1.: Payload identification error using link 3 static strain equations. NRMSE is normal-
ized by the range of payloads in the dataset.

graph in Figure 4.1 was created using a kinematics identification dataset created in
(Malzahn et al. 2014a). This dataset offers a much more diverse set of link 3 angles
to horizontal, providing a better picture of the angle-related effects occurring than
MERIt03 static payload estimates.

−100 −50 0 50 100 150 200 250 300
10

−2

10
−1

10
0

Link 3 Angle to Horizontal [deg]

N
R

M
S

E

Static Payload Error with Strain Gage 31

Figure 4.1.: Payload estimation error using strain gage 31. NRMSE is graphed against link
3 angle to horizontal. NRMSE is normalized by the range of payloads in the dataset. This
was produced using a kinematics identification dataset similar to MERIt03, but with greater
diversity of angles. The results are similar to those found on MERIt03, but easier to visualize
with this dataset. Apparent asymptotes are indicated with dashed lines.

Performance at angles where the cosine of the link 3 angle to horizontal is one
(0 and 180 degrees) have very low NRMSE. It can be considered when estimating
the payload that it would be feasible to constrain the robot arm to certain poses to
improve performance. If link 3 is maintained within +/− 20 % from horizontal
(irrespective of individual joint angles), the payload estimation performance can be
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4. Elastic Link Payload Estimation

increased markedly as seen in Table 4.2. Constraining the link angle before estimating
the error reduced the RMSE of the estimates by 85 and 82.5 percent for strain gages
31 and 32 respectively. This is a very sizable improvement and allows quite accurate
estimates of payloads given certain conditions.

Strain Gage 31 Strain Gage 32
% RMSE % RMSE

Payload [g] RMSE [g] NRMSE Reduced RMSE [g] NRMSE Reduced
0 4.27 0.0085 82.64 8.22 0.0165 80.17

100 4.89 0.0098 85.01 11.76 0.0235 69.04
200 5.03 0.0101 90.65 6.47 0.0129 89.21
300 9.89 0.0198 87.11 10.13 0.0203 86.63
400 17.00 0.0340 83.75 19.66 0.0393 79.76
500 21.27 0.0426 84.56 22.12 0.0443 82.95
All 12.25 0.0245 85.07 14.28 0.0286 82.24

Table 4.2.: Payload identification error using static link 3 strain prediction equations with
limited link 3 angle with respect to horizontal. Errors are shown grouped by payload and in
total. The percent RMSE is reduced from predictions in Table 4.1 with no link angle constraints
is shown. NRMSE is normalized by the range of payloads in the dataset.

4.1.2. Link 2 Application and Experimental Results

As with link 3, Equation 2.5.4 for link 2 is solved algebraically for payload m4 as
shown in Equation 4.1.2a. Assuming that the additional effector perpendicular forces
Flx and Fly, link angles, and strain are known, the mass can be found. The numerator
and denominator can be represented as functions N2 and D2 as in Equation 4.1.2b
and will be used later in this section.

m4 =
E2(xs2)− R1 + FlyR2 − g (R5 cos q2 + R3 cos (q2 + q3)) + R4(Fly cos q3 + Flx sin q3)

g(R4 cos q2 + R2 cos (q2 + q3))
(4.1.2a)

=
N2(Flx, Fly, q2, q3, x2)

D2(q2, q3)
(4.1.2b)

This is then used to calculate the payload for given strain and angle measurements
from the MERIt03 dataset. Results are shown in Table 4.3. These payload estimates
have considerably more error as compared to the link 3 estimates seen in Table 4.1.
With NRMSE values over 1, the estimates from strain gage 22 are very bad. Looking
at Equation 4.1.2a above, the denominator approaches zero for certain angle combina-
tions, causing a singularity. These angle combinations are more complex than those
encountered previously with link 3. The regression parameters weight the cosine of q2
and the cosine of link 3 angle to horizontal. As the regression parameters are different
for each strain gage, this means that different angles will cause the mass estimate to
become singular for each strain gage. Strain gage placement on link 2 can be said to
change the position of payload estimate singularities in joint space.
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4.2. Static Sensor Fusion for Payload Estimation

Strain Gage 21 Strain Gage 22
Payload [g] RMSE [g] NRMSE RMSE [g] NRMSE

0 110.73 0.2215 414.18 0.8284
100 102.19 0.2044 575.91 1.1518
200 175.45 0.3509 455.18 0.9104
300 124.35 0.2487 334.42 0.6688
400 175.70 0.3514 496.71 0.9934
500 175.37 0.3508 560.41 1.1208
All 147.52 0.2950 480.11 0.9602

Table 4.3.: Payload identification error using link 2 strain prediction equations. Error is split
by payload and shown in total. NRMSE is normalized by the range of payloads in the dataset.

In Equation 4.1.2b the mass estimate equation for link 2 is split into numerator and
denominator functions N2 and D2. The absolute value of the denominator function
D2 can be examined as a metric for how singular the mass estimate is for any given
pose. This is identical to the technique when using Singular Value Decomposition to
examine the singular values of a matrix to avoid singularities in the robot Jacobian
(Maciejewski et al. 1989).

Using the MERIt03 dataset and limiting the angles to cases where the denominator
is over a certain cutoff value can be shown to reduce the payload estimate errors.
This is a sort of trade-off: more accurate payload estimates can be made, but only
by increasingly limiting the joint angles at which estimates can be made. This is
visualized in Figure 4.2. The percentage of removed values in this graph refer to the
percent of tests that had to be removed from MERIt03 due to the denominator cutoff.
As MERIt03 spans the overall working space of joints 2 and 3, this can be treated as a
metric for loosely evaluating how limited the joint space of the robot will be.

As an example, denominator cutoff values of 250 and 175 are chosen for payload
estimation for strain gages 21 and 22. These cutoff values remove only 34.7% of the
available angles from MERIt for both strain estimates for each strain gage. If the
removed sets of angles for both strain gages are combined they account for 40.8%
of available angles. The performance under these cutoffs can be seen in Table 4.4
and the angles allowed are visualized in Figure 4.3. The RMSE using these limiting
coefficients is 66.69% and 89.77% of the RMSE without (in Table 4.3) for strain gages
21 and 22. This is a dramatic increase and shows that this method can be used to
improve static payload estimates without constraining the workspace extensively.

4.2. Static Sensor Fusion for Payload Estimation

While Section 4.1 focused on determining when payloads estimates were most accu-
rate for each strain gage, a large variety of techniques referred to as sensor fusion can
be used to combine measurements from multiple sensors. This can sometimes pro-
vides more accurate, less noisy, and more stable results. This section will focus on the
application of sensor fusion techniques to static payload estimation as an alternative
to limiting the allowed joint angles as in Section 4.1.
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Figure 4.2.: Effects of various denominator cutoffs on payload RMSE and percent of angles
removed from the dataset. Left Y-Axis shows RMSE in grams, and the right Y-Axis shows the
percent of angles removed.

Strain Gage 21 Strain Gage 22
% RMSE % RMSE

Payload [g] RMSE [g] NRMSE Reduced RMSE [g] NRMSE Reduced
0 31.56 0.0631 71.50 17.58 0.0352 95.75

100 36.44 0.0729 64.34 25.70 0.0514 95.54
200 43.64 0.0873 75.13 26.16 0.0523 94.25
300 40.35 0.0807 67.55 35.21 0.0704 89.47
400 63.31 0.1266 63.97 45.55 0.0911 90.83
500 67.97 0.1359 61.24 58.13 0.1163 89.63
All 49.13 0.0544 66.69 37.30 0.0746 92.23

Table 4.4.: Payload identification error using static link 2 strain prediction equations with mass
estimate denominator cutoffs of 250 and 175 for strain gages 21 and 22 respectively. Error is
shown grouped by payload and in total. The percent RMSE is reduced from predictions in
Table 4.3 with no link angle constraints is shown. NRMSE is normalized by the range of
payloads in the dataset.

4.2.1. Effects of Strain Gage Noise on Payload Estimates

A random variable X, with linear function f applied can be demonstrated to produce
Y, which can also be treated as a random variable. If the linear function f can be
represented as in Equation 4.2.1a, then the expected value of X can be related to Y as
in Equation 4.2.1b and the variance of measurement X can be related to the variance
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Figure 4.3.: Disallowed angles by choice of denominator cutoffs for payload estimation from
strain gages 21 and 22

of Y as in Equation 4.2.1c (Montgomery et al. 2010, p. 182)(Lohr 1999).

Y = f (X) = aX + b (4.2.1a)
E[Y] = E[aX + b] = E[ax] + c = aE[x] + c (4.2.1b)

Var[Y] = Var[aX + b] = a2Var[X] (4.2.1c)

For more complicated cases, a nonlinear function f with respect to n uncorrelated
random variables can be represented as in Equation 4.2.2a. Using a first order Taylor
series expansion the variance can be estimated as in Equation 4.2.2b (Lohr 1999).

y = f (x1, x2, ..., xn) (4.2.2a)

σ2
y =

(
∂ f
∂x1

)2

σ2
x1
+

(
∂ f
∂x2

)2

σ2
x2
+ ... +

(
∂ f
∂xn

)2

σ2
xn (4.2.2b)

Strain Gage Variance

Using the MERIt03 dataset of the robot holding various static poses, the variance of
strain measurements can be found. The MERIt03 dataset contains 2940 15 second
recordings of data spanning the workspace of TUDOR. The last 5 seconds of 100Hz
data recorded at each of these 2940 poses is used. As a result, the variance approxi-
mations for each sensor can be made from 1.47 million points. The average strain of
each static pose is subtracted from the measurements and collected in a table where
the variances across all measurements are found. The standard deviation can then
be calculated to give more physically meaningful values. Both these variances and
standard deviations are listed in Table 4.5 for each of the 4 strain gages on TUDOR.
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4. Elastic Link Payload Estimation

Variance Standard Deviation
Strain Gage [µm2/m2] [µm/m]

21 86.645 9.308
22 37.597 6.132
31 12.921 3.595
32 4.339 2.083

Table 4.5.: Approximations of variance and standard deviation of strain measurements with
TUDOR in static poses.

