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Abstract 

The most extreme anthropogenic land cover/use transformation caused by 

urbanization has been a universal and important socioeconomic phenomenon around 

the world. Although urban areas cover a very small percentage of the world’s land 

surface in comparison with other land cover types, their rapid expansion has marked 

effects on environment and socio-economy. Given the rapid urban growth and 

importance of its long term effect, it is becoming increasingly important to monitor 

and analyze the urban land cover change, as well as to adopt appropriate 

sustainable land use plans. 

The previous studies presented some major challenges. Lack of geospatial database 

persists in developing countries, which makes the analysis and monitoring of urban 

land cover change more difficult. Furthermore, due to the complexity of the urban 

system, the analysis of urban growth suffers from a lack of knowledge and 

understanding of the urban growth process, as well as the physical and 

socioeconomic factors. In addition, the performance of urban growth models is 

significantly influenced by calibration, validation, and designing scenarios, which less 

attention has been given to. Considering these challenges and limitations in previous 

studies, the dissertation aims to propose an improved methodology for monitoring 

and analyzing urban growth process in order to understand them better and to 

support effective urban planning towards urban sustainable development. Xuzhou 

city in China is used as the case study. 

The improved Remote Sensing (RS) image classification method that integrates 

Vegetation-Impervious Surface-Soil (V-I-S) model with hierarchical classification 

approach was proposed in order to classify multi-temporal Landsat images in 1990, 

2001, 2005, and 2010. Furthermore, a set of spatial metrics were applied for 

quantifying the urban spatial patterns. The results confirm the effectiveness of the 

proposed classification method and the spatial pattern analysis for monitoring urban 

growth process. By comparing with Dortmund city region, Xuzhou city was 

characterized by rapid urban growth. The allocation of urban area included both the 

developing outward from the original urban core and the growth of new individual 

urban patches. As the increasing rapid urbanization process, Xuzhou experienced 

diffuse sprawling development.  

The combination of Geographically Weighted Regression (GWR) and logistic 

regression models were suggested and applied to explore the underlying cause-
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effect relationships in the urban growth process. The new methodology extends the 

previous studies by investigating spatio-temporally varying effects of urbanization 

instead of global effects. Both negative and positive effects of urbanization on 

variation of spatial metrics values were explored. The effects of urbanization on the 

variations of spatial patterns varied over the study period, which can be explained by 

the socioeconomic processes and the consequence of urban development policy. In 

addition, the results generated from logistic regression model indicate that the 

historical urban growth patterns in Xuzhou city can, in considerable part, be affected 

by distance to CBD, distance to district centers, distance to roads, slope, 

neighborhood effect, population density, and environmental factors with relatively 

high levels of explanation of the spatial variability. The optimal factors and the 

relative importance of the driving factors varied over time, thus, providing a valuable 

insight into the urban growth process.  

By involving natural and socioeconomic variables, the developed Cellular Automata 

(CA) model has proved to be able to reproduce the historical urban growth process 

and assess the consequence of future urban growth. The hybrid calibration method 

combining logistic regression with trial and error was designed to calibrate the CA 

model, which can capture the complex interaction of various variables and promote 

the computational efficiency of the calibration. The existing validation method was 

improved by considering both the location and spatial pattern similarity to ensure that 

the CA model can produce more accurate result. Furthermore, five scenarios for 

2020 (business as usual, planning strengthened, compact development, dispersed 

development, and moderate development) were designed with focusing on specific 

urban development strategies. The dissertation proposed the integration method of 

Multi-Criteria Evaluation (MCE) and Analytic Hierarchy Process (AHP) that can be 

utilized to effectively translate the qualitative descriptions for scenarios into 

quantitative spatial analysis. Finally, the evaluation and comparison of the different 

scenarios presented in this dissertation provide an effective method for analyzing the 

impacts of different urban development strategies on urban spatial patterns at global 

and local scale and for supporting urban planning. 

The CA modeling results have proved that the design of development scenarios, 

identification of parameters as well as the evaluation of scenarios are able to 

establish connection between CA models and the urban decision making processes. 

The evaluation of the scenarios suggests that the current urban development 
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process was in a critical stage. If it continues as indicated by the business as usual 

scenario in the future, the new urban areas are sparsely developed in fringe and rural 

areas. The conflict between rapid urban growth and limited land resource becomes 

more apparent. Comparing with other scenarios, the moderate development scenario 

could be considered as the best one in achieving the objectives of compact urban 

form, good residential environment, as well as environmentally and economically 

efficient development. 
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1 Introduction 1 

1. Introduction 

The motivation of the present study is the awareness of a number of environmental 

and socioeconomic problems caused by the rapid urbanization process. The first 

chapter of the dissertation is to briefly state the problems related to the urbanization 

and to illustrate the importance of using modified methods to better understand urban 

growth process. Subsequently, the research objectives and questions of this study 

are presented as well as the structure of the dissertation.   

1.1 Background 

In recent decades, urbanization, the most extreme anthropogenic land cover/use 

transformation has been a universal and important socioeconomic phenomenon 

around the world. Urban growth has been accelerating with the significant increase in 

urban population. The world urban population was only nearly 3 % of the global 

population in the 1800s, but increased to about 30 % in 1950 (Wu & David, 2002). 

Currently, over half of the world population live in urban areas, and the figure is 

projected to reach 67.1 % (6.25 billion) by 2050 (United Nations, 2012). 

Though urbanization promotes socioeconomic development and improves quality of 

life, it is the most powerful and visible anthropogenic force that has caused the 

fundamental conversion in natural to artificial land cover in the cities around the world 

(Clarke et al., 1997; Luck & Wu, 2002). As urbanization has occurred, lands making 

up the natural resource base, such as agriculture, forest and wetlands, have been 

replaced by urban land (Jantz et al., 2004). Land cover dynamics constitute an 

important component of the human dimension of global change (Turner et al., 1990). 

Although urban areas cover a very small percentage of the world’s land surface in 

comparison with other land cover types, their rapid expansion has marked effects on 

environment and socio-economy, such as loss of natural vegetation and farmland 

(Tan et al., 2005), local and regional climate change (Kaufmann et al., 2007), decline 

in biodiversity (Zimmermann et al., 2010), hydrological circle alternation (Barron et al., 

2013), etc. Without effective planning, there is no doubt that the pressure for 

sustainable development will continue to increase (Dewan & Yamagchi, 2009a; 

Lambin et al., 2001).  

The majority of urban growth due to human activities is currently proceeding more 

quickly in the developing countries than in the developed countries. As the largest 

developing country in the world, China has recently experienced dramatic economic 

growth and rapid urbanization since 1978. The percentage of urban population 
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increased from 17.9 % in 1978 to 52.6 % in 2012 (China National Bureau of Statistics, 

2013). Like other developing countries, the rapid urbanization process resulted in an 

unprecedented scale and rate of urban growth over the last two decades (Seto & 

Kaufmann, 2003). The urban land is expected to expand at a very rapid rate because 

77.3 % of the population will be living in urban by 2050 according to a UN projection 

(United Nations, 2012). Therefore, China has much more pressure in achieving 

sustainable development.  

Given the rapid urban growth and importance of its long term effect, it is becoming 

increasingly important to monitor and analyze the urban growth process, as well as to 

adopt appropriate sustainable land use plans. Continual, historical, and precise 

information about the urban land cover change is a prerequisite to the further 

analysis and sustainable development, which has been greatly emphasized. In order 

to obtain better understanding of urban growth process, recent issues related to 

urban growth have attracted increasing attention, ranging from spatial and temporal 

land cover patterns, the factors affecting the urban growth, to urban growth scenarios 

by using remote sensing (RS), Geographic Information Systems (GIS) and modeling 

(Deng et al., 2009; Wu & Zhang, 2012; Yuan et al., 2005).  

However, previous urban growth studies presented us with some major challenges. 

Although most of the developed countries are well equipped with detailed land cover 

information, the lack of geospatial database still occurs in the developing countries, 

especially in China, which makes the monitoring and analysis of urban growth 

process more difficult. The study of urban growth is limited by the quality of data 

derived from remote sensing images. Furthermore, the complexity of the urban 

systems is usually an impediment, which is enhanced in the developing cities where 

many factors increase the unpredictability of the system (Barredo et al., 2004). 

Consequently, the analysis of urban growth suffers from a lack of knowledge and 

understanding of the urban growth process, as well as the physical and 

socioeconomic factors. In addition, the performance of urban growth models is 

significantly influenced by calibration, validation, and designing of scenarios, which 

less attention has been given to. Considering these challenges and limitations in 

previous studies, it is necessary to adopt modified methods in order to better 

understand the urban growth process. 
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1.2 Research objectives and key questions 

1.2.1 Research objectives 

The main objective of this dissertation is to propose an improved methodology for 

monitoring and analyzing urban growth process in order to understand them better 

and to support effective urban planning towards urban sustainable development. The 

focus is on the investigation of spatio-temporal dynamics of land cover change 

pattern from remote sensing images; assessment of the underlying cause-effect 

relationships in urban growth process; simulation of the urban growth. The specific 

objectives are, using multi-temporal Landsat data together with natural and 

socioeconomic data: 

1) To extract and compare the historical land cover information for the investigation 
area through the interpretation of remote sensing images and the using of 
quantitative measures. Because of the relatively coarse spatial resolution of 
Landsat images and heterogeneous nature of urban environments, accurate 
classification of Landsat images remains a big challenge. 

2) To examine the underlying cause-effect relationships in the urban growth 
process. The question is the spatial and temporal heterogeneous are usually 
involved in the relationships between factors and urban growth. Therefore, the 
spatio-temporal dynamics effects of the factors on urban growth need to be 
investigated to provide insight into how driving factors contribute to the urban 
growth. 

3) To generate future scenarios by taking into account the different urban 
development strategies. The creation of the scenarios is strongly linked to the 
current concerns of policy makers of the region addressing the key questions. 
Scenario based simulation provides an environment to support “what if” 
experiments. In addition, it is important to examine the impacts of the urban 
development strategy on urban growth based on the evaluation and comparison 
of future scenarios. 

1.2.2 Research questions 

In this context, the main challenge of this research is to provide a better 

understanding of urban growth process and to support urban planning aimed at 

sustainable development. Under this challenge the following questions are raised 

and need to be answered: 

1) How to improve the classification accuracy in order to provide the high quality 
land cover information for the further analysis? 

2) Which indicators can be used to reflect and quantify the urban growth patterns? 

3) How to explore the underlying cause-effect relationships in the urban growth 
process? 

4) How to determine the parameters values of cellular automata (CA) models in 
order to accurately reproduce historical urban growth? 

5) How to connect the CA models with the urban decision making process?  
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1.3 Organization of the dissertation 

This dissertation consists of six chapters. After the introduction provided in this 

chapter, a theoretical background for this study is introduced in chapter 2. First, it 

provides the conceptual basis in the context of land cover change, urban growth, 

sustainable urban form and complexity of urban systems. Following the theory and 

history of related approaches and their strengths and limitations are also introduced. 

Since urban growth is a complex process, this chapter is important to provide a basis 

for monitoring and analysis work to be conducted.  

Chapter 3 is concerned with the study area of Xuzhou city, China. After having 

established the theoretical framework, the socioeconomic characteristics of Xuzhou 

city is introduced in the national context of China. Furthermore, a spatial database for 

this study is described, which includes the remote sensing data as well as other 

spatial variables.  

Chapter 4 describes the methods used in this study. It consists of three parts. In the 

first part, the integration method of maximum likelihood classifier, sub-pixel classifier 

and multiple Normalized Difference Vegetation Index (NDVI) values based on 

Vegetation-Impervious Surface-Soil (V-I-S) model is proposed in order to classify 

multi-temporal Landsat images. Furthermore, a set of spatial metrics for quantifying 

the urban spatial patterns are described. Geographically weighted regression (GWR) 

is introduced to explore the spatio-temporally varying relationships between the 

spatial patterns and urban growth. In addition, driving factors are identified and 

adopted to evaluate the spatial influences of each factor on urban growth by using 

logistic regression method. The third part presents cellular automata (CA) model to 

reproduce the historical urban growth process and assess the consequence of future 

urban growth with a case study of Xuzhou city in China. Natural and socioeconomic 

variables are involved to generate transition potential of urban growth during the 

study period. For estimating more accurate parameter values, the hybrid calibration 

method is proposed. The historical simulation results are compared with observed 

urban land use using figure of merit value and spatial metrics. Five scenarios are 

designed and developed to present different urban development trends. Moreover, 

the different scenarios are evaluated and compared in order to analyze the impacts 

of different urban development strategies on urban spatial patterns and to support 

urban planning. 
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Chapter 5 presents and discusses the findings generated by the methods in chapter 

4. In addition, some implications of urban development in Xuzhou city are given. In 

chapter 6, finally, answers to the research questions proposed in chapter 1 and major 

findings are provided. Based on the study findings, the development 

recommendations and the future work are also presented. 
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2. Theoretical background 

Since the emphasis of this study is the integration of RS, GIS and CA for monitoring 

and analyzing the urban growth process, this chapter provides a brief outline of the 

theoretical fundamentals of this theme. The key concepts related to the urban growth 

are explained. After that, the related methods in the monitoring and analysis are 

introduced and compared to give a general impression about the advantages and 

disadvantages of these methods. 

2.1 Conceptual basis 

2.1.1 Land use and land cover change 

Land use and land cover change (LULCC), is a general term for the human 

modification of Earth’s terrestrial surface. It is a central component of global 

environmental change with direct impact on climate, environment, and human 

societies (Campbell et al., 2005; Turner et al., 1990). Although humans have been 

modifying land for thousands of years in order to obtain food and other essentials, 

current rates, extents and intensities of LULCC are much greater than ever in history 

(Ellis, 2007). Changes in land use and land cover are among the most important 

drivers of global change (Turner et al., 1990; Vitousek et al., 1997). 

LULCC consists of two different terms, Land cover and land use. Land cover refers to 

physical and biological cover over the earth’s land surface and immediate subsurface 

(Lambin et al., 2003). It includes water, vegetation, bare soil, and/or artificial 

structures. Foody (2002) proposed that land cover is a fundamental variable that 

affects and links many parts of the human and physical environments. Land use is a 

more complicated term. It is the intended human employment and management of a 

land cover: the ways and means of its exploitation to meet human demands (Meyer & 

Turner, 1996), for example, industrial land, commercial land. There is a strong 

relationship between land use and human activities in the environment (Allen & 

Barnes, 1985; Turner et al., 1990). Food and Agriculture Organization (1995) stated 

that “land use concerns the function or purpose for which the land is used for the 

local human population and can be defined as the human activities which are directly 

related to land, making use of its resources or having an impact on them”. It comes 

out from the above definitions that land use and land cover are not equivalent 

although they may partially overlap.  

Changes in land cover are the results of anthropogenic or natural processes such as 

climatic change, volcanic eruptions, changes in river channels or the sea level, etc 
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(Briassoulis, 2000). With human activity increasing, however, most of the land cover 

changes of the present and the recent past are due to human activities, i.e. to uses of 

land for production or settlement (Turner, 2009). More specifically, Meyer and Turner 

(1996) suggested that land use changes land cover in three ways: “converting the 

land cover, or changing it to a qualitatively different state; modifying it, or 

quantitatively changing its condition without full conversion; and maintaining it in its 

condition against natural agents of change". Two types of land cover change can be 

identified: conversion and modification (Lambin et al., 2003). Land cover conversion 

means the change from one cover type to another while land cover modification 

refers to the alterations of structure or function without a total change from one type 

to another (Skole, 1994).  

The importance of land cover change has been recognized since 1970s, when 

studies revealed the significant relationships between land cover and climate change. 

Otterman (1974) found that land cover change may lead to the change in the albedo, 

and thus modify the surface-atmosphere energy balance, resulting in climate change. 

During the following years, it was concluded that land cover change contributes to 

global carbon emissions through the creation and especially diminishment of carbon 

sinks (Lambin et al., 2003). In addition, many studies demonstrated that the land 

cover change is a major factor for global change because it has a strong impact on 

the ecosystem, including soil erosion (Cebecauer & Hofierka, 2008), desertification 

(Wu et al., 2011), a loss of biodiversity (Zimmermann et al., 2010), declining human 

health (Xu et al., 2008), and threat to ability of biological systems to support human 

needs (Vitousek et al., 1997). This is particularly the case in the economic-developed 

regions where significant land cover changes in urban areas have resulted in serious 

issues threatening urban sustainable development (Eastman & Fulk, 1993; Li & Yeh, 

2004).  

Over the last few decades, many researchers have improved measurements of land 

cover change, the understanding of the causes, and land cover modeling, in part 

under the auspices of the LULCC Project conducted by International Geosphere-

Biosphere Programme (IGBP) and International Human Dimensions Programme 

(IHDP) on Global Environmental Change (Lambin et al., 2003; Meyer & Turner, 

1996). This project represented that the recognition of land cover change as a full 

element of global environmental change.  
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2.1.2 Urbanization and urban expansion 

Urbanization is simply defined as “the movement of people from rural to urban areas 

with population growth equating to urban migration” (United Nations, 2005). 

Urbanization is also a social process which involves the changes of behavior and 

social relationships as a result of people living in urban area (Bhatta, 2010). 

Essentially, it involves the complex change of life styles which result from the impact 

of cities on society (Bhatta et al., 2010). Nowadays, however, urbanization is 

commonly used in more broad sense and it refers to much more than simple urban 

population growth; it involves the physical growth of urban areas as well as the 

changes in the socioeconomic and political structure of a region as a result of 

population immigration to an urban area (Cohen, 2004; Deng et al., 2009; Li et al., 

2013a).  

Urbanization has been a dynamic complex phenomenon taking place all around the 

world. This process, without a sign of slowing down, has led to the significant 

changes in land cover and landscape pattern (Braimoh & Onishi, 2007; Deng et al., 

2009). Dramatic urbanization, especially in the developing countries, will continue to 

be one of the important issues of global change influencing the human dimensions 

(Deng et al., 2009).  

Associated with the process of rapid urbanization, the spatial expansion of built-up 

areas has been accelerating. Though urbanization promotes socioeconomic 

development and improves quality of life, urban growth inevitably results in significant 

land cover changes in urban area, such as the conversion from the forest and 

wetlands into agricultural or built-up lands since more land is used for the production 

of goods and services, and more residential land is required for the people living in 

the urban. While urban areas currently cover only 3 % of the Earth’s land surface 

(Dewan & Yamaguchi, 2009a), the conversions resulted from the urban growth are 

among the most significant types of anthropogenic land cover dynamics, and the 

ecological and environmental impacts of urban growth go far beyond the urban 

boundaries (Wu et al., 2011; Liu & Lathrop, 2002). This is particular the case in the 

fast developing regions where land cover change caused by rapid urban growth 

resulted in serious issues threatening urban sustainable development, for example, 

local and regional climate change (Kaufmann et al., 2007), hydrological circle 

alteration (Barron et al., 2013; Yang et al., 2011), forest loss and fragmentation 

(Miller, 2012) and etc. 
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The process of urban growth can be described as either a change in the area of 

urban (a measure of extent) or the pace at which non-urban land is converted to 

urban uses (a measure of rate) (Seto & Fragkias, 2005). However, the extent and 

rate of urban growth cannot provide detailed information about spatial patterns of 

urbanization or the underlying processes. Therefore, the urban spatial pattern has 

been the other subject of interest for geographers and economists to study the 

changes in urban areas.  

In the context of urban growth pattern, urban sprawl has received much attention 

(Hasse & Lathrop, 2003; Jantz et al., 2004). In the late 1950s, urban sprawl 

phenomenon in USA has been widely studied. It is regarded as a phenomenon with 

the low-density outward expansion of the urban areas. Later on, similar urban sprawl 

processes were described in most of all cities including the cities in developing 

countries. 

Owing to its diversity and complexity, a variety of definitions for sprawl have been 

proposed. For instance, Fulton et al. (2001) proposed that urban sprawl occurred 

when land is consumed at a faster rate than the population growth. Ewing et al. 

(2002) defined urban sprawl as a type of low-density development with residential, 

commercial and industrial areas that are separated, a lack of thriving activity centers, 

and limited choices in travel routes. Similarly, Burchell et al. (2005) pointed out that 

urban sprawl has its particular spatial patterns: unlimited outward and leapfrog 

expansion of low density new development. Though there is no commonly accepted 

definition of urban sprawl, a general consensus on depicting urban sprawl as a 

specific type of urban expansion characterized by a low-density, dispersed spatial 

pattern with both environmental and social impacts (Aguilera et al., 2011; Hasse & 

Lathrop, 2003; Yuan et al., 2005).  

2.1.3 Sustainable urban form 

Sustainable development refers to “development that meets the needs of the present 

without compromising the ability of the future generations to meet their own needs” 

(World Commission on Environment and Development, 1987). The existing of all the 

above-mentioned problems caused by urbanization indicates our cities are not 

sustainable (McGranahan & Satterthwaite, 2003). Due to the problems caused by the 

rapid urban growth, the current changing urban spatial pattern is a great challenge 

for sustainable development. A range of reasons related to the sustainable 

development are brought forward: to preserve important natural habitat and 
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agricultural land; to reduce energy and materials consumption as well as Green 

House Gas (GHG) emissions. 

A sustainable city must “achieve a balance among environmental protection, 

economic development, and social wellbeing” (Wu, 2010). Urban sustainability 

consists of minimizing the consumption of resources and land, optimizing urban form 

to facilitate urban flows, protecting both human health and ecosystem, ensuring 

equal access to resources and services, and maintaining cultural and social diversity 

and integrity (Alberti & Susskind, 1996; Spiekermann & Wegener, 2003). However, 

developing sustainable cities is a difficult task because cities are the centers of socio-

economic developments, the main sources of major environmental problems, and the 

living place of nearly half of the world population (Wu, 2008). 

The relationship between urban form and sustainability is currently one of the most 

hotly debated issues in the international environment research. Jenks et al. (1996) 

pointed out that there is a significant relationship between urban form and 

sustainable development, although it is not simple and straightforward. The costs and 

negative environmental impacts of urban sprawl have been widely studied and 

documented. The particular concerns over urban sprawl is the inefficient utilization of 

energy (Bhatta, 2010), increasing of infrastructure and public service costs (Buiton, 

1994), land use fragmentation and loss of farmland (Nelson, 1990; Tan et al., 2005; 

Zhang et al., 2007). Urban sprawl is therefore regarded as one of the main 

challenges in sustainable development and spatial planning. From this point of view, 

the sustainable city “must be of a form and scale appropriate to walking, cycling and 

efficient public transport, and with a compactness that encourages social interaction” 

(Elkin et al., 1991, p.12). Therefore the particular issue in developing a sustainable 

city is to search for the most suitable urban forms that can help to sustain 

development, especially for reducing the unnecessary loss of land resources and the 

consumption of energy. In the discipline of urban growth, a new word has emerge-

compact city to attain the goals of sustainability. The term of compact city was first 

coined by Dantzig and Satty (1973) as the alternative planning strategy to the 

problems linked to dispersed city. With the unprecedented and ongoing growth of 

urban areas globally accompanying by negative impacts, there has been tremendous 

opportunities to apply this concept in order to achieve the sustainable urban form. 

Sustainability has been incorporated in urban planning theory through the promotion 

of a compact policy for urban growth rather than urban sprawl (Arbury, 2005). 
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However, there are inherent difficulties in defining the compact city. Clearly, there is 

more than just an increase in population density for the compact city (Burton, 2002). 

It has been proposed that an increase in dwelling density (Goodchild, 1994), the 

advancement of mixed use development (Williams et al., 1996), and a reaffirmed 

focus on the nature and quality of development (Elkin et al., 1991) are all important 

aspects in the compact city theory. The morphology of a city is an important feature 

in the compact city theory (Jenks et al., 1996). 

Many researchers believed that compact cities have environmental, social and fiscal 

advantages and results in energy saving (Burton, 2002; Frey, 2004; Hillman, 1996; 

Thomas & Cousins, 1996), thus are an important way to solve problems linked to 

dispersed form and to achieve the sustainable development. Hillman (1996), for 

example, argued that compact city can reduce travel distance, and therefore 

decreasing emissions of GHG. He also pointed out that urban residents could enjoy 

lower transport expenditure, less pollution and lower heating costs in compact city. In 

addition, the re-use of infrastructure and developed land, a regeneration of existing 

urban areas and urban vitality can be achieved through the implementation of 

compact city (Thomas & Cousins, 1996). 

However, as pointed out by Burgess (2000), interests in compact city studies were 

concentrated on the developed countries, with insufficient studies conducted in the 

developing countries. With the recognition of its significant impacts in the developing 

countries, it is important to consider the implementation of compact city policy in 

developing countries (Jenks, 2000).  

A heated debate regarding the compact city has dominated the urban planning 

literature since the middle of 1990s. The realistic experience of cities have shown 

some problems related to the compact city, such as congestion (Catalán et al., 2008), 

shortage of open space near to residential areas (Williams et al., 1996). Some 

researchers argued that dispersed urban form is attractive at an individual level since 

it satisfies individual preferences, such as more space for per housing unit and quick 

access to open space, and lower housing prices (Gordon & Richardson, 1997; 

Wassmer & Baass, 2006). Therefore, how to balance the conflict between compact 

and dispersed urban form is an important issue for sustainable development. 

2.1.4 The complexity of urban systems 

Complex systems theory is a new approach that can be used to investigate how 

relationships between parts bring about the collective behaviors of a system and how 
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the system interacts (Bhatta, 2010, p.110). While no precise definition of a complex 

system exists, complex systems are often defined in terms of the strength of dynamic 

linkage between components. Batty (2009, p.51) proposed that the complex systems 

“show surprising and unanticipated or ‘emergent’ behaviours as shown in patterns 

that arise at the aggregate level from the operation of system processes at the micro 

of agent level”. With respect to urban dynamics systems, Parker et al. (2003) defined 

that complex systems are regarded as dynamic systems that present recognizable 

patterns of organization across spatial and temporal scales.  

Cities have long been recognized as complex systems, which are composed of a 

large number of interacting individual components (Batty, 2007). Even a slight 

change in one component could affect the states of other components that are 

potentially linked. What emerges from these interactions cannot be predicted simply 

by analyzing its components. The complexity of urban growth is mainly due to the 

complex way in which humans and the environment interact to each other, whereby 

these interactions are regulated by a wide range of factors influencing land-use 

decisions at different temporal and spatial scales (Torrens, 2000). Feedback 

mechanisms among the components of this coupled human environment system 

even enhance the level of complexity, possibly resulting in an emergent system, 

which cannot be explained by analyzing the single component of the system. 

Complexity occurs from both decision making and the spatial aspects of the city 

environment (Parker et al., 2003). Torrens (2000) suggested that cities exhibit 

several distinguishing characteristics of complexity: emergence, self-organization, 

fractal dimensionality, and self-similarity.  

In emergent systems, like cities, a small amount of rules applied at a local level are 

able to generate surprising complexity and ordered patterns in aggregate form 

(Torrens, 2000). Emergence implies that although the behavior of a complex system 

is dependent on the behavior of its components, the outcome behavior of the whole 

is much more than that of the local interactions, in simple words, the actions of the 

parts do not sum to the activity of the whole. It is best summed up in the phrase: “the 

whole is greater than the sum of its parts” (Von Bertalanffy, 1972, p.18). This is 

viewed as the critical point in studying cities as complex systems (Batty, 2000). In the 

city context, the sum of the parts represents the urban morphology, while the whole 

corresponds to urban patterns dynamics (Barredo et al., 2003).  
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The second law of the thermodynamics in physics states that the closed systems 

progressively evolve to a state of maximum entropy (Barredo et al., 2003). In contrast, 

the open systems like cities show the different tendency, which presents the 

evolution to ordered state even when starting from disordered states (Wolfram, 1994). 

Such open systems can be viewed as self-organizing. Self-organization in complex 

systems refers to the tendency for system structures to development ordered 

patterns on a large-scale (Krugman, 1996). Furthermore, both spatial and temporal 

dimensions are able to reflect self-organization. 

White and Engelen (1993) used fractal dimension as a measure to characterize the 

ordered properties of cities. In cities, the recursive local-scale dynamics that generate 

well-defined geometrical structures in two-dimensional space often produce similar 

structural geometries (Batty et al., 1997). Furthermore, cities can be defined as a bi-

fractal structure, which is characterized by two zones, the inner zones and outer 

zones (Torrens, 2000). The inner zones represent a well-organized core of a typical 

concentric city, which is composed of compact built-up land. In the inner zones, 

urban patterns are stable and ordered; the urbanization process is completed. While 

outer zones are less organized, in which urbanization is still underway (White et al., 

1997). The fact that cities have fractal structure introduces the concept of self-

similarity. With self-similarity, the patterns of new areas in cities are indistinguishable 

from the whole of the cities. In addition, the structure of the pattern is independent on 

scale (Wolfram, 1994). 

2.2 Analyzing of spatio-temporal dynamics of urban growth 

2.2.1 Land cover change 

Mapping and monitoring land cover have been widely recognized as an important 

step to better understand and provide solutions for social, economic, and 

environmental problems (Adb El-Kawy et al., 2011; Dewan & Yamaguchi, 2009b; 

Foody, 2002). Therefore the continual, historical and precise information of land 

cover and land cover change is becoming increasingly important for urban planning 

towards sustainable development (Barnsley & Barr, 1996; Ramankutty & Foley, 

1999).  

