
Exact Methods

for

Nonlinear Combinatorial Optimization

Dissertation

zur
Erlangung des Grades

eines
Doktors der Naturwissenschaften

Der Fakultät für Mathematik
der Technischen Universität Dortmund

vorgelegt von

Dipl.-Math. Frank Baumann

aus Stolberg (Rhld.)

Dortmund 2014

Die vorliegende Arbeit wurde von der Fakultät für Mathematik der Technischen
Universität Dortmund als Dissertation zur Erlangung des Grades eines Doktors
der Naturwissenschaften genehmigt.

Promotionsausschuss:

Vorsitzender: Prof. Dr. F. Kalhoff
Erster Gutachter: Prof. Dr. C. Buchheim
Zweiter Gutachter: Prof. Dr. P. Mutzel
Dritter Prüfer: Prof. Dr. C. Meyer

Tag der Einreichung: 22. April 2014
Tag der Disputation: 27. August 2014

Abstract

We consider combinatorial optimization problems with nonlinear objective func-
tions. Solution approaches for this class of problems proposed so far are either
highly problem-specific or they apply generic algorithms for constrained nonlinear
optimization, which often does not yield satisfactory results in practice.

Our aim is to develop, implement and experimentally evaluate exact algorithms
that address the nonlinearity of the objective function and at the same time ex-
ploit the underlying combinatorial structure of the problem. To this end we follow
two approaches. The first combines good polyhedral descriptions of the objective
function and the feasible set in a branch and cut-algorithm. The second approach
is based on Lagrangean decomposition. By decomposing the original problem into
an unconstrained nonlinear problem and a linear combinatorial problem, we are
able to compute strong dual bounds for the optimal value. The computation of
lower bounds is then embedded into a branch and bound-algorithm. For many
applications there already exist efficient algorithms for the combinatorial sub-
problem, thus an important aspect of this thesis is the study of the corresponding
unconstrained nonlinear subproblems.

Both approaches have the advantage that they can easily be adapted to a wide
range of nonlinear combinatorial problems. We devise both polyhedral and decom-
position-based algorithms for submodular applications from wireless network de-
sign and portfolio optimization and evaluate their performance experimentally.
Exploiting the equivalence between unconstrained binary quadratic optimiza-
tion and the maximum cut problem gives rise to a branch and cut-algorithm for
quadratic combinatorial problems which we use to compute optimal layouts of
tanglegrams, an application from computational biology. Additionally we study
the effect of quadratic reformulation of linear constraints, both theoretically and
experimentally. The last class of nonlinear combinatorial problems we consider
are two-scenario problems. Here we propose a new technique to compute lower
bounds in the unconstrained subproblem of the decomposition. Our computa-
tional study of the two-scenario minimum spanning tree problem shows that
the new Lagrangean decomposition-based algorithm is able to solve significantly
larger instances than the standard linearization approach.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der exakten Lösung kombinatorischer Opti-
mierungsprobleme mit nichtlinearen Zielfunktionen. Bisher werden für diese Art
von Problemen meist entweder hochgradig problemspezifische Algorithmen ent-
wickelt, oder es kommen Löser für allgemeine beschränkte nichtlineare Probleme
zum Einsatz, was in der Praxis aber oft nicht zu befriedigenden Ergebnissen führt.

Ziel dieser Arbeit ist daher die Entwicklung, Implementierung und experimentelle
Evaluation exakter Algorithmen, die sowohl die Nichtlinearität der Zielfunktion
als auch die zugrunde liegende kombinatorische Struktur des Problems ausnutzen.
Dazu verfolgen wir zwei Ansätze. Im ersten werden gute polyedrische Beschrei-
bungen der Zielfunktion und der kombinatorischen Struktur in einem Branch-and-
Cut Algorithmus kombiniert. Der zweite basiert auf Lagrange-Dekomposition.
Hier wird das Ausgangsproblem in ein unbeschränktes nichtlineares und ein linea-
res kombinatorisches Problem zerlegt. Das erlaubt die Berechnung starker dua-
ler Schranken in einem Branch-and-Bound Algorithmus. Für viele Anwendungen
sind bereits effiziente Verfahren zur Lösung des kombinatorischen Teilproblems
bekannt. Ein wichtiger Beitrag dieser Arbeit besteht daher in der Untersuchung
der auftretenden unbeschränkten nichtlinearen Teilprobleme.

Beide Ansätze haben den Vorteil, dass sie sich ohne großen Aufwand auf eine
Vielzahl nichtlinearer kombinatorischer Problemstellungen anwenden lassen. Wir
betrachten drei Klassen von nichtlinearen kombinatorischen Optimierungspro-
blemen. Im Falle einer submodularen Zielfunktion sind beide oben beschriebenen
Ansätze anwendbar. Wir stellen exakte Algorithmen für Anwendungen aus dem
Bereich der mobilen Datenübertragung und der Portfoliooptimierung vor und
vergleichen sie experimentell mit Standardverfahren. Bei quadratischen Zielfunk-
tionen ergibt sich aus der Äquivalenz von unbeschränkter binärer quadratischer
Optimierung und der Berechnung eines maximalen Schnittes in einem Graphen
eine gute polyedrische Charakterisierung der Zielfunktion, die in einem Branch-
and-Cut Algorithmus verwendet werden kann. Damit lassen sich Tanglegrams
berechnen, die u.a. in der Bioinformatik Anwendung finden. Desweiteren unter-
suchen wir die Auswirkungen, die verschiedene quadratische Reformulierungen
von linearen Nebenbedingungen auf die Güte der dualen Schranken im Branch-
and-Cut Algorithmus haben. Als letzte Klasse werden Zwei-Szenario-Probleme
behandelt. Wir stellen eine neue Technik zur Berechnung unterer Schranken für
das unbeschränkte Teilproblem in der Lagrange-Dekomposition vor. Eine experi-
mentelle Studie anhand des minimalen Spannbaumproblems mit zwei Szenarien
zeigt, dass sich mit dem neuen dekompositionsbasierten Algorithmus deutlich
größere Instanzen lösen lassen als mit dem auf ganzzahliger Programmierung
basierenden Standardansatz.

Teilpublikationen

Teilergebnisse der vorliegenden Arbeit sind bereits in den folgenden Publikationen
veröffentlicht worden:

Frank Baumann, Christoph Buchheim, and Anna Ilyina. Lagrangean decompo-
sition for mean-variance combinatorial optimization. Lecture Notes in Computer
Science, 2014. ISCO 2014 – International Symposium on Combinatorial Opti-
mization, to appear.

Frank Baumann, Sebastian Berckey, and Christoph Buchheim. Exact algorithms
for combinatorial optimization problems with submodular objective functions.
In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Opti-
mization, pages 271–294. Springer Berlin Heidelberg, 2013.

Frank Baumann and Christoph Buchheim. Submodular formulations for range
assignment problems. Electronic Notes in Discrete Mathematics, 36(0):239–246,
2010. ISCO 2010 – International Symposium on Combinatorial Optimization.

Frank Baumann, Christoph Buchheim, and Frauke Liers. Exact bipartite cross-
ing minimization under tree constraints. In Paola Festa, editor, Experimental
Algorithms, volume 6049 of Lecture Notes in Computer Science, pages 118–128.
Springer Berlin Heidelberg, 2010.

Acknowledgements

I would like to express my thanks to everyone who supported me throughout my
work on this thesis. I am particularly indebted to my supervisor Prof. Christoph
Buchheim for his scientific guidance and the pleasant and stimulating working
atmosphere he created in his group.

I am very grateful to Frauke Liers for introducing me to tanglegrams and the
subsequent collaboration, which led to Chapter 5 of this thesis.

Many thanks go to my colleagues in Cologne, Dortmund and elsewhere for the
many constructive and helpful discussions, especially to Viktor Bindewald, Anja
Fischer, Anna Ilyina, Laura Klein, Jannis Kurtz, Sara Mattia, Dennis Michaels,
Maribel Montenegro, Marianna De Santis, Emiliano Traversi and Long Trieu, and
to Sabine Willrich for perfectly taking care of all administrative issues.

Part of my work was funded by the DFG as part of the project Simple and Fast
Implementation of Exact Optimization Algorithms with SCIL in the Priority Pro-
gramme 1307 Algorithm Engineering and the project Lenkung des Güterflusses
in durch Gateways gekoppelten Logistik-Service-Netzwerken mittels quadratischer
Optimierung, which is gratefully acknowledged.

Finally, I would like to thank my family for their invaluable support and encour-
agement.

Contents

Introduction 1

Outline 3

I Methods 7

1 Preliminaries 9

1.1 Basic Definitions . 9

1.2 Lagrangean Relaxation . 13

1.2.1 Lagrangean Decomposition 14

1.3 Branch and Bound . 16

1.3.1 LP-Based Branch and Bound 18

1.3.2 Lagrangean Decomposition-Based Branch and Bound . . . 18

1.3.3 SDP-Based Branch and Bound 19

1.3.4 Enumeration Strategies . 21

1.4 Branch and Cut . 21

2 Binary Quadratic Optimization 23

2.1 Standard Linearization . 23

2.2 Unconstrained Binary Quadratic Optimization 25

2.2.1 Odd Cycle Inequalities . 27

2.2.2 More Cutting Planes . 31

2.3 Quadratic Reformulation . 33

2.3.1 SQK2 . 34

2.3.2 SQK3 . 37

2.3.3 Phantom Monomials . 40

2.4 Final Remarks . 44

3 Submodular Combinatorial Optimization 45

3.1 Submodularity . 46

3.2 Constructing Submodular Functions 47

3.3 Polyhedral Study . 52

3.4 A Branch and Cut Approach . 58

3.4.1 Cutting Planes . 58

3.4.2 Primal Bounds . 58

3.5 A Lagrangean Decomposition Approach 59

3.5.1 Bounds . 59

3.5.2 Branch and Bound . 61

3.6 Final Remarks . 62

4 Two-Scenario Optimization 65

4.1 Unconstrained Two-Scenario Optimization 65

4.1.1 Complexity . 66

4.1.2 Transformation to Fractional Knapsack Problems 67

4.1.3 An Exact Algorithm . 69

4.2 Combinatorial Two-Scenario Optimization 70

4.2.1 Lower Bounds . 71

4.2.2 An Exact Algorithm . 72

4.3 Two-Scenario Min-Max Regret Problems 73

II Applications 75

5 Tanglegrams 77

5.1 Complexity and Related Work . 79

5.2 An Exact Model for General Tanglegrams 82

5.2.1 Bipartite Crossing Minimization 83

5.2.2 Modeling Tanglegrams . 84

5.2.3 Binary Case . 85

5.3 Computational Results . 87

vii

6 Combinatorial Quadratic Optimization 91

6.1 Quadratic Minimum Spanning Tree 91

6.1.1 Quadratic Reformulation 93

6.1.2 Computational Results . 93

6.2 Quadratic Matching . 97

6.2.1 Computational Results . 99

7 Range Assignment Problems 105

7.1 The Standard Model . 109

7.2 New Mixed-Integer Models . 109

7.3 Polyhedral Relations . 110

7.4 Computational Results . 111

7.4.1 Symmetric Connectivity 111

7.4.2 Multicast . 115

7.4.3 Broadcast . 116

7.5 Final Remarks . 116

8 Mean Risk Optimization 119

8.1 Computational Results . 125

8.2 Final Remarks . 131

9 Two-Scenario Optimization 133

9.1 Unconstrained Two-Scenario Optimization 133

9.2 Two-Scenario Minimum Spanning Tree 136

III Nonlinear Optimization with SCIL 143

Summary and Outlook 149

References 153

Introduction

Combinatorial optimization deals with finding an optimal solution for problems
with finite sets of feasible solutions. Often these problems are stated in graph-
theoretic terms and solution methods include techniques from algorithm theory as
well as polyhedral combinatorics and linear programming. For many applications
that can be modeled as combinatorial optimization problems efficient algorithms
are known, for others the best known algorithms have an exponential theoretical
complexity.

Consider for example a task frequently encountered in the design of networks,
e.g. for telecommunication. You are given a set of nodes with fixed coordinates
in the plane and your job is to decide between which pairs of nodes connections
are established by laying subterranean cables. In the end the network must be
connected, i.e. it must be possible to reach any given node from any given starting
point via the chosen links (see Figure 1 (left)). Establishing a connection is asso-
ciated with costs, for example proportional to the length of the link, and the total
cost of a network is given by the sum of the costs of the established connections.
Which links do you choose such that the total cost is minimal? This problem
is known as the minimum spanning tree problem. It is well-studied and several
efficient and surprisingly simple solution algorithms are known; the earliest was
proposed by Boruvka [17] in 1926.

Now imagine the task is slightly different. Nodes are not linked by laying cables
in the ground but wirelessly. A connection between two nodes a and b can only
be established if the signal transmitted from a is strong enough to reach b and
vice versa. The goal as before is a connected network, but now your task is to
choose which connections to make and to set appropriate transmission powers
for the individual nodes (see Figure 1 (right)). The cost of the network in this
case is determined by its total transmission power. This variant of the minimum
spanning tree problem is called range assignment problem. Although both prob-
lems seem to be very similar, the second is much harder to solve than the first. In
fact, no polynomial-time algorithm for the range assignment problem is known
and only very small instances can be solved in practice.

Another example of an application where a slight variation in the problem state-
ment increases its difficulty significantly is the knapsack problem. You are given

1

2

Figure 1: Optimal wired (left) and wireless (right) networks for the same set of
nodes. The colored circles on the right indicate the transmission ranges of the
nodes in the wireless network.

a set of items characterized by a weight and a profit and a knapsack with limited
capacity. An optimal solution of the knapsack problem is a subset of the items
that fits into the knapsack and gives maximum profit. The knapsack problem is
closely related to a problem from portfolio theory, the so-called risk-averse cap-
ital budgeting problem. Here an investor has to choose from a set of possible
investments. His budget is limited and in contrast to the knapsack problem the
expected profits are not known exactly in advance. Instead they are characterized
by an expected return value and a variance. The knapsack problem can be solved
in pseudo-polynomial time. The exact complexity of the risk-averse capital bud-
geting problem is unknown, but in practice it is much harder than the knapsack
problem.

In both examples given above the two problems have the same combinatorial
structure, the increase in the complexity is caused by the change in the objective
function. In the minimum spanning tree problem and the knapsack problem it
is linear, whereas in the range assignment problem and the risk-averse capital
budgeting problem it is nonlinear. Nonlinear combinatorial optimization problems
are commonly solved either with highly application-specific algorithms or with
generic solvers for constrained nonlinear optimization. The first approach has
the advantage that the underlying combinatorial structure is exploited, but the
resulting algorithms are not easily adaptable to other nonlinear applications. The
second approach is more versatile but often focuses on the nonlinear aspect of
the problem and disregards the combinatorial structure.

3

In this thesis we study exact solution techniques for nonlinear combinatorial
optimization problems that address the nonlinearity of the objective function and
at the same time exploit the underlying combinatorial structure of the problem.

The main idea of our approach is to treat the nonlinear objective function and
the part of the problem formulation that models the set of feasible solutions
independently. This allows us to combine solution techniques from unconstrained
binary nonlinear optimization and linear combinatorial optimization to compute
dual bounds for the original problem. Embedding the computation of dual bounds
in a branch and bound-algorithm yields an algorithmic framework that can be
easily customized to solve a wide range of nonlinear combinatorial applications.

For this approach to give good results in practice it is essential that the occurring
subproblems can be solved to optimality quickly, or, when this is not possible,
strong dual bounds can be computed efficiently. As exemplified above, in many
cases the linear variant of an application is well-studied and we can use existing
algorithms and polyhedral characterizations to solve the combinatorial subprob-
lem. In contrast, the corresponding unconstrained nonlinear subproblems have
often not been studied intensively so far. Therefore, we investigate several classes
of nonlinear objective functions and propose efficient algorithms for some special
cases.

Outline

This thesis is divided into three parts. Part I deals with general techniques for
the exact solution of three classes of nonlinear combinatorial optimization prob-
lems. We start by giving the necessary basic definitions and notations used in
the following chapters. In Chapter 2 we discuss the polyhedral approach to bi-
nary quadratic optimization that exploits the equivalence between unconstrained
binary quadratic optimization and the MaxCut problem [28] and study the effec-
tiveness of quadratic reformulation of linear constraints in this context. We pro-
pose a reformulation technique for assignment constraints that leads to stronger
relaxations without increasing the number of variables in the problem formula-
tion.

In Chapter 3 we study combinatorial optimization problems with submodular ob-
jective functions. We propose two exact algorithms. The first is a branch and cut-
algorithm based on a polyhedral description of the convex hull of feasible points
of the unrestricted problem by Edmonds [36]. The second is again a branch and
bound-algorithm, but here lower bounds are computed by applying Lagrangean
decomposition to the original formulation. This yields two subproblems, an unre-
stricted submodular minimization problem and a linear combinatorial problem.

Chapter 4 deals with two-scenario optimization. We first study the problem of

4

minimizing the maximum of two linear functions over bounded integer variables
and propose a bounding technique that applies a transformation to two fractional
knapsack problems. This approach leads to an exact branch and bound-algorithm
for unconstrained two-scenario optimization problems. In the presence of addi-
tional combinatorial constraints this approach can still be used to compute lower
bounds. To this end we again apply Lagrangean decomposition, as in Chapter 3.
This yields an exact branch and bound-algorithm that for certain classes of com-
binatorial two-scenario problems does not require solving linear programs.

In Part II we use the general techniques proposed in the first part to devise
exact algorithms for specific nonlinear applications. We start in Chapter 5 with
computing optimal layouts of tanglegrams, which are for example used in compu-
tational biology to visualize the co-evolution of two species. This problem can be
modeled as a quadratic linear ordering problem with additional constraints. In an
experimental study we solve random and realistic instances to evaluate the effect
of MaxCut-separation and quadratic reformulation. The experimental study is
continued in Chapter 6 on the quadratic variants of the minimum spanning tree
problem and the perfect matching problem.

The range assignment and mean risk optimization problems studied in Chapters 7
and 8 are generalizations of classic combinatorial problems, where the objective
function is submodular instead of linear. Range assignment problems occur in
wireless network design, where the overall costs are not determined by the total
lengths of the established links but by the transmission power needed to establish
a given network topology [122], as illustrated above. Although such problems have
been studied intensively in recent years, the algorithms proposed in the literature
so far do not directly exploit the submodularity of the objective function [98]. We
devise a fast algorithm for the minimization of the submodular subproblem in
the Lagrangean decomposition approach and evaluate the performance of the two
algorithms proposed in Chapter 3 experimentally for three network topologies.

Mean risk optimization problems are used in finance to compute optimal in-
vestment strategies [24]. They are commonly solved as second-order cone prob-
lems [10]. We model the risk-averse capital budgeting problem, which served as
our second example in the introduction, as a knapsack problem with a submod-
ular objective function and compare the performance of the new approaches to
the standard method.

In the last chapter of Part II we present an extensive experimental study of
the algorithms for unconstrained and combinatorial two-scenario optimization
presented in Chapter 4. For the combinatorial case we consider the two-scenario
minimum spanning tree problem, which has applications in the design of robust
telecommunication networks [77].

Part III gives a brief overview of the optimization library SCIL. For this thesis it
was extended by the polyhedral methods for submodular and quadratic optimiza-

5

tion problems presented in Chapters 2 and 3 and used for the implementation of
the branch and cut-algorithms in Part II.

We conclude this thesis with a summary of our results and a brief discussion of
possible extensions and future work.

6

Part I

Methods

7

Chapter 1

Preliminaries

In this chapter we first fix some notation and give basic definitions that will
be used throughout the remaining chapters. Then we give the basic theoretical
background for later chapters. Notations and definitions follow the text books by
Nemhauser and Wolsey [100], Wolsey [123] and Korte and Vygen [76].

1.1 Basic Definitions

Sets Sets are denoted by capital letters. For sake of legibility we write A ∪ k
instead of A ∪ {k} for the union of a set A and a single element k.

Graphs In the following, G = (V,E) denotes an undirected graph. V =
{1, . . . , n} is a finite set called the set of nodes and the set of edges E con-
sists of two-element unordered subsets of V . An edge e = (u, v) ∈ E is said to
connect nodes u and v and it is incident to both u and v. The nodes u an v are
sometimes called the endpoints of e. Two edges with a common node are adjacent
and an edge (u, u) that connects u to itself is called a loop. Graphs without loops
are called simple. In this thesis we will only consider simple graphs. Note that in
our definition of graph two nodes are connected by at most one edge, i.e. they
do not have multiple edges. If the graph is directed, we write G = (V,A). The
arc set A consists of ordered pairs of nodes. The first node in the ordered pair
defining an arc a is called the tail of a, the second the head of a. In a weighted
graph – undirected or directed – each edge (arc) is assigned a weight by a weight
function c : E −→ Q (c : E −→ Q). These graphs are denoted by G = (V,E, c)
and G = (V,A, c), respectively.

For a set U ⊆ V , E(U) = {(i, j) | (i, j) ∈ E, i ∈ U, j ∈ U} is the set of edges with
both endpoints in U . A subgraph G′ of a graph G consists of a subset V ′ ⊆ V of
the nodes of G and a subset E ′ ⊆ E(V ′) of the edges with both endpoints in V ′.
G′ is called a spanning subgraph if V ′ = V .

9

10 CHAPTER 1. PRELIMINARIES

Paths A sequence of nodes (v0, . . . , vk), k ∈ N of an undirected graph is called
a walk, if (vi, vi+1) ∈ E for all i ∈ {0, . . . , k−1}. If each node occurs exactly once,
the walk is called a path in G. A graph that contains a walk between each pair
of nodes is called connected.

Walks and paths can also be expressed by a sequence of edges (e0, . . . , ek−1). By
adding the edge ek = (vk, v0) we obtain a closed walk w. If (e0, · · · , ek−1) is a
path containing at least two edges, w is called a cycle.

Trees A tree is a connected undirected graph without cycles. An arborescence
is an acyclic directed graph (DAG) in which all arcs point away from a specified
root node. This is equivalent to the property that for each vertex v ∈ V \ {v}
there exists a directed path from r to v. In a Steiner arborescence only a subset
T ⊆ V \{v}, called terminals, must be reachable via directed paths from the root
node. These paths can include the Steiner nodes V \ (T ∪ {r}).
Optimization problems and relaxations Given a function f : Rn −→ R
and a set A ⊆ Rn, a general optimization problem (P) consists of finding a
minimizer or maximizer of f in A. In the following we limit ourselves to discussing
minimization problems and write (P) as

min f(x)
s.t. x ∈ A ⊆ Rn ,

or shorter as
min{f(x) | x ∈ A} .

The function f is called the objective function of (P) and A its set of feasible
solutions or feasible region. If A = ∅, (P) is infeasible. If (P) is feasible, the
minimizer of f in A is denoted by x⋆ and the value f(x⋆) is called the optimum
value of (P). In a slight abuse of notation, we sometimes write

z = min{f(x) | x ∈ A}

to refer to the optimization problem and its optimum value z.

Given a second optimization problem

min{g(x) | x ∈ B} , (Q)

(Q) is a relaxation of (P) if A ⊆ B and f(x) ≥ g(x) for each x ∈ A.

The objective function value of any feasible solution of (P) defines an upper or
primal bound on the optimum value of (P), while any optimum value of a relax-
ation defines a lower or dual bound. For maximization problems upper bounds
are dual bounds, while lower bounds are primal bounds.

In a combinatorial optimization problem the set of feasible solutions is finite.
Combinatorial optimization problems are a special case of so-called mixed-integer

1.1. BASIC DEFINITIONS 11

programs (MIPs), where some or all of the variables are required to take only
integer values. They are often used to model optimization problems on graphs.
Say you want to compute a minimum-cost spanning tree in an undirected graph
G = (V,E, c). The first step is to associate each edge e ∈ E of the graph with
a binary variable xe. Then the set of feasible solutions, in this case the set of
spanning trees in G, is modeled by a set of equations and inequalities in these
variables. The result is a binary optimization problem. When we associate binary
variables with elements of some set D, we often denote the sum of the variables
associated with D as x(D) instead of


i∈D xi.

If the equations and inequalities used are linear and c is a linear function, the
problem is called an integer linear program (ILP) and generally written as

min c⊤x
s.t. A1x = b1

A2x ≤ b2
x ∈ {0, 1}n .

Definition 1.1. For two optimization problems

min f(x)
s.t. x ∈ X ⊆ Rn (1.1)

and
min g(y)
s.t. y ∈ Y ⊆ Rm (1.2)

denote by X⋆ ⊆ X and Y ⋆ ⊆ Y the sets of optimal solutions of (1.1) and (1.2),
respectively.

Problems (1.1) and (1.2) are equivalent, if

1. there exists a bijective function h : X⋆ −→ Y ⋆, i.e. for every y⋆ ∈ Y ⋆ there
exists a unique x⋆ ∈ X⋆ with y⋆ = h(x⋆), and

2. g(h(x⋆)) = f(x⋆) for all x⋆ ∈ X⋆, i.e. equivalent optimal solutions have the
same objective value.

The two problems are called isomorphic, if

1. there exists a bijective function h : X −→ Y , i.e. for every y ∈ Y there
exists a unique x ∈ X with y = h(x), and

2. g(h(x)) = f(x) for all x ∈ X, i.e. equivalent feasible solutions have the
same objective value.

12 CHAPTER 1. PRELIMINARIES

Obviously, when two optimization problems are isomorphic, they are also equiv-
alent.

Definition 1.2. Given a nonlinear optimization problem

min f(x)
s.t. x ∈ X ⊆ Rn ,

(P1)

the problem

min g(y)
s.t. y ∈ Y ⊆ Rm (P2)

is a linearization of (P1), if (P1) and (P2) are equivalent and (P2) is a linear
optimization problem.

Polyhedra A polyhedron P in Rn is a set of points that can be characterized
by a finite number of linear inequalities: P = {x ∈ Rn | Ax ≤ b}. A bounded
polyhedron is called a polytope. Given a nonempty polyhedron P and a nonzero
vector c ∈ Rn for which δ := max{c⊤x | x ∈ P} is finite, the set {x ∈ Rn | c⊤x =
δ} is called a supporting hyperplane of P . A face of P is the intersection of P
with one of its supporting hyperplanes or P itself. Faces of maximal dimension
are called facets, where the dimension of a set is defined as the dimension of the
smallest affine space that contains the set.

A linear inequality a⊤x ≤ δ is called valid for P , if it holds for all x ∈ P . If
additionally {x ∈ P | a⊤x = δ} is a facet of P , the inequality is called facet-
defining.

The convex hull conv(X) of a set X is the set of all convex combinations of points
in X, i.e. the set of all points x̄ that can be expressed as

x̄ =

|X|
i=1

λixi

with appropriately chosen multipliers λ1, . . . , λ|X| ≥ 0 with
|X|

i=1 λi = 1.

Definition 1.3. Given a set of linear inequalities Ax ≤ b and binarity constraints
on some of the variables, relax the binarity constraints to box constraints, such
that 0 ≤ x ≤ 1. The set of points which are feasible for the resulting problem is
called the polytope corresponding to Ax ≤ b.

1.2. LAGRANGEAN RELAXATION 13

1.2 Lagrangean Relaxation

Consider a mixed-integer linear optimization problem of the form

min
x≥0

c⊤x

s.t. Ax ≤ a
Bx ≤ b
xi ∈ Z ∀i ∈ I ,

(P)

with A ∈ Rp×n, B ∈ Rq×n, c ∈ Rn, a ∈ Rp, b ∈ Rq, and p, q, n ∈ N+. I is a subset
of the variable indices. It is assumed that the constraints are divided into two sets
such that solving problem (P) without constraints Ax ≤ a is significantly easier
than solving the complete problem (P). The basic idea of Lagrangean relaxation
is to treat the complicating constraints by moving them to the objective function.
Violation of these constraints is penalized by so-called Lagrangean multipliers λ.
The resulting problem, the Lagrangean relaxation with respect to Ax ≤ a of (P),
reads

min
x≥0

c⊤x+ λ⊤(Ax− a)

s.t. Bx ≤ b
xi ∈ Z ∀i ∈ I ,

(LRλ)

with λ ∈ Rp
≥0. For each feasible value of λ, the optimum value of (LRλ) gives a

dual bound of problem (P). The problem of determining values for λ that give
the best possible dual bound z is called the Lagrangean dual problem:

z = max
λ∈Rp

≥0

min
x≥0

c⊤x+ λ⊤(Ax− a)

s.t. Bx ≤ b
xi ∈ Z ∀i ∈ I

(D)

Denote by (P ⋆) the following relaxation of (P):

min
x

c⊤x

s.t. Ax ≤ a
x ∈ conv{x ≥ 0 | Bx ≤ b, xi ∈ Z∀i ∈ I}

(P ⋆)

The next theorem characterizes the relation between the relaxations (LRλ), (P
⋆)

and the LP relaxation P̄ of (P).

Theorem 1.1 (Geoffrion [50]). Denote by v(·) the optimum solution value of a
problem.

1. For all λ ≥ 0 (LRλ) is a relaxation of (P):

F (LRλ) ⊇ F (P) and v(LRλ) ≤ v(P) ∀λ ≥ 0

14 CHAPTER 1. PRELIMINARIES

(P ⋆) is at least as tight as the LP relaxation:

F (P̄) ⊇ F (P ⋆) ⊇ F (P) and v(P̄) ≤ v(P ⋆) ≤ v(P)

2. The relaxation (P ⋆) gives the same dual bound as the Lagrangean dual:

z = v(P ⋆)

If the optimal value of the relaxation (PRλ) does not change when the integrality
conditions on the variables are dropped, (PRλ) is said to have the integrality
property. In this case the value of the Lagrangean dual is the same as the value
of the LP-relaxation (P̄).

By Theorem 1.1 the value of the Lagrangean dual is always as least as good
as the value of the LP-relaxation, but it can be better if (PRλ) does not have
the integrality property. This means that it is desirable to choose the constraints
to be relaxed such that the resulting Lagrangean relaxation does not have the
integrality property.

Theorem 1.2. Let (P̄) be feasible and (PRλ) have the integrality property. Then
(P ⋆) is feasible and

v(P̄) = z .

An optimal solution of the Lagrangean relaxation LRλ in general is not optimal
for the original problem (P), unless it satisfies the following optimality conditions.

Theorem 1.3 (Geoffrion [50]). Let x⋆ be an optimal solution of the Lagrangean
relaxation (LRλ) for a given λ. x⋆ is optimal for (P) if

1. Ax ≤ a

2. λ⊤(Ax− a) = 0.

1.2.1 Lagrangean Decomposition

Lagrangean decomposition can be considered a Lagrangean relaxation with re-
spect to a set of artificial constraints. Its aim is to decompose the problem into
auxiliary problems that can be easily computed. Starting as before from the
problem

min
x≥0

c⊤x

s.t. Ax ≤ a
Bx ≤ b
xi ∈ Z ∀i ∈ I ,

(P)

1.2. LAGRANGEAN RELAXATION 15

we introduce new variables y ≥ 0 and artificial linking constraints and express
the second set of constraints in the new variables:

min
x≥0

c⊤x

s.t. Ax ≤ a
By ≤ b
x = y
xi ∈ Z ∀i ∈ I ,

Applying Lagrangean relaxation to the linking equations gives

min
x≥0

c⊤x+ λ⊤(x− y)

s.t. Ay ≤ a
Bx ≤ b
xi ∈ Z ∀i ∈ I ,

Since the two sets of constraints are now independent of each other the problem
decomposes into

min
x≥0

c⊤x+ λ⊤x + min
y≥0

−λ⊤y

s.t. Bx ≤ b s.t. Ay ≤ a
xi ∈ Z ∀i ∈ I

(LDλ)

Guignard and Kim [55] showed that the bound provided by the Lagrangean
decomposition is at least as good as the bound obtained from the Lagrangean
relaxation of one of the two sets of constraints.

Theorem 1.4. Let λ⋆ be an optimal multiplier for max
λ≥0

v(LRλ), µ
⋆ = λ⋆A and

(x⋆, y⋆) optimal for (LDµ⋆), i.e. optimal for

min
x≥0
{c⊤x+ (a− µ⋆)⊤x | Bx ≤ b, xi ∈ Z ∀i ∈ I}

and

min
y≥0
{−µ⋆⊤y | Ay ≤ a} .

Then

1. v(LDµ⋆)− v(LRλ⋆) = (λ⋆)⊤(a− Ay⋆)

2. max
µ∈R

v(LDµ) ≥ max
λ≥0

v(LRλ)

The proof is straight forward.

16 CHAPTER 1. PRELIMINARIES

Proof. Let λ⋆ be an optimal multiplier for max
λ≥0

v(LRλ) and µ⋆ = A⊤λ⋆. Choose

(x⋆, y⋆) such that it is an optimal solution of (LDµ⋆). Then

v(LDµ⋆) = min
x≥0
{c⊤x+ (µ⋆)⊤x | Bx ≤ b, xi ∈ Z ∀i ∈ I}+min

y≥0
{(−µ⋆)⊤y | Ay ≤ a}

= min
x≥0
{c⊤x+ ((λ⋆)⊤A)x | Bx ≤ b, xi ∈ Z ∀i ∈ I}+min

y≥0
{((−λ⋆)⊤A)y | Ay ≤ a}

= c⊤x⋆ + (λ⋆)⊤Ax⋆ + ((−λ⋆)⊤A)y⋆ ((x⋆, y⋆) is optimal for (LDµ⋆))

=

c⊤x⋆ + (λ⋆)⊤A)x⋆ − (λ⋆)⊤a


+ ((λ⋆)⊤a)− (λ⋆)⊤Ay

=

c⊤x⋆ + (λ⋆)⊤(Ax⋆ − a)


+ (λ⋆)⊤(a− Ay⋆)

= v(LRλ⋆) + (λ⋆)⊤(a− Ay⋆)

The last equality holds, because, by the choice of µ as µ⋆ = A⊤λ⋆ the first part
of (LDµ⋆) and (LRλ⋆) differ only by a constant term in the objective function.
Since (x⋆, y⋆) is optimal for (LDµ⋆), x⋆ is also optimal for (LRλ⋆).

This proves the first part of the theorem. Since both λ⋆ and a − Ay⋆ are non-
negative, also the second part follows.

Concluding the preliminaries, we will give a short description the branch and
bound- and branch and cut-approaches for (mixed-)integer programs. These two
techniques will be used throughout this thesis to compute optimal solutions of
nonlinear optimization problems. We will limit the exposition in the following two
sections to the basic concepts; details concerning the adaptation of the algorithms
to specific problem types and applications will be discussed in later chapters. For a
more detailed introduction to branch and bound- and branch and cut-algorithms,
see [75] and [94]. Computational issues are discussed in [90].

1.3 Branch and Bound

Branch and bound is a technique to compute optimal solutions of optimization
problems. Although it was originally proposed by Land and Doig [79] as an al-
gorithm for MIPs, it is applicable whenever bounds on the optimal value of the
optimization problem can be computed. As the name suggests, a branch and
bound-algorithm has two main components, a branching procedure and a bound-
ing procedure. The bounding procedure optimizes an objective function over a
given feasible region and the branching procedure decomposes a given feasible
region into two or more smaller sets. The main idea of the branch and bound-
algorithm is to break up the original problem into a series of smaller subproblems
which are easier to solve. The information obtained from the subproblems is then
used to determine an optimum solution of the original problem. This approach is
motivated by the following

1.3. BRANCH AND BOUND 17

Observation 1.5 (Wolsey [123]). Consider the problem z = min{f(x) | x ∈ A}.
Let A = A1 ∪ · · · ∪ Ak be a decomposition of A into smaller sets, and let zk =
min{f(x) | x ∈ Ak} for k = 1, . . . , k. Then z = mink z

k.

The branch and bound-approach has the advantage that parts of the feasible
region which cannot contain a minimizer can be identified, which reduces the
number of subproblems that have to be inspected:

Observation 1.6. Consider an optimization problem

min{f(x) | x ∈ A} (P)

and a relaxation
min{g(x) | x ∈ B ⊇ A} (Q)

of (P). Let B1, . . . , Bk such that 
i=1,...,k

Bi ⊇ B .

If for any i ∈ {1, . . . , k} a dual bound of

min{g(x) | x ∈ Bi} (Qi)

exceeds a primal bound of P , Bi cannot contain an optimal solution of P . Thus
P is equivalent to

min{f(x) | x ∈ A \Bi} .

This observation also implies that it is not always necessary to solve the subprob-
lems to optimality. As soon as the dual bound exceeds a known primal bound
of P , the optimization process can be terminated. Furthermore, it suffices to
consider a relaxation of the subproblem.

The branch and bound-algorithm maintains a list of unprocessed subproblems,
which is initialized with the original problem P . Each subproblem corresponds
to a node in a tree-structure that is expanded by recursively decomposing the
feasible regions of subproblems.

As long as there are unprocessed nodes in the tree, the following steps are iterated.

1. Choose an unprocessed subproblem Pi and mark its node as processed.

2. Call the bounding procedure to solve a relaxation of Qi of Pi.

2a. If Qi is infeasible, go to Step 1.

2b. If the optimum value of Qi exceeds the best known primal bound of
P , go to Step 1.