Link 3

Equation 4.1.1 for estimating the payload from static link 3 strain can be rearranged
into the same form as equation 4.2.1c as shown in Equation 4.2.3. Given the variance
of the strain gage and the assumption that link angles are measured perfectly, the
variance of the mass estimate can be found as in Equation 4.2.4

m̂4 =
1

gR2 cos (q2 + q3)
E(x3)−

R1 − FlyR2 + gR3 cos (q2 + q3)

gR2 cos (q2 + q3)
(4.2.3a)

= aE(x3) + b (4.2.3b)

Var[m4] = a2Var[E(x3)] (4.2.4a)

=
1

g2R2
2 cos2 (q2 + q3)

Var[E(x3)] (4.2.4b)

Previously in Sections 4.1.2 and 4.1.1, the conclusion had been made that at certain
joint angles, the amount strain added from a payload approached zero. As this oc-
curs, in the presence of sensor noise, this leads to any unexplained strain needing to
be explained by an increasingly large payload mass. This can be seen in the Equa-
tion 4.2.4 above as well. As the cosine of the angle of link 3 with respect to horizontal
approaches zero, the variance of the mass estimate will approach infinity.

This can be visualized in Figure 4.4 using the linear regression parameters deter-
mined in Section 2.5 and strain gage variances from Table 4.5. It should be noted that
Figure 4.4 is quite similar to Figure 4.1 calculated from the NRMSE of payload identi-
fication against actual data with varying angles. Additionally, the standard deviation
values in this chart are quite similar to values seen previously in mass estimation in
Section 4.1.

The increased variance of mass estimates from strain gage 32, as compared to strain
gage 31, can be explained by looking into the analytic equations for the parameter R2
in Equation 4.2.5

R2 ≈ −
yb(a3 − x3)

EI
(4.2.5)

As the strain gage position becomes farther from the joint, R2 will become smaller,
and the variance of the mass estimate becomes larger. This difference in the R2 pa-
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Figure 4.4.: Estimate of standard deviation of payload estimates using link 3 strain gages with
variance estimates from Table 4.5. Singularities at the angles -90, 90, and 270 are shown.

rameter for strain gages with different positions appears in the results of the linear
regression as well in Table 2.3.

Link 2

The same procedure can be followed for link 2, rearranging the equation for link 2
strain into the same form of equation 4.2.1c as shown in Equation 4.2.6. It can be seen
in Equation 4.2.6c below, that the mass estimate variance depends on both the angle
of joint 2 and the angle of link 3 to horizontal.

m̂4 =
1

g(R4 cos q2 + R2 cos (q2 + q3))
E2(xs2) (4.2.6a)

−
R1 − FlyR2 + gR5 cos q2 + gR3 cos (q2 + q3)− FlyR4 cos q3 − FlxR4 sin q3

g(R4 cos q2 + R2 cos (q2 + q3))
(4.2.6b)

Var[m4] =a2Var[Es(xs2)] =
1

(gR4 cos q2 + gR2 cos (q2 + q3))2 Var[E2(xs2)] (4.2.6c)

This can be visualized in Figure 4.5 for strain gage 21. The similarity between
the disallowed link angles from Figure 4.3 can be seen to match with the singularity
shown in this graph.

4.2.2. Maximum Likelihood Estimation

As there are 2 strain gages on each link it may be possible to combine measurements
from each to obtain a more accurate estimate of the payload. Ideally, it would be good
to integrate knowledge about the variance of the measurements and how this changes

41



4. Elastic Link Payload Estimation

0 20 40 60 80 100 120 140 160

−80

−60

−40

−20

0

20

40

60

80

Joint 2 Angle [deg]

Jo
in

t 
3 

A
n

g
le

 [
d

eg
]

Strain Gage 21 Payload Estimate Standard Deviation

 

 

M
a

s
s
 E

s
ti
m

a
te

 S
td

. 
D

e
v
. 

[g
]

19.9526

25.1189

31.6228

39.8107

50.1187

63.0957

79.4328

100

Figure 4.5.: Payload estimate standard deviation for link 2 strain gage 21. A logarithmic scale
for the color is used and the maximum is clipped at 100 grams.

as payload is estimated. If it is assumed that the sensors are independent and behave
in a Gaussian fashion, Maximum Likelihood Estimation (MLE) can be used as a tool
to accomplish this (Zisserman 2007).

It can be said that the likelihood L defines the likelihood of recording measurements
zi of the true value we are trying to measure x as in Equation 4.2.7 (Zisserman 2007).

L(x) = P(z|x) (4.2.7)

Given multiple observations, the most likely estimate of x can be defined as a max-
imization of the likelihood, or more usefully, when using Gaussian distributions, as a
minimization of the negative log likelihood as in Equation 4.2.8 (Zisserman 2007).

x̂ = arg min
x
{− lnL(x)} (4.2.8)

With two independent, Gaussian sensors each making measurement zn of some true
value x, the likelihood function can be defined by Equation 4.2.9 (Zisserman 2007).

L(x) = P(z1, z2|x) = P(z1|x)P(z2|x) (4.2.9)

Substituting the Gaussians representing each sensor, the likelihood function can be
found to be proportional to Equation 4.2.10 (normalization constants are ignored).

L(x) ∝ e
− (z1 − x)2

2σ2
1 e

− (z2 − x)2

2σ2
2 (4.2.10)

42



4.2. Static Sensor Fusion for Payload Estimation

Using the assumption that the distributions for both sensors are Gaussian, this can
then be simplified to give the maximum likelihood estimate of x as well as the variance
of the estimate as shown in Equations 4.2.11. The final estimate can be seen as a linear
combination of the measurements with weights wn. Identical result can be found by
applying the central-limit theorem. (Zisserman 2007).

x̂MLE =
σ−2

1

σ−2
1 + σ−2

2
z1 +

σ−2
2

σ−2
1 + σ−2

2
z1 (4.2.11a)

= w1z1 + w2z2 (4.2.11b)

σ−2
x = σ−2

1 + σ−2
2 (4.2.11c)

MLE Results

An overview of the results of the MLE sensor fusion performed on all payloads for
all angles in the MERIt02 dataset can be seen in Table 4.6. The fused error for link 2
and link 3 estimates are compared to the original mass estimates from Table 4.1 and
4.3 without any methods to avoid singularities.

RMSE [g] NRMSE
Strain Gage 21 147.52 0.2950
Strain Gage 22 480.11 0.9602
Strain Gage 31 84.91 0.1698
Strain Gage 32 83.33 0.1667
Link 2 Fusion 74.78 0.1496
Link 3 Fusion 82.38 0.1648

All Strains Fusion 43.13 0.0863
Table 4.6.: Error in payload estimations using individual strain gages and MLE sensor fusion
with all link angles. NRMSE is normalized by the range of payloads in the dataset.

It can be seen that for link 3 there is a small improvement, while for link 2 there
is quite a large improvement. This can be explained by looking at the nature of the
singularities experienced for link 2 and link 3. Looking at the estimates of payload
estimate standard deviations of link 3 sensors in Figure 4.4, it can be seen that both
strain gages approach singularities in the same place. In fact, the two curves are
always the same distance for 2 link 3 strain gages and so the MLE algorithm chooses 2
fixed weights for strain gages 31 and 32 (0.61 and 0.39 respectively). For link 2 payload
estimates, the singularities are positioned in joint space differently for different strain
gage positions. This has been visualized in Figure 4.5 where the payload estimate
standard deviations for strain gages 21 and 22 have been added and plotted with a
logarithmically scaled shading. The two singularities can be clearly seen.

Due to the orientation of the singularities, the MLE algorithm is sometimes able to
favor one sensor over the other. This results in the much improved mass estimation in
Table 4.6. Additionally, this accounts for the improved results when all 4 strain gages
are fused together.

From these results, it can be concluded that MLE is a viable alternative to limiting
the link angles for static payload estimates. Additional tests were made combining
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Figure 4.6.: The sum of payload estimate standard deviation for link 2 strain gages 21 and 22.
This visualizes the different singularities in the joint space of the robot for link 2 strain gages.
A logarithmic scaling of the color shading is used and the maximum is clipped at 1000 grams.

limits to link angles and MLE. Simply limiting joint angles was found to provide
slightly better performance in terms of the error metrics above. Using sensor fusion
provides the added benefit of being able to account for sensor noise. If a robot can
perform a startup calibration it could use MLE to account for sensor noise changing
as the sensors age. Also, in the event of a failure of one of the sensors, others could
be automatically favored, adding a level of robustness that purely limiting link angles
does not provide. The ability to use multiple strain gages to reduce the effects of
singularities also should be considered when designing elastic link robots.

4.2.3. Maximum a posteriori Estimation

Maximum a posteriori estimation (MAP) can combine posterior information about
the payload to improve estimates. For example, if the robot were weighing fruit, a
prior for the payload estimation could be used to make more accurate estimations of
the fruit mass. As the payload masses used in the datasets in this paper are uniformly
distributed this does not provide any gains for this dataset, however depending on
the application, it should be considered.

4.3. Dynamic Payload Estimation

While the static payload estimation is quite useful, the ability to measure while in
motion would allow the robot to operate normally without having to stop to assess the
current payload. In a manufacturing setting this could result in greatly increased cycle
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times. Besides accuracy, there are certain properties that are desirable for a payload
estimation algorithm used while the robot is in motion. First, the algorithm should,
no matter the motion of the robot, be able to continue operating. This implies that
the algorithm should be stable. Second, the algorithm should be able to operate while
in motion without diverging too much from the correct value. Third, the algorithm
should also be able to reach an estimate value as quickly as possible, despite being in
motion.

4.3.1. Ordinary Least Squares of APRBS Signals

The MERIt02 dataset contains the TUDOR robot with various amplitude modulated
pseudo-random binary sequences (APRBS) of motion organized into runs (see Sec-
tion 3.4 for more details). This also makes them very useful in the context of payload
identification while in motion. They contain a 80 seconds of 100Hz data in widely
varied poses and speeds with different known payloads. In terms of the data that will
likely be encountered, this represents the most ideal case that could be hoped for.