Although most of the developed countries are well equipped with detailed land cover 

information (Dewan & Yamaguchi, 2009b), Longley and Mesev (2000) argued that 

our current understanding of the land cover change and its effects are largely limited 

by the lack of accurate and timely land cover data in the developing countries. Land 
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cover data are inadequate or unavailable, of inconsistent quality, and out of date; 

while generating it is time consuming and expensive (Haack & English, 1996). This is 

attributed to the difficulties in accessing some regions because of equipment or funds 

to collect information properly, lack of trained personnel; or rapid changes (Defries & 

Townshend, 1999). With the wide requirement and application of land cover data, 

there has been an increasing interest in obtaining the data. 

Since the launch of the first Earth resource satellite Landsat-1 in 1972, satellite 

remote sensing has become an increasingly powerful and effective tool for 

monitoring and management of land cover (Zhang & Zhu, 2011). Compared with 

more traditional mapping methods such as field survey and basic aerial 

photointerpretation, land cover mapping has the advantages of low cost, large area 

coverage, repetitive data, digital format, and accurate georeferencing procedures 

(Jensen, 1996; Yuan et al., 2005). Consequently, land use information products from 

satellite images have become an essential database for land cover management and 

urban planning. Particularly, in developing countries, remote sensing is able to 

provide fundamental and cost effective land cover information that is not available 

from other sources (Dewan & Yamaguchi, 2009b; Miller & Small, 2003). 

Several recent developments of sensor technology have the potential to significantly 

improve the capability of mapping urban areas. These relate to the availability of data 

from high spatial resolution satellites such as Quickbird, IKONOS, RapidEye, and 

GeoEye, as well as high spectral resolution satellites such as Landsat (TM & ETM+), 

ASTER. The increasing availability of satellite imagery with significantly improved 

spectral and spatial resolution has played an important role in more detailed land-

cover mapping. Meanwhile, the rapid development of image process technologies 

has provided more powerful tools for satellite processing and analysis. It is now 

possible to monitor and analyze urban growth in a timely and cost-effective way 

(Deng et al., 2009).  

An important task of satellite image processing is to develop image data analysis 

approaches suitable to a particular application. The classification of land cover types 

from satellite images is probably the most important objective of digital image 

analysis. It is a process of categorizing pixels in an image to one of land cover 

classes. The fundamental basis of remote sensing image classification is the spectral 

characteristics of earth surface features. While it is relatively easy to generate a land 
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cover map from remote sensing image, it is difficult to make it accurate (Zhang & 

Zhu, 2011).  

In the past few decades, a variety of classification algorithms have been proposed to 

conduct the remote sensing image classification. Traditional multispectral 

classification methods make use of spectral information of different surface objects. 

Supervised and unsupervised multispectral classifications are the two main spectral 

recognition methods. Supervised classification aims to allocate pixels based on their 

similarity to a set of predefined classes that have been characterized spectrally 

(Foody, 2002). Therefore, it requires a priori knowledge of the study area to ensure 

the selection of the training sites.  

The Maximum Likelihood Classifier (MLC) is the most commonly used supervised 

classification method, which creates decision surfaces based on the mean and 

covariance of each class (Srivastava et al., 2012). However, MLC presents less 

successes because the MLC assumption that the data follow Gaussian distribution 

may not always be held in complex areas (Xie et al., 2008). Artificial Neural Networks 

(ANN) and Support Vector Machine (SVM) originally proposed by Vapnik and 

Chervonenkis (1971) are recent addition to the existing image classification methods, 

which received increasing attentions in remote sensing applications (Dixon & 

Candade, 2008; Mathur & Foody, 2008; Szuster et al., 2011).  

The unsupervised classification examines the unknown pixels in an image and 

aggregates them into land cover classes based on their relative spectral similarity. 

The advantage of unsupervised classification is that it is automated and does not 

require a priori knowledge of the study area (Lillesand et al., 2004). 

These traditional classification methods have been widely used for remote sensing 

application and have generated fairly good results for a wide variety of images. 

However, there are some challenges in obtaining accurate land cover information in 

urban areas. A major difficulty in urban remote sensing processing is attributed to the 

high heterogeneity and complexity of the urban environment in terms of its spatial 

and spectral characteristics (Deng et al., 2009; Lu et al., 2011; Setiawan et al., 2006). 

Consequently, misclassification problems are often found in the land cover maps 

generated from tradition methods. According to the literature review, there are two 

major factors that are responsible for the misclassification problem. One of them is 

the mixed pixel problem which results from the occurrence of more than one land 

cover types in one pixel (Fisher, 1997; Lu & Weng, 2004). This is particularly true for 
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transitional pixels between land cover types. As a result, the spectral information 

obtained at the mixed pixel is a mixture of the spectral values of several different land 

cover types. The other factor is the close spectral similarities between different land 

cover types (Foody, 2002; Liberti et al., 2009).  

In recent years, many efforts have been made to improve urban land cover 

classification accuracy. A survey of the existing literature suggests that three major 

methods can be identified: 

1) Making more efficient use of spectral information. 

Spectral information is the most readily available information in a satellite image. 

Considerable efforts are being made to develop new spectral classification methods.  

A number of spectral indices were developed to aid the interpretation of remote 

sensing images by detecting small differences between different land cover types 

(Jones et al., 2011). It is based on the different band reflectance for the same 

material. For example the most commonly used Normalized Difference Vegetation 

Index (NDVI) (Jamali et al., 2014; Setiawan et al., 2006), Ratio Vegetation Index 

(RVI) (Zhang & Zhu, 2011), Leaf Area Index (LAI) (Jones et al., 2011). 

In addition, Principal Component Analysis (PCA) enables redundant data to be 

compacted into fewer bands. These bands of PCA data are noncorrelated and 

independent, and are more interpretable than the source data (Rajani & Rajawat, 

2011; Zhang & Zhu, 2011). Tasseled Cap Transformation (TCT) can convert the 

original bands of a RS image into a new set of bands that are helpful for vegetation 

mapping (Dymond et al., 2002; Li & Thinh, 2013).  

Ridd (1995) proposed Vegetation-Impervious Surface-Soil (V-I-S) model, which 

assumes that land cover in urban environment is a linear combination of three 

components: vegetation, impervious surface, and soil. The model provides a 

potential framework to deal with misclassification problem in urban area. Several 

studies used the model to map land cover/land use in urban areas and demonstrated 

the usefulness for the classification in urban areas (Li & Thinh, 2013; Lu & Weng, 

2004; Ward et al., 2000). 

2) Incorporation of multisensor data and ancillary spatial information. 

Another basic strategy for improving the classification accuracy is to integrate more 

information with remote sensing images. Generally, two types of data are used in 

information fusion. The first way is the integration of multitemporal and 
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multiresolution data (Du et al., 2013; Gluch, 2002). The other way is to integrated 

original image with some other geographic data to improve accuracy of classification 

results, for example, Digital Elevation Model (DEM), zoning information, 

administrative boundaries, etc (Dewan & Yamaguchi, 2009a;  Liberti et al., 2009). 

3) Increasing use of spatial information. 

Most of image classification methods are based on the statistical analysis of each 

separate pixel (Agüera et al., 2008). These methods have a good performance when 

images have relatively low spatial resolution (Wang et al., 2004). However, the 

spectral variability increases within the same land cover type in the high spatial 

resolution images. In order to solve this problem, different techniques have been 

developed that take into account the spatial information, which includes image 

texture, feature size, shape, etc (Agüera et al., 2008; Puissant et al., 2005). Because 

spatial based classification involves a more complex decision process, they tend to 

be much more computationally intensive than spectral based classification (Lillesand 

et al., 2004).  

The choice of the method should consider different factors, such as data availability, 

costs and requirement of the specific case study. 

Change detection is the process of identifying differences in the state of a feature or 

phenomenon by observing it at different times (Singh, 1989). The goal of remote 

sensing change detection is to (Im & Jensen, 2005):  

1) detect the geographic location of change;  

2) identify the type of change; 

3) quantify the amount of change. 

Change detection is useful in many applications related to land use and land cover 

changes, such as shifting cultivation and landscape changes (Serra et al., 2008), 

land degradation and desertification (Adamo & Crews-Meyer, 2006; Liberti et al., 

2009), urban landscape pattern change (Mundia & Aniya, 2005; Yuan et al., 2005), 

deforestation (Rutherford et al., 2008; Shulz et al., 2010). Timely and accurate 

change detection of land cover provides a better understanding of relationships and 

interactions between human and natural phenomena. Change detection involves the 

analysis of multi-temporal datasets to quantitatively assess the temporal effects of 

the phenomenon. 

There are various ways of approaching the use of satellite imagery for determining 

land cover change in urban environments. Martin (1989) divided the methods for 
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change detection into two classes: pixel-to-pixel comparison and post-classification 

comparison.  

The first method conducts the pixel-to-pixel comparison of multi-temporal images 

without classifying the data. This method applies various algorithms, including image 

differencing (Sohl, 1999) and image ratioing (Nelson, 1983), to single or multiple 

spectral bands, vegetation indices (Guerra et al., 1998) or principal components 

(Fung & Ledrew, 1987), directly to multiple temporal images to generate change 

maps. Prior classification is not necessary for the comparison and errors from 

classification can therefore be avoided. However, the results of these methods could 

not provide information about the land cover conversion matrix. 

The post classification comparison method is used to compare two or more 

separately classified images of different dates to produce land cover change maps, in 

which not only the amount and location of change but also the nature of change can 

be identified (Howarth & Wickware, 1981; Singh, 1989). In addition, this method can 

minimize the problems associated with multi-temporal images recorded under 

different atmospheric and environmental conditions (Lu et al., 2004). A major pitfall, 

however, the accuracy of change maps is strongly dependent on the accuracy of 

individual classification results (Yuan et al., 2005). 

2.2.2 Urban growth patterns 

As discussed above, remote sensing data can be used to provide detailed 

information about the type, amount, and location of land use conversion. Yet it lacks 

the ability to describe the underlying urban growth process that is responsible for the 

changing patterns of urban (Herold et al., 2005). The measurement of urban spatial 

pattern can fill this gap with allowing a more detailed analysis of the relationships 

between forms and processes. 

Urban growth pattern has been studied in the contexts of urban planning, urban 

economics, urban geography, and urban sociology (Seto & Fragkias, 2005). The 

classic Von Thünen (1875) model of land use suggests that the configuration of 

urban and rural land use reflects transportation costs, land-intensiveness of 

productive activities and market prices. The spatial patterns of urban areas provide a 

better understanding of the urban growth process and its impact on environment 

(Luck & Wu, 2002).  

The question then is how to quantify and describe changes in urban spatial patterns. 

Landscape metrics are already commonly used to quantify the shape and pattern of 
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vegetation in landscape ecology (Gustafson, 1998). Landscape metrics were 

developed in the late 1980s and incorporated measures from both information theory 

and fractal geometry based on a categorical, patch-based representation of a 

landscape (Herold et al., 2003). Patches are defined as homogenous regions 

comprising a specific landscape property of interest such as “urban” or “rural” (Dietzel 

et al., 2005). Landscape metrics are used to quantify the spatial patterns of individual 

patches, of patches belonging to a common class, and of the entire landscape 

consisting of all patches. Change of landscape patterns can be detected and 

described by the landscape metrics, which categorize complex landscape into 

identifiable patterns and reveal some ecosystem properties that are not directly 

observable (Antrop & Van Eetvelde, 2000; McGarigal et al., 2012; Schindler et al., 

2008; Tian et al., 2014). 

Given the background in landscape ecology, Herold et al. (2003) and Herold et al. 

(2005) used the term “spatial metrics” instead of landscape metrics for the research 

field of urban area. Spatial metrics characterize urban form, whereas in ecological 

landscape studies, landscape metrics are explicitly related to ecological functions 

(Luck & Wu, 2002).  

Despite a plenty of spatial metrics were applied to describe spatial structure, they can 

be grouped into two categories (Table 2-1): those that measure the composition of 

the map without reference to spatial attributes, and those that measure the spatial 

configuration of the map (Gustafson, 1998; McGarigal & Marks, 1995). Composition 

refers to features regarding the variety and abundance of patch types within the 

landscape, but without considering the spatial character, placement, or location of 

patches within the mosaic (McGarigal et al., 2012). Spatial configuration refers to the 

spatial character and arrangement, position, or orientation of patches within a 

specific class or landscape (McGarigal et al., 2012).  

Many different methods in representing spatial concepts have led to the development 

of various spatial metrics or metric categories as descriptive statistical measurements 

of spatial structures and patterns (Herold et al., 2005). Fragstats reports over 100 

different metrics. Previous studies in the quantification of spatial pattern have 

suggested that the commonly applied metrics are patch size, number of patches and 

density, nearest neighborhood distance, fractal dimension, contagion, etc. Before any 

kinds of applications, these metrics have to be interpreted, analyzed and evaluated 

regarding their ability in capturing the thematic information of interest (Gustafson, 
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1998). Many studies suggested and compared a wide variety of different metrics. 

Their result shows the role of them in representing the composition, configuration of 

spatial pattern. However, there are not the best suitable metrics as the significance of 

specific metrics varies with the objective of the study and the characteristics of the 

spatial pattern under investigation (Parker & Meretsky, 2004). Furthermore, some 

authors reported that very few of these metrics contain unique information, and thus 

the calculation or reporting of all of them is redundant (Gustafson, 1998; Li & Wu, 

2004). 

Recently, there has been an increasing interest in applying spatial metrics in urban 

environments because they can be a valuable tool for planners and decision makers 

to better analyze urbanization process and their environmental consequences 

(Herold et al., 2005; Kim & Ellis, 2009; Pham et al., 2011). The usage of spatial 

metrics with respect to urban studies can be grouped into three general categories: 

1) Quantification of the urban spatial patterns. 

A variety of metrics have been developed to quantify urban spatial patterns in the 

past studies. For instance, Schneider et al. (2005) investigated the spatial distribution 

of urban development by using spatial metrics (AREA, LSI) along seven urban-to-

rural transects identified as key corridors of growth. Seto and Fragkias (2005) 

effectively compared the spatio-temporal pattern of urban land use changes in four 

Chinese cities, integrating three concentric zones with a set of spatial metrics (Class 

Area, NP, AREA, ED, AWMFD). In these studies, the fragmentation, irregulation 

caused by urbanization have been captured and measured using spatial metrics. 

These studies demonstrate that spatio-temporal spatial metrics can provide improved 

description of heterogeneous urban areas.  

2) Linking to urbanization process.  

A major goal of using spatial metrics is to understand the relationship between the 

urban spatial patterns and urbanization process. This issue has been identified by 

numerous of studies. Herold et al. (2003) applied spatial metrics (Class Area, NP, 

ED, LPI, MNN, AWMFD, CONTAG) to evaluate the impact of urban development in 

four districts in Santa Barbara, California, USA and to analyze the spatio-temporal 

dynamics of urban growth. Deng et al. (2009) explored the spatio-temporal dynamics, 

and evolution of land use and landscape patterns in response to the rapid 

urbanization process by integrating remote sensing technology and spatial metrics 

(NP, PD, ED, LPI, AREA, LSI, SHDI, SHEI). Pham et al. (2011) established the 
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relationship between certain changes of spatial metrics (Class Area, NP, ED, LPI, 

MNN, AWMFD) and a particular type of city planning based on the analysis of spatio-

temporal dynamics of  spatial metrics in Hanoi (Vietnam), Nagoya (Japan), Hartford 

(Connecticut, USA), and Shanghai (China). These studies demonstrate that spatio-

temporal dynamics of spatial metrics can provide a link between the physical spatial 

structure and urban form, functionality and process. The results help to understand 

and reveal the processes that underlie the land cover change. 

3) Interpretation, assessment and verification of urban models. 

Alberti and Waddell (2000), Herold et al. (2005) substantiated the importance of 

spatial metrics in urban modeling. They applied specific spatial metrics to investigate 

the effects of the complex spatial pattern of urban land cover on social and ecological 

processes. These metrics allowed for an improved representation of the 

heterogeneous characteristics of urban areas, and of the impacts of urban 

development on the environment. A set of spatial metrics were also used in a 

detailed analysis and comparison of various scenarios simulated by urban models to 

provide a better understanding of future urban growth patterns (Mitsova et al., 2011; 

Zhang et al., 2011). From the perspective of investigating urban land-use system, it is 

crucial for urban models to successfully replicate realistic spatial land-use patterns as 

well as to predict the locations of new developments (Meentemeyer et al., 2013). 

Measures such as spatial metrics have been adopted to validate simulation models 

with respect to aggregate pattern similarity (Liu et al., 2010; Parker & Meretsky, 

2004; Sui & Zeng, 2001).  

It is widely acknowledged that urbanization is a key cause of changes in urban 

spatial patterns. Analysis of spatial patterns of landscape diversity and their 

implications should be regarded as a precondition for applying landscape diversity to 

assess the impact of urbanization on ecological processes and functions (Yeh & 

Huang, 2009). Combining gradient analysis with spatial metrics method, considerable 

studies on the qualitative relationships between urbanization and spatial growth 

patterns have demonstrated that urbanization plays an important role in the urban 

growth patterns (Luck and Wu, 2002; Weng, 2007). By adopting block sample, the 

spatial metric value of each block was plotted against the level of urbanization to 

represent the correlations between them (Yeh & Huang, 2009). The Ordinary Least 

Squares (OLS) regression is the primary statistical method, which was widely used to 

explore the quantitative relationship between spatial patterns and urbanization. 
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However, results generated from OLS only reflect the average relationships and 

consequently failed to address the spatial heterogeneities in the effects of 

urbanization on spatial patterns. The spatial and temporal heterogeneities usually 

exist in the relationships between factors and urban patterns (Su et al., 2011). In 

addition, analyzing the change of spatial patterns for one period would overlook the 

fact that an area experiencing the most intense urbanization is not necessarily static, 

but could shift its location within the urbanization process, so that the characteristics 

of urbanization process cannot be fully captured. 
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Table 2-1: Classification of landscape metrics 
Principle 
aspects 

(measures) 
Description 

Commonly used 
metrics 

Composition 

Proportional 
abundance  

Proportion of each class relative to 
the entire map 

Class Area (CA), 
Percentage of 

Landscape (PLAND), 
Patch richness (PR), 
Shannon’s diversity 

index (SHDI), 
Shannon’s evenness 

index (SHEI) 

Richness Number of different patch types 

Evenness Relative abundance of different 
patch types 

Diversity Composite measure of richness and 
evenness 

Spatial Configuration 

Patch size 
distribution and 

density 

Fundamental attribute of the spatial 
character of a patch 

Patch Area (AREA), 
Number of patches 

(NP), 
Patch density (PD), 
Edge density (ED), 
Largest patch index 

(LPI), 
Landscape shape index 

(LSI) 
Shape index (SHAPE), 
Area weighted mean 

fractal dimension 
(AWMFD), Euclidean 

nearest neighbor 
distance (ENN) 

Patch shape 
complexity 

Geometry of patches (simple and 
compact or irregular and convoluted) 

Core Area Interior area of patches after a user-
specified edge buffer is eliminated 

Isolation 
/Proximity 

Tendency for patches to be 
relatively isolated in space from 

other patches of the same or similar 
class 

Contrast Relative difference among patch 
types 

Dispersion Tendency for patches to be regularly 
or contagiously distributed (i.e., 

clumped) with respect to each other 

Contagion & 
Interspersion 

Tendency of patch types to be 
spatially aggregated 

Subdivision Degree to which a patch type is 
broken up (i.e., subdivided) into 

separate patches 

Connectivity Functional connections among 
patches 

Source: Own illustration; based on McGarigal 2012 

2.2.3 Driving factors 

It is important to understand several factors directly or indirectly contributing to urban 

growth. There has been an increasing interest in identifying and understanding the 

effects of the driving factors on urban land cover change because this knowledge is 

crucial not only for the development of spatial models (Arsanjani et al., 2013; Zheng 

et al., 2012), but also more important for effective urban planning and management 

strategies (Dubovyk et al., 2011; Thapa & Murayama, 2010; Wu & Zhang, 2012).  
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“What drives/causes urban growth?” has always been one of the most common 

research questions. Urban growth can be described by the complex interaction of 

behaviours and structural factors associated with the demand, technological 

capacity, social relations, and the nature of the environment (Lambin et al., 2001; 

Verburg et al., 2004a). However, there are no standard driving factors that are 

responsible for urban growth.  

Various factors and their effects on urban growth have been identified in previous 

studies. The selection of the factors that are involved in the specific analysis often 

relies on prior understanding of the underlying processes of urban growth. According 

to the literature review, these factors considered in studies of urban land cover 

change can be grouped into four classes (Table 2-2): (1) natural factors, (2) 

socioeconomic factors, (3) spatial policies, and (4) neighborhood factors.  

In urban environment, natural factors are correlated with the suitability and costs of a 

location for development. Topography often determines the location of new urban 

area because flat areas are suitable for urban development (Li et al., 2013a). Each 

location has a specific soil characteristic that determines the production of 

agricultural vegetation. The good quality agricultural land is not suitable for urban 

development in order to sustain future food supply (Li & Yeh, 2000). 

Socioeconomic factors are the most important factors of urban growth. A wide range 

of urban growth studies are based on socioeconomic theory. Urban economists 

identify three underlying driving factors that contribute to the urban growth: 

population growth, rising household incomes, and accessibility improvement 

(Mieszkowski & Mills, 1993). Urban area must extent to a larger area to 

accommodate more people. In order to promote life quality, households need more 

living space as they become richer. In addition, they focus on the site characteristics 

of live space, including housing prices, level of services, quality of landscapes 

(Geoghegan et al., 1997; Mertens et al., 2000). Other than census based 

socioeconomic variables, accessibility also strongly affects urban growth (Hu & Lo, 

2007; Linard et al., 2013). The improvement accessibility indicates faster and more 

convenient travel and lower commuting costs. Verburg et al. (2004a) pointed out that 

“the influence of the socioeconomic conditions in the region can be best 

characterized by the access that a location has to these facilities.”  

Spatial policies at national or regional level have significant impacts on land cover 

change (Dieleman & Wegener, 2004). They define the legal regulations for future 
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land uses (Barredo et al., 2003). In particular, spatial policies can affect the urban 

development in two aspects. One is to serve as an accelerating factor to promote 

more new development in areas planner or proposed for development (Cheng & 

Masser, 2003), and the other is as a constraint to limit the development within a 

specific region, for example, the conservational or protected areas (Long et al., 2012; 

Verburg et al., 2004a).  

“Everything is related to everything else, but near things are more related than distant 

things.” The neighborhood factor is related with the Tobler’s (1970) first law of 

geography. Land cannot be developed independently at each individual location; land 

cove patterns nearly always show spatial autocorrelation caused by a number of 

attraction and repulsion forces (Overmars et al., 2003). It is especially important to 

consider the neighborhood effect due to the fact that urban development can be 

regarded as a self-organizing system (Verburg et al., 2004b). A large number of 

studies demonstrated that locations are more likely to be converted to urban area if 

they are surrounded by more urban land. Neighborhood factors are introduced to 

consider the possible effects of spatial interaction and neighborhood characteristics 

by different approaches. For instance, the proportion of urban land and some other 

land cover types in the neighborhood of a cell (Braimoh & Onishi, 2007; He et al., 

2008; Hu & Lo, 2007; Long et al., 2012); distance to existing urban areas (Poelmans 

& Van Rompaey, 2009). 

 

 

 

 

 



 

Table 2-2: Overview of the driving factors used in previous studies 
 Natural factors Socioeconomic factors Spatial policies Neighborhood 

 Slope Elevation 
Distance 
to open 
water 

Soil 
type 

Distance 
to urban 
centers 

Distance 
to roads 

Distance 
to 
railway 
/station 

Distance 
to airport 

Population 
denstiy 

GDP, 
Income 

Housing 
rent 

Conservation 
areas 

Master 
plan 

Neighborhood effect 

Verburg et 
al. (2004a) 

 × × × × × × ×    ×  × 

Braimoh & 
Onishi, 2007 

× × ×  × ×  × × ×  ×  × 

Hu & Lo, 
2007 

×    × ×   × × ×   × 

Dewan & 
Yamaguchi, 
2009b 

× ×       × ×     

Luo & Wei, 
2009 

  ×  × × ×       × 

Li et al., 
2013a 

× ×   × ×        × 

Zhang et al., 
2011 

  ×   × ×       × 

Long et al., 
2012 

  ×  × ×      × × × 

Poelmans & 
Rompaey, 
2009 

    × ×      ×  × 

Batisani & 
Yarnal, 2009 

× × × × × ×   ×    ×  

Dubovyk et 
al., 2011 

×    × ×   ×     × 

Aspinall, 
2004 

×  ×  ×  ×        

Cheng & 
Masser, 
2003 

  ×  × × ×  ×    × × 

Linard et al., 
2013 

×    
× 

        
× 

He et al., 
2008 × 

   
× × 

 ×      
× 

Dendoncker 
et al., 2007 × 

× 
× 

× 
× 

        
× 
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2.3 Urban growth modeling 

2.3.1 Overview of urban growth models 

A model is a simplified representation of a physical system. By using models, the 

behavior and future evolution of the systems can be simulated. Therefore, they can 

be used as interpretative tools for analyzing system dynamics, and providing hints for 

data collection and design of experiments (Giudici, 2002). Urban models are the 

representations of functions and processes which produce urban spatial structure in 

terms of land cover, population, and transportation, commonly embodied in computer 

programs (Batty, 2009). 

Modeling of urban growth process is an important technique to provide a better 

understanding of causes and mechanisms governing urban growth; to analyze 

alternative urban growth consequences, therefore, to support the appropriate urban 

planning and decision making responses to urban growth (Berling-wolff & Wu, 2004; 

Lambin et al., 2000; Li, 2011). Models of urban growth can be applied to predict the 

spatial pattern of changes by addressing the question “where are urban growth 

taking place?” or the rates of change by addressing the question “at what rate are 

growth likely to progress?” These two questions are associated with the location 

issue and the quantity issue (Pontius & Schneider, 2001). 

Before the 1950s, most urban growth models were developed based on spatial 

economic theory. One of the most famous models is Von Thünen’s model based on 

land rent theory of concentric rings. In this model, the conversion to agriculture is 

influenced by the distance to the market. Land close to the market is used most 

intensively and the value of land decreases as the distance increases. Other models 

that were proposed during this period include Weber’s (1909) classical triangular 

model of industrial location, Christaller’s (1933) model of central places and Lösch’s 

(1940) theory of economic regions. 

Since the 1950s, with the rapid development in computing, computer-based urban 

modeling has received many attentions. The early urban growth models were rooted 

in regional planning, concerned with the models of transportation and land use 

(Berling-wolff & Wu, 2004). Microeconomic and behavioral theories were the basis of 

these models. These models focus on individual land owners who make decisions 

with the objective to maximize expected gains from land (Harris, 1985). The Lowry 

model is one of the most well-known and used models of this type. It was first 

developed by Lowry (1964) to simulate the locations of residential and service 
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development. However, most of these traditional models cannot represent the 

complexity of urban growth system because they try to capture the totality of the 

urban system in a single model (Batty, 1979; Berling-wolff & Wu, 2004). In addition, 

these models do not take spatial dimension into consideration. White and Engelen 

(1993) pointed out that the spatial aggregate nature of the simulation results and the 

strong dependence on the general equilibrium assumption restrict their ability in 

urban planning and decision making.  

Since the end of the 1980s, significant advances in the spatial representation of 

urban growth occurred (Couclelis, 1989). Spatially explicit urban growth models 

became the dominant modeling framework. Different models approaches have been 

used. According to modeling approach, the models can be classified into five groups, 

mathematical/statistical models, GIS based models, CA based models, agent based 

models, and rule-based models (Silva & Wu, 2012). For example, as a GIS based 

model, CLUE (Conversion of Land Use and its Effects) model (Verburg et al., 2001) 

can simulate the land use changes based on suitability of locations for specific land 

use types. The suitability is identified by considering a large number of factors 

including biophysical and socio-economic factors. However, the models do not 

consider the interactions in the neighborhood, which play an important role in land 

use change. The rule based models, such as UrbanSim model (Waddel, 2002) is a 

simulation system for supporting analysis and planning of urban development with 

considering the interactions between land use, transportation, the economy and the 

environment.  

However, it is widely acknowledged that urban development is a complex dynamic 

process (Xie, 1996; Torrens, 2000), which involves a large number of physical and 

socioeconomic factors. The complexity occurs from the unknown amount of factors, 

the complex interactions among factors and their unpredictable dynamics. As 

discussed in chapter 2.1.4, cities are characterized by four signatures: fractal 

dimensionality, self-similarity, self-organization, and emergent. This suggests 

modeling city dynamics should deal with these characteristics. Torrens (2001) 

identified following key weaknesses for traditional urban models: “their centralized 

approaches, a poor treatment of dynamics, weak attention to detail, shortcomings in 

usability, reduced flexibility and a lack of realism”. 

The great developments in computer techniques and in the areas of complex 

analysis had significant impacts on the approach in urban modeling. A modeling 
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framework that captures and simulates this complex behavior is essential for urban 

growth studies, such as agent and CA based models (Batty, 2005; Rickwood, 2011; 

Torrens, 2001). 

