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Abstract

We propose a monitoring procedure to detect a structural change from stationary to inte-

grated behavior. When the procedure is applied to the residuals of a relationship between

integrated series it thus monitors a structural change from a cointegrating relationship

to a spurious relationship. The cointegration monitoring procedure is based on residuals

from modified least squares estimation, using either Fully Modified, Dynamic or Inte-

grated Modified OLS. The procedure is inspired by Chu et al. (1996) in that it is based

on parameter estimation on a pre-break “calibration” period only rather than being based

on sequential estimation over the full sample. We investigate the asymptotic behavior of

the procedures under the null, for (fixed and local) alternatives and in case of parameter

changes. We also study the finite sample performance via simulations. An application to

credit default swap spreads illustrates the potential usefulness of the procedure.

Keywords: Cointegration, Monitoring, Stationarity, Structural Change, Unit Roots

JEL Codes: C22, C32, C52

∗Technical University Dortmund, Faculty of Statistics, Vogelpothsweg 87, D-44227 Dortmund, Ger-
many. E-Mail: mwagner@statistik.tu-dortmund.de, Phone: +49 231 755 3174 (M. Wagner). E-Mail:
wied@statistik.tu-dortmund.de, Phone: +49 231 755 5419 (D. Wied). Financial support from Deutsche
Forschungsgemeinschaft via the Collaborative Research Center 823: Statistical Modelling of Nonlinear
Dynamic Processes (Projects A1, A3 and A4) is gratefully acknowledged. The first author furthermore
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1. Introduction

It is common practice in time series econometrics to investigate the stationarity, unit root

and cointegration properties of time series and a plethora of tests for stationarity, unit

roots and cointegration is available. In relation to this practice, however, it may well be

reasonable to investigate the question whether the stationarity or cointegration behavior

of time series changes over time. In particular, a time series may change its behavior from

stationarity, or being I(0), to being integrated and a cointegrating relationship between

several time series may break down and turn into a spurious relationship.1 Examples

where one may be concerned about this type of structural change include deviations from

purchasing power parity after a period of international economic stability or nonstation-

arity of credit default swap (CDS) spreads after the onset of a financial crisis.2

Our monitoring procedure is inspired by the monitoring procedure for linear regression

models of Chu et al. (1996) in that parameter estimation, for estimating trend and –

when monitoring cointegration – slope parameters, is based solely on a “calibration”

period at the beginning of the sample that is known or assumed to be free of structural

change.3 Based on the parameter estimates, computed using only calibration period

data, the detrended observations (or the residuals of a cointegrating relationship) are

the key ingredient for the monitoring procedure. The monitoring procedure is based on

sequentially computing the differences of scaled partial sums of squared residuals over

the growing monitoring period and the calibration period.4 The detection time, defined

in the following section, serves as an immediately available estimate of the break-point.

In order to obtain nuisance parameter free limiting distributions of the test statistics

1As discussed below, the approach also allows to monitor whether the coefficients of a cointegrating
relationship change over time.

2Related issues are analyzed in tests for so-called asset price bubbles, see e.g. Phillips et al. (2011),
where a bubble is associated with a structural change towards explosive behavior. Our approach can be
applied in this context as well, as discussed later.

3This approach to monitoring, based on estimation in a pre-break sample period only, has been
extended to the multivariate linear regression case by Groen et al. (2013) and has been applied to
monitor changes in the correlation structure by Wied and Galeano (2013).

4This, of course, immediately implies consistency of the procedure against any “more explosive”
alternative, like higher order integration or explosive behavior.
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when applying the principle to monitor cointegrating relationships, parameter estimation

on the calibration sample is performed using any of the available modified least squares

estimators that lead to nuisance parameter free limiting distributions of the parameters

of the cointegrating relationship. In particular we consider here Fully Modified OLS

(FM-OLS) of Phillips and Hansen (1990), Dynamic OLS (D-OLS) of Saikkonen (1991),

Phillips and Loretan (1993) and Stock and Watson (1993), and Integrated Modified OLS

(IM-OLS) of Vogelsang and Wagner (2014).

The asymptotic properties of the monitoring procedures are derived under both the null as

well as under (fixed and local) alternatives and for the case of breaks in trend parameters.