18 CHAPTER 1. PRELIMINARIES

2c. If the minimizer x⋆ of Qi is feasible for Pi, update the best known
primal bound pb with f(x⋆), if f(x⋆) < pb. Go to Step 1.

3. Create k ≥ 2 new subproblems by decomposing the feasible region of Pi

and insert them into the list of unprocessed subproblems.

In this thesis we will use three types of branch and bound-algorithms to solve
mixed-integer formulations of nonlinear problems with bounded variables. They
differ in the relaxation that is used to compute bounds in the nodes of the tree.

1.3.1 LP-Based Branch and Bound

The basis of an LP-based branch and bound-algorithm for nonlinear mixed-
integer programs is a linearization of the original problem. In each subproblem
Pi a relaxation Qi is generated by replacing all integrality constraints by the
corresponding box constraints. This relaxation is solved to optimality with the
simplex algorithm [26].

A natural way to decompose the feasible region of a subproblem Pi is to choose
one of the variables that are required to take integer values in the linearization,
but have a fractional value in the optimal solution x⋆ of the relaxation Qi. If none
such exists, x⋆ is feasible for Pi and the algorithm proceeds with Step 1. If several
exist the most common rules are to select either the one with the lowest index
or the one whose coefficient in the objective function hast the largest absolute
value. When the current node of the branch and bound-tree cannot be pruned in
Step 2, two new subproblems are generated. One with the additional constraint
xi ≤ ⌊x⋆

i ⌋, the other one with the additionally constraint xi ≥ ⌈x⋆
i ⌉, where xi is

the variable selected for branching.

1.3.2 Lagrangean Decomposition-Based Branch and Bound

In each node of the branch and bound-tree the current subproblem is decomposed
as described in Section 1.2.1. Bounds are obtained by computing the Lagrangean
Dual of the decomposition with a subgradient algorithm. Alternatively, one or
both of the subproblems in the decomposition can first be relaxed, for example
by omitting integrality constraints.

Depending on the relaxation used to obtain the dual bound, there are several
choices for decomposing the feasible region of the subproblem Qi in the branching
step. When integrality constraints were relaxed, the branching variable can be
chosen as in an LP-based branch and bound-algorithm, by choosing a variable
with a fractional optimal value x⋆

i . The decomposition then works as before. The
value of the fractional variable is rounded up and down to the next integer and
two new subproblems are created in which the branching variable is forced to

1.3. BRANCH AND BOUND 19

take values below ⌊x⋆
i ⌋ or above xi ≥ ⌈x⋆

i ⌉. If no fractional variables exist in the
optimal solutions x⋆ and y⋆ of the two subproblems of LDλ, one can choose an
index i with x⋆

i ̸= y⋆i and branch by introducing the constraints xi ≤ x⋆
i and

xi ≥ x⋆
i + 1.

1.3.3 SDP-Based Branch and Bound

A classic approach to solve binary quadratic programs uses semidefinite relax-
ations instead of LP-relaxations to compute bounds in the nodes of the branch
and bound-tree.

In order to define a semidefinite program (SDP) and derive an SDP-relaxation of
a binary quadratic program we will need the following definitions.

A symmetric matrix A ∈ Rn×n is called positive semidefinite if

x⊤Ax ≥ 0

holds for all x ∈ Rn. We then write A ⪰ 0.

For two matrices A,B ∈ Rm×n denote by

⟨A,B⟩ :=
m
i=1

n
j=1

aijbij

the scalar product of A and B.

For a matrix A ∈ Rm×n let Diag(A) denote the matrix formed by setting all but
the entries on the main diagonal of A to zero:

Diag(A) :=


aij, if i = j

0 otherwise

Given a variable matrix Y ∈ Rn×n and coefficient matrices Q(k) ∈ Rn×n for
k = 1, . . . ,m and b ∈ Rm, a semidefinite program has the form

min ⟨Q̄(0), Y ⟩
s.t. ⟨Q̄(k), Y ⟩ ≤ bk k = 1, . . . ,m

Y ⪰ 0
Diag(Y) = I ,

(SDP)

where I denotes the identity matrix and rank(Y) the rank of Y . The set of fea-
sible solutions of SDP consists of those matrices that are symmetric and positive
semidefinite, have only ones on the main diagonal and additionally satisfy the
quadratic constraints.

20 CHAPTER 1. PRELIMINARIES

Now consider a general binary quadratic program (BQP)

min x⊤Q(0)x+ L(0)⊤x

s.t. x⊤Q(k)x+ L(k)⊤x ≤ bk k = 1, . . . ,m
x ∈ {0, 1}n ,

(BQP)

where Q(k) ∈ Rn×n for k = 0, . . . ,m are the symmetric coefficient matrices of
the quadratic terms, L(k) for k = 0, . . . ,m are the coefficient vectors of the linear
terms and b ∈ Rm.

Reformulating BQP such that the new model can be relaxed to a semidefinite
program involves two steps[46]. The first is to transform the domain of the binary
variables x from {0, 1} to {−1, 1}. This is achieved by the linear transformation

x̄i = 2xi − 1 .

The second step is to define appropriate coefficient matrices Q̄(k) for k = 0, . . . ,m.
Set

Q̄(k) =



1

2

n
i=1

l
(k)
i +

1

4

n
i=1

n
j=1

q
(k)
ij

1

4
l
(k)
1 +

1

8

n
j=1

q
(k)
1j . . .

1

4
l(k)n +

1

8

n
j=1

q
(k)
nj

1

4
l
(k)
1 +

1

8

n
j=1

q
(k)
1j

1

4
q
(k)
11 . . .

1

4
q
(k)
1n

...
...

. . .
...

1

4
l(k)n +

1

8

n
j=1

q
(k)
nj

1

4
q
(k)
n1 . . .

1

4
q(k)nn


BQP is then isomorphic to

min ⟨Q̄(0), Y ⟩
s.t. ⟨Q̄(k), Y ⟩ ≤ bk k = 1, . . . ,m

Y =


1
x̄


1
x̄

⊤

x̄ ∈ {−1, 1}n .

(1.3)

The last two constraints ban be equivalently expressed as Y ⪰ 0, Diag(Y) = I
and rank(Y) = 1, which gives the formulation

min ⟨Q̄(0), Y ⟩
s.t. ⟨Q̄(k), Y ⟩ ≤ bk k = 1, . . . ,m

Y ⪰ 0
Diag(Y) = I
rank(Y) = 1 .

(1.4)

1.4. BRANCH AND CUT 21

Omitting the constraint rank(Y) = 1 yields an SDP-relaxation of BQP, which can
be efficiently solved with interior point methods [61] or bundle methods [41, 60].

In the branching step two new subproblems are created by fixing one variable yij
to −1 in one subproblem and to 1 in the other. Helmberg and Rendl [59] propose
several branching rules. Two of them are adopted in [109]. The first chooses the
variable yij which has the lowest absolute value in the solution of the current SDP.
The second selects the rows i and j that have the lowest values

n
k=1(1 − ylk)

2

and branches on yij.

1.3.4 Enumeration Strategies

The enumeration strategy determines the order in which unprocessed subprob-
lems are selected in Step 1 of the branch and bound-algorithm. The two most
commonly used strategies are depth first and best first. The depth first strategy
always selects the subproblem at the back of the list, i.e. the subproblem that
was most recently added. In this approach the deeper levels of the branch and
bound-tree, where the feasible regions of the relaxations are small and the prob-
ability of finding a feasible solution is higher, are explored first. A disadvantage
the depth first-strategy is that the global dual bound improves only slowly, since,
by Theorem 1.5, it is determined by the minimum dual bound of all subproblems
in the deepest level that has been completely processed. This effect is avoided in
the best first-strategy, where always one of the subproblems whose parent defined
the current global dual bound is selected for processing.

1.4 Branch and Cut

The idea of the branch and cut-approach for mixed-integer programs is to combine
an LP- or SDP-based branch and bound-algorithm with a cutting plane algorithm
to improve the quality of the dual bounds obtained in the nodes of the branch
and bound-tree and thus decrease the number of nodes that have to be processed
in order to find an optimal solution of the MIP.

The basic idea of a cutting plane-algorithm is to iteratively tighten a relaxation by
adding valid inequalities, preferably facets of the convex hull of feasible solutions
of the original MIP, to the model. Each iteration consists of two step. First, an
optimal solution of the current relaxation is computed. Then an inequality that is
valid for all feasible solutions of the MIP but is violated by the current optimizer
is added to the model. When the new model is solved in the next iteration, the
formerly optimal point will be infeasible for the improved relaxation and the new
dual bound will be at least as good as the old one.

The cutting plane-algorithm for mixed-integer linear programs was first proposed

22 CHAPTER 1. PRELIMINARIES

by Gomory [52], together with a separation algorithm that generates cutting
planes from the optimal simplex tableau of the LP-relaxation. In theory, MIPs
can be solved to optimality in a finite number of iterations with a cutting plane-
algorithm. In practice, it is advantageous to combine this approach with a branch
and bound-algorithm, since the cutting planes quickly become weaker. In a branch
and cut-algorithm, a limited number of cutting plane-iterations is performed in
each node of the branch and bound-tree. When no more cutting planes can be
found or the improvement of the dual bound falls below a given threshold, a
branching step is performed.

For combinatorial optimization problems, valid inequalities are commonly not
generated with the procedure proposed by Gomory, but with problem-specific
separation algorithms that exploit the combinatorial structure of the underlying
problem. For some linear combinatorial problems, like theminimum spanning tree
problem or the perfect matching problem, complete polyhedral descriptions of the
convex hulls of feasible points are known and cutting planes can be computed
efficiently, although the complete description is of exponential size [36, 34]. For
other problems, such as the travelling salesman problem, efficient separation al-
gorithms are only known for certain classes of valid inequalities [7]. Nevertheless,
the augmentation of branch and bound-algorithms with the separation of cutting
planes has proven to be very effective in practice.

Chapter 2

Binary Quadratic Optimization

In this chapter we study binary quadratic optimization problems, i.e. optimiza-
tion problems defined on binary variables with quadratic terms in the objective
function and/or the constraints. Since the class of quadratic functions includes
the linear functions, an integer linear program (ILP) can be considered a special
case of quadratic binary optimization.

We study the basic problem with n binary variables and m constraints

min x⊤Q(0)x+ L(0)⊤x

s.t. x⊤Q(k)x+ L(k)⊤x ≤ bk k = 1, . . . ,m
x ∈ {0, 1}n ,

(2.1)

where Q(k) ∈ Rn×n for k = 0, . . . ,m are the coefficient matrices of the quadratic
terms, L(k) for k = 0, . . . ,m are the coefficient vectors of the linear terms and
b ∈ Rm. Without loss of generality we assume that the Q(k) are upper triangular
matrices, i.e. we have q

(k)
ij = 0 whenever j ≤ i.

2.1 Standard Linearization

The basic idea of all linearization approaches is to transform the quadratic bi-
nary problem into an equivalent linear one by expressing the quadratic nature
of the problem using only linear terms. Recall that, according to Definition 1.1,
two problems are equivalent if there is a bijection between the sets of optimal
solutions and equivalent optimal solutions have the same objective value. The
transformation is achieved by adding linearization variables (binary or continu-
ous) and linking constraints to the model that replace the quadratic objective
function and constraints.

The following definition will ease notation in this chapter.

23

24 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

Definition 2.1. Given a quadratic constraint

x⊤Qx+ L⊤x ≤ b ,

where Q is not necessarily an upper triangular matrix, substituting all square
terms xixi with xi and all terms xixj for i < j with a new variable yij ≥ 0 is
called the trivial linearization of the quadratic constraint.

The most commonly used technique, the so-called standard linearization, was first
proposed by Glover and Woolsey [51] and is based on earlier work by Fortet [43].
Replace each quadratic term xixj with a new continuous variable yij and add the
following coupling constraints:

yij ≥ 0 (2.2)

yij ≤ xi (2.3)

yij ≤ xj (2.4)

yij ≥ xi + xj − 1 (2.5)

The resulting problem is linear. It reads

min
n

i=1

n
j=i+1

q
(0)
ij yij +

n
i=1

L
(0)
i xi

s.t.
n

i=1

n
j=i+1

q
(k)
ij yij +

n
i=1

L
(k)
i xi ≤ bk k = 1, . . . ,m

yij ≥ 0
yij ≤ xi

yij ≤ xj

yij ≥ xi + xj − 1
x ∈ {0, 1}n

y ∈ R(
n
2) .

(2.6)

Note that the linearization variables y need not be declared as binary explicitly.
Indeed, when one of the variables xi and xj takes the value zero, the corresponding
linearization variable yij is zero as well. When xi = xj = 1 and thus xixj = 1,
we have yij = 1. Therefore, Problem (2.1) and its standard linearization are not
only equivalent, but also isomorphic.

It is easily checked that the standard linearization (2.6) is a linearization of (2.1)
in the sense of Definition 1.2, however it requires O(n2) additional continuous
variables and O(n2) additional linear constraints. More compact linearizations
have been proposed, e.g. by Oral and Kettani [104], whose linearization only
requires O(n) additional continuous variables and linear constraints. The com-
mon drawback of the linearizations discussed so far is that their LP-relaxations
generally yield weak bounds on the optimal value of (2.1).

2.2. UNCONSTRAINED BINARY QUADRATIC OPTIMIZATION 25

There are two ways to get a better description of the convex hull of the feasible
solutions of (2.6) and thus stronger bounds. The first is to use an extended
formulation. This increases the dimension of the problem. The other is to add
valid inequalities to (2.6), which will increase the number of constraints in the
LP, but not the number of variables.

One approach by De Simone [28] exploits the equivalence of binary quadratic
programming and the MaxCut problem. The basic idea is to generate a better
description of the convex hull of feasible solutions of (2.6) using cutting planes
valid for an appropriate MaxCut polytope.

In the following sections we will study the relation between unconstrained binary
quadratic programming and the MaxCut problem and discuss separation algo-
rithms for the most important class of cutting planes for the cut polytope, the
odd cycle inequalities.

We will return to the general case of binary quadratic programming with con-
straints in Section 2.3. All MaxCut inequalities remain valid for this case and
can be used to strengthen the LP-relaxation of (2.6). These relaxations can be
further improved by replacing linear constraints with equivalent quadratic ones.
We study two general reformulation techniques in 2.3.1 and 2.3.2.

Section 2.3.3 presents a reformulation technique for assignment constraints, which
occur in a wide range of combinatorial problems. It explicitly exploits the struc-
ture of the constraints and has the advantage of improving the effectiveness of
the separation routines for the cut polytope without generating additional lin-
earization variables.

2.2 Unconstrained Binary Quadratic Optimiza-

tion

The maximum cut problem (MaxCut) is defined as follows.

Definition 2.2 (MaxCut). Given a weighted undirected graph G = (V,E, c),
find a subset S of the nodes V , such that the total weight of all edges of E with
exactly one endpoint in S is maximal.

To express the MaxCut problem as an IP, identify each edge e = (u, v) ∈ E with
a binary variable zuv. Each cut S in V can then be expressed as a vector z with

zuv =


1 if u ∈ S or v ∈ S, but not both

0 otherwise.

We get
max c⊤z
s.t. z ∈ C(G) ,

(2.7)

26 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

where C(G) ⊆ {0, 1}E is the set of all vectors corresponding to cuts in G. The
convex hull of C(G) is called the cut polytope of the graph G.

Now consider an unconstrained binary quadratic optimization problem defined
on an undirected graph H = (W,F) and given as

max a⊤x+ b⊤y
s.t.


x
y


∈ BQ(H) ,

(2.8)

where BQ(H) ⊆ {0, 1}W×F is the set of all binary vectors

x
y


such that yvw =

xvxw for all edges e = (v, w) ∈ F . The convex hull of BQ(H) is called the boolean
quadric polytope of the graph H [106].

The binary quadratic problem (2.8) reduces to a MaxCut problem (2.7) on a
modified graph [28]. Denote by H + u the graph constructed from H by adding
a node u and connecting all original nodes of H to u with an edge. For each z in
the feasible set C(H+u) corresponding to H+u, define g(z) as


x
y


∈ {0, 1}W+F

with

xv = zuv for all v ∈ W and

yvw = xvxw for all vw ∈ F .

g(z) is a bijective mapping between C(H + u) and BQ(H). By definition of g we
have

yvw = xvxw = zuvzuw

and since z corresponds to a cut in H + u, this is equivalent to

yvw =
1

2
(zuv + zuw − zvw) ,

as can be seen from Figure 2.1, and therefore
a
b


g(z) = c⊤z ,

for an appropriate vector c. This means that the binary quadratic problem on H
reduces to a MaxCut problem on H + u.

Furthermore, the cut polytope of H+u is mapped to the boolean quadric polytope
of H under the linear transformation f : RE −→ RW∪F defined by

zuv →→ xv ,

zvw →→ xv + xw − 2yvw .
(2.9)

This means that all classes of valid inequalities known for the cut polytope can be
used to strengthen the relaxation of the unconstrained binary quadratic problem.
Moreover, inequalities inducing facets of the cut polytope remain facet-inducing
for the boolean quadric polytope under the transformation f .

2.2. UNCONSTRAINED BINARY QUADRATIC OPTIMIZATION 27

v w

u

Figure 2.1: For any cut in H + u, there are four possible cases in the subgraph
u, v and w. The empty cut contains none of the edges of the subgraph, this case
corresponds to zuv = zuw = zvw = 0. All other cuts contain exactly two edges.

In the presence of linear constraints, these cutting planes remain valid, although
inequalities inducing facets of C(H + u) not necessarily induce facets of the con-
vex hull of the intersection of BQ(H) with the additional hyperplanes under f .
Nevertheless, the equivalence between the MaxCut problem and binary uncon-
strained quadratic optimization provides separation routines which can be used
in a branch and cut-algorithm for constrained binary quadratic problems of the
form (2.1), which works as follows. The standard linearization of (2.1) is solved
with an LP-based branch and bound-algorithm. When the solution of an LP is
fractional, it is mapped to the separation graph H + u with the inverse of the
linear transformation f . When a violated MaxCut-inequality is found by a sepa-
ration algorithm, it is mapped back to an inequality in the original variables with
f and added to the LP-relaxation.

2.2.1 Odd Cycle Inequalities

The most important class of valid inequalities for the cut polytope are the odd
cycle inequalities. As was shown by Barahona and Mahjoub [12], they can be
separated in polynomial time and under certain conditions induce facets of the
cut polytope.

Definition 2.3 (odd cycle inequality). Given an undirected graph G = (V,E)
and a set of edges C ⊆ E which forms a cycle in G, let D denote a subset of C
with odd cardinality. The inequality

z(D)− z(C \D) ≤ |D| − 1

is called an odd cycle inequality.

An odd cycle inequality induces a facet of the cut polytope of G if and only if
its corresponding cycle C is chordless [12], i.e. C is not decomposable into two

28 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

or more shorter cycles. In fact, the MaxCut problem can be formulated as an IP
using only odd cycle inequalities [31]. Problem (2.7) is equivalent to

max c⊤z
s.t. z(D)− z(C \D) ≤ |D| − 1 ∀(C,D) ∈ T (G)

z ∈ {0, 1}E ,

where T (G) contains all pairs of chordless cycles C of G and their subsets of odd
cardinality D.

Furthermore, it was shown by Barahona and Mahjoub [12] that, when G does
not contain a complete graph on five nodes as a minor, the set of odd cycle
inequalities of G in combination with the inequalities 0 ≤ ze ≤ 1 for those edges
e ∈ E that belong to no triangle in G even provide a complete description of the
cut polytope of G.

Now consider the graph H +u from above. For each edge vw of the original edge
set F , H+u contains the triangle formed by uv, uw and vw. Each odd cardinality
subset of the triangle defines an odd cycle inequality, which induces a facet of
the convex hull of C(H + u), since the triangle is a chordless cycle. These four
inequalities are

zvw − zuv − zuw ≤ 0 for D = {vw} ,
zuv − zuw − zvw ≤ 0 for D = {uv} ,
zuw − zuv − zvw ≤ 0 for D = {uw} and
zuv + zuw + zvw ≤ 2 for D = {uv, uw, vw} .

Under the linear transformation f they are mapped to the following valid in-
equalities for the boolean quadric polytope of H:

yvw ≥ 0 ,

yvw ≤ xw ,

yvw ≤ xv and

yvw ≥ xv + xw − 1 .

This is exactly the standard linearization (2.2) – (2.5) of the quadratic term xvxw.
We see that odd cycle inequalities induced by triangles containing the auxiliary
node u do not strengthen the LP-relaxation of (2.6).

Triangles of original nodes ofH, on the other hand, induce valid inequalities which
indeed give a tighter description of the convex hull of BQ(H). Choose three nodes
i, j, k ∈ W which form a cycle C in H and let D = {ij}. The resulting odd cycle
inequality

zij − zik − zjk ≤ 0

is mapped to the inequality

yij + yik + yjk − xi − xj − xk ≤ −1 , (2.10)

2.2. UNCONSTRAINED BINARY QUADRATIC OPTIMIZATION 29

v

w

v′ v′′

w′ w′′

z⋆vw z⋆vw

1− z⋆vw

1− z⋆vw

Figure 2.2: The construction of the auxiliary graphG′ used in the exact separation
algorithm for odd cycle inequalities, illustrated on a single edge of G. Grey edges
used in the optimal path P form the odd set D.

which cannot be expressed as a conic combination of the inequalities describing
the LP-relaxation of (2.6). To see why, remember that, in the standard form, all
inequalities defining the standard relaxation have a non-negative right-hand side,
whereas the right-hand side of (2.10) is negative.

The following observation shows that cycles including the auxiliary node u, apart
from triangles, can only induce lower-dimensional faces of the cut polytope.

Observation 2.1. Cycles which contain the auxiliary node u and consist of more
than three edges cannot induce facets of the cut polytope of H + u.

By construction of H+u each original node is linked to u by an edge. It immedi-
ately follows that any cycle which includes u and has more than three edges must
have a chord. Since odd cycle inequalities induce facets if and only if the cycle is
chordless [12], long cycles including u must induce faces of lower dimension.

Observation 2.1 has an important practical consequence. For the separation of
odd cycle inequalities it is not necessary to consider the extended graph H + u.
Working with H instead results in the same LP-relaxation and at the same time
speeds up the separation algorithms described in the following sections, since
their running times depend on the dimension of the underlying graph.

Odd cycle inequalities can be separated in polynomial time, both by exact and
heuristic algorithms.

Exact Separation of Odd Cycle Inequalities

Given a solution z⋆ of an LP-relaxation of (2.7), the exact separation algorithm
by Barahona and Mahjoub [12] computes a cycle C ⊆ E in G and a set D ⊆ C

30 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

of odd cardinality inducing an odd cycle inequality which is maximally violated
by z⋆, if one exists.

It works on an auxiliary graph G′ = (V ′ ∪ V ′′, E ′) constructed from G = (V,E).
G′ has two nodes v′ ∈ V ′ and v′′ ∈ V ′′ for each original node v ∈ V and four edges
for each original edge e = (v, w) ∈ E. These are (v′, w′) and (v′′, w′′) with weight
z⋆vw and (v′, w′′) and (v′′, w′) with weight 1− z⋆vw (see Figure 2.2). The algorithm
then computes a shortest path from v′ to v′′ for each v ∈ G. The shortest of these
paths, P , defines the desired cycle C ⊆ E and the set D ⊆ C as follows. Each
edge in P by construction corresponds to an edge of G. P links two copies of the
same node of G and thus the original edges corresponding to edges of P form a
cycle in G. To link its start and end node, P must use an odd number of edges
connecting V ′ and V ′′. These define the odd subset D of the cycle C.

If the weight 
e∈C\D

z⋆e +

e∈D

(1− z⋆e)

of the resulting cycle is less then 1, C andD define a violated odd cycle inequality,
otherwise none exists. To see this, observe that an inequality of the form

e∈D

ze −


e∈C\D

ze ≤ |D| − 1

can be written as 
e∈C\D

ze +

e∈D

(1− ze) ≥ 1

by multiplying with −1 and bringing |D| to the left-hand side.

The algorithm by Barahona and Mahjoub [12] computes |V | shortest s-t-paths in
the auxiliary graph of size O(|V |2). Using an appropriate implementation of the
shortest path algorithm, the overall running time is O(|V |3).

Heuristic Separation of Odd Cycle Inequalities

The exact separation algorithm for odd cycle inequalities described above runs
in polynomial time, but may still be too time-consuming in some situations. An
alternative is a heuristic algorithm, the forest cycle separation algorithm [13] (see
Algorithm 1). It operates on the original graph G. Assume that G is connected,
otherwise the algorithm can be applied to each connected component of G.

Given a solution z⋆ of an LP-relaxation of (2.7), the algorithm first computes a
spanning tree of maximum weight T in G, where the edge weights are chosen as
we = |z⋆e − 1

2
|. Adding an edge e /∈ T to T now creates a cycle C in T , which

can easily be found with a breadth-first-search in T ∪{e}. The set D is chosen as
the set of edges f ∈ C with z⋆f above a certain threshold, for example 0.5. If the

2.2. UNCONSTRAINED BINARY QUADRATIC OPTIMIZATION 31

cardinality of D is odd, C and D define a candidate inequality. If this inequality
is violated, it is added to the relaxation. This process is repeated for all edges
e /∈ T .

The computation of the spanning tree takes O(|V |2) time [107] and is done only
once. For each non-tree edge the cycle is computed in O(|V |), so that the overall
running time is again O(|V |3), but in contrast to the exact algorithm up to
|E| − (|V | − 1) violated inequalities can be found per application. On the other
hand, the heuristic algorithm will not necessarily find the most violated inequality
and might fail even if violated inequalities exist.

Algorithm 1 The forest cycle separation algorithm.

input: undirected graph G = (V,E), z⋆ ∈ [0, 1]E,

output: set I of odd cycle inequalities

e∈D

ze −


e∈C\D

ze ≤ |D| − 1

I ← ∅
T ← maximum spanning tree in G with edge weights we = |z⋆e − 1

2
|

for e ∈ E \ T do
C ← cycle in T ∪ {e}
D ← ∅
for f ∈ C do

if z⋆f > 0.5 then
D ← D ∪ {f}

end if
end for
if |D| odd and


e∈D

z⋆e −


e∈C\D

z⋆e ≤ |D| − 1 then

I ←

e∈D

ze −


e∈C\D

ze ≤ |D| − 1

end if
end for
return I

2.2.2 More Cutting Planes

The cut polytope has been intensively studied and many more classes of valid,
and sometimes facet-defining, inequalities have been described [31], but for many
of these classes no efficient separation algorithms are known.

32 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

The hypermetric inequalities [30] are of the form
e=(u,v)∈E

bubvze ≤ 0 ,

where the bu for u ∈ V are integer numbers that sum to 1. They contain the
triangle inequalities

zuv − zuw − zvw ≤ 0

for u, v, w ∈ V as a special case. No exact separation algorithm for general hyper-
metric inequalities is known, but De Simone and Rinaldi [29] propose a heuristic
separation procedure and find that hypermetric inequalities are effective in branch
and cut-algorithms for the MaxCut problem.

Gap inequalities were introduced by Laurent and Poljak [80] and are a general-
ization of hypermetric inequalities. Let b ∈ ZV and define

σ(b) :=

v∈V

bv and γ(b) := min
S⊆V



v∈S

bv −


v∈V \S

bv

 .
The inequality 

e=(u,v)∈E

bubvze ≤
1

4


σ(b)2 − γ(b)2


is called a gap inequality.

Theorem 2.2 (Laurent and Poljak [80]). Gap inequalities are valid for the cut
polytope of a complete graph.

Proof. Let G = (V,E) be a complete graph, b ∈ ZV and S ⊆ V . Without loss of
generality assume |S| ≥ |V \ S|. By the definition of γ(b) we then have

v∈S

bv −


v∈V \S

bv ≥ γ(b) ≥ 0

and therefore

1

4


σ(b)2 − γ(b)2


=

1

4


v∈S

bv +


v∈V \S

bv

2

− γ(b)2


≥ 1

4


v∈S

bv +


v∈V \S

bv

2

−


v∈S

bv −


v∈V \S

bv

2
=


v∈S

bv

 
v∈V \S

bv

 =


(u,v)∈δ(S)

bubv .

2.3. QUADRATIC REFORMULATION 33

The complexity of separating general gap inequalities is unknown, but Galli et al.
[48] recently were able to show that it is possible in finite time. In the same paper
the authors prove that already deciding whether a vector z⋆ ∈ [0, 1]E violates some
gap inequality with γ(b) = 1 is NP -hard. Nevertheless, gap inequalities can be
separated heuristically. In [47], Galli et al. devise a heuristic separation algorithm
for gap inequalities based on Eigenvalue computations and show experimentally
that gap inequalities yield strong relaxations of the MaxCut problem.

2.3 Quadratic Reformulation

So far we have considered binary problems with both a quadratic objective func-
tion and quadratic constraints. We have seen how these problems can be re-
formulated as purely linear problems and how the resulting relaxations can be
strengthened with cutting planes from MaxCut. Sometimes not all constraints
of a QIP are quadratic. Especially in combinatorial applications, often only the
objective function is quadratic, while the set of feasible solutions is characterized
by linear inequalities.

Take the angular-metric travelling salesman problem [1], for example, which has
applications in robotics [87] and vehicle routing [91]. Like in the linear TSP, each
Hamiltonian cycle C in the undirected graph G = (V,E) is a feasible solution, but
the costs are not determined by summing up the costs of the edges in C. Instead
the costs are determined by the sum of the angles between adjacent edges in
C. Denote by A the set of all unordered pairs of edges that share a node. The
objective function of the angular-metric TSP can then be expressed as

{e,f}∈A

α{e,f}xexf ,

where α{e,f} depends on the angle between the edges e and f .

Costs induced by pairs of edges also occur in network design, where they are used
to model interference costs. One example is the quadratic minimum spanning tree
problem, which was first described by Assad and Xu [9]. Here the set A often is
not restricted to pairs of adjacent edges but may include all unordered pairs of
edges [23].

A natural approach to solve such quadratic combinatorial problems is to apply
the linearization approach of Section 2.1. The resulting linear program can then
be solved with a branch and cut-algorithm. This approach is advantageous, since
the LP-relaxations can be strengthened by exploiting the equivalence between
binary quadratic optimization and MaxCut described in Section 2.2.

Another technique to obtain tighter LP-relaxations, which can be combined with
the cutting plane-approach, is quadratic reformulation of linear constraints. The

34 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

basic idea is to replace the set of linear constraints, or a subset, by equivalent
quadratic constraints, before linearization. This has two effects: The linearized
quadratic constraints often provide a better description of the convex hull of feasi-
ble points of the linearized problem and the introduction of additional quadratic
terms leads to denser separation graphs when quadratic reformulation is com-
bined with the cutting plane approach presented in this chapter.

We will investigate the properties of two quadratic reformulation techniques pro-
posed by Helmberg et al. [62]. In this paper, the authors investigate the effec-
tiveness of the two approaches in the context of semidefinite programming. They
study the quadratic knapsack problem (QK). QK is a binary quadratic optimiza-
tion problem with a single linear constraint

a⊤x ≤ 1 (2.11)

with x ∈ {0, 1}n and ai > 0 for all i ∈ {1, . . . , n}.
Similar to Helmberg et al. [62], we investigate the quadratic knapsack problem,
i.e. we study the effects of quadratic reformulation of a single linear constraint
of the form (2.11). In contrast to Helmberg et al. [62], we are interested in the
improvement of LP-based relaxations.

Without loss of generality, in the following we can assume ai ≤ 1 for all i ∈
{1, . . . , n}, since all variables xj with aj > 1 will have value zero in all feasible
solutions of (2.11).

2.3.1 SQK2

The idea of the first reformulation, called SQK2 in [62], is to square both sides
of the inequality in (2.11) and thus obtain a single quadratic inequality which is
equivalent to the original one:

a⊤x ≤ 1
a,x≥0⇐⇒ (a⊤x)2 ≤ 12

⇐⇒
n

i=1

a2ix
2
i + 2

n
i=1

n
j=i+1

aiajxixj ≤ 1 (2.12)

Applying the trivial linearization to inequality (2.12) yields the linear inequality

n
i=1

a2ixi + 2
n

i=1

n
j=i+1

aiajyij ≤ 1 . (2.13)

The SQK2 reformulation approach requires

n
2


linearization variables, where n

is the number of distinct variables in the original constraint. The following ob-
servation shows that, although the constraint (2.12) is equivalent to the original

2.3. QUADRATIC REFORMULATION 35

constraint for binary variables x, assuming only the trivial linearization for the
linearization variables in (2.13) does not necessarily yield an equivalent problem.

Observation 2.3. The problem obtained from (2.11) by SQK2 together with the
trivial linearization in general is not a linearization of (2.11).

Proof. Recall that a linear problem is a linearization of a nonlinear problem if the
two problems are equivalent in the sense of Definition 1.1. To prove the statement
of the proposition we will construct an instance of (2.11), for which SQK2 together
with the trivial linearization does not produce an equivalent problem.

Let n = 2 and set a1 =
3
4
and a2 =

1
2
. The SQK2 reformulation of the constraint

3

4
x1 +

1

2
x2 ≤ 1

is
9

16
x2
1 +

1

4
x2
2 +

3

4
x1x2 ≤ 1 .

Applying the trivial linearization gives

9

16
x1 +

1

4
x2 +

3

4
y12 ≤ 1 .

The points (0, 0), (1, 0) and (0, 1) are feasible for the original problem, (1, 1)
is infeasible. For the linearized problem (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0) and
(0, 0, 1) are feasible, while (1, 0, 1), (0, 1, 1) and (1, 1, 1) are infeasible. Since the
two sets of feasible solutions have different cardinalities, there cannot exist a
bijection between them. This shows that the two problems are not isomorphic.
With an appropriately chosen objective function they are also not equivalent.

If we assume the standard linearization instead of the trivial linearization for the
reformulated problem, we get an integer linear problem which is equivalent to the
original problem. However, the following theorem shows that this approach does
not always yield a tighter LP-relaxation.

Theorem 2.4. The polyhedron corresponding to the inequality obtained from
a⊤x ≤ 1 by SQK2 and the standard linearization in general is not contained in
the polyhedron corresponding to a⊤x ≤ 1.

Proof. For variables x, y, z ∈ {0, 1} and a, b, c > 0 consider the inequality

ax+ by + cz ≤ 1 (2.14)

and the corresponding polytope

P1 = {(x, y, z) ∈ R3 | ax+ by + cz ≤ 1, 0 ≤ x, y, z ≤ 1} .

36 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

The SQK2 reformulation of (2.14) is

a2x+ b2y + c2z + 2abu+ 2acv + 2bcw ≤ 1 . (2.15)

Assuming the standard linearization for the new variables u, v, and w, the poly-
hedron corresponding to the linearization of (2.15) is

P2 = {(x, y, z, u, v, w) ∈ R6 | a2x+ b2y + c2z + 2abu+ 2acv + 2bcw ≤ 1,

0 ≤ x, y, z ≤ 1, u, v, w ≥ 0,

u ≤ x, u ≤ y, u ≥ x+ y − 1,

v ≤ x, v ≤ z, v ≥ x+ z − 1,

w ≤ y, w ≤ z, w ≥ y + z − 1} .
Sequentially projecting out the variables u, v and w with Fourier-Motzkin-eli-
mination gives the projection P̄2 of P2 onto the original variable space:

P̄2 =

(x, y, z)∈ R3 | 0 ≤ x, y, z ≤ 1,

a

2b
x+

b

2a
y +

c2

2ab
z ≤ 1

2ab
,

a+ 2c

2b
x+

b

2a
y +

c2 + 2ac

2ab
z ≤ 1

2ab
+

c

b
,

a

2b
x+

b+ 2c

2a
y +

c2 + 2bc

2ab
z ≤ 1

2ab
+

c

a
,

a+ 2c

2b
x+

b+ 2c

2a
y +

c2 + 2ac+ 2bc

2ab
z ≤ 1

2ab
+

c

a
+

c

b
, a

2b
+ 1

x+


b

2a
+ 1


y +

c2

2ab
z ≤ 1

2ab
+ 1,

a+ 2c

2b
+ 1


x+


b

2a
+ 1


y +

c2 + 2ac

2ab
z ≤ 1

2ab
+

c

b
+ 1, a

2b
+ 1

x+


b+ 2c

2a
+ 1


y +

c2 + 2bc

2ab
z ≤ 1

2ab
+

c

a
+ 1,

a+ 2c

2b
+ 1


x+


b+ 2c

2a
+ 1


y +

c2 + 2ac+ 2bc

2ab
z ≤ 1

2ab
+

c

a
+

c

b
+ 1


In general P̄2 is not completely contained in P1. Consider, for example, the coef-
ficients a = 1

2
, b = 1

2
, c = 1. The point (x, y, z) = (1, 0, 1

2
) is feasible for P1, since

1
2
· 1+ 1

2
· 0+ 1 · 1

2
≤ 1, but it is not feasible for P̄2, since it violates the constraint

a+ 2c

2b
+ 1


x+


b

2a
+ 1


y +

c2 + 2ac

2ab
z ≤ 1

2ab
+

c

b
+ 1 .

For a = 1
2
, b = 1

2
, c = 1 we have

7

2
· 1 + 3

2
· 0 + 4 · 1

2
> 5 .