CA based models are dynamic models for simulating the evolution of a system using 

local transition rules. They are able to handle large amounts of data and many fields 

of studies, such as population, land use, socioeconomic activity (Batty, 2005). CA 

based models are a powerful tool for representing and simulating spatial processes 

underlying the spatial decisions due to their simplicity, flexibility, and intuitiveness 

(Gronewold & Sonnenschein, 1998; Santé et al., 2010; Wu and Silva, 2010;). 

Temporal and spatial complexity of urban growth process can also be well modelled 

using CA based models (Barredo et al., 2003; White & Engelen, 2000; Wu & 

Webster, 1998). Additionally, CA models have become an experimental tool for 

urban planning by producing different scenarios under various urban planning 

policies (Fuglsang et al., 2013; Li, 2011). So far, CA based models are among the 

most popular ways to simulate the evolution of urban growth. 

2.3.2 Basic concept of CA 

CA was first introduced in 1948 by Von Neumann and Ulam and soon applied to 

physics and mathematical science (White & Engelen, 1993). The ‘game of life’ 

developed in 1970 by mathematician Conway can be regarded as an explicit CA 

game, in which the temporal change of a cell depends on its current state and the 

states of its neighboring cells (Gardner, 1970). It contributed to the wide application 

of CA design. Recognizing the advantages of CA models, Tobler (1979) first 

proposed the application of cellular space models to geographic modeling. 

Furthermore, Wolfram (1984) proved that complex natural phenomena can be 

modeled by CA models, but did not apply them to the specific cities. However, since 

then various CA models have been developed to gain insights into the processes and 

consequences of urban evolution for different countries and regions in the world 

(Arsanjani et al., 2013; Clarke et al., 1997; He et al., 2008; Li & Yeh, 2002a; Thinh & 

Vogel, 2005a; Wu & Webster, 1998; Xie, 1996).  

CA models are of special interest in modeling urban systems because of several 

advantages. Firstly, CA is a discrete dynamical system, and its structure offers a 

capacity for modeling dynamic and complex spatial system (Wolfram, 1984). 

Secondly, CA can be easily incorporated with GIS and RS because it operates on a 

lattice, raster-format geographic data (Batty et al., 1999; Couclelis, 1997), and 
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consequently it can work at high spatial resolution with computational efficiency. 

Thirdly, the models’ results are a set of land-use maps, which are easily be 

visualized, quantified and analyzed (Jantz et al., 2004). In addition, the process being 

modeled is entirely represented in transition rules, allowing the link between the 

patterns and the underlying processes (Torrens, 2000). Furthermore, there is an 

increasing need for a high level of spatial detail in applications related to decision 

making processes, and CA models satisfy this need (Torrens, 2000). One of the 

remarkable advantages of CA is its capacity to represent very complex behaviors 

only using some simple transition rules (Lorek & Sonnenschein, 1999; White & 

Engelen, 1993; Yeh & Li, 2002)  

These models have two different types of important tasks: simulation and 

optimization. Simulation aims to develop realistic scenarios under specific conditions, 

whereas optimization is to provide an optimal solution for planning problem. By 

combining simulation with optimization, these models can assist planners in 

predicting the consequences of changes occurring under different conditions (Li, 

2011). 

A CA based model is a dynamic model using local interactions to simulate the 

evolution of a system, which is often composed by four elements: the cells, states, 

the neighborhoods and the transition rules to determine cells’ state change (Barredo 

et al., 2003; White & Engelen, 1997). The original formalism of CA is simple, but can 

be perceived as too limited when applied in urban simulation (Couclelis, 1997; 

O’Sullivan, 2001). Many alterations have been made over the years to adapt CA to 

urban simulation. The major transformations to CA relate primarily to the transition 

rules and to the neighborhood.  

Cells 

Cells are the smallest units which must manifest some adjacency or proximity (Li & 

Yeh, 2000). They are typically represented by a regular grid of two dimensions 

usually composed of square cells, although some researchers have proposed 

hexagonal cells to obtain a more homogeneous neighborhood (Iovine et al., 2005). 

Moreover, the regular cell can be modified by using irregular tessellations such as 

Voronoi polygons (Shi & Pang, 2000) or land parcels (Stevens & Dragicevic, 2007). 

Irregular cell may provide a more realistic representation of the objects being 

modeled (Santé et al., 2010). 
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The cell size is the area of the landscape each cell will cover. In the application in 

urban growth modeling, the scale of cells varies significantly. For instance, Li and 

Yeh (2000) used 100 meters cell size to simulate urban land use pattern for 

Dongguan city in China. Clarke et al. (1997) used 300 meters cell size for the San 

Francisco Bay area. However, when applying the model to the Washington/Baltimore 

region, the cell size of 210, 420, 840 and 1680 meters were adopted respectively 

(Clarke & Gaydos, 1998). Ménard and Marceau (2005) and Pan et al. (2010) 

explored the sensitivity of CA model to cell size and highlighted the importance of 

adjusting cell size to the specific study. 

Cell states 

Each cell has a finite number of states which characterize the cell. In urban CA 

model, states can be binary values to represent two land cover types, urban or non-

urban (Fuglsang et al., 2013; Li & Yeh, 2004; Zhang et al., 2011). Moreover, the 

states can also be qualitative values that represent different land use types (Lau & 

Kam, 2005), and quantitative values that represent urban land development, for 

example, Li and Yeh (2000) used grey cells to represent the percentages of urban 

land during the iterations of modeling for more accurate results, Wu (1998a) and Yeh 

and Li (2002) used the cell states to represent population density. Cell states may 

also consist of vectors representing a number of attributes (Portugali & Benenson, 

1995). Each cell can only take one state at a time, and the state is updated 

synchronously at each discrete time step according to a set of transition rules and its 

previous state.  

Neighborhood 

A neighborhood is a set of one or more locations that are within a specific distance 

and/or have a relationship to the particular location (Verburg et al., 2004b). A cell’s 

neighborhood is the region that serves as an input to assess the neighborhood effect 

in the transition rules. This effect is calculated as a function of a cell’s own state and 

the state of the cells within its neighborhood. The neighborhood configuration 

determines the distribution and number of neighborhood cells that will affect the 

evolution of each central cell (Ménard & Marceau, 2005). Neighborhood configuration 

in a CA is generally characterized by neighborhood size and shape (Barredo & 

Demicheli, 2003). Through sensitivity analysis, Ménard and Marceau (2005) and 

Kocabas and Dragicevic (2006) demonstrated that neighborhood size and type 
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significantly affect the performance of CA model employed for land use change 

modeling.  

The traditional neighborhood types for two-dimensional raster based CA models are: 

Von Neumann neighborhood and rectangular (Moore) neighborhood. The Von 

Neumann neighborhood consists of four cells which are arranged horizontal and 

vertical to the central cell. The Moore neighborhood extends the Von Neumann 

neighborhood by including the diagonal cells, which are commonly used in CA model 

applications (Al-kheder et al., 2008; Lau & Kam, 2005; Wu & Webster, 1998). Li and 

Yeh (2000) proposed that the use of a rectangular neighborhood such as Moore 

might produce significant distortions between cells at different directions. In contrast, 

the circular neighborhood has no bias in all directions, which was adopted by many 

studies in order to improve the model’s performance (He et al., 2008; White et al., 

1997). 

Neighborhood size defines the extent of interactions between land use and the 

dynamics of the system (Caruso et al., 2005). Originally, only direct and diagonally 

adjacent cells were considered in a neighborhood space in strict CA, such as 

traditional Von Neumann and Moore neighborhood types. In the case of urban 

systems, however, neighborhood space may be much larger, since people and 

institutions can affect their surroundings in a larger space. Thus, it is necessary to 

extent local neighborhood in order to consider the influence of cells at greater 

distances (Santé et al., 2010). In practice, some researchers empirically determined 

the optimal neighborhood size (Verburg et al., 2004b; Zhang et al., 2011), others 

determined the size based on a calibrated procedure, such as a sensitive analysis 

(Caruso et al., 2005). Ménard and Marceau (2005) concluded, from the 

neighborhood configuration in 17 different studies covering nearly 10 years, that the 

applicable neighborhood radius ranged from 1 to 8, the number of involved cells also 

varied.  

In general, the effect of neighborhood cell decreases with the increasing distance to 

the central cell. Each cell in the neighborhood should receive a calibrated weight 

according to its state and the distance to the central cell. Some researchers 

proposed that neighborhood effect of different cells may be considered as an 

approximation of distance decay (Barredo et al., 2003; He et al., 2008). A distance 

decay function is usually introduced in defining neighborhood, so that the effect of a 

neighborhood cell decreases with the increase in distance between both cells.  
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Transition rules 

The definition of the transition rules of a CA model is the most important part to 

achieve realistic simulations of land use and land cover change (Verburg et al., 

2004b). “They represent the logic of the process which is being modeled, and thus 

determine the spatial dynamics which result” (White & Engelen, 2000). The traditional 

transition rules are dependent on the current cell state and its neighborhood effects 

(Jenerette & Wu, 2001; Yüzer, 2004). In the context of urban growth, however, a 

variety of factors have significant impacts on urban growth, such as physical 

suitability for a specific land use, accessibility, socioeconomic factors, urban planning 

factors, and stochastic disturbance related to the complexity of human system. 

Consequently, the CA model cannot generate observed urban pattern by using a 

traditional transition rule without considering various factors. The transition rules 

involving the effects of different factors, allow for more realistic simulation (Arsanjani 

et al., 2013; Han et al., 2009; He et al., 2008). 

Furthermore, traditional CA models employ only one uniform transition rule for 

different periods and sub-regions, while the urban growth process may vary over time 

and space. Therefore, it is necessary to apply different transition rules to the specific 

characteristics of each period and area. Spatial and temporal varying transition rules 

can be obtained by calibration (Geertman et al., 2007; Long et al., 2009). 

2.3.3 Challenges related to CA modeling 

There are several challenges associated with developing a precise CA model to 

understand urban dynamics. In this dissertation, three key challenges need to be 

addressed. The first one is associated with developing appreciate transition rules, the 

second one is related to appropriate method for calibrating and validating the CA 

models with the increasing number of factors. The last one involves the design and 

development of scenarios.  

2.3.3.1 The definition of transition rules 

The definition of the CA rule remains a research issue, despite the emergence of CA 

as an effective analysis tool in urban growth simulation (Batty, 1998). Transition rules 

are usually dependent on the specific applications (Li & Yeh, 2002a). According to 

the methods used in defining the transition rules, Santé et al (2010) classified the 

existing transition rules into five main types: 

1) Strictly orthodox transition rules. For example, Jenerette and Wu (2001) and 
Yüzer (2004) determined the probability of a cell changing as a function of the 
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neighborhood effect and cell state. It cannot involve the other factors that have 
significant impacts on urban growth.  

2) Transition rules based on transition potential. In this type, the key driver of urban 
development is the transition potential, which is calculated as a function of the 
current state of cell, its neighborhood and other factors that influence the urban 
development (Thinh & Vogel, 2005b; Wu, 1998a; Wu & Webster, 1998). Various 
methods have been chosen to calculate the transition potential. Wu & Webster 
(1998) defined development probabilities of cells using Multi-Criteria Evaluation 
(MCE), which incorporates multiple factors as a linear weighted sum. Wu (2002) 
proposed a logistic regression to calculate the transition potential. In addition, 
transition potential is calculated using more complex functions and more factors. 
For example, Li and Yeh (2002b) used PCA to identify the factors used in 
transition rules. He et al. (2008) calculated the transition potential with 
consideration of the spatial interaction of capital and population.  

3) Transition rules based on urban shape and form (Clarke et al., 1997; Jantz et al., 
2010; Yang & Lo, 2003). A typical example of this type of transition rules is found 
in SLEUTH model developed by Clarke et al. (1997). SLEUTH is a pattern based 
model, which simulates urban dynamics through the application of four growth 
types: spontaneous growth, new spreading center growth, edge growth, and 
road-influenced growth. Each growth type is determined by an area wide 
coefficient: diffusion, breed, spread, road growth that reflect the relative 
contribution of a particular growth type to urban dynamics within a study area. 
However, the transition rules of SLEUTH cannot allow for the analysis of the 
causes of the spatial patterns simulated.  

4) Transition rules based on artificial intelligence methods. Although the 
aforementioned models are probably the most frequent, a wide variety of urban 
CA models may be found in the literature based on neural networks (Li & Yeh, 
2002a), kernel-based learning method (Liu et al., 2008) and SVM (Yang et al., 
2008). They have been proved to simplify CA models but generate more 
plausible results. However, using of artificial intelligence methods is not so 
straightforward to achieve a good understanding of the underlying process.  

5) Transition rules based on fuzzy logic. The aforementioned CA models formulated 
their transition rules for urban development based on probability theory. The 
fuzzy logic allows the uncertainty of human behavior to be considered in the 
simulation and the definition of transition rules through natural language (Al-
kheder et al., 2008; Santé et al., 2010). However, fuzzy logic transition rules 
have difficulties in representing very complex relationships. Furthermore, the 
choice of fuzzy functions is subjective and largely affects the results.   

2.3.3.2 Calibration and validation 

Rykiel (1996) defined calibration as “the estimation and adjustment of model 

parameters and constants to improve the agreement between model output and a 

data set”. Calibration is the basis of their successful implementation because it 

provides a tool to ensure that models can conduct accurate and reasonable 

simulation regarding current and future urban growth scenarios (Wu, 2002). The 

need for stronger calibration techniques for CA model is also noted by Torrens and 

O’Sullivan (2001).  
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However, the calibration of CA model is difficult because of the many interacting 

variables involved (Li & Yeh, 2002a; Pan et al., 2010). There are two traditional 

calibration methods for CA simulation. One type is based on trial and error method. It 

does not require strict mathematical methods. It is conducted by running the model 

many times with different combinations of parameter values. Even though the 

method can identify the suitable parameter values, it is very computation-intensive 

especially when many parameters need to be estimated. (Li & Yeh, 2002a; Santé et 

al., 2010).  

Other type is based on statistical techniques. With an increase in the number of 

parameters and better computational resources, automated calibration procedures 

have become feasible. A well-defined mathematical function, or a function with a few 

parameters, can be optimized mathematically. Wu (1998a) proposed a structured 

procedure based on the Analytic Hierarchy Process (AHP) to identify the parameter 

values for MCE in a heuristic way. However, the AHP method is overly subjective 

because of the preferences of decision makers. In addition it cannot identify historical 

urban development process as the weight values keep constant for the whole study 

area and period (Cheng & Masser, 2004). The other most widely used method for 

calibration is logistic regression firstly used by Wu (1998b). An advantage of the 

logistic regression is its ability to estimate the parameter values by developing 

statistical relationships between historical land cover change and variables (Arsanjani 

et al., 2013; Ward et al., 2000). Both of AHP and the logistic regression method are 

inherently linear and consequently unable to deal with complex relationships among 

a large number of spatial variables in urban growth process. 

Openshaw and Openshaw (1997) argued that techniques from the broader field of 

artificial or computational intelligence might be used effectively when there are a 

large number of parameters need to be estimated. Li and Yeh (2002a) proposed 

ANN to calibrate CA models. In their method, the neural network is used to achieve 

the optimal parameter values automatically based on the training data. However, the 

meaning of the parameter values might be difficult to interpret because of the black-

box nature of neural network (Straatman et al., 2004). Consequently it is not ideal to 

reflect the logic of land conversion or spatio-temporal processes (Wu, 2002). More 

recently, a number of authors studied the application of more efficient methods such 

as SVM (Yang et al., 2008) and kernel-based method (Liu et al., 2008) for the 

calibration of CA models. Other automated methods for calibration include the use of 
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a Genetic Algorithm (GA) to calibrate the parameters of the transition rules (Al-

Ahmadi et al., 2009). GA has capabilities in dealing with a lot of complex optimization 

problems because specific programs are not required (Li et al., 2008). However, it is 

not clear how either method provides any additional knowledge about the 

development of the urban system. It is impossible to perform “what-if” experiments on 

the transitions by modifying the parameter values to reflect different urban 

development policy (Straatman et al., 2004). 

Although various methods have been explored for calibration, there is not general 

method to calibrate urban CA models because the objectives and structure of these 

models are different. Wu (2002) argued that the calibration is dependent on the 

objective of the simulation.  

Validation of the CA model is also another challenge to CA applications. Validation is 

conducted by comparing the simulated results with observed maps in order to assess 

the performance of CA models with different combination of parameters. Wu (2002) 

argued that the “measure of model performance itself is a controversial issue”. Many 

applications used a visual comparison as qualitative validation to confirm the 

simulated results (Al-Ahmadi et al., 2009; Li & Yeh, 2004; Yang et al., 2008). 

Mandelbrot (1982) suggested that visual comparison is a very powerful tool for 

complex fractal forms. The advantage is reflected in its capability to easily highlight 

locational differences between the simulated results and observed data.  

Most studies also explored various indicators to measure the degree of coincidence 

between two maps, they can be classified into two types: locational and pattern 

indicators (Jenerette & Wu, 2001). The kappa index is the widely used for measuring 

the locational agreement between two maps based on cell by cell comparison. More 

recently, the indicator of figure of merit proposed by Pontius et al. (2007) received 

more attentions. It allows for assessment of the locational agreement between 

simulated and real maps in a more realistic way than more common indicators as 

Kappa index and overall accuracy which are usually calculated using the entire area 

without excluding the area with fixed land use (Santé et al., 2010). 

For a long time, accurate simulation of land use change in terms of locational 

agreement indicators is considered as a fundamental for CA modeling. For 

investigating urban dynamics, however, it is also crucial for CA models to 

successfully reproduce realistic spatial patterns as well as to predict the locations of 

new developments (Meentemeyer et al., 2013). Furthermore, Jantz and Goetz (2005) 
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argued that the likelihood that a simulation algorithm matches the exact location of 

land use change is very low and not necessary. This requires that the model should 

be validated to identify whether the model can capture the basic features of urban 

land use, for example, the spatial pattern similarity between simulated and observed 

urban land use. Wu (2002) used Moran’s I index to reveal the pattern of clustering of 

the same type of use at adjacent cells. Clarke and Gaydos (1998) adopted four 

indicators (three r-squared fits between the actual and simulated data, modified Lee-

Sallee indicator) related to spatial structure to assess the performance of SLEUTH 

model. As the wide use of spatial metrics, different spatial metrics were adopted to 

objectively characterize the urban patterns in order to make quantitative comparisons 

and to determine whether simulated patterns are more complex or compact than the 

actual ones (Chen et al., 2013; García et al., 2012; Li et al., 2008).  

2.3.3.3 Design and development of scenario 

Scenarios are one “instrument for strategic thinking and option search” (Xiang & 

Clarke, 2003). Urban development scenario as a means of optimizing and predicting 

possible future alternative has been used by planner for several decades (Aguilera et 

al., 2011; Fuglsang et al., 2013; Song et al., 2006). “At root, land-development 

scenarios are composed images of an area’s land-use patterns that would result from 

particular land-use plans, policies, and regulations if they were actually adopted and 

implemented at a certain point of time” (Xiang & Clarke, 2003). Xiang & Clarke 

(2003) explored five components in land development scenarios: (1) alternatives, 

which represent the range of potential choices of land-use plans, policies, and 

regulations. (2) consequences, which represent the impact that each alternative 

would have on an area’s land-development futures; (3) causations, which represent 

the causal linkage between alternatives and consequences; (4) time frames, which 

represent the periods between implementation of the alternatives and the 

consequences; and (5) geographical footprints, which mean “the place-oriented 

blueprints of alternatives, and the anticipated marks of their ramifications on the 

geography of an area”. 

The integration of CA model and GIS has a potential to explore different urban 

development scenarios under various policies. The simulation serves as not only a 

matter of visualization but also a bridge between urban growth patterns and decision 

making (Wu, 1998a). It is not likely that the scenarios will be able to predict the most 

likely prospect of the future; they will more likely present a range of possible future 
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alternatives which help manage decisions based on the interpretation of scenarios. 

The design of scenarios is strongly linked to the current existing concerns of the 

decision makers of the region addressing the key question. The development of 

various scenarios becomes increasingly important in urban and regional planning, 

which can be attributed to: 

1) Planners can test a set of hypothetical development strategies, matching with a 
specific goal; 

2) Planners can consider explicit assumptions to simulate different alternatives; 

3) Planners can search for ways to achieve specific goals and to inform the 
decision makers (Song et al., 2006). 

Many studies have investigated different aspects of scenarios which are designed 

under the consideration of different urban development policies in specific areas. For 

example, Shen et al. (2009) tested two different scenarios of population densities 

(high and low) to simulate future land use system in Hong Kong. Zhang et al. (2011) 

investigated three different scenarios (baseline, service oriented center, and 

manufacturing dominant center) using Markov chain analysis and CA to understand 

the spatial-temporal dynamics of Shanghai, China. He et al. (2006) simulated the 

growth of Beijing using different urban land protection policies under the restrictions 

of water shortage. Long et al. (2012) generated two urban expansion scenarios 

(baseline and planning-strengthened) using logistic regression based CA model to 

evaluate the effect of planning on urban development in Beijing, China. Thapa and 

Murayama (2012) defined three scenarios (spontaneous, environment-protecting, 

and resources-saving) to optimize spatial patterns of future urban growth in 

Kathmandu, Nepal. Fuglsang et al. (2013) modeled the growth of Copenhagen 

metropolitan area under three scenarios (business as usual, growth within limits, new 

welfare).   

Xiang and Clarke (2003) proposed three criterions of good scenarios. First, a good 

scenario creates surprising and plausible future development. Second, good scenario 

makes good use of vivid information. Finally, the design of scenarios should be 

carefully chosen so that the scenarios can interact with the decision makers 

effectively. 

Furthermore, it is important to evaluate the scenarios to investigate the 

consequences of different scenarios and to inform the planners about the 

performance of each scenario in achieving different objectives. The scenario 

evaluation is a process of analyzing possible future events by considering alternative 
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possible outcomes, which can be challenging and time consuming (Song et al., 2006; 

Wen et al., 2005). Many researchers argued that scenario evaluation should be a key 

aspect of land use modeling in order to test and compare different land-use planning 

policies (Thapa & Murayama, 2012; Zhang et al., 2011). There has been an 

increasing interest for evaluating urban development scenarios. For example, various 

spatial metrics have been widely used to evaluate and compare the scenarios, such 

as edge density, number of patches, area weighted mean shape index, etc (Aguilera 

et al., 2011; Mitsova et al., 2011; Petrov et al., 2009; Zhang et al., 2011). This can be 

attributed to their usefulness for quantification and interpretation of land use patterns. 

They make the processes and patterns of urban development more prominent. 

Besides this general analysis, only a few researches have been done on the 

evaluation of scenarios by other more detailed analysis, such as those that use 

spatial metrics at local scales to better localize changes in land occupation patterns 

(Aguilera et al., 2011; Thapa & Murayama, 2012).  
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3. Introduction of the study area  

This chapter firstly mainly introduces the study area of Xuzhou city in China. Based 

on the objective of the study, a spatial database is further described, which includes 

the RS images and other spatial variables. In order to compare with Xuzhou city and 

to highlight the importance of the study in Xuzhou city, Dortmund city region is also 

introduced. 

3.1 Urbanization process in China 

China, as the largest developing country in the world, has been experiencing 

unprecedented economic growth since the implementation of “Reform and Open 

Policy” in 1978. Rapid rates of urbanization occurred as a result of its fast growing 

economic development. Figure 3-1 shows that the urban population rapidly increased 

from 172.45 million in 1978 to 669.78 million in 2010 with the annual rate of 4.3 %. In 

2010, the proportion of urban population in China reached about 50 %. With China’s 

continuous rapid economic development and government’s promotion of 

urbanization, it is estimated that about 331.83 million people will be added to China’s 

urban population by 2050, the proportion will reach 77.3 % (United Nations, 2012). 

Intensification of economic functions and population growth in urban areas has 

increased demand for urban developments such as factories and residences. 

Figure 3-1: Population dynamics in China from 1978 to 2010 

 

Source：Own illustration; based on United Nations, 2012 
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Consequently, along with fast economic development and rapid urbanization 

process, new cities are sprouting up and the existing ones are being restructured and 

expanded throughout China. The total number of cities increased from 193 in 1978 to 

660 in 2008 (National Bureau of Statistics of China, 2009). From 1985 to 2010, built-

up areas increased 2.4 fold in China. Meanwhile, a series of development strategies, 

including “Western Development”, “Revitalization of Northeast”, “Rising of Central 

China” and so on have been implemented across the country. The land cover 

patterns of urban areas have undergone a dramatic change.  

3.2 Study area 

Xuzhou city (between latitudes 33°43  ́N and 34°58  ́N, longitudes 116°22  ́E and 

118°40  ́E) is situated in the plains of the Yellow River and the Huaihe River. This 

area has a monsoon-influenced humid subtropical climate, with an average annual 

temperature of 14.5 ℃ and annual precipitation within this area varies widely from 

800 to 900 mm, all of which are beneficial for agricultural production. 

Topographically, the Beijing-Hangzhou Grand Canal and old Yellow River are the 

major rivers in this area. Most of area is flat with a surface elevation ranging from 30 

to 40 m.  

It has a total administrative area of approximately 11,258 km2, with 1,160 km2 as the 

city proper area. It is regarded as a medium-sized metropolitan area in comparison to 

other cities in China. Xuzhou city is composed of ten county-level divisions, five 

counties (Peixian, Fengxian, Suining, Pizhou, and Xinyi), and five municipal districts 

(Quanshan, Gulou, Yunlong, Jiawang, and Tongshan). As shown in Figure 3-2, the 

five municipal districts are identified as the study area. Traditionally, they are viewed 

as the central city, in which Quanshan, Gulou and Yunlong are composed of city 

proper area. Jiawang and Tongshan are composed of fringe and rural areas. Mining 

and industrial manufacturing have been the source of the strong economic activity of 

the region. Xuzhou city is well known as one of the most important transportation 

hubs in China. Jinghu Railway (Beijing to Shanghai), Longhai Railway (Lianyungang 

to Lanzhou), and some other national main roads provide a good opportunity for 

development. Benefiting from its industrialization, dramatic changes in local economy 

have taken place in recent decades. Figure 3-3 shows that the Gross Domestic 

Product (GDP) of Xuzhou city increased from 2.1 billion RMB in 1979 to 294.2 billion 

RMB in 2010. Its GDP ranked 37th compared to other cities in China. Furthermore the 

GDP of central city amounted to more than half of the total GDP of Xuzhou city, while 
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its population is about 30 % of the total population. Along with this dramatic economic 

growth, the total population increased by 50.7 % from 6.45 million in 1978 to 9.72 

million in 2010, and the proportion of urban population increased from 10.4 % to 

53.2 % (Bureau of Statistics of Xuzhou, 2011). As shown in Figure 3-4, the industry 

structure has been adjusted significantly. The primary industry provides 9.6 % of the 

total GDP; 50.7 % and 39.7 % are provided by the secondary industry and tertiary 

industry, respectively. However, the contribution of these to GDP is 44 %, 41.8 % 

and 14.2 % respectively in 1978 (Bureau of Statistics of Xuzhou, 2011).  

Figure 3-2: Location of study area (Xuzhou) and its topography 
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Figure 3-3: GDP and population of Xuzhou city and its central city 

 

Source: Own illustration; based on Bureau of Statistics of Xuzhou, 2011 

 

Figure 3-4: Change in shares of industries in total GDP from 1978 to 2010 

 

Source: Own illustration; based on Bureau of Statistics of Xuzhou, 2011 
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The major land cover types in Xuzhou city are built-up land, farmland, vegetation, 

and water body. The farmland is mainly located in the periphery of the city on the 

plains areas, which accounts for 70.5 % of the total area. The study area covers the 

five districts, with the area of around 2,897 km2 and the population of over 3 million 

inhabitants in 2010. 

In recent decades, studies of urban growth in China have concentrated on a few 

mega cities, such as Beijing, Shanghai, and Guangzhou, or some economic zones, 

for example, Pearl River Delta, Yangtze River Delta. Despite their extremely high 

growth rates and significant importance in China, the study of urban growth in 

medium sized cities is still necessary due to its larger proportion in the total number 

of Chinese cities compared with other size cities. Xuzhou is a typical city in China. Its 

development characteristics and land cover change provide good representatives of 

the medium sized Chinese cities, because most of them have experienced the same 

political and socioeconomic development. 

Xuzhou is a typical resource-based city whose development mainly depends on the 

exploitation of coal. The development of resource-based cities has a negative impact 

on the ecology and environment. The coal output is from underground mining in 

Xuzhou, which leads to the serious land subsidence disasters. They result in the 

significant loss of land resources. Since the exploitation of coal began in 1880, the 

lands used for coal exploitation and related industries have expanded at 

unprecedented rates. Based on the authoritative definition offered by the Academy of 

Macroeconomic Research (AMR) of the Chinese National Development and Reform 

Commission (NDRC), there are totally 118 resource-based cities in China. In China, 

a recession in resource-based city occurred in the 1980s and became serious in the 

early 2000s (Li et al., 2013b). In recent years, with the depletion of coal deposit, the 

government of Xuzhou began to conduct mining closure program. The era of post-

mining will begin, in which the sustainable development is challenging and transition 

is important. Many different policies are focus on the transition of resource-based 

cities to achieve sustainable development. From this point of view, Xuzhou is also a 

representative city for resource-based cities in China. 