In case of cointegration monitoring we additionally consider the asymptotic behavior

of the monitoring procedure in case of breaks in the slope parameters. Based on the

asymptotic results, the performance of the proposed methods is investigated by means of

local asymptotic power analysis. Furthermore, finite sample simulations are performed to

consider empirical size and power for a variety of scenarios. Again, in addition to studying

the power against the alternative of integrated behavior we also assess the performance

in case of parameter changes in the trend and/or slope coefficients. We also assess the

estimated detection times in the finite sample simulations.

We briefly illustrate our monitoring procedure using daily CDS spreads series for Austria,

Cyprus, France and Germany over the period April 3, 2009 to August 1, 2012. The null

hypothesis of no structural change from stationary to integrated behavior is rejected for

all countries and all five considered maturities. For most of the series the estimated break

date is found to be in summer or fall 2010, i.e. already almost a year before the CDS

spreads series started to be dramatically high starting in summer 2011.

The paper is organized as follows: Section 2 develops the stationarity monitoring proce-

dure and studies its asymptotic properties under the null, for fixed and local alternatives

and in case of trend breaks. In Section 3 the approach is extended to monitor cointe-

gration and the asymptotic properties of the monitoring procedure are discussed for the

above mentioned three estimation procedures for cointegrating relationships. In addition
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we discuss here also the properties in case of structural change in the slope parameters.

Section 4 provides some simulation results investigating the finite sample properties of the

proposed monitoring procedures and Section 5 contains a brief illustration of the moni-

toring procedure using CDS spreads data for four European countries. Finally, Section

6 summarizes and concludes. All proofs are deferred to Appendix A and Appendix B

provides tables with critical values. Supplementary material containing additional simu-

lation and empirical results as well as additional critical values is available upon request.

Furthermore, also code that implements the discussed methods is available upon request.

2. Model and Assumptions for Monitoring Stationarity

The starting point of our considerations is to monitor (trend-)stationarity of

yt = D′tθD + ut, (1)

for which a sample of observations for t = 1, . . . , T is available and where Dt ∈ Rp

is a deterministic trend function, with coefficients θD ∈ Rp, for which the following

assumption is made:

Assumption 1. There exists a sequence of p×p scaling matrices GD and a p-dimensional

vector of functions D(z), with 0 <
∫ s
0
D(z)D(z)′dz < ∞ for 0 ≤ s ≤ 1, such that for

0 ≤ s ≤ 1

lim
T→∞

√
TG−1D D[sT ] → D(s), (2)

with [sT ] denoting the integer part of sT .

If e.g. Dt = (1, t, t2, ..., tp−1)′, then GD = diag(T 1/2, T 3/2, T 5/2, . . . , T p−1/2) and D(z) =

(1, z, z2, ..., zp−1)′.

Under the null hypothesis of trend stationarity we posit the assumption that the process

{ut}t∈Z fulfills a functional central limit theorem (FCLT):
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Assumption 2. The stationary process {ut}t∈Z fulfills

1√
T

[sT ]∑
t=1

ut ⇒ ωW (s), (3)

where W (s) denotes standard Brownian motion and 0 < ω2 <∞ is the long-run variance

of {ut}t∈Z,

ω2 :=
∞∑

j=−∞

E(utut−j). (4)

These two assumptions basically reflect the need for consistent OLS detrending and long-

run variance estimation (see also Footnote 2) and are extended in the following section

to allow for consistent parameter estimation in cointegrating regressions by any of the

mentioned modified least squares techniques. Any set of assumptions that leads to these

convergence results can be used.

In this paper we refer to a stochastic process fulfilling Assumption 2 as an I(0) process.

Requiring ω2 > 0 excludes over-differenced processes, e.g. ut = εt − εt−1, t ∈ Z for some

white noise process {εt}t∈Z has long-run variance equal to 0.

Remark 1. Note that we do not need stationarity in our I(0) definition, but only the

mentioned functional central limit result (3), with ω2 = limT→∞ E
(

1
T

∑T
t=1 ut

)2
. All

results hold without the extra requirement of stationarity in Assumption 2. We include

stationarity in the assumption, since we later consider monitoring of cointegration, i.e.

linear combinations of series that are stationary (to stick to the usual definition of coin-

tegration). �

Under the alternative we consider the situation that there exists some time point [rT ]

such that the process behaves like an I(1) process from [rT ] + 1 onwards. Thus, under

the alternative Assumption 2 is violated from [rT ] + 1 onwards in a specific way. For

our paper we define a process {xt}t∈Z to be an I(1) process, in accordance with our I(0)
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definition, if

1√
T
x[sT ] ⇒ ωW (s), (5)

for 0 ≤ s ≤ 1, some 0 < ω2 < ∞ and where W (s) denotes again standard Brownian

motion. It is clear that the (partial) sum process of an I(0) process is an I(1) process.