2.3. QUADRATIC REFORMULATION 37

z
x

y

Figure 2.3: The polytopes P1 and P̄2 for the example given above. The original
polytope P1 is drawn with bold edges, the polytope P̄2 of the reformulation with
dashed edges. As can be seen, neither polytope is completely contained in the
other.

Observation 2.5. The example constructed in the previous proof, illustrated in
Figure 2.3, also shows that SQK2 with standard linearization not necessarily leads
to a weaker LP-relaxation, since in general also P1 is not completely contained
in P̄2.

The point (x, y, z) = (0, 1
2
, 7
8
) satisfies all inequalities describing P̄2, but is not

contained in P1, since it violates the original constraint

1

2
x+

1

2
y +

7

8
z ≤ 1 .

Theorem 2.4 and Observation 2.5 suggest that in order to achieve tighter LP-
relaxations by using SQK2, at least the standard linearization should be applied
to the linearization variables and the original linear constraints should be kept.
This is not necessary for SDP-relaxations. As was shown by Helmberg et al. [62],
SQK2 strengthens the SDP-relaxation of the quadratic knapsack problem even if
the original constraint is dropped from the model.

2.3.2 SQK3

The second reformulation proposed in [62], called SQK3, is based on a refor-
mulation by Sherali and Adams [116]. SQK3 works by multiplying (2.11) with
each variable xi in turn to produce n new inequalities and with the complement
(1 − xj) for a given index j. The total number of new inequalities is n + 1, in

38 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

comparison to 2n in the reformulation by Sherali and Adams [116], where the
original constraint is multiplied with all variables and all complements.

Consider again the knapsack constraint (2.11) and denote by P3 the corresponding
polytope

P3 = {x ∈ Rn | a⊤x ≤ 1, 0 ≤ x ≤ 1} .

Call the polyhedron corresponding to the standard linearization of the SQK3
reformulation of (2.11) P̃3 and its projection onto the original variable space P̄3.

It was already observed by Sherali and Adams [116] that SQK3 improves the
original LP-relaxation, even when only the trivial linearization is applied:

Theorem 2.6 (Sherali and Adams [116]). The polyhedron P̄3 corresponding to the
SQK3 reformulation of inequality (2.11) is completely contained in the polyhedron
P3.

Proof. Consider two of the inequalities that define P̃3:

xj(a
⊤x) ≤ xj

and
(1− xj)(a

⊤x) ≤ 1− xj .

Summing up these inequalities gives the original constraint

a⊤x ≤ 1 .

Thus this inequality is valid for the polyhedron P̃3 as well as for its projection P̄3.

Theorem 2.7 (Helmberg et al. [62]). The reformulation SQK3 gives a tighter
description of the convex hull of integer points of P3 than SQK2, independent of
the linearization of the quadratic terms.

Proof. We show that the quadratic inequality

(a⊤x)2 ≤ 1

obtained from the original constraint

a⊤x ≤ 1

by SQK2 is implied by the inequalities obtained by SQK3.

For i ∈ {1, . . . , n} denote by Ii the inequality obtained by multiplying the original
constraint with xi. Then 

i∈{1,...,n}

aiIi

2.3. QUADRATIC REFORMULATION 39

z

x

y

Figure 2.4: The two polyhedra P3 and P̄3 from the proof of Theorem 2.8, for
a = 8

15
and b = 4

5
. P3 is drawn with dashed lines, P̄3 with solid lines.

is equal to

(a⊤x)2 ≤ a⊤x .

By Theorem 2.6 the original constraint a⊤x ≤ 1 is implied by the constraint
system generated by SQK3 and thus (a⊤x)2 ≤ 1 holds for any binary vector
x ∈ Rn which satisfies the inequalities of the SQK3 reformulation.

Theorem 2.8. In general the reformulation SQK3 of a constraint does not imply
the standard linearization of the resulting quadratic terms.

Proof. Consider a quadratic problem of the form

min −cxy
s.t. ax+ by ≤ 1

x ∈ {0, 1}
y ∈ {0, 1} ,

(2.16)

with 0 < a, b, c < 1 and replace the term xy by the new variable z ≥ 0. The poly-
hedron corresponding to the LP-relaxation of the standard linearization of (2.16)
is

P = {(x, y, z) ∈ R3 | ax+ by ≤ 1, 0 ≤ x, y ≤ 1, 0 ≤ z ≤ x, z ≤ y, z ≥ x+ y − 1} .

40 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

The SQK3 reformulation of ax+ by ≤ 1 consists of the inequalities

−x+ ax2 + bxy ≤ 0 ,

−y + axy + by2 ≤ 0 and

(a+ 1)x+ by − ax2 − bxy ≤ 1 ,

obtained by multiplying the original inequality with the variables x and y and
with the complement of one of the variables, in this case 1− x. Substituting the
square terms with the original variables and xy with z > 0 before relaxing the
integrality constraints yields the polyhedron

P̄ = {(x, y, z) ∈ R3 | 0 ≤ x, y ≤ 1,

bz ≤ (1− a)x, az ≤ (1− b)y, bz + 1 ≥ x+ by, z ≥ 0} .

To prove the statement of the theorem, we will show that, for some given coeffi-
cients a and b, there exists a point (x̄, ȳ, z̄) with (x̄, ȳ, z̄) ∈ P̄ , but (x̄, ȳ, z̄) /∈ P .

Let a = 8
15

and b = 4
5
. The point x̄ = 1

5
, ȳ = 1, z̄ = 0 satisfies all inequalities

defining P̄ , but violates the inequality z̄ ≥ x̄+ ȳ − 1, therefore (x̄, ȳ, z̄) /∈ P .

Figure 2.4 shows the polyhedra P and P̄ corresponding to the standard lineariza-
tion and the SQK3 reformulation of the binary quadratic problem 2.16 for the
coefficients used in the proof of the last theorem. As can be seen, the reformu-
lation produces a polyhedron of much smaller volume, but additionally applying
the standard linearization can improve the LP-relaxation of binary quadratic
problems, since P̄ is not completely contained in P .

2.3.3 Phantom Monomials

In Section 2.1 we presented a linearization approach for binary quadratic opti-
mization problem and discussed how it can be improved by incorporating cutting
planes for the cut polytope. In Sections 2.2 and 2.3 we discussed a technique
to further strengthen the LP-relaxations by reformulating linear constraints in
quadratic terms before linearizing the quadratic model.

A drawback of both approaches is that they increase the size of the model in
comparison to the standard linearization, both in regard to the number of vari-
ables and the number of constraints. This effect generally is undesired, as it often
makes the relaxations harder to solve. Certain combinatorial structures admit a
quadratic reformulation that avoids additional variables without losing the ben-
efit of a denser separation graph for MaxCut inequalities.

In many combinatorial applications exactly one or at most one element has to
be selected from a set. The Steiner arborescence problem is an example for such
a problem on a directed graph G = (V,A, c). Given a root vertex r and a set

2.3. QUADRATIC REFORMULATION 41

of so-called terminals T ⊆ V , a solution of the Steiner arborescence problem
is a subgraph of G that contains a directed path from r to each terminal. A
natural IP-formulation of the minimum-weight Steiner arborescence problem [42]
contains the constraints 

(v,s)∈A

x(v,s) ≤ 1 ∀s ∈ S ,

where S is the set of all vertices which are not the root vertex r or one of the
terminals, the so-called Steiner vertices. They ensure that the in-degree of each
Steiner vertex is at most one. Constraints of the form

e∈δ(v)

xe = 1

for example occur in IP-formulations of perfect matching problems [86]. Here they
ensure that for each node of an undirected graph only one incident edge is part
of a solution.

For ease of notation we will concentrate on assignment constraints of the form
i∈I

xi = 1 , (2.17)

with x ∈ {0, 1}I . All results also hold for the ≤-case.
An assignment constraint of the form (2.17) mandates that exactly one of the
variables in I takes value one, all others value zero. This leads to the

Observation 2.9. For any vector x⋆ ∈ {0, 1}I satisfying (2.17),

x⋆
ix

⋆
j = 0

holds for all i, j ∈ I with i ̸= j.

Observation 2.9 implies that the linearization variables of all quadratic monomials
xixj with i, j ∈ I can be fixed to zero in the ILP-model. The same information
can be obtained by applying the quadratic reformulations SQK2 and SQK3 to
the assignment constraint. SQK2 produces the linearized constraint

i∈I

xi + 2

i,j∈I
i ̸=j

yij = 1 .

Together with the original inequality and yij ≥ 0 this implies yij = 0 for all i ̸= j.

The system produced by SQK3 consists of |I| + 1 inequalities. In a first step
the original inequality is multiplied with each of the variables in turn, the last

42 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

inequality is obtained by multiplication with (1− xk) for some k ∈ I. In the case
of assignment constraints, multiplication with xj yields

i∈I
i ̸=j

yij = 0 .

Again assuming non-negativity of the linearization variables, the inequalities pro-
duced in the first step of SQK3 effectively fix the linearization variables to zero.
The linearization variables are present in the model, but their value is predeter-
mined by the combinatorial structure of the assignment constraint. The monomi-
als resulting from quadratic reformulation of assignment constraints are therefore
called phantom monomials in the following.

Treatment of Phantom Monomials in the IP

Phantom monomials can be linearized by introducing a new variable and fix-
ing it to zero instead of adding the standard linearization constraints (2.2) –
(2.5), which leads to a reduction in the size of the linear model. Moreover, any
phantom monomials which would only result from quadratic reformulation of the
assignment constraint, i.e., phantom monomials which are not part of the orig-
inal quadratic model, can be used to improve the LP-relaxation without being
explicitly introduced.

In the cutting plane approach described earlier, each quadratic monomial corre-
sponds to an edge in the separation graph for MaxCut inequalities. When qua-
dratic reformulation introduces new quadratic monomials, the separation graph
becomes denser. This is advantageous, because now more and stronger cutting
planes can be separated. This suggests the following treatment of assignment
constraints and the corresponding phantom monomials. Instead of reformulating
an assignment constraint with SQK2 or SQK3, which would produce unnecessary
linearization variables and constraints, the original linear constraint is kept in the
model and any edges that would result from phantom monomials are added to the
separation graph. This requires a slight adaptation of the cutting plane-algorithm,
more specifically, the linear transformation f providing the mapping between the
variables of the linearization and the separation graph. Recall that for ordinary
monomials xixj the weight of the corresponding edge in the separation graph is
defined as the LP-value of

xi + xj − 2yij .

When xixj is a phantom monomial, the information that its linearization variable
has value zero is encoded in the transformation by setting the weight of the edge
to the LP-value of

xi + xj .

2.3. QUADRATIC REFORMULATION 43

a

b

c

d

e

f

Figure 2.5: The separation graph M corresponding to the system of assignment
constraints (2.18). The blue triangle induces the inequality xa + xc + xe ≤ 1,
which is not implied by the original constraints.

This modified transformation also ensures a correct mapping of separated in-
equalities into the variable space of the ILP.

The Structure of the Separation Graph

Phantom monomials change the structure of the separation graph H + u. Call
the subgraph of H + u induced by the reformulation of a set C of assignment
constraints M . In the case |C| = 1 M forms a clique. For |C| > 1 the resulting
graph M consists of a set of cliques and two cliques in M share a node whenever
the corresponding pair of assignment constraints shares a variable.

It is interesting to ask whether M alone can yield violated odd cycle inequalities.
Consider a single assignment constraint containing at least three variables, xa, xb

and xc. Otherwise M consists of an isolated node or a single edge. All chordless
cycles in M have length three. Each of these triangles induces four odd cycle
inequalities, as explained in Section 2.2.1. Under the modified transformation f
they are mapped to

xa ≥ 0 ,

xb ≥ 0 ,

xc ≥ 0 ,

and xa + xb + xc ≤ 1 ,

which are trivially satisfied by any vector satisfying the assignment constraint.

For |C| > 1 we have to distinguish two cases. When each variable occurs only
in a single constraint, the graph M decomposes into |C| connected components,
which are again cliques. As before, all odd cycle inequalities are trivially satisfied.
When the assignment constraints have common variables the situation is different.

44 CHAPTER 2. BINARY QUADRATIC OPTIMIZATION

Consider the following system of constraints:

xa + xb + xc = 1

xc + xd + xe = 1

xa + xe + xf = 1

(2.18)

The corresponding graph M is illustrated in Figure 2.5. The nodes in M associ-
ated with xa, xc and xe form a triangle which induces the odd cycle inequality

zac + zae + zce ≤ 2 ,

which is mapped to
xa + xc + xe ≤ 1 . (2.19)

Constraint (2.19) cuts off the point xa = xc = xe =
1
2
, xb = xd = xf = 0, which

is feasible for the system (2.18).

The previous example shows that phantom monomials can be used to generate
cutting planes even if the original model does not contain quadratic terms. In
this case the separation graph is purely induced by phantom monomials and
the inequalities found by the separation algorithms are mapped into the original
variable space.

When the original model contains quadratic terms, as in the quadratic perfect
matching problem mentioned earlier, phantom monomials increase the density of
the separation graph. The augmented graph potentially contains a larger number
of cycles, which is beneficial for the separation of odd cycle inequalities.

2.4 Final Remarks

In this chapter we discussed techniques for solving constrained binary quadratic
optimization problems. The basic idea is to improve the standard linearization
approach by reformulating linear constraints and by exploiting the equivalence
between unconstrained binary quadratic optimization and the MaxCut problem
to generate cutting planes. The methods presented here are evaluated experimen-
tally in Chapter 6, where we apply them to the quadratic minimum spanning tree
problem and the minimum-weight quadratic perfect matching problem.

Chapter 3

Submodular Combinatorial
Optimization

In this chapter we study combinatorial optimization problems with submodular
objective functions. Our aim is a general approach to compute provably exact so-
lutions for submodular combinatorial optimization problems. We do not know of
any previous work that provides a general framework for constrained submodular
optimization.

In some applications the problem can be modeled as a nonlinear integer program,
in others it is reformulated as an integer linear program. ILP models have the
advantage that they are well studied and state-of-the-art solvers are extremely
efficient. A downside of considering an extended linear formulation is that the
linearization often can only be achieved by introducing a large number of new
variables and linear constraints to the model, reducing the advantage of using
linear solvers considerably. Additionally, such reformulations often not only af-
fect the objective function but also the original constraints, obscuring or even
destroying the combinatorial structure of the problem. Our aim in this chap-
ter is to develop generic algorithmic frameworks for submodular combinatorial
optimizaton problems that however exploit the given combinatorial structure.

The first section introduces the concept of submodularity and gives a brief over-
view over the field of submodular function minimization. In the second section
we study how submodular functions can be constructed and present some classes
of submodular functions that have applications in combinatorial optimization.
Afterwards we develop two exact algorithms for submodular combinatorial op-
timization. The first is a branch and cut-approach based on a study of the
polyhedron corresponding to the submodular objective function, the second is
a branch and bound algorithm that uses Lagrangean decomposition to generate
lower bounds. This second approach capitalizes on the existence of efficient opti-
mization algorithms for unconstrained submodular function minimization on the

45

46 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

one hand and specialized algorithms for the application-specific combinatorial
constraints of the problem.

3.1 Submodularity

Submodularity is a property of set functions. Given a set S, a function f : 2S → R
is called submodular, if for each pair of subsets A,B ⊆ S the property

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)

holds. If −f is submodular, f is called supermodular. It is easy to see that
the class of submodular functions comprises the class of linear set functions.
Submodularity can be interpreted as diminishing returns : to see this consider the
equivalent definition

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B),

for A ⊆ B ⊆ S and x /∈ B. Including the element x into a larger set generates less
additional profit. A simple example of a submodular function is the maximum
function. Given a weight ws for each element s of S, the function

f(A) = max
s∈A

ws

returns the weight of the heaviest element in the subset.

It is an important property of submodular functions that they can be minimized
efficiently if the set of feasible solutions is not restricted. The first strongly polyno-
mial time algorithm for submodular function minimization (SFM) was proposed
by Grötschel et al. [54], using the ellipsoid method. The problem of finding a
combinatorial algorithm was open for more than a decade. It was finally resolved
independently by Schrijver [112] and Iwata et al. [70]. Since then, several fully
combinatorial algorithms were devised [105, 69].

Despite recent progress in the development of combinatorial algorithms for SFM,
their computational complexity still often prohibits their use in practical appli-
cations. The algorithm by Orlin [105], which is the fastest general-purpose algo-
rithm currently known, takes O(n5EO+ n6) time, where EO is the time needed
for evaluating the submodular function f and n is the cardinality of the ground
set S. Even if f can be evaluated in linear time, the overall complexity is O(n6).
For some classes of submodular functions, however, specialized algorithms exist
which allow efficient minimization also in practice. Any linear set function of the
form f(A) =


s∈A cs with cs ∈ R for all s ∈ S, for example, can be minimized

in linear time by a simple greedy algorithm.

In the presence of constraints on the set of feasible solutions, SFM often becomes
NP -hard. This is the case even if optimizing a linear objective function subject to

3.2. CONSTRUCTING SUBMODULAR FUNCTIONS 47

the same constraints is easy. One example is the submodular edge cover problem.
In the linear variant the aim is to find a minimum-weight subset X of the edges
of a weighted undirected graph, such that every node is incident to an edge
in X. This problem was shown to be solvable in polynomial time by Murty
and Perin [99]. The algorithm is based on the blossom algorithm for matching
problems [33]. When the linear objective is replaced by a submodular function,
the problem becomes NP -hard. This was shown by Iwata and Nagano [68], who
gave a reduction of MIN 2-SAT to the submodular edge cover problem. Another
example is the minimum spanning tree problem. It is well-known to be solvable in
O(|E| log |V |) time, where |E| is the cardinality of the edge set of the undirected
weighted graph and |V | its number of nodes, and even in O(|E| + |V | log |V |),
when more sophisticated data structures are used [107]. A special submodular
variant of MST is the minimum-power symmetric connectivity problem. Here for
each node only the most costly incident tree edge contributes to the overall costs
of the tree. This problem was shown to be NP -hard by Fuchs [44]. The minimum-
power symmetric connectivity problem belongs to the class of range assignment
problems, which will be treated in detail in Chapter 7.

Submodular function minimization can be formulated as an integer program.
Associate each element si of the ground set S with a binary variable xi. Each
incidence vector represents a subset of the ground set. The problem of minimizing
a submodular function f then can be written as

min
x∈{0,1}S

f(x) .

Any restrictions on the set of feasible subsets can be expressed in terms of the
x-variables by restricting the set of feasible incidence vectors X:

min f(x)
s.t. x ∈ X ⊆ {0, 1}S .

This formulation in general is nonlinear. Compact linearizations that exploit the
structure of the function f exist for some special cases. A linearization approach
that is applicable to any submodular function is studied in Section 3.3.

3.2 Constructing Submodular Functions

To check if a given set function f is submodular, it suffices to check if the sub-
modular inequality

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)

holds for all pairs A and B of subsets of the ground set S. By the following
proposition, conic combinations of submodular functions are submodular again.
Thus it suffices to check submodularity for the individual summands.

48 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

Proposition 3.1 (Nemhauser and Wolsey [100]). Let f1 . . . , fn be submodular
functions and α1, . . . , αn ≥ 0 non-negative scalars. Then the function

f =
n

i=1

αifi

is submodular again.

For linear set functions equality holds in the inequality above, they are modular.
Quadratic set functions are not submodular in general, but when all coefficients
have the same sign, they are super-/submodular.

Theorem 3.2 (Lee et al. [82]). Let the function f be defined on the set of subsets
of S as

f : 2S −→ R, A →→

i,j∈A

qij ,

where qij ≥ 0 for all i, j ∈ S. Then f is supermodular.

Proof. A function g is supermodular, if−g is submodular, i.e. if for all A ⊆ B ⊆ S
and k ∈ S \B the property of diminishing returns holds:

f(A ∪ k)− f(A) ≤ f(B ∪ k)− f(B) .

Let A ⊆ B ⊆ S and k ∈ S \B.

f(A ∪ k)− f(A)− (f(B ∪ k)− f(B))

=


i,j∈A∪k

qij −

i,j∈A

qij −


i,j∈B∪k

qij +

i,j∈B

qij

=

i∈A∪k


j∈A∪k

qij −

i∈A


j∈A

qij −


i∈B∪k


j∈B∪k

qij +

i∈B


j∈B

qij

=

i∈A∪k


j∈A

qij + qik


−

i∈A


j∈A

qij −


i∈B∪k


j∈B

qij + qik


+

i∈B


j∈B

qij

=

j∈A

qkj +

i∈A

qik −

j∈B

qkj −

i∈B

qik

= −


j∈B\A

qkj −


i∈B\A

qik ≤ 0

The composition of super-/submodular functions with other classes of functions in
general does not yield submodular functions. In the following we give an overview
of compositions of sub-/supermodular functions with concave/convex functions.
For some cases it can be shown that the resulting functions are submodular, for
other cases we give counterexamples.

3.2. CONSTRUCTING SUBMODULAR FUNCTIONS 49

Theorem 3.3. Given a nondecreasing submodular set function g : 2S → R and
a nondecreasing concave function f : R → R, the composition f ◦ g : 2S → R,
A ⊆ 2S →→ f(g(A)) is nondecreasing submodular.

Proof. Recall some definitions: g is submodular and nondecreasing, so for A,B ⊆
S we have

g(A) + g(B) ≥ g(A ∪B) + g(A ∩B)

and

g(A) ≤ g(B)

whenever A ⊆ B ⊆ S. Concavity of f means that for arbitrary t ∈ [0, 1] we have

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).

A function f : R→ R is called nondecreasing if x ≤ y implies f(x) ≤ f(y).

The composition f ◦g obviously is nondecreasing. To show that it is submodular,
consider the following identity:

f(g(A)) + f(g(B))− f(g(A ∪B))− f(g(A ∩B))

= f(g(A))− f(g(A ∪B) + g(A ∩B)− g(B)) (1)

+ f(g(A ∪B) + g(A ∩B)− g(B))− f(g(A ∪B))− f(g(A ∩B)) + f(g(B))

To prove submodularity of f ◦ g it suffices to show that both parts of the right
hand side of the identity are nonnegative.

For the first part we use the submodularity of g and that f is nondecreasing:

g(A) ≥ g(A ∪B) + g(A ∩B)− g(B)

⇒f(g(A)) ≥ f(g(A ∪B) + g(A ∩B)− g(B))

⇒f(g(A))− f(g(A ∪B) + g(A ∩B)− g(B)) ≥ 0

For the second part we start with the monotony of g:

A ∩B ⊆ B ⊆ A ∪B ⇒ g(A ∩B) ≤ g(B) ≤ g(A ∪B)

⇒ ∃t ∈ [0, 1] : g(B) = tg(A ∩B) + (1− t)g(A ∪B) (2)

It follows that

f(g(B)) = f(tg(A∩B)+(1−t)g(A∪B)) ≥ tf(g(A∩B))+(1−t)f(g(A∪B)), (3)

50 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

because f is concave. This gives us:

f(g(A ∪B) + g(A ∩B)− g(B))− f(g(A ∪B))− f(g(A ∩B)) + f(g(B))

(2)
= f(g(A ∪B) + g(A ∩B)− tg(A ∩B)− (1− t)g(A ∪B))

− f(g(A ∪B))− f(g(A ∩B)) + f(g(B))

= f(tg(A ∪B) + (1− t)g(A ∩B))− f(g(A ∪B))− f(g(A ∩B)) + f(g(B))

(3)

≥ f(tg(A ∪B) + (1− t)g(A ∩B))

− f(g(A ∪B))− f(g(A ∩B)) + tf(g(A ∩B)) + (1− t)f(g(A ∪B))

= f(tg(A ∪B) + (1− t)g(A ∩B))− tf(g(A ∪B))− (1− t)f(g(A ∩B))

(3)

≥ tf(g(A ∪B)) + (1− t)f(g(A ∩B))− tf(g(A ∪B))− (1− t)f(g(A ∩B))

= 0

Identity (1) together with (2) and (3) implies

f(g(A)) + f(g(B)) ≥ f(g(A ∪B)) + f(g(A ∩B)) .

Example 3.1. Fix an order of the elements in S and for any A ⊆ S denote by
xA ∈ {0, 1}S the vector with

xi =


1, if i ∈ A ,

0 otherwise.

For a given diagonal matrix D ≥ 0, consider the function

f : 2S −→ R, A →→


x⊤
ADxA (3.1)

Since the x-variables are binary, f can be written as

f(A) =


i∈A

dix2
i =


i∈A

dixi,

where di is the i-th entry on the main diagonal of D. f is submodular, since
it is the composition of a (sub-)modular function and a nondecreasing concave
function.

Functions of the form (3.1) are used in portfolio theory to model the variance
of the expected returns of investments. One application is the risk-averse capital
budgeting problem, which is studied in Chapter 8.

3.2. CONSTRUCTING SUBMODULAR FUNCTIONS 51

Similar versions of Theorem 3.3 can be proved for different combinations of sub-
/supermodularity, concav-/convexity and monotonies. g is always assumed to be
monotone. The following overview is taken from [120]:

f g f ◦ g

convex concave
non-
incr.

non-
decr. superm. subm. superm. subm.

× × × ×
× × × ×

× × × ×
× × × ×

An obvious extension of the class of functions of the form (3.1) would be to use a
covariance matrix instead of a diagonal matrix. In the context of portfolio theory
this would model not only the variance of the investments, but also the correla-
tions between the developments of the investments. The following counterexample
shows that the resulting function is not always submodular.

Observation 3.4. There exists a covariance matrix Q such that the function

fQ : {0, 1}n → R, x →→


x⊤Qx

is not submodular.

Proof. Let Q ∈ R3×3,

Q =

 3 −3 −2
−3 4 4
−2 4 6


1) Q is a covariance matrix:

The eigenvalues of Q are λ1 = 10.6758, λ2 = 2.2406 and λ3 = 0.0836. Since
Q is symmetric and all eigenvalues of Q are non-negative, Q is symmetric
positive definite and a matrix W exists such that Q = WW⊤. Consider
a vector X of random variables with X ∼ N (0, 1), i.e. the entries of X
are normally distributed with mean value µ = 0 and variance 1. Then the
covariance matrix of WX is

Cov(WX) = WCov(X)WT = W (E((X−µ)(X−µ⊤)))W⊤ = WW⊤ = Q .

2) fQ : {0, 1}3 → R, x →→

x⊤Qx is not submodular:

For fQ to be submodular, the following inequality must hold:

fQ(A) + fQ(B) ≥ fQ(A ∪B) + fQ(A ∩B) ∀A,B ⊆ S = {x1, x2, x3}

52 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

Let A = {x1, x2}, B = {x1, x3}.

fQ(A) + fQ(B) =
√
1 +
√
5 <
√
11 +

√
3 = fQ(A ∪B) + fQ(A ∩B),

consequently fQ is not submodular.

Observation 3.5. The composition of a supermodular function and an nonde-
creasing concave function is not necessarily submodular. This holds even if the
supermodular function is defined by a symmetric non-negative matrix.

Proof. Let Q ∈ R3×3,

Q =

3 0 0
0 3 2
0 2 3


Q is obviously symmetric and non-negative. The function

fQ : {0, 1}3 → R, x →→

x⊤Qx

is not submodular, since for A = {x1, x2} and B = {x1, x3} we have:

fQ(A) + fQ(B) =
√
6 +
√
6 <
√
13 +

√
3 = fB(A ∪B) + fQ(A ∩B).

3.3 Polyhedral Study

In the following, we study the polyhedral structure of submodular combinatorial
optimization problems. We describe a class of linear inequalities that gives a
complete description of the corresponding polyhedron in the unconstrained case
and a corresponding efficient separation algorithm. Combined with the polyhedral
description of the set of feasible solutions X we obtain an LP-relaxation of the
problem

min f(x)
s.t. x ∈ X ⊆ {0, 1}S , (3.2)

where f : 2S → R is a submodular function on a set S. Without loss of generality
we can assume f(∅) ≥ 0. We associate each binary variable xi with an element
of S.

Starting from the unconstrained nonlinear model

min f(x)
s.t. x ∈ {0, 1}S

3.3. POLYHEDRAL STUDY 53

we introduce a single new variable y ∈ R to replace the objective function. Clearly,
the resulting model

min y
s.t. y ≥ f(x)

x ∈ {0, 1}S
y ∈ R

is equivalent to the original one, since we consider a minimization problem. Now
consider the convex hull of feasible points:

Pf = conv

(x, y) ∈ {0, 1}S × R | y ≥ f(x)


The polyhedron Pf is the epigraph of the so-called Lovász-extension of f . The
following result by Edmonds [36] and Lovász [85] gives a complete polyhedral
description of Pf .

Theorem 3.6. Let |S| = n and let f : 2S → R be a submodular function with
f(∅) ≥ 0. Then the separation problem for Pf can be solved in O(n log n) time.
The facets of Pf are either induced by trivial inequalities 0 ≤ xi ≤ 1, i ∈ S, or
by an inequality a⊤x ≤ y with

aσ(i) = f(Si)− f(Si−1)∀i ∈ {1, . . . , n} , (3.3)

where σ : {1, . . . , n} → S is any bijection and Si = {σ(j) | j ∈ {1, . . . , i}}.

In the presence of constraints the above theorem does not yield a complete poly-
hedral description anymore, but it still provides strong dual bounds on the LP-
relaxation, as we will see in the experimental evaluations in Chapters 7 and 8.
The number of facets of Pf is exponential in n = |S|, but the separation prob-
lem can be solved efficiently by a simple greedy algorithm. Indeed, violation of
the trivial facets is checked in linear time. The following algorithm produces a
candidate for a separating hyperplane:

Given a fractional point (x⋆, y⋆) ∈ [0, 1]S × R, sort the elements of S in non-
increasing order according to their value in x⋆. Starting with the empty set,
iteratively construct a chain of subsets ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = S by adding
the elements in this order. The potentially violated inequality a⊤x ≤ y is then
constructed by setting ai = f(Si)− f(Si−1). Obviously this algorithm constructs
an inequality of the form (3.3) that is most violated by the given fractional point
(x⋆, y⋆). Either this inequality is a separating hyperplane or none such exists. A
formal description of this separation procedure is given in Algorithm 2.

In many applications the submodular objective function f can be written as a
conical combination of other submodular functions fi, i.e., we have

f =
k

i=1

αifi, α1, . . . , αk ≥ 0, f1, . . . , fk submodular.

54 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

Algorithm 2 Separation Algorithm for Pf

input: a fractional solution (x⋆, y⋆) = (x⋆
1, . . . , x

⋆
n, y

⋆)
output: a hyperplane a⊤x ≤ y separating (x⋆, y⋆) from Pf , if one exists

sort the elements of S into a list {l1, . . . , ln} by non-increasing value of x⋆

i← 1
S0 ← ∅
repeat

Si ← Si−1 ∪ {li}
ai = f(Si)− f(Si−1)
i← i+ 1

until i = n
if y⋆ < a⊤x⋆ then

return a
else

return no constraint found

end if

This situation can be exploited by modeling each function fi separately, intro-
ducing a new continuous variable yi modeling fi(x) for each i ∈ {1, . . . , k}. Such
an approach could be preferable if, e.g., the values fi(x) are used at other points
in the model or if the functions fi have much smaller domains than f . In the
latter case, the total number of inequalities needed to describe the unconstrained
problem can be reduced significantly.

Take, for example, the case of an optimization problem on a complete undirected
graph on n nodes, where each edge corresponds to a variable and the objective
function can be split into one submodular function per node. Modeled as a single
function f , the size of the domain of f is n(n−1)

2
and the number of inequalities

needed to describe the unconstrained problem is (n(n−1)
2

)!. When the problem is
modeled with one submodular function per node, each function has a domain of
size n− 1. The number of inequalities then is n(n− 1)! = n!.

When f is modeled as a conical combination of submodular functions fi we obtain

min
k

i=1

αiyi

s.t. yi ≥ fi(x) for all i ∈ {1, . . . , k}
x ∈ {0, 1}S
y ∈ Rk .

(3.4)

Our next aim is to show that the separation algorithm detailed above can still be

3.3. POLYHEDRAL STUDY 55

used to generate a complete description for Problem (3.4). First note that Theo-
rem 3.6 yields a complete description of the polytope Pfi for each i ∈ {1 . . . , k}.
For the following, define

P =


i∈{1,...,k}

Pfi ,

where each Pfi is trivially extended from {0, 1}S × R to {0, 1}S × Rk. We will
show that each vertex (x, y) of P satisfies x ∈ {0, 1}S and yi = fi(x), and hence is
feasible for Problem (3.4). In other words, the separation problem corresponding
to (3.4) can be reduced to the single separation problems for each Pfi .

Lemma 3.7. For any submodular function f : {0, 1}S → R and j ∈ S, there is
a submodular function g : {0, 1}S\{j} → R such that {x ∈ Pf | xj = 0} = Pg.

Proof. For x ∈ {0, 1}S\{j}, let x̄ be its extension to {0, 1}S, setting x̄j = 0.
Defining g(x) = f(x̄) yields the desired submodular function.

Lemma 3.8. For any submodular function f : {0, 1}S → R and j ∈ S, there is
a submodular function g : {0, 1}S\{j} → R such that {x ∈ Pf | xj = 1} = ej + Pg,
where ej denotes the unit vector corresponding to xj.

Proof. For x ∈ {0, 1}S\{j}, let x̄ be its extension to {0, 1}S, setting x̄j = 1.
Defining g(x) = f(x̄) yields the desired submodular function.

Lemma 3.9. If (x, y) ∈ P with x ∈ (0, 1)S, then (x, y) is not a vertex of P .

Proof. Let 1S denote the all-ones vector in RS and choose ε > 0 such that
x± ε1S ∈ [0, 1]S. Define c ∈ Rk by ci = fi(S)− fi(∅) and consider

z1 = (x− ε1S, y − εc), z2 = (x+ ε1S, y + εc) .

As (x, y) = 1
2
(z1 + z2), it suffices to show z1, z2 ∈ P . This reduces to showing

(x ± ε1S, yi ± εci) ∈ Pfi for all i ∈ {1, . . . , k}. By Theorem 3.6, the polyhedron
Pfi is completely described by trivial inequalities and by inequalities of the type
a⊤x ≤ yi with

aσ(j) = fi(Sj)− fi(Sj−1)∀j ∈ {1, . . . , n}

where σ : {1, . . . , n} → S is any bijection and Sj = {σ(1), . . . , σ(j)}. We obtain in
particular that a⊤1S = fi(S)−fi(∅) = ci. As (x, y) ∈ P and therefore (x, yi) ∈ Pfi ,
we derive

a⊤(x± ε1S) = a⊤x± εa⊤1S ≤ yi ± εci .

Hence z1, z2 ∈ Pfi .

Theorem 3.10. The vertices of P are exactly the points (x, y) ∈ {0, 1}S × Rk

with yi = fi(x) for all i ∈ {1, . . . , k}.

56 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

Proof. It is clear that every such point is a vertex of P . We show that every
vertex (x′, y′) of P is of this form. Since yi is not bounded from above, every
vertex must satisfy yi = fi(x) for all i ∈ {1, . . . , k}. Now assume that at least one
component of x′ is fractional. Define

S0 = {j ∈ S | x′
j = 0}, S1 = {j ∈ S | x′

j = 1}, T = S \ {S0 ∪ S1}

and consider the face

F = {(x, y) ∈ P | xj = 0 for all j ∈ S0, xj = 1 for all j ∈ S1}

=
k

i=1

{(x, y) ∈ Pfi | xj = 0 for all j ∈ S0, xj = 1 for all j ∈ S1} .

By Lemma 3.7 and Lemma 3.8, the polyhedron F is an intersection of polyhedra
1S1 +Pgi for suitable submodular functions gi : {0, 1}T → R. Since x′

i ∈ (0, 1) for

all i ∈ T , the point (x′ − 1S1 , y
′) is not a vertex of

k
i=1 Pgi by Lemma 3.9. It

follows that (x′, y′) is not a vertex of F and hence not a vertex of P .

Note that the last theorem can also be shown in a more general context [45]. It
implies that the polyhedron Pf is a projection of P , given by the linear transfor-

mation y :=
k

i=1 αiyi. Moreover, it follows that each facet of P is obtained from
a facet of one of the polyhedra Pfi . In particular, the separation problem for (3.4)
can be reduced to the respective separation problems for each polyhedron Pfi as
follows: to separate a point x⋆ from the polytope Pf it is sufficient to check if
x⋆ violates any of the inequalities characterizing the polyhedra Pfi . This can be
done by applying Algorithm 2 to each Pfi in turn.

Submodular Quadratic Minimization

In Chapter 1 we introduced a way to linearize a quadratic function defined on
binary variables, the so-called standard linearization. Furthermore, we have seen
in Theorem 3.2 that quadratic set functions with only non-positive coefficients
are submodular, hence the results of the previous section are applicable. In the
following we compare the quality of the relaxations obtained from these two
linearization techniques.

Using an incidence vector x for the elements of the ground set S, the quadratic
set function f with coefficient matrix Q ≤ 0 can be written as f(x) = x⊤Qx. f is
the sum of terms of the form fij(x) = qijxixj. By Theorem 3.6 all facet-defining
inequalities of the polyhedron defined by f are sums of facet-defining inequalities
of the polyhedra defined by the fij. These are the trivial bound inequalities for
all variables xi and the two inequalities yij ≥ qijxi and yij ≥ qijxj, where yij ∈ R
is the linearization variable for the function fij.