The accurate analysis of urban growth has become increasingly important not only to 

better understand the environmental impacts but also for to support the sustainable 

urban development strategy. Few attentions, however, have been given to the 
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comparison between land cover change patterns in developing and developed 

countries. Hence, there is a need to compare and analyze the differences of spatio-

temporal urban patterns between developing and developed countries in order to 

provide valuable information for understanding urbanization process, as well as for 

supporting sustainable development planning in developing countries.  

Therefore, Dortmund region in Germany is selected for the comparison of spatio-

temporal pattern with Xuzhou city. It is located in “Ruhr” region. With a population of 

some five million, Ruhr area is the largest urban agglomeration in Germany, which 

has a long history of industrial and urban development. During the industrial 

revolution in Germany since about 1850, the Ruhr became the industrial center of 

Germany, because of large hard coal deposits and steel production industry 

(Kretschmann, 2013). The industry had a significant impact on the spatial pattern and 

the environment of the cities in the Ruhr area. In recent decades, it has undergone 

serious economic and structural transitions. The decreasing mining activity and 

shrinking heavy industries have led to considerable transformation processes 

(Goetzke et al., 2006). Compared to other regions with a similar past, the Ruhr area 

is a role model when it achieves sustainable development (Kretschmann, 2013).  

The study area is defined as a circular area with the center in the city center of 

Dortmund and a radius of 30 km (Figure 3-5). It covers the whole cities of Dortmund, 

Bochum, Hagen, and Herne; and a part of cities including Essen, Wuppertal, 

Gelsenkirchen, and Hamm. It also covers some whole or a part of districts including 

Unna, Coesfeld, Soest, Maekischer Kreis, Ennepe-Ruhr-Kreis, Mettmann, 

Hochsauerlandkreis and Recklinghausen. The total area of the study area is 

2,830 km2. The comparison between Xuzhou city and Dortmund city region provides 

a support for sustainable land management and urban planning for Xuzhou city in 

past mining period. 
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Figure 3-5: Location of Dortmund city region and its topography 

 

3.3 Data 

3.3.1 Satellite imagery 

Although most developed countries have comprehensive land cover information, the 

relative lack of geospatial data is a serious situation in developing countries, 

particularly in China. In addition to the common advantages of remote sensing 

images, Landsat images with medium spatial resolution and multiple spectral provide 

an appropriate data source for land cover study because they are free of charge and 

maximize the possible temporal monitoring period (Patino & Duque, 2013). Table 3-1 

lists the acquisition dates and sensors for the satellite images selected. The cloud 

free remote sensing images as the primary data source for mapping land cover in the 

study areas were obtained from the U.S. Geological Survey (USGS). 

Numerous studies in satellite image based land cover mapping have demonstrated 

that improved accuracy of the results can be obtained by using more than one date 

of imagery rather than using single temporal imagery as a basis for classification, 

because it can increase the potential for spectral differentiation among land cover 

types (Lillesand, 1994; Lunetta et al., 2006; Oetter et al., 2001). For example, the 

farmland could represent like the bare soil in some seasons, while in growing 

seasons, the farmland are spectrally similar to green vegetation  because of the crop 

calendars and phenology. Therefore, besides the images acquired for the study time 

points, some other images for different seasons were also required to separate 

farmland from bare soil or vegetation. In order to assess the accuracy of 
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classification results, a set of reference data were necessary, which included 

topographic maps, high-resolution aerial photography, and field survey data.  

Before being classified, the calculation of reflectance values, atmospheric 

normalization and geometric correction had to be performed to make the images 

more interpretable. An improved atmospheric correction technique called COST was 

used to account for atmospheric transmittance along the path from the sun to the 

ground surface, which can generate more accurate results compared to Dark Object 

Subtraction (DOS) model (Chavez, 1988). After atmospheric correction, all remote 

sensing images need to be geometrically corrected in order to enable correct area 

measurements, precise location and multi-source integration. All images were 

georeferenced using well distributed ground control points (GCPs) and topographic 

maps. A second order polynomial was then used, resulting in the root mean square 

errors (RMSE) less than 0.75 pixels. The images were resampled to a pixel size of 

30 m × 30 m using the nearest neighbor algorithm to maintain the radiometric 

properties of the original data (Mundia & Aniya, 2005). Image processing was 

performed using ERDAS IMAGINE 2011 software. 

Table 3-1: List of remote sensing images for two study areas 

Xuzhou city Dortmund city region 

Data Date Data Date 

Landsat TM (30m) 20.09.1990 Landsat TM (30m) 25.05.1989 

Landsat ETM+ (15m) 03.04.2001 Landsat ETM+ (15m) 15.05.2000 

Landsat TM (30m) 12.08.2005 Landsat TM (30m) 18.07.2006 

Landsat TM (30m) 18.09.2010 Landsat TM (30m) 04.06.2010 

3.3.2 GIS data 

The urban growth is a complex process which involves the interaction influence of 

various factors. According to the literature review in chapter 2.2.3 and data 

availability, the possible variables representing natural, socioeconomic, spatial 

policies and neighborhood factors were selected in this study, which are listed in 

Table 3-2. 

A DEM at a spatial resolution of 30 m of the study areas was used to represent 

topography. Slope gradient was derived from the elevation surface. 

The influence of the socioeconomic conditions in the region can be best 

characterized by the access that a location has to socioeconomic center, which has a 

significant effect on urban growth pattern (He et al., 2006; Li et al., 2013a; Verburg et 

al., 2004b). In this study, socioeconomic center can be represented by Central 
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Business District (CBD), district centers, and town centers. These centers can reflect 

the accessibility effect on land use development at different levels.  

Transportation plays an indispensable part in urban growth because a good 

transportation increases the accessibility of land and decreases the cost of 

construction (Reilly et al., 2009). Different types of roads have varied strengths of 

impact or potential to attract new development. In this study, major roads (national, 

province level roads and city arterial road) and minor roads (the remaining roads) 

were considered. Because of the infrastructure construction, the traffic system 

changes all the time. It is difficult to simulate the dynamic process effectively for a 

long period (1990-2010) in this study. We assumed that the roads dataset remained 

unchanged during one period, and different datasets were used for different periods 

in order to take into account the temporal dynamics of roads. For example, the roads 

network in 2010 was adopted to analyze the effect of roads on urban growth in the 

period 2005-2010. In this study the accessibilities were calculated as the Euclidean 

distance using Spatial Analyst in ArcGIS 10.  

GDP and population are the main drivers of urban growth. The growth of urban 

population and economy create urban land demand. More urban land will be required 

to satisfy further growth of urban population and economy in the future. The 

population variable was represented by the population density of district-town 

administrative units because the overall population for the whole study area is more 

related to the demand of urban land, and has less effect on urban growth allocation. 

The district units are located in city proper area, which towns are located in the fringe 

and rural areas. The district-town unit is the smallest geographic unit at which 

statistical data are available for the public. However, the overall GDP is not 

considered because its spatial resolution is much coarse than that of the other 

variables used in this study. 

Policy variables affect the urban growth because they serve as constraints or 

incentives to development. From a practical point of view, the policy variables are 

expressed by spatially explicit layer designating the specified areas. Owing to the 

non-availability of master plan for the period of 1990 to 2010, the effects of policy 

were considered only in terms of natural variables for development. The 

environmental protection and subsidence areas were defined as the constraints, in 

where the development should be limited. Furthermore, the master plan for Xuzhou 

city during period of 2010-2020 was used as a guideline for future development 
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scenario. A planned land use map was provided in master plan. Each parcel was 

assigned with a specific land use type: urban and non-urban. Furthermore, the 

planning regulations related to urban development were obtained from the land use 

planning guidelines of Xuzhou city. 

All the spatial data were registered to the same Universal Transverse Mercator 

(UTM) coordinate system and sampled to the same cell size of 100 m*100 m, which 

was sufficient to capture the detailed information about urban dynamics while 

keeping the volume of computation manageable.  

Table 3-2: List of ancillary data 
Variable Year Description Sources 

Physical factor 

Slope  
It is derived from DEM 

data with spatial 
resolution of 30 m 

Global Land 
Cover Facility 

(GLCF) 

Socioeconomic factor 

Dis2MajR 
2001, 2005, 

2010 
Distance to major roads 

Bureau of Urban 
Planning of 

Xuzhou 

Dis2MinR 
2001, 2005, 

2010 
Distance to minor roads 

Bureau of Urban 
Planning of 

Xuzhou 

Dis2CBD  
Distance to central  

business district (CBD) 
 

Dis2Cens  
Distance to district  

centers 
 

Dis2Town  Distance to town centers  

PopDen 
1990, 2001, 
2005, 2010 

Population density 
collected at street town 

level 

Bureau of 
Statistics of 

Xuzhou 

Spatial policy factor 

Subsidence 2000 
Layout of potential 
subsidence areas 

Bureau of Land 
and Resources of 

Xuzhou 

Environment  2000 
Layout of environmental 

protection areas 

Bureau of Land 
and Resources of 

Xuzhou 

Master plan  
2010-2020 

  
Bureau of Urban 

Planning of 
Xuzhou 

Neighborhood factor 

Dis2Urban 
1990, 2001, 

2005 
Distance to existing 

urban areas 
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4. Methodology 

The methods presented in this chapter can be categorized into three parts. Chapter 

4.1 gives a general land cover classification and change detection procedure which 

integrates RS and GIS. In addition, buffer analysis and jaggedness degree are 

introduced for comparing Xuzhou city and Dortmund city region. Focusing on Xuzhou 

city, Chapter 4.2 presents several spatial metrics that can be used for spatial pattern 

analysis. Regarding the spatio-temporal dynamics of spatial patterns, GWR is used 

to investigate the effects of urbanization on urban growth patterns. Logistic 

regression is further applied to explore the relationship between the urban growth 

and driving factors. Furthermore, the methods associated with the simulation of 

urban growth are illustrated, which includes development of CA models, the 

calibration and validation, and the simulation of future scenarios. 

4.1 Mapping and monitoring of land cover change 

Continual, historical, and precise information about the land cover change is crucial 

for urban growth analysis, in which land cover information serves as one of the major 

input criteria. The land cover change information can be gained from RS data by 

applying a variety of techniques such as visual interpretation, land cover 

classification, and change detection. Furthermore, spatio-temporal characteristics 

can be detected and quantified by the GIS based analysis. In the following sections, 

firstly the improved RS image classification method is proposed based on the 

literature review in chapter 2.2.1; then, the land cover change detection is conducted; 

lastly, the GIS based analysis is presented in order to reveal the spatio-temporal 

characteristics of Xuzhou city and Dortmund city region.  

4.1.1 Remote sensing image classification 

Prior to land cover classification, a modified version of the Anderson classification 

system level I (Anderson et al., 1976) with four land cover categories (built-up land, 

farmland, vegetation, and water body) was adopted in this study. Though the system 

was originally developed for the USA, it is the most commonly used land cover 

system across the world (Dewan & Yamaguchi, 2009b; Yuan et al., 2005). The level I 

classes proposed by this system can be obtained from Landsat data or high-altitude 

airphoto, while the other levels (levels II, III and IV) require the use of high, medium 

or low-altitude photographs. Four separable land cover classes were identified by 

taking into consideration the spectral characteristics of Landsat images, existing 
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knowledge of land cover categories within the study areas and the objectives of the 

study (Table 4-1). 

Table 4-1: Land cover classification scheme 
Land cover  

classes 
Description 

Built-up land 
Residential, commercial services, industrial, transportation, 
communications, mixed urban or build-up land, other urban or 
built-up land 

Farmland Crop fields, pasture and bare fields 

Vegetation 
Deciduous forest land, evergreen forest land, mixed forest 
land, orchards, groves, vineyards, nurseries, ornamental 
horticultural area 

Water body Permanent open water, lakes, reservoirs, streams 

Source: Own illustration; based on Anderson et al., 1976 

MLC was selected to extract land cover information from Landsat data as well as to 

produce a distance image. In order to consider the influence of seasonal change of 

farmland, the classified image produced by MLC consisted of five classes: built-up 

land, farmland, bare soil, vegetation and water body. The distance image represents 

the Mahalanobis distance between the corresponding pixel in the input continuous 

raster layer file and signature to which it was classified. In the distance image file, 

pixels that are most likely to be misclassified have the higher value (Lu & Weng, 

2004). 

Due to the relatively coarse spatial resolution and spectral similarities of the Landsat 

images, some pixels were misclassified in the initial classification results after MLC 

supervised classification. V-I-S model proposed by Ridd (1995) assumes that land 

cover in urban environments is a linear combination of three components: vegetation, 

impervious surface, and soil. It provides a suitable way for decomposing urban 

landscapes and a link for these components to remote sensing spectral 

characteristics (Lu et al., 2011). Hierarchical classifications are commonly applied in 

remote sensing image processing. The performance of this method is dependent on 

the design of the “decision tree”, including the tree structure (number of hierarchy 

levels and nodes), the choice of the features at each node (spectral or non-spectral) 

and the decision rules (Setiawan et al., 2006). In this study, a hierarchical 

classification approach was developed based on the V-I-S model. The hierarchy 

classification scheme is illustrated in Figure 4-1.  
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Figure 4-1: Hierarchy classification scheme for land cover mapping based on V-I-S 
model 

 

As the first step in classification process, distance image was employed to identify 

the pixels that were the most likely to be misclassified by defining a specific 

threshold. Expert Classifier was used to correct misclassified land use categories by 

defining refinement rules and assigning specific thresholds for different classes.  

Urban landscape is a complex combination of different land covers, such as 

farmland, impervious surface, vegetation, and water (Ridd, 1995). Some different 

land cover classes may be contained in one pixel of satellite image because of the 

medium spatial resolution of Landsat image; it can cause the difficulty for separating 

one specific land cover class from other classes using spectral characteristics (Ji & 

Jensen, 1999). Mixed pixel problem has been regarded as the main reason for low 

accuracy of classification. In this study, mixed pixel problem was found between non-

vegetation (built-up and bare soil) and vegetation categories. Therefore, the 

hierarchical classification level 1 involved the solution to deal with the mixed pixel 

problems. 

The IMAGINE Subpixel Classifier in Erdas Imagine software provides an efficient 

way to identify the specific material in each pixel (Civco et al., 2002). It can be 
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successfully used to identify a specific material when multiple materials are mixed in 

one pixel. Endmembers of vegetation were firstly selected on the Landsat image 

through visual interpretation. With the aid of Subpixel classifier, fraction image of 

vegetation for Landsat image based on selected endmembers was produced, in 

which the value of each pixel was expressed by the proportion of vegetation in each 

pixel. A threshold for extracting vegetation pixels was identified from fraction image 

by visual interpretation. All misclassified pixels caused by mixed pixel problem were 

reclassified into correct categories by thresholding. At this level, the generated 

vegetation category was used in the final classification result.  

By using sub-pixel classifier, the initially misclassified vegetation pixels were 

separated from non-vegetation class, but some bare soil pixels were misclassified as 

built-up due to close spectral similarities between these two types in one temporal 

image. In these two study areas, the farmland land represents like bare soil because 

of the crop calendars and phenology. The second hierarchy level involved the 

separation of built-up class from bare soil class. The season behavior of crop is a 

fundamental component of successful image interpretation. NDVI values (Eq. 1) 

derived from multi-temporal images, were used to aid in separation of bare soil and 

built-up type based on their phenological characteristics. The misclassified built-up 

samples have high NDVI values during the growing season and low NDVI values 

during harvest season. There is a significant difference on NDVI between bare soil 

and built-up land. The refinement rule and threshold within framework of Expert 

Classifier were defined to reduce the classification errors according to the difference 

of NDVI values between growing season and ungrowing season.   

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                                                                          (1) 

where 𝑁𝐼𝑅 corresponds to Landsat band 4, 𝑅𝐸𝐷 corresponds to band 3. The index is 

developed based on the characteristics of green vegetation to significantly absorb 

wavelengths in the 𝑅𝐸𝐷  and significantly reflect in the 𝑁𝐼𝑅  of electromagnetic 

spectrum (Tucker, 1979).  

At the next level, the bare soil class was merged with the initial farmland generated 

by MLC approach to form a farmland class. Finally, the four land cover categories 

were generated: built-up, farmland, vegetation, water body.  

Although application of sub-pixel classifier and multi-temporal images analysis 

greatly improved the accuracy of MLC classification, some misclassification pixels 
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were still found in the classified images due to the spectral confusion. The post 

classification refinement is an effective method to greatly improve the accuracy of 

results (Dewan & Yamaguchi, 2009a; Harris & Ventura, 1995). Some further data, 

such as DEM as well as brightness, greenness and wetness components from TCT 

were incorporated to refine classified results. From the DEM data, the slope value in 

degree was extracted. In this study, farmland was not expected to be found in the 

areas with slope higher than 10 degree. Therefore, the farmland pixels with slope 

higher than 10 degree should be reclassified as vegetation.  

Three new bands can be generated by TCT. Brightness shows higher values for 

surfaces with little or no vegetation; greenness is associated with green vegetation; 

while wetness is associated with soil moisture, water, and other moist features. We 

can refine the classification results through defining specific rules in Knowledge 

Engineer. Figure 4-2 shows TCT results of Landsat TM image of Xuzhou city in 2005. 

The built-up and bare soil areas have higher values compared to other land cover 

types in brightness band. In greenness band, the built-up and bore soil land have 

lower values, while the areas covered by green vegetation have higher values. In 

wetness band, the water bodies have higher values. Therefore, we can define the 

specific thresholds to distinguish different land cover classes in each band generated 

by TCT. In addition, a 3*3 majority filter was applied to remove the salt and pepper 

appearance in the images. Finally, accurate classified images with four land use 

categories were generated. 

In order to evaluate the performance of the V-I-S based hierarchical classification 

approach, the classification without this approach was conducted. After the MLC 

classification, the same post classification refinement method was also used to 

improve the results.  

Figure 4-2: Tasseled cap transformation results of Xuzhou city in 2005 
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In order to check whether the results are correct for change detection, quantitative 

accuracy assessment was performed to assess the accuracy for classification 

results. The most widely used technique to assess the accuracy of land cover maps 

derived from remote sensing images is the error matrix (Foody, 2002). The error 

matrix compares classified image with a reference image on class by class basis. 

Following the recommended minimum sample size of 50 random points for each land 

cover class by Congalton and Green (1999), a total of 300 random points were 

generated by using stratified random sampling. Finally, the classified data derived 

from two methods and reference data were compared and statistically represented in 

the form of error matrices. 

4.1.2 Land cover change detection 

Following the land cover classification, change detection analysis was used to 

analyze patterns of land cover change during the study period. Change detection is 

the process of identifying differences in the states of an object by observing it at 

different times (Singh, 1989). Image differencing, principal component analysis and 

post classification detection are the most widely used methods for change detection 

(Lu et al., 2004). 

Post classification was selected as a change detection method to identify the 

changes in land covers in different intervals for Xuzhou city and Dortmund city 

region. It involves independent classification results for each end of the time interval 

of interest, followed by a segment by segment or pixel by pixel comparison to detect 

land cover changes (Coppin et al., 2004). The post classification method generated a 

two way cross matrix, providing “from-to” land cover conversion information. A new 

thematic map containing different combination of “from-to” change information was 

also produced for each period. The main advantage of this method lies in the fact 

that each image is separately classified. This thereby minimizes the differences of 

sensor characteristics, atmospheric effects, solar illumination angle sensor view 

angle and vegetation phenology between the dates (Lu et al., 2004). 

4.1.3 The analysis of spatio-temporal characteristics of urban growth 

Although the land cover change trend of the study areas have been quantitatively 

characterized by using statistic data of land cover change, it cannot capture the 

spatio-temporal characteristics of urban growth. In order to address the question of 

where the urban growth is occurring, GIS based buffer analysis was applied. The 
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buffer zone areas were established around the existing built-up area by radius of 

250 m, 500 m, 1250 m, and 1500 m, respectively.  

To quantify the magnitude and pace of urban growth, frequency ratio method was 

implemented using GIS techniques (Lee & Talib, 2005; Park et al., 2011), which can 

be computed as the following: 

𝐹𝑅 =
𝑅𝑎

𝑅𝑏
                (2) 

𝑅𝑎 =
𝐿𝐶𝑠

𝐿𝐶𝑤
                 (3) 

𝑅𝑏 =
𝐴𝑠

𝐴𝑤
               (4) 

where 𝐿𝐶𝑠 is the new developed area in the single buffer zone, and 𝐿𝐶𝑤 is the new 

developed area in the whole buffer zones. 𝐴𝑠 is the area of the single buffer zone, 𝐴𝑤 

is the area of the whole buffer zones. 𝐹𝑅 is defined as the ratio of percentage of new 

developed area in single buffer zone 𝑅𝑎 to the percentage of the each buffer zone in 

the whole buffer zones 𝑅𝑏. 

In the case of relationship between new developed built-up area and the buffer zone 

of 0-250 m around existing built-up area, if the value is larger than 1, it means that 

the percentage of new developed built-up area in the buffer zone is higher than that 

of the whole buffer zones, and higher change intensity occurred in this zone, 

whereas if the value is lower than 1, indicating lower change intensity. A value of 1 is 

an average value for the whole buffer zones. Therefore it can be used to compare 

the intensity of built-up change in each buffer zone over various periods. 

Besides detecting the land cover change, it is important to measure and analyze 

temporal change on geometric forms as a basis for understanding spatial patterns 

and processes. Compactness is an important concept and index which reflects the 

regional and urban form. To measure and monitor urban compactness we need 

indicators for capturing the characteristics of land use development. In this study, the 

jaggedness degree defined by Thinh (2002a), was employed as the measurement of 

the compactness of study areas.  

For any circle, we have the following relationship: 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑆𝑄𝑅𝑇(𝐴𝑟𝑒𝑎)⁄ = 2 ×

𝑆𝑄𝑅𝑇(𝜋). This relationship inspires to use a ratio of the total edge length to the 

square root of the total area of all individual settlement areas as a measure of the 

compactness of urban patterns. Let be 𝑎𝑖 the area and 𝑝𝑖 the circumference of the 
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polygons of a settlement pattern (𝑖=1(1)n). The jaggedness degree was defined as 

follows (Thinh 2002a, 2003): 

𝐽𝑎𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 𝐷𝑒𝑔𝑟𝑒𝑒 =
∑ 𝑝𝑖

𝑛
𝑖=1

2√𝜋 ∑ 𝑎𝑖
𝑛
𝑖=1

             (5) 

4.2 Analysis of urban growth  

In this study, the comparison between Xuzhou city and Dortmund city region in both 

the amount of land cover change and spatio-temporal characteristics of urban growth 

provides valuable information for understanding the different underlying processes in 

two study areas. Based on the comparison, the problems threatening the sustainable 

development in Xuzhou can be identified. Hence, there are wide interests and needs 

to conduct a comprehensive examination of spatio-temporal change on composition 

and spatial configuration of urban land cover based on the results generated in the 

chapter 4.1. Moreover, the underlying cause-effect relationships in urban growth 

process need to be explored and analyzed. It can provide a better understanding of 

urban growth process and their impacts on environment in Xuzhou city.  

4.2.1 Spatial metrics for quantifying urban spatial pattern 

In order to describe and analyze the urban spatial pattern, several landscape metrics 

were calculated using Fragstats 4 (McGarigal et al., 2012). However, it is difficult to 

find a one-to-one connection between metric values and pattern. Indeed, most of the 

metrics describe similar aspect of spatial patterns and they are correlated among 

themselves (McGarigal et al., 2012). Not all the landscape metrics were required to 

capture the spatial patterns. Furthermore, the existing studies suggest that 

agreement does not exist on the selection of the metrics. It seems impossible that a 

single metric can fully describe a spatial pattern. Thus, the choice of metrics 

ultimately depends on the purpose of the study and the nature of spatial pattern 

under investigation. Since the objective was to quantify the spatial characteristics of 

the urban land, the landscape heterogeneity is represented in two classes: urban and 

nonurban. Built-up was defined as urban land, while farmland, vegetation and water 

body were reclassified into non-urban land. According to the objectives of this study, 

we chose five class-level metrics which are sensitive to the changes in composition, 

as well as spatial configuration. Table 4-2 provides a description of the spatial 

metrics used in the study. Different spatial metrics provide different information on 

the urban growth process. 
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Class Area describes the total urban areas. NP is a simple quantification of the 

amount of individual urban patches. It provides information on the amount of new 

developed patches during certain period. LPI reflects the percentage of the area of 

the largest urban patch. The LPI value of 100 is obtained when entire urban class 

consists of a single urban patch. The increase in LPI indicates urban areas become 

more aggregated and integrated with the urban cores (Pham, 2011). SHAPE 

measures complexity of urban patches by a perimeter-area proportion (Eq. 6). 

SHAPE=1, when a corresponding patch has a compact square form with a relatively 

small perimeter relative to the area. If the patches are more complex and 

fragmented, the perimeter increases and generates a higher fractal dimension 

(Herold et al., 2005). SHAPE_AM averages the shape index of the patches by 

weighting patch area so that larger patches weigh more than smaller patches (Eq. 7). 

This improves the measure of class patch fragmentation at the global level because 

the structure of smaller patches is often determined more by image pixel size than by 

characteristics of natural or manmade features found in the landscape (Herold et al., 

2003; Milne, 1991).  

𝑆𝐻𝐴𝑃𝐸 =
0.25∗𝑝𝑖𝑗

√𝑎𝑖𝑗
                                                        (6) 

where 𝑝𝑖𝑗 represents the perimeter (m) of patch 𝑖𝑗. 𝑎𝑖𝑗  represents the area (m2) of 

patch 𝑖𝑗. 𝑛 corresponds the number of patches of class 𝑖. 

𝑆𝐻𝐴𝑃𝐸_𝐴𝑀 = ∑ [
0.25∗𝑝𝑖𝑗

√𝑎𝑖𝑗
(

𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

)]𝑛
𝑗=1                                                                           (7) 

ENN is an index to represent average minimum distance between two urban 

patches. Hence, it can be used to quantify patch isolation, as well as to measure the 

open space between urban areas. The higher the value of the ENN, the greater 

isolation the patches are. In order to consider the different influence of patches 

according to the areas, ENN_AM is calculated by incorporating weighting. 

One of the most important issues in spatial metrics is defining the spatial domain of 

the study as it directly influences the spatial metrics. Spatial domain refers to the 

geographic extent under analysis. This study adopted the geographic extent of the 

entire study area and block based sub-divisions for metrics calculation to discover 

the urban growth pattern at different levels. Firstly the spatial metrics were calculated 

for the entire study areas in order to provide a general representation of urban spatial 

patterns. Furthermore, they were further used for each sub-division to better localize 
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the dynamics of urban spatial patterns. The study area was divided into several sub-

regions. The square block, the most commonly used shape for spatial pattern 

analysis (Luck & Wu, 2002; Weng, 2007), was applied in this study. A preliminary 

test of the effects of block size on spatial pattern analysis was carried out with the 

size of 1 km, 2 km, 3 km and 5 km. The block of 2 km was chosen because it retains 

more details of the spatial pattern than the larger block size does. Furthermore, the 

block size of 1 km could lead to the situation that no urban patch or only a few urban 

patches exist in some blocks, which generates the noise in spatial pattern analysis. 

Therefore, the study area was firstly divided into several square blocks with the size 

of 2 km×2 km. The selected metrics (NP, LPI, and SHAPE_MN) were then calculated 

for every block to characterize the spatio-temporal patterns of urban area. After 

obtaining the multi-temporal metrics values, changes of metrics were calculated 

using the Eq. 8. Other landscape metrics were not selected because this study was 

conducted at a local level and these metrics are more suitable for a global scale. 

𝐶𝑖 = 𝑀𝑖,𝑡+𝑛 − 𝑀𝑖,𝑡                (8) 

where 𝑀𝑖,𝑡 and 𝑀𝑖,𝑡+𝑛 are the metrics values in year 𝑡 and 𝑡 + 𝑛 respectively. 𝐶𝑖 is the 

change of metrics in block 𝑖. 
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Table 4-2: Description of the spatial metrics used in this study 
Landscape metrics Abbreviation Description 

Class Area - 
The sum area (m²) of all urban land use 
patches, divided by 10,000 

Number of patches NP Total number of urban land use patches. 

Largest patch index LPI 
The percentage of the area of the 
largest urban patch to the total area of 
the landscape. 

Shape index 
(Area weighted mean 

shape index/Mean 
shape index) 

SHAPE 
(SHAPE_AM/ 
SHAPE_MN) 

The index describes the complexity of 
the patch shape.  It uses patch area as 
a weighting factor. It equals 1 when the 
patch has a square shape and 
increases as the irregularity of the 
shape increases. 
SHAPE_AM averages the shape index 
of the patches by weighting patch area 
so that larger patches weigh more than 
smaller patches.  
SHAPE_MN equals the sum of shape 
index of the patches divided by the 
number of patches of the same type. 

Euclidean distance 
neighbor distance 

(Area weighted mean 
Euclidean      distance 

neighbor distance) 

ENN 
(ENN_AM) 

ENN equals the distance (m) to the 
nearest neighboring patch of the same 
type, based on shortest edge-edge 
distance.  
ENN_AM averages the ENN index of 
the patches by weighting patch area. 