Thus, our null and alternative hypotheses are in formal terms given by

H0 :
1√
T

[sT ]∑
t=1

ut ⇒ ωW (s), for all 0 ≤ s ≤ 1 (6)

H1 :
1√
T

[sT ]∑
t=[rT ]+1

ut = Op(T
1/2) and

1√
T

[sT ]∑
t=[rT ]+1

ut 6= op(T
1/2) (7)

for some 1 > r ≥ m > 0 and for all s > r

The above formulation is to be understood in the sense that also under the alternative

the process {ut}t∈Z fulfills Assumption 2 up to [rT ] ≥ [mT ]. Note that we want to detect

a change from I(0) to I(1) behavior under the alternative that occurs at time point [rT ]

with m ≤ r < 1, i.e. a change that occurs only after some pre-break sample fraction of

length [mT ] with 0 < m < 1.

As we shall see below, we need such a pre-break sample fraction m in particular in order

to consistently estimate several quantities required to obtain a null limiting distribution

of our detector that is a function only of the included deterministic components and

standard Brownian motions and for which thus critical values can be simulated. These

quantities include, depending upon situation considered, the long-run variance ω2, the

trend parameters θD and in the following section, dealing with cointegration, also slope

parameters θX corresponding to the I(1) regressors in the monitored cointegrating rela-

tionship.

Remark 2. As mentioned in the introduction, our approach is inspired by Chu et al.

(1996), albeit we frame the problem slightly differently. As is standard in the unit root

6



and cointegration literature we map the (full set of) observations 1, . . . , T in the interval

[0, 1], as T →∞, and thus in the limit our pre-break estimation period corresponds to the

interval [0,m], as we use observations 1, . . . , [mT ] for parameter estimation. Chu et al.

(1996) consider as their “historical” period observations 1, . . . ,m. In their asymptotic

analysis m, with m→∞, is considered a fraction of the overall sample size T = λm with

λ > 1. Thus, the observations 1, . . . ,m are mapped into the interval [0, 1] and the whole

set of observations into [0, λ]. �

Considering for the moment ut, t = 1, . . . , T observed and ω2 known suffices to discuss

the approach of the paper. In this idealized case the detector for {ut}t∈Z is given by

Hm(s) :=
1

ω2

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Si

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Si

)2
 , (8)

for 0 < m ≤ s ≤ 1 and with Si =
∑i

t=1 ut denoting the partial sums of ut.

Under Assumption 2 it holds under the null hypothesis of no structural change that

Hm(s) ⇒ Hm(s) :=

(∫ s

m

W (z)2dz −
∫ m

0

W (z)2dz

)
, (9)

whereas the detector will diverge under the alternative (see the discussion below for

details). The detector is inspired by the KPSS stationarity test of Kwiatkowski et al.

(1992), with the (idealized) test statistic given by 1
ω2

(
1
T

∑T
i=1

(
1√
T
Si

)2)
, which converges

to
∫ 1

0
W (z)2dz under the null of stationarity. In case of I(1) behavior the scaled sum

diverges and our detector exploits these convergence rate differences by comparing the

convergent pre-break quantity with the potentially diverging post-break quantity.5

A related procedure is provided by Steland (2007), who bases his monitoring procedure on

sequential kernel-weighted variance ratios, i.e. his detector to monitor a change from I(0)

to I(1) behavior is, using our notation and known ω2, given by ŨT (s) = 1
ω2T

∑[sT ]
i=1 S

2
iKh(i−

5Let us note already here that in the cointegration monitoring situation our detector is similarly based
on the cointegration test statistic of Shin (1994) that extends the KPSS test from a stationarity to a
cointegration test.
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[sT ]) for some kernel function Kh(·). Steland (2007) also considers monitoring a change

from I(1) to I(0) behavior (clearly, with a differently scaled detector than the one given

above).6 Steland and Weidauer (2013) extend this approach to regressions with integrated

regressors that are, however, assumed to be strictly exogenous or even independent of

the errors. Also in this paper, as in Steland (2007), the null hypothesis is that of I(1)

errors against the alternative of I(0) errors after the break. In this paper we consider,

in the following section, monitoring the null of cointegration (I(0) errors), allowing for

endogenous regressors, against the alternative of a spurious regression (I(1) errors).