3.3. POLYHEDRAL STUDY 57

Theorem 3.11. For Q ≤ 0, applying the submodular linearization to the problem

{minx⊤Qx | x ∈ {0, 1}n} (3.5)

gives the same bound as the standard linearization.

Proof. Without loss of generality we need to consider only quadratic terms cor-
responding to entries of Q where qij is strictly less than zero, since for qij = 0
the quadratic term can be omitted from the function f completely. For binary
variables xi, xj and a negative scalar q consider the standard linearization of the
term qxixj: we replace xixj by the new variable z and add the four constraints

z ≤ xi , (3.6)

z ≤ xj , (3.7)

z ≥ xi + xj − 1 (3.8)

and z ≥ 0 . (3.9)

Under the substitution y := q−1z, the term qz is mapped to y and the constraints
become

y ≥ qxi , (3.10)

y ≥ qxj , (3.11)

y ≤ q(xi + xj − 1) (3.12)

and y ≤ 0 . (3.13)

Since q is negative and we consider a minimization problem, the optimal solution
value does not change if we drop constraints (3.12) and (3.13). The resulting
problem is exactly the same we get by applying the submodular linearization to
the original quadratic term. Consequently, applying the standard linearization to
each quadratic monomial in the objective function x⊤Qx leads to a model which is
equivalent to the model generated by the submodular linearization approach.

Remark 3.1. Theorem 3.11 only states that the optimal solutions of both lin-
earizations of (3.5) are the same. The sets of feasible solutions are different,
even in the unconstrained case. In fact the feasible set of the relaxation of
the standard linearization is contained in Pf . Consider q < 0 and the point
(x⋆

i , x
⋆
j , y

⋆) = (1, 1, 0). It is feasible for the submodular linearization, but violates
constraint (3.12) of the standard linearization. Thus the models are equivalent
but not isomorphic.

This means that in the presence of additional constraints the LP-relaxation of
the standard linearization might give better bounds than the LP-relaxation of the
submodular linearization. Even more, if the constrained submodular quadratic
minimization problem is infeasible, standard linearization will lead to an infeasi-
ble LP-relaxation, while the submodular relaxation might be feasible, since the
linearization variables y are not bounded from above.

58 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

3.4 A Branch and Cut Approach

So far we have only considered unconstrained submodular optimization problems.
Recall that the original Problem (3.2) was given as

min f(x)
s.t. x ∈ X ⊆ {0, 1}S ,

where X is the set of feasible solutions. Assume as before that f =
k

i=1 αifi,
with α1, . . . , αk ≥ 0 and f1, . . . , fk submodular. The constrained version of (3.4)
then reads

min
k

i=1

αiyi

s.t. yi ≥ fi(x) for all i ∈ {1, . . . , k}
x ∈ X
y ∈ Rk ,

which can be formulated as

min
k

i=1

αiyi

s.t. (x, y) ∈ (X × Rk) ∩


i∈{1,...,k}

Pfi ⊆ {0, 1}S × Rk .
(3.14)

In this case our results remain applicable but do not necessarily give a com-
plete polyhedral description of the problem anymore. Even if the complete linear
description of X (or an exact separation algorithm for X) is available, the combi-
nation of the inequalities describing X and the polyhedra Pfi in general does not
yield a full description of the intersection (X×R)∩Pf . For an exact algorithm the
generation of cutting planes can be embedded into a branch and bound-approach.

3.4.1 Cutting Planes

The first LP-relaxation of (3.14) that is solved in the root node of the branch and
bound-tree consists of an initial set of inequalities from the polyhedral description
of X and the variable bounds. If the solution of this LP is fractional, the separa-
tion routines for X and the Pfi are used to generate cutting planes. This process
is iterated until the solution is integral or no more violated inequalities are found.
In this case a branching step on one of the binary variables is performed.

3.4.2 Primal Bounds

Any feasible solution that is found during the branch and bound-process gives an
upper bound on the optimal solution value and can be used to prune branches

3.5. A LAGRANGEAN DECOMPOSITION APPROACH 59

of the enumeration tree. Additionally, application-specific heuristics can be ap-
plied to generate feasible solutions from fractional solutions of the LP-relaxations.
These heuristics only need to take into account the combinatorial structure of X
and the fractional solution. A valid upper bound can then easily be computed by
evaluating the objective function in the point found by the heuristic algorithm.

3.5 A Lagrangean Decomposition Approach

In this section we avoid the linearization of the submodular objective function
and capitalize on the existence of polynomial time algorithms for SFM in the
unconstrained case. We use Lagrangean decomposition as described in 1.2.1 to
separate the objective function from its constraints. Starting from the constrained
submodular minimization problem

min f(x)
s.t. x ∈ X ⊆ {0, 1}S , (3.15)

we duplicate the variable set and relax the linking constraints. The resulting
problem reads:

Z(λ) = min f(x1)− λTx1 + min λTx2

s.t. x1 ∈ {0, 1}S s.t. x2 ∈ X ⊆ {0, 1}S . (3.16)

The first part is an unconstrained minimization problem. The objective function
is the sum of a submodular function and a modular function and thus by Propo-
sition 3.1 submodular. As mentioned in Section 3.1 efficient general algorithms
for this kind of problem are known. For some specific classes of submodular func-
tions specialized algorithms exist, which have a significantly lower computational
complexity than the general algorithms, as we will see in Chapter 7.

The second part of (3.16) is an integer linear problem which is assumed to be
easier than the corresponding nonlinear problem. It might be either solved as an
ILP with a general-purpose LP-solver, or, depending on the combinatorial struc-
ture of the underlying problem, with a specialized combinatorial algorithm. In
Chapter 7 we will study so-called range assignment problems. In one of the appli-
cations considered there, the underlying combinatorial problem is the minimum
spanning tree problem, which is solved not as an LP but directly with Kruskal’s
algorithm.

3.5.1 Bounds

For any given multiplier λ the value Z(λ) gives a lower bound for the decompo-
sition (3.16). If the combinatorial subproblem can be solved in polynomial time,

60 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

either with a combinatorial algorithm or by solving its LP-formulation, comput-
ing Z(λ) also takes only polynomial time. Otherwise, there are two possibilities:

1. (3.16) can be solved as is. This will take exponential time, but may still be
practicable, depending on the application.

2. The combinatorial subproblem can be relaxed. If the relaxation is chosen
appropriately, it can be computed in polynomial time.

The advantage of the second option is that it allows the computation of lower
bounds in polynomial time, even if the linear variant of the original problem is
NP -hard. On the other hand, it will result in weaker bounds, which is disadvanta-
geous when the Lagrangean decomposition approach is embedded into a branch
and bound-algorithm.

The best lower bound that can be obtained from the Lagrangean decomposi-
tion of (3.15) is the value of the Lagrangean dual maxλ∈RS Z(λ), which can be
computed as described in Chapter 1.

The best possible bound is obtained by computing the Lagrangean dual

max
λ∈RS

Z(λ) ,

as discussed in Chapter 1. Note that, when (3.16) is solved without relaxing the
combinatorial subproblem, we have

Z(λ) =


min z − λ⊤x1 + min λ⊤x2

s.t. (z, x1) ∈ conv(F) s.t. x2 ∈ conv(X)

where F := {(z, x1) | x1 ∈ {0, 1}n, z ≥ f(x1)}. By general results on Lagrangean
relaxation we obtain

Theorem 3.12 (Guignard and Kim [55]).

max
λ∈Rn

Z(λ) =


min z

s.t. (z, x) ∈ conv(F)

x ∈ conv(X) .

Note also that

min z
s.t. (z, x) ∈ conv(F)

x ∈ conv(X)
≥

min f(x)
s.t. x ∈ conv({0, 1}n)

x ∈ conv(X)
=

min f(x)
s.t. x ∈ conv(X) ,

and that the inequality is strict in general if f is nonlinear. This is due to the
fact that the objective function f is minimized over {0, 1}S in the left-hand side

3.5. A LAGRANGEAN DECOMPOSITION APPROACH 61

problem of (3.16), instead of over [0, 1]S. In other words, the bounds we obtain
are potentially stronger than those obtained from convexifying the feasible set in
Problem (3.16).

Besides potentially yielding stronger dual bounds than the LP-approach of Sec-
tion 3.3, the Lagrangean decomposition approach has two advantages. First, using
combinatorial algorithms to compute maxλ Z(λ) may in practice be faster than
solving the corresponding linear program discussed in Section 3.3. The polyhe-
dral description presented in 3.3 is not compact, since the number of facets of
the polyhedron Pf is exponential. Therefore, in practice the linear programming
relaxation of (3.15) cannot be solved directly. Instead, a cutting plane approach
is applied, in which violated inequalities are added dynamically to the linear
program. Although the separation algorithm 2 only needs polynomial running
time, solving a series of linear programs and repeatedly searching for violated
inequalities may in practice take more time than solving a series of combinatorial
problems in a subgradient approach. The same arguments hold for the description
of the underlying constraints. Even when a complete linear description of the set
X is known, it might not be compact, even if efficient algorithms for the opti-
mization of a linear objective function over X exist. Take the minimum spanning
tree problem, for example. The spanning tree polyhedron described by the cycle
inequalities is integral and minimum spanning trees can be computed very effi-
ciently with combinatorial algorithms, in a linear programming context a cutting
plane approach has to be applied to solve the problem to proven optimality.

Secondly, any feasible solution of the partial problem

min λ⊤x2

s.t. x2 ∈ X ⊆ {0, 1}S

is also feasible for the original problem (3.15). This means that in each itera-
tion of the subgradient algorithm, a valid primal bound for (3.15) can be easily
computed by evaluating the current solution of the second partial problem in
the original objective function f . This may prove to be useful in a branch and
bound-approach, where good primal bounds are important for early pruning of
subproblems.

3.5.2 Branch and Bound

To compute exact solutions for problem (3.15), the Lagrangean decomposition
approach is embedded into a branch and bound-framework. In each node of the
enumeration tree a problem of the form (3.16) is solved to obtain both lower and
upper bounds. Further differences to a branch and bound-approach based on the
LP-relaxation are described in the following.

62 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

Fixed Variables

In the LP-context fixing a variable to a value amounts to setting both its lower
and upper bound to this value, which is equivalent to adding another linear con-
straint and does not affect the LP-solver. In the Lagrangean decomposition con-
text, the relaxations in the subproblems are preferably solved with combinatorial
algorithms, which have to be adapted to deal with fixed variables. Lemmas 3.7
and 3.8 state that the unconstrained part of (3.16) remains a submodular mini-
mization problem when variables are fixed. Algorithms for the original function f
remain applicable, only the domain of f changes; its cardinality is reduced by one
for every fixed variable. Algorithms for the second part of (3.16) are application-
specific, fixing a variable here is equivalent to changing the combinatorial struc-
ture of the problem. This can be achieved by manipulating the underlying graph
or network, for example by deleting edges/arcs or merging nodes, or by changing
the weights of nodes/edges. When a weight is set to a very big negative value
−M , the algorithm includes the corresponding object into the solution whenever
possible, when the weight is set to a very big positive value M , the algorithms
tries to exclude the corresponding object whenever possible. Another possibility
is to change the algorithm itself, for example by adding a preprocessing step.

Branching

In an LP-based branch and bound-algorithm a branching step is performed if
there is at least one fractional variable. Otherwise the solution of the subprob-
lem is primal feasible and the subproblem can be pruned. In the Lagrangean
decomposition context there are two sets of variables, one for each part of the
decomposition. When both partial problems are solved with combinatorial algo-
rithms all variables in a solution are necessarily integral. Still, an optimal solution
(x⋆

1, x
⋆
2, λ

⋆) of the Lagrangean relaxation in general is not optimal for the original
problem. By Theorem 1.3 this is the case only if λ⋆

i ((x
⋆
1)i−(x⋆

2)i) = 0 for all i ∈ S,
i.e. if either both copies of a variable have the same value or the corresponding
multiplier is zero. This gives rise to a natural selection rule for branching vari-
ables: choose an index i with λ⋆

i ̸= 0 and (x⋆
1)i ̸= (x⋆

2)i. When several exist, one
can for example simply choose the lowest or the index i with the largest absolute
value |λ⋆

i |, depending on the application. The branching itself works in the same
manner as in the LP-context, by fixing variables to zero or one, except that in
the two new subproblems two variables are fixed, (x1)i and (x2)i.

3.6 Final Remarks

We presented two approaches for submodular combinatorial optimization prob-
lems which are applicable when either a polyhedral description of the combina-

3.6. FINAL REMARKS 63

torial structure is known or the linear counterpart of the problem can be opti-
mized efficiently in practice. In Chapters 7 and 8 these algorithms are applied to
submodular combinatorial problems from wireless network-design and portfolio
optimization and evaluated experimentally.

64 CHAPTER 3. SUBMODULAR COMBINATORIAL OPTIMIZATION

Chapter 4

Two-Scenario Optimization

In classical optimization problems the input data is assumed to be known in
advance and fixed. This assumption often turns out to be unrealistic. One way
to safeguard against uncertainties is to consider several possible scenarios and
compute a solution that gives the best possible solution in the worst-case scenario.

In the first section of this chapter we study a simplified version of this general
problem, unconstrained two-scenario optimization. We propose an exact opti-
mization algorithm, which will be evaluated experimentally in Chapter 9. In the
second part of this chapter we again consider the case of two scenarios but include
combinatorial side constraints. Applying the results for the unconstrained case,
an exact algorithm for the two-scenario minimum spanning tree is presented. This
approach will be evaluated in a computational study in Chapter 9 as well.

4.1 Unconstrained Two-Scenario Optimization

Starting from the general combinatorial optimization problem with k scenarios
and bounded integer variables

min
x

max{f1(x), . . . , fk(x)}
s.t. Cx ≤ d

l ≤ x ≤ u
x ∈ Zn

(4.1)

we simplify in two ways. First, we limit the number of scenarios to two and
consider only linear objective functions f . Second, we do not allow arbitrary
linear restrictions on the set of feasible solutions, but only box constraints. The
resulting problem reads

min
l≤x≤u
x∈Zn

max{a⊤x+ a0, b
⊤x+ b0}, (4.2)

65

66 CHAPTER 4. TWO-SCENARIO OPTIMIZATION

with a, b ∈ Rn, a0, b0 ∈ R and l, u ∈ Zn.

4.1.1 Complexity

The two-scenario version of an optimization problem may have the same com-
plexity as the one-scenario problem, but this is not the case in general. Take the
minimum cut problem, for example: both the one- and two-scenario versions are
solvable in polynomial time [8]. In contrast, the shortest path problem is easy
for one scenario, but becomes NP -hard when a constant number of scenarios
(greater than one) is considered [124]. The same holds for the minimum spanning
tree problem [77]. For a survey of the complexity of combinatorial optimization
problems with several scenarios, see [3].

We prove that the unconstrained problem with two scenarios (4.2) is NP -hard by
reducing the subset sum problem to it, which is known to be NP -complete [49].
The subset sum problem is defined as follows.

Definition 4.1 (subset sum). Given numbers s1, . . . , sn ∈ Z and S ∈ Z, is there
a subset I ⊆ {1, . . . , n} such that the sum


i∈I

si is exactly S?

Theorem 4.1. The unconstrained two-scenario optimization problem (4.2) is
NP-hard, even for the binary case, when 0 ≤ xi ≤ 1 for i ∈ {1, . . . , n}.

Proof. Obviously the decision version of problem (4.2) is in the class NP, since
checking whether the value of a feasible solution x̄ is below a given bound B can
be done in linear time. To show that the problem is also NP -hard, we describe
a polynomial reduction of the subset sum problem to (4.2). Given a subset sum
instance (s, S) ∈ Zn+1 of size n, construct an instance of (4.2) by setting a = s,
b = −s, a0 = −S and b0 = S and setting all variable lower bounds to zero and
all upper bounds to one. We have

min
x∈{0,1}n

max{a⊤x+ a0, b
⊤x+ b0} = min

x∈{0,1}n
max{s⊤x− S,−s⊤x+ S}

= min
x∈{0,1}n

|s⊤x− S|

If the optimal solution value of this problem is 0, an optimal solution x⋆ defines
the subset I that solves the subset sum instance. If the optimal value is nonzero,

there is no I such that

i∈I

si = S. Consequently, problem (4.2) is at least as hard

as the subset sum problem.

4.1. UNCONSTRAINED TWO-SCENARIO OPTIMIZATION 67

4.1.2 Transformation to Fractional Knapsack Problems

In the following we present a method to efficiently compute lower bounds of
problem (4.2), which can be embedded into a branch and bound-algorithm to
compute exact solutions of unconstrained two-scenario problems. Starting from
the nonlinear formulation (4.2), we first rewrite the unconstrained two-scenario
problem as two integer linear problems with a simple structure, which can be
solved independently. The LP-relaxations of these ILPs are then transformed
into fractional knapsack problems, which allows us to compute lower bounds of
the original problem with purely combinatorial algorithms.

For two functions f, g : {0, 1}n −→ R the function h(x) = max{f(x), g(x)} can
be written as

h(x) =


f(x) if f(x) ≥ g(x)

g(x) otherwise.

The minimizer x⋆ of h can thus be determined by computing the minimizers x⋆
1

and x⋆
2 of f and g resp. on the domains specified in the case distinction above

and choosing x⋆ = min{x⋆
1, x

⋆
2}.

For (4.2) we have

min
l≤x≤u
x∈Zn

max{a⊤x+ a0, b
⊤x+ b0}

= min


min a⊤x1 + a0 , min b⊤x2 + b0
s.t. a⊤x1 + a0 ≥ b⊤x1 + b0 s.t. b⊤x2 + b0 ≥ a⊤x2 + a0

l ≤ x1 ≤ u l ≤ x2 ≤ u
x1 ∈ Zn x2 ∈ Zn


= −max


max −a⊤x1 − a0 , max −b⊤x2 − b0
s.t. (b− a)⊤x1 ≤ a0 − b0 s.t. (a− b)⊤x2 ≤ b0 − a0

l ≤ x1 ≤ u l ≤ x2 ≤ u
x1 ∈ Zn x2 ∈ Zn

 (4.3)

Both subproblems are integer linear optimization problems with a single con-
straint. Their LP-relaxations can be solved as fractional knapsack problems with
continuous weights and profits. The fractional knapsack problem is a variant of
the knapsack problem (KP) [74].

Definition 4.2 ((KP)). Given a set A of n items with profits p ∈ Zn, nonnegative
weights w ∈ Zn

≥0 and a capacity C ∈ Z, choose a subset S ⊆ A such that the
sum of the weights of the items in S does not exceed the capacity C and the sum
of the profits is maximum.

KP can be expressed in linear programming terms by associating a binary variable

68 CHAPTER 4. TWO-SCENARIO OPTIMIZATION

x with each item in A:

max
x∈{0,1}n

p⊤x

s.t. w⊤x ≤ C
(4.4)

In an optimal solution x⋆ of (4.4) the indices i with x⋆
i = 1 define the optimal

set S.

When the definition of KP is changed to allow partial items, the problem is known
as the fractional knapsack problem (FKP).

Definition 4.3 (FKP). For p in Rn, w ∈ Rn and C ∈ R the fractional knapsack
problem (FKP) is defined as

max p⊤x
s.t. w⊤x ≤ C

0 ≤ x ≤ 1.
(4.5)

The knapsack problems is known to be NP -hard, but it is solvable in pseudo-
polynomial time by dynamic programming. However, the fractional knapsack
problem can be solved in polynomial time with a simple greedy algorithm [89].
It works by first sorting the items by their profit to weight-ratio pi/wi and then
adding items to the set S in sorted order until adding another item would exceed
the capacity limit. The first item that is not added is called the critical item. As
was shown by Dantzig [25], adding a fraction of the critical element to S such that
the capacity limit is reached exactly produces an optimal solution. The running
time of this algorithm is O(n log n), if an appropriate sorting algorithm is used.

Expressing the subproblems in (4.3) in the form of (4.5) takes two steps:

1. The variables in Problem (4.5) are required to take values between zero and
one. The transformation from a bounded variable l ≤ x ≤ u with l < u to
a box-constrained variable 0 ≤ x̄ ≤ 1 is given by

x̄ = (u− l)−1x− l(u− l)−1.

Solving for x gives the substitution

x = (u− l)x̄+ l.

2. The weights w in the constraint are assumed to be nonnegative. Replace
those transformed variables x̄i with negative weights by their complement
(1− x̄i).

4.1. UNCONSTRAINED TWO-SCENARIO OPTIMIZATION 69

After applying the two substitutions, the subproblems have the form

max
x1∈[0,1]n


i∈N0∪N2

ai(li − ui)x
1
i +


i∈N1

(1− x1
i)ai(li − ui)−

n
i=1

aili − a0

s.t.
n

i=1

|bi − ai|(ui − li)x
1
i ≤


i∈N1

(ai − bi)(ui − li) +
n

i=1

(ai − bi)li + a0 − b0

(4.6)
and

max
x2∈[0,1]n


i∈N0∪N1

bi(li − ui)x
2
i +


i∈N2

(1− x2
i)bi(li − ui)−

n
i=1

bili − b0

s.t.
n

i=1

|ai − bi|(ui − li)x
2
i ≤


i∈N2

(bi − ai)(ui − li) +
n

i=1

(bi − ai)li + b0 − a0

(4.7)
where N0 = {i ∈ {1. . . . , n} | bi− ai = 0}, N1 = {i ∈ {1. . . . , n} | bi− ai < 0} and
N2 = {i ∈ {1. . . . , n} | ai − bi < 0}.
The resulting problems (4.6) and (4.7) are fractional knapsack problems. By
transforming the optimal solutions of (4.6) and (4.7) back into the original vari-
able space we obtain dual (upper) bounds for the two maximization subproblems
in (4.3). Taking the negative of the larger of these values gives a lower bound on
the optimum value of (4.2).

Remark 4.1. Instead of transforming the LP-relaxations of the subproblems
in (4.3) it is possible to express the two subproblems directly as instances of the
bounded knapsack problem (BKP), which can then be transformed into binary
knapsack problems as defined in this chapter. For details see [89, Chapter 3]. As
mentioned, KP is NP -hard, but it can be solved in pseudo-polynomial time by
dynamic programming if the coefficients are integer. Thus the two-scenario opti-
mization problem with integer coefficients a, a0, b and b0 is also solvable in pseudo-
polynomial time. In the general case considered here, the coefficients would need
to be scaled to integer numbers first. This approach has two drawbacks: First, the
rounding leads to an inexact solution. Second, the running times of the dynamic
programming algorithms are only pseudo-polynomial, i.e., they depend on the
size of the coefficients. Scaling the coefficients to the appropriate accuracy would
lead to excessive running times.

4.1.3 An Exact Algorithm

The approach presented in the previous subsection only gives lower bounds on the
optimal value of the problem. To compute an optimal integer solution, we embed
it into a branch and bound-framework. In each node of the branch and bound-tree

70 CHAPTER 4. TWO-SCENARIO OPTIMIZATION

we compute a lower bound as detailed above. Since the original problem does not
have any constraints besides integrality, we can generate a feasible solution from
each solution of the relaxation by rounding to the next integer.

We branch by fixing variables to integer values. To produce correct bounds in
subproblems with fixed variables the greedy algorithm has to be adapted slightly
to respect the fixings. This can be done in the following way: First consider all
variables that are fixed. In the solution of the knapsack problem set the variable
values to the transformed values of the fixings and decrease the knapsack capac-
ity accordingly. If the capacity is exceeded, the knapsack problem is infeasible,
otherwise proceed with the remaining elements in sorted order.

As the branching variable we choose the fractional variable from the knapsack
problem that defined the lower bound. Note that we can have at most one frac-
tional variable by construction of the algorithm.

4.2 Combinatorial Two-Scenario Optimization

In this section we add combinatorial side constraints to the two-scenario linear
objective function. The transformation to two knapsack problems in this case can-
not be applied directly anymore. Using the Lagrangean decomposition approach
described in 1.2.1, we separate the objective function from the combinatorial con-
straints and obtain two subproblems. The first is an unconstrained two-scenario
problem, the second the linear version of the combinatorial problem. This ap-
proach is analogous to the treatment of submodular combinatorial optimization
problems in Section 3.5.

Let the feasible solutions of the combinatorial problem be given by the set X ⊆
{0, 1}n. The computational two-scenario problem can then be stated as

min
x

max{a⊤x+ a0, b
⊤x+ b0}

s.t. x ∈ X .
(4.8)

In the following we assume that the linear version version of the combinatorial
problem can be solved in polynomial time. More precisely, we assume that a com-
binatorial algorithm with polynomial running time is known and/or a complete
characterization of the polytope corresponding to the set X is known and efficient
separation algorithms exist.

4.2. COMBINATORIAL TWO-SCENARIO OPTIMIZATION 71

4.2.1 Lower Bounds

Consider the isomorphic linear formulation of (4.8):

min z
s.t. z ≥ a⊤x+ a0

z ≥ b⊤x+ b0
x ∈ X
z ∈ R

(4.9)

Assume that a complete polyhedral description of the set X is known. In this
case we can write x ∈ conv(X) instead of x ∈ X and (4.9) is equivalent to

min z
s.t. z ≥ a⊤x+ a0

z ≥ b⊤x+ b0
x ∈ conv(X)
z ∈ R
x ∈ {0, 1}n .

(4.10)

We have seen in Chapter 1 that the bounds for (4.8) obtained by Lagrangean
decomposition are at least as good as the LP bound, i.e. the bound obtained
by dropping all integrality conditions in (4.10). There are two natural ways to
decompose (4.10) into an unrestricted non-linear problem and a linear combina-
torial problem. Depending on whether the integrality conditions are imposed on
the original or the artificial variables, the two decompositions are the following:

min
x∈{0,1}n

max{a⊤x+ a0, b
⊤x+ b0}+ λ⊤x + min

y
−λ⊤y

s.t. y ∈ conv(X)

= min
x∈{0,1}n

max{(a+ λ)⊤x+ a0, (b+ λ)⊤x+ b0} + min
y
−λTy

s.t. y ∈ conv(X)

(4.11)

and

min
0≤x≤1

max{a⊤x+ a0, b
⊤x+ b0}+ λ⊤x + min

y
−λ⊤y

s.t. y ∈ conv(X)

= min
0≤x≤1

max{(a+ λ)⊤x+ a0, (b+ λ)⊤x+ b0} + min
y
−λTy

s.t. y ∈ conv(X) ,

(4.12)

where λ is the vector of Lagrangean multipliers. We see that the relaxation (4.11)
is potentially stronger than (4.12), since the former does not have the integrality

72 CHAPTER 4. TWO-SCENARIO OPTIMIZATION

property. By Theorem 1.1, these decompositions give the following dual bounds:

v1 = min z
s.t. y = x

(x, z, y)⊤ ∈ conv{x ∈ Zn, z ∈ R, y ≥ 0 |
z ≥ a⊤x+ a0, z ≥ b⊤x+ b0, y ∈ conv(X)}

= min z
s.t. y = x

(x, z)⊤ ∈ conv{x ∈ Zn, z ∈ R | z ≥ a⊤x+ a0, z ≥ b⊤x+ b0}
y ∈ conv(X)

and

v2 = min z
s.t. y = x

(x, z)⊤ ∈ conv{x ≥ 0, z ∈ R, y ∈ Zn | z ≥ a⊤x+ a0, z ≥ b⊤x+ b0}
y ∈ conv(X)

To compute the optimal values of the two relaxations with the subgradient
method, we have to solve (4.11) or (4.12) for a fixed value of λ in every iter-
ation. Due to the decomposition, the two subproblems can be solved separately.

For the first subproblem of (4.11), the unconstrained integer two-scenario prob-
lem, we presented an exact branch and bound-algorithm algorithm in the previous
section. Solving an integer two-scenario problem to optimality with a branch and
bound-algorithm in each iteration of a subgradient method is expensive, but as
we have the bound v1 is potentially stronger than the bounds obtained by solv-
ing (4.12) or the LP-relaxation of (4.10).

Since in the left part of (4.12) solutions need not be integral, the two correspond-
ing fractional knapsack problems can be solved to optimality with the fractional
knapsack-algorithm by Dantzig [25]. The bound v2 is the same as the LP bound.
Still, using relaxation (4.12) might be advantageous, especially when the polyhe-
dral description of the setX is not compact. In this case solving the LP-relaxation
of (4.10) to optimality would require separating cutting planes and solving a se-
ries of linear programs. Under our assumption that an efficient algorithm for the
linear combinatorial subproblem in the Lagrangean decomposition is available,
computing the Lagrangean dual of (4.12) might be faster in practice than solving
the LP-relaxation of (4.10) with a cutting plane-algorithm.

4.2.2 An Exact Algorithm

The two decompositions just described and their corresponding Lagrangean duals
give rise to two exact algorithms for combinatorial two-scenario problems. As in
the previous section we embed the computation of lower bounds into a branch

4.3. TWO-SCENARIO MIN-MAX REGRET PROBLEMS 73

and bound-algorithm. In each node of the branch and bound-tree the Lagrangean
dual is computed with a subgradient algorithm.

As in the case of submodular objective functions discussed in Section 3.5, when
selecting the branching variable we only consider variables which have different
values in the solutions of the two subproblems corresponding to the optimal
Lagrangean multiplier λ⋆. Among those one can again choose the one with the
lowest index or the one with the largest absolute value of the multiplier, depending
on the application. If no such variable exists, the solution is primal feasible for
the subproblem.

For the use in a branch and bound-algorithm both the method for computing the
unconstrained two-scenario problem and the combinatorial algorithm have to be
adapted to deal with fixed variables. For the fractional knapsack algorithm used
for relaxation (4.11) the adaptation is the same as in Section 4.1.3. For (4.12) the
branch and bound-algorithm described in 4.1.3 has to be modified to start with a
set of fixed variables, since it is called in each node. The combinatorial algorithms
used can be adapted in several ways, for example by adding a preprocessing step
as in the computation of the fractional knapsack problem, by modifying the
structure of the underlying graph or by modifying the weights of the graph.

Remark 4.2. For any value of λ, the solution of the combinatorial part of the
decomposition is also feasible for the subproblem. Evaluating these solutions in
the original objective function yields a primal bound for the original problem.

Both exact algorithms, for the unconstrained two-scenario problem and for its
combinatorial variant, will be evaluated experimentally in Chapter 9. We will
compare their performance to an LP-based linearization approach. We chose span-
ning trees in undirected graphs as the combinatorial structure of the constraint
set.

4.3 Two-Scenario Min-Max Regret Problems

A problem closely related to the multi-scenario problem we studied in this chapter
is the so-called min-max regret problem. Recall the basic combinatorial optimiza-
tion problem with k scenarios (4.1):

min
x

max{f1(x), . . . , fk(x)}
s.t. Cx ≤ d

l ≤ x ≤ u
x ∈ Zn

The aim here is to find the best worst-case value across all scenarios. In terms
of robustness this is a very conservative approach, since it does not take into

74 CHAPTER 4. TWO-SCENARIO OPTIMIZATION

account the other possible scenarios [3]. When the min–max regret formulation
of a problem is used instead the maximum deviation from the optimum solution
in each scenario, the so-called maximum regret is minimized.

Denote by opti the optimum solution of (4.1) when only scenario i is considered.
The regret r(x, i) of a solution x for scenario i is defined as

r(x, i) = fi(x)− opti ,

that is the amount of additional cost incurred by not having chosen the optimum
solution for this scenario. In the min-max regret formulation the maximum regret
over all scenarios is minimized:

min
x

max{f1(x)− opt1, . . . , fk(x)− optk}
s.t. Cx ≤ d

l ≤ x ≤ u
x ∈ Zn

(4.13)

Using this formulation does not protect against the worst case as effectively
as (4.1), but gives an increase of the average performance aver all scenarios [3].

The approaches we presented in this chapter can be easily adapted to also handle
the regret-versions of two-scenario problems. Note that problems (4.1) and (4.13)
only differ in the constant terms opti in the objective function. These values
can be determined in advance by solving the appropriate linear (one-scenario)
variants of the problem for the two scenarios. By our assumption this can be
done efficiently, so the complexity does not change.

Part II

Applications

75

Chapter 5

Tanglegrams

In this chapter we study the tanglegram layout problem. We first show that com-
puting an optimum tanglegram layout can be modeled as a binary quadratic
optimization problem with side constraints. Then we use the approaches for bi-
nary quadratic optimization discussed in Chapter 2 to solve random and realistic
tanglegram instances and compare their performance to the standard lineariza-
tion approach and an algorithm based on semidefinite programming.

The problem of computing optimal tanglegram layouts arises in several areas of
computational biology as well as in hierarchical clustering. A tanglegram consists
of two trees T1 and T2 and a set of additional edges. These tangle edges link
leaf nodes of T1 with leaf nodes of T2. A tanglegram layout is a drawing of the
resulting graph that places the leaf sets on two parallel lines and preserves the
tree structures. In an optimal tanglegram layout the number of crossings between
tangle edges is minimal.

One application of tanglegrams is the comparison of phylogenetic trees in com-
putational biology. Here the leafs represent a set of species, the inner nodes po-
tential ancestors. Each tree represents a hypothesis of the evolutionary history of
the species. A tanglegram layout with a low number of crossings between tangle
edges allows an easy visual comparison of two possible evolutionary histories of a
species. In this application the two leaf sets are identical. Each leaf of T1 is linked
to its counterpart in T2 by a tangle edge.

Another application is the analysis of the coevolution of two species, e.g. of a host
and its parasites. Given the phylogenetic trees of a family of hosts and a family
of parasites that infest these hosts, tangle edges mark which particular parasites
infest each host. An optimal tanglegram layout indicates whether the evolution
of the host species directly affected the evolution of the parasites, and vice versa.
In this case, a low number of crossings between tangle edges is expected. Whereas
in the first application the number of tangle edges incident at each leaf is exactly
one, here the number can be higher, since each parasite species can infest several

77

78 CHAPTER 5. TANGLEGRAMS

wardii

minor
thomomyus

actuosi
ewingi

chapini

panamensis

setzeri

cherriei

costaricensis

Lice (parasites)

Thomomydoecus

Geomydoecus

talpoides

bottae

bursarius
hispidus

cavator

underwoodi

cherriei

heterodus

Gophers (hosts)

Thomomys

Geomys

Orthogeomys

Figure 5.1: A tanglegram of two binary trees, taken from [57]. The maximum
number of tangle edges incident to a leaf node in this case is two.

host species. Figure 5.1 shows a tanglegram layout from a paper by Hafner et al.
[57], in which the authors study the co-evolution of pocket gophers (the hosts)
and chewing lice (the parasites).

Tanglegrams also occur in hierarchical clusterings, which can be visualized by
so-called dendrograms. Dendrograms consist of trees where the elements to be
clustered are identified with the leaves. Internal nodes determine clusters that
contain the elements or sub-clusters. A tanglegram layout helps comparing the
results of different clustering methods. Moreover, tanglegrams occur when analyz-
ing software projects in which a tree represents package, class, method hierarchies.
Hierarchy changes are analyzed over time, or automatically generated decompo-
sitions are compared with human-made ones. This application yields tanglegrams
on trees that are not binary in general [103]. Figure 5.2 shows the layout of such
a general tanglegram.

In this chapter we show that the general tanglegram layout-problem can be mod-
eled as a binary quadratic optimization problem, more specifically, a quadratic
linear ordering problem with additional constraints. Thus the tanglegram layout-
problem can be solved with the ILP-based cutting plane approach described in
Chapter 2. Additionally, the linear ordering-model allows a problem-specific re-
formulation of the linear constraints. In an experimental study, we solve random
and realistic tanglegram instances and compare the performance of the ILP al-
gorithm to an SDP-based approach.

This chapter is organized as follows. First, we review the complexity of several
variants of the tanglegram layout-problem and give an overview of existing lit-
erature on tanglegrams. In Section 5.2, we present the quadratic model. Finally,
we give the results of our experimental study in Section 5.3.

5.1. COMPLEXITY AND RELATED WORK 79

5.1 Complexity and Related Work

Fernau et al. [39] showed that deciding whether a tanglegram can be drawn
without tangle edge crossings can be done in polynomial time: Direct all edges
from the root node of the first tree to the root node of the second tree. If the
resulting graph is upward planar, a crossing free tanglegram layout exists. Testing
a graph for upward planarity can be done in linear time [14].

The same authors also established the complexity of the restricted variant of the
general tanglegram problem that was described as the first application above.
In the so-called two-tree-problem, two different phylogenetic trees for the same
species are considered. The tangle edges model the one-to-one correspondence
of the leaf nodes, i.e. each leaf node is incident to exactly one tangle edge. The
decision version of this problem is NP -hard. The proof given by Fernau et al. [39]
works by reducing the maximum cut-problem with unit weights to two-tree in
polynomial time.

When one layer order is kept fixed, the problem is called one-tree. It can be solved
to optimality by a dynamic programming algorithm in O(n log2 n) time, where n
is the number of leaves [39].