Source: Own illustration; based on McGarigal et al., 2012 

4.2.2 Exploring the underlying cause-effect relationships in the urban 
growth process  

By using spatial metrics, historical urban growth patterns can be obtained for better 

understanding the urban development dynamics in previous section. However, urban 

growth is a complicated process which involves the spatial and temporal complexity 

of various natural and socio-economic factors. The spatial models suffer from a lack 

of knowledge of the historical urban growth process and various factors that 

contribute to the dynamics of urban areas (Dietzel et al., 2005; Longley & Mesev, 

2000). Therefore, it is necessary to analyze the historical urban growth, effects of 

driving factors underlie urbanization, and their cause-effect relationships. The cause-

effect relationships are composed of two aspects which are illustrated in Figure 4-3. 

The first one is the relationships between spatial patterns and urban growth, and the 

second focuses on the relationships between urban growth and a set of driving 

factors. 
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Figure 4-3: Cause-effect relationships in urbanization process 

 

4.2.2.1 Exploring the effects of urban growth on spatial patterns 

To further understand the effects of urban growth on the spatio-temporal patterns, 

changes of spatial metrics values at block scale were used as dependent variables. 

The urbanization intensity index (𝑈𝐼𝐼) was used as an independent variable, which 

has been recognized as one of the main indicators in measuring the urban growth 

pace (Wang et al., 2010; Yeh & Huang, 2009). The 𝑈𝐼𝐼 value for each block was 

calculated using Eq. 9. 

𝑈𝐼𝐼𝑖 =
𝑈𝐴𝑖,𝑡+𝑛−𝑈𝐴𝑖,𝑡

𝑛∗𝑇𝐴𝑖
∗ 100                                                                                                (9) 

where 𝑈𝐼𝐼𝑖 is the urbanization degree for block 𝑖 during the time period 𝑡~ 𝑡 + 𝑛; and 

𝑈𝐴𝑖,𝑡 and  𝑈𝐴𝑖,𝑡+𝑛are the urban area in year 𝑡 and 𝑡 + 𝑛, respectively. 𝑇𝐴 is the total 

area of the block 𝑖. 

In contrast to global models (such as OLS), GWR is conducted using localized points 

within geographic space. Thus, instead of producing a single average parameter for 

each relationship, GWR has a potential to produce a set of local parameter estimates 

that can be mapped to get an insight into the hidden possible causes of this pattern. 

In other words, it can be used to explore the spatially varying relationships between 

explanatory variables and spatial pattern by generating a set of local parameter 

estimates (Brunsdon et al., 1996; Fotheringham et al., 1996; 2001). In addition, GWR 

model results are mappable and can be combined with GIS, which offers a powerful 

tool for analyzing the relationships (Tu, 2011). 

The GWR model can be expressed as: 

𝑦𝑖 = 𝑎0(𝜇𝑖, 𝑣𝑖) + ∑ 𝑎𝑘(𝜇𝑖, 𝑣𝑖)𝑥𝑖𝑘𝑘 + 𝜀𝑖         (10) 

where (𝜇𝑖, 𝑣𝑖)  represents the coordinate location of the 𝑖 th point. 𝑎0(𝜇𝑖, 𝑣𝑖)  and 

𝑎𝑘(𝜇𝑖, 𝑣𝑖) express the intercept and local parameter estimate for independent variable 

𝑥𝑖𝑘 at location 𝑖 respectively. 𝜀𝑖 is the random error term for location 𝑖. 

In GWR, parameters for each observation at location 𝑖 can be estimated by weighting 

all observations around a specific point 𝑖 according to their spatial proximity, which is 
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calculated by Euclidean distance in this study. The observations which are spatially 

closer to the location 𝑖 will have a greater impact on the local parameter estimates for 

the location than those which originate at more distant points. Gaussian distance 

decay can be used to express the weighting function: 

𝑤𝑖𝑗 = exp (𝑑𝑖𝑗
2 ℎ2⁄ )             (11) 

where 𝑤𝑖𝑗 represents the weight of observation 𝑗 for location 𝑖. 𝑑𝑖𝑗  is the Euclidean 

distance between points 𝑖 and 𝑗. ℎ is a kernel bandwidth that affects the distance-

decay of the weighting function.  

In practice, the results obtained from GWR are not sensitive to the choice of kernel 

type, but they are sensitive to bandwidth (Gao and Li, 2011; Guo et al., 2008). 

Consequently, when estimating the model it is necessary to determine the optimum 

bandwidth. There are three choices of the bandwidth method: corrected Akaike 

Information Criterion (AICc), Cross Validation (CV) and Bandwidth parameter. If the 

bandwidth is known a priori, bandwidth parameter could be applied. If it is unknown, 

the first two types allow for using an automatic method to find the optimum 

bandwidth. In this study, AICc method was used for GWR model. The AICc method 

finds the bandwidth which minimizes the AICc value. The model with lower AICc 

value suggests stronger ability of regression model in reflecting reality.  

For the comparison purpose, OLS models were also employed to investigate the 

relationships between spatial patterns and urbanization. Three statistical parameters 

were used to compare the performance between GWR and OLS: adjusted R², AICc, 

and Moran’s I. Adjusted R² and AICc measures provide some indications of the 

goodness of fit of the corresponding model. Higher adjusted R² value indicates that 

more variances can be explained for the dependent variable. Moran’s I is widely used 

as an indicator of spatial autocorrelation, which ranges from -1 to 1. The larger 

absolute value of Moran’s I indicates that the spatial autocorrelation is more 

significant. Residuals are the differences between predicted and observed values. 

Moran’s I value was employed to examine spatial autocorrelation based on the 

residuals, so that their ability to deal with the spatial autocorrelation can be evaluated 

and compared. 
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4.2.2.2 Examination of the relationships between driving factors and 

urban growth 

The question of “how can driving factors influence urban growth?” should be 

addressed in order to understand other aspect of cause-effect relationships operative 

in urban growth process. Commonly used approaches include linear regression, log-

linear regression and logistic regression. The dependent variable of logistic 

regression could be binary or categorical. The independent variables of logistic 

regression could be a mixture of continuous and categorical variables. Normality 

assumption is not needed for logistic regression. Therefore, logistic regression is 

more suitable for driving factors analysis in this study.  

Logistic regression model was used to identify and improve the understanding of a 

series of variables that affect the dynamics of urban growth, as well as to investigate 

the temporal dynamics of the effects of these variables. The logistic regression model 

was expressed as follows: 

𝑃 =
1

1+𝑒−𝑧                            (12)  

where 𝑃 is the probability of a cell changing to built-up calculated through the logistic 

regression procedure. It varies from 0 to 1 on a S-shape curve. 𝑧 represents the 

linear combination of independent variables which are regarded as a driving force of 

urbanization. It can be expressed as follows: 

𝑧 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛           (13) 

where 𝑏0 is the intercept of the model, 𝑏𝑖 (𝑖=1, 2,…, n) represents the coefficient of 

the logistic regression model to be estimated, and 𝑥𝑖  is an independent variable 

representing driving factor of urban growth, which can be of interval, ordinal or 

categorical.  

The major interest was to assess the relative importance of variables in determining 

conversion to urban land uses and to analyze the temporal dynamics of the effects of 

variables during historical period. Therefore logistic regression model was applied to 

each time period, the dependent variable value of 1 means non-urban cell has 

changed its land use to urban during the study period, a value of 0, on the other 

hand, indicates the cell did not change its use. The coefficient for each variable in 

Eq. 13 measures the absolute contribution of variable in determining the probability 

that urban growth. A positive value indicates that the variable will help to increase the 

probability value and negative value indicates the opposite effect (Cheng & Masser, 
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2003). However the estimated coefficients of these variables could be misleading in 

the analysis of urbanization process when the variables are measured in different 

units. Therefore, all variables should be standardized into the range from 0 to 1 prior 

to the modeling as shown in Figure 4-4. For natural, socioeconomic and 

neighborhood factors, linear transformation method was applied to conduct the 

standardization. For spatial policy factors, the area where urban development is 

limited was assigned 0 and area that is designated for urban development was 

assigned 1. 
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Figure 4-4: Spatial variables for the analysis of urban growth in Xuzhou (2001) 

 

There are a large number of cells for the dependent and independent variables in this 

study. It is not efficient to handle such a large data in the later statistical analysis. In 

addition, while using logistic regression to derive the relationship between urban 

growth and independent variables, the spatial dependence should be considered in 

order to remove its effects. Otherwise, the parameters estimated by logistic 

regression have lower precision (Arlinghaus, 1996). Therefore, efficient sampling 

method is required to reduce the size of samples and remove the spatial dependence 
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effect. Systematic and random sampling are two frequently used sampling schemes 

in logistic regression. Systematic sampling can reduce spatial dependence, but it 

may lose some important information. Conversely, random sampling is capable of 

representing important information, but does not efficiently reduce spatial 

dependency (Cheng & Masser, 2003). The issue can be addressed through the 

integration of systematic and random sampling (Cheng & Masser, 2003; Luo & Wei, 

2009). We followed this approach in this study. For each period, 72356 regularly 

spaced points with 200 m internal were extracted to reduce spatial dependency.  

After systematic sampling, the size of samples with value 1 (changed from non-urban 

to urban) was much smaller than the size of samples with value 0 (non-changed). 

Therefore, to gain unbiased parameter estimation, random sampling was further 

used to extract the samples from systematic samples in order to obtain equal size of 

samples with value of 1 and 0. Consequently, the size of samples used in logistic 

regression were 3816, 3510, 4532, for the periods of 1990-2001, 2001-2005 and 

2005-2010, respectively. 

Relative Operating Characteristic (ROC) was used as a quantitative measurement to 

validate the logistic regression model. The ROC method has been recently used in 

the field of urban growth model to examine the relationship between simulated urban 

growth and actual one (Arsanjani et al., 2013; Braimoh & Onishi, 2007; Hu & Lo, 

2007). ROC assesses how well the pair of maps agrees based on cell by cell 

comparison (Pontius & Schneider, 2001). The first step in calculating the ROC is to 

slice the probability map at a series of threshold levels. A threshold refers to the 

percentage of cells in the probability map need to be reclassified as 1 in preparation 

for comparison with the actual map. The series of thresholds were specified at an 

equal interval of 10 %. For each group generated from threshold, the map of urban 

growth probability was compared against that of actual urban growth (Pontius & 

Schneider, 2001). The ROC curve was plotted with the true positive rate against the 

false positive rate for each group. The ROC statistic is the Area Under the Curve 

(AUC). Eq. 14 uses integral calculus’ trapezoidal rule to calculate the area.  

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 = ∑ [𝑥𝑖+1 − 𝑥𝑖] [𝑦𝑖 + 𝑦𝑖+1 −
𝑦𝑖

2
]𝑛

𝑖=1          (14) 

where 𝑥𝑖 represents the rate of false positives for group 𝑖, 𝑦𝑖 represents the rate of 

true positives for group 𝑖, and 𝑛 is the number of groups (Pontius & Schneider, 2001). 
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A ROC value of 1 indicates that the simulated probability map matches perfectly the 

actual land use map. A ROC value of 0.5 suggests that probability values are 

assigned at random locations.  

4.3 Modeling of urban growth 

Based on the urban growth information obtained by applying methods in previous 

sub-chapters, CA models can be developed to provide an improved ability to analyze 

urban growth characteristics in strong connection with decision support systems. This 

sub-chapter describes the method for developing CA model that is designed to 

enable the simulation of urban growth by integrating various factors. The hybrid 

calibration method is proposed to make the CA models generate more accurate 

simulation results. In order to provide a support for decision making process, the 

future development scenarios are designed and simulated. 

4.3.1 Model development 

The definition of transition rule plays an important role in CA models. The key 

element of transition rule is the transition potential which determines the probability of 

a cell changing to a specific land use (Wu & Webster, 1998). This involves a number 

of spatial variables that contribute to urban growth. In this study, the transition 

potential 𝑃𝑖𝑗 can be practically defined as a function of the global suitability value 𝑆𝑖𝑗, 

neighborhood effects 𝑁𝑖𝑗 , constraints 𝐶𝑂𝑁𝑆𝑖𝑗  and stochastic perturbation 𝑉𝑖𝑗 . It can 

be expressed as follows: 

𝑃𝑖𝑗 = 𝑆𝑖𝑗 ∗ 𝑁𝑖𝑗 ∗ 𝐶𝑂𝑁𝑆𝑖𝑗 ∗ 𝑉𝑖𝑗                                         (15) 

The global suitability value represents the intrinsic suitability of urban development. It 

was calculated as a function of global spatial variables: 

𝑆𝑖𝑗 = 𝑓(𝑥𝑙,𝑖𝑗 , 𝑤𝑙)              (16) 

where 𝑥𝑙,𝑖𝑗 (𝑙 = 0, 1, 2, … , 𝑛) represents the values of global factors for the cell (𝑖, 𝑗), 𝑤𝑙 

represents the corresponding weight of the global factor. It is very important to select 

the best set of the global factors in order to produce the best fit between the 

simulated maps and the observable reality. After calculating the relationship between 

historical land transitions and related factors in 4.2.2, a different set of global factors 

contribute to the changes from non-urban to urban area were identified. In CA model, 

the transition rule restricts new built-up land to locations within a neighborhood 

around an existing built-up pixel at each time step. Therefore, the neighborhood was 

excluded from the global spatial variables.  
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Neighborhood effect was introduced by many studies to consider the effects of 

spatial interaction and neighborhood characteristics on urban growth. In this study, 

this neighborhood score was calculated according to following equation: 

𝑁𝑖𝑗 = ∑ 𝑊𝑚𝑛𝑐 × 𝐼𝑚𝑛              (17) 

where 𝑁𝑖𝑗  is the effect of neighborhood cells on the central cell ( 𝑖, 𝑗 ) within the 

neighborhood space 𝑐 ; 𝑊𝑚𝑛   represents the weight indicating the impact of the 

interaction between the central cell and cell (𝑚, 𝑛) within the neighborhood (Barredo 

et al., 2003). Following the first law of geography (Tobler, 1970), a distance decay 

function was applied, so that cells closer to the central cell carry larger weight. 𝐼𝑚𝑛 

represents the state of the cell (𝑚, 𝑛) using binary value. 𝐼𝑚𝑛=1, when the cell is 

urban land, otherwise 𝐼𝑚𝑛 =0. The neighborhood size, neighborhood type and 

weighting function have significant effects on the CA model results (Kocabas & 

Dragicevic, 2006; Pan et al., 2010). Various neighborhood configurations have been 

applied to models of urban growth. However, most CA models employ one uniform 

set of generic neighborhood configuration for different period, despite the fact that 

temporal differences exist in urban patterns and processes. Instead of using 

stationary neighborhood configuration, different neighborhood configurations were 

considered in this study to improve the ability to perform more realistic simulations. 

Through the calibration, optimal ones were identified which enable to generate higher 

accuracy results. As shown in Figure 4-5, three different neighborhood types (Moore, 

Moore Circular, and Von Neumann Circular) with different neighborhood size (radius 

of 1 to 6) were involved. In addition, three different weighting functions (Eq. 18) were 

applied to define the weights 𝑊𝑚𝑛 for cells within neighborhood. 

𝑊𝑚𝑛 = exp (−𝛽 ∗ 𝐷𝑚𝑛)             (18) 

where 𝐷𝑚𝑛  is the distance between cell( 𝑚, 𝑛 ) to the central cell within a 

neighborhood. 𝛽 is the exponent of the function. The higher of the value, the more 

abrupt is the function curve. In this study, 𝛽 was assigned 0, 0.2 and 0.5, respectively. 

The function curves are shown in Figure 4-6. 
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Figure 4-5: Neighborhood types and sizes 

 

Figure 4-6: Weighting function for neighborhood 

 

The total constraint score was calculated as: 

𝐶𝑂𝑁𝑆𝑖𝑗 = ∏ 𝑐𝑜𝑛𝑖𝑗,𝑓
𝑛
𝑓=1              (19) 

where 𝐶𝑂𝑁𝑆𝑖𝑗 is the total evaluated constraint score representing natural constraints 

to urban expansion. If 𝐶𝑂𝑁𝑆𝑖𝑗=0, cell (𝑖, 𝑗) is constrained by some constraint factors, 

and the cell cannot be converted to urban land use. Otherwise, 𝐶𝑂𝑁𝑆𝑖𝑗=1.  𝑐𝑜𝑛𝑖𝑗,𝑓 

represents the binary value of constraint factor 𝑓 for the cell (𝑖, 𝑗). In this study, water 

body is considered as the constraint areas. 

Principally, land conversion is allocated according to the potential score. However, 

considering the complex elements which participate in the urban growth in China, 

simulations of the development are subject to a high degree of uncertainty. From a 

practical point of view, the related complexity of urban systems could be modeled as 
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some degree of stochasticity (Barredo et al., 2003). Thus, a stochastic disturbance 

parameter was introduced into the model. It was calculated with Eq. 20: 

𝑉 = 1 + (−ln (𝑟𝑎𝑛𝑑))𝑎             (20) 

where 𝑟𝑎𝑛𝑑 is a random value within the range from 0 to 1, and 𝑎 is random variable 

which is used to control the degree of stochasticity. A higher value of 𝑎 represents 

more random degree involved in this model.  

Once the transition potential is calculated, decision rules need to be identified to 

spatially allocate the new urban area in order to simulate the historical and future 

urban growth process. At each iteration, the new urban pixels are allocated by 

selecting the non-urban pixels with the higher transition potential values. The non-

urban pixels with lower values remain unchanged. The iteration continued until the 

total urban expansion area is reached. 

4.3.2 Model calibration and validation 

The aim of calibration is to estimate the transition rule parameters that allow for the 

accurate simulation of the past urban growth (Santé et al., 2010). However, the 

calibration of cellular automata model is difficult because of the many interacting 

variables involved (Pan et al., 2010). Because the logistic regression model is 

essential static, it is not able to reveal the path-dependent and self-organization 

development that is typical for urban growth. In this study, therefore, the weights of 

global suitability variables, neighborhood size, neighborhood types, weighting 

function, and random variables need to be calibrated. As discussion in 2.3.3, there 

are many calibration methods, choosing an appropriate method for the study in 

question is challenging. An advantage of the logistic regression is its ability to 

estimate the weights of various spatial factors by developing statistical relationships 

between historical urban growth and spatial factors (Arsanjani et al., 2013; Ward et 

al., 2000). It can avoid subjectivity in determining the weights involved in transition 

rules of the CA model. However, it does not include all the relevant variables and 

cannot explain temporal dynamics of relationships (Hu and Lo, 2007). The global 

factors which keep constant during each simulation period are involved into the 

logistic regression model. While the neighborhood effect and the random variable 

change with the running of the CA model. It is impossible to estimate these 

parameters using the logistic regression model. The trial and error method is a more 

rigorous calibration method. But its time cost for calibrating all parameters is not 

acceptable because trial and error method is implemented by running CA model 
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many times with different parameter values. In this study, the hybrid method 

consisting of logistic regression and trial and error was used for the calibration in this 

study.  

Validation is conducted by comparing the simulated results generated from calibrated 

CA models with observed maps in order to assess the simulation ability of CA 

models for different periods. Various indicators have been introduced to measure the 

goodness-of-fit between the simulated and the observed urban land use maps. They 

can be classified into two types: locational and pattern indicators (Jenerette & Wu, 

2001). The former one provides a frequent way to conduct the comparison on the 

basis of cell by cell, while the latter focuses on similarity of urban spatial patters 

between simulated and observed maps. The calibration and validation of the CA 

model should depend on the specific objective of the CA model (Wu, 2002). With the 

consideration of the simulation purpose which is to make the simulated urban growth 

as close as the actual one in terms of location and pattern, a mixed measure based 

on the cell by cell and spatial pattern analysis was chosen in this study. The figure of 

merit (Eq. 21) (Pontius et al., 2007), and the relative difference of spatial metrics 

(Eq. 22) were computed to evaluate the fit of goodness between simulated and 

observed maps.  

The figure of merit is the ratio of the intersection of the observed developed and 

simulated developed to the union of the observed developed and predicted 

developed (Pontius et al., 2008). The figure of merit can range from 0% to 100%. A 

higher value of figure of merit indicates a higher agreement in terms of cell by cell 

comparison. The figure of merit is calculated using the following equation (Pontius et 

al., 2008): 

𝐹𝑖𝑔𝑢𝑟𝑒 𝑜𝑓 𝑚𝑒𝑟𝑖𝑡 =
𝐵

𝐴+𝐵+𝐶+𝐷
                       (21) 

where 𝐴  is the area of error due to observed developed and simulated as 

persistence, 𝐵 is the area of correct due to observed developed and simulated as 

developed, 𝐶 represents the area of error due to observed developed and simulated 

as incorrect gaining category, and 𝐷 is the area of error due to observed persistence 

and simulated as developed. Because the CA model only simulates the change of 

states from non-urban to urban, the value of 𝐶 should be equal to 0. 

The pattern similarity was incorporated, which was estimated through the comparison 

of spatial metrics between simulated patterns and observed ones. A total of four 
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spatial metrics were selected to represent the spatial pattern from different aspects. 

These metrics are: NP, LPI, SHAPE_AM and ENN_AM. The relative difference 𝑅𝑑 

can be calculated as follows:  

𝑅𝑑(%) =
1

4
× ∑ |

𝑀𝑠,𝑖−𝑀𝑜,𝑖

𝑀𝑜,𝑖
|𝑖 × 100                    (22) 

where 𝑀𝑠,𝑖 and 𝑀𝑜,𝑖 are the values of spatial metric 𝑖 calculated from the simulated 

and observed urban land use maps, respectively. A smaller absolute value of 𝑅𝑑 

indicates that the simulated urban spatial pattern is closer to the observable pattern.  

The calibration objectives can be expressed as following: 

𝐹𝑖𝑔𝑢𝑟𝑒 𝑜𝑓 𝑚𝑒𝑟𝑖𝑡 (𝑤1, 𝑤2, … , 𝑤𝑛) → 𝑀𝑎𝑥                                                                   (23) 

𝑅𝑑 (𝑤1, 𝑤2, … , 𝑤𝑛) → 𝑀𝑖𝑛                                                                                          (24) 

4.3.3 Simulation of the future scenarios 

In addition to the simulation of realistic urban growth, the CA model provides a 

means for simulation different scenarios under the different urban land use planning 

policies. Scenario-based analysis can help in further understanding the driving 

factors of urban growth and in assessing the potential impact of urbanization on the 

environment, consequently, provide a support for urban planning and decision 

making. Scenario simulation is a process of analyzing possible future development 

by considering alternative possible outcomes. It is a tool for balancing land use 

changes with sustainable growth, examining the emerging spatial patterns of the 

scenarios, and facilitating decision making (Munshi et al., 2014; Thapa & Murayama, 

2012).  

4.3.3.1 Design of the scenarios 

The design of scenarios should be based on the three criterions of scenarios 

proposed by Xiang and Clarke (2003) and strongly linked to the current existing 

concerns of the policy makers of the region addressing the key question as well as 

the historical urban growth trend. In recent years, there has been an increasing 

interest for developing sustainable urban form. A compact development is necessary 

in order to improve sustainability. Although there is a strong agreement on this 

statement, a debate between compact city and dispersed city has never stopped. 

Both of positive and negative effects of each type of city have been reported. In order 

to provide an insight into the different urban development strategies, five urban 

growth scenarios were designed towards 2020 and were named according to the 
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main themes that result from the scenarios (Figure 4-7). The land demand during this 

period was estimated according to the urban plan of Xuzhou. 

1. The business as usual scenario (BUS) assumes that the future urban growth 

follows historical trend without any adjustment when environmental and 

developmental conditions are similar to the ones observed from the historical data. 

However the expanded road network will be involved. This scenario provides an 

insight into the spatial consequence of urban growth under the same conditions as 

those used to simulate the urban growth from 2005 to 2010.  

2. The planning-strengthened scenario (PSS) assumes that the future urban growth 

strictly follows the master plan of Xuzhou city. The plan influences new developed 

urban allocation, as it establishes the legal regulatory framework for future land use. 

The master planning for Xuzhou city 2020 emphasizes to protect farmland and 

discourage the urban development in environmental protection areas and to achieve 

balanced development. This scenario provides a better understanding of the impact 

of planning on urban growth. The alternative also reflects maximum protection of 

environmentally sensitive land. 

3. Considering the urban development challenges, we established the compact 

development scenario (CDS) that aims to prevent sprawl-like development and to 

create a more compact city. The compact development is crucial for less pressure on 

other land cover types, being more efficient in the use of natural resources and 

sustainability. It is not only associated with high density, the centralization but also 

plays an important role in forming a compact city. This scenario takes into 

consideration the fact and urban development policy which includes three aspects 

when implementing this scenario. First, the development is mainly concentrated 

around the existing city center, providing a more compact urban form. In order words, 

development would be allocated in areas with good access to the city center to 

support the use of other means of transportation than by car (Fuglsang et al., 2013); 

Second, in order to increase land use efficiency, a major development policy is 

implemented to increase the development of high-density residential and to decrease 

the development of low-density residential, which can reduce the per capita demand 

for the occupied land. Additionally, the urban growth allocation should be strictly 

limited to the environmental considerations.  

4. Contrary, the dispersed development scenario (DDS) was developed to simulate 

the future urban pattern with an increase of urban sprawl but without any effective 
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urban planning against this trend. Urban sprawl is a worldwide phenomenon and it 

leads to an outwards spreading of the city and to a growth in lower density areas. 

Due to the rapid economic growth and widespread of private vehicles, people desire 

to move to the low density settlements in order to avoid the congestion and large 

pollution in the city center, as well as to pursue a better living environment. In 

addition, the cost of housing outside the city center could be lower. Hence, the aim of 

the scenario is to encourage developments of new urban patches and urban 

infrastructure outside the city center. This scenario reflects a lesser degree of 

environmental protection. 

5. The debate concerning sustainable urban form could move towards more 

moderate position where agreements are easier to achieve. The master planning 

2020 of Xuzhou focuses on balancing city core, fringe and rural development. The 

focus of development will be shifted from the city center to the whole Xuzhou region. 

In this respect, development in the form of polycentric development is increasingly 

considered as the best way for urban sustainability (Bontje, 2004; Catalán et al., 

2008). Meanwhile the demand of residents for better living environment is also 

enhanced. Considering this fact and the urban development policy, the moderate 

development scenario (MDS) was designed. Closer link between the former city 

center and several developed regions in fringe area is established. In addition, due to 

the fact that the rural settlements in Xuzhou are small in size but numerous and 

scattered, coordinating urban and rural development is also involved in this scenario 

not only for intensive land use but also for economic growth in rural areas. Therefore, 

the scenario aims to promote the endogenous potential of city center, suburban 

center, and rural area and the cooperation between them in order to achieve a 

physically and functionally connected region. 
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Figure 4-7: Different development scenarios 

 

4.3.3.2 Identification of parameters 

The flexibility in parameters allows the CA model to explore different urban 

development scenarios. The spatial distribution characteristics can be controlled by 

parameter settings. In this study, global suitability values were calculated by the 

logistic regression. As mentioned in previous section, an advantage of the logistic 

regression is its ability to objectively analyze relationships between historical urban 

growth and factors. However, it is not an optimal way to simulate different scenarios 

by changing coefficients of the logistic regression according to the scenarios. In 

contrast, MCE is an important means of analysis in spatial decision support systems, 

as it allows weighted value to be assigned to spatial layers, and the sum of these 

values produces a final suitability map. However, determining factor weights is a 

complicated task in MCE. AHP originally developed by Saaty (1980) is one of the 

most commonly used approaches when analyzing complex decision problems. It can 

be used to derive behavior-oriented transition rules (Wu, 1998b). Basically, the pair-

wise comparison of the relative importance is conducted to arrive at a scale of 

preference among a set of alternatives (Malczewski, 1999). A detailed analytic 

process is presented below.  
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The relative importance of variables is first compared using Saaty’s 1-9 scale 

(Table 4-3). A pairwise comparison matrix A is then obtained: 

𝐴 = [

1 𝑎12 … 𝑎1𝑛

𝑎21 1 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 1

], (𝑖, 𝑗 = 1, 2, … , 𝑛)                (25) 

where 𝑎𝑗𝑖 = 1/𝑎𝑖𝑗. Then 𝐴 is normalized as a matrix 𝐵: 

𝐵 = [𝑏𝑖𝑗],  (𝑖, 𝑗 = 1, 2, … , 𝑛)           (26) 

𝑏𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

, (𝑖, 𝑗 = 1, 2, … , 𝑛)           (27) 

Each weight value is calculated as: 

𝑤𝑖 =
∑ 𝑏𝑖𝑗

𝑛
𝑗=1

∑ ∑ 𝑏𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

, (𝑖, 𝑗 = 1, 2, … , 𝑛)           (28) 

The relationships between the 𝜆𝑚𝑎𝑥 and corresponding eigenvector 𝑊 of the matrix 𝐵 

is presented as follows: 

𝐵𝑊 = 𝜆𝑚𝑎𝑥𝑊             (29) 

𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛)𝑇            (30) 

𝜆𝑚𝑎𝑥 = ∑
(𝐵𝑊)𝑖

𝑛𝑤𝑖

𝑛
𝑖=1 , (𝑖, 𝑗 = 1, 2, … , 𝑛)         (31) 

where (𝐵𝑊)𝑖 is the 𝑖-th value of the vector 𝐵𝑊. 