The equations for dynamic strain prediction can be reorganized into the form y =
Xβ, where the parameter vector β is the constant payload mass m4. Substituting
generalized robot coordinates as well as measured strain, the vectors y and X can be
calculated for the entire run of data and the constant m4 can then be estimated using
linear least-squares as in Equation 4.3.1.

y = Xβ = Xm4 (4.3.1a)

(XTX)m4 = XTy (4.3.1b)

m̂4 = (XTX)−1XTy (4.3.1c)

Least squares estimation of the payload for each run in MERIt02 was performed
with and without Kalman filtering of joint angles as described in Section 3.5.1. The
comparison between the two can be found in Table 4.7 and details of the results using
Kalman filtering, grouped by payload, can be found in Table 4.8.

Unfiltered Kalman Filtered
Strain RMSE RMSE RMSE %
Gage [g] NRMSE [g] NRMSE Decrease

21 13.39 0.0335 8.55 0.0214 36.17
22 66.19 0.1655 58.09 0.1452 12.24
31 8.73 0.0218 6.83 0.0171 21.76
32 8.44 0.0211 6.72 0.0168 20.39

Table 4.7.: Payload estimation error from ordinary least squares for each strain gage with
and without Kalman filtered joint angles, as well as percent reduction in RMSE. NRMSE is
normalized by the range of payloads in the dataset.

Again, as before with dynamic strain prediction in Section 3.5.1, the Kalman filtered
joint angles provide a substantial reduction in error, keeping the RMSE below 9 grams
for at least one sensor on each link. Even without Kalman filtering, for each link, there

45



4. Elastic Link Payload Estimation

Payload Payload RMSE per strain gage [g] Payload NRMSE per strain gage
[g] 21 22 31 32 21 22 31 32
0 6.01 68.41 2.15 2.17 0.0150 0.1710 0.0054 0.0054

100 4.74 101.85 3.46 4.66 0.0118 0.2546 0.0087 0.0116
200 9.55 30.43 7.64 7.42 0.0239 0.0761 0.0191 0.0186
300 9.19 16.10 9.17 8.39 0.0230 0.0402 0.0229 0.0210
400 11.44 25.17 8.62 8.60 0.0286 0.0629 0.0215 0.0215
All 8.56 58.09 6.83 6.72 0.0214 0.1452 0.0171 0.0168

Table 4.8.: Payload estimation RMSE on entire runs of data in MERIt02 using ordinary least
squares for each strain gage. Data is grouped by payload and strain gage. NRMSE is normal-
ized by the range of payloads in the dataset.

is at least one strain gage with an RMSE below 14 grams, and an NRMSE below 0.04
on each link. The large error for strain gage 22 result from the poorer dynamic model
of this strain. As mentioned in Section 3.1, this is likely caused by the calibration
procedure for the strain gages applying a different offset due to sensor noise. This
model error is further exaggerated when the mass estimation is performed. Under
ideal circumstances, it is possible to to determine payload mass with reasonable ac-
curacy. It should also be noted that the RMSE can be seen to usually increase with
larger payloads.

When random variables have a variance that changes with respect to each other
or time, they are referred to as heteroscedatic (Gujarati et al. 2002). This concept is
more frequently encountered in the field of econometrics and so much of the literature
comes from these areas. As was shown in Section 4.2.1, payload estimation is clearly
heteroscedatic when the robot is in motion as the variance of the payload estimate
will change as the joint angles change.

Ordinary least squares is generally made under the assumption of constant vari-
ance or homoscedasticity. The presence of heteroscedatic error does not add a bias or
inconsistency to the estimation if given a sufficient amount of data. It does however
mean that the ordinary least squares is no longer considered the most optimal estima-
tion (minimum variance unbiased estimator) (Gujarati et al. 2002, p. 394). Despite this,
from the results in Tables 4.7 and 4.8, it can be seen that the ordinary least squares is
performing quite well. When applying this method, the computation time needed to
compute the matrix inversion in Equations 4.3.1 should be considered carefully.

4.3.2. Moving Window Least Squares

In real world applications, collecting 8000 data points over 80 seconds before making
a single payload estimation is usually not practical (or computationally feasible in
embedded applications). The least squares technique can instead be applied to a
small moving window of data. When a new data point is received it is added into the
window and the oldest data point is subsequently removed.

Window sizes from 1 to 1000 samples (at 100Hz) were tested against the MERIt02
dataset. These are shown in Figure 4.7 and summarized in Table 4.9. For an increas-
ing window size, the error in estimates can be seen to decrease. With an appropriate
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4.3. Dynamic Payload Estimation

choice of window size, the RMSE can be brought below 50 grams, which may be low
enough for some applications. It should be noted that as this method uses a matrix
inversion, the window size does increase the computation power needed. Various al-
gorithms exist to compute an inverse or pseudo-inverse. As an example, the Williams
inverse algorithm for a square matrix of size n can be computed in O(n2.373) (Williams
2011).

Strain Gage 21 Strain Gage 31
Window Size RMSE [g] NRMSE RMSE [g] NRMSE

1 179.52 0.3590 118.11 0.2362
50 114.10 0.2282 88.35 0.1767

100 101.48 0.2030 81.27 0.1625
250 89.17 0.1783 71.52 0.1430
500 75.28 0.1506 54.21 0.1084
750 63.39 0.1268 31.10 0.0622

1000 47.72 0.0954 22.08 0.0442
Table 4.9.: Moving window payload estimation error against the MERIt02 dataset with various
window sizes. NRMSE is normalized by the range of payloads in the dataset.
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Figure 4.7.: Moving window payload estimation error for strain gages 21 and 31 against the
size of the moving window.

4.3.3. Extended Kalman Filter

Extended Kalman filters are often applied as in (Gourdeau et al. 1991) to estimating
derivatives of link coordinates as well as parameters of rigid-link robot manipulators.
They have also been successfully applied to elastic link, rigid joint robots and rigid
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4. Elastic Link Payload Estimation

link, elastic joint robots for tip position estimation as in (Lertpiriyasuwat et al. 2000)
and (Lightcap et al. 2010).

The nonlinear discrete state space system in Equation 4.3.2 is used as a starting
point to represent a system with process noise qk, measurement noise rk, states xk,
measurements yk, inputs uk and parameters w.

xk = F(xk−1, uk, w) + qk (4.3.2a)
yk = H(xk−1, uk, w) + rk (4.3.2b)

The matrix F is composed of the equations from Section 3.5.1 for the joint angles. A
constant state is added to represent the payload as well. The measurement equations
for strain are built from the robot dynamics linear regression in Section 3.4 and used
to form H. The state vector, composed of link angles, derivatives and the added
payload m4 can be seen in Equation 4.3.3.

x =
[
q q̇ q̈ m4

]T (4.3.3)

As in Section 3.5.1, global optimization in the form of CMA-ES was used to optimize
the parameters of this extended Kalman filter. Unfortunately, no set of process and
measurement noise parameters were stable when moving through singularities in the
MERIt02 dataset. The best set of parameters found with CMA-ES is illustrated in
Figure 4.8 approaching the correct value while in motion and then at sample 590,
as the joint angles approach a singularity, the mass estimate becomes unstable and
begins approaching 1× 1010 kilograms of error. It is likely that the linearization used
by the extended Kalman filter is insufficient to approximate the system behavior near
singularities as illustrated in the presence of numerical problems often occurring in
the matrix operations during these tests.

This approach is clearly not sufficient to meet the desired characteristics for estimat-
ing payloads as presented in Section 4.3. This could possibly fixed with the applica-
tion of higher order Taylor series expansions as shown in (Einicke 2012). Section 4.3.4
however provides a simpler solution.

4.3.4. Dual Extended Kalman Filter

The process of estimating payload while simultaneously estimating joint angles and
derivatives is a type of problem often referred to as a dual estimation problem. A dual
estimation problem is one in which both system states and system parameters are
estimated simultaneously. This is often performed using two Kalman filters (Haykin
2001). The system of joint angles and parameters are represented as a linear (from
Section 3.5.1) and nonlinear discrete state space systems using in Equation 4.3.2 as a
starting point.

The joint angle Kalman filter and parameters designed in Section 3.5.1 are used
to estimate the joint angles and subsequent derivatives. These are then presented as
inputs to an extended Kalman filter, along with strain measurements, to estimate the
payload mass m4 as a state for each discrete time step. The extended Kalman filter
can be further simplified as the system dynamics for payload estimation can be repre-
sented as linear function. This leaves only a nonlinear measurement equation which
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Figure 4.8.: Extended Kalman filter payload estimate error on a MERIt02 run of data with
400g payload. The estimate error can be seen to explode at roughly sample 590 (note the
logarithmic scale). Robot joint angles and derivatives experience similar explosion, as well as
unstable oscillatory behavior.

is more accurately approximated with a first order Taylor expansion as compared to
Section 4.3.3. The measurement equations and the Jacobian are generated using the
MATLAB symbolic toolbox. The the flow of measurements and estimates between the
two Kalman filters through time is visualized in Figure 4.9.

State KF
(angles)

Parameter
EKF (mass)

q̂k
˙̂qk
¨̂qk

q̂k−1
˙̂qk−1
¨̂qk−1

qk,meas

m̂4,k−1 m̂4,k

E2,meas

E3,meas
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Figure 4.9.: Structure of a dual Kalman filter for joint angle and payload mass estimation.
Current time step tk, previous time step tk−1 and next time step tk+1 are shown.

As before in Sections 3.5.1 and 4.3.3, CMA-ES was used as a global optimization al-

49



4. Elastic Link Payload Estimation

gorithm to find parameters for the extended Kalman payload estimator. As discussed
in Section 4.3, it is desirable to have an estimator that can track through singulari-
ties, remain stable, and quickly reach a correct value. To optimize for this behavior a
fitness function for use with the CMA-ES algorithm is chosen.