The tanglegram problem is closely related to the bipartite crossing minimization
problem [73, 71, 18]. Given a bipartite graph G = (V1, V2, E), the task here is
to place the nodes of V1 and V2 on two parallel lines, such that the number

Figure 5.2: A tanglegram layout of two trees with 20 leaves each. Each internal
node has at most three children and the density of the tangle edges is 10%.

80 CHAPTER 5. TANGLEGRAMS

of crossings between the edges in E is minimized. The edges have to be drawn
as straight lines. Obviously bipartite crossing minimization can be considered
a special case of the general tanglegram problem in the following sense: In the
bipartite crossing minimization problem the order of the nodes on the parallel
lines is not restricted. Thus this problem is equivalent to the tanglegram problem
where in both trees all leafs are directly linked to the root node by an edge.

Most of the literature is concerned with the case of binary trees and leaves that
are in one-to-one correspondence. Whereas several of the presented methods could
easily be generalized to arbitrary tangle layers, an extension to non-binary trees
is usually not possible. When allowing general trees, one extreme case would
be a star, where all leaves are incident to the root node. If both T1 and T2 are
stars, there are no constraints on the orders of leaves on either shore, so that the
problem specializes to the bipartite crossing minimization problem.

We are not aware of any implementation of an exact method for drawing tan-
glegrams with non-binary trees. As mentioned above, Fernau et al. [40] showed
the NP -hardness of drawing tanglegrams. They also presented a fixed-parameter
algorithm for binary tanglegrams. Recently, an improved fixed-parameter algo-
rithm was presented by Böcker et al. [16] which can solve large binary instances
quickly in practice, provided that the number of crossings is not too large. Fi-
nally, while in the recent paper by Venkatachalam et al. [121] the focus is on
binary instances, a fixed-parameter algorithm for general tanglegram instances
is presented. According to our knowledge, this is the only algorithm that could
deal with non-binary trees. However, no implementation or running times are
provided making it impossible to evaluate its practical performance.

Besides analyzing the performance and quality of several heuristics in a computa-
tional study for binary tanglegrams with 1–1 tangles, Nöllenburg et al. [103] also
implemented a branch-and-bound algorithm and an exact integer-programming
(IP) based approach for this case.

As we will compare our approach with the exact IP-approach of [103], we de-
scribe it in more detail in the following. A feasible but not necessarily optimal
tanglegram layout is given as an input. For each inner node, a binary variable xi

is introduced. In the case of complete binary trees with n leaves each, this gives
rise to 2n − 2 variables. If xi = 1, the subtree rooted in node i is flipped with
respect to the input drawing, otherwise it remains unchanged. As by definition
there are no crossings within the trees, the number of crossings can be determined
by counting the number of tangle crossings. Denote by L1 the leafs of T1 and by
L2 the leafs of T2. Let (a, c) and (b, d) be tangle edges with a, b ∈ L1 and c, d ∈ L2.
Let i be the lowest common ancestor of a, b in T1 and j that of c, d in T2. If the
tangle edges cross each other in the input drawing, then a crossing occurs in the
output drawing if and only if either both subtrees below i and j are flipped or
both remain unchanged. This can be expressed as xixj = 1 or (1−xi)(1−xj) = 1.

5.1. COMPLEXITY AND RELATED WORK 81

Similarly, if the edges do not cross each other in the input drawing, then there is a
crossing in the output drawing if and only if either (1−xi)xj = 1 or xi(1−xj) = 1.

Denote by T ◦
1 and T ◦

2 the set of inner nodes of T1 and T2, respectively. For each
pair of inner nodes (i, j) ∈ T ◦

1 ×T ◦
2 , let k

×
ij be the number of tangle edge pairs that

have lowest common ancestors i and j and cross in the initial tanglegram layout,
k=
ij be the number of tangle edge pairs that have lowest common ancestors i and

j and do not cross in the initial tanglegram layout. The number of crossings in a
drawing is then given by

k=
ij (xi(1− xj) + (1− xi)xj) +


k×
ij (xixj + (1− xi)(1− xj))

Thus minimizing the number of tangle edge crossings reduces to minimizing
the sum of the given products. The latter is an instance of the unconstrained
quadratic binary optimization problem. In their paper, Nöllenburg et al. [103]
apply a custom linearization instead of the standard linearization for binary
quadratic programming that was described in Chapter 2. They introduce a new
binary variable yij for each term xi(1 − xj) + (1 − xi)xj and add four sets of
coupling constraints. The resulting model reads

min


(i,j)∈T ◦
1 ×T ◦

2

k=
ijyij + k×

ij(1− yij)

s.t.

yij ≤ 2− xi − xj

yij ≤ xi + xj

yij ≥ xi − xj

yij ≥ xj − xi

 ∀(i, j) ∈ T ◦
1 × T ◦

2

x ∈ {0, 1}T ◦
1 +T ◦

2

(5.1)

Lemma 5.1. The model by Nöllenburg et al. [103] is equivalent to the standard
linearization of

min
x∈{0,1}T

◦
1 +T◦

2


(i,j)∈T ◦

1 +T ◦
2

k=
ij (xi(1− xj) + (1− xi)xj) + k×

ij (xixj + (1− xi)(1− xj)) ,

which is

min


(i,j)∈T ◦
1 ×T ◦

2

k=
ij(xi + xj − 2zij) + k×

ij(2zij − xi − xj + 1)

s.t.

zij ≥ xi + xj − 1
zij ≥ 0
zij ≤ xi

zij ≤ xj

 ∀(i, j) ∈ T ◦
1 × T ◦

2

x ∈ {0, 1}T ◦
1 +T ◦

2

(5.2)

Proof. Consider the linear transformation

π : yij →→ xi + xj − 2zij , xi →→ xi .

82 CHAPTER 5. TANGLEGRAMS

We will show that under this transformation each feasible point of (5.1) is mapped
to a feasible point of (5.2), and vice versa.

Let (x̄, ȳ) be a feasible point for (5.1) and π(x̄, ȳ) = (x̄, z̄) its transformation. By
definition of (x̄, ȳ) and π we have for all (i, j) ∈ T ◦

1 × T ◦
2 :

ȳij ≤ 2− x̄i − x̄j ⇒ x̄i + x̄j − 2z̄ij ≤ 2− x̄i − x̄j ⇒ z̄ij ≥ x̄i + x̄j − 1 ,

ȳij ≤ x̄i + x̄j ⇒ x̄i + x̄j − 2z̄ij ≤ x̄i + x̄j ⇒ z̄ij ≥ 0 ,

ȳij ≥ x̄i − x̄j ⇒ x̄i + x̄j − 2z̄ij ≥ x̄i − x̄j ⇒ z̄ij ≤ x̄j and

ȳij ≤ x̄j − x̄i ⇒ x̄i + x̄j − 2z̄ij ≤ x̄j − x̄i ⇒ z̄ij ≤ x̄i ,

which shows that (x̄, z̄) is feasible for (5.2). To show that any feasible point
for (5.2) is also feasible for (5.1), we apply the inverse transformation

π−1 : zij →→
1

2
(xi + xj − yij) , xi →→ xi .

Let (x̄, z̄) be a feasible point for (5.2) and π−1(x̄, z̄) = (x̄, ȳ) its transformation.
By definition of (x̄, z̄) and π−1 this time we have for all (i, j) ∈ T ◦

1 × T ◦
2 :

z̄ij ≥ x̄i + x̄j − 1⇒ 1

2
(x̄i + x̄j − ȳij) ≥ x̄i + x̄j − 1⇒ ȳij ≤ 2− x̄i − x̄j ,

z̄ij ≥ 0⇒ 1

2
(x̄i + x̄j − ȳij) ≥ 0⇒ ȳij ≤ x̄i + x̄j ,

z̄ij ≤ x̄i ⇒
1

2
(x̄i + x̄j − ȳij) ≤ x̄i ⇒ ȳij ≥ x̄j − x̄i and

z̄ij ≤ x̄j ⇒
1

2
(x̄i + x̄j − ȳij) ≤ x̄j ⇒ ȳij ≥ x̄i − x̄j .

Furthermore, the transformation maps the objective functions to each other. This
means that both models have the same dimension and the sets of feasible and
optimal solutions are isomorphic.

While Nöllenburg et al. used this model only for instances with 1–1 tangles,
they briefly note that it could be extended to leaves of higher degree as well.
However, their model cannot be generalized to instances with non-binary trees
in a straightforward way, since by construction the binary variables xi can only
model flips of complete subtrees, but not arbitrary permutations in the order of
the children of a node. In many applications, the trees are not necessarily binary.
In the next section we will present an exact model for tanglegrams that neither
restricts the degree of inner nodes in the trees nor the number of tangles incident
to a leaf.

5.2 An Exact Model for General Tanglegrams

The problem of drawing tanglegrams is closely related to bipartite crossing mini-
mization. As argued above, the latter problem can be considered a special case of

5.2. AN EXACT MODEL FOR GENERAL TANGLEGRAMS 83

the former. Therefore, we first review approaches for drawing bipartite graphs.

5.2.1 Bipartite Crossing Minimization

Let G = (V1 ∪ V2, E) be a bipartite graph. The task is to draw G with straight
line edges. The nodes in V1 and V2 have to be placed on parallel lines H1 and H2

such that the number of edge crossings is minimal. Both heuristic and exact
methods [71] exist for this problem.

Assume for a moment that the nodes on the first layer H1 are fixed, and only
the nodes on layer H2 are permuted. For each pair of nodes on H2, we introduce
a variable xuv such that xuv = 1 if u is drawn to the left of v and xuv = 0
otherwise. For edges (i, k) and (j, l) with i, j ∈ H1 and k, l ∈ H2, such that i is
left of j, a crossing exists if and only if l is left of k. We thus have to punish xlk

in the objective function. The task of minimizing the number of crossings is
now equivalent to determining a minimum linear ordering on the nodes of H2.
Exploiting xuv = 1 − xvu, we can eliminate half of the variables and only keep
those with u < v. Note that bipartite crossing minimization with one fixed layer
is already NP -hard [32].

If the nodes on both layers are allowed to permute, the number of crossings
depends on the order of the nodes on each layer. Therefore, the problem can be
modeled as a quadratic optimization problem over linear ordering variables. We
write the quadratic linear ordering problem (QLO) in its general form as

min


(i,j,k,l)∈I cijklxijxkl

(QLO) s.t. x ∈ PLO

xij ∈ {0, 1} ∀(i, j) ∈ J

where PLO is the linear ordering polytope [53, 108]. The index set I consists
of all quadruples (i, j, k, l) such that xijxkl occurs as a product in the objective
function, while J is the set of all pairs (i, j) for which a linear ordering variable xij

is needed. The linear ordering polytope PLO can be modeled using the so-called
3-dicycle inequalities, which enforce transitivity in the ordering of the nodes. We
have

PLO = conv{x ∈ {0, 1}J | 0 ≤ xij + xjk − xik ≤ 1 ∀(i, j), (j, k), (i, k) ∈ J}

For the bipartite crossing minimization case, I and J are given as

I = {(i, j, k, l) | i, j ∈ H1, i < j, and k, l ∈ H2, k < l}
J = {(i, j) | i, j ∈ H1 or i, j ∈ H2, i < j}

In order to linearize the objective function, we introduce a new binary vari-
able yijkl for each (i, j, k, l) ∈ I, modeling the product xijxkl. Applying the stan-
dard linearization, the corresponding linearized quadratic linear ordering problem

84 CHAPTER 5. TANGLEGRAMS

(LQLO) can be written as

min


(i,j,k,l)∈I cijklyijkl

(LQLO) s.t. x ∈ PLO

xij ∈ {0, 1} ∀(i, j) ∈ J
yijkl ≤ xij, xkl ∀(i, j, k, l) ∈ I
yijkl ≥ xij + xkl − 1 ∀(i, j, k, l) ∈ I
yijkl ∈ {0, 1} ∀(i, j, k, l) ∈ I.

In [73], the above model was introduced for bipartite crossing minimization. Ad-
ditionally, a quadratic reformulation of the constraints defining PLO was given
in [18]: it was shown that a 0/1 vector (x, y) satisfying yijkl = xijxkl is contained
in (LQLO) if and only if

xik − yijik − yikjk + yijjk = 0 ∀(i, j, k, l) ∈ I. (5.3)

Furthermore, the constraints (5.3) yield a minimum equation system for (LQLO).
Note that (LQLO) is a quadratic binary optimization problem where the feasible
solutions need to satisfy further side constraints, namely those restricting the
set of feasible solutions to linear orderings. As unconstrained binary quadratic
optimization is equivalent to the maximum cut problem (see Chapter 2), the task
is to intersect a cut polytope with a set of hyperplanes.

In general, the convex hull of the corresponding feasible incidence vectors has a
structure that is very different from that of a cut polytope. In the above context,
however, it was shown in [18] that the hyperplanes (5.3) cut out faces of the
cut polytope. Exploiting this result, both IP- and SDP-based methods originally
designed for maximum cut problems were used to solve the quadratic linear or-
dering problem. It turned out that the SDP-based approach outperformed the
IP-based techniques for dense graphs, which was also observed in [20]. For sparse
graphs it is suggested in [20] to use IP-based methods.

5.2.2 Modeling Tanglegrams

Crossing minimization in tanglegrams can be seen as a generalization of bipartite
crossing minimization. The set of feasible orderings is implicitly restricted by
the given tree structures. Starting from the model discussed above, we formalize
these restrictions as follows: let us consider a triple of leaves a, b, c in one of the
trees, say T1. In case all pairwise lowest common ancestors coincide, all relative
orderings between a, b, and c are feasible. However, if the lowest common ancestor
of, say, a and b is on a lower level than that of, say, a and c (in this case, the
former is a descendant of the latter), then c must not be placed between a and b,
as an intra-tree crossing would be induced; see Figure 5.3.

5.2. AN EXACT MODEL FOR GENERAL TANGLEGRAMS 85

ba c

Figure 5.3: Leaf c is not allowed to lie between a and b.

Therefore, we derive a betweenness restriction for every triple of leaves such
that two of the leaf pairs have different lowest common ancestors. Each such
betweenness restriction of the form ‘c cannot be placed between a and b’ can be
written in linear ordering variables as xacxcb = 0 and xcaxbc = 0. In the linearized
model (LQLO), the latter amounts to requiring

yaccb = 0 and ycabc = 0 . (5.4)

For binary trees with n leaves each, all triples of leaves have two different lowest
common ancestors, so in this case the number of additional equations is 2


n
3


.

In summary, we now obtain a quadratic linear ordering problem (QLO) on a
smaller number of variables, with additional constraints of the form (5.4), where

J = {(i, j) | i, j are leaves of the same tree, i < j}
I = {(i, j, k, l) | (i, j), (k, l) ∈ J belong to different trees} .

For complete binary trees with n leaves each, the total number of linear ordering
variables is 2


n
2


. The same number of variables is necessary in the corresponding

bipartite crossing minimization model [18].

As mentioned above, the polytope corresponding to the linearized problem (LQLO)
is isomorphic to a face of a cut polytope [18]. Since all y-variables are binary, con-
straints of the form (5.4) are always face-inducing for (LQLO). In summary, we
derive the following result:

Theorem 5.2. The problem of drawing tanglegrams with a minimum number of
edge crossings can be solved by optimizing over a face of a suitable cut polytope.

5.2.3 Binary Case

In the binary case, the model introduced in the last sections is closely related to
the model presented in [103]. To see this, first observe that the two equations (5.4)
can be written as

xab = xbc . (5.5)

86 CHAPTER 5. TANGLEGRAMS

Table 5.1: Average CPU time in seconds for realistic 1–1 binary trees having
n leaves each [103]. Instances are grouped by their number of leaves. The nine
largest instances with up to 540 leaves could not all be computed within the time
and memory constraints and are omitted.

n SDP std ref std+cyc ref+cyc

0–49 <1 <1 <1 <1 14
50–99 3 <1 2 <1 428

100–149 31 <1 7 <1 1100
150–199 125 1 32 1 1282
200–249 437 1 66 2 2704
250–299 4786 2 2529 7 10602
300–349 6483 2 80 9 8862
400–449 20508 12 12067 69 14931

This replacement does not affect the set of feasible solutions, even the correspond-
ing LP-relaxations of (LQLO) are equivalent. Note however that introducing the
y-variables allows to strengthen the model, see Theorem 5.2.

When using the linear equations (5.5) instead of the quadratic equations (5.4),
we end up with a set of equivalence classes of linear ordering variables, such that
all pairwise orderings corresponding to variables in the same class can only be
flipped simultaneously. Two variables xac and xbd belong to the same class if and
only if there is a node r such that a, b and c, d are descendants of different children
of r; see Figure 5.4. In the binary case, a class of linear ordering variables thus
corresponds to the decision of flipping the children of node r or not, which is
modeled explicitly by a single variable in the model of Nöllenburg et al. [103].

a b c d

r

Figure 5.4: Variables xac and xbd can be identified.

However, in the general case where node r has k children, there are k! different
orderings. As these cannot be modeled by a single binary variable, the model of
Nöllenburg et al. [103] cannot be applied here.

5.3. COMPUTATIONAL RESULTS 87

5.3 Computational Results

We implemented the model explained in Section 5.2.2. Instead of adding equa-
tions (5.5) explicitly, we used one variable for each equivalence class of linear
ordering variables, thereby significantly reducing the number of variables.

We compare four LP-based branch and bound-approaches and one that solves
SDP-relaxations. The first two solve the linearized model (LQLO) and the quadra-
tic reformulation (5.3), respectively. They are pure branch and bound-algorithms.
The next two solve (LQLO) and (5.3) as before, but now odd cycle inequalities
are separated with the exact algorithm discussed in Chapter 2. The last approach
is described in a paper by Rendl et al. [110]. It solves the SDP-model of (5.3)
with a branch and bound-algorithm and uses triangle inequalities to strengthen
the relaxations. An implementation of the algorithm was made available to us by
the authors of [110].

For comparison, we also implemented the IP approach [103] that only works for
binary tanglegrams. For the tested binary instances, the running times for solving
the latter are very comparable to the model proposed here and are omitted in
the following. This behavior can be expected since our model generalizes [103],
as discussed in 5.2.3.

We generated random instances on general binary, ternary and quad trees. I.e.,
the degree of each internal node is at most 2, 3 or 4, respectively. Each tree has
n leaves, either having 1–1 tangles or a certain tangle-edge density d%. Instances
are generated following the description in [103], with obvious extensions to the
more general cases considered here. Finally, we solved realistic binary tangle-
gram instances from [103] arising in applications in biology and general realistic
instances from visualizing software hierarchies [63].

Average results are always computed over 5 randomly generated instances. For
each instance, we imposed an upper limit of 10h of CPU time. Instances that
could not be solved within this limit count with 10h in the averages. Runs were
performed on Intel Xeon machines with 2.33GHz and all linear programs were
solved with CPLEX 11.2 [65].

In Table 5.1, we present the average CPU time in seconds for realistic binary
instances. Table 5.3 shows results for random ternary and quad trees, respectively.
Figure 5.5 visualizes the results from Table 5.3 for n = 128. Running times for
realistic general tanglegram instances are presented in Table 5.2. In case an entry
is missing in the tables, we could not solve the instances by the corresponding
methods due to memory allocation constraints.

The first column SDP shows results obtained by semidefinite optimization, where-
as the remaining columns refer to IP-based approaches for solving the model from
Section 5.2. std refers to solving the standard linearization using CPLEX default,
ref its quadratic reformulation (5.3). In the options std+cyc and ref+cyc, cycle

88 CHAPTER 5. TANGLEGRAMS

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

C
P

U
(s

)

d

SDP
stdlin

reform+cyc
std+cyc
reform

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

C
P

U
(s

)

d

SDP
stdlin

reform+cyc
std+cyc
reform

Figure 5.5: Plot showing results for n = 128 of Table 5.3 on page 90 for ternary
(left) and quad trees (right).

inequalities for max-cut are additionally separated, all CPLEX cuts are switched
off.

Table 5.2: CPU time in seconds for realistic general tanglegram instances [63].

instance SDP std ref std+cyc ref+cyc

philips orig 4a 27618 4725 73 4321 32692
philips orig 4b 26093 4205 74 2756 23443
philips orig 4c 36000 2666 122 4030 36000
philips orig 4d 27891 3208 314 4178 28902
philips orig 4e 36000 2789 90 5665 36000
philips 4a 4b 5238 1395 4 420 5
philips 4a 4c 4769 1858 3 637 4
philips 4a 4d 2924 1467 4 494 3
philips 4a 4e 2575 827 2 338 3
philips 4b 4c 6526 1965 8 510 7
philips 4b 4d 4872 2070 5 577 5
philips 4b 4e 2127 649 4 124 36
philips 4c 4d 4611 804 3 217 5
philips 4c 4e 6403 1074 3 396 5
philips 4d 4e 3738 891 4 811 11

Clearly, for realistic binary trees with 1–1 tangles, the SDP approach usually
needs considerably more time than the IP-based methods. Furthermore, memory
requirements strongly increase with system size and so the largest instances could
not be solved. On average, the fastest approaches for solving the largest instances

5.3. COMPUTATIONAL RESULTS 89

are the pure standard linearization std and the quadratic reformulation ref.

In fact, we can optimize tanglegrams with more than 500 leaves in each tree. This
is the range of sizes arising in realistic applications. The realistic instances can be
solved particularly fast. Interestingly, cycle separation for max-cut usually does
not pay off for binary 1–1 tanglegrams: the running time increases, even if the dual
bounds are usually considerably better when cycle separation is included. Often,
an optimum solution can be determined in the root node. However, although
the bound is weak in the standard linearization, after few branching steps the
optimum LP solution is often feasible and the program can stop. We found similar
characteristics for random binary tanglegram instances.

The picture changes when varying the density of the tangle edges: for big enough
tangle-edge density the SDP approach usually outperforms the IP ones. However,
memory requirements usually prohibit the solution of instances with more than
500 leaf nodes and tangle-edge density of 1%. On the IP side, reformulation is
often preferable. Indeed, the best performance is found when the problems are
quadratically reformulated. For n = 512 and 1% tangle-edge density, the average
solution time is 2120.42 seconds. These instances cannot be solved within the
given time limits when using only the standard linearization, with or without
separation of cycle inequalities.

The instances for ternary and quad trees are computationally slightly more diffi-
cult. This is mainly due to the fact that the number of betweenness restrictions
decreases when compared to binary trees. Here again, the SDP approach per-
forms well for denser instances however memory requirements strongly increase
with system size. For larger instances, best performance is often found for the
quadratic reformulation.

Comparing std with std+cyc and ref with ref+cyc for not necessarily binary trees,
it turns out that the benefit of separating cycle inequalities increases for ternary
and quad trees. The special case of a star, where the degree of the internal nodes
is maximal, is equivalent to the quadratic linear ordering problem, for which we
know that separation of cycle inequalities improves over std [18].

The realistic general instances we tested had between 371 and 414 nodes and 131
tangles. The maximum degree of an internal node was 15. We show the results in
Table 5.2. Here, solving the reformulation usually yields best performance. Note
that these non-binary instances could not be solved before by any other exact
method.

90 CHAPTER 5. TANGLEGRAMS

Table 5.3: Average CPU time in seconds for random general ternary (top) and
quad trees (bottom) having n leaves each, density d%.

n d SDP std ref std+cyc ref+cyc

64 1 3 1 <1 <1 1
5 15 12 4 67 6
10 18 27 19 1301 17
15 78 54 23 3893 37
20 41 54 48 12508 66

128 1 165 16 32 78 63
5 362 448 280 22253 448
10 436 2179 791 36000 2746
15 4049 3247 1551 36000 5583
20 8293 2326 1408 36000 15426

n d SDP std ref std+cyc ref+cyc

64 1 <1 <1 <1 <1 <1
5 2 3 1 1 <1
10 3 8 2 5 1
15 4 16 6 57 3
20 4 19 7 65 3

128 1 32 19 3 2 4
5 80 59 35 1045 51
10 73 1406 119 10147 495
15 77 844 352 31582 1184
20 1420 1560 1908 36000 10111

Chapter 6

Combinatorial Quadratic
Optimization

In this chapter we continue the experimental evaluation of the solution techniques
for binary quadratic problems presented in Chapter 2. To study the effectiveness
of cutting planes for the cut polytope and quadratic reformulation when solving
combinatorial quadratic problems we consider the quadratic minimum spanning
tree problem for the reformulations SQK2 and SQK3 and the quadratic matching
problem for the phantom monomial reformulation.

The linear variants of both problems are well-studied and solvable in polyno-
mial time, while the quadratic variants considered here are NP -hard. Also, for
both problems efficient separation algorithms are known, which produce good
descriptions of the convex hulls of the feasible sets. In our experiments we want
to find out if combining such a good description of the combinatorial structure of
a quadratic problem with a good linear model of the quadratic objective function
is a good approach to solve combinatorial quadratic problems. Our aim is not to
compete with problem-specific algorithms but to develop an algorithmic frame-
work that is applicable to a wide range of combinatorial quadratic problems but
still gives good results in practice.

6.1 Quadratic Minimum Spanning Tree

A spanning tree in an undirected graph G = (V,E, c) is a subset T ⊆ E of the
edges of G, such that the subgraph induced by T is cycle-free and an undirected
path between each pair of nodes u, v ∈ V exists in T . The minimum spanning
tree problem (MST) is defined as follows.

Definition 6.1. (MST) Given an undirected Graph G = (V,E, c) with edge
weights c ∈ RE, find a spanning tree T in G, such that the total weight of the

91

92 CHAPTER 6. COMBINATORIAL QUADRATIC OPTIMIZATION

edges in T is minimal.

The minimum spanning tree problem with linear costs is solvable in polynomial
time, for example with the algorithms by Prim [107] and Kruskal Jr. [78]. In the
quadratic minimum spanning tree problem (QMST) additional costs can occur
for pairs of edges. Assad and Xu [9] showed that QMST is NP -hard.

Spanning tree problems can be modeled as integer programs using subtour elim-
ination constraints and a cardinality constraint [113]. Subtour elimination con-
straints ensure that a solution does not contain a cycle by restricting the number
of edges in all subgraphs of the solution. Given an undirected graph G = (V,E, c),
associate a binary variable xe with each edge e ∈ E. A subtour elimination con-
straint is of the form 

e∈E(G[S])

xe ≤ |S| − 1 , (6.1)

where S ⊂ V is a subset of the nodes of G and E(G[S]) denotes the edges of
the subgraph G[S] induced by S. Any vector x⋆ ∈ {0, 1}E satisfying the subtour
elimination constraints for all possible subsets S ⊆ V defines a cycle-free sub-
graph T of G, but T not necessarily spans all nodes of G. Adding the cardinality
constraint 

e∈E

xe = |V | − 1 (6.2)

makes sure that T has the minimum number of edges necessary for any subgraph
of G to be spanning.

There is an exponential number of subtour elimination constraints, but they
can be separated in polynomial time. The separation algorithm finds violated
inequalities by computing minimum cuts in a bidirected auxiliary graph [113]. As
was shown by Edmonds [36], the subtour elimination constraints together with
the cardinality constraint not only yield a correct IP-model for MST, they even
give a complete description of the spanning tree polytope. As a consequence MST
can be solved as an LP. For QMST this in general is not true anymore, but the
quadratic minimum spanning tree problem can still be expressed as the following
quadratic integer program:

min

e∈E

cexe +


{e,f}∈E×E
e ̸=f

qefxexf

s.t.

e∈E

xe = |V | − 1
e∈E(G[S])

xe ≤ |S| − 1 ∀S ⊆ V

x ∈ {0, 1}E

(6.3)

6.1. QUADRATIC MINIMUM SPANNING TREE 93

6.1.1 Quadratic Reformulation

Applying the quadratic reformulation SQK2 discussed in Section 2.3.1 to the
cardinality constraint (6.2) yields the constraint

e∈E

x2
e + 2


{e,f}∈E×E

e̸=f

xexf ≤ (|V | − 1)2 (6.4)

It contains all possible quadratic monomials. This means that the separation
graph H for the MaxCut inequalities is complete, even if not all quadratic mono-
mials occur in the objective function.

The SQK3 reformulation from Section 2.3.2 adds the following constraints to the
model when applied to the cardinality constraint:

−(|V | − 2)xf +


e∈E\{f}

xexf ≤ 0 ∀f ∈ E (6.5)

by multiplying with the term xf for each edge f ∈ E and

|V |xh +


e∈E\{h}

xexh ≤ |V | − 1 (6.6)

by multiplying with the term (1− xh), where the edge h ∈ E is chosen arbitrar-
ily. Again, the quadratic reformulation of the cardinality constraint leads to a
complete MaxCut separation graph.

The reformulations of subtour elimination constraints are very similar to (6.5)
and (6.6). The only differences are the sense of the constraints and the node sets
considered.

6.1.2 Computational Results

In the following, we report computational results of a branch and cut-algorithm
for the quadratic minimum spanning tree problem that incorporates the tech-
niques presented in Chapter 2. We consider two basic settings: In the first we
solve the standard linearization of (6.3) augmented with the inequalities pro-
duced by the different quadratic reformulations, but without cutting planes for
the cut polytope. In the second we additionally separate odd cycle inequalities.

Instances

We used the instances with 10 and 15 nodes from the paper by Cordone and
Passeri [22]. For given edge densities 33%, 67% and 100%, there are four instances
with integral weights for the edges and all pairs of edges. Weights are uniformly
distributed random numbers either from {1, . . . , 10} or {1, . . . , 100}. There is one
instance for each combination of the intervals.

94 CHAPTER 6. COMBINATORIAL QUADRATIC OPTIMIZATION

Experimental Setup

The branch and cut-algorithm was implemented in SCIL and the LP-relaxations
were solved with CPLEX 12.5. As proposed in Chapter 2, the separation graph
for the odd cycle inequalities does not contain the auxiliary node u, because odd
cycles involving u do not induce facets of the cut polytope apart from those al-
ready defined by the inequalities of the standard linearization. The separation
graphs for the instances tested here are complete, therefore only odd cycle in-
equalities of length three are separated. All triangles in the separation graph are
enumerated in a preprocessing step. The corresponding odd cycle inequalities are
stored in a cut pool, which is checked for violated inequalities in each iteration
of the cutting plane-algorithm.

The initial relaxation in all experiments consists of the standard linearization of
the quadratic terms and the cardinality constraint (6.1). The separation routines
for the odd cycle inequalities (2.3) and the subtour elimination inequalities (6.1)
are called in each iteration of the cutting-plane algorithm. In the case of the
SQK2 reformulation, the reformulation of the cardinality constraint as well as
any violated constraints found by the separation algorithms and their SQK2 re-
formulation are added to the model directly. In the case of SQK3, the |E| + 1
inequalities of the reformulation of the cardinality constraint and all inequali-
ties generated by reformulating constraints found by the separation algorithms
are generated, but not added to the model directly, because this would lead to
a significant increase in the size of the relaxation. Instead, only the original in-
equalities are added, the reformulation inequalities are stored in a cut pool. In
each iteration of the cutting plane-algorithm this cut pool is checked for violated
inequalities.

All experiments were run on an Intel Xeon CPU E5–26400@2.5GHz with 32Gb
main memory. The time limit was 1h per instance.

Results

Tables 6.1 and 6.2 show the results of the computational study for the quadratic
minimum spanning tree problem. The first two columns show the number of nodes
and edges of the graph G, the column marked nq the number of quadratic terms
in the objective function. In Table 6.2 this is also the number of edges in the
MaxCut separation graph. qref is the type of quadratic reformulation used. The
remaining columns give the number of subproblems solved (subs), the number
of linear programs solved (LPs), the time spent by the separation algorithms in
seconds (stime/s) and the total solution time (ttime/s). All numbers are averages
over the four instances of each class, except for the line in italics in Table 6.1.
Only two instances of this class could be solved within the time limit without
MaxCut separation or quadratic reformulation.

6.1. QUADRATIC MINIMUM SPANNING TREE 95

Table 6.1: Computational results for the quadratic minimum spanning tree prob-
lem without MaxCut separation. Without quadratic reformulation only two of
the instances with 45 edges could be solve to optimality within the time limit.

n m nq qref subs LPs stime/s ttime/s

10 14 91 none 15.00 12.25 0.00 0.09
SQK2 3.50 4.50 0.00 0.02
SQK3 1.00 2.50 0.00 0.01

SQK2+3 1.00 2.50 0.01 0.01

10 30 435 none 3734.50 3374.25 0.38 32.58
SQK2 561.50 504.75 0.27 11.11
SQK3 128.50 212.00 0.19 6.42

SQK2+3 108.00 182.50 0.17 5.86

10 45 990 none 19379.00 18246.00 4.97 399.73
SQK2 2667.00 2746.75 2.51 154.12
SQK3 395.00 856.75 2.24 78.13

SQK2+3 430.50 931.75 2.66 87.70

15 34 561 none 50704.50 47336.75 10.17 905.91
SQK2 3259.00 3350.25 3.08 133.26
SQK3 489.50 1213.00 5.08 71.81

SQK2+3 635.50 1529.50 8.42 100.92

As can be seen from Table 6.1, quadratic reformulation leads to a significantly
better performance of the branch and cut-algorithm, even when the quadratic
structure of the problem is only modeled by the standard linearization. With
all three reformulations tested the number of subproblems and linear programs is
much lower than without quadratic reformulation. The smallest instances are even
solved in the root node, when SQK2 or both SQK2 and SQK3 are applied. The
reduction in the number of subproblems confirms the theoretical results of Chap-
ter 2, that quadratic reformulation improves the LP-relaxations of constrained
binary quadratic programs.

SQK2 and especially SQK3 increase the size of the relaxations and an additional
separation step is required for SQK3, but this effect is compensated by the re-
duction in the number of LPs, so that all reformulations result in lower running
times. As expected, SQK3 generally gives better results than SQK2. Applying
both SQK2 and SQK3 is effective for small instances, but does not pay off for
larger instances. The hardest instances for all approaches are the complete graphs
on ten nodes, with 990 quadratic terms. Without quadratic reformulation only
two instances are solved within one hour, while with SQK3 the average solution
time is less than 80 seconds.

96 CHAPTER 6. COMBINATORIAL QUADRATIC OPTIMIZATION

Table 6.2: Computational results for the quadratic minimum spanning tree prob-
lem with MaxCut separation.

n m nq qref subs LPs stime/s ttime/s

10 14 91 none 1.00 3.75 0.00 0.04
SQK2 1.00 2.75 0.00 0.01
SQK3 1.00 2.50 0.00 0.01

SQK2+3 1.00 2.25 0.01 0.01

10 30 435 none 1418.50 1690.50 1.96 57.46
SQK2 10.50 50.50 0.08 1.76
SQK3 2.00 20.00 0.05 0.69

SQK2+3 2.00 16.25 0.03 0.68

10 45 990 none 16084.00 19579.25 42.06 943.57
SQK2 76.50 430.50 1.27 31.07
SQK3 40.00 296.75 1.12 26.15

SQK2+3 42.00 300.50 1.22 28.28

15 34 561 none 5657.50 8618.50 15.75 903.12
SQK2 50.50 259.50 0.68 20.19
SQK3 11.00 94.50 0.31 7.37

SQK2+3 10.00 87.00 0.30 7.26

Table 6.2 shows the effects of MaxCut separation in combination with quadratic
reformulation of linear constraints. In all settings, the separation of triangle in-
equalities leads to a strong reduction in the number of subproblems. This effect
is most pronounced for SQK2, where the number of subproblems is reduced by
a factor of up to 64. At the same time, the additional separation increases the
average number of LPs per subproblem, but the total number of LPs is still lower
than in the case where the quadratic terms are only modeled by the standard lin-
earization. MaxCut separation also effects the running times. As can be seen from
Tables 6.1 and 6.2, without quadratic reformulation, results are mixed. While now
all instances of complete graphs on ten nodes are solved within the time limit,
running times for the other instances are similar or even slightly worse. When the
separation of the odd cycle inequalities is combined with quadratic reformulation,
the picture is different. Here, all instances are solved quicker, by a factor of up
to 14.

The experimental study of the quadratic minimum spanning tree demonstrates
that the combination of quadratic reformulation with a good linear description
of the quadratic structure of the problem is an effective approach for solving
quadratic combinatorial problems. SQK3 results in a larger increase in the size of
the relaxations in comparison to SQK2, but this is compensated by the stronger

6.2. QUADRATIC MATCHING 97

dual bounds, so that SQK3 gives the best computational results, both in regard
to the number of subproblems and the overall running times.

In the final section of this chapter we investigate the effectiveness of the phantom
monomial reformulation approach of Section 2.3.3 for quadratic combinatorial
optimization problems with assignment constraints. We report the results of an
experimental study of the quadratic perfect matching problem.

6.2 Quadratic Matching

A matching in an undirected graph G = (V,E, c) is a subset M ⊆ E of the
edges of G, such that the edges in M are pair-wise non-adjacent. If the subgraph
induced by M spans G, M is called a perfect matching. The minimum-weight
perfect matching problem (PM) is defined as follows.

Definition 6.2. (PM) Given an undirected graphG = (V,E, c) with edge weights
c ∈ RE, find a perfect matching M in G, such that the total weight of the edges
in M is minimal.