Additionally, an index of consistency known as the Consistency Ratio (CR) is used to 

check judgment inconsistencies. 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
              (32) 

where the Random Index (𝑅𝐼 ) is the average of the resulting consistency index 

depending on the order of the matrix. A 𝐶𝑅 less than 0.1 indicates that the matrix can 

be considered as having an acceptable consistency (Satty, 1980). Otherwise, the 

matrix should be reconsidered and revised. The Consistency Index (𝐶𝐼 ) can be 

calculated as following: 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
              (33) 
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Table 4-3: Scale for pairwise comparison 
Intensity of importance Description 

1 Equal importance 

3 Weak importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate values between the two adjacent 
judgments 

Source: Saaty & Vargas, 2001 

By using AHP, the weights of global factors are identified and imported into the CA 

model for calculating global suitability value. AHP provides a comprehensive and 

rational framework for structural conceptualization of decision making, in which the 

relative importance of several variables can be compared (Vaz et al., 2012). Hence, 

the integration of MCE and AHP benefited this study in that it has capability to link 

scenario simulation with decision making processes and to translate the qualitative 

descriptions of scenarios into quantitative spatial analysis.  

However, the weight of each global factor in AHP is usually identified by direct 

subjective assessment because preferences of decision makers determine the 

relative importance of each factor. In order to incorporate more realistic behavior into 

the simulation, the historical urban growth trend needs to be considered in decision 

making process. Therefore, the logistic regression coefficients for the period of 2005-

2010 in CA model were used to identify the relative importance of each global factor 

in AHP for further modification. Figure 4-8 shows the integrated approach for 

modeling different development scenarios. When simulating business as usual 

scenario, the relative importance derived from logistic regression kept unchanged. 

While simulating other scenarios, the relative importance needed to be modified 

according to the initial relative importance of each factor in 2005-2010 and specific 

definition of each scenario. Furthermore, the neighborhood configurations and 

random variables also needed to be modified. 
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Figure 4-8: Multiple scenarios modeling approach 

 

4.3.3.3 Evaluation and comparison of the scenarios 

Scenario-based urban growth analysis can help in further understanding the driving 

factors of urban growth and in assessing the potential impact of urbanization on the 

environment. For the evaluation and comparison of the five scenarios, a set of spatial 

metrics were selected to quantify the urban growth pattern of each scenario at two 

scales: global and local scales. For the global level, NP, LPI, and SHAPE_AM, 

ENN_AM were calculated using Fragstats 4 (McGarigal et al., 2012). However, this 

result provides a general description of urban growth pattern at global level. The 

spatial metric is scale-dependent. The scale used is the entire study area. In order to 

discover and locate differences of the scenarios in urban growth pattern, local scale 

was used to conduct spatial metrics analysis. This study divided the study area into 

several 2 km × 2 km blocks. Class Area, NP, and SHAPE_MN were calculated for 

every block to characterize the urban spatial pattern in each scenario. 
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5. Results and discussion 

In the previous chapters, the attempt was made to illustrate how important is the 

monitoring and analysis of urban growth and how to conduct this work by adopting 

related methods. In order to evaluate the performance of the proposed methods 

described in previous chapter as well as to provide a better understanding of the 

urban growth in Xuzhou city, the methods have been applied based on the available 

data. The chapter presents and discusses the major findings of this study. 

5.1 Land cover change 

5.1.1 Classification accuracy 

The efficiency of the V-I-S based hierarchical classification approach for land cover 

classification was analyzed in comparison with a traditional classification approach 

based on MLC and post classification refinement. A total of 300 samples were used 

for accuracy assessment. 

The assessment results of traditional classification were generated for two study 

areas (Tables 5-1 and 5-2). The overall accuracies range from 82.7 % to 84.0 % for 

Xuzhou city and from 80.0 % to 85.0 % for Dortmund city region. The results show a 

strong confusion among different land cover classes, as indicated by low accuracy 

values. This could be related to the fact that the traditional method cannot solve the 

problems caused by mixed pixel and spectral similarity. 

Table 5-1: Accuracy assessment of Xuzhou land cover maps produced using 
traditional approach (%) 

Land cover  
class 

1990 2001 2005 2010 

Producer's User's Producer's User's Producer's User's Producer's User's 

Built-up 73.4 81.0 77.3 81.0 78.8 80.0 80.6 80.6 

Farmland 86.7 83.0 87.7 83.8 89.5 82.2 86.8 82.0 

Vegetation 78.0 76.5 77.8 82.4 75.9 88.0 77.2 88.0 

Water body 88.2 90.0 86.0 86.0 86.5 90.0 84.0 84.0 

Overall  
accuracy 82.7 83.3 84.0 83.0 

Table 5-2: Accuracy assessment of Dortmund city region land cover maps produced 
using traditional approach (%) 

Land cover  
class 

1989 2000 2006 2010 

Producer's User's Producer's User's Producer's User's Producer's User's 

Built-up 75.8 77.0 73.9 75.0 76.3 78.4 76.6 74.7 

Farmland 86.8 84.6 83.5 83.5 82.0 81.3 76.6 78.2 

Vegetation 84.4 90.3 84.4 80.6 80.6 84.4 78.1 82.0 

Water body 93.6 88.0 86.5 90.0 91.3 84.0 88.2 90.0 

Overall  
accuracy 85.0 82.0 81.7 80.0 
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The classification results generated by V-I-S based hierarchical classification 

approach are presented in Tables 5-3 and 5-4. They have higher accuracies than the 

traditional approach in all classes. Over accuracy of more than 89 % is achieved. The 

overall accuracies are found to be improved by 6.0-7.7 % for Xuzhou city and 5.3-

9.3 % for Dortmund city region, respectively, using the hierarchical classification 

method. Both the producer’s and user’s accuracy are consistently higher than the 

corresponding accuracies of the traditional approach.  

Table 5-3: Accuracy assessment of Xuzhou city land cover maps produced using V-I-S 
based hierarchical classification approach (%) 

Land cover  
class 

1990 2001 2005 2010 

Producer's User's Producer's User's Producer's User's Producer's User's 

Built-up 87.7 89.3 90.6 89.2 89.9 88.6 87.2 90.7 

Farmland 92.3 93.0 90.6 94.0 93.8 92.3 81.1 90.4 

Vegetation 86.0 89.6 88.2 88.2 85.2 92.0 83.0 88.0 

Water body 97.8 90.0 95.7 88.0 95.9 94.0 93.3 84.0 

Overall  
accuracy 90.0 91.0 91.7 89.0 

Table 5-4: Accuracy assessment of Dortmund city region land cover maps produced 
using V-I-S based hierarchical classification approach (%) 

Land cover  
class 

1989 2000 2006 2010 

Producer's User's Producer's User's Producer's User's Producer's User's 

Built-up 85.9 87.3 86.7 91.5 91.9 90.1 90.9 89.7 

Farmland 91.4 92.2 93.7 91.2 90.3 91.7 89.8 89.0 

Vegetation 88.0 91.7 89.4 90.8 88.2 92.3 83.3 87.3 

Water body 97.8 88.0 95.8 92.0 95.6 86.0 93.9 92.0 

Overall  
accuracy 90.3 91.3 91.0 89.3 

The comparison of results demonstrates that the V-I-S based hierarchical 

classification approach is effective in extracting land cover information from Landsat 

images especially in urban areas. The accuracies meet the minimum USGS total 

accuracy set out by Anderson et al. (1976), hence the classified results can be used 

as data source for post classification comparison and further analysis.  

5.1.2 Land cover classification 

The multi-temporal land cover classification maps for two study areas are shown in 

Figures 5-1 and 5-2. The individual class area for the study years are summarized in 

Tables 5-5 and 5-6. 

From the overall trend, intense land cover change occurred in Xuzhou city was 

mainly characterized by a significant increase in built-up land, and a gradual 

decrease in farmland and vegetation. The area of water body increased rapidly due 

to the waterlogged subsidence in coal mining areas during 1990-2005. Because of 
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the reclamation of subsidence, some of them were used as farmland, which led to 

the decrease of water body in 2010. The built-up land, as the largest growth type, 

increased from 174.6 km² in 1990 to 566.9 km² in 2010. Furthermore, the annual rate 

of growth in built-up land increased (Figure 5-3), which indicates Xuzhou city 

experienced rapid urban growth process with the accelerating speed over the study 

period. The economic reform started in China since late 1970s. After the initial period 

of around 10 years from centralized planning to market-oriented economic system, 

the economy of Xuzhou city was moving into the fast lane. Rapid development 

required more built-up land and industrial workers than ever before, which also led to 

relatively high urbanization speed. The incredible pressure of rapid urbanization on 

non-urban land was reflected by the high loss in farmland and vegetation land. A 

large amount of non-urban land was converted into built-up land. The farmland and 

vegetation decreased by 327.8 km² and 109.5 km², respectively.  

Compared to Xuzhou city, Dortmund city region in Germany showed different land 

cover change trends. The built-up area increased at a lower speed. In 1989, built-up 

area was 588.1 km², representing 20.77 % of the total area, and increased to 

738.9 km² in 2010. It has been observed that growth speed of built-up land was 

slower than that in Xuzhou city. Moreover, the annual growth rate decreased from 

8.30 km² to 5.85 km² over time, which indicates that the speed of development 

slowed down. Meanwhile, the corresponding reduction in farmland and vegetation 

land also slowed down. The trends in land cover change for the three important 

classes, built-up, farmland and vegetation areas are shown in Figure 5-4. 
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Figure 5-1: Classified land cover maps of Xuzhou city from 1990 to 2010 

 

Table 5-5: Land cover statistical data of Xuzhou city 

Classes 
1990 2001 2005 2010 

Area 
(km2) 

Percent 
(%) 

Area 
(km2) 

Percent 
(%) 

Area 
(km2) 

Percent 
(%) 

Area 
(km2) 

Percent 
(%) 

Built-up 174.6 6.03 333.4 11.50 418.3 14.44 566.9 19.57 

Farmland  2430.2 83.88 2303.4 79.51 2230.3 76.98 2102.4 72.57 

Vegetation 253.6 8.75 192.3 6.64 151.8 5.24 144.1 4.97 

Water 38.9 1.34 68.1 2.35 96.8 3.34 83.8 2.89 
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Figure 5-2: Classified land cover maps of Dortmund city region from 1989 to 2010 

 

Table 5-6: Land cover statistical data of Dortmund city region 

Classes 
1989 2000 2006 2010 

Area 
(km2) 

Percent 
(%) 

Area 
(km2) 

Percent 
(%) 

Area 
(km2) 

Percent 
(%) 

Area 
(km2) 

Percent 
(%) 

Built-up 588.1 20.77 679.4 24.00 715.5 25.27 738.9 26.10 

Farmland  1501.4 53.03 1442.4 50.95 1415.3 49.99 1398.3 49.39 

Vegetation 730.8 25.82 698.4 24.67 688.8 24.33 682.2 24.10 

Water 10.8 0.38 10.9 0.38 11.5 0.41 11.7 0.41 

 

 

 

 

 

 

 



86 Cheng Li 

Figure 5-3: Annual growth of built-up class 

 

Note: Xuzhou city (T1: 1990; T2: 2001; T3: 2005; T4: 2010). Dortmund city region (T1: 
1989; T2: 2000; T3: 2006; T4: 2010) 

Figure 5-4: Area percentage of built-up, farmland, and vegetation classes 

 

5.1.3 Land cover change in Xuzhou city and Dortmund city region 

To further evaluate the results of land cover conversions, the post classification 

comparison of change detection was carried out using GIS, producing matrices of 

land cover changes and change maps. 

The matrices of land cover changes during the study period of two areas (Tables 5-7 

and 5-8) show a summary of the major land cover conversions. The unchanged 
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pixels are located along the major diagonal of the matrix. The results for Xuzhou 

indicate that a total of 392.3 km2 of land was converted into built-up land accounting 

for about 67.6 % of the total land cover change area during 1990-2010. As indicated, 

the majority of built-up land came from conversion of farmland to urban uses. In 

particular, 74.2 %, 97.3 %, and 97.2 % of the increase in built-up land were 

converted from farmland in the periods 1990-2001, 2001-2005, and 2005-2010, 

respectively. It reflects the conflict between the increasing demand for built-up land 

and limited land resources. 

In Dortmund city region, the matrices (Table 5-8) show that 198.8 km2 land 

experienced change between 1989 to 2010, of which the urban conversion accounts 

for 75.9 %. This indicates that built-up development is the main component of land 

cover change within both Xuzhou city and Dortmund city region. Furthermore, major 

changes are also observed from farmland to built-up land. Approximately 86.0 %, 

84.8 %, and 64.5 % of new developed built-up land were acquired by converting 

areas that were previously farmland in the periods 1989-2000, 2000-2006 and 2006-

2010, respectively. The situation is similar with the corresponding conversions in 

Xuzhou city.  

Table 5-7: Matrices of land cover changes in Xuzhou city from 1990 to 2010 (unit: km2) 

 
Class 

Built-up Farmland Vegetation Water body 

 
1990 

2001 

Built-up 168.9 119.5 45 0 

Farmland 1.6 2285 16.4 0.5 

Vegetation 1 1.8 189.5 0 

Water body 3.1 23.9 2.7 38.4 

  
 

2001 

2005 

Built-up 325.4 83.9 9.1 0 

Farmland 1.2 2198.8 26.5 3.8 

Vegetation 2.8 0.6 148.4 0 

Water body 4 20.2 8.3 64.3 

  
2005 

2010 

Built-up 414.8 145.1 7 0 

Farmland 0.7 2073.7 13.6 14.4 

Vegetation 2.3 1.1 131.2 9.5 

Water body 0.5 10.4 0 72.9 
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Table 5-8: Matrices of land cover changes in Dortmund city region from 1989 to 2010 
(unit: km2) 

 
Class 

Built-up Farmland Vegetation Water body 

 
1989 

2000 

Built-up 584.8 79.4 15.2 0 

Farmland 0.9 1421.5 19.5 0.5 

Vegetation 2.4 0.3 695.7 0 

Water body 0 0.2 0.4 10.3 

  
 

2000 

2006 

Built-up 678.1 31.4 6 0 

Farmland 0.8 1409.1 5.2 0.2 

Vegetation 0.5 1.4 686.9 0 

Water body 0 0.5 0.3 10.7 

  
2006 

2010 

Built-up 713.6 16.2 8.7 0.4 

Farmland 1.1 1395.2 2 0 

Vegetation 0.8 3.3 677.6 0.5 

Water body 0 0.6 0.5 10.6 

Although above statistics generated the similar “from-to” information in both two 

study areas, they reveal few insights into the question of where land cover changes 

are occurring. Figures 5-5 and 5-6 show the location of major land cover conversions 

for the two study areas for understanding the spatial pattern of change during the 

study period.  

In Xuzhou city, the built-up land growth was observed in different forms. Fringe area 

has experienced rapid urbanization which is indicated by the rapid increase in built-

up land in this area. Meanwhile, some land was developed to built-up land beyond 

the existing developed areas. In addition, infill growth is also observed. In Dortmund 

city region, however, the majority of changes from other land to built-up land were 

concentrated along the periphery of existing built-up areas as well as in the areas 

that have already been developed. Although urbanization is generally driven by 

population and economic growth (Hu & Lo, 2007; Li et al., 2013a), the urban growth 

pattern in the study areas were associated with other factors such as accessibility to 

the city center.  

 

 

 

 

 



5 Results and discussion 89 

Figure 5-5: Spatial distribution of built-up land growth in Xuzhou city between 1990 
and 2010 

 

 

 

 

 

 

 

 

 



90 Cheng Li 

Figure 5-6: Spatial distribution of built-up land growth in Dortmund city region 
between 1990 and 2010 

 

5.1.4 Spatio-temporal characteristics of urban growth 

The previous section gave a general overview of the land cover and the changes that 

occurred in the study areas. In this section, changes of built-up land were addressed 

in both spatial and temporal in order to capture the spatio-temporal dynamics of built-

up land and provide an insight into the differences of urban growth characteristics 

between Xuzhou city and Dortmund city region.  
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The relationships between urban growth and distance from the existing built-up area 

were explored using buffer analysis. Figures 5-7 and 5-8 present the percentage of 

new developed area in each buffer zone to that in the whole buffer zones (𝑅𝑎). By 

using 𝐹𝑅 indicator, the results of buffer analysis for the new developed built-up land 

in two study areas are shown in Figures 5-9 and 5-10, in which urban expansion and 

its temporal dynamics are reflected. 

Figure 5-7: Change in 𝑹𝒂 with distance to the existing built-up over Xuzhou city in 
different periods 
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Figure 5-8: Change in 𝑹𝒂 with distance to the existing built-up over Dortmund city 
region in different periods 

 

Figure 5-9: Change in FR with distance to the existing built-up over Xuzhou city in 
different periods 
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Figure 5-10: Change in FR with distance to the existing built-up over Dortmund city 
region in different periods 

 

In Xuzhou city, overall, the new built-up area mainly focused on the first buffer zone 

around the existing built-up area with the frequency ratio larger than 1, and as the 

distance to the existing built-up increased, the frequency of built-up growth 

decreased until it reached 0 (see Figure 5-9). However, the characteristics of spatial 

pattern of built-up change varied over time.  

For the period of 1990-2001, Figure 5-9 shows a rapid decline in the buffer zones 

from 0 to 500 m with a peak value of 2.21, which suggests that the area experienced 

the high intensity change from other land to built-up land. Furthermore, according to 

Figure 5-7, the new developed built-up land in the first buffer zone accounted for 

78.54 % of new developed land occurred in the whole buffer zones, which implies 

that the urbanization in Xuzhou during this period was mainly concentrated within 

250 m from the existing built-up area. At 500 m, the curves kept a gradual and 

smooth downtrend with low FR value as the distance increased. The result shows 

that there existed significant correlation between distance to the existing built-up area 

and development of built-up land. Compared with the first period mentioned above, 

the curves for the periods of 2001-2005 and 2005-2010 present a significant change 

in intensity and magnitude of urbanization, which involved dramatic reduction in 

frequency ratio value and share of new built-up land within 250 m, while higher FR 

and proportion values in the outer buffer zone. The differences imply that the active 

area for high intensity development has been expanded to a larger zone, and the 
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effect of distance to the existing built-up on new developed land became weakened 

during this period. Thus, this finding can be considered as an indication of sprawling 

urban development. 

For Dortmund city region, the results of buffer analysis (Figures 5-8 and 5-10) reflect 

that the spatio-temporal patterns of built-up growth have similar characteristics both 

in terms of magnitude and intensity during the period from 1989 to 2010 with high-

initial peak values, followed by decline. The peaks of FR curves were observed in the 

range from 0 to 250 m around the existing built-up area, owning higher peak values 

than those of Xuzhou city. Beyond 250 m, however, the FR value rapidly declined to 

approach 0. This indicates that the intensity of land cover change remained at high 

level near the existing built-up land over study periods. In addition, more than 90 % of 

the new developed built-up land in the first buffer shown in Figure 5-8 suggests that 

the new developed land is mainly distributed very close to existing built-up areas. 

This trend was getting strengthened over time, which was reflected by the slight 

increase in proportional value of new built-up land in 0-250 m from 1989 to 2010. 

Comparing the buffer analysis results of the two study areas, they shared certain 

common characteristics. The development of new built-up areas was related to the 

distance to the existing built-up area. The shorter the distance was to the existing 

built-up area, the higher the intensity of land cover change. However, the curve of FR 

values for different periods and study areas reflects different spatio-temporal 

characteristics. In general, for Dortmund city region, the area close the existing built-

up land experienced a higher intensity of urbanization, and a larger proportion of new 

developed built-up land was concentrated in first buffer zone compared with Xuzhou 

city. Furthermore, there are other significant differences in variance of share of new 

developed built-up land over time. The share of new built-up land in the first buffer 

zone decreased over time in Xuzhou city, whereas a slight increase in share value 

was observed in Dortmund city region. These differences in spatio-temporal 

characteristics of built-up change show the different urbanization processes the two 

study areas experienced. 

To further explore the differences between the two study areas, we used the 

jaggedness degree to quantify and compare the urban forms and development 

patterns. The jaggedness degree (Table 5-9) shows very distinct spatial differences 

between these two study areas, which enables a more detailed view of how urban 

form varied. The jaggedness degree for Dortmund city region was much lower at 
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each time point compared with contemporary jaggedness degree for Xuzhou city, 

indicating relatively compact urban form for Dortmund city region. The higher 

jaggedness degree for Xuzhou city means that it had a more dispersed urban form. 

The urban form of Xuzhou city was characterized by dispersed built-up areas around 

the main city center, most of which were small-sized rural settlement areas. 

Moreover, the temporal changes in jaggedness degrees represent two different 

urban development trends. The slight decrease in jaggedness degrees during study 

period indicates that Dortmund city region underwent compact development, which is 

also reflected by the buffer analysis that most of new developed built-up land 

occurred around the existing built-up land. Dortmund city region experienced 

effective growth to produce big and dense city cores for providing the necessary 

services and management facilities for its inhabitants. Whereas the situation is just 

opposite in Xuzhou city; an increase in jaggedness degrees for Xuzhou city suggests 

that it had dispersed development trend. A jump on value from T2 (2001) to T3 

(2005) shows the increased sprawling development trend, which can be explained by 

the fact of rapid urbanization and increasing new dispersed built-up land. 

Table 5-9: Jaggedness degrees of the two study areas 
Study area T1 T2 T3 T4 

Xuzhou city 55.95 56.73 58.5 59.83 

Dortmund city region 29.72 29.36 29.34 29.15 

5.2 Analysis of urban growth 

5.2.1 Urban spatial pattern  

To further describe and analyze urban growth process of Xuzhou city, a set of spatial 

metrics were used to quantify the spatial-temporal patterns of urban growth. Table 5-

10 presents statistical data of temporal change of six different spatial metrics from 

1990 to 2010. 

Overall, the change of metrics reveals the spatial-temporal pattern of urban change 

during study period. The allocation of urban area includes both the developing 

outward from the original city core and the growth of new individual urban patches, 

which are illustrated by the increases in the both of LPI and NP. Some individual 

urban patches continued to grow together to form a larger patch, the connection of 

individual urban patches is increasing, according to the decreasing ENN value. It also 

implies the significant loss of open space between urban patches. As the increasingly 

rapid urbanization process, Xuzhou’s diffuse sprawling development and fragmented 
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growth of existing urban area are illustrated by the continuous increases in 

SHAPE_AM, and NP. 

Temporally, rapid urbanization in Xuzhou went through three periods, the urban 

growth pattern in each period can be obtained and interpreted through the temporal 

change of spatial metrics.  

In the period of 1990-2001, the rapid development around the city core led to the 

increase in the size of the main urban area, which is illustrated by an increase in LPI. 

The relatively complete infrastructure and transportation around city center provided 

a good opportunity for development. The development in this period was 

characterized by concentric expansion. For the period of 2001-2005, a larger 

proportion of urban expansion in Xuzhou was focused on the development of new 

urban patches, rather than the expansion of the existing urban patches. A dispersal 

of new development on isolated areas separated from other areas by vacant land 

can be observed on the urban-rural fringe area. It indicates urban expand through 

leapfrog expansion. We assumed that the potential of further urbanization in city 

center is exhausted after the rapid development during 1990-2001. The vacant land 

left for development around the main city received more attention. Consequently, the 

massive construction of infrastructure, and factories formed many new urban 

patches, which have been a key factor contributing to the rapid expansion of urban 

areas. In addition, compared to the period of 1990-2001, the continuous complex 

urban form development slowed down in the period of 2001-2005, as evidently 

indicated by the slight increase in SHAPE_AM, although the number of new patches 

significantly increased. This is partly due to the relatively small size of these new 

developed urban patches. Smaller patches weigh less than larger patches according 

to the definition of SHAPE_AM. As opposed to focusing on the development of new 

patches in 2001-2005, the continued growth in Xuzhou focused on the extension of 

historical urban cores and the increasing connection of recent individual urban 

patches already close to the center, which are indicated by the significant increase in 

LPI, and the slight increase in NP. As a result, only a few new urban patches were 

established. The existing individual urban patches grew together to decrease the 

distance between patches, becoming more connected with central urban patches, 

which can be confirmed by the decreasing ENN value. The most of new urban areas 

expanded rapidly along the east and south-east development axes to form new 

development centers, which were attributed to the improved infrastructure and 



5 Results and discussion 97 

transportation. Furthermore, the more significant increase in SHAPE_AM compared 

to two other periods exhibited diffuse sprawl urban development pattern which were 

explained by the fact that historical urban patches grew together to form larger but 

more complicated patches. 

Table 5-10: Statistical summary of spatial metrics calculated for Xuzhou city 
Date NP  LPI  SHAPE_AM  ENN_AM 

1990 2345 1.8253 3.42 297.01 

2001 2412 3.7846 5.21 275.01 

2005 2489 4.6318 5.73 261.87 

2010 2509 7.07 8.46 246.36 

 

Figure 5-11: Changes of spatial metrics across Xuzhou city for 1990-2001 (left column) 
2001-2005 (central column), and 2005-2010 (right column) 

 

The changes of spatial metrics values at local scale are shown in Figure 5-11. The 

results indicate that the variations of spatial metrics have spatio-temporal 



98 Cheng Li 

heterogeneities. Moreover, the changes can be related to the urbanization intensity. 

The areas with intensive urbanization experienced more significant variations of the 

urban spatial patterns. For example, most of blocks with significant changes of 

spatial metrics are found in the area around the city core. 

5.2.2 The cause-effect relationships in the urban growth process 

5.2.2.1 The effects of urbanization on urban growth patterns 

Spatial patterns of urbanization intensity index are illustrated in Figure 5-12. 

Specifically, city core witnessed the most significant urban growth. However, as the 

continuous development of the city core, the fringe area also experienced rapid 

urbanization as indicated by the Figure 5-12. 

Figure 5-12: Urbanization intensity patterns in Xuzhou city for 1990-2001 (left), 2001-
2005 (central), and 2005-2010 (right) 

 

In order to explore the effects of urbanization on urban growth patterns, OLS and 

GWR were used in this study. OLS models took the entire region as a whole to 

explore the effects of urbanization on spatial pattern changes. The results only 

provide a statistical average parameter for the whole study area, but when the GWR 

results were mapped, the variables changes throughout the study area. The Adjusted 

R² and AICc values generated by GWR and OLS models for different periods are 

shown in Table 5-11. In all cases for different periods, the results obtained by GWR 

are characterized by higher R² and lower AICc values compared with corresponding 

OLS models. The comparison of these two indicators suggests that GWR models 

perform better than OLS models in investigating the relationships between urban 

spatial patterns and urbanization. The results obtained from GWR indicate that the 

transformations of spatial patterns are significantly associated with urbanization 

process. 

Moreover, Table 5-11 also summarizes the Moran’s I statistics on the models 

residuals from GWR and OLS. Significant positive spatial autocorrelations are found 
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in all OLS models, which are characterized by higher Moran’s I values ranging from 

0.225 to 0.574. In contrast, the Moran’s I values of GWR models range from 0.011 to 

0.090, which indicates that GWR models can improve the reliability of relationships 

by effectively reducing spatial autocorrelations in residuals. 

Table 5-11: Comparison between GWR and OLS models 

  

Adjusted R² AICc Moran's I 

GWR OLS GWR OLS GWR OLS 

1990-2001 
NP 0.447 0.223 3960.9 5067.6 0.013 0.283 

LPI 0.677 0.270 4627.0 5722.7 0.025 0.484 

SHAPE_MN 0.342 0.074 721.7 839.5 0.015 0.250 

2001-2005 
NP 0.415 0.083 3642.0 5689.6 0.052 0.381 

LPI 0.653 0.250 3676.6 4723.1 0.011 0.261 

SHAPE_MN 0.313 0.061 392.4 680.8 0.090 0.388 

2005-2010 
NP 0.488 0.011 4702.2 7033.5 0.057 0.401 

LPI 0.744 0.542 4951.3 6024.4 0.069 0.574 

SHAPE_MN 0.529 0.285 1095.9 2223.7 0.017 0.225 

As shown in Figure 5-13, the spatially varying coefficients indicate that the 

relationships between the variations of four spatial metrics values and urbanization 

intensity index varied spatially across the study area.  

Both the positive and negative correlations between the variations of NP and 

urbanization are identified. In 1990-2001, the significant negative correlation with the 

coefficients smaller than -0.05 is observed in a large part of Xuzhou city, implying 

that the accelerating urbanization could result in degradation of NP. The negative 

relationship is also found in the city core, which indicates the aggregation 

development in the city core. The temporal changes of effects of urbanization were 

also investigated in this study. Along with the urbanization process, the area with the 

negative effects of urbanization on NP is declining. Especially in the period of 2005-

2010, the variation NP in the fringe and rural areas received the significant positive 

effects of urbanization, which suggests that the newly developed urban land is 

fragmented. The rapid urbanization led to the development of new urban patches, 

instead of the expansion of existing urban patches.  

The spatio-temporally varying effects of urbanization on the variation of LPI are also 

explored. Regarding the period of 1990-2001 and 2001-2005, urbanization had a 

significant positive impact on the increase of LPI in city core, as evidenced by the 

coefficient higher than 0.3. It indicates that the development focused on the 

expansion of the existing core urban patches along with the urbanization process. 

This could be explained by the good accessibility to the importance facilities in core 
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urban patches. However, the negative correlation played an important role in the 

dynamics of LPI in less urbanized area since 2001, which implies that the increase of 

LPI was negatively related with urbanization intensity. This is also consistent with the 

positive effect of urbanization on NP. The significant increase in NP resulted in the 

decrease of LPI along with urbanization process. Compared to the two former 

periods, the areas which received strong impact from urbanization were smaller in 

size and more fragmentation, while the other areas in the city core received less 

significant impact during 2005-2010. The city core was developed to almost its full 

capacity after the rapid urbanization in former two periods.  