The fitness function divides each 80 second run of the MERIt02 dataset into 10
second chunks. The dual Kalman filter is then run across each chunk separately as
well as against the entire run. The root-mean-square error for all is then evaluated as
the fitness to be minimized by the CMA-ES optimization algorithm. The optimiza-
tion was run for several hours with multiple restarts to find a local minimum. The
MERIt02 dataset is also divided into test and training subsets with a 60-40 split. All
parameter optimization was done against the training set, while the graphs and per-
formance metrics below are against the test set. The measurement and process noise
parameters found by CMA-ES for the mass estimation extended Kalman filter can be
found in Equation 4.3.4.

Pmass =
[
2.6759× 10−07] Rmass =

[
4.4930× 105 0

0 3.0404× 104

]
(4.3.4)

An example of the dual Kalman filter performing on a 80 second run and tracking
through singularities with a 200 gram payload can be seen in Figure 4.10.
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Figure 4.10.: Dual Kalman filter mass estimation with TUDOR in motion. This test was per-
formed on an 80 second run from the MERIt02 dataset with a 200 g payload. The filter
tracks the payload through singular link configurations. Joint angles during this are shown to
demonstrate the robot is in motion.
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4.3. Dynamic Payload Estimation

The performance against the 10 second chunks can give insight as to how quickly
the filter can provide an estimate of a payload, even when starting in very undesirable
link configurations. The same run as shown in Figure 4.10 is shown divided into
chunks in Figure 4.11 with the filter restarted for each chunk.
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Figure 4.11.: Dual Kalman filter mass estimation with TUDOR in motion. This test was per-
formed on 8 consecutive 10 second chunks from a run from the MERIt02 dataset with a 200 g
payload. The dual Kalman filter is reset at the beginning of each chunk.

With an initial payload guess of 0 grams, the subsequent payload estimate can be
viewed as a step response with the presence of disturbances. The various tools used
for analyzing step responses can then give rough metrics for evaluating how quickly
the dual Kalman filter is able to make a guess. This is especially useful for analyzing
the 10 second chunks for each run as the Kalman filter is reset more often. The final
estimate for a chunk is treated as the final value for the calculations. Rise time is
calculated as the time it takes for the signal to go from 10% to 90% of the final value.
Percent overshoot is calculated from the largest value reached, and the percent larger
than the final value. Results split by payload as well as overall results can be found
in Table 4.10.

These results suggest that after running for approximately 1 second at 100Hz, a pay-
load estimate from the dual Kalman filter can be considered usable. The RMSE for the
fitness function against the test dataset in Table 4.11 is 39.8 grams. If this is compared
to the performance of the sliding window least squares estimate in Section 4.3.2 with
a window size of 100 it can be seen that the dual Kalman filter approach has greatly
increased performance with less than half the RMSE.

Additional tests were made with a dual Kalman filter designed for all 4 strain gages.
After following the same procedures as above, the RMSE against the test dataset was
found to be 39.2 grams. This is only a 1.51% improvement against the dual Kalman
filter using strain gages (one on each link).
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4. Elastic Link Payload Estimation

Payload [g] Rise Time [s] Overshoot %
100 0.65 24.28%
200 1.10 17.10%
300 1.32 19.71%
400 0.88 33.27%

Overall 0.99 23.59%
Table 4.10.: Overshoot and rise time metrics by payload and overall. Calculated from dual
Kalman filter mass estimates on the 10 second chunks of the MERIt02 dataset. The final
estimate of the chunk is used to calculate step response metrics.

Strain Gages Used RMSE [g] NRMSE
Strain 21 and 31 39.8 0.0995

All 39.2 0.0980
Table 4.11.: Payload estimate error metrics against data from MERIt02 with TUDOR in motion.
Two combinations of strain gages are shown. NRMSE is normalized by the range of payloads
in the dataset (0 to 400 g).

The performance of the dual extended Kalman filter with 2 strain gages is quite
satisfactory and does not become unstable for any runs in the MERIt02 dataset. It
meets all of the characteristics stated as being desired for dynamic payload estimation
in Section 4.3. Kalman filters are iterative methods, making them much more suited
for real-time embedded behavior as compared to the least squares and sliding window
least squares methods covered in Sections 4.3.1 and 4.3.2.
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5
Elastic Link Effector Force Estimation

In contact scenarios with elastic link robot manipulators there are two possible situa-
tions which are likely to be encountered. The first is that the forces on the effector are
known and the link strains need to be predicted while in contact. The second is the
inverse of this: predicting the effector forces from link strain while in contact.

In Chapter 3 it was shown that when in motion, the addition of dynamic compo-
nents allow more accurate estimates of strain to be made. The dynamic components
are not used in the following chapter as the motions of the robot will be relatively
slow and the inertial and Coriolis effects will therefore be minimal.

5.1. Building Contact Force Datasets

While collecting strain data with known payloads is relatively straightforward and
easily reproducible, collecting strain data for known forces while in contact with the
environment poses challenges. Friction effects can vary widely depending on things
such as contact surface areas and temperatures. The collection of contact force data
in this thesis relies heavily on the use of the force cube described in Section 1.3 to
provide 6-dimensional vectors of applied force and moment information. Due to the
size and geometry of this sensor system, the joint angles in which contact forces can
be recorded are limited. Data recorded from this sensor must also be checked for
outliers as infrequent RS-232 transmission errors cause erroneous readings to some-
times appear. This was done by looking for data larger than a certain number of times
larger than the standard deviation of the force data. The two datasets recorded for
the purpose of this thesis will be discussed.

5.1.1. Contact Dataset 1: Static

Contact Dataset 1 focuses on the TUDOR robot touching and applying a force to a
horizontal surface while completely at rest. To focus on the most easy to sense force
for the TUDOR robot, efforts were made to maintain force primarily in the effector’s Y-
axis, or roughly normal to the horizontal contact surface. Later in Section 5.3, it will be
shown that it is always possible to estimate Y-axis force Fly without any singularities.
This additionally allows force cube measurements to be rotated to the effector frame
with only sign changes.
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5. Elastic Link Effector Force Estimation

With the force cube in the robot’s workspace, the effector is brought close to the
contact force cube (joint 2 at 138.5◦ and joint 3 at 41.5◦). A metal bolt is attached to
TUDOR’s effector and used as the contact point, as shown in Figure 5.1a. To maintain
forces primarily in the effector’s Y-axis, the joint angles are adjusted so that the link
3 is horizontal. Joint 2 is advanced in 0.1 degree increments while joint 3 is reduced
in 0.1 degree increments. After moving to the desired angle, the robot pauses 1.5
seconds to ensure any vibrations have calmed (active damping is enabled) and then
3 seconds of robot and force sensor data are recorded at 100Hz. This data is then
averaged to produce a single point for the dataset. This process is continued until
a desired maximum magnitude of 5 newtons of force is sensed by the external force
cube. This entire process was performed 8 times for a total of 8 runs of collected data.

(a) Contact Dataset 1: Bolt (b) Contact Dataset 2: Adhesive Tape

Figure 5.1.: Photo of TUDOR’s effector during collection of the Contact Datasets. The bolt
attached to TUDOR’s effector for Contact Dataset 1 can be seen in Figure 5.1a contacting a
plywood sheet which is resting on the metal of the contact force cube.

In total there are 722 data points in Contact Dataset 1. The contact surface was
chosen as a piece of plywood which was allowed to slide freely on the metal surface
of the contact cube. This was to attempt to reduce any effects of friction building
up as the effector slides across the top of the force sensor to keep most force in the
direction of the effector’s Y-axis. The dataset is visualized in Figure 5.2.

Despite the efforts to reduce buildup of static friction in this dataset, it can still
clearly be seen in the measured force in Figure 5.2. Spikes are present in both Flx and
Fly, and Flx does not increase linearly with respect to the applied joint angles.

5.1.2. Contact Dataset 2: Contact Forces in Motion

While Contact Dataset 1 focused on the robot in contact while at rest, Contact Dataset
2 captures contact force data with the robot arm moving slowly over the top of the
force cube. The arm is used to apply a desired force to a surface while moving along
a curved path. This is a motion that might be seen in real world applications such as
applying a polishing tool to a surface, or drawing an arc with a pen.
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Figure 5.2.: Visualization of Contact Dataset 1. Link angles, strains and measured force from
the contact cube are shown.

As this motion is applied over a few seconds, as compared to the minutes of Contact
Dataset 1, it is desired to minimize any contact friction effects to improve repeatability
of the collected data. The effector of TUDOR was wrapped in adhesive tape with a
slippery external surface as seen in Figure 5.1b.

To collect data, joints 2 and 3 are moved so that link 3 is maintained roughly hor-
izontal to the ground so that force cube forces can be rotated to the effector frame
easily with only sign changes and to minimize friction. The effector is then started
moving to a desired force goal by moving joints 2 and 3. After a short delay, joint 1
is moved to circumscribe a curved path. It should be noted that once the initial force
goal is met, no effort is made to regulate it and joints 2 and 3 are merely stopped.

The motion was applied 10 times, with the force goals of 0.2, 0.4, 1, 2, and 3 newtons,
for a total of 50 runs. During each of these runs, data is recorded at 100Hz, making
for a total dataset length of 36,000 samples. The force measured from the force cube,
rotated into the effector frame, for a run with a 3 newton force goal can be seen
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5. Elastic Link Effector Force Estimation

in Figure 5.3. It should be noted that while this figure contains Flz, because these
readings come from the force cube, Flz cannot be determined by the strain gages on
TUDOR due to their configuration.
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Figure 5.3.: Visualization of force cube readings during a run from Contact Dataset 2. The arm
was moved until 3 newtons of force in the effector Y-axis Fly (Z-axis of the force cube) was
reached while circumscribing a circular path using joint 1. The arm was then moved away
until contact was broken.

This dataset contains a wide variety of phenomena. Things such as static friction
being broken and kinetic sliding friction can be seen as the arm rotates and increases
force on the top of the force cube. This wider variety of situations provides a more
general benchmark (as compared to Contact Dataset 1) by which to measure the per-
formance of force estimates.