The minimum-weight perfect matching problem can be solved in polynomial
time [33, 34] and has a simple IP-formulation:

min

e∈E

ce

s.t.

e∈δ(v)

xe = 1 ∀v ∈ V

x ∈ {0, 1}E ,

(6.7)

where δ(v) denotes the set of edges incident to v ∈ V .

Adding the so-called blossom inequalities [34]
e∈δ(S)

xe ≥ 1 ∀S ⊆ V, |S| ≥ 3, |S| odd (6.8)

to the LP-relaxation of (6.7) gives a complete description of the perfect matching
polytope. Here δ(S) denotes the set of edges that have exactly one end-point in S.
Blossom inequalities can be separated in polynomial time, e.g. with the algorithm
by Letchford et al. [84] for the slightly more general case of b-matchings.

In the minimum-weight quadratic perfect matching problem (QPM) additional
costs occur for pairs of distinct edges, as in QMST. The IP-model of QPM is
thus the same as for PM, except for additional weighted quadratic monomials in
the objective function.

98 CHAPTER 6. COMBINATORIAL QUADRATIC OPTIMIZATION

Theorem 6.1. The minimum-weight quadratic perfect matching problem is NP-
hard.

Proof. The proof works by showing that QPM is a generalization of the quadratic
assignment problem (QAP) [19], which is NP -hard [111]. In the general formula-
tion by Lawler [81], QAP asks for a minimum-cost assignment of n facilities to
n locations. All facilities must be assigned to a location and each location can
only take one facility. Costs cijkl occur when facility i is assigned to location j
and facility k to location l. This problem can be modeled as a quadratic perfect
matching problem on a bipartite graph as follows. Define an undirected graph
G = (V ∪ W,E) with one node in V for each facility and one node in W for
each location. E contains an edge from each node in V to each node in W . A
perfect matching in G now corresponds to an assignment of facilities to locations.
Finally, define the objective function of the QPM on G as

(i,j)∈E


(k,l)∈E

cijklxijxkl .

The resulting QPM is a model for the QAP.

The IP-model of QPM contains assignment constraints, which allow the intro-
duction of phantom monomials discussed in Chapter 2. The number of phantom
monomials depends on the structure of the graph G. For v ∈ V , denote by PM(v)
the set of phantom monomials generated by the assignment constraint

e∈δ(v)

xe = 1 .

We have

|PM(v)| =

|δ(v)|
2


and the total number of phantom monomials is

v∈V

|PM(v)| =

v∈V


|δ(v)|
2


,

since PM(v) ∩ PM(w) = ∅ for v ̸= w.

When G is a complete graph on n nodes, each node has n− 1 incident edges. In
this case the total number of phantom monomials is

v∈V

|PM(v)| = n


n− 1

2


=

1

2
n(n− 1)(n− 2) =

n3 − 3n2 + 2n

2
.

In comparison, the total number of quadratic monomials that can be formed from
pairs of edges in a complete graph isn

2


2


=

n4 − 2n3 − n2 + 2n

8
.

6.2. QUADRATIC MATCHING 99

Table 6.3: Computational results for the quadratic perfect matching problem
without phantom monomials. Odd cycle inequalities are separated with the exact
algorithm by Barahona and Mahjoub [12]. Only 4 of 5 of the instances with 20
nodes and 30% density are solved within the tine limit of 1h.

n m ne subs LPs stime/s ttime/s

10 45 99 5.80 6.20 0.04 0.04
148 4.20 4.80 0.04 0.05
198 6.20 6.40 0.09 0.11
247 14.60 16.00 0.29 0.37
297 7.40 10.00 0.20 0.25

14 91 409 6.20 6.00 0.32 0.36
614 10.20 12.80 1.17 1.29
819 13.80 22.20 2.78 3.04
1023 32.20 65.20 11.29 12.15
1228 25.80 55.00 11.67 12.55

18 153 1162 14.20 19.20 6.14 6.48
1744 41.00 60.80 36.65 38.09
2325 53.00 102.20 76.81 79.92
2907 115.80 255.40 245.58 255.20
3488 174.20 412.60 478.72 497.14

20 190 1795 15.40 20.40 12.65 13.20
2693 56.60 98.40 108.67 112.17
3591 87.80 177.40 268.25 276.66
4488 240.20 548.20 1074.45 1107.09
5386 210.50 545.00 1285.94 1325.70

6.2.1 Computational Results

Instances

We compute perfect matchings in complete graphs with |V | ∈ {10, 14, 18, 20}.
Edge weights are chosen uniformly at random from the interval [0, 100]. In each
instance a certain percentage d ∈ {10, 15, 20, 25, 30} of all possible edge pairs
is chosen randomly. These edge pairs are also assigned a weight in the interval
[0, 100]. All other pairs are given weight zero and the corresponding quadratic
terms are thus dropped from the model. The test set consists of 100 instances in
total, five for each combination of size and number of quadratic terms.

100 CHAPTER 6. COMBINATORIAL QUADRATIC OPTIMIZATION

Experimental Setup

The basic experimental setup is the same as in the previous section, except two
points: In the experiments for the quadratic MST, the separation graph for odd
cycle inequalities was complete, which motivated the use of triangle separation.
In our experiments for the quadratic matching problem the separation graph is
sparse, even with the additional edges resulting from phantom monomials. There-
fore we use the two separation algorithms presented in Section 2.2.1, the exact
algorithm by Barahona and Mahjoub [12] and the heuristic forest cycle separation
by Barahona, Jünger, and Reinelt [13]. The second difference is that quadratic
reformulation is only possible for the constraints of the basic IP-formulation (6.7).
Neither the odd cycle inequalities (2.3) nor the blossom inequalities (6.8) meet
the requirements for the phantom monomial reformulation. The right-hand side
of an odd cycle inequality is always an even number and the sense of a blossom
inequality is ”≥” instead of ”≤”.
We start with the LP-relaxation of (6.7). The separation routines for blossom and
odd cycle inequalities are called in each iteration of the cutting plane algorithm.
We test the effectiveness of phantom monomials in combination with both the
exact and the heuristic separation algorithm for odd cycle inequalities.

Results

Tables 6.3 – 6.6 report the experimental results for the minimum-weight per-
fect matching problem. All tables show the number of nodes (n) and edges (m)
of the matching graph, the total number of edges in the separation graph for
odd cycle inequalities (ne), the number of subproblems (subs) and linear pro-
grams (LPs) in the branch and cut-algorithm, and the time spent in the separa-
tion routines (stime/s) as well as the total solution time (ttime/s). All values are
averages over five instances and times are reported in seconds. Tables 6.4 and 6.6
contain the average number of phantom monomials (PM).

It turns out that in most cases, the inclusion of phantom monomials does not lead
to lower solution times. It can be observed that especially with exact MaxCut
separation, the solution time is nearly completely determined by the time spent
on the separation of odd cycle inequalities. The increase in the size of the separa-
tion graph caused by the quadratic reformulation of the assignment constraints
naturally has a negative impact on the runtime of the separation algorithm, which
cannot be compensated by the positive impact on the dual bounds. Nevertheless,
the denser separation graph leads to a significant reduction in the number of sub-
problems. This demonstrates that phantom monomials are effective in strength-
ening the LP-relaxations of quadratic combinatorial problems with assignment
constraints.

When the heuristic separation algorithm is used instead of the exact one, solution

6.2. QUADRATIC MATCHING 101

Table 6.4: Computational results for the quadratic perfect matching problem with
phantom monomials and exact cycle separation.

n m PM ne subs LPs stime/s ttime/s

10 45 360 422.40 3.40 6.80 0.18 0.19
456.00 3.00 4.40 0.11 0.12
485.40 3.00 6.00 0.18 0.20
517.00 6.60 16.00 0.56 0.62
540.00 5.00 9.80 0.36 0.40

14 91 1092 1394.00 3.80 7.80 1.66 1.73
1546.00 4.60 11.20 2.74 2.86
1698.40 7.00 20.40 5.67 5.90
1836.40 15.80 41.20 12.48 12.97
1996.40 19.00 43.00 14.56 15.19

18 153 2448 3371.00 4.20 13.60 13.67 13.99
3828.00 16.60 43.20 52.12 53.18
4286.80 26.20 72.40 94.31 96.35
4738.20 68.20 176.80 260.05 266.14
5198.00 115.00 286.20 449.99 462.01

20 190 3420 4881.60 8.20 25.80 51.82 52.69
5587.20 21.80 67.20 150.78 153.24
6314.80 48.60 130.20 345.36 351.30
7048.80 131.00 335.20 940.14 958.77
7771.20 205.00 518.00 1527.74 1561.68

times are much lower, as can be seen from Tables 6.5 and 6.6. The heuristic
separation is much faster in practice than the exact algorithm, but it is also less
effective, which leads to a higher number of subproblems and LPs. The effect of
phantom monomials is smaller in this setting. Especially for the larger and denser
instances the reduction in the number of subproblems is lower, which indicates
that the heuristic separation algorithms profits less from the additional edges in
the separation graph.

The experimental study shows that the quadratic reformulation of assignment
constraints in quadratic combinatorial problems has a positive impact on the
quality of the LP-relaxations and leads to a significant reduction in the number
of subproblems. At the same time the increase in the density of the separation
graphs may lead to excessive separation times.

102 CHAPTER 6. COMBINATORIAL QUADRATIC OPTIMIZATION

Table 6.5: Computational results for the quadratic perfect matching problem
without phantom monomials. Odd cycle inequalities are separated with the
heuristic algorithm by Barahona, Jünger, and Reinelt [13].

n m ne subs LPs stime/s ttime/s

10 45 99 5.80 6.20 0.00 0.02
148 4.20 3.80 0.00 0.01
198 6.20 6.60 0.01 0.03
247 13.80 16.00 0.02 0.08
297 7.40 12.80 0.02 0.07

14 91 409 6.20 6.00 0.01 0.05
614 9.80 12.40 0.02 0.16
819 16.20 24.00 0.10 0.39
1023 27.80 58.20 0.34 1.10
1228 25.80 61.00 0.41 1.37

18 153 1162 14.20 18.00 0.11 0.43
1744 29.00 51.60 0.53 1.72
2325 57.80 106.20 1.56 4.78
2907 99.00 244.00 4.75 13.85
3488 207.80 503.60 12.84 35.29

20 190 1795 22.20 25.60 0.30 0.99
2693 60.20 103.00 1.85 5.42
3591 81.00 177.60 4.23 12.38
4488 209.80 548.20 17.96 50.11
5386 327.40 906.60 37.06 101.48

6.2. QUADRATIC MATCHING 103

Table 6.6: Computational results for the quadratic perfect matching problem with
phantom monomial and heuristic cycle separation.

n m PM ne subs LPs stime/s ttime/s

10 45 360 422.40 3.40 7.00 0.01 0.03
456.00 3.00 4.60 0.01 0.02
485.40 3.00 6.40 0.01 0.03
517.00 7.00 16.80 0.04 0.09
540.00 5.40 10.80 0.02 0.07

14 91 1092 1394.00 3.80 8.00 0.05 0.12
1546.00 4.60 11.60 0.10 0.21
1698.40 7.80 21.60 0.18 0.42
1836.40 19.00 52.60 0.52 1.10
1996.40 23.40 56.20 0.61 1.38

18 153 2448 3371.00 7.00 18.20 0.35 0.74
3828.00 13.40 37.60 0.72 1.67
4286.80 31.80 94.20 2.45 5.08
4738.20 85.00 234.60 6.99 14.77
5198.00 129.00 329.20 11.18 24.50

20 190 3420 4881.60 11.80 32.80 1.03 2.01
5587.20 38.20 103.00 3.77 7.21
6314.80 60.60 174.20 7.48 15.11
7048.80 189.80 513.60 25.44 53.63
7771.20 224.60 629.40 32.78 73.39

104 CHAPTER 6. COMBINATORIAL QUADRATIC OPTIMIZATION

Chapter 7

Range Assignment Problems

As a first application of the two approaches to submodular combinatorial op-
timization problems presented in Chapter 3 we study a class of problems from
wireless network design, so-called range assignment problems. When designing
an ad-hoc wireless network one main objective is to minimize transmission costs
subject to certain requirements concerning the network topology. In traditional
wired networks, these transmission costs are roughly proportional to the length
of all connections installed, so that the aim is to minimize the total length of all
connections. In wireless networks, the transmission costs depend on the trans-
mission ranges assigned to the nodes. The main difference lies in the so-called
multicast advantage: if a node v reaches another node w, then it also reaches
each node u that is closer to v than w, at no additional cost. Accordingly, the ob-
jective function of range assignment problems, i.e. the overall transmission power
of the network needed to establish the specified connections, is nonlinear as a
function of the connections.

Range assignment problems have been studied intensively in recent years and
several exact algorithms have been proposed. Fuchs [44] showed that the prob-
lem of finding a minimum-power connected network with bidirectional links (the
symmetric connectivity problem, see Figure 7.1) is NP -hard. Althaus et al. [5, 6]
proposed an ILP formulation for this problem which is based on a linear extended
formulation. For each node of the network they introduce a new binary variable
for each value the transmission power of the node can take in an optimal solution
and express the objective function in terms of these new variables. Montemanni
and Gambardella [96] apply a very similar technique, modeling the transmission
power levels of the nodes incrementally, as the sum of artificial binary variables.
A comparison of different formulations for the symmetric connectivity problem
can be found in [98]. Note that all models mentioned above are extended linear
formulations of the original problem and do not exploit the submodularity of the
objective function directly. We do not know of any approach in the literature that
needs only a constant number of artificial variables.

105

106 CHAPTER 7. RANGE ASSIGNMENT PROBLEMS

Figure 7.1: A minimum-power spanning tree on ten nodes. The colored circles
indicate the transmission ranges of the nodes. Note that transmissions have to
be bi-directional. The overall transmission cost is determined by the sum of the
areas of the circles.

A second important variant of the range assignment problem is the minimum
power multicast problem. Here the objective is to construct a network that allows
unidirectional communication from a designated source node to a set of receiving
nodes. All nodes of the network, including the receiving stations, can function as
relay nodes, thereby passing on a signal on its way from the source node to the
receivers, see Figure 7.2. Special cases are the unicast problem and the broadcast
problem. In the former, communication is directed to a single receiving node; in
the latter, all nodes except the source are addressed. The general minimum power
multicast problem is NP -hard [44]. The unicast problem, on the other hand, is
efficiently solvable. With only a single receiving station the problem reduces to

107

Figure 7.2: An minimum-power multicast problem on ten nodes with four ter-
minals. The source node is black, the terminals red. The green nodes are relay
nodes. Observe the multi-cast advantage when transmitting from the relay node.
Transmissions are uni-directional. The resulting graph is a Steiner tree.

finding a shortest path through the directed network from the source to the
destination node. The linear variant of the broadcast problem is also known as
the optimum branching problem. Several authors independently presented efficient
algorithms to compute an optimal solution [21, 35, 15].

Many of the algorithms for the symmetric connectivity case can be easily adapted
to multicasting. Additionally, Leggieri et al. [83] investigate the multicasting
problem specifically and present a set covering formulation, as well as prepro-
cessing techniques to reduce the problem size [102]. There are also flow-based
ILP-formulations. One example can be found in the paper by Min et al. [93].
In the same paper the authors present two exact iterative algorithms which use
LP-relaxations to compute lower bounds. An overview over existing IP models
for the multicast problem can be found in [27].

We model the general range assignment problem in graph theoretic terms. The
communication stations correspond to the set of nodes V of the graph, potential

108 CHAPTER 7. RANGE ASSIGNMENT PROBLEMS

links between the stations to the set of weighted edges E. For the symmetric
connectivity problem, the graph G = (V,E, c) is undirected with edge costs c, for
the multicast problem it is directed. The objective is to compute a subset of the
edges such that certain restrictions on the topology of the network are satisfied
and the overall transmission costs are minimal. Common to both models is the
objective function: given a subset of edges, for each node only the most expensive
incident/outgoing edge is taken into account. Summing up these values gives the
overall costs. Associating a binary variable xvw to each edge e = (v, w) ∈ E, the
objective function can be written as

f(x) =

v∈V

max {cvwxvw | vw ∈ E} . (7.1)

The following theorem shows that f is a submodular function. Thus range as-
signment problems can be modeled as submodular combinatorial optimization
problems and the algorithms developed in Chapter 3 are applicable.

Theorem 7.1. For each v ∈ V and for arbitrary c ∈ RE, the function

fv(x) = max {cvwxvw | vw ∈ E}

is submodular. In particular, the function f(x) =

v∈V

fv(x) is submodular.

Proof. By definition, fv is submodular if

fv(A ∪B) + fv(A ∩B) ≤ fv(A) + fv(B)

for arbitrary sets A,B ⊆ E. We distinguish two cases:

(a) if fv(A) ≥ fv(B), then fv(A ∪B) = fv(A) and fv(A ∩B) ≤ fv(B)

(b) if fv(A) ≤ fv(B), then fv(A ∪B) = fv(B) and fv(A ∩B) ≤ fv(A)

In both cases, it follows that fv(A∪B) + fv(A∩B) ≤ fv(A) + fv(B). Finally, by
Proposition 3.1 the function f is submodular, because it is a conic combination
of submodular functions.

The desired network topology is described by a set of feasible vectorsX ⊆ {0, 1}E.
Combining objective function and constraints, the general IP formulation for
range assignment problems reads

min

v∈V

max {cvwxvw | vw ∈ E}

s.t. x ∈ X .
(7.2)

7.1. THE STANDARD MODEL 109

7.1 The Standard Model

As mentioned earlier, the standard linearization for this model found in the wire-
less networking literature is due to Althaus et al. [5]. They introduce new binary
variables which model the possible values of the nonlinear terms in optimal so-
lutions and add constraints linking the original variables to the new ones. The
resulting problem reads

min

vw∈E

cvwyvw

s.t.

vw∈E

yvw ≤ 1 for all v ∈ V
cvu≥cvw

yvu ≥ xvw for all vw ∈ E

x ∈ X
y ∈ {0, 1}E .

(7.3)

In this model, the binary variable yvw is thus set to one if and only if the trans-
mission power of node v is just enough to reach node w. Note that, depending on
the network topology described by X, the first set of constraints can be strength-
ened to equations. This is the case when all feasible edge-induced subgraphs are
connected. In this case, each node has to reach at least one other node. In general,
this is not true, so that for some v all variables yvw can be zero. The number of
variables in this model is 2|E|.
A closely related model appearing in the literature [97] uses binary variables in
an incremental way: again, a variable y′vw ∈ {0, 1} is used for each pair of nodes v
and w, now set to one if and only if node v can reach node w. It is easy to see
that the two models are isomorphic by the transformation

y′vw =


cvu≥cvw

yvu .

Because of this, the two models are equivalent from a polyhedral point of view
and it suffices to consider the first model in the following.

7.2 New Mixed-Integer Models

The general model (7.2) for range assignment problems we gave above is of
the type of submodular combinatorial optimization problems we studied in Sec-
tion 3.3, since the objective function f(x) =


v∈V max {cvwxvw | vw ∈ E} is

submodular. To apply the polyhedral results from Chapter 3, we introduce a sin-
gle artificial variable y ∈ R to move the objective function into the constraints.

110 CHAPTER 7. RANGE ASSIGNMENT PROBLEMS

The corresponding model is

min y

s.t. y ≥

v∈V

max {cvwxvw | vw ∈ E}

x ∈ X
y ∈ R .

(7.4)

From Theorem 7.1 we know that the objective is submodular; this means that
Theorem 3.6 is applicable and we have an efficient separation algorithm for (7.4).

Theorem 7.1 showed that in the case of range assignment problems the objective
function is not only submodular itself but also the sum of submodular functions.
We can thus use the slightly larger mixed-integer model (3.4), which in our ap-
plication reads

min


v∈V yv

s.t. yv ≥ fv(x) for all v ∈ V

x ∈ X
y ∈ RV .

(7.5)

We know from Theorem 3.10 that we can again separate efficiently when ignoring
the problem-specific constraint x ∈ X.

7.3 Polyhedral Relations

In the following, we investigate the polyhedral properties of the standard model
and the new mixed-integer models. First, we show how the corresponding poly-
hedra are related to each other. For this, let P1(X), P2(X), and P3(X) denote
the polyhedra given as the convex hulls of feasible solutions in the models (7.3),
(7.4), and (7.5), respectively. Note that P1(X) is a convex hull of binary vectors,
so in particular it is a polytope and all its integral points are vertices. On the
other hand, the polyhedra P2(X) and P3(X) are unbounded by definition. It is
easy to see that P3(X) arises from the convex hull of

(x, y) ∈ X × RV | yv = max {cvwxvw | vw ∈ E}∀v ∈ V


by adding arbitrary nonnegative multiples of unit vectors for the variables yv.
Similarly, P2(X) arises from the convex hull of

(x, y) ∈ X × R | y =

v∈V

max {cvwxvw | vw ∈ E}


by adding arbitrary nonnegative multiples of the unit vector for y.

Theorem 7.2. The convex hull of all vertices of P3(X) is a projection of an
integer subpolytope of P1(X).

7.4. COMPUTATIONAL RESULTS 111

Proof. Consider the projection π1 given by

yv :=

vw∈E

cvwyvw .

Let (x, y) ∈ X ×RV be a vertex of P3(X). Then yv = max {cvwxvw | vw ∈ E} for
all v ∈ V . Thus setting yvw = 1 for exactly one w with yv = cvw yields a vertex
of P1(X) that is mapped to (x, y) under π1.

In Section 3.3, we have shown that P2(X) is a projection of the polyhedron
P3(X), so that Theorem 7.2 also holds if P3(X) is replaced by P2(X). These
results show that for every reasonable objective function the optimal faces of
all three polyhedra are projections of each other. The first model can thus be
considered an extended formulation of the second and third one, and the third
model can be considered an extended formulation of the second.

Note that in general P1(X) contains vertices that are not mapped to the convex
hull of vertices of P2(X) or P3(X). These vertices cannot be optimal for any of
the considered objective functions.

7.4 Computational Results

In the following, we report results of branch and bound-algorithms based on the
cutting plane approach of Section 3.4 and the Lagrangean decomposition ap-
proach of Section 3.5, respectively. For the implementation, we use the exact
optimization software library SCIL [114]. The LP-relaxations at each node of the
enumeration tree are solved with CPLEX 12.1. The bundle method for the La-
grangean decomposition approach is implemented using the ConicBundle library
v0.3.8 [58]. To calculate the subgradients, i.e. to optimize the second partial prob-
lem, we used an implementation of Edmonds’ algorithm [119] for the broadcast
problem and the Boost Graph Library 1.46.1 for graph modeling and basic graph
algorithms [117]. In all experiments with the Lagrangean decomposition approach
we branch on the variable for which the corresponding multiplier has the largest
absolute value among the candidates.

All experiments were run on a 2.6 GHz AMD Opteron 252 processor. We set a
time limit of one hour for each instance.

7.4.1 Symmetric Connectivity

As mentioned earlier the symmetric connectivity problem is a range assignment
problem on an undirected graph G. To establish a connection between nodes u
and v, the transmission range of node u must be large enough to reach node v

112 CHAPTER 7. RANGE ASSIGNMENT PROBLEMS

and vice versa. The set X in the general nonlinear model (7.2) specializes to the
set of spanning subgraphs of G.

In this case, all three IP-formulations (7.3), (7.4), and (7.5) can be significantly
strengthened. First of all, the set X can be restricted to the set of spanning trees
in G without loss of generality. This is equivalent to introducing an additional
constraint


e∈E xe = |V | − 1. This stronger formulation does not change the

optimum of our problem but improves the quality of the bounds obtained from
the LP-relaxations and thus reduces running time. In our experiments we used
the subtour formulation of the spanning tree polytope.

Another way to strengthen the model is related to the fact that in a connected
subgraph (on at least two nodes) each node has at least one incident edge. For the
standard model, this means that the constraints


uv∈E yuv ≤ 1 can be strength-

ened to equations


uv∈E yuv = 1, for all u ∈ V . In the mixed-integer models (7.4)
and (7.5) we can eliminate one variable from each maximum term. As the trans-
mission power for each node v has to be at least the smallest weight cmin

v of the
incident edges, this constant can be extracted from the corresponding maximum
term. The constraints of model (7.5) become

yv ≥ cmin
v +max {(cvw − cmin

v)xvw | vw ∈ E} for all v ∈ V ,

so that at least one entry in the maximum can be removed. In the compact
model (7.4), the constraint that bounds the overall transmission power from be-
low can be strengthened analogously. Both replacements lead to stronger LP-
relaxations if the separation algorithms derived in Section 3.4 are now applied to
the remaining maximum terms.

Turning to the Lagrangean relaxation approach, the structure of the set X, i.e.
the set of all spanning trees, allows to apply fast combinatorial algorithms like
Kruskal’s [78] or Prim’s [107] to the second problem in the decomposition (3.16).
The first problem is a special submodular function minimization problem. Even
though currently no specialized combinatorial algorithm for this kind of sub-
modular function is available in the case of undirected graphs, there exists one
for directed graphs first described by Miller [92]. The algorithm is based on the
fact that for directed graphs the minimization of the corresponding submodular
function (7.1) can be decomposed into |V | smaller minimization problems

v∈V

min
x∈{0,1}δ(v)


max
e∈δ(v)

{cexe} −

e∈δ(v)

λexe


,

where δ(v) = {vw ∈ E | w ∈ V }. This is due to the fact that each variable
xvw appears in only one of the minima and the variables are not linked by any
constraints. The partial problems can be solved by Algorithm 3, which for each
e ∈ δ(v) computes the optimal solution x satisfying xe = 1 and xf = 0 for cf > ce.

We mention that Algorithm 3 can also be implemented to run in linear time after
sorting the coefficients ce; the latter can be done in a preprocessing step, as it does

7.4. COMPUTATIONAL RESULTS 113

Algorithm 3 Solution of partial problem

input: objective function fv(x) := max
e∈δ(v)

{cexe} −

e∈δ(v)

λexe

output: optimal solution of min
x∈{0,1}δ(v)

fv

x⋆ ← 0
opt← 0
for e ∈ δ(v) do

x← 0
sum← ce
for f ∈ δ(v) do

if cf ≤ ce and λf > 0 then
xf ← 1
sum← sum− λf

end if
end for
if sum < opt then

opt← sum
x⋆ ← x

end if
end for
return x⋆

not depend on the Lagrangean multipliers λ. To take advantage of this algorithm,
which only works for directed graphs, we will consider a directed version of the
symmetric connectivity problem, which is originally defined on undirected graphs.
To gain an equivalent directed formulation we double the variables and introduce
new constraints xvw = xwv for all vw ∈ E, where E is now the set of all directed
edges between nodes in V . These new constraints will become part of the second
problem in the decomposition, so that a spanning tree algorithm can still be
applied to the corresponding undirected graph where the weights (Lagrangean
multipliers) of two edges vw and wv are summed up.

As an alternative, one could use an algorithm for general submodular function
minimization or the linear programming approach for unconstrained submodular
minimization discussed in Chapter 3 to solve the first problem directly on the
undirected instance. However, experiments show that the directed and the undi-
rected models give similar bounds while the computation of the Lagrangean dual
is much faster when Algorithm 3 can be applied. The following results for the
Lagrangean decomposition approach are therefore based on the directed version
of the symmetric connectivity problem.

114 CHAPTER 7. RANGE ASSIGNMENT PROBLEMS

Table 7.1: Results for the symmetric connectivity range assignment problem.

n subs LPs/LCs tsep/s ttot/s # solved

standard IP model (7.3)
10 29.48 32.20 0.00 0.08 50
15 1147.96 1217.28 0.18 12.28 50
20 4048.22 4461.83 3.63 114.65 46
25 2248.40 2513.51 4.35 117.99 43

MIP model (7.5)
10 23.28 70.70 0.01 0.08 50
15 823.04 2597.38 0.98 7.29 50
20 2820.51 11049.13 16.17 100.79 45
25 3353.15 14001.85 45.21 281.17 41

Lagrangean decomposition
10 18.84 282.26 - 0.63 50
15 180.00 3007.10 - 20.43 50
20 749.83 11871.20 - 106.39 48
25 1668.22 26067.50 - 324.14 41

To speed up the bundle method, we use a warm start approach, using the best
Lagrangean multipliers from the corresponding parent node as starting points.
This leads to a much lower number of iterations in general. Note that in most
instances over 50% of the total time was spent in the root node to compute a
good initial set of Lagrangean multipliers.

We generated random range assignment instances by randomly placing points on
a 10000× 10000 grid, as proposed in [5]. For each size, 50 instances were created.
The transmission power needed for node u to reach node v was chosen as d(u, v)2,
where d(u, v) is the Euclidian distance between u and v. Table 7.1 summarizes
our results for the symmetric connectivity problem. The first column shows the
size of the instances, the second the average number of subproblems computed in
the branch and cut-tree. The column LPs/LCs contains the average number of
linear programs solved (for the cutting plane approach) and the average number
of times the Lagrangean function Z(λ) was evaluated (for the decomposition
approach), respectively. The average overall time needed to solve the instance is
denoted by ttot/s. For the cutting plane approach we also state the time spent
on separation (tsep/s). The last column shows how many of the 50 instances of
each size could be solved within the time limit of one hour. For the computation
of averages only instances that could be solved to optimality were considered.

We do not list results for the compact model (7.4). It turned out that this model is

7.4. COMPUTATIONAL RESULTS 115

not competitive. Because only a single inequality of the description of the objec-
tive function can be separated per iteration, the number of LPs grows quickly in
comparison to the other models. Another disadvantage of modeling the objective
as a single submodular function instead of as a conic combination of submodu-
lar functions is the much higher number of cutting planes needed to generate a
tight polyhedral description. As we already stated in Section 3.3, the number of
inequalities modeling the objective function in the compact model is (n(n−1)

2
)!,

compared to (n(n−1)
2

)! in model (7.5). This again increases the number of LPs
drastically. The medium-sized model (7.5) gives the best results for instances up
to 15 nodes, also compared to the Lagrangean decomposition approach. The num-
ber of subproblems is significantly smaller than for the standard model, which
compensates for the larger number of LPs. For instance size 20 the Lagrangean
decomposition approach performs best. For the largest instances the standard
model gives the best results, because the time spent per node in the other models
becomes too large. It is remarkable that several instances could not be solved at
all within the time limit, whereas the average solution time for the other instances
is relatively small and only grows moderately with the instance size.

7.4.2 Multicast

We next investigate the min-power multicast problem. Recall that its objective
is to send signals wirelessly from a designated source node to a set of receiving
stations at minimum cost. Transmissions are unidirectional and all stations can
relay signals through the network. Treating this problem as a graph optimization
problem, there obviously is a one-to-one correspondence between feasible solu-
tions and Steiner arborescences in the directed graph. The multicast advantage
can again be expressed by (7.1), this time for directed graphs. We used a sep-
aration routine for the cut formulation of the Steiner arborescence polytope to
model the network topology in both cutting plane models.

The given connectivity constraints can again be used to strengthen the LP-based
formulations, however to a lesser extent than in the symmetric case. Only the fact
that at least one edge has to leave the source node provides a way to strengthen
the models.

Table 7.2 shows the results for the multicast problem. The number of terminal
nodes is chosen as ⌊n−1

2
⌋. As mentioned before the decomposition approach is not

applicable here, because there is no efficient algorithm for the Steiner tree prob-
lem. We used the same instances as for the symmetric connectivity problem. The
source and terminal nodes were determined randomly. For this kind of problem
exploiting the submodularity of the objective function clearly pays off. While for
small instances both models give similar results, the better polyhedral description
in the MIP model significantly reduces running times for larger instances. 46 of

116 CHAPTER 7. RANGE ASSIGNMENT PROBLEMS

Table 7.2: Results for the multicast range assignment problem with |T | = ⌊n−1
2
⌋.

n subs LPs tsep/s ttot/s # solved

standard IP model (7.3)
10 32.68 57.10 0.00 0.08 50
15 117.92 241.84 0.09 0.93 50
20 2991.52 6444.50 8.43 71.18 50
25 5773.97 27788.03 64.02 383.07 39

MIP model (7.5)
10 28.92 111.92 0.01 0.10 50
15 88.24 556.38 0.28 1.14 50
20 951.32 7815.54 11.39 33.28 50
25 5650.17 73373.59 208.51 571.88 46

the largest instances could be solved to proven optimality within the time limit
of one hour, compared to 39 with the standard model.

7.4.3 Broadcast

Since the problem of finding a minimal Steiner arborescence is NP -hard the La-
grangean decomposition approach is inefficient for general multicast problems.
However, the set of feasible solutions for the broadcast problem corresponds to
the set of s-arborescences for which the correspond linear minimization problem
can be solved in polynomial time [35]. The first problem in the Lagrange decom-
position can then again be solved by algorithm 3 that was used for the symmetric
connectivity problem. In the case of the broadcast problem it is not necessary to
double the variables and introduce additional constraints, since the problem is
already defined on directed graphs.

Table 7.3 shows that the Lagrangean decomposition approach is able to solve
the highest number of the large instances, while remaining competitive for the
smaller instances. The MIP approach is slowed down by the large number of LPs
and the resulting high number of calls to the separation routines.

7.5 Final Remarks

The experimental study on range assignment problems shows that none of the
three algorithms is clearly superior to the others. The results for the MIP models
illustrate the importance of breaking down the objective function into submodu-
lar parts for a competitive algorithm. In the Lagrangean decomposition approach

7.5. FINAL REMARKS 117

Table 7.3: Results for the broadcast range assignment problem.

n subs LPs/LCs tsep/s ttot/s # solved

standard IP model (7.3)
10 36.16 45.02 0.00 0.09 50
15 167.24 243.04 0.07 1.31 50
20 1519.40 2801.68 4.24 36.53 50
25 7117.19 16238.07 32.57 375.87 43

MIP model (7.5)
10 32.88 120.70 0.02 0.12 50
15 142.52 776.78 0.43 1.79 50
20 1051.76 8796.32 13.79 42.87 50
25 6101.98 69896.47 200.10 598.74 43

Lagrangean decomposition
10 25.72 350.14 - 0.53 50
15 447.32 3674.34 - 7.08 50
20 2437.36 20767.40 - 55.22 50
25 32657.40 245163.00 - 875.73 44

the number of calls to the function oracle, i.e. the number of times the combi-
natorial algorithms are called to solve the subproblems, quickly grows with the
instance size. This approach highly relies on problem-specific algorithms for the
minimization of submodular functions and efficient algorithms for the underlying
linear combinatorial problems.

118 CHAPTER 7. RANGE ASSIGNMENT PROBLEMS

Chapter 8

Mean Risk Optimization

As a second application of the approaches for submodular combinatorial optimiza-
tion developed in Chapter 3 we study the risk-averse capital budgeting problem.
In portfolio theory an important concept is to not only consider the expected
return when choosing a set of investments but also take into account the risk as-
sociated with investments. Such mean-risk optimization problems can be modeled
using stochastic objective functions. Potential investment decisions are given by
independent random variables that have an associated mean value µ as well as a
variance σ2. The mean value stands for the expected return of the investments,
σ2 models the uncertainty inherent in the investment, i.e. the risk that the real
return deviates from the expected. The case of continuous variables is well stud-
ied [88, 24], whereas the case of discrete variables has received relatively little
attention yet.

We concentrate on the risk-averse capital budgeting problem with binary vari-
ables [10]. In this variant of the mean-risk optimization problem a set of possible
investments characterized by their costs, expected return values and variances
and a number ε are given as input. The number ε > 0 characterizes the level of
risk the investor is willing to take. Investment decisions are binary, this means
one can choose to make a certain investment or not. The only constraint in the
risk-averse capital budgeting problem is a limit on the available budget. An opti-
mal solution of the problem is a set of investment decisions and a solution value z.
The choice of investments guarantees that with probability 1 − ε the portfolio
will return at least a profit of z [37].

The corresponding nonlinear IP-model is

z = max

i∈I

µixi −


1− ε

ε


i∈I

σ2
i x

2
i

s.t.

i∈I

aixi ≤ b

x ∈ {0, 1}I ,

(8.1)

119

120 CHAPTER 8. MEAN RISK OPTIMIZATION

where I is the set of available investments, ai the cost of investment i ∈ I, and b
the amount of capital that can be invested. The vector µ represents the expected
returns of the investments and σ2 the variance of the expected returns.

It is interesting to note that Problem (8.1) is equivalent to a special case of the
robust combinatorial optimization problem with ellipsoidal uncertainty. Here, the
set of possible manifestations of the uncertain objective function, the scenario set
U , takes the form of an ellipsoid in Rn. The aim is to optimize the value of a
solution in its worst-case scenario, i.e. to give the best possible protection against
variations in costs.

The general robust combinatorial optimization problem with ellipsoidal uncer-
tainty can be formulated as the min-max integer program

min max
c∈U

c⊤x

s.t. x ∈ X ⊆ {0, 1}n ,
(8.2)

where X is the set of feasible solutions and U is given by an ellipsoid
(c− c0)

⊤Q(c− c0) ≤ 1


characterized by its center c0 ∈ Rn and a positive definite matrix Q ∈ Rn×n.
For given x, the optimum value of the inner optimization problem over U can be
expressed in a closed form. We have

Theorem 8.1. For fixed x ∈ Rn, the value of an optimum solution c⋆ of

max c⊤x
s.t. (c− c0)

⊤Q(c− c0) ≤ 1
(8.3)

is given by c⋆⊤x = c⊤0 x+


x⊤Q−1x.