Figure 5-13: Spatial distributions of the coefficients obtained from GWR  

 

As shown in Figure 5-13, the effects of urbanization on the variations of SHAPE_MN 

value varied over study area during the study period. The areas with more significant 

positive effects were larger during 2005-2010, which indicates that accelerating 

urbanization could lead to more complex patterns in most of study area than other 
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periods. As a new development center in 2005-2010, the eastern area of Xuzhou city 

experienced a significant increase in SHAPE_MN caused by urbanization. In the 

same area, however, urbanization had negative impacts on the variation of 

complexity during the previous periods. 

In summary, the results generated from GWR suggests that the historical urban 

growth patterns in Xuzhou city can, in considerable part, be explained by 

urbanization process with relatively high levels of explanation of the spatial variability. 

This corresponds with the findings in literature related to other cities in the world (Yeh 

& Huang, 2009; Weng, 2007; Luck & Wu, 2002). Moreover, the research extends 

these previous studies by investigating spatio-temporally varying effects of 

urbanization instead of global qualitative effects. 

By combining GWR models with temporal analysis, this study identifies how the 

processes of urbanization differentially influenced the urban spatial patterns. The 

significant correlations were found around the city core and fringe area in 1990-2001. 

This can be due to locations closer to the city center offering more opportunities to 

access socioeconomic resources. In the city core, the landscape is dominated by a 

well-connected urban land after the rapid urbanization. In contrast, the expanded 

urban land in fringe area is always highly fragmented and complex in shape (Su et al, 

2011). Therefore the most significant effects of urbanization are located in the fringe 

area rather than in the city core especially in 2005-2010. Furthermore, the temporal 

changes of effects of urbanization were also investigated in this study. The effects of 

urbanization on the variations of spatial patterns varied over the study period, which 

can be explained by the socioeconomic processes and the consequence of urban 

development policy. During the period 1990-2001, urbanization mainly occurred in 

the city core. Due to the lack of space for further development in the city core, the 

urbanization gradually slowed down. In contrast, the urban fringes were those places 

where rapid urbanization occurred since 2001. As a result, the influences of 

urbanization on fragmentation and irregularity varied significantly over time in the 

fringe area. Therefore, there is a relay-race effect of the changes of spatial patterns 

in response to urbanization: the former urban core gradually became stabilized with 

the city fringes experiencing the rapid variation of spatial patterns (Weng, 2007). In 

addition, the urban growth was focused more on the development of new city centers 

in the period of 2005-2010. 
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5.2.2.2 The effects of driving factors on urban growth 

The relationships between spatial variables and urban growth were explored through 

logistic regression. Before preforming logistic regression, a correlation analysis was 

first implemented for the spatial variables. The results indicate that Dis2CBD and 

Dis2Cens are significantly correlated variables with the Pearson correlation 

coefficients of 0.680, 0.702 and 0.654, respectively. They are redundant and may 

cause multicollinearity. In order to exclude redundant variable and select optimum set 

of variables, logistic regression was estimated for two possible variables sets, which 

considered all variables excluding Dis2Cens (Variables set 1) or Dis2CBD (Variables 

set 2). By involving the independent variables in logistic regression models, 

Dis2Town is not significant, while the other variables are significant at 0.01 level. 

According to the significance test, it is necessary to construct a modified model which 

excludes the variable considered to be insignificant. The results of the logistic 

regression models with the all independent variables are illustrated in Table 5-12. 

When using ROC values to compare the performance of different combinations of 

spatial variables, the model involving Dis2CBD generated the best results for 1990-

2001. While regarding the 2001-2005 and 2005-2010, the combinations including 

Dis2Cens achieved higher ROC values. Therefore, the variables set 1 was identified 

as the optimal variables set for explaining urban growth in 1990-2001, and set 2 for 

the rest of study periods, respectively. 

Table 5-12: Logistic regression models results for three periods 

 

1990-2001 2001-2005 2005-2010 

Variables 
set 1 

Variables 
set 2 

Variables 
set 1 

Variables 
set 2 

Variables 
set 1 

Variables 
set 2 

Dis2CBD -1.468 - -1.223 - -0.948 - 

Dis2Cens - -1.250 - -1.716 - -2.303 

Dis2MajR -1.166 -1.254 -1.070 -1.091 -1.578 -1.306 

Dis2MinR -0.830 -0.768 -0.938 -0.903 -0.757 -0.644 

Dis2Urban -3.347 -3.552 -3.142 -3.135 -3.012 -3.062 

PopDen 1.432 1.432 0.421 0.399 -0.547 -0.314 

Slope -2.273 -2.164 -2.151 -2.027 -0.600 -0.623 

Subsidence 0.460 0.457 0.513 0.498 0.209 0.157 

Environment 0.272 0.329 0.237 0.315 0.137 0.148 

ROC (%) 87.7 86.4 87.1 87.5 87.6 88.5 

The interpretation of the multi-temporal calibrated results is crucial for analyzing the 

urbanization process in Xuzhou from 1990 to 2010. The study suggests that the 

historical urban growth patterns in Xuzhou city can be affected by distance to CBD, 
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distance to district centers, distance to roads, slope, population density, 

neighborhood effect, spatial policy, etc. This corresponds with findings from other 

cities in the world (Braimoh & Onishi, 2007; Clarke et al., 1997; Weng, 2007). ROC 

values of 87.7 %, 87.5 %, and 88.5 % for three periods were obtained, which imply a 

high degree of spatial consistency between the actual urban patterns and simulated 

results using the variables and their estimated coefficients. Importantly, a set of 

coefficients in Table 5-12 presented not only the relative importance of each variable 

in urban growth process, but also the temporal dynamic of effect of each variable on 

urban growth over study periods. It can be used to explain the urban growth and 

identify the effects of driving factors underlying urbanization. 

Among the variables, neighborhood had the strongest negative effect on urban 

growth probability indicating urban growth was more likely to take place around the 

existing urban area. This is consistent with previous findings (Braimoh & Onishi, 

2007; Hu & Lo, 2007; Li et al., 2013a). This result can be explained by the fact that 

areas close to the existing urban areas have lower development costs and better 

accessibility to urban infrastructure (Verburg et al., 2004a). The slight decrease in the 

absolute coefficient value from 3.347 to 3.062 indicates the decreasing effect of 

neighborhood on the urban growth, which can be mainly reflected by the fact of 

construction in fringe area and increased sprawling development trend. 

Consequently, more and more discontinuous urban land was located further away 

from the existing urban area. This is also explained by the buffer analysis. The 

development within high density of built-up area in main city was constrained, while 

more and more new urbanized areas were found in fringe area. 

The coefficients of distance to socioeconomic centers suggest that the variables had 

the negative effects on urban growth probability. The areas which have great 

accessibility to these centers had more probability of development. It is worth noting 

that the optimal variable regarding the distance to socioeconomic centers varied from 

Dis2CBD to Dis2Cens along with the urbanization process. Furthermore, the 

absolute value of coefficient increased dramatically from 1.250 to 2.303 during 2000-

2010. The significant variation may have been due to the implementation of 

polycentric development. The available land for further urbanization in city center was 

extremely reduced and mostly exhausted after the rapid development during 1990-

2001. In order to promote regional economic integration as well as to avoid the “big 

pancake” form generated by the limitless expansion of the city core, which could 
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result in a series of problems, such as air pollution, traffic jams, loss of green space, 

increased “heat island” effect (He et al., 2006), the polycentric development has been 

proposed as a new planning policy to guide the future development in Xuzhou. Within 

the framework of the policy, the development in the city core was constrained; in 

contrast, development in the fringe around the separated district centers was 

promoted. The similar trends can also be observed in some big cities in China, such 

as Shanghai and Hangzhou, in which the linkages between former city cores and 

new developed regions are getting closer to promote regional economic integration 

and high efficiency of land use (Cui & Shi, 2012; Wu & Zhang, 2012). 

The Dis2MajR is another significant factor. Areas with good accessibility to major 

roads are more easily selected for urban development (Luo & Wei, 2009). However, 

the slight decrease and increase in the coefficient of this factor was found in this 

study, which can be partly attributed to the shift of development focus from city core 

to outside the city core. In the period of 1990-2001, concentric development played 

an important role in shaping the urban growth pattern. The city core continued to 

expand along with the existing major roads. However, with the implementation of new 

planning policy since 2001, new developed area was found in fringe area to improve 

the infrastructures and facilities conditions for further development. New roads were 

constructed to improve the accessibility. After the improvement of living and working 

condition, the new built-up areas were developed near the roads for good 

accessibility, which led to increase of effect of this factor on urban growth.  

The dramatic variation of effect of population density on urbanization patterns was 

found in this study. During the period of 1990-2001, the population density was 

positively correlated with the urban growth probability, which suggests the 

development focused on the existing city core with large population density. The 

relatively complete infrastructure and transportation in the city core provided a good 

opportunity for development. For the period of 2001-2010, urban growth in Xuzhou 

was focused on the development of new urban patches which were in the fringe 

area, rather than the expansion of the city core. The vacant land with low population 

density in the fringe area received more attention. Therefore, PopDen had a negative 

effect on urban growth. 

Slope is a main natural constraint (Aspinall, 2004), which has a negative effect on 

urban growth. However, the result shows that the effect of this factor on urban growth 

decreased over time, especially in the period of 2005-2010. The weakened influence 
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can be explained by the following facts: (1). Due to the limited suitable construction 

areas located on flat land and protection of farmland, the vacant land left for future 

development is limited and located on the steep slopes. Some areas with higher 

slope value were selected as developed land. (2). The improvement of construction 

technology provides an effective way to conduct construction projects on the steep 

land with less cost compared to before (Ye et al., 2011). This trend is more likely to 

continue in the future to balance the conflict between protection of farmland and 

increasing demand of urban area. However, this phenomenon also suggests an 

increasing pressure for development in the mountainous areas which are regarded 

as ecologically valuable zones. Moreover, the policy factors (Subsidence and 

Environment) have slight effects on urban growth during the study period, indicating 

the lack of consideration of environment protection and scientific land use 

management along with the rapid urbanization process. 

5.3 Urban growth simulation 

5.3.1 Calibration results and historical urban growth simulation 

The calibration of the CA model was conducted by using the hybrid method. The 

spatial variables in chapter 5.2.2.2 except Dis2Urban were calibrated using logistic 

regression. Neighborhood configurations including neighborhood type, function, and 

size, as well as random variable were estimated by “trial and error” approach.  

The specific procedure of calibration and validation followed three steps. Take the 

period of 1990-2001 as an example: 

1) The historical urban growth (1 = changed and 0 = no change) was set as a 
dependent variable, and the global factors after standardization were set as 
independent variables. Based on the historical urban development trends, the 
weights for the global factors were accurately determined using a binary logistic 
regression model. 

2) The neighborhood configurations were calibrated through the trial and error 
method by running the model many times with different neighborhood 
configurations, while the random variable was set as 0, and held constant. The 
figure of merit value was calculated for each simulated result to measure the 
overall performance of the model (Figure 5-14). The results show that the model 
with neighborhood type of Von Neumann Circular and exponent value of -0.5 
generated the simulation result with the highest value. Therefore, they were used 
for further simulation. 

3) Various simulations were performed using random variables in the range 0-3 
with 0.1 increment and different neighborhood sizes. Figure of merit value was 
calculated at each neighborhood size and random variable (Figure 5-15(a)). 
Because of the involvement of random variable, each simulation generated 
different result with different value of figure of merit. However, the stochastic CA 
can maintain stability in spatial pattern (Yeh & Li, 2006). A range of random 
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variables (0.8-2.0) were selected to ensure that CA model can generate 
relatively high figure of merit values. Focusing on this range, Rd value was 
calculated for each simulation result (Figure 5-15(b)). The result indicates that 
random variable and neighborhood size should be set with values of 1.8 and 1 
respectively so as to fit the observed urban land use map in terms of location 
and pattern.  

Figure 5-14: Variation of figure of merit value response to neighborhood configuration 
variation. (a) The figure of merit value calculated for different exponent values and 
sizes using Moore type, (b) The figure of merit value calculated for different exponent 
values and sizes using Moore Circular type, (c) The figure of merit value calculated for 
different exponent values and sizes using Von Neumann Circular type and (d) The 
figure of merit value calculated for different neighborhood types and sizes when 
exponent is set as -0.5 

 

Figure 5-15: Variation of figure of merit and Rd values response to neighborhood size 
and random variable variation. (a) The figure of merit value calculated for different 
neighborhood sizes and random variables and (b) The Rd value calculated for 
different neighborhood sizes and random variables 
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The same procedure was used to calibrate the cellular automata models for other 

periods. The estimated parameters for the periods of 1990-2001, 2001-2005 and 

2005-2010 are listed in Table 5-13.  

Table 5-13: Calibration results of the CA model during 1990-2001, 2001-2005 and 2005-
2010 

 Parameters 1990-2001 2001-2005 2005-2010 

Global  
suitability  

factors 

Dis2CBD -1.422 - - 

Dis2Cens - -1.697 -1.964 

Dis2MajR -1.295 -1.114 -1.470 

Dis2MinR -0.975 -1.002 -0.843 

Slope -1.636 -1.392 -0.375 

Popden 0.846 0.254 -0.310 

Subsidence 0.413 0.435 0.343 

Environment 0.363 0.328 0.239 

Neighborhood 
configurations 

Type Von Neumann  
Circular 

Von Neumann  
Circular 

Von Neumann  
Circular 

Function exp(-0.5*D) exp(-0.5*D) exp(-0.5*D) 

Size 1 2 2 

Random Variable 1.8 2.0 2.1 

The temporal changes of relative importance of global suitability factors are 

discussed in chapter 5.2.2.2. Besides the global suitability factors, the temporally 

varying neighborhood configurations and random variables provide an insight into the 

urbanization process. Previous studies have confirmed that neighborhood effect 

plays an important role in urban growth patterns (Hu & Lo, 2007; Li & Yeh, 2000). 

However, the result differs from that found in previous studies (Li et al., 2013a; Reilly 

et al., 2009), which only considered the variation of the weight of neighborhood 

factor, while the variation of neighborhood configuration was ignored. In this study, a 

better understanding of neighborhood factor was obtained by estimating the 

neighborhood configuration. The trial and error method was used to reveal the 

variation in neighborhood configuration along with urbanization process. 

The simulation most fits the observed pattern when the Von Neumann Circular was 

used. This could be attributed to the significant distortions between cells at different 

directions (Li & Yeh, 2000). The weighting assignment for each cell in neighborhood 

is done by the weighting function. The parameter 𝛽  controls the shape of the 

weighting function curve. The simulated maps most fit the observed ones when 𝛽 is 

set as 0.5. Thus, the steeper weighting function of exp(-0.5*D) rather than commonly 
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used average weighting function was determined. Compared to other weighting 

functions, the distant cell received a smaller weight. Although large neighborhood 

size is widely used in many studies without calibration, the relatively smaller size is 

identified through the calibration in this study. It indicates that neighborhood effect 

only focused on the area close to the existing urban area. Especially during the 

period of 1990-2001, the neighborhood size of 1 suggests that only adjacent cells 

were involved into the calculation of neighborhood effects. The increase of 

neighborhood size during 2001-2005 indicates that urban grow tended to take place 

in locations further away from developed areas.  

The random variable was further calibrated by running the model with different 

random variables and comparing the simulated results with the observed urban land 

use. The random variable reflects the complexity of urbanization process. The 

stochastic implementation produces “leap-frog” growth of urban land uses (Barredo 

et al., 2003). This was set as 1.8, 2.0, and 2.1 for different study periods respectively 

following trial and error approach. The value allows of generating a sufficient number 

of new “seed” cells of urban land use in new location such as fringe and rural areas, 

which will be subsequently developed. Therefore non-continuous growth of urban 

land use is produced. The increase in the random variable suggests that the 

stochastic level involved in urban growth became higher. The more random factors 

were involved into the urbanization process to create a more dispersed urban 

pattern. 

The calibrated CA model was then used to simulate urban growth in Xuzhou during 

the periods of 1990-2001, 2001-2005, and 2005-2010, respectively. The observed 

and simulated maps are shown in Figure 5-16. A visual comparison during the study 

period shows that the results produced by the CA models matched well with the 

actual urban extent. However generating the correct location of each simulated land 

use cell is very difficult due to the path dependence and uncertainty factor (Brown et 

al., 2005). The assessment of error in CA modeling is important for understanding 

the results of simulation. As shown in Figure 5-17, the actual urban development 

map was overlaid with simulation map to identify the four groups of cells (observed 

change simulated as persistence, observed persistence simulated as change, 

observed change simulated as change, observed persistence simulated as 

persistence). Owing to the transition rules of CA models, such rules can in effect 

evenly locate new urban cells mainly in the city core and around the edge of initial 
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urban patches. As a result, some of simulated urban cells in the city core were 

located where no changes from non-urban to urban land uses took place. While 

some real developed cells in fringe and rural areas were underestimated by models. 

The errors found in simulation results also reveal that some errors are caused by 

issues not related to the model, such as the complexity of urban growth. Urban 

growth process usually have some unpredictable features because of the complexity 

of nature. Although the uncertainty of urban growth can be represented by 

incorporating random variable, as demonstrated by Yeh and Li (2006), each 

simulation will generate different result when the inputs are the same because of the 

involvement of random variable. However, major uncertainties caused by random 

variable only existed in the fringe and rural areas, which can partly explain the errors 

in simulating new isolated urban cells outside the city core. Furthermore, some errors 

are observed due to the difficulties in considering all driving factors. The number of 

variables used in CA simulation will affect its outcome (Yeh & Li, 2006). For example, 

the urban simulated as non-urban in the city core was mainly located in the southern 

and eastern part, where the development policies acted as an accelerating factor to 

promote more new development. However it was not involved into the transition 

rules, which made the accurate simulation of urban growth more difficult.  

In addition to the description of visual comparison, the quantitative validation 

methods are required to quantify the degree of error of the simulation results. 

Figure 5-18 presents a summary of the error analysis according to Figure 5-17. The 

value represents the number of cells at the resolution of 100 m. The union sections of 

observed change simulated as persistence and observed change simulated as 

change represent the area of change according to the reference maps, and the union 

sections of observed change simulated as change and observed persistence 

simulated as change are the area of change according to the simulation maps. 

Table 5-14 presents the simulation accuracy at cell level. The figure of merit was 

calculated based on the quantitative error analysis. It enables to assess the cell to 

cell coincidence between simulated and actual maps in a more realistic way than 

more common metrics as Kappa index which are usually calculated using the entire 

area with fixed land use (Santé, 2010). As presented by the figure of merit, 30.6 %, 

33.2 %, and 27.7 % of overlap in the observed change and the predicted change is 

found in 2001, 2005, and 2010 respectively. The models for 2001 and 2005 produced 

more matches with the actual maps. However the model for 2010 is the one that 

produced less matches, which could be partly attributed to the urbanization process 
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during this period as discussed in the previous sections. New development areas 

were promoted by planning policies, which cannot be involved in the transition rules. 

In addition, the increase in stochasticity of development indicated by random 

variables also influenced the performance of the CA model. The overall agreement 

between the simulated and observed maps are shown by the relatively higher values 

of overall accuracy, which ranges from 94.4 % to 97.1 % 

Besides the matching the exact location of urban land use change, the generating 

urban patterns similar to actual urban spatial patterns is also an important objective 

of CA models. Spatial metrics were used to objectively characterize the spatial 

pattern observed in the visual analysis in order to make quantitative comparison and 

to determine whether simulated patterns are similar to the actual patterns. Table 5-15 

shows the spatial metrics values for the multi-temporal simulations results. Figure 5-

19 used the relative difference of the spatial metrics values between the simulated 

and observed maps to further evaluate the performance of the CA models at pattern 

level. According to the analyzed spatial metrics, the models produced the urban 

spatial patterns substantially close to the observed ones. When looking at the Rd 

value calculated for the different spatial metrics, however, the models had relatively 

larger error in the simulated NP. The CA models generated lower number of patches, 

which were larger and more clustered than those in observed patterns. The isolated 

cells can be developed only by involving the random variables in this model, such 

that some of small new patches cannot be generated. Although fewer patches 

generated by CA models, the lower Rd values of SHAPE_AM and ENN_AM indicate 

that the compaction and isolation were similar to the observed ones. 

The validation results shown above reveal that the CA models for three time points 

have the ability to produce the multi-temporal simulation results which can be 

considered to be in line with the observed maps in terms of location and pattern 

similarity.  
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Figure 5-16: Simulation results of urban growth in 2001-2010. (a) Actual and (b) 
simulated 
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Figure 5-17: Spatial distribution of corrects and errors of the simulation results 

 

Figure 5-18: Quantities of correct and errors values in the model validation 
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Table 5-14: Quantitative assessement of accuracy based on cell by cell comparison (%) 
Year Figure of merit Overall accuracy 

2001 30.6 94.8 

2005 33.2 97.1 

2010 27.7 94.4 

 

Table 5-15: Simulated and observed spatial metrics for urban land use 

 

 
NP LPI SHAPE_AM ENN_AM 

2001 
Observed 2412 3.78 5.21 275.01 

Simulated 2195 3.93 5.53 280.63 

2005 
Observed 2489 4.63 5.73 261.87 

Simulated 2307 4.89 5.72 273.57 

2010 
Observed 2509 7.07 8.46 246.36 

Simulated 2354 7.36 8.56 250.48 

 

Figure 5-19: Validation of CA models in terms of spatial metrics 

 

5.3.2 Future development scenarios 

In addition to the simulation of historical urban growth, the combination of the 

different parameters enabled to produce a series of maps showing the future 

scenarios for Xuzhou city from 2010 to 2020. Through the transformation from 

logistic regression to MCE, the parameters of global factors in CA models for 

business as usual scenario were defined by AHP. In order to evaluate the 

performance of the transformation method and to check whether the weights of 

global factors were identified correctly, ROC values were calculated to assess the 
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goodness of fit between the suitability maps generated by logistic regression and 

MCE. The high values of 0.93, 0.91, and 0.94 were obtained, which verify the 

accuracy of this method. 

Furthermore, the parameters of CA model were modified according to the story-line 

of each scenario and the weights of business as usual. As illustrated in Figure 5-20, 

the elements of the story-line of each urban growth scenario were defined through 

the AHP process, in which the value represents the relative importance of global 

factors used for each scenario. Under the CDS scenarios, Dis2CBD was considered 

to represent the distance to socioeconomic centers, while Dis2Cens was used for 

other scenarios instead of the Dis2CBD. A summary of the neighborhood 

configurations and random variables, and constraints for each scenario is given in 

Table 5-16.  

Figure 5-20: Relative importance of global factors for each scenario 
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Table 5-16: The configurations of CA model for each scenario 

  BUS PSS CDS DDS MDS 

Neighborhood 
configurations 

Type 

Von 

Neumann 

Circular 

Von 

Neumann 

Circular 

Von 

Neumann 

Circular 

Von 

Neumann 

Circular 

Von 

Neumann 

Circular 

Size 2 2 1 3 1 

Exponent 
value 

-0.5 -0.5 - 0 - 

Stochastic 
perturbation 

Random 
variable 

2.1 2.1 1.5 3.0 1.5 

Constraint 

Nature water water water water water 

Policy - 
Master 

planning 
- - 

Mater 

planning 

 

Using the modeling configuration, the input map of 2010, we performed simulations 

under the five scenarios aiming to project alternative spatio-temporal patterns of 

urban growth in 2020. Figure 5-21 shows the simulated spatial patterns of urban land 

use in 2020. Although these scenarios are simple, they are rooted in some facts of 

Xuzhou urban development patterns and spatial policies. Because of the 

incorporation of AHP and MCE, the scenarios have a potential to connect urban 

growth modeling with decision making process, which is important for the future 

development. Although all scenarios have the same urban land area as that of the 

2010-2020 urban planning, the urban growth patterns differed. We can visualize how 

the different policy options and development constraints led to differences in urban 

spatial pattern for each scenario.  

Due to the fact that the historical trend continues without any additional policy 

intervention, the urban growth consistently agglomerates the small urban patches 

around the city center by 2020. Meanwhile, the urban land sprawls significantly in 

fringe and rural areas.  

The urban master plan of 2010-2020 aims at solving the environmental problem, 

achieving coordinative development of urban-rural area and promoting regional 

economic integration. As expected, the PSS generates several new development 

hotspots, which are located in both fringe and rural areas. A large part of urban 

development is focused within the urban growth zones that are defined in master 

plan of Xuzhou city. However, some new scattered patches are also observed 

because other parameters kept same with the historical simulation models.  

Under CDS scenario, due to the fact that we did not use constraints within the urban 

area, changes occur within the city core, thereby making it denser. This indicates that 
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green urban area and leisure facilities change to urban land use where the model 

finds them suitable for development. In addition, some new urban land tends to 

cluster around the city center, while new development far from the city center is 

rather scarce. It can be interpreted as the shift to a more efficient in land use which 

encourages the infill and edge growth, without developing new scattered urban 

patches.   

In the DDS scenario, accessibility seems to control the spatial pattern of urban land 

to a large extent. Most of new urban land scatters in the fringe and rural areas along 

the main road in order to achieve a good accessibility. However, new urban 

development seldom occurs in the city core where the rapid urban growth is 

observed under CDS which indicates that the open spaces within the urban core are 

remaining. The urban land presents a large sprawl in fringe and rural areas. The 

growth pattern extends over adjacent and environmentally sensitive areas such as 

environment protection areas, subsidence areas by 2020 which suggests that 

introducing environmental constrains is an effective way to exclude the development 

of the environmentally sensitive area. 

Compared to other scenario, MDS scenario is characterized by the compact 

polycentric development. The pressure of land conversion is constantly high due to 

the large population and rapid economic development in the city core. Instead of the 

concentrated development around the city center in compact development scenario, 

several hotspots with relatively larger size are promoted in fringe and rural areas 

when considering the benefits of dispersed development and the coordination 

development between urban and rural areas. The spatial distribution of the new 

hotspots is based on the master plan of Xuzhou city. Within each hotspot area, the 

new development provides a more compact urban area, with higher degree of urban 

coherence.  
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Figure 5-21: The alternative urban maps of Xuzhou city for 2020 under different 
scenarios: (a) business as usual scenario (BUS), (b) planning strengthened scenario 
(PSS), (c) compact development scenario (CDS), (d) dispersed development scenario 
(DDS), and (e) moderate development scenario (MDS) 

 

To further evaluate and compare these scenarios, NP, LPI, SHAPE_AM and 

ENN_AM were used to further clarify the differences between the five scenarios by 
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quantifying the spatial pattern under each scenario. In order to capture the urban 

growth patterns during the period of 2010-2020, the observed urban pattern in 2010 

was also involved in the comparison. The evaluation of the different urban 

development scenarios can lead to an important insight into how different future 

strategies affect urban development.  

When looking at these comparison results in Figure 5-22, we can gain the insight into 

the differences of the spatial patterns among different scenarios at global levels. The 

spatial patterns of scenarios differed from that of the observed urban pattern in 2010 

due to the urbanization. If we look at the binary comparisons between scenarios in 

2020 and observed spatial pattern in 2010 at local level, the urban growth pattern 

under each scenario can be discovered and located. In addition, the role of the 

transition rule can be better understood.  

Figure 5-22: Spatial metrics values of urban land use under different scenarios and 
observed urban spatial pattern in 2010: (a) NP value, (b) LPI value, (c) SHAPEAM 
value, and (d) ENN_AM value 

 

Under the BUS scenario, the increases in NP and LPI values are observed, which 

illustrate that urban growth in Xuzhou is focused on the development of new urban 

patches, as well as the expansion of the existing urban patches. The urban pattern 

becomes compact as reflected by the slight decrease in SHAPE_AM. As evidenced 

by the decrease in ENN_AM value, the individual urban patches get close to each 

other, becoming more connected with the city core. This is also reflected by the 
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binary comparison in Figure 5-23, Xuzhou city expends outside its historical core. 

Furthermore, urban growth is constantly moving toward the urban fringe in the 

eastern part of Xuzhou city. Some of new urban land is situated adjacent to or near 

major roads with scattered and irregular patches. 

Figure 5-23: Binary comparison between BUS senario and observed urban spatial 
pattern 2010 in Class Area, NP, and SHAPE_MN values 

 

In contrast to the historical urban growth trend, the PSS, CDS, and MDS scenarios 

have fewer urban patches compared to historical urban spatial pattern in 2010. 

Under these scenarios, the individual patches tend to be aggregated with increasing 

connection with previous individual urban patches already close to the city center and 

district centers, which is indicated by the decreases in NP and the increases in LPI 

values. The SHAPE_AM values decline suggests that urban pattern become more 

compact by locating continued growth in diffuse sprawl urban areas. Among these 

scenarios, the PSS scenario has highest NP, lowest LPI, highest SHAPE_AM and 

ENN_AM values, which are more similar to the BUS scenario compared to other 

scenarios. It is also confirmed by the small number of blocks with significant increase 

in NP and SHAPE_MN values in Figure 5-24. By 2020, some of the sprawl areas 

develop into compact urban land by infill of vacant land between the existing urban 

patches. It is clear that in this scenario, some areas would become more attractive, 

since they are enforced as hotspots in fringe and rural areas that are potential for 

future urban development and the evolution of compact centers. Around the hotspots, 

the fragmentation and diffuse urban development slows down as evidenced by the 

significant decreases in NP and SHAPE_MN values. Despite the strict 

implementation of master plan of Xuzhou city leads to the slowing down of the urban 

diffuse sprawl around the hotspots, it does not change the urban spatial pattern 

significantly, which could be explained by the fact that only master plan is involved 
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without considering other factors that have significant impacts on urban growth 

pattern.  