5.2. Results of Predicting Strain During Contact

As in Chapter 2, if the joint angles, payload, and contact forces are known, then the
strain for each strain gage can be predicted using Equations 2.7.8. As the structure of
these equations was modified such that the payload mass and contact forces appear
in the same regressor terms, the models that are linear in parameters trained against
MERIt03 static payload data (found in Tables 2.3 and 2.5) can be used to estimate
strain during effector contact.

This can be shown in the results found in Table 5.1 for Contact Datasets 1 and 2. The
results are quite accurate considering this model was never trained on any datasets
containing force data, showing this to be a quite effective method. Additionally, from
Table 5.1 it can be seen that the performance on Static Datasets 1 and 2 is quite sim-
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ilar. It can be concluded that the quasi-static assumptions used in this section for
predicting strain works for the robot both at rest and moving slowly.

Contact Dataset 1 Contact Dataset 2
Strain Gage RMSE [µm/m] NRMSE RMSE [µm/m] NRMSE

21 9.85 0.0381 4.82 0.0354
22 14.15 0.0616 5.42 0.0497
31 3.99 0.0343 2.45 0.0300
32 2.94 0.0540 2.39 0.0504

Table 5.1.: Contact strain estimation error metrics against Contact Datasets 1 and 2. NRMSE
is normalized by the range of values seen in the dataset for each strain gage.

5.3. Results of Estimating Force During Contact

Equations 2.7.8a and 2.7.8b for link 2 and 3 static strain are put into the form seen
in Equation 5.3.1. This system can be solved analytically to produce equations for
determining effector forces Flx and Fly. This is shown in Equations 5.3.2 where Ri,j
refers to the static linear regression parameter j for link i.[

E2 − E
E3 − F

]
=

[
A B
C D

] [
Flx
Fly

]
(5.3.1)

Flx =
R2,1 − E2 + (R2,5 + m4R2,4)g cos q2 + (r23 + m4R2,2)g cos (q2 + q3)

R2,4 sin q3

− (R2,2 + R2,4 cos q3)(R3,1 − E3 + (R3,3 + m4R3,2)g cos (q2 + q3))

R2,4R3,2 sin q3

(5.3.2a)

Fly =
R3,1 − E3 + (R3,3 + m4R3,2)g cos (q2 + q3)

R3,2
(5.3.2b)

Due to the configuration of TUDOR, it is not possible to estimate force in the Z-axis
of TUDOR’s effector. This can be seen simply by the fact that if a force is applied in
the Z direction, it will not cause a strain in any of the strain gages. As the contact
force estimates need only be performed in a restricted workspace where the force cube
can be used, less care will be taken to avoid singularities than in Chapter 4 during
payload estimation. From Equation 5.3.2b it can be seen that there is no singularity
in estimates of Fly. For estimates of Flx, the sine of the angle of joint 3 must not be
0 to avoid singularities. This implies that the robot arm cannot be fully extended to
be able to sense forces in the X axis of the effector as the strain gages on link 2 will
experience no strain.

Equations 5.3.2 are used on Contact Datasets 1 and 2 with strain gages 21 and 31
to provide estimates of the force experienced on the tip of TUDOR’s effector. This is
then compared to the actual values measured with the contact force cube. The results
are summarized in Table 5.2 and shown in Figures 5.4 and 5.5.
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Contact Dataset 1 Contact Dataset 2
Effector Force RMSE [N] NRMSE RMSE [N] NRMSE

Flx 0.169 0.0747 0.219 0.1325
Fly 0.177 0.0346 0.108 0.0271

Table 5.2.: Contact force estimation error metrics against Contact Datasets 1 and 2, using strain
gages 21 and 31. NRMSE is normalized by the range of values seen in the dataset for force in
each effector axis.
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Figure 5.4.: Effector contact force estimates against Contact Dataset 1. Actual measurements
and estimates are shown across the entire dataset for forces in both the X and Y axes of the
effector frame.

This demonstrates that under controlled circumstances, quite accurate estimates of
effector force can be made for a flexible link robot. The estimates for Flx are consis-
tently worse (more than double the NRMSE) than those for Fly, which is likely due
to Flx not being able to be sensed by link 3, making reliance upon the noisier strain
gages in link 2 necessary. This reliance on link 2 is also limited by the singularity in
the estimates of Flx as the sine of the angle of joint 3 approaches zero.

This also demonstrates the ability to make effector force estimations with the robot
at rest and while moving slowly. The addition of dynamic terms such as Coriolis and
inertia as in Chapter 3 are not necessary as long as motion is sufficiently slow.

These results were deemed sufficiently accurate for the application of various force
control algorithms. Techniques such as sensor fusion and dual Kalman filtering could
potentially be employed to increase accuracy of these results.
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Figure 5.5.: Effector contact force estimates against a run from Contact Dataset 2 with a force
target of 3 newtons.
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6
Elastic Link Force Control

In this chapter the basic types of force control in robotics will be presented. Two force
controllers will then be designed and discussed. These force controllers will then be
applied to 4 different force control tasks and experimental results with TUDOR will
be reviewed.

6.1. Indirect and Direct Force Control

Force controllers are often categorized as either indirect or direct. Indirect force con-
trol contains methods related to impedance or stiffness control. These methods usu-
ally employ motion control and do not provide a closed force-feedback loop. They
typically are used ensure an upper limit to contact force during movement by making
assumptions about the maximum environmental stiffness (Siciliano et al. 2000).

Direct force control methods can be used to apply exact contact forces, not just keep
them below certain limits. Direct force control is often implemented using a closed
force-feedback loop, operating on the error between measured force and desired force.
Typically the force control loop is closed around an internal motion control loop such
as a velocity or position controller (Siciliano et al. 1999). While previous work with
TUDOR has involved indirect force control (Malzahn et al. 2014c), this thesis focuses
primarily on the application of direct force control, closing the force-feedback loop
around TUDOR’s joint velocity controller.

6.2. Designing Force Controllers

As mentioned in Section 1.3.1, elastic link manipulators can be viewed in terms of
slow and fast subsystems. The slow subsystems of many elastic link models are simi-
lar in structure to the rigid link robot dynamics, while the fast subsystems capture the
behavior of the vibration in the elastic links. Using the damping algorithm described
in Section 1.3.1 allows simple robotic controllers for the slow subsystem to be closed
around a faster vibration damping control loop (Matsuno et al. 1994; Siciliano et al.
1988). Traditional proportional techniques for force control of rigid link robots from
Gorinevsky et al. (1997) will be used with in designing force controllers for TUDOR.
Methods developed in Chapter 5 for estimating effector contact force from strain will
be used with these controllers.
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6.2. Designing Force Controllers

6.2.1. Three Dimensional PI Manipulator Force Controller

In Gorinevsky et al. (1997), a proportional force controller for one degree of motion
manipulators driven by velocity servos is presented. In this section, this controller
is extended to work with a 3 degree-of-freedom serial link robot to apply force in
3 dimensions. This controller will also be extended to include integral components.
Treatment of the stability of this controller in its original form with contact in various
situations can be found in Gorinevsky et al. (1997).

Estimates for tip force in the effector frame are found as f̂lx and f̂ly using Equa-
tions 5.3.2, whose derivation is detailed in Section 5.3 ( f̂lz cannot be sensed with
TUDOR and is therefore set to zero here). While effector frame related forces were
useful previously, for performance of actual tasks, a robot must typically operate in a
workspace or global coordinate frame. The effector frame forces are rotated to match
the world coordinate frame in the form of

0
f̂lx,

0
f̂ly and

0
f̂lz as shown in Equation 6.2.1.

Where 0
ER is the rotation transform between the effector frame and global coordinates.

It should be noted that the force-moment transform used previously in Section 2.6.3
is not needed as only the rotation is changing and not the point of interest.

0
f̂lx

0
f̂ly

0
f̂lz

 = 0
ER

 f̂lx
f̂ly
0

 (6.2.1)

A PI velocity controller can then be designed for force in each of the 3 Cartesian
axes of the world coordinate frame at the point of contact. The desired force in the
world frame, referred to as the reference signal vector r(tk), is defined as in Equa-
tion 6.2.2 from 0 fdx, 0 fdy, and 0 fdz. The error vector e(tk), at discrete time step tk,
is defined as the difference between the reference signal and the estimated forces in
global coordinates as in Equation 6.2.2.

r(tk) =

0 fdx
0 fdy
0 fdz

 e(tk) =


0

f̂lx
0

f̂ly
0

f̂lz

−
0 fdx

0 fdy
0 fdz

 (6.2.2)

The PI controller with an output vector 0uv(tk) of velocity commands in the global
coordinate frame is designed as shown in Equation 6.2.3. The proportional and in-
tegral gain vectors for each Cartesian axis of the global frame are represented as 0kp

and 0ki respectively.

0uv(tk) =

0vx
0vy
0vz

 = 0kpe(tk) +
0ki

∫ tk

0
e(τ)dτ (6.2.3)

As covered in Gorinevsky et al. (1997), proportional controllers are usually suffi-
cient for many force control tasks. Integration terms were not used frequently in this
paper, but are included for completeness. Derivative terms were not included in this
controller as the rather noisy estimates of effector forces would likely cause stability
issues for the controller.
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For use with a robot, the desired velocities 0uv(tk), in global coordinate frame must
be made into a 6× 1 general velocity vector 0vd(tk) as in Equation 6.2.4. This can then
finally be converted to the necessary robot joint velocities in generalized coordinates
q̇d(tk) using the robot Jacobian, as seen in Equation 6.2.5.

0vd(tk) =
[0vx

0vy
0vz 0 0 0

]T (6.2.4)

q̇d(tk) =
0 J(q) 0vd(tk) (6.2.5)

The desired joint velocities q̇d(tk) are then given to the PI velocity servo controllers
of the robot which, for TUDOR, are described in Malzahn et al. (2011).

During the course of this thesis, this controller is used mainly to apply forces normal
to the top surface of the force cube, but could be easily used to apply force in any
direction with ease by giving an appropriate reference signal r(tk).