Proof. Problem (8.3) optimizes a continuous linear function over a convex set.
Its Lagrangean function is

L(c, λ) = c⊤x+ λ(c− c0)
⊤Q(c− c0)− 1,

where λ ≥ 0 is a Lagrangean multiplier. According to the Karush-Kuhn-Tucker
optimality conditions, any optimum solution c⋆ of (8.3) satisfies

1. ∇c⋆L(c
⋆, λ) = 0 and

2. ∇λL(c
⋆, λ) = 0 .

We have

∇c⋆L(c
⋆, λ) = 0

⇔ x+ 2λQ(c⋆ − c0) = 0

⇔ c⋆ − c0 = −
1

2λ
Q−1x ,

121

because Q is nonsingular and we can assume λ > 0, since otherwise x = 0 and
the equality stated in Theorem 8.1 trivially holds.

Substituting c⋆ − c0 in the constraint of (8.3) gives

(c⋆ − c0)
⊤Q(c⋆ − c0) ≤ 1

⇒x⊤Q−1x = 4λ2

⇒λ =
1

2


x⊤Q−1x

and thus

x⊤(c⋆ − c0) = −
1

2λ
x⊤Q−1x

⇒x⊤Q−1x = 4λ2

⇒c⋆⊤x = c⊤0 x−
1

2λ
x⊤Q−1 = c⊤0 x+


x⊤Q−1x

Theorem 8.1 shows that the robust combinatorial optimization problem with el-
lipsoidal uncertainty (8.2) is equivalent to

min c⊤0 x+


x⊤Q−1x
s.t. x ∈ X ⊆ {0, 1}n (8.4)

It is now easy to see that the risk-averse capital budgeting problem (8.1), reformu-
lated as a minimization problem, is the special case of (8.4) where the ellipsoid
U is defined by the center c0 = −µ and the matrix Q = Diag(σ2), and X is the
set of points that satisfy the knapsack constraint a⊤x ≤ b. Q in this case is a
diagonal matrix, which means that the ellipsoid U is axis-parallel.

To apply the polyhedral results from Chapter 3 we need to rewrite the original
model (8.1) as a minimization problem and show that the objective function is
submodular. Note that since the x-variables are binary we have x2

i = xi. The
problem now reads

z = −min −

i∈I

µixi +


1− ε

ε


i∈I

σ2
i xi

s.t.

i∈I

aixi ≤ b

x ∈ {0, 1}I .

(8.5)

The first part of the objective function

f(A) = −

i∈A

µi +


1− ε

ε


i∈A

σ2
i

122 CHAPTER 8. MEAN RISK OPTIMIZATION

is obviously modular. The second part is the composition of a nondecreasing
modular function and a nondecreasing concave function. By Theorem 3.3 the
composition of a nondecreasing submodular function and a nondecreasing concave
function is submodular. Since all modular functions are also submodular, the
following corrolary immediately follows from Theorem 3.3.

Corollary 1. The objective function of model (8.5) is submodular.

Corollary 1 shows that we can use the polyhedral results from Chapter 3 to solve
the risk-averse capital budgeting problem (8.5). Indeed, Atamtürk and Narayanan
[10] use the cutting planes (3.3) to strengthen the nonlinear formulation (8.1),
which they then solve with a second order cone programming-approach.

Problem (8.5) can also again be decomposed into an unconstrained submodular
minimization problem and a linear combinatorial problem, similarly to the Range
Assignment Problem studied in Chapter 7.

The Lagrangean decomposition with multipliers λ ∈ RI is

−min −

i∈I

(µi − λi)xi +


1− ε

ε


i∈I

σ2
i xi + min


i∈I

λiyi

s.t. x ∈ {0, 1}I s.t.

i∈I

aiyi ≤ b

y ∈ {0, 1}I
(8.6)

In this case the combinatorial problem is a knapsack problem with rational co-
efficients. The binary constraint on the y-variables can be relaxed to 0 ≤ y ≤ 1,
which is equivalent to solving a fractional knapsack problem instead of a bi-
nary knapsack problem. The obvious advantage of solving the relaxed problem
is that it can be solved in linear time [11], while solving the binary knapsack
problem would take pseudo-polynomial time [25]. The disadvantage is that the
lower bound on the objective value of (8.5) obtained from the Lagrangean dual
is weaker, as we have seen in Chapter 1.

For solving the unconstrained submodular subproblem of the decomposition we
adapt an algorithm proposed by Ilyina [67]. It minimizes the unconstrained func-
tion

f(A) = −

i∈A

µ̄i +


1− ε

ε


i∈A

σ2
i i ,

where µ̄ = µ − λ and can handle fixed variables. The algorithm consists of two
phases. In the first phase variables are fixed that can be included in or excluded
from a solution from the start. In the second phase a set of candidates for the
optimal solution is computed by first sorting the variables and then construct-
ing a chain of solutions by iteratively adding elements in the sorted order. The
candidate solution with the lowest objective value is optimal.

123

Algorithm 4 Minimization algorithm for f(S) = −

i∈S

µ̄i+


1− ε

ε


i∈S

σ2
i with

fixed variables

input: µ̄, σ ∈ Rn, ε ∈ R, I = {1, . . . , n}, I0, I1 ⊆ I (variables fixed to 0/1)

output: S⋆ ⊆ I which minimizes f(S) = −

i∈S

µ̄i +


1− ε

ε


i∈S

σ2
i such that

I0 ∩ S = ∅ and I1 ⊆ S

T ← ∅
for i ∈ I \ {I0 ∪ I1} do

if µ̄i < 0 then
I0 ← I0 ∪ {i} ▷ this element cannot improve the solution

else if


1−ε
ε
σ2
i < µ̄i then

I1 ← I1 ∪ {i} ▷ this element will always improve the solution
else

ni ←


µ̄2
i−

1−ε
ε

σ2
i

2µ̄i

2
T ← T ∪ {i}

end if
end for

sort the elements i of T into a list {l1, . . . , l|T |} by nondecreasing value of ni

i← 1
S0 ← I1
repeat

Si ← Si−1 ∪ {li} ▷ construct candidate solutions
i← i+ 1

until i = |T |
S⋆ ← argmin{f(Si) | i ∈ {0, . . . , |T |}} ▷ choose best solution
return S⋆

Theorem 8.2. Algorithm 4 computes the minimizer of f in O(|I| log |I|) time.

Proof. Consider the function fi(d) = −µ̄i +

d+ 1−ε

ε
σ2
i −
√
d, where µ̄ = µ− λ.

fi describes the change in the value of f when element i is added to a set with
variance d. Seen as a continuous function, fi is convex and decreases monotoni-
cally. For each element i such that µ̄i < 0, fi(d) is nonnegative for all positive d.
Thus no such element can be part of a set which minimizes f . For each element i

with


1−ε
ε
σ2
i < µ̄i, fi(d) is negative for all positive d. Therefore such an element

124 CHAPTER 8. MEAN RISK OPTIMIZATION

must be part of every minimizer of f . For the remaining elements

ni =


µ̄2
i − 1−ε

ε
σ2
i

2µ̄i

2

is the unique zero of fi. This means that

fi(d) ≤ 0 ⇐⇒ d ≥ ni. (8.7)

In the following we assume that the set F contains all fixed elements given in the
input and the elements which are part of every optimal solution (as argued above),
and we set mF :=


i∈F µ̄i and sF :=


i∈F

1−ε
ε
σ2
i ≥ 0. Further we assume that

the free elements are sorted by nondecreasing value of ni and indexed accordingly.
We show that there exists a minimizer S⋆ of the reduced function

fF (A) := −mF +−

i∈A

µ̄i +


sF +

1− ε

ε


i∈A

σ2
i

such that

∀k ∈ S⋆ : k > 0⇒ k − 1 ∈ S⋆ (8.8)

Let S be a minimizer of fF with i ∈ S and i − 1 /∈ S for some i > 0. Define
S̄ = S \ {i} and S⋆ = S ∪ {i− 1}. S is optimal

⇒fF (S)− fF (S̄) = −µ̄i +


sF +


j∈S

1− ε

ε
σ2
j −

sF +

j∈S̄

1− ε

ε
σ2
j

= −µ̄i +

sF +

j∈S̄

1− ε

ε
σ2
j +

1− ε

ε
σ2
i −

sF +

j∈S̄

1− ε

ε
σ2
j ≤ 0

(8.7)⇒ sF +

j∈S̄

1− ε

ε
σ2
j ≥ ni (8.9)

Moreover,

fF (S
⋆)− fF (S) = −µ̄i−1 +


sF +


j∈S⋆

1− ε

ε
σ2
j −


sF +


j∈S

1− ε

ε
σ2
j

= −µ̄i−1 +

sF+
1− ε

ε


j∈S̄

σ2
j+σ2

i

+
1− ε

ε
σ2
i−1 −

sF+
1− ε

ε


j∈S̄

σ2
j+σ2

i


≤ 0,

8.1. COMPUTATIONAL RESULTS 125

because by (8.9) and the sorting of the elements we have

sF +

j∈S̄

1− ε

ε
σ2
j +

1− ε

ε
σ2
i ≥ sF +


j∈S̄

1− ε

ε
σ2
j ≥ ni ≥ ni−1

and (8.7) holds. Since S was assumed to be a minimizer of fF , S
⋆ must be a

minimizer too, which proves the hypothesis.

Algorithm 4 enumerates the solutions with property (8.8) and chooses the best
solution among those. The running time of the algorithm is determined by the
time to sort the elements, which takes O(|I| log |I|) time, when an appropriate
sorting algorithm is used. The objective values of the candidate solutions f(Si)
can be determined in linear time by computing the partial sums over the µi and
the σ2

i incrementally.

Remark 8.1. Shen et al. [115] also proposed an algorithm for the unconstrained
problem described above. The only difference to the algorithm by Ilyina [67] is
the sorting criterion in the second phase. With a similar argument they prove
that the optimal solution is among the set of candidates that is obtained when
the variables are sorted such that µ̄1

σ2
1
≤ µ̄2

σ2
2
≤ · · · ≤ µ̄k

σ2
k
.

8.1 Computational Results

In the following, we report the results of a computational study of the risk-
averse capital budgeting problem. We compare the performance of the branch
and bound-algorithms based on the cutting plane approach of Section 3.4 and
the Lagrangean decomposition approach of Section 3.5 with the performance of
the commercial solver GUROBI 5.5 [56].

Experimental Setup

As in Chapter 7 the branch and cut-algorithm was implemented in SCIL and
CPLEX 12.5 [64] was used to solve the LP-relaxations. We used a simple rounding
heuristic to generate primal bounds in the branch and bound-algorithm. When-
ever a fractional LP-solution is computed, we round all values to the nearest
integer. Then we construct a feasible solution by successively setting the vari-
ables to the rounded values as long as the knapsack constraint is not violated.
All remaining variables are set to zero.

The decomposition approach again used the ConicBundle library to compute the
Lagrangean duals. In each node of the branch and bound-tree the left subprob-
lem of the Lagrangean decomposition (3.16) is solved with Algorithm 4 and the
right subproblem, i.e. the fractional knapsack problem, is solved with the greedy

126 CHAPTER 8. MEAN RISK OPTIMIZATION

algorithm by Dantzig [25]. The index of the branching variable is chosen as the
lowest index with λ⋆

i ̸= 0 and (x⋆
1)i ̸= (x⋆

2)i, as proposed in Section 3.5.2.

Several commercial solvers are able to solve problems of type (8.1). According to
recent benchmarks [95], CPLEX and GUROBI outperform the other solvers. We
tested both CPLEX and GUROBI and found that GUROBI is slightly faster than
CPLEX for our problem instances. Therefore in the following we only give the
results obtained with GUROBI, which applies a second order cone programming-
algorithm to directly solve the nonlinear formulation (8.1) of the problem. In our
experiments we used the default settings.

All experiments were run on an Intel Xeon CPU E5–26400@2.5GHz with 32Gb
main memory.

Instances

Atamtürk and Narayanan [10] describe a procedure to generate random instances
of the risk-averse capital budgeting problem. The expected returns µ and the costs
a are chosen as independent random numbers between 0 and 100. The variances
σ are set as the expected returns multiplied by an independent random number
between 0 and 1. The available budget is 1

2


i∈I ai. This ensures the existence

of nonzero solutions and at the same time excludes the trivial case where the
budget is large enough to make all investments.

We solved the set of random instances from [10], which have between 25 and 100
variables. The larger instances with up to 2000 variables were generated using
the same method as for the smaller instances.

We generated five instances of each size and solved each instance for the values
of ε given in the tables. All tables show the average number of subproblems
and the average running time for each class of instances. The fifth column of
Table 8.1 contains the number of simplex iterations of the second order cone-
approach, whereas in the fourth column of Table 8.2 the average number of LPs
in the cutting plane algorithm is given. The fourth column of Table 8.3 shows
the average number of calls to the oracles in the decomposition approach, i.e. the
number of times both subproblems in (8.6) were solved.

Since with the SOCP-approach it was not possible to compute optimal solutions
for all instances within a time limit of ten hours, the third column of Table 8.1
lists how many of the five instances per class could be solved to optimality within
this time limit. All averages in this table, including the running time, are taken
only over these instances.

8.1. COMPUTATIONAL RESULTS 127

Table 8.1: Results for the risk-averse capital budgeting problem, GUROBI SOCP

n ε #solved subs iter time/s

25 0.10 5 605.20 1100.80 0.06
0.05 5 1782.60 3471.20 0.22
0.03 5 3646.80 8402.00 0.55
0.02 5 2806.80 7611.80 0.45
0.01 5 966.40 2681.60 0.26

50 0.10 5 3199.60 5085.00 0.37
0.05 5 17202.00 25223.20 3.56
0.03 5 39927.80 64839.60 14.72
0.02 5 107358.60 218805.80 107.22
0.01 5 416434.80 1370784.40 4115.62

100 0.10 5 13262.80 18518.60 2.23
0.05 5 138222.20 201892.40 249.42
0.03 5 1233468.40 1877895.20 13730.00
0.02 0 – – –
0.01 0 – – –

200 0.10 5 38140.80 48803.20 11.99
0.05 5 340421.60 477580.00 1021.29
0.03 3 2807775.67 5765215.33 33636.56
0.02 0 – – –
0.01 0 – – –

300 0.10 5 155785.40 185740.60 127.82
0.05 3 849511.33 1112535.00 3676.86
0.03 1 3622994.00 5556223.00 29592.24
0.02 0 – – –
0.01 0 – – –

400 0.10 5 134944.40 188986.40 154.18
0.05 3 383379.67 612808.33 1316.04
0.03 0 – – –
0.02 0 – – –
0.01 0 – – –

128 CHAPTER 8. MEAN RISK OPTIMIZATION

Table 8.2: Results for the risk-averse capital budgeting problem, polyhedral ap-
proach

n ε subs LPs time/s n ε subs LPs time/s

25 .10 42.20 114.20 0.06 500 .10 291.00 743.80 4.89
.05 36.20 153.40 0.08 .05 617.00 3400.40 27.97
.03 19.40 138.80 0.07 .03 590.20 4665.80 52.45
.02 6.20 71.60 0.03 .02 845.40 9890.80 135.26
.01 4.60 35.60 0.01 .01 1580.60 44116.00 965.59

50 .10 98.60 259.60 0.20 600 .10 502.60 1563.60 13.48
.05 89.00 353.00 0.31 .05 665.40 3163.60 33.56
.03 43.80 270.40 0.25 .03 465.80 4505.20 66.80
.02 53.40 489.20 0.49 .02 1152.20 12538.00 220.87
.01 14.60 489.40 0.64 .01 1028.20 30214.80 899.44

100 .10 139.80 357.20 0.49 700 .10 920.20 3592.60 38.82
.05 104.60 567.80 0.99 .05 661.40 3476.20 44.99
.03 179.80 1468.00 3.16 .03 782.20 7568.00 132.55
.02 188.20 1488.60 3.31 .02 943.80 12955.80 277.36
.01 135.40 3148.20 9.20 .01 1058.60 28470.00 1062.73

200 .10 205.80 483.00 1.29 800 .10 551.80 1602.20 17.37
.05 225.80 800.20 2.53 .05 912.60 5054.60 76.53
.03 185.40 1249.60 5.39 .03 923.80 7090.60 129.10
.02 245.80 2703.20 14.61 .02 1336.20 17830.60 426.56
.01 313.80 12933.60 117.74 .01 1586.20 60431.80 2564.00

300 .10 285.00 1135.20 4.87 900 .10 542.20 1159.80 12.41
.05 226.20 1169.20 6.15 .05 371.80 1493.60 23.64
.03 271.40 2243.60 14.79 .03 605.00 3355.80 69.44
.02 317.40 4397.60 38.43 .02 1686.20 7538.60 167.58
.01 255.80 12716.80 203.86 .01 3138.60 59090.40 2200.07

400 .10 398.20 1322.40 7.56 1000 .10 840.20 1670.40 20.38
.05 486.20 3444.40 26.48 .05 699.80 1798.60 25.75
.03 683.80 6276.80 56.80 .03 270.60 1237.00 26.11
.02 241.40 4735.60 56.90 .02 1133.80 6841.20 181.80
.01 1482.20 33600.20 584.26 .01 1241.00 31882.80 1433.39

8.1. COMPUTATIONAL RESULTS 129

Results

Running times for the SOCP-approach increase rapidly with growing instance
size and increasing values of ε. Instances with 100 variables or more can not be
solved for all values of ε, even with a time limit of ten hours. Table 8.1 shows
that already for n = 100 no instances could be solved to optimality for ε = 0.02
and ε = 0.01. For larger n the only case where all instances could be solved
was ε = 0.1. The large number of subproblems indicates that the dual bounds
obtained from the relaxations are weak. In fact, good primal bounds are found
quickly, but proving optimality is difficult.

In contrast, both the polyhedral approach and the decomposition approach can
solve much larger instances, as can be seen from Tables 8.2 and 8.3. The polyhe-
dral approach from Chapter 3 that exploits the submodularity of the objective
function can easily solve instances with up to 1000 variables for all values of ε
that were tested. While again an increase in running times with decreasing ε can
be observed, it is by far not as drastic as for the SOCP-approach. The number
of subproblems and the number of LPs generally grows moderately with instance
size and decreasing ε, which indicates that the dual bounds obtained with sep-
aration algorithm 2 are strong, but the approach is nevertheless sensitive to the
balance between the linear and the nonlinear parts of the objective function.

This effect is nearly absent in the Lagrangean decomposition approach, as can be
observed in Table 8.3. There is no clear correlation between the scaling factor ε
and the number of subproblems or the average running times. In comparison to
the cutting plane-algorithm the number of subproblems is higher, but this fact is
compensated by the reduction in time spent in each subproblem.

For the root node, the computation time was additionally be reduced by setting
the initial Lagrangean multiplier to λ0 = −µ, which gives slightly better results
than the obvious λ0 = 0. As for the Range Assignment Problems of Chapter 7,
the other nodes inherit the best multiplier from their respective parent nodes.

If we take a closer look at the ratio between the number of calls to the combi-
natorial algorithms for the two parts of the decomposition (8.6) and the number
of subproblems, we see that only few calls per subproblem are necessary. For
the instances with n = 2000, for example, this ratio is less than four. Addition-
ally, the algorithms applied in the subproblems are of low theoretical complexity
and fast in practice. In combination with strong primal bounds – we get a fea-
sible solution in each iteration of the subgradient algorithm – this leads to the
low overall running times. The decomposition approach outperforms the cutting
plane-algorithm in nearly all cases and can solve larger instances in the same
time. The algorithm is also less sensitive to the parameter ε.

Remark 8.2. Atamtürk and Narayanan [10] present a solution approach that
solves the above model using second-order cone programming embedded in a

130 CHAPTER 8. MEAN RISK OPTIMIZATION

Table 8.3: Results for the risk-averse capital budgeting problem, decomposition
approach

n ε subs calls time/s n ε subs calls time/s

25 0.10 103.40 388.60 0.01 500 0.10 3764.20 8467.00 2.86
0.05 78.20 343.60 0.01 0.05 5337.40 12652.00 4.20
0.03 29.80 665.40 0.06 0.03 4363.80 9731.80 3.25
0.02 12.60 75.60 0.00 0.02 5738.20 12347.60 4.07
0.01 11.00 65.80 0.00 0.01 7779.00 17511.40 5.86

50 0.10 268.60 1052.60 0.04 600 0.10 5566.20 12798.60 5.86
0.05 199.80 821.00 0.04 0.05 8457.00 18898.20 8.48
0.03 132.60 530.80 0.02 0.03 3793.80 8313.00 3.70
0.02 142.20 2008.80 0.19 0.02 9456.60 21040.00 9.38
0.01 33.00 8599.80 1.15 0.01 3911.00 8197.20 3.65

100 0.10 701.00 2034.60 0.12 700 0.10 9085.40 21087.20 12.36
0.05 420.60 1313.60 0.08 0.05 8726.20 19324.20 11.20
0.03 484.60 1547.40 0.09 0.03 7429.80 16164.40 9.13
0.02 449.40 1475.40 0.09 0.02 8977.00 19930.40 11.32
0.01 395.00 2388.00 0.24 0.01 4779.00 10088.20 5.79

200 0.10 1295.00 3310.00 0.36 800 0.10 5859.80 12957.20 9.38
0.05 1557.00 3997.80 0.43 0.05 10795.00 23842.60 16.55
0.03 1207.80 2989.00 0.33 0.03 11394.60 24199.40 16.41
0.02 1071.80 2576.80 0.28 0.02 8179.80 16444.20 11.28
0.01 1074.60 2772.60 0.30 0.01 6958.20 15276.00 10.36

300 0.10 2647.00 6605.20 1.15 900 0.10 3686.60 7990.40 6.54
0.05 1446.60 3453.60 0.60 0.05 4300.20 9622.40 7.51
0.03 1407.00 3297.60 0.59 0.03 9267.00 20492.40 15.85
0.02 1298.60 3019.00 0.54 0.02 16574.20 36782.60 29.76
0.01 975.80 2145.80 0.38 0.01 24477.40 53935.40 41.62

400 0.10 3933.40 8622.60 2.17 1000 0.10 16766.60 36227.20 34.47
0.05 5303.80 12694.40 3.16 0.05 15733.80 34835.80 33.16
0.03 5393.80 12429.20 3.18 0.03 5003.80 11018.60 10.36
0.02 1019.00 2253.20 0.57 0.02 14013.00 31220.80 28.83
0.01 5468.60 11785.20 3.00 0.01 13877.40 30347.80 27.83

1500 0.10 25454.20 56865.80 115.10 2000 0.10 37377.00 83695.40 282.09
0.05 26775.80 60294.40 118.91 0.05 54840.20 126360.20 424.96
0.03 29549.00 67257.40 126.71 0.03 13790.60 31673.40 103.93
0.02 21182.20 46259.40 90.89 0.02 12730.60 28184.00 90.83
0.01 40960.20 93365.40 166.26 0.01 61470.60 141114.80 449.38

8.2. FINAL REMARKS 131

branch and bound-algorithm. They use the inequalities of Theorem 3.6 to streng-
then the relaxation in each node of the enumeration tree. Their results show
that using the additional cutting planes significantly improves the dual bounds
and leads to a much lower number of subproblems and quicker solution times.
Still, their approach is not competitive with the ones presented here. Solving the
instances with n = 100 and ε = 0.01 took more than 800 seconds on average.

8.2 Final Remarks

In summary we could show that both the cutting plane and the decomposition al-
gorithm are well suited for the risk-averse capital budgeting problem. They clearly
outperform the standard approach applied by general-purpose MIP solvers.

We saw in Chapter 8 that for range assignment problems no algorithm consis-
tently dominated the others. In the case of the risk-averse capital budgeting prob-
lem the situation is different. The Lagrangean decomposition approach clearly is
the best of the three methods tested. It can solve even instances with a large num-
ber of variables quickly and is largely insensitive to the scaling of the nonlinear
part of the objective function.

132 CHAPTER 8. MEAN RISK OPTIMIZATION

Chapter 9

Two-Scenario Optimization

In this chapter we evaluate the exact algorithms for unconstrained and com-
binatorial two-scenario optimization we presented in Chapter 4 experimentally.
Recall that we proposed two branch and bound-approaches. In both cases, in-
stead of minimizing the nonlinear objective function directly, we solve two knap-
sack problems. In the presence of combinatorial constraints, the problem is first
decomposed into an unconstrained two-scenario problem and a linear combinato-
rial problem. Lower bounds are then computed by solving the Lagrangean dual
problem.

All computational experiments in this chapter were conducted on an Intel Xeon
CPU E5–26400@2.5GHz with 32Gb main memory, running Ubuntu 12.04.1 LTS.

9.1 Unconstrained Two-Scenario Optimization

Recall that in Chapter 4 the unconstrained two-scenario optimization problem (4.2)
was given as

min
l≤x≤u
x∈Zn

max{a⊤x+ a0, b
⊤x+ b0},

with a, b ∈ Rn, a0, b0 ∈ R and l, u ∈ Zn.

In our experiments, we consider three different domains for the variables:
x ∈ {0, 1}n, x ∈ {−10, 10}n and x ∈ {−50, 50}n.
We implemented the branch and bound-algorithm proposed in Section 4.1.3. Dual
bounds are computed with the modified algorithm for the fractional knapsack
problem described in Section 4.1.2, primal bounds with the rounding heuristic
proposed in 4.1.3.

To evaluate the approach presented above, we compare it with the direct ILP
approach. Problem (4.2) can be formulated as an ILP by introducing an artificial
variable y.

133

134 CHAPTER 9. TWO-SCENARIO OPTIMIZATION

Table 9.1: Comparison of the knapsack and ILP approaches for the unconstrained
two-scenario problem, bounds 0/1.

FKP ILP

n #nodes ts #nodes ts

500 5159.40 0.07 270.70 0.22
1000 13265.70 0.36 422.00 0.58
1500 21924.30 0.93 503.90 1.00
2000 51360.80 2.97 1428.40 3.81
2500 50236.80 3.68 1816.70 6.13
3000 79053.10 7.19 2567.10 10.51
3500 82996.90 9.15 1827.20 8.46
4000 110991.20 14.27 2334.20 12.76
4500 104578.50 15.46 3389.40 21.73
5000 132498.80 22.20 4278.90 29.03

The maximum term can then be linearized as follows:

min
y

y

s.t. y ≥ a⊤x+ a0
y ≥ b⊤x+ b0

l ≤ x ≤ u
x ∈ Zn

y ∈ R

(9.1)

We solved the ILP (9.1) with a branch and bound-algorithm implemented in
SCIL [114]. The LP-relaxation in each node was solved with CPLEX 12.1 [66]. To
find good primal bounds we used the same rounding heuristic as in the knapsack
approach.

Instances

We solved ten classes of instances, ranging in size from 500 to 5000 variables. For
each size, twenty instances were generated with coefficients for the two scenarios
chosen randomly as real numbers from the interval [−100, 100]. Each instance
was solved with the three different domains for the variables mentioned above.

9.1. UNCONSTRAINED TWO-SCENARIO OPTIMIZATION 135

Table 9.2: Comparison of the knapsack and ILP approaches for the unconstrained
two-scenario problem, bounds −10/10.

FKP ILP

n #nodes ts #nodes ts

500 8468.30 0.11 336.50 0.28
1000 28847.95 0.81 923.50 1.35
1500 55293.95 2.28 2506.40 5.70
2000 94947.25 5.35 3440.40 11.55
2500 92060.70 6.57 2558.40 9.51
3000 106252.40 9.38 2573.90 10.90
3500 122728.90 13.08 3555.30 18.60
4000 151346.90 18.97 3210.40 18.25
4500 191696.20 27.32 3638.90 23.40
5000 217933.10 35.44 5156.20 35.61

Computational Results

Tables 9.1 and 9.2 show the results for the binary case (0 ≤ x ≤ 1) and the case
−10 ≤ x ≤ 10. The results for −50 ≤ x ≤ 50 are shown in Table 9.3 on page 136.
In each table, the first column contains the number of variables n. The remaining
columns contain the average number of nodes in the branch and bound-tree and
the average CPU time in seconds, for the exact algorithm based on the fractional
knapsack problem (FKP) and the ILP approach (ILP), respectively.

For all three types of instances the number of nodes in the branch and bound-
tree is much larger in the knapsack approach than in the ILP approach. This,
however, in most cases does not lead to longer running times, since solving the
relaxations with the fractional knapsack-algorithm is much quicker than solving
the corresponding LP. With bounds zero and one both approaches solve instances
with up to 5000 variables in less than thirty seconds on average. The knapsack
approach is slightly faster for most sizes. The picture is similar for bounds −10/10
and −50/50. Remarkably, running times for both algorithms do not increase
significantly for larger domains. This can be explained by the fact that in the
optimal solutions the vast majority of variables is at either its lower or upper
bound. For example, for the instances with 5000 variables and bounds −50/50
the average number of variables not on one of the bounds in our experiments
was 3.75, the maximum number was 5. This means that the transformation to
bounds 0/1 does not have a negative impact on the quality of the bound given
by the fractional knapsack problems.

136 CHAPTER 9. TWO-SCENARIO OPTIMIZATION

Table 9.3: Comparison of the knapsack and ILP approaches for the unconstrained
two-scenario problem, bounds −50/50.

FKP ILP

n #nodes ts #nodes ts

500 10197.15 0.13 561.80 0.48
1000 24888.50 0.78 1133.70 1.59
1500 57219.45 2.32 3252.30 7.64
2000 91590.80 5.08 3236.40 9.34
2500 96099.05 6.84 2018.00 6.95
3000 106036.15 9.33 3659.40 15.73
3500 149411.25 15.82 3172.80 15.69
4000 171866.15 21.30 3860.50 22.45
4500 238739.20 34.08 4648.20 30.09
5000 226777.40 36.61 5498.20 39.51

9.2 Two-Scenario Minimum Spanning Tree

In this section we apply the general results for combinatorial two-scenario op-
timization of Section 4.2 to a specific application, the two-scenario minimum
spanning tree problem. As in the linear minimum spanning tree problem, we are
given an undirected graph and the task is to choose a minimum-cost subset of
the edges such that the resulting subgraph includes all nodes, is connected and
cycle-free. In contrast to the linear version of the problem, there is not a single
set of edge costs, but two sets which determine the two scenarios in the objec-
tive function. While the linear MST is well-known to be solvable in polynomial
time and several efficient combinatorial algorithms exist, the two-scenario case is
NP -hard [77], but solvable in pseudo-polynomial time [2].

In the following we compare two branch and bound-approaches based on the two
relaxations (4.11) and (4.12) with a branch and cut-approach based on the stan-
dard linearization of the non-linear objective function, i.e. we solve the ILP (4.8)
with X the set of spanning trees. We use the subtour-formulation of the spanning
tree polytope described in Chapter 6.1, where we used it to model the quadratic
minimum spanning tree problem. Starting with the cardinality constraint, vio-
lated subtour elimination constraints are added to the model dynamically. In
the ILP approach we branch on the most fractional variable and use best first-
enumeration. This algorithm was implemented in SCIL.

In the decomposition approaches the combinatorial subproblem is a linear MST-
problem. It is solved with a modified version of Kruskal’s algorithm which can
handle fixed variables. It consists of two passes of the original algorithm by

9.2. TWO-SCENARIO MINIMUM SPANNING TREE 137

Kruskal over the graph. In the first pass the algorithm only considers edges corre-
sponding to variables fixed to one. If the resulting subgraph contains cycles, the
subproblem is infeasible. In the second pass all remaining edges which correspond
to variables not fixed to zero are considered.

The Lagrangean duals are computed with the ConicBundle library [58], which
calls the algorithms for MST and FKP in each iteration of the subgradient algo-
rithm.

From the set of branching variable candidates we select the variable with the
largest absolute value of the corresponding Lagrangean multiplier, since it turned
out that for two-scenario MST this in most cases gives slightly better running
times than choosing the variable with the lowest index.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

s
e
c
o
n
d
s

number of variables

max. deviation 1%

FKP

IP

EXKP

Figure 9.1: Comparison of running times for the two-scenario MST with 1%
deviation.

Instances

We generated complete undirected graphs of different sizes in the following way:
Nodes are placed randomly in the plane with coordinates in [0, 100] × [0, 100].
Choosing the edge weights as the Euclidian distances between the end nodes
of the edges induces the so-called nominal scenario which is the basis for five

138 CHAPTER 9. TWO-SCENARIO OPTIMIZATION

classes of instances. Each class of instances is characterized by the percentage
the edge costs in the two scenarios are allowed to diverge from the edge costs in
the nominal scenario. We chose the percentages 1%, 5%, 10%, 50% and 100%.
Thus, in the last case edge costs may effectively vary randomly between zero and
double the edge costs in the nominal scenario. This scheme mimics the real-life
situation where costs are estimated in advance, but uncertainties have to be taken
into account that influence the actual costs. The percentage of deviation models
the amount of uncertainty in the model.

Instance sizes range from 10 to 200 nodes. Since we consider complete graphs,
the largest instances have 19900 edges. For each percentage of deviation from the
nominal scenario and each size 20 instances were created.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

s
e
c
o
n
d
s

number of variables

max. deviation 5%

FKP

IP

EXKP

Figure 9.2: Comparison of running times for the two-scenario MST with 5%
deviation.

Computational Results

The figures in this section show the running times of the three approaches in
relation to the instance size. We set a time limit of 1h per instance. The decom-
position approach that solves the integer unconstrained two-scenario problem
solved all instances with up to 100 nodes (= 4950 edges/variables), but failed

9.2. TWO-SCENARIO MINIMUM SPANNING TREE 139

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

s
e
c
o
n
d
s

number of variables

max. deviation 10%

FKP

IP

EXKP

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

s
e
c
o
n
d
s

number of variables

max. deviation 50%

FKP

IP

EXKP

Figure 9.3: Comparison of running times for the two-scenario MST with 10%
deviation (top) and 50% deviation(bottom).

140 CHAPTER 9. TWO-SCENARIO OPTIMIZATION

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

s
e
c
o
n
d
s

number of variables

max. deviation 100%

FKP

IP

EXKP

Figure 9.4: Comparison of running times for the two-scenario MST with 100%
deviation.

on some of the larger instances. Similarly, the ILP approach was able to solve
all instances with up to 160 nodes, except for 100% deviation. Here the largest
instance size was 120.

As can be seen from the figures 9.1 – 9.4, running times for the smaller in-
stances are very similar for all three approaches. This behavior can be observed
for all classes of instances. For larger instances there are significant differences in
performance. Clearly, the fractional knapsack-approach (FKP) outperforms the
other two for all classes of instances. Solving the knapsack problems on integer
variables in each iteration of the bundle algorithm (EXKP) theoretically gives
stronger bounds, but this advantage is completely compensated by the compar-
atively large amount of time spent in each branch and bound-node.

Analyzing the running times for EXKP in relation to the deviation from the
nominal scenario, a clear trend emerges: the larger the uncertainty in the data,
the more difficult the instances become.

The ILP approach (IP) in general is faster than EXKP and the impact of the
instance size on running times is not as severe. The largest difference occurs for
deviation 50%. Here running times for EXKP are between 8 and 22 times as high,
while for 10% and 100% the factor lies between 4–11 and 3–8, respectively.

9.2. TWO-SCENARIO MINIMUM SPANNING TREE 141

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

s
e
c
o
n
d
s

number of variables

Two-Scenario MST

1%

5%

10%

50%

100%

Figure 9.5: Comparison of running times for the two-scenario MST for different
deviations, decomposition approach (4.12).

Clearly the fastest algorithm is FKP, which is based on the fractional knapsack
algorithm. Even the largest instances of all classes are solved in less than 1000
seconds on average. Figure 9.5 shows the impact of the deviation on CPU times
for FKP. In contrast to the other approaches, the most difficult instances for FKP
are not the ones with the largest deviation, but those with 50%. This indicates
that FKP can better handle the situation when one scenario clearly dominates
the other.

The experimental evaluation of the decomposition approaches shows that, al-
though the two-scenario minimum spanning tree problem is NP -hard, in practice
it is possible to solve relatively large instances. Clearly, the better quality of the
bounds from (4.12) is only an advantage in theory. Solving a single fractional
knapsack problem instead of solving an integer knapsack problem by branch and
bound in each step of the bundle algorithm leads to savings in computing time
that easily compensate for the larger number of subproblems.

142 CHAPTER 9. TWO-SCENARIO OPTIMIZATION

Part III

Nonlinear Optimization with
SCIL

143

145

In the final part of this thesis we will give a brief overview of the C++-library
SCIL, which was used extensively in the computational studies presented in
Part II. After a short discussion of the basic principles in the design of SCIL,
we will focus on the implementation of the exact polyhedral approaches for non-
linear binary optimization problems that were presented in Chapters 2, 3, 6, 7, 8
and 9.