Figure 5-24: Binary comparison between PSS senario and observed urban spatial 
pattern 2010 in Class Area, NP, and SHAPE_MN values 

 

 

Figure 5-25: Binary comparison between CDS senario and observed urban spatial 
pattern 2010 in Class Area, NP, and SHAPE_MN values 

 

With regard to the CDS, the compact urban pattern is observed which can be 

attributed to the considerable edge growth of historical urban patches. In specific, the 

highest LPI value in CDS scenario indicates that urban growth under this scenario 

has a preference to occur around the city center that is more attractive for 

development. Hence, the urban patches around the city center grow together to form 

larger patches, which is described as “dense-onion” model by Herold et al (2003). 

The lowest value of SHAPE_AM suggests the urban areas are growing more 

compact. It can be seen from Figure 5-25 that almost all the vacant land suitable for 

development in the city core is used by 2020. The blocks in the city core have NP 

and SHAPE_MN values lower than 0. This indicates that the urban patches grow 
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together to former larger and more compact urban patches. However, most of distant 

fringe and rural areas still remain unchanged or grow at a slow rate under CDS. 

The significant increases in NP and SHAPE_AM values indicate the increasing 

fragmentation and irregularity of the urban spatial pattern with continued urbanization 

under DDS scenario. In concert with the increase in NP, the corresponding decrease 

in ENN_AM suggests that distance between urban patches dramatically declines. 

The intensive urban sprawl speeds up during the 2010-2020. The development 

centers appear to be less attractive for development compared to other scenario, 

which is reflected by the slight increase in LPI since 2010. Figure 5-26 shows that the 

urban areas spread outward from the city core and along the major road. Many 

blocks have high NP and SHAPE_MN values, which indicate that the new 

development creates many smaller and more fragmented patches in 2020. While the 

central urban area changes slowly, there is a rapid increase in the new urban 

patches. The open spaces surrounded by developed urban land are created under 

this scenario. 

Figure 5-26: Binary comparison between DDS senario and observed urban spatial 
pattern 2010 in Class Area, NP, and SHAPE_MN values 

 

Although the smallest number of urban patches is observed under MDS scenario, the 

LPI value is not the highest due to the development of several hotspots with relatively 

large size. Like the PSS scenario, the urban growth under MDS shows that the 

dominant trend of urban growth is the emergence of new development hotspots as 

shown in Figure 5-27. Most of land development is focused on the regions, where a 

large numbers of non-urban patches are encroached into urban land to form compact 

patches. Subsequently, the areas of diffuse sprawl are connected to the hotspots. 

Concomitant with the urbanization trend, however, spaces between the fragmented 
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patches are further urbanized and enveloped on each other, which is similar to the 

CDS scenario.  

Figure 5-27: Binary comparison between MDS senario and observed urban spatial 
pattern 2010 in Class Area, NP, and SHAPE_MN values 

 

Although various studies have been carried out to explore the methods of developing 

different scenarios, there is no consensus on which indicator is more appropriate in 

evaluating the urban growth scenarios. By using a set of spatial metrics, we were 

able to identify the differences of urban land use patterns among the five scenarios 

and get a valuable insight into the future urban growth pattern. One important 

problem that has been often ignored by previous studies is the effects of scale on 

scenario evaluation. Scale effect refers to the variation in the results of statistical 

analysis caused by the variation of scale (Buyantuyev et al., 2010). In this study, two 

different scales were adopted to evaluate and compare the scenarios. The spatial 

metrics were calculated based on the block which makes it possible to discover and 

locate the patterns in different urban areas. Moreover, the local scale with a multi-

temporal perspective enables us to better evaluate small-scale urbanization process, 

which cannot be detected at the global scale. The study presented here allows the 

integration of global and local scales and is able to highlight the consequences of 

urbanization at different scales. 

The scenarios represent alternative policy, and the ways in which each policy could 

potentially unfold into the future. The scenarios may be of use for planners to better 

understand the consequences of drivers on urbanization (Aguilera et al., 2011; 

Fuglsang et al., 2013; Song et al., 2006). BUS scenario suggests that urban 

development will continue through both expansion of existing urban areas and 

outward diffuse sprawl in the future. If it continues as indicated by the BUS scenario, 

the conflict between rapid urban growth demand and the limitation of scarce land 
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resources will intensify. The polycentric development was promoted as the 

development strategy since 2001. According to the historical growth trend, however, 

the polycentric development pattern is not significant by 2020. The development still 

focuses in the city core with rapid urban growth rate. A shift away from BUS might 

lead to significant alteration for Xuzhou city. There are still possibilities to enforce the 

polycentric development if the master plan is strictly implemented as shown in PSS 

scenario. The implementation of master plan leads to generation of new hotspots in 

fringe and rural areas for future development. Consequently the closer linkage 

between the former city core and new development hotspots is established, which is 

necessary for solving the imbalance of development among the city core, fringe and 

rural areas. However, the development is also scattered across the study area when 

other factors are not considered. In the compact development scenario, the 

development continues through infill in the existing city core and edge-expansion 

growth. The compact urban pattern is generally considered to be more efficient in the 

use of natural resources. Therefore it is regarded as a sustainable urban pattern (Li 

et al., 2008; Thinh et al., 2002b). However, the compact development within the city 

core makes it denser because the constraints within city core are not involved in the 

CA model. The densification of city core results in its limitless expansion and the loss 

of green open space, which influence the quality of urban life and urban environment. 

Concerning this shortcoming, DDS was simulated with the consideration of the 

demands of residents. As described in the storyline of dispersed scenario, the 

economy growth would result in increasing residents living in the fringe and rural 

areas and the development of new residential areas would be stimulated. DDS 

assumes the loss of agricultural and natural areas. The increasing residents would 

also encourage a large increase in road construction, and infrastructures. The 

economically oriented scenario presents more diffuse patterns (Reginster & 

Rounsevell, 2006). The study also confirms that the DSS scenario presents a more 

diffuse sprawl pattern which is recognized to have a negative impact on environment 

and sustainable development. Considering this fact and urban development policy, in 

addition to the implementation of compact development, the scientific urban planning 

policies should also be required in order to avoid the limitless expansion of city core 

and to balance the conflicts among the inter-administrative regions. The demand of 

people for better residential environment also needs to be satisfied. This 

development strategy in MDS scenario optimizes the growth allocation in an 
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environmentally and economically efficient way, which can support sustainable urban 

development in Xuzhou city. 
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6. Conclusion 

In the previous chapters, the theoretical background with the concept and methods 

for monitoring and analyzing of urban growth are outlined (see chapter 2). Moreover, 

the study area of Xuzhou city and the related spatial data are described in chapter 3. 

Chapter 4 provides the methodological framework with integrating RS, GIS, and CA 

modeling for this study. By applying the methods in the study area, the results 

obtained in Xuzhou city are presented in chapter 5. In the following chapter, the 

answers to the research questions and the major findings are concluded. Based on 

the results the development recommendation and outlook are proposed.  

6.1 The answers to the research questions 

Firstly, it is important to generate the accurate classification results for the further 

analysis by using Landsat images. In chapter 2.2.1, the methods of remote sensing 

processing are outlined on the basis of existing literatures. It serves as background 

knowledge of the possible method that could be effective in extracting land cover 

information. Meanwhile, the detailed classification method used in this study is 

proposed in chapter 4.1.1, which provided an answer to the first research question 

raised in chapter 1.2.2.  

1) How to improve the classification accuracy in order to provide the high quality 
land cover information for further analysis? 

There are a number of methodical approaches used already for the remote sensing 

image classification. In chapter 2.2.1, the effort was made to generally describe and 

to evaluate major approaches on this realm. As the two sides of a coin, each of them 

has its particular advantages and disadvantages. In the author’s opinion, however, 

the identification of a suitable method needs to be tested. The additional methods 

and data are also required. For instance, the combination of sub-pixel classifier and 

multiple NDVI is an effective way for classifying urban land cover from remote 

sensing images. The foundation of the methods is Vegetation-Impervious Surface-

Soil (V-I-S) model, which provides a more realistic depiction of the spatial land cover 

arrangement in the study areas. It has proved to be useful in urban RS, since it is 

based on the physical compositions of the urban environment (Setiawan et al., 2006). 

Although the V-I-S model is not developed for the purpose of classifying land cover, 

rather for the identification and characterization of land cover in urban areas, it has 

proved to be useful in solving the mixed problems and identifying the classes with 

similar spectral values when integrating with hierarchical classification scheme, since 

it is based on the physical compositions of the urban environment (Setiawan et al., 
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2006). In this study, the implementation of the V-I-S based hierarchy classification 

scheme consisted of two steps: (1) sub-pixel classification; and (2) multiple NDVI 

values comparison. Sub-pixel classifier represents the value of each cell in terms of 

degree of specific land-use type, which allows for robust and potentially more 

accurate spatio-temporal modeling. It was applied to solve the mixed pixel problem 

between vegetation and built-up or soil. However, soil and built-up types were difficult 

to be clearly separated due to the similar spectral values. Comparison of multiple 

NDVI values derived from multitemporal remote sensing images is a useful method 

to separate these two classes. The comparison of the performance of two 

classification methods (traditional and hierarchy classification methods) presented in 

chapter 5.1.1 reveals that the hierarchy classification methods can achieve higher 

accuracy results in both Xuzhou city and Dortmund city region. It turns out to be a 

suitable method for obtaining accuracy land cover information from Landsat images 

especially in urban areas. 

After generating the accurate land cover maps, it is necessary to conduct a 

comprehensive analysis of urban growth patterns for better understanding the 

urbanization process and assessing its impacts on environment. Hence, the next 

research question is raised:  

2) Which indicators can be used to reflect and quantify the urban growth patterns? 

In this article, not only changes in the area of each land cover type, but also, 

importantly, the land cover change pattern was detected through spatial analysis. 

“Everything is related to everything else, but near things are more related than distant 

things.” The first law of geography by Tobler (1970) is of central significance for 

understanding urban dynamics. Buffer analysis identified the regularity of the land 

cover change patterns with the distance to existing built-up areas. Near-existing built-

up land has a stronger impact on the development of built-up land than distant one. 

The analysis also highlighted the capability of jaggedness degree for better 

understanding the urban growth pattern. The jaggedness degree is sensitive to the 

compactness of urban forms (Thinh, 2003). If the urban area grows spatially more 

compact, then the degree decreases accordingly. It is important to notice that the 

variation of jaggedness degree is related to the buffer analysis results over the study 

period. During the period of 2001 to 2005 in Xuzhou city, the marked increase in the 

share and intensity of new developed urban areas in outer buffer zone was reflected 

by the jump of jaggedness degree. Moreover, the continuous decline of the 
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jaggedness degree was a quantitative proof for the high share and intensity in the 

first buffer zone for Dortmund city region. 

In addition to the comparison between Xuzhou city and Dortmund city region by 

using spatial indicators, spatial metrics were applied as a useful tool in description, 

analysis, and tracking of changes in land use shapes and patterns for Xuzhou city. 

Urbanization alters the spatial structures and patterns of land cover within a region 

(Jenerette & Wu, 2001). The literature review emphasized the usefulness of spatial 

metrics, which can be applied to provide an improved description and representation 

of the urban areas. In this study, the integration of remote sensing and spatial metrics 

can offer and reveal the characteristics about urban patterns and changes, allowing 

for quantitative representations and a better understanding of urban growth process 

and impact of urbanization. The variations of different spatial metrics represent 

specific spatial and temporal dynamics of urban growth. Class Area, NP, LPI, SHAPE, 

and ENN were used in this study with focusing on three aspects of spatial pattern: 

the shape of urban patches, fragmentation, and aggregation. At the global scale, the 

quantitation of spatial patterns was a simple way to enrich traditional analysis of land 

cover change. One important problem that has been often ignored by previous 

studies is the effects of scale on scenario evaluation. In order to obtain more detailed 

information of how the urban grows, further examination of urban spatial patterns at a 

local scale was conducted. The spatial metrics were calculated based on the block 

which makes it possible to discover and locate patterns in different urban areas. 

Moreover, the local scale with a multi-temporal perspective allowed us to better 

evaluate small-scale urbanization process, which cannot be detected at the global 

scale. 

Besides the scale related to the use of spatial metrics, the application field of spatial 

metrics is also varied. The temporal change of spatial metrics can provide a better 

understanding of the relationship between urban spatial pattern and urbanization 

process. Furthermore, the spatial metrics were also involved to conduct the 

calibration and validation of CA models, as well as the evaluation of different 

scenarios in chapter 4.3. The results shown in chapter 5.3 demonstrate their 

effectiveness in interpretation, assessment and verification of spatial models. 

In the next step, chapter 4.2.2 provides the answers to the third question and chapter 

5.2.2 gives the results for the application of the proposed methods. 
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3) How to explore the underlying cause-effect relationships in the urban growth 
process? 

The study divides the question into two parts: the first one is to explore the 

relationships between urban spatial patterns and urban growth: the second one is to 

investigate the effects of during factors on the urban growth.  

As concluded in chapter 2.2.2, the efforts to understand the relationships between 

spatial patterns and urbanization have been made. In order to bridge these gaps in 

the previous studies and to effectively capture and analyze the urbanization process, 

it is necessary to explore the quantitative relationships between urban growth 

patterns and urbanization with taking into account its spatial dynamics effects. The 

GWR model used in this study includes a spatial component in its specifications. This 

indicates that the coefficients estimated for this regression vary according to 

geographical location. The results in chapter 5.2.1 show that GWR model can 

provide detailed site information on the different roles of urbanization in different 

parts of the study area, rather than generating an average coefficient for the entire 

area, which improves the model ability to explain the local situation of spatial patterns. 

The comparison of GWR and OLS models suggests that GWR models perform better 

than OLS in explaining variances in the relationships. Furthermore, GWR models 

improve the reliability of relationships by effectively reducing spatial autocorrelations 

in residuals. Therefore GWR model is useful for establishing more effective plans to 

mitigate the negative effects of urban growth on spatial patterns. The next step is to 

analyze the effects of a set of driving factors on urbanization by adopting the logistic 

regression. The urban growth probability was defined as the dependent variable, and 

a set of factors were set as independent variables. In order to obtain the optimal set 

of variable combinations with the highest ROC value, the logistic regression was 

estimated for different sets of variable combinations. The optimal factors and the 

relative importance of the driving factors varied over time along with the urbanization 

process, thus, providing an insight into the urbanization process. 

Based on the analysis of historical urban growth trend, the CA models were 

developed to simulate the future urban development. The forth research question is 

related to the calibration of CA models. Chapter 4.3.2 provides the answer to this 

question. 

4) How to determine the parameter values of CA models in order to accurately 
reproduce historical urban growth? 
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The model can simulate the past urban growth and a wide variety of future scenarios 

based on the parameter values. Consequently, the method of parameter estimation 

is an important task. Furthermore, the calibration of CA models is difficult, particularly 

when there are many parameters to be considered in understanding spatial and 

temporal processes of urban growth (Cheng & Masser, 2004). Therefore selecting an 

appropriate method for the study is a challenge. An advantage of the logistic 

regression is its ability to estimate the weights of various spatial factors by 

developing statistical relationships between historical urban growth and spatial 

factors (Arsanjani et al., 2013; Ward et al., 2000). The shortage, however, is that it 

does not include all the relevant variables and cannot explain their temporal 

dynamics of relationships (Hu & Lo, 2007). For instance, the neighborhood 

configuration and random variable cannot be estimated using the logistic regression. 

The trial and error method is a more rigorous calibration method but with intensive 

computation. Different from other calibration method used in previous studies, a 

hybrid calibration method consisting of the logistic regression and the trial and error 

has proved an effective and quick approach for calibrating the CA model in this study. 

The presented approach potentially captures the complex interaction of various 

environmental and socio-economic variables and promotes the computational 

efficiency of calibration. Moreover, it allows for sensitive analysis which demonstrates 

that the results of the CA model are sensitive to the parameter values, for example 

the neighborhood configurations and random variable. This is an important issue in 

CA models for understanding the urbanization process and its uncertainty.  

Our study agrees well with the previously reported the usefulness of figure of merit 

and spatial metrics in the validation of CA model (García et al., 2012; Wang et al., 

2013). While the study differed in that is the study focused on the effectiveness of 

combination of the two indicators in quantifying the agreement between simulated 

and observed urban land use maps. Firstly, figure of merit value was used to quantify 

the agreement using pixel by pixel comparison. It is a simple but promising way to 

measure location errors (Pontius et al., 2007). Secondly, the relative difference of 

spatial metric was utilized to objectively assess the goodness-of-fit of the outcomes 

with the actual urban patterns. For analyzing urbanization process, the urban spatial 

patterns are likely to be more important than the absolute locations of new urban 

pixels (Jenerette & Wu, 2001). That is why spatial metrics were used to analyze the 

spatial patterns of model results. The rapid urbanization process may lead to the 

variation in the urban spatial patterns, which can be captured by a set of spatial 
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metrics. Furthermore, each simulation will generate different results due to the 

involvement of random variables, but the stochastic CA can maintain stability in 

spatial pattern (Yeh & Li, 2006). Consequently, the integration of figure of merit with 

spatial metrics can provide an effective way to identify the suitable random variables. 

In summary, the mixed measurement is capable of accurately capturing the effects of 

variables on urban spatial allocation and patterns, with that the model can produce 

more accurate result. The developed model has proved to be capable of accurately 

modeling the historical urban growth of Xuzhou city.  

The last research question deals with the contribution of CA models to decision 

making processes. Chapter 4.3.3 provides the answer to this question and chapter 

5.3.2 provides the results for the application of proposed methods. These chapters 

are the one of the main innovative parts in this study.   

5) How to connect the CA models with the urban decision making process?  

The establishment of connection between CA models and the urban decision making 

process needs to be considered as an important aspect of urban spatial models 

when such models are applied in the context of realistic cities. As concluded in 

chapter 2.3, as a means of spatial optimization and predictions for the future, urban 

growth scenario has been in the planner’s toolkit for several decades. In this study, 

the efforts were made to illustrate a way in which CA models can be better linked 

with the decision making process.  

The CA model is flexible and has the potential to incorporate the variations of 

parameters, which is regarded as a precondition for generating different urban 

growth trend. In order to provide a comprehensive and alternative context for the 

decision makers, the calibrated CA models were applied to simulate five 

development scenarios in 2020 for Xuzhou city under different spatial plans and 

policies, which are strongly linked to the current existing concerns of the policy 

makers of Xuzhou city addressing the key question. The five scenarios are: business 

as usual scenario, planning strengthened scenario, compact development scenario, 

disperse development scenario, and moderate development scenario. Each scenario 

has its own probabilities of urban growth associated with the different growth 

tendencies. Under each scenario the parameters are modified according to the 

specific definitions. 

The challenge for a scenario simulation is to correctly define the relative importance 

of the global factors in qualitative terms, and then to translate the qualitative process 



6 Conclusion 131 

description into quantitative scenarios of urban land use. This study proposed a 

combined methodology of translating the alternative futures into quantitative 

scenarios by integrating AHP, MCE and CA models. The pairwise function of 

different options quantified by AHP enables the decision makers to express their 

insights into the growth of Xuzhou city. The main advantage of this method is related 

to the structural conceptualization of decision making, in which several parameters 

may be compared, thus, bridging the gap between qualitative analysis and 

quantitative outputs.  

The combination of scenario simulation and the spatial metrics has proved to be 

capable of making the processes and patterns of urban growth more prominent than 

using simulation on its own, and the spatial metrics also serves as a comparative 

platform to other cities. The examination and evaluation of future urban growth 

scenarios under different “what-if” conditions can assist decision makers in analyzing 

the impacts of different development strategies, and can form a basis for urban 

planning policy recommendations towards sustainable urban development. 

In brief, the connection between CA models and the decision making process could 

be concluded mainly from three steps: design of development scenarios, 

identification of parameters, and evaluation of scenarios. 

6.2 Development implications 

The study presented wide comparisons between Xuzhou city and Dortmund city 

region in both the amount of land cover classes and urban growth characteristics in 

order to provide a better understanding of different underlying processes. Although 

there are some common features, different areas adopt different paths due to their 

different cultural backgrounds and developmental stages, resulting in different land-

use patterns.  

The results of our analysis confirmed a general trend of relatively slow urban growth 

process in developed countries compared with that in developing countries. The 

development in Dortmund city region was characterized by the smooth growth with 

continuous urban patches, which resulted in compact development during the study 

period. This corresponds with the findings from other cities in the developed 

countries (Luck & Wu, 2002; Schneider & Woodcock, 2008). In contrast to Dortmund 

city region, Xuzhou city was characterized by the rapid urbanization. The similar 

trends of urbanization are revealed by the case studies on other areas in developing 

countries (Dewan & Yamaguchi, 2009a; Estoque & Murayama, 2013; Wu & Zhang, 
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2012). By combining urban growth pattern analysis with land-use change detection, 

this study identified spatial characteristics of the urban development of Xuzhou city, 

which can be divided into the following three phases: 

Initial rapid development phase (1990-2001): 

During this period, the expansion of the new built-up land tended to cluster around 

the city core, while new developments in the open area were rather scarce.  

Transition phase (2001-2005): 

Compared with the previous phase, a larger proportion of urban expansion in Xuzhou 

was focused on the development of new urban patches, rather than expansion of the 

existing urban patches. In order to promote regional economic integration as well as 

to avoid the “big-pancake” form, the polycentric development has been proposed as 

a new planning policy to guide the future development in Xuzhou since 2001. 

However, with the implementation of new planning policy, new developed area was 

found in the fringe area to improve the infrastructures and facilities conditions for 

further development.  

Extensive phase (2005-2010): 

After the improvement of living and working condition, the active area for 

development was not constrained to be in the city core, hence more and more new 

built-up land occurred in fringe area. The existing individual urban patches grew 

together to decrease the distance between patches, becoming more connected with 

central urban patches. Furthermore, diffuse sprawl urban development pattern was 

observed which indicates that historical urban patches grew together to form larger 

but more complicated patches. 

Next, the significant cause-effect relationships in urban growth process were 

observed in this study. This corresponds with the findings in literature related to other 

cities in the world (Braimoh & Onishi, 2007, Clarke et al., 1997, Weng, 2007). The 

study extends these previous studies by investigating spatio-temporally varying 

effects of urbanization instead of global effects. Both negative and positive effects of 

urbanization on variation of spatial metrics values were explored. The significant 

correlations were found around the city core and fringe area in 1990-2001. This can 

be due to the locations closer to the city center offering more opportunities to access 

socioeconomic resources. After the rapid urbanization, however, the most significant 

effects of urbanization were located in the fringe area rather than in the city core, 
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especially in 2005-2010. Furthermore, the temporal changes of effects of 

urbanization on urban growth patterns were also assessed in this study. The effects 

of urbanization on the variations of spatial patterns varied over the study period, 

which can be explained by the socioeconomic processes and the consequence of 

urban development policy. The results generated from the logistic regression model 

indicate that the historical urban growth patterns in Xuzhou city can, in considerable 

part, be affected by distance to CBD, distance to district centers, distance to roads, 

slope, neighborhood effect, population density, and environmental factors with 

relatively high levels of explanation of the spatial variability. Among these factors, the 

socioeconomic and neighborhood factors significantly affected the urban growth. The 

optimal factors and the relative importance of the driving factors varied over time, 

which provides an insight into the urbanization process.  

Finally, the study demonstrates that the CA modeling can offer an enhanced 

understanding of the urbanization process and the trend of the future urban 

development. In order to predict the alternative urban growth patterns for Xuzhou 

city, five scenarios were designed and evaluated (business as usual, planning 

strengthened, compact development, dispersed development, and moderate 

development). Although the scenarios are simple, they are rooted in some facts of 

Xuzhou urban growth patterns and spatial policies. The evaluation of scenarios 

suggests that the urban growth pattern is varied by the scenarios in Xuzhou city. To 

conclude, the future urban development is mainly governed by two categories: 

sustainable and non-sustainable development. The current urban development 

process is in a critical stage. If it continues as indicated by the business as usual 

scenario in the future, new urban areas are sparsely developed in fringe and rural 

areas. The conflict between rapid urban growth and limited land resource becomes 

more apparent. Comparing with other scenarios, the moderate development scenario 

could be considered as the best one in achieving the objectives of compact urban 

form, good residential environment, as well as environmentally and economically 

efficient development. 

6.3 Recommendations 

The development characteristics and land cover change in Xuzhou city provide good 

representatives of the medium sized Chinese cities, since most of them have 

experienced the same political and socioeconomic development. The sustainable 



134 Cheng Li 

developments of these cities play a key role in the sustainable development of China. 

Based on the major findings in this study, the following recommendations are given: 

As concluded in chapter 2.1.3, there are evidences indicating a significant correlation 

between urban form and sustainability. It can be seen that the urban development in 

Dortmund city region was more compact and generally extending around the existing 

built-up area, whereas the development in Xuzhou city was more dispersed. This 

urban form may cause much more ecological and environmental problems than a 

more compact pattern (Li et al., 2008). As presented in Dortmund city region, 

compact development has been considered as a sustainable development trend in 

reducing the negative effects of dispersed development and in guiding urban 

development to sustainability. Thus, the urban growth pattern of Dortmund city region 

could be valuable for Xuzhou city to solve a series of environmental and 

socioeconomic problems caused by sprawl and “leapfrog-style” urban development 

such as the gap of urban development between the city core and fringe and rural 

areas, the conflict between limited land resources and high pressure of urbanization, 

and so on.  

However, there are some problems related to the concentric compact city, such as 

congestion, shortage of open space near to residential areas. The comparison 

analysis of different urban development scenarios suggests that the polycentric 

compact urban form can be considered as the best one in this study. Therefore, 

efforts should be made to generate compact form, for example, in-fill development or 

qualified brownfield development. The loss of farmland can be also attributed to 

scattered rural settlements and their construction on land of the rural areas. 

Therefore, the master plan of Xuzhou city needs to be strictly implemented for 

identifying the suitable location of each development hotspots in fringe and rural 

areas. The attraction of hotspot for urban growth needs to be emphasized in order to 

form polycentric development.  

Through the analysis of the relationships between urbanization and the urban growth 

patterns in Xuzhou city over the study period, we can find the urban area not only 

increased dramatically but it became also more fragmented and irregular along with 

that urbanization process, especially in the rapid development areas. It is widely 

acknowledged that fragmented and irregular development patterns are associated 

with ecological and environmental problems, which threaten the sustainable 

development (Jenks et al., 1996). Therefore, for the future development, some 
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related plans and measures should be implemented to facilitate connectivity between 

built-up fragments around the new development hotspots.  

Besides the urban spatial pattern, other important aspect related to the sustainable 

development is the environment. A decreasing effect of slope on urban growth during 

2005-2010 in Xuzhou city was found, suggesting an increasing pressure for 

development in the mountainous areas where are regarded as ecologically valuable 

zones. Moreover, the policy factors (Subsidence and Environment) had slight effects 

on urban growth during the study period, indicating the lack of consideration of 

environment protection and scientific land use management during the rapid 

urbanization process. In recent years, with the depletion of coal deposit, the era of 

post-mining will begin. While the environment in Xuzhou city was significantly 

affected during the coal exploitation. Therefore the strict implementation of policies 

for protecting more ecologically valuable zones and environmentally sensitive areas 

is required. 

6.4 Outlook 

The methodology framework proposed for this study has demonstrated to be useful 

in monitoring and analyzing urban growth in Xuzhou city and in providing a support 

for decision making processes towards a sustainable development. Some valuable 

results provide a better understanding of historical and future urbanization process. 

However, in order to get more information to support the sustainable development, 

some other materials and methods may also be considered in the further study. 

Scale is an important aspect in investigating and explaining the complex hierarchical 

organization of the geographic world (Marceau, 1999). It has been widely 

acknowledged that the spatial pattern is scale dependent since it changes with the 

scale of observation or analysis. In order to conduct the spatial pattern analysis at 

local scale, block was used as a sample unit. The different block size can result in 

different explanatory ability of models due to the scale effect. The preliminary test 

was conducted, nevertheless, further studies need to be carried out to consider the 

different block shapes and sizes in order to obtain an insight into their effects on 

spatial pattern analysis. 

Besides the factors involved in this study, urban growth is also strongly affected by 

political, cultural and other factors, which are difficult to incorporate into spatial model 

due to their aspatial characteristics and the lack of data. Although the good 

agreement between model results and actual maps were observed, it is 
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recommended that more potential variables should be included in the future studies 

to improve the performance of spatial models and to evaluate the effects of the 

factors on urban growth. 

The study only focused on the simulation of urban development without consideration 

of the detailed land use categories (commercial, industrial, and settlement land) due 

to the lack of detailed land use data. With taking into account the interactions among 

them, it would be interesting and valuable to simulate the change of several detailed 

land use categories within urban areas to provide a better understanding of the urban 

land use development. 
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