Notes on Safety and Stability

In general, an application of a force in the global z-axis to the force cube will be in
a position in which the singularities discussed in Section 5.3 for force estimation will
not occur. Special care should be taken to avoid singularities as force will become
unobservable close to these singularities. In TUDOR’s case, this could occur when
trying to apply a force to a vertical surface at nearly the full extension of the arm.
Additionally, as TUDOR cannot sense forces in the effector z-axis, this controller will
not work for tasks that require regulation of force in this direction. Outside of a con-
trolled experimental setting, further extensive mathematical evaluation and empirical
testing should be done to ensure safe operation.

Additionally, during a software crash while using velocity controlled servos, the
robot may become stuck in a state where it will continue to move at a fixed velocity,
despite force applied to the environment. While the dangers are lessened when using
an elastic link robot, they should still be taken very seriously. Implementation of
safety systems such as watchdogs, fail-safes, and emergency stops in any environment
are absolutely necessary.

Eppinger et al. (1987) and later Gorinevsky et al. (1997) have discussed joint and link
compliance, gear backlash, and friction as a examples of possible sources for stability
problems in force control. Chiou et al. (1988) demonstrates that link flexibility does
contribute to force control instability, something that must often be resolved through
less aggressive control strategies to maintain stability. During the experiments to
follow, the maximum velocity of the robot joints is severely limited for safety rea-
sons. This limits the actuation bandwidth and will be shown to negatively effect force
control performance, something that has been shown to already be very bandwidth
restricted (Bazaei et al. 2011; Chiou et al. 1988; Li 1990).

6.2.2. Two Dimensional Contour Force Controller

As TUDOR is only able to sense force in two dimensions of the effector frame, any
contour following with force control can only occur in two dimensions. The propor-
tional controller presented in Gorinevsky et al. (1997) for the control of a two degree-
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of-freedom Cartesian robot is adapted to the serial link robot TUDOR and extended
with an integral term. Treatment of the stability of this controller in its original form
with contact to various surfaces can be found in Gorinevsky et al. (1997).

For a point on a known 2 dimensional contour, the 2 × 1 vector normal to the
surface is referred to as n and the vector tangent to the surface is referred to as τ.
The controller for moving along a 2 dimensional contour is given the references Fdn
and vdτ, a desired force tangent to the contour and a desired velocity normal to the
contour respectively. The normal force error en is then defined as in Equation 6.2.6
from the difference between the reference normal contour force Fdn and the actual
force normal to the contour Fn.

en(tk) = Fn(tk)− Fdn(tk) (6.2.6)

The controller velocity command vector in the global frame 0uv is composed of
two components 0un and 0uτ , the commanded velocity normal to and tangent to the
contour surface respectively. These are calculated as shown in Equation 6.2.7 with
proportional and integral gains kpn and kin.

0uv = 0un +
0uτ = (kpnen + kin

∫ tk

0
en(λ)dλ)n + vdττ (6.2.7)

If the contour tangent and normal vectors τ and n are known, the velocity com-
mands from Equation 6.2.7 can be treated as in Section 6.2.1 to find joint velocities to
produce the desired global frame velocities. In most real-world situations, the contour
vectors are not known.

When the effector is in contact with the frictionless surface, the direction of the
effector force relative to the surface is the normal vector. Again, in the real world, the
presence of friction necessitates that there be some angle β between the frictionless
estimate of normal vector n and the actual value. Taking advice from Gorinevsky
et al. (1997), a constant guess of γ can be made for the angle β and, as long as the
discrepancy between γ and β is not too large, stability can be maintained. Gorinevsky
et al. (1997) demonstrated that even for a large discrepancy, this controller will remain
stable. The guess with angle γ results in contour normal vector n∗ and tangent vector
τ∗ which are substituted in Equation 6.2.7 for n and τ. This can be visualized as in
Figure 6.1, adapted from Gorinevsky et al. (1997). The angle β is often referred to as
the angle of the friction cone.

This controller is designed for use only when in contact with a surface. If no contact
is present, then the estimate of the normal and tangent of the surface will be mean-
ingless. This controller can be combined with the three dimensional proportional
manipulator force controller from Section 6.2.1 with a switching behavior for actual
applications. Noisy guesses for the magnitude and direction of the force shown in
Figure 6.1 as Fc will in turn lead to noisy velocity commands.
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x

y

Fc

γ

β n

τ

n∗
τ∗

Figure 6.1.: Adaptation of a diagram from Gorinevsky et al. (1997). Real contour normal and
tangent vectors (n and τ) are shown in relation to the contact force Fc. The angle β between
Fc and n is estimated by angle γ to produce estimates of the contour normal and tangent as
n∗ and τ∗.

6.3. Force Control Task Experiments

6.3.1. Applying a Constant Force

Application of a constant force in one position is one of the most basic force control
problems. It includes the tasks of approaching a surface when not in contact and
regulating the force applied once contact is made. Real-world applications of this
include tasks such as applying a polishing tool to a single point, maintaining pressure
on a wound, or feeling for an unknown obstacle. The 3D manipulator force controller
described in Section 6.2.1 is applied to the task of applying a desired force in the
global z axis to the top of the contact force cube.

The problem of approaching an unknown object in the environment or contact
transition is often regarded as important in force control for rigid link robot arms
(Gorinevsky et al. 1997). The need for contact transition control with elastic link
robots is overall much less as the links are more compliant, giving more time to react
before large forces can be generated. In the results shown below, the arm will start
not in contact and approach the environment.

Comparison of Various PI Gains with the 3D Manipulator Force Controller

With TUDOR’s effector wrapped in foam, a reference step of -0.5 N of force in the
global z-axis (vertical) was given with various proportional and integral gains to the
manipulator force controller. The results can be seen in Figure 6.2. The leftmost plot
shows various values for the proportional gain while the integral gain is zero. The
rightmost plot shows various values for the integral gain, while the proportional gain
is 0.1.

It can be seen that for a proportional gain Kpz of 0.01, and no integral gain, it takes
approximately 2250 samples or 22.5 seconds to reach the desired force. With propor-
tional gains of 0.1 and 0.4 the robot initially reaches the desired force at approximately
2 and 1.1 seconds respectively. With a proportional gain of 0.4, a significant overshoot
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Figure 6.2.: Comparison of manipulator force controller step responses with different integra-
tion gains and a proportional gains. An input step reference signal of 0.5 N in the global Z
axis is given at sample 1. TUDOR’s effector is wrapped in foam and starts freely above the
surface of the contact force cube. As this data is quite noisy, it has been filtered with a 5 point
moving average to aid plot visibility.

is seen, as well as a amplification and oscillation due to noise in the force estimates.
With a proportional gain Kpz of 0.1, the effects of various integral gains can be seen

in the rightmost graph of Figure 6.2. They can be seen to not provide any significant
advantage, increasing the overshoot and settling time for even small values. In the
remaining experiments, an integral gain will not be used as it did not empirically
show any advantage.

While the results of these gains are informative, it should be noted that the contact
surface plays a very large role in the performance of the force controllers. For different
surfaces applied to TUDOR’s effector and different workpiece surfaces, different gains
may need to be used.

6.3.2. Moving Across a Flat Surface With Force Control

Moving a point of contact across a flat surface while applying a constant force is
a simple, but useful type of force control task. This could be used in a variety of
applications such as drawing a line with a delicate pen, grinding or polishing an
edge, or cutting with a sharp tool. The 2D contour force controller from Section 6.2.2
was tested on this task by controlling the force on the bare top surface of the force
cube, moving as illustrated in Figure 6.3.
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Figure 6.3.: Diagram showing desired arm motion on the contact force cube after contact is
made. Direction of motion is indicated.

The controller was configured to apply a desired normal force of 0.7 N while re-
maining in motion, using a normal force proportional gain of 0.5. In this test, the robot
arm does not start in contact to the cube, which presents problems for the contour
force controller in estimating a surface normal. To overcome this, a proportional 3D
force controller from Section 6.2.1 is configured to apply 0.7 N normal to the cube. Af-
ter this goal is reached, the 3D force controller is turned off and the contour controller
is turned on.
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Figure 6.4.: Application of the 2D contour force controller to the top metal surface of the force
cube for 20 seconds. Force measurements from the force cube are shown. The vertical dashed
line shows the time when the 2D contour controller is enabled. The horizontal dashed line
shows the reference signal.

The controller performed satisfactorily and the force readings applied to the top
of the force cube can be seen in Figure 6.4. The switching time between the 3D and
contour force controllers can be seen as the dashed line at 3.77 seconds. The force in
the z-axis, normal to the surface, can be seen to be kept within 0.3 N of the target of
0.7 N.
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After the contour force controller is enabled, Fx and Fz can be seen to begin oscil-
lating. This is caused by the effector repeatedly breaking static friction as it moves
slowly across the surface. If allowed to move faster, smoother motion would likely
be possible. Despite difficult conditions due to friction effects, this controller behaves
well at this task.

6.3.3. Moving Across a Curved Surface With Force Control

The task of moving across a curved surface is a more complicated version of the task
seen in Section 6.3.2 with a flat surface. The real-world applications are similar, but
are no longer limited by the requirement of flat surfaces. This greatly expands the
utility of being able to perform such a task. The curved surface used during this test
was the vacuum formed brass shape shown in the photograph in Figure 6.5b and the
desired motion is illustrated in Figure 6.5a.

(a) Desired arm motion over the contour sur-
face. Direction of motion is indicated.

(b) Vacuum formed brass surface for use with
force control tests.

3D Force Controller Application

If the surface is not overly curved, and the requirements for the applied force only
specify control of force in a static direction, the 3D force controller from Section 6.2.1
can be applied. Overly curved, in this context, meaning the surface tangent is too far
from horizontal. Joints 2 and 3 are controlled by the 3D force controller, with a fixed
force target towards the ground. Meanwhile, joint 1 is moved at constant velocity.
With the effector in contact with the surface, and joints 2 and 3 regulating the force,
the desired behavior can be produced. This assumes joint 1 moves sufficiently slowly
for joints 2 and 3 to have time to move with the angle of the surface.