We define the detection time τm(Hm, g, c), often only written as τm if the context is clear,

as

τm := min
s:[mT ]+1≤[sT ]≤T

{∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

}
, (10)

i.e. the null hypothesis is declared rejected when the standardized detector, H
m(s)
g(s)

, exceeds

a critical value c in absolute value for the first time. In case that
∣∣∣Hm(s)
g(s)

∣∣∣ ≤ c for all

m ≤ s ≤ 1 we write τm = ∞. Thus, a finite value of τm indicates a rejection of the null

and at the same time gives information about the potential break point.

The properties of such a monitoring procedure hinge, by construction, upon the threshold

function g(s) and the constant c, which itself depends upon the function g. For simplicity

we only consider weighting functions that are continuous, bounded and positive through-

out this paper, compare Assumption 3.6 of Aue et al., 2012. Note that Chu et al. (1996)

consider more general weighting functions. Weighting function and critical value have to

6Note that Steland (2007) does not consider deterministic components. This restriction is relaxed to a
certain extent in Steland (2008), where he considers polynomial trends. This situation is also considered
in Qi et al. (2013). Chen et al. (2010) modify the approach of Steland and also use a “calibration” period
at the beginning of the sample for which it is known whether the series is I(0) or I(1). Chen et al. (2012)
use the bootstrap to detect multiple changes of persistence. Another related procedure is discussed in
Kim (2000), who considers the properly scaled ratio of sums of squared partial sums of residuals before
and after the hypothesized break.
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be chosen in order to ensure that under the null hypothesis

lim
T→∞

P(τm <∞) = lim
T→∞

P
(

min
s:[mT ]+1≤[sT ]≤T

{∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

}
<∞

)
= lim

T→∞
P

(
sup

s:[mT ]+1≤[sT ]≤T

∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

)
(11)

= P
(

sup
m≤s≤1

∣∣∣∣Hm(s)

g(s)

∣∣∣∣ > c

)
= α,

with α denoting the chosen significance level. Deriving such a result can be based on

a functional central limit theorem for Hm(s), since we consider only continuous g(s).

The choice of g(s) is in the words of Chu et al. (1996), compare p. 1052, “often dic-

tated by mathematical convenience rather than optimality, since crossing probabilities

for an arbitrary boundary are analytically intractable in general.” The problem is typ-

ically transformed into delivering simple stopping times. This is due to the fact, al-

ready used in (11), that the event {infm≤s≤1{|Hm(s)/g(s)| > c} 6= ∞} is equal to the

event {supm≤s≤1{|Hm(s)/g(s)|} > c}. Therefore, the sup-functional in the context of

testing can be considered as the natural equivalent to the stopping time based on the

inf-functional in the context of monitoring. This is also the approach pursued in Chu

et al. (1996) for parameter change in linear regression models. Clearly, the choice of the

weighting function impacts the performance of the monitoring procedure. The choice of

the weighting function has to combine two opposing goals of a monitoring procedure: (a)

small size distortions and (b) small delays, i.e. detection soon after the break. The dis-

cussion in Section 3 of Chu et al. (1996) makes clear that it will in general be impossible

to derive analytically tractable optimal weighting functions, e.g. with respect to minimal

expected delay whilst asymptotically controlling size.7

With the starting point in most applications being the observed time series yt, t =

1, . . . , T rather than ut, t = 1, . . . , T , partial sums of residuals are the input in the

7Aue et al. (2009) derive the limiting distribution of the delay time for a one-time parameter change
in a linear regression model with stationary regressors for a simple class of weighting functions depending
on a single tuning parameter. To the best of the authors’ knowledge, no results of this kind are available
in a unit root or cointegration setting.
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monitoring procedure. The residuals ût,m are given by detrended yt, with the trend

parameters θD estimated from the pre-break sample t = 1, . . . , [mT ]. Thus,

ût,m := yt −D′tθ̂D,m (12)

= ut −D′t
(
θ̂D,m − θD

)
= ut −D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui.