SCIL stands for Symbolic Constraints in Integer Linear Programming. It is an
object-oriented framework written in C++ and aims at the easy implementa-
tion of exact optimization algorithms for integer programming problems [4]. The
framework provides interfaces for modeling an application as an integer program
and solving the resulting model with a branch and cut-algorithm. In contrast
to other optimization libraries, SCIL provides a set of pre-defined symbolic con-
straints for modeling common combinatorial structures like tours, matchings or
spanning trees. Symbolic constraints can be freely combined with linear inequal-
ities. Models can be formulated in graph-theoretic terms with the help of the
boost graph library [117], which is also used in the separation algorithms pro-
vided by the symbolic constraints. Once an application has been modeled, the
underlying integer program is solved with the LP-based branch and cut-system
ABACUS [72, 38].

The modular design of SCIL, and especially the concept of symbolic constraints,
make it a natural choice for the practical implementation of the polyhedral ap-
proaches for submodular and quadratic combinatorial optimization problems de-
veloped in this thesis. The basic idea of the branch and cut-algorithms in Chap-
ters 2 and 3 is to combine a good polyhedral description of the combinatorial
structure with a good linear model of the nonlinear objective function. In SCIL,
different parts of a mathematical model, such as the (nonlinear) objective func-
tion and the combinatorial constraints, can be treated independently in different
symbolic constraints. Furthermore, SCIL already provides separation routines
for a wide range of combinatorial structures and, in combination with ABACUS,
a complete branch and bound-framework for combinatorial optimization, which
facilitates the experimental evaluation of the proposed algorithms.

Symbolic Constraints

SCIL is easily expandable. In addition to combining existing symbolic constraints
to model more complex combinatorial structures, it is possible to define new
symbolic constraints. The three functions that make up a symbolic constraint
are the following:

Initialization This function is optional. It is used to add globally valid con-
straints to the initial relaxation in the root node of the branch and bound-tree.

146

Feasibility Test This function is called when the optimal solution of the
current LP-relaxation is integer. It decides whether the solution is feasible for the
symbolic constraint. If not, the separation routine of the symbolic constraint is
called.

Separation This function is called in each iteration of the cutting plane-
algorithm. Given a fractional LP-solution, it returns one or more inequalities
that cut off the fractional point, or ’no constraint found’.

To give an example of the roles of these basic functions, consider the symbolic con-
straint spanning tree. It was used in Chapter 6 to model the quadratic minimum
spanning tree problem, in Chapter 7 for the symmetric connectivity range assign-
ment problem, and in Chapter 9 in the ILP-model of the two-scenario minimum
spanning tree problem. The initialization function adds the cardinality constraint
to the model. The feasibility test checks whether the subgraph induced by an
integer solution of an LP is connected. Together with the cardinality constraint,
which is satisfied by the integer solution, this ensures that the induced subgraph is
a spanning tree. The separation function checks whether a fractional LP-solution
violates any subtour elimination constraints, as described in Section 6.1. If vio-
lated subtour elimination constraints are found they are added to the ILP of the
current subproblem.

Nonlinear Optimization in SCIL

The SCIL optimization library was initially designed for integer linear problems,
in particular for linear combinatorial problems. For this thesis it was expanded
by the polyhedral methods for nonlinear combinatorial problems discussed in
previous chapters.

Submodular Combinatorial Optimization

The model for combinatorial optimization problems with submodular objective
functions solved in SCIL has the form

min
k

i=1

αiyi

s.t. yi ≥ fi(x) for all i ∈ {1, . . . , k}
x ∈ X
y ∈ Rk ,

with submodular functions fi and positive scalars αi.

The description of the set X, which models the underlying combinatorial struc-
ture of the problem, can be given as any combination of linear inequalities and

147

symbolic constraints. Each component fi of the submodular objective function
is specified as a symbolic constraint. These problem-specific classes are derived
from an abstract base class submodular. The purpose of the derived classes is to
provide a function value oracle which returns the value fi(x) for a given binary
vector x and is used by the base class submodular to calculate the coefficients of
cutting planes in the separation algorithm 2 described in Section 3.3 and in the
feasibility test, which checks if yi ≥ fi(x̄) for a given binary solution x̄.

Binary Quadratic Optimization

To integrate the techniques for binary quadratic optimization discussed in Chap-
ter 2 into SCIL, the interface for building the mathematical model was extended
by two functions. The first, add polynomial adds a quadratic polynomial in bi-
nary variables of the form


i,j aijxixj to the objective function. This function

returns the corresponding linearization variable yij for further use. The second
function, add pol constraint, adds a binary quadratic inequality of the form

i,j aijxixj ≤ b to the set of constraints.

After the model is completed, all quadratic monomials are internally replaced
by linearization variables and the separation graph for MaxCut-inequalities is
constructed as discussed in Section 2.2. The separation itself is handled by the
symbolic constraint CUT, which implements the exact and heuristic separation
routines for odd-cycle inequalities described in Section 2.2, as well as a pool
separation for triangle inequalities. The feasibility test checks whether yij = xixj

holds for all quadratic monomials in a given LP-solution.

The following parameters control the treatment of quadratic terms during opti-
mization. They can be set at runtime, before the start of the optimization process:

standard linearization If enabled, the standard linearization inequalities for
all quadratic monomials are added to the model.

triangle inequalities If enabled, triangle inequalities for all cycles of length
three in the separation graph are generated.

triangle pool separation Only in conjunction with triangle inequalities.
If enabled, triangle inequalities are added to the model dynamically in the sepa-
ration phase. Otherwise, all triangle inequalities are included in the initial sub-
problem.

Quadratic Reformulation

The quadratic reformulation techniques for linear constraints discussed in Sec-
tion 2.3 are implemented in SCIL in the symbolic constraint quadref. The user
can choose to force quadratic reformulation of individual constraints, otherwise

148

a linear inequality is only reformulated if all necessary quadratic monomials are
already present in the model. All inequalities obtained from the reformulation
SQK2 are added to the initial subproblem, inequalities from SQK3 are stored in
a cut pool and are added dynamically in the separation phase.

The following parameters control the quadratic reformulation of linear constraints.
They can be set at runtime, before the start of the optimization process:

quadratic reformulation type

NONE Quadratic reformulation is disabled, except for inequalities explic-
itly flagged for reformulation.

SQK2 SQK2 is applied to all linear inequalities, unless this would require
quadratic monomials not present in the initial model.

SQK3 SQK3 is applied to all linear inequalities, unless this would require
quadratic monomials not present in the initial model.

SQK2+SQK3 Both SQK2 and SQK3 are applied.

PM Phantom monomial reformulation is applied to all assignment con-
straints added to the model. All other quadratic reformulations are
disabled.

qr on separate If enabled, the quadratic reformulation specified in quadratic
reformulation type is applied to linear inequalities found in the separation
phase, unless this would require the introduction of additional linearization vari-
ables. This parameter has no effect if quadratic reformulation type is set to
NONE or PM.

Phantom Monomials

When phantom monomial reformulation is enabled in SCIL, each linear constraint
added to the model is checked whether it is an assignment constraint. The corre-
sponding quadratic monomials are internally flagged as phantom monomials. For
these monomials no linearization variables or standard linearization constraints
are added to the model, but the corresponding edges are added to the separation
graph for MaxCut-inequalities. When an LP-solution is mapped to the separation
graph or a cutting plane is mapped to the original variable space, the modified
transformation given in Section 2.3.3 is used for the phantom monomials.

Summary and Outlook

We proposed two approaches for the exact solution of combinatorial optimiza-
tion problems with nonlinear objective functions. Both follow the same basic idea:
Lower bounds for the nonlinear combinatorial problem are computed by decom-
posing it into an unconstrained binary nonlinear problem and the linear variant
of the underlying combinatorial problem. In many cases these subproblems are
well-studied and easier to solve than the original problem.

The first approach combines polyhedral descriptions of the convex hulls of fea-
sible points of the two subproblems. This in general does not yield a complete
polyhedral characterization of the feasible solutions of the original problem, even
if complete descriptions of the subproblems are known, as for example for the
symmetric connectivity range assignment problem studied in Chapter 7. Never-
theless our experiments show that this approach often yields strong lower bounds
in a branch and bound-framework.

The second approach separates the nonlinear objective function from the combi-
natorial constraints by Lagrangean decomposition. Lower bounds are computed
by solving the Lagrangean dual of the decomposition with a subgradient algo-
rithm. This approach has the advantage that for a large class of applications both
subproblems can be efficiently solved with purely combinatorial algorithms.

We used these approaches to devise branch and bound-algorithms for combina-
torial problems with quadratic, submodular and min-max objective functions.
Our experimental studies of the quadratic minimum spanning tree problem and
the quadratic matching problem in Chapter 6 show that, especially for larger in-
stances, using cutting planes from MaxCut as discussed in Chapter 2 significantly
reduces the number of subproblems in the branch and bound-tree. Still, this does
not necessarily lead to lower running times. When the MaxCut-separation is
combined with quadratic reformulation, the situation is different. The number of
subproblems as well as the running times are significantly lower and we conclude
that the combination of MaxCut separation and quadratic reformulation is an
effective tool for solving quadratic combinatorial problems. MaxCut separation
is also used in Chapter 5, where we propose a quadratic model for the tangle-
gram layout problem. To our knowledge, this is the first model that is able to
handle tanglegrams of arbitrary degree and we are able to solve large random

149

150 SUMMARY AND OUTLOOK

and realistic instances to optimality.

In the range assignment and portfolio optimization problems studied in Chap-
ters 7 and 8, combinatorial constraints are combined with a submodular objective
function. In the case of range assignment problems the objective function mod-
els the multicast advantage that occurs when nodes are connected by wireless
communication links to form a given network topology. In portfolio optimiza-
tion, submodularity arises when the uncertainty in the expected return value of
a possible investment is characterized by its variance.

The branch and cut-algorithm is applicable to all three types of range assignment
problems examined in Chapter 8, whereas the Lagrangean decomposition-based
algorithm is not applicable to multicast problems, since no practically efficient
algorithm for the combinatorial subproblem is known. It turns out that the per-
formance of both algorithms in comparison to solving the standard IP model
varies with the underlying network topology and the size of the instance. In the
symmetric connectivity case no algorithm clearly dominates the others. In the
multicast case the new MIP model gives better results than the standard IP
model. Solution times are lower and a larger number of the large instances can
be solved. When applied to broadcast instances, computing Lagrangean duals
instead of solving LP-relaxations shows its potential. Although the algorithm is
slowed down by a large number of calls to the function oracle, it is able to solve
more of the largest instances than the other two. For portfolio optimization the
situation is much clearer. Here Lagrangean decomposition obviously is the best
choice. The standard approach already fails for small instances. While both new
algorithms are able to solve large instances quickly, the decomposition approach
clearly outperforms the branch and cut-algorithm. Additionally, it is nearly in-
sensitive to the scaling of the nonlinear part of the objective function.

To evaluate the bounding techniques for two-scenario problems proposed in Chap-
ter 4, we performed experimental studies of the unconstrained two-scenario prob-
lem and the two-scenario minimum spanning tree problem. Running times in the
unconstrained case were similar to the standard LP-based branch and bound-
algorithm, but in the presence of combinatorial constraints, the low computa-
tional complexity of the fractional knapsack problems and the high quality of
the bounds they provide pay off. We are able to compute two-scenario spanning
trees on complete graphs with up to 200 nodes quickly, largely independent of
the characteristics of the objecticve function. Running times for the standard ap-
proach, on the other hand, are generally much higher and increase significantly
with the deviation between the scenarios.

As we have seen in Chapter 8, there is a close connection between the mean-
variance objective function in the risk-averse capital budgeting problem and ro-
bust optimization. Indeed, mean-risk problems can be seen as a special case of
robust combinatorial optimization with ellipsoidal uncertainty. While it is known

151

that it is easy to minimize the function f(x) = c⊤x +

x⊤Qx with x ∈ {0, 1}n

for diagonal matrices but NP-hard for general positive-definite Q, it is unclear at
what point the problem becomes hard. Special cases of Q that have applications
in practice and might be computationally tractable include doubly non-negative
matrices and block diagonal matrices with constant block size. For such block
diagonal matrices it is promising to search for a combinatorial algorithm similar
to Algorithm 4 in Chapter 8, since the number of quadratic terms is linear in the
instance size.

Doubly non-negative matrices Q occur when the uncertain costs are correlated,
but all correlations are non-negative. One example is the design of robust traffic
networks, where a delay on one arc of the graph often leads to delays on other
arcs. Also in this case the complexity of minimizing f is unknown. An interesting
approach to this problem is to approximate the ellipsoid describing the uncer-
tainty set by an axis-parallel ellipsoid. This might yield good lower bounds, which
could be computed efficiently with the combinatorial algorithm we proposed in
Chapter 8. It would be interesting to study the feasibility of this approach and
investigate the quality of the lower bounds both theoretically and experimentally.

While a better understanding of the structure of the unrestricted nonlinear ob-
jective function will lead to algorithms for a wide range of applications, it is also
interesting to study specific combinatorial problems under uncertainty. For ex-
ample, little is known about the complexity of classical combinatorial problems
with a mean-variance objective function. On the one hand, Nikolova [101] showed
that the mean-risk minimum spanning tree problem can be solved in polynomial
time and to our knowledge there is no application which is easy with a linear
objective function but proven to be NP-hard in the mean-variance case. On the
other hand, many combinatorial problems are known to be hard in the general
ellipsoidal uncertainty case [118].

152 SUMMARY AND OUTLOOK

References

[1] Alok Aggarwal, Sanjeev Khanna, Rajeev Motwani, and Baruch Schieber.
The angular-metric traveling salesman problem. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 29:221–
229, 1997.

[2] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Approximat-
ing min-max (regret) versions of some polynomial problems. In Danny Z.
Chen and Der-Tsai Lee, editors, Computing and Combinatorics, volume
4112 of Lecture Notes in Computer Science, pages 428–438. Springer Berlin
Heidelberg, 2006.

[3] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Min-max and
min-max regret versions of combinatorial optimization problems: A sur-
vey. European Journal of Operational Research, 197(2):427–438, September
2009.

[4] Ernst Althaus, Alexander Bockmayr, Matthias Elf, Michael Jünger,
Thomas Kasper, and Kurt Mehlhorn. SCIL – symbolic constraints in inte-
ger linear programming. In Rolf H. Möhring and Rajeev Raman, editors,
Algorithms - ESA 2002 Rome, volume 2461 of Lecture Notes in Computer
Science, pages 75–87. Springer, 2002.

[5] Ernst Althaus, Gruia Calinescu, Ion I. Mandoiu, Sushil K. Prasad, Nickolay
Tchervenski, and Alexander Zelikovsky. Power efficient range assignment
in ad-hoc wireless networks. In WCNC ’03, pages 1889–1894, 2003.

[6] Ernst Althaus, Gruia Calinescu, Ion I. Mandoiu, Sushil K. Prasad, Nickolay
Tchervenski, and Alexander Zelikovsky. Power efficient range assignment
for symmetric connectivity in static ad hoc wireless networks. Wireless
Networks, 12(3):287–299, 2006.

[7] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook.
The Traveling Salesman Problem: A Computational Study (Princeton Se-
ries in Applied Mathematics). Princeton University Press, Princeton, NJ,
USA, 2007.

153

[8] Amitai Armon and Uri Zwick. Multicriteria global minimum cuts. Algo-
rithmica, 46(1):15–26, September 2006.

[9] Arjang Assad and Weixuan Xu. The quadratic minimum spanning tree
problem. Naval Research Logistics (NRL), 39(3):399–417, 1992.

[10] Alper Atamtürk and Vishnu Narayanan. Polymatroids and mean-risk min-
imization in discrete optimization. Operations Research Letters, 36(5):618–
622, 2008.

[11] Egon Balas and Eitan Zemel. An algorithm for large zero-one knapsack
problems. Operations Research, 28(5):1130–1154, 1980.

[12] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Math-
ematical Programming, 36:157–173, 1986.

[13] Francisco Barahona, Michael Jünger, and Gerd Reinelt. Experiments in
quadratic 0-1 programming. Mathematical Programming, 44(1–3):127–137,
1989.

[14] Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto
Tamassia. Optimal upward planarity testing of Single-Source digraphs.
SIAM Journal on Computing, 27(1):132–169, February 1998.

[15] Frederick Bock. An algorithm to construct a minimum directed spanning
tree in a directed network. In Developments in operations research, pages
29–44, 1971.

[16] Sebastian Böcker, Falk Hüffner, Anke Truss, and Magnus Wahlström. A
faster fixed-parameter approach to drawing binary tanglegrams. In Jianer
Chen and Fedor V. Fomin, editors, Parameterized and Exact Computation,
volume 5917 of Lecture Notes in Computer Science, pages 38–49. Springer
Berlin Heidelberg, 2009.

[17] Otakar Boruvka. O Jistém Problému Minimálńım (About a Certain Mini-
mal Problem) (in Czech, German summary). Práce Mor. Pŕırodoved. Spol.
v Brne III, 3, 1926.

[18] Christoph Buchheim, Angelika Wiegele, and Lanbo Zheng. Exact algo-
rithms for the quadratic linear ordering problem. INFORMS Journal on
Computing, 22(1):168–177, December 2010.

[19] Rainer E. Burkard. Quadratic assignment problems. In Panos M. Pardalos,
Ding-Zhu Du, and Ronald L. Graham, editors, Handbook of Combinatorial
Optimization, pages 2741–2814. Springer New York, January 2013.

154

[20] Markus Chimani, Philipp Hungerländer, Michael Jünger, and Petra Mutzel.
An sdp approach to multi-level crossing minimization. Journal of Experi-
mental Algorithmics, 17:3.3:3.1–3.3:3.26, September 2012.

[21] Y. Chu and T. Liu. On the shortest arborescence of a directed graph.
Scientia Sinica, 14:1396–1400, 1965.

[22] Roberto Cordone and Gianluca Passeri. Heuristic and exact approaches
to the quadratic minimum spanning tree problem. In CTW, pages 52–55.
University of Milan, 2008.

[23] Roberto Cordone and Gianluca Passeri. Solving the quadratic minimum
spanning tree problem. Applied Mathematics and Computation, 218(23):
11597–11612, 2012.

[24] Gérard Cornuéjols and Reha Tütüncü. Optimization methods in finance.
Mathematics, finance, and risk. Cambridge University Press, Cambridge,
U.K., New York, 2006.

[25] George B. Dantzig. Discrete-Variable Extremum Problems. Operations
Research, 5(2), 1957.

[26] George B. Dantzig, Alex Orden, and Philip Wolfe. The generalized sim-
plex method for minimizing a linear form under linear inequality restraints.
Pacific Journal of Mathematics, 5(2):183–195, 1955.

[27] Arindam K. Das, Robert J. Marks, Mohamed El-Sharkawi, Payman Arab-
shahi, and Andrew Gray. Minimum power broadcast trees for wireless net-
works: Integer programming formulations. In INFOCOM 2003, volume 2,
pages 1001–1010, 2003.

[28] Caterina De Simone. The cut polytope and the boolean quadric polytope.
Discrete Mathematics, 79:71–75, 1989.

[29] Caterina De Simone and Giovanni Rinaldi. A cutting plane algorithm for
the max-cut problem. Optimization Methods and Software, 3(1–3):195–214,
1994.

[30] Michel Deza. On the hamming geometry of unitary cubes. Doklady
Akademii Nauk SSR, 134:1037–1040, 1960. English translation in: Soviet
Physics Doklady 5 (1961) 940–943.

[31] Michel Deza and Monique Laurent. Geometry of Cuts and Metrics.
Springer, May 1997.

[32] Peter Eades and Nicholas C. Wormald. Edge crossings in drawing bipartite
graphs. Algorithmica, 11:379–403, 1994.

155

[33] Jack Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics,
17:449–467, 1965.

[34] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of Research of the National Bureau of Standards B, 69:125–130,
1965.

[35] Jack Edmonds. Optimum branchings. Journal of Research of the National
Bureau of Standards, 71B:233–240, 1967.

[36] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In
Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combina-
torial Optimization – Eureka, You Shrink!, volume 2570 of Lecture Notes
in Computer Science, pages 11–26. Springer Berlin Heidelberg, 2003.

[37] Laurent El Ghaoui, Maksim Oks, and Francois Oustry. Worst-case value-
at-risk and robust portfolio optimization: A conic programming approach.
Operations Research, 51(4):543–556, 2003.

[38] Matthias Elf, Carsten Gutwenger, Michael Jünger, and Giovanni Rinaldi.
Branch-and-cut algorithms for combinatorial optimization and their im-
plementation in abacus. In Michael Jünger and Denis Naddef, editors,
Computational Combinatorial Optimization, volume 2241 of Lecture Notes
in Computer Science, pages 157–222. Springer, 2001.

[39] Henning Fernau, Michael Kaufmann, and Mathias Poths. Comparing trees
via crossing minimization. In Ramaswamy Ramanujam and Sandeep Sen,
editors, Foundations of Software Technology and Theoretical Computer Sci-
ence FSTTCS 2005, volume 3821 of Lecture Notes in Computer Science,
pages 457–469. Springer, 2005.

[40] Henning Fernau, Michael Kaufmann, and Mathias Poths. Comparing trees
via crossing minimization. Journal of Computer and System Sciences, 76
(7):593–608, November 2010.

[41] Ilse Fischer, Gerald Gruber, Franz Rendl, and Renata Sotirov. Compu-
tational experience with a bundle approach for semidefinite cutting plane
relaxations of max-cut and equipartition. Mathematical Programming, 105
(2–3):451–469, 2006.

[42] Matteo Fischetti. Facets of two Steiner arborescence polyhedra. Mathe-
matical Programming, Series A, 51(3):401–419, 1991.

[43] Robert Fortet. L’algèbre de boole et ses applications en recherche
opérationelle. Cahiers du centre d’études de recherche opérationelle, 1(4):
5–36, 1959.

156

[44] Bernhard Fuchs. On the hardness of range assignment problems. Networks,
52(4):183–195, 2008.

[45] Satoru Fujishige. Submodular functions and optimization. 2nd ed. Annals
of Discrete Mathematics 58. Amsterdam: Elsevier. xiv, 395 p., 2005.

[46] Fabio Furini and Emiliano Traversi. Hybrid sdp bounding procedure. In
Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela,
editors, Experimental Algorithms, volume 7933 of Lecture Notes in Com-
puter Science, pages 248–259. Springer Berlin Heidelberg, 2013.

[47] Laura Galli, Konstantinos Kaparis, and Adam N. Letchford. Gap inequali-
ties for the max-cut problem: A cutting-plane algorithm. In Proceedings
of the Second International Conference on Combinatorial Optimization,
ISCO’12, pages 178–188. Springer-Verlag, 2012.

[48] Laura Galli, Konstantinos Kaparis, and Adam N. Letchford. Complexity
results for the gap inequalities for the max-cut problem. Operations Re-
search Letters, 40(3):149–152, 2012.

[49] Michael Garey and David Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co Ltd, January
1979.

[50] Arthur M. Geoffrion. Lagrangean relaxation for integer programming.
Mathematical Programming Study, 2:82–114, 1974.

[51] Fred Glover and Eugene Woolsey. Technical Note – Converting the 0–
1 polynomial programming problem to a 0–1 linear program. Operations
Research, 22(1):180–182, February 1974.

[52] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64(5):275–278,
09 1958.

[53] Martin Grötschel, Michael Jünger, and Gerd Reinelt. Facets of the linear
ordering polytope. Mathematical Programming, 33:43–60, 1985.

[54] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algo-
rithms and Combinatorial Optimization, volume 2 of Algorithms and Com-
binatorics. Springer-Verlag, 1988.

[55] Monique Guignard and Siwhan Kim. Lagrangean decomposition: A model
yielding stronger lagrangean bounds. Mathematical Programming, 39(2):
215–228, June 1987.

157

[56] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2013. URL
http://www.gurobi.com.

[57] Mark S. Hafner, Philip D. Sudman, Francis X. Villablanca, Theresa A.
Spradling, James W. Demastes, and Steven A. Nadler. Disparate rates
of molecular evolution in cospeciating hosts and parasites. Science, 265:
1087–1090, 1994.

[58] Christoph Helmberg. The ConicBundle Library for Convex Optimization.
www-user.tu-chemnitz.de/~helmberg/ConicBundle, 2011.

[59] Christoph Helmberg and Franz Rendl. Solving quadratic (0, 1)-problems
by semidefinite programs and cutting planes. Mathematical Programming,
82(3):291–315, 1998.

[60] Christoph Helmberg and Franz Rendl. A spectral bundle method for
semidefinite programming. SIAM Journal on Optimization, 10(3):673–696,
2000.

[61] Christoph Helmberg, Franz Rendl, Robert J. Vanderbei, and Henry
Wolkowicz. An interior-point method for semidefinite programming. SIAM
Journal on Optimization, 6:342–361, 1996.

[62] Christoph Helmberg, Franz Rendl, and Robert Weismantel. A semidefinite
programming approach to the quadratic knapsack problem. Journal of
Combinatorial Optimization, 4(2):197–215, 2000.

[63] Danny Holten. personal communication, 2009.

[64] IBM. IBM ILOG CPLEX 12.5.1, 2013. www.ibm.com/software/

commerce/optimization/cplex-optimizer/.

[65] ILOG, Inc. ILOG CPLEX 11.2, 2007. www.ilog.com/products/cplex.

[66] ILOG, Inc. ILOG CPLEX 12.1, 2009. www.ilog.com/products/cplex/.

[67] Anna Ilyina. personal communication, 2013.

[68] Satoru Iwata and Kiyohito Nagano. Submodular function minimization un-
der covering constraints. In FOCS, pages 671–680. IEEE Computer Society,
2009.

[69] Satoru Iwata and James B. Orlin. A simple combinatorial algorithm for
submodular function minimization. In Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 1230–
1237, 2009.

158

http://www.gurobi.com
www.ibm.com/software/commerce/optimization/cplex-optimizer/
www.ibm.com/software/commerce/optimization/cplex-optimizer/
www.ilog.com/products/cplex
www.ilog.com/products/cplex/

[70] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial,
strongly polynomial-time algorithm for minimizing submodular functions.
In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, STOC ’00, pages 97–106, New York, NY, USA, 2000. ACM.

[71] Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimiza-
tion: performance of exact and heuristic algorithms. Journal of Graph
Algorithms and Applications, 1:1–25, 1997.

[72] Michael Jünger and Stefan Thienel. The ABACUS system for branch-
and-cut-and-price algorithms in integer programming and combinatorial
optimization. Software: Practice and Experience, 30(11):1325–1352, 2000.

[73] Michael Jünger, Eva K. Lee, Petra Mutzel, and Thomas Odenthal. A
polyhedral approach to the multi-layer crossing minimization problem. In
Giuseppe DiBattista, editor, Graph Drawing, volume 1353 of Lecture Notes
in Computer Science, pages 13–24. Springer Berlin Heidelberg, 1997.

[74] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems.
Springer, 2004.

[75] Kiavash Kianfar. Branch-and-bound algorithms. In James J. Cochran,
Louis A. Cox, Pinar Keskinocak, Jeffrey P. Kharoufeh, and J. Cole Smith,
editors, Wiley Encyclopedia of Operations Research and Management Sci-
ence. John Wiley & Sons, Inc., 2010.

[76] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Publishing Company, Incorporated, 4th edition, 2007.

[77] Panos Kouvelis and Gang Yu. Robust Discrete Optimization and Its Appli-
cations (Nonconvex Optimization and Its Applications (closed)). Springer,
1st edition, November 1996.

[78] Joseph B. Kruskal Jr. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American Mathematical
Society, 7(1):48–50, 1956.

[79] Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, 1960.

[80] Monique Laurent and Svatopluk Poljak. Gap inequalities for the cut poly-
tope. European Journal of Combinatorics, 17(2–3):233–254, 1996.

[81] Eugene L. Lawler. The quadratic assignment problem. Management Sci-
ence, 9:586–599, 1963.

159

[82] Heesang Lee, George L. Nemhauser, and Yinhua Wang. Maximizing a
submodular function by integer programming: Polyhedral results for the
quadratic case. European Journal of Operational Research, 94(1):154–166,
October 1996.

[83] Valeria Leggieri, Paolo Nobili, and Chefi Triki. Minimum power multicas-
ting problem in wireless networks. Mathematical Methods of Operations
Research, 68:295–311, 2008.

[84] Adam N. Letchford, Gerhard Reinelt, and Dirk O. Theis. A faster exact
separation algorithm for blossom inequalities. In George L. Nemhauser and
Daniel Bienstock, editors, IPCO, volume 3064 of Lecture Notes in Computer
Science, pages 196–205. Springer, 2004.

[85] László Lovász. Submodular functions and convexity. In Mathematical
programming: the state of the art (Bonn, 1982), pages 235–257. Springer,
Berlin, 1983.

[86] László Lovász and Michael D. Plummer. Matching Theory (North-Holland
Mathematics Studies 121). Elsevier Science Ltd, 1st edition, June 1986.

[87] Douglas G. Macharet, Armando A. Neto, Vilar F. da Camara Neto, and
Mario F. M. Campos. Nonholonomic path planning optimization for dubins’
vehicles. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 4208–4213, 2011.

[88] Harry M. Markowitz. Mean-variance analysis in portfolio choice and capital
markets. Blackwell, Oxford, 1987.

[89] Martello, Silvano, and Paolo Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., New York, NY, USA,
1990.

[90] Alexander Martin. General mixed integer programming: Computational
issues for branch-and-cut algorithms. In Michael Jünger and Denis Naddef,
editors, Computational Combinatorial Optimization, volume 2241 of Lecture
Notes in Computer Science, pages 1–25. Springer Berlin Heidelberg, 2001.

[91] Rafael Martinelli and Claudio Contardo. The quadratic capacitated vehicle
routing problem. Technical Report G-2013-74, Les Cahiers du GERAD,
HEC Montréal, Montréal, Quebec, Canada, October 2013.

[92] Patrick M. Miller. Exakte und heuristische Verfahren zur Lösung von
Range-Assignment-Problemen. Master’s thesis, Universität zu Köln, 2010.

160

[93] Manki Min, Oleg Prokopyev, and Panos Pardalos. Optimal solutions to
minimum total energy broadcasting problem in wireless ad hoc networks.
Journal of Combinatorial Optimization, 11:59–69(11), 2006.

[94] John E. Mitchell. Branch and cut. In James J. Cochran, Louis A. Cox,
Pinar Keskinocak, Jeffrey P. Kharoufeh, and J. Cole Smith, editors, Wiley
Encyclopedia of Operations Research and Management Science. John Wiley
& Sons, Inc., 2010.

[95] Hans Mittelmann. Benchmarks for optimization software, 2013. URL http:

//plato.asu.edu/ftp/miqp.html. (29 July 2013).

[96] Roberto Montemanni and Luca M. Gambardella. Minimum power symmet-
ric connectivity problem in wireless networks: A new approach. In MWCN,
pages 497–508, 2004.

[97] Roberto Montemanni and Luca M. Gambardella. Exact algorithms for
the minimum power symmetric connectivity problem in wireless networks.
Computers & Operations Research, 32:2891–2904, 2005.

[98] Roberto Montemanni, Luca M. Gambardella, and Arindam Das. Mathe-
matical models and exact algorithms for the min-power symmetric connec-
tivity problem: an overview. In Jie Wu, editor, Handbook on Theoretical
and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Net-
works, pages 133–146. CRC Press, 2006.

[99] Katta G. Murty and Clovis Perin. A 1-matching blossom-type algorithm
for edge covering problems. Networks, 12(4):379–391, 1982.

[100] George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial
optimization. Wiley-Interscience, New York, NY, USA, 1988.

[101] Evdokia Nikolova. Approximation algorithms for reliable stochastic com-
binatorial optimization. In Proceedings of the 13th International Workshop
on Approximation and the 14th International Workshop on Randomization
and Computation, APPROX/RANDOM’10, pages 338–351. Springer Berlin
Heidelberg, 2010.

[102] Paolo Nobili, Simona Oprea, and Chefi Triki. Preprocessing techniques for
the multicast problem in wireless networks. InMTISD 2008, pages 131–134,
2008.

[103] Martin Nöllenburg, Markus Völker, Alexander Wolff, and Danny Holten.
Drawing binary tanglegrams: An experimental evaluation. In Proc. of
the Workshop on Algorithm Engineering and Experiments, ALENEX 2009,
pages 106–119. SIAM, 2009.

161

http://plato.asu.edu/ftp/miqp.html
http://plato.asu.edu/ftp/miqp.html

[104] Muhittin Oral and Ossama Kettani. Reformulating nonlinear combinato-
rial optimization problems for higher computational efficiency. European
Journal of Operational Research, 58(2):236–249, 1992.

[105] James B. Orlin. A faster strongly polynomial time algorithm for submod-
ular function minimization. Mathematical Programming, 118(2):237–251,
November 2007.

[106] Manfred Padberg. The boolean quadric polytope: Some characteristics,
facets and relatives. Mathematical Programming, 45(1–3):139–172, 1989.

[107] Robert C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal, 36:1389–1401, 1957.

[108] Gerd Reinelt. The Linear Ordering Problem: Algorithms and Applications.
Heldermann Verlag, 1985.

[109] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. A branch and
bound algorithm for max-cut based on combining semidefinite and poly-
hedral relaxations. In Mattheo Fischetti and David P. Williamson, editors,
IPCO 2007, volume 4513 of Lecture Notes in Computer Science, pages 295–
309. Springer, 2007.

[110] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving max-cut to
optimality by intersecting semidefinite and polyhedral relaxations. Mathe-
matical Programming, 121(2):307–335, 2010.

[111] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems.
Journal of the ACM, 23(3):555–565, July 1976.

[112] Alexander Schrijver. A combinatorial algorithm minimizing submodular
functions in strongly polynomial time. Journal of Combinatorial Theory,
Series B, 80:346–355, 2000.

[113] Alexander Schrijver. Combinatorial Optimization – Polyhedra and Effi-
ciency. Springer, 2003.

[114] SCIL. SCIL – Symbolic Constraints in Integer Linear programming.
scil-opt.net, 2011.

[115] Zuo-Jun Max Shen, Collette Coullard, and Mark S. Daskin. A joint
location-inventory model. Transportation Science, 37(1):40–55, January
2003.

[116] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between
the continuous and convex hull representations for zero-one programming
problems. SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

162

[117] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual (C++ In-Depth Series).
Addison-Wesley Professional, December 2001.

[118] Melvyn Sim. Robust Optimization. PhD thesis, Operations Research Cen-
ter, MIT, 2004.

[119] Erik Sjölund and Ali Tofigh. Edmonds’ algorithm.
edmonds-alg.sourceforge.net, 2010.

[120] Donald Topkis. Minimizing a submodular function on a lattice. Operations
Research, 26(2):305–321, 1978.

[121] Balaji Venkatachalam, Jim Apple, Katherine St. John, and Dan Gusfield.
Untangling tanglegrams: Comparing trees by their drawings. In Proceed-
ings of the 5th International Symposium on Bioinformatics Research and
Applications, ISBRA ’09, pages 88–99. Springer, 2009.

[122] Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides. Algo-
rithms for energy-efficient multicasting in static ad hoc wireless networks.
Mobile Networks and Applications, 6(3):251–263, 2001.

[123] Laurence A. Wolsey. Integer Programming. Wiley Series in Discrete Math-
ematics and Optimization. Wiley, 1998.

[124] Gang Yu and Jian Yang. On the robust shortest path problem. Computers
and Operations Research, 25:457–468, 1998.

163

	Introduction
	Outline
	I Methods
	Preliminaries
	Basic Definitions
	Lagrangean Relaxation
	Lagrangean Decomposition

	Branch and Bound
	LP-Based Branch and Bound
	Lagrangean Decomposition-Based Branch and Bound
	SDP-Based Branch and Bound
	Enumeration Strategies

	Branch and Cut

	Binary Quadratic Optimization
	Standard Linearization
	Unconstrained Binary Quadratic Optimization
	Odd Cycle Inequalities
	More Cutting Planes

	Quadratic Reformulation
	SQK2
	SQK3
	Phantom Monomials

	Final Remarks

	Submodular Combinatorial Optimization
	Submodularity
	Constructing Submodular Functions
	Polyhedral Study
	A Branch and Cut Approach
	Cutting Planes
	Primal Bounds

	A Lagrangean Decomposition Approach
	Bounds
	Branch and Bound

	Final Remarks

	Two-Scenario Optimization
	Unconstrained Two-Scenario Optimization
	Complexity
	Transformation to Fractional Knapsack Problems
	An Exact Algorithm

	Combinatorial Two-Scenario Optimization
	Lower Bounds
	An Exact Algorithm

	Two-Scenario Min-Max Regret Problems

	II Applications
	Tanglegrams
	Complexity and Related Work
	An Exact Model for General Tanglegrams
	Bipartite Crossing Minimization
	Modeling Tanglegrams
	Binary Case

	Computational Results

	Combinatorial Quadratic Optimization
	Quadratic Minimum Spanning Tree
	Quadratic Reformulation
	Computational Results

	Quadratic Matching
	Computational Results

	Range Assignment Problems
	The Standard Model
	New Mixed-Integer Models
	Polyhedral Relations
	Computational Results
	Symmetric Connectivity
	Multicast
	Broadcast

	Final Remarks

	Mean Risk Optimization
	Computational Results
	Final Remarks

	Two-Scenario Optimization
	Unconstrained Two-Scenario Optimization
	Two-Scenario Minimum Spanning Tree

	III Nonlinear Optimization with SCIL
	Summary and Outlook
	References