This controller, with a proportional gain of 0.075, was applied with a force goal of
-0.3 N in the z-axis of the global frame. The curved metal surface was attached to the
top of the force cube and a metal bolt similar the one in Figure 5.1a was attached to
the tip of TUDOR’s effector. The measured contact cube force during 18 seconds of
force control and 5 seconds of joint 1 movement can be seen in Figure 6.6.

The controller can be seen to easily meet the target force goal of 0.3 N of force
towards the ground while the effector is at rest. Once the effector begins moving at
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Figure 6.6.: Application of the 3D force controller to a curved metal surface on the force cube
for 18 seconds. Force measurements from the contact force cube are shown. Joint 1 velocity
is shown to indicate when the effector is being moved across the surface. The controller is
configured with a proportional gain of 0.075 and given a reference of -0.3 N in Fz (indicated
by the horizontal dashed line).

10 seconds, the force level oscillates some, possibly due to friction, and the controller
can be seen to struggle trying to maintain the desired force. Considering the actuator
bandwidth limitations put in place for safety during these experiments, the controller
has trouble moving fast enough to match the friction forces of the slipping effector.
This test was additionally only performed in a 10 cm range of the curved surface. Any
attempt to use more sharply curved regions resulted in the effector losing contact.
Given the circumstances, this controller performs better than expected, but it will
next be shown the contour controller from Section 6.2.2 performs much better.

Contour Force Controller Application

The application of the 2D contour force controller from Section 6.2.2 allows a force
normal to a curved surface as well as a speed tangent to that surface to be controlled.
Unlike the 3D force controller, there are no requirements for how flat the surface must
be. This controller only works while in contact with an object as it needs to estimate
the surface normal. For this experiment, a 3D force control is used initially when
not in contact. It is configured to apply force towards the ground when no contact
is detected. Once contact is detected, it is switched off and the contour controller is
switched on.

A target normal force of 0.8 N was configured and the robot arm was positioned
in a starting position above the curved metal surface. The arm was then allowed to
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move for 20 seconds. Measurements from the contact force cube during this duration
can be seen in Figure 6.7 as the magnitude of total force on the cube.
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Figure 6.7.: Application of the contour force controller to a curved metal surface on the force
cube for 20 seconds. The target normal force is 0.8 N and shown as the reference signal above.
The magnitude of all force measurements from the force cube are shown.

The force controller can be seen to perform well in meeting the target force goal. As
the surface changes, it misjudges the surface normal and begins to move too strongly
into the surface. This can be seen to occur 3 times in the period shown in Figure 6.7.
The controller manages to recover and continue moving. With a slower desired veloc-
ity, increased actuator bandwidth, or less noisy estimates of the surface normal, this
behavior could be eliminated. While the 3D contact controller only managed to cover
a roughly 10 cm portion of the flattest part of the surface, this controller can handle
the entire surface, making it much more useful.

6.3.4. Circular Motion With Force Control

The task of moving in a circular motion with a given speed and force is a common task
for force control. It typically involves moving one object around a revolute joint. This
motion could be applied to turning a dial or a steering wheel (Mason 1981). In this
thesis, the task of moving the end of a string fixed at a center point while maintaining
a desired tension will be considered as shown in Figure 6.8a. Applications of this
motion include tasks such as drawing a shape with a stencil using a pen or grinding
the inner surface of a concave object.

To solve this task, the 2D contour force controller presented in Section 6.2.2 was
applied. Additionally, a switching controller was used so that when not in contact the
3D proportional force controller from Section 6.2.1 would be used instead. The 3D
force controller was configured to attempt to apply a force towards the ground. The
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(a) Desired Arm Motion (b) Experimental Setup

Figure 6.8.: Illustration of the desired arm motion of the robot effector around a pinned string
can be seen in Figure 6.8a in which direction of motion is indicated. Figure 6.8b shows the
experimental setup with TUDOR.

experimental setup with TUDOR can be seen in Figure 6.8b with a string attached to
a freely rotating pivot bolted to the top of the force cube.

The controller was allowed to move the effector for two rotations around the pin
and results were recorded. The path taken by the effector around the central pin is
visualized in Figure 6.9 using the rigid link model to roughly approximate effector
position. On the Southwest corner of the effector path, the starting position can be
seen where the robot begins with the 3D force controller. As tension is made on the
string, the 2D contour controller is enabled and the robot tries to maintain a target
tension while staying in motion at 4 cm/s.

During the course of the rotations, the robot begins to lose tension at two different
points in the circular motion. It then moves until tension is again reached and con-
tinues. This can be seen in the plot of the magnitude of the tension as measured by
the contact force cube in Figure 6.10. One full revolution is shown over 80 seconds.
Tension is lost once per revolution and additional spikes occur once per revolution,
after which a recovery is made.

These losses of tension and spikes in force are caused by the safety controls in place
during this experiment. Joint velocities were severely limited to approximately 2.3
degrees per second to reduce chances of damaging the robot or contact force cube in
the event of a failure. The transformation of velocities from the global frame to the
robot’s joint space using the Jacobian, as in Equation 6.2.5, depends heavily on the
pose of the robot. In two different poses, a desired global effector velocity can require
very different joint velocities. This means the effects of the joint speed limitation will
vary for each global effector position.

At certain angles from the string center point, the robot joints need to reverse di-
rection and, to maintain velocity during this, the other joint must move faster to
compensate. As can be seen in Figure 6.10, this caused the joint velocity limits to be
reached, resulting in either a loss of, or spike in, tension. Allowing a larger range
of joint movements should prevent this from occurring and allow this controller to
operate without any problems.

The velocity commands shown in Figure 6.10 are quite noisy. This is the result of
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Figure 6.9.: Effector position during a circular motion while holding a string pinned at a
central point. The effector is attempting to apply a fixed force while moving at a set velocity.
The string is attached to a pivot bolted to the top of the contact cube allowing tension on the
string to be measured.
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Figure 6.10.: String tension measured by contact force cube during circular motions a pinned
string are shown in the top plot. Velocity commands sent by contour force controller, limited
in magnitude to 0.04 rad/s, are shown in the bottom plot. Only one complete revolution is
shown.
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noisy estimates of the current contact force vector and the angle of this vector. Use
of filtering similar to those used in Chapter 4 for payload estimate filtering could be
used to improve this in the future.
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7.1. Outlook for Elastic Link Robots

With the possibility of commercial space exploration and a growing market for con-
sumer robotics, the number of available applications for elastic link robots is increas-
ing. Techniques developed for elastic link robots could also be used to help improve
existing machinery with link elasticity such as cherry pickers and cranes. The tech-
niques developed in this paper also point toward the possibility of retrofitting rigid
link robots for force sensing applications given sufficiently sensitive strain sensors.

7.1.1. Design Recommendations

The results in this thesis provide insights that can be used when designing future
elastic link manipulators for research or commercial applications.

To apply the results from this thesis, deflections with anticipated payloads should
be kept sufficiently small so that the mathematical assumptions made in Chapter 2
continue to hold. The amount of deflection under the range of anticipated payloads
should be examined in combination with the sensitivity of the strain measuring de-
vices used. This tradeoff between strain sensitivity and link deflection should be
carefully considered.

As in any application involving strain gages, care should be taken to negate tem-
perature effects. As shown in all previous chapters, strain gage noise can be seen
to cause most inaccuracies in strain prediction, force and payload estimation. Strain
gage noise was also shown to be the cause for difficulties in estimating surface nor-
mals accurately in force control situations. Proper shielding of strain gages following
a guide such as Hewlett-Packard (1981) can greatly help to reduce this noise.

In Section 4.2.2, it was found that when using multiple strain gages on a single
elastic link, measurements can be fused using with Maximum Likelihood Estimation
(MLE), reducing the effects of singularities in payload estimation. When designing
elastic link robots with applications in weighing, careful placement of multiple strain
gages on each link could allow for improved performance and robustness. Use of
redundant strain gages and proper noise calibration can provide resiliency to sensor
failures.
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7.2. Future Work

The work in this thesis could be extended in the future in many ways. The dual
extended Kalman filtering techniques applied to payload estimation in Section 4.3.4
could be adapted for effector force estimation. This could provide greatly improved
force estimates with a large decrease in the noise originating from the strain gages. In
turn, this could likely provide large performance gains in force control tasks.

The force controllers presented in Chapter 6 of this thesis control only force, not tip
position. Further work to incorporate hybrid position/force controllers mentioned in
Section 1.2 could be done. Additionally, some sort of visual servoing method could be
applied in future work to control force and tip position in the presence of unknown
environments.

Many of the force control results applied only in simulation or to horizontal flexi-
ble link manipulators with one link mentioned in Section 1.2 could be compared on
TUDOR to provide useful advice on which control algorithms perform better and in
what situations.

In Chapter 6, surface contour following algorithms relied on guesses for friction
contact coefficients. Future work could be performed trying to estimate these. In
addition, using a haptic finger style sensor as in Tanaka et al. (2003) attached to the
effector, characterizations of surface characteristics could be made.

7.2.1. TUDOR 2 Recommendations

While TUDOR is an excellent platform for performing a wide variety of elastic link
robotics research, a new version could greatly increase possibilities for future research.
As mentioned in Section 1.2, the number of experimental setups with elastic link
robots is quite limited. The MERIt dataset described in Section 1.4 makes strong
efforts to make elastic link manipulator data available for open research. It is the
opinion of the author of this thesis that TUDOR 2 should be made as a freely available
open hardware and software platform. Not only would this provide a common base
for other researchers to experiment upon, but it would help build a community in
which researchers can share solutions to common problems.

TUDOR 2 should incorporate elasticity so that the effector vibrates in 3 dimensions
instead of 2. Damping this would be a much more challenging control task and have
very useful real-world applications. Depending on the design, this could also provide
the ability to sense effector force in more than 2 dimensions of the effector frame.
TUDOR 2 should also have more than the current 3 degrees-of-freedom in TUDOR,
so as to allow more real-world force control and manipulation tasks to be explored.