Under Assumptions 1 and 2 it follows immediately that

1√
T

[sT ]∑
t=1

ût,m =
1√
T
Ŝ[sT ] ⇒ ωŴm(s), (13)

with Ŝi =
∑i

t=1 ût,m and Ŵm(s) := W (s)−
∫ s
0
D(z)′dz

(∫ m
0
D(z)D(z)′dz

)−1 ∫ m
0
D(z)dW (z).

Given the FCLT (13) for the partial sum of the detrended observations and the continuous

mapping theorem, the asymptotic behavior of the detector based on ût,m, Ĥm(s) say,

under the null hypothesis can be established.

Lemma 1. Let the data be generated by (1) with Assumptions 1 and 2 in place and let

ω̂2
m denote a consistent long-run variance estimator based on ût,m, for t = 1, . . . , [mT ].

Then it holds under the null hypothesis for T →∞ and m ≤ s ≤ 1 that

Ĥm(s) :=
1

ω̂2
m

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝi

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Ŝi

)2
 (14)

⇒
∫ s

m

Ŵ 2
m(z)dz −

∫ m

0

Ŵ 2
m(z)dz =: Ĥm(s). (15)

In order to show consistency of the detector later, it is of key importance here that all

parameters, i.e. the trend slopes θD and the long-run variance ω2, are estimated only

from the pre-break sample up to [mT ]. Consistent long-run variance estimation is a well

studied problem in the econometrics literature and has been established for a variety of

primitive or high level assumptions. For simplicity in this paper we merely assume that
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the sufficient assumptions on {ut}t∈Z, the kernel function and bandwidth given in Jansson

(2002) are fulfilled.8

Under the stated assumptions it can be shown that under the null hypothesis, for given

weighting function g(s), there exist critical values c = c(α, g), which depend not only

on α but also on the weighting function g, such that the detection time is finite with

probability equal to the pre-specified level α.

Proposition 1. Let the data be generated by (1) with Assumptions 1 and 2 in place and

let ω̂2
m denote a consistent long-run variance estimator. Then, under the null hypothesis it

holds that for any given 0 < α < 1 and any continuous function g such that 0 < g(s) <∞

there exists a 0 < c = c(α, g) <∞, such that

lim
T→∞

P(τm(Ĥm, g, c(α, g)) <∞) = α. (16)

Given the behavior under the null hypothesis the next result shows that the monitoring

procedure is consistent against both fixed and local alternatives, defined precisely below.

As fixed alternative we consider the case that {ut}t∈Z changes behavior from I(0) to I(1)

at some point after [mT ], i.e. that H1 as given above holds. To understand the properties

of our procedure in more detail we also consider local alternatives of the following form

(inspired by Cappuccio and Lubian, 2005). There exists an r, with m ≤ r < 1 such that

for all t ≤ [rT ] we have ut = u0t , while for all t > [rT ] it holds that

ut = u0t +
δ

T

t∑
i=[rT ]+1

ξi, (17)

with {u0t}t∈Z and {ξt}t∈Z independent processes both fulfilling Assumption 2, with long-

run variances ω2 and ω2
ξ , and δ > 0. I.e. under the considered local alternatives the

8To be precise this means to specify more detailed assumptions on {ut}t∈Z than just the FCLT
formulated in Assumption 2, compare Assumptions A1 and A2 in Jansson (2002). Let us note again,
that any other set of assumptions that allows for consistent long-run variance estimation also would serve
our purposes. In relation to Remark 1 it has to be noted that without the stationarity assumption one
has to resort to other conditions, since Jansson (2002) considers stationary processes.
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process {ut}t∈Z is, from time point [rT ] + 1 onwards, the sum of an I(0) process and an

independent I(1) process divided by the sample size. The local alternatives imply that

the properly scaled partial sums of ût,m, i.e. Ŝt, converge to the following expression (for

details see the proofs in Appendix A):

1√
T
Ŝ[sT ] ⇒ ωŴm(s) + δωξ

∫ s

r

(Wξ(z)−Wξ(r))dz, (18)

where integrals (and sums) with the lower boundary larger than the upper are defined to

be equal to 0. Here Wξ(s) is a standard Brownian motion independent of W (s).

Proposition 2. (Consistency and Local Asymptotic Power)

Let the data be generated by (1) with Assumption 1 in place and with {ut}t∈Z fulfilling

Assumption 2 until [rT ], with m ≤ r < 1. Furthermore, let ω̂2
m again be a consistent

long-run variance estimator and g continuous with 0 < g(s) <∞.

(a) Let {ut}t∈Z be an I(1) process (as specified in H1) from [rT ] + 1 onwards. Then the

monitoring procedure is consistent, i.e. for any c > 0 it holds that

lim
T→∞

P(τm(Ĥm, g, c) <∞) = 1. (19)

(b) Let {ut}t∈Z be as specified in (17) from [rT ] + 1 onwards. Then the monitoring

procedure has non-trivial local power. That means that for any 1 − α ≥ ε > 0 and

the 0 < c = c(α, g) <∞ from Proposition 1 there exists a 0 < δ = δ(c, g) <∞ such

that

lim
T→∞

P(τm(Ĥm, g, c(α, g)) <∞) ≥ 1− ε. (20)

The result underlying part (b) stems from the convergence result for Ĥm(s) under the
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considered local alternatives. For 1 ≥ s > r ≥ m it holds that:

Ĥm(s) ⇒ Ĥm(s) + 2δ
ωξ
ω

∫ s

r

Ŵm(z)

(∫ z

r

(Wξ(g)−Wξ(r)) dg

)
dz + (21)

+δ2
(ωξ
ω

)2 ∫ s

r

(∫ z

r

(Wξ(g)−Wξ(r)) dg

)2

dz.

This result shows that the magnitude of the additional terms depends, in addition to δ,

upon the “signal-to-noise” ratio ωξ/ω. As expected, ω enters with negative powers, i.e.

a larger error variance decreases local asymptotic power and similarly a larger variance

of the additional I(1) component increases local asymptotic power.9

Remark 3. It is clear and immediate from an inspection of the proof that the procedure

is consistent not only against the I(1) alternative but also against the alternative of

near-integrated processes, compare Phillips (1987). A near-integrated process is given by

ut,T = (1 − d
T

)ut−1,T + νt, with d > 0 and {νt}t∈Z a stationary process with finite and

positive long-run variance ω2. Clearly, in case d = 0 we are back to the standard I(1)

alternative. Consistency against near-integrated alternatives follows from the functional

central limit theorem for near-integrated processes, i.e. 1√
T
u[rT ],T ⇒ ωVd(r), with Vd(r) =∫ r

0
e−d(r−s)dW (s), which implies that near-integrated alternatives fulfill H1. �

The above results do not pin down the threshold function g(s), which could be specified in

many ways. Given that optimality results are not available and potentially not possible to

obtain, a natural and simple candidate is to choose g in relation to E(Ĥm) to standardize

the first moment of the detector’s distribution under the null. In the special case of an

intercept only (Dt = 1), we obtain

Ŵm(s) = W (s)− s

m

∫ m

0

dW (z) = W (s)− s

m
W (m). (22)

9In the local asymptotic power simulations below we set the signal-to-noise ratio without loss of
generality equal to one, since local asymptotic power depends only upon the product of δ and the signal-
to-noise ratio. Also note that it is sufficient to consider {u0t}t∈Z and {ξt}t∈Z independent, as asymptotic
independence between the two components can always be achieved by redefining the two quantities
correspondingly after “orthogonalization”.

13



Then, with the well-known covariance structure of a standard Brownian motion one

obtains

E(Ŵ 2
m(s)) = s− 2s

m
min(s,m) +

s2

m
, (23)

from which, by changing the sequence of integration (Fubini), it follows that

E(Ĥm(s)) =

∫ s

m

E(Ŵ 2
m(z))dz −

∫ m

0

E(Ŵ 2
m(z))dz = −1

2
s2 +

1

3

s3

m
. (24)

Thus, the order of the expected value is s3, which motivates our choice g(s) = s3 to

essentially standardize the expected value of the detector. In case that the deterministic

component consists of intercept and linear trend (Dt = (1, t)), similar calculations lead to

the order being s5. Thus, in the linear trend case we consider g(s) = s5 in the simulations

and application below.

For given or chosen weighting function, critical values for the test procedure can be

simulated by approximating the functionals of Brownian motions by the corresponding

functions of random walks of length 1,000 generated from i.i.d. standard normal random

variables. The available critical values are based on 1,000,000 replications. The critical

values depend upon 0 < m < 1 and the specification of the deterministic component.

Detailed critical values for a grid of m-values ranging from 0.1 to 0.9 with mesh 0.01 are

contained in