With the current version of TUDOR, changing the configuration of links takes many
hours. If TUDOR 2 were designed in more modular way it might be possible to recon-
figure the link configuration in less than one hour. A design of standardized elastic
link modules could be made to offer several motor mounts and several link sizes. At-
tachment between links could be made using various adapters so as to allow a wider
variety of link configurations. In a manipulator whose configuration can be changed,
wiring would be a significant concern. A standardized and extensible cabling har-
ness could be used to make wiring simpler and ensure that proper shielding of strain
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gages is easy to maintain.
The current light gate sensing system used on TUDOR’s joints for emergency safety

stops is quite flimsy and difficult to accurately calibrate. Future versions of TUDOR
could improve this significantly by using a laser cut mask instead of movable pins to
trigger light gates.

The current version of TUDOR takes approximately 15 minutes to startup or restart
due to requiring a full Simulink recompile to the platform OS. In the event of a crash
or emergency stop in the middle of an experiment, this cycle time can be prohibitively
long. In any future versions of TUDOR, care should be taken so that a full restart can
be performed in seconds, not minutes.

The ability to attach TUDOR 2 to a mobile platform should also be considered.
As many of the targeted applications of elastic link manipulators involve mobility,
allowing testing in this context would be extremely useful.

7.3. Overview of Results

In Chapter 2, a model was developed for predicting strain in elastic link robot ma-
nipulators while at rest. This was extended into a general framework for converting
standard torque-referenced robot equations to strain-referenced equations for elastic
link robots. This model was applied to TUDOR, made linear in the parameters, and
then trained using linear regression against the MERIt03 dataset. Performance was
found to be quite good for predicting strain in the TUDOR robot while at rest.

Chapter 3 began by showing that when in motion, the equations developed in Chap-
ter 2 for a static manipulator perform poorly. Rigid link manipulator dynamics com-
ponents were then added to the strain-referenced elastic robot equations from Chap-
ter 2. A similar process was then followed to make these equations linear in their
parameters, and linear regression was used to find parameters from with MERIt02
dataset. Predictions of strain in the TUDOR robot while in motion were good, but
contained spikes from numerical approximations of the joint angle derivatives. Per-
formance was further improved through the addition of a CMA-ES optimized Kalman
filter to provide better estimates of joint angle derivatives.

The task of static payload estimation was examined in Chapter 3. Initial estimates
were made algebraically, and singularities were found to exist in the payload estima-
tion error. A technique for avoiding these singularities by limiting the workspace was
presented and shown to improve payload estimates significantly. The variance of pay-
load estimates was examined and combined with Maximum Likelihood Estimation
techniques to build a sensor fusion strategy. This was shown to provide significant
performance benefits for static payload estimates by limiting the workspace.

Chapter 3 continued on to cover the task of payload estimation while in motion.
An ordinary least squares approach was found to be performant but computationally
expensive. To provide a tradeoff between estimate error and computational power,
a moving window least squares approach was demonstrated with various window
sizes. An extended Kalman filter parameter estimation approach was attempted and
shown to be unstable through singularities. A dual extended Kalman filter approach
was taken and optimized to provide fast and accurate estimates through singularities
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without requiring as much computing power as other approaches.
The topic of effector force estimation was covered in Chapter 5. Datasets for static

contact and moving contact with TUDOR were created and discussed. A technique
for estimating effector force was presented and shown to perform well against both
datasets. It was determined that for the majority of force control tasks, quasi-static
robot equations provide sufficiently accurate results.

Chapter 6 introduced basic types of force control and presented reasoning for how
simple force controllers can be applied to elastic robot manipulators. A PI force con-
troller for applying force in a single direction in 3 dimensions was designed. This
was followed by a controller for applying force on a contoured surface while moving
in a 2-dimensional plane. Step responses of the 3D PI force controller approaching
a surface were presented and discussed. The contour controller was shown to be ef-
fective at applying a fixed force while moving across a flat surface. Both the contour
and 3D force controllers were applied to the task of following a curved contour while
applying a force. Finally, the task of moving a pinned string around in a circular mo-
tion while applying tension was performed with the contour controller. Deficiencies
in these tasks were found to be likely caused by actuator bandwidth limitation.

It can be concluded that with proper damping algorithms, an elastic link manipu-
lator can be used with standard rigid-link force control techniques.
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A
Appendix: Symbol Definitions

Symbols are grouped by the chapter they are first used in.

Chapter 1

Symbol Definition
xsij Strain gage j position from joint i [m]
ln Length of link n [m]

q1...qn Generalized robot joint coordinates for joint n
ix x-axis in the ith frame
iy y-axis in the ith frame
iz z-axis in the ith frame
Ex x-axis in the effector frame

Chapter 2

Symbol Definition
xsij Strain gage j position from joint i [m]

M(x) Internal bending moment of a beam at position x [N·m]
Mg(x) Internal bending moment of a beam’s weight due to gravity [N·m]
M f (x) Internal bending moment of a beam’s perpendicular tip force [N·m]
MM(x) Internal bending moment of a beam’s applied moment [N·m]
V(x) Internal shear force of a beam at position x [N]
w(x) Beam perpendicular force, applied at position x [N]
F Generalized 6-dimensional force vector [N]
fi Force in the ith axis [N]
ni Moment about the ith axis [N·m]
Vf Internal shear force caused by a perpendicular tip force [N]
ρb Force per unit length of distrusted beam mass [N/m]
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Symbol Definition
m Beam mass [kg]
g Gravitational constant [m/s2]
θ Beam angle with respect to horizontal
x Position in a beam

Vg Internal shear force caused by a beam’s weight due to gravity [N·m]
Mappl Tip-applied bending moment [N·m]

Fxc Critical buckling load [N]
Fxc,i Critical buckling load of link i [N]

E Young’s Modulus [Pa]
I Area moment of inertia [m4]
K Column effective length factor
λ Beam slenderness ratio
λn Beam slenderness ratio of link n
A Beam cross-sectional area [m2]
yb Distance of a beam’s surface from the beam’s neutral fiber [m]

M(x) Internal bending moment of a beam at position x [N·m]
Mn Internal bending moment of link n [N·m]
xs Strain gage position
xsn Strain gage position in link n
E Strain [m/m]
En Strain for link n [m/m]
an Length of link n n [m]
mn Mass of link n n [kg]
m4 Mass of payload [kg]
Fl j Effector tip force in the j-axis of the effector frame [N]
T Vector of joint torques [N·m]
q Vector of generalized robot coordinates

g(q) Gravity torque model with respect to generalized robot coordinates
[N·m]

J(q) Robot Jacobian
∆τ Difference term vectors for converting torque to strain
∆τg Difference term vectors for gravitational effects due to the beam’s

mass
∆τf Difference term vectors due to beam tip force
∆τM Difference term vectors due to applied moment
ρb Vector of gravitational force per unit length [N/m]
xs Vector of strain positions [m]
θ Vector of beam angles [rad]
l Vector of beam lengths [m]
fy Vector of perpendicular tip forces [N]

∆τg,n Difference term for gravitational effects of link n
∆τf ,n Difference term vectors for beam tip force of link n

BPAORG Vector offset between frames A and B

82



Symbol Definition
k f 3 component force vector in frame k
kn 3 component force vector in frame k
B
AR Rotation transform between frames A and B
ms,n Mass of links after n in the effector chain

n J(q) Robot Jacobian matrix with respect to link n
njk(q) kth row of the Jacobian with respect to link n

ĵ∗n Unit vector of the y-axis of the link n augmented with 3 additional
zeros

n
ET Force-moment transform from Section 2.6.3 from effector frame E to

the frame of link n
Tn Torque of joint n [N·m]
C23 cos (q2 + q3)
S23 sin (q2 + q3)
C2 cos q2
C3 cos q3
Ri ith linear regression parameter

Chapter 3

Symbol Definition
I(q) Robot inertia matrix with respect to generalized coordinates q
C(q) Robot Coriolis matrix with respect to generalized coordinates q

q̇ First derivative of generalized robot coordinates vector q
q̈ Second derivative of generalized robot coordinates vector q

gRi Gear ratio for joint i
rij Center of mass offset in the i-axis for link j
Iijk Component of the moment of inertia tensor matrix for axis i and axis

j for link k
Φτ Regressor matrix

θlinear Parameter matrix for which the regressor matrix Φτ is linear
x State space state vector
y State space output vector
x State space output vector
O State space observability matrix
R Kalman measurement noise matrix
R Kalman process noise matrix
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Chapter 4

Symbol Definition
Nn Numerator function of the link n payload estimate equation
Dn Denominator function of the link n payload estimate equation
X Random variable
Y Random variable
f Linear function

m̂4 Estimate of payload mass [kg]
L(x) Likelihood function of x

P(z|x) Probability of measurement z given x
x̂ Estimate of the true value x
∝ Symbol meaning proportional to
zi Sensor i measurement

x̂MLE MLE estimate of the true value of x
wi MLE weight of sensor i

Chapter 6

Symbol Definition
f̂li Force estimate in the ithe axis

n
f̂ li Force estimate in the ithe axis rotated to frame n

0
ER Rotation transform between the effector frame and the global frame
tk Time at discrete step k

r(tk) Reference signal vector at time tk
e(tk) Error vector at time tk
ie(tk) Controller velocity command output vector at time tk in the frame i

ikp Proportional gain vectors for each Cartesian axis in the ith frame
ikp Integration gain vectors for each Cartesian axis in the ith frame
jvi Velocity command in the ith axis relative to the jth frame
q̇d Desired joint velocities
τ Contour tangent vector
n Contour normal vector
en Normal force error
Fn Normal force
Fdn Desired normal force
jvn Normal component velocity command relative to the jth frame
jτn Tangent component velocity command relative to the jth frame
β Angle between frictionless surface tangent estimate and the actual

value
γ Guess for the value of β

τ∗ Estimate of contour tangent vector
n∗ Estimate of contour normal vector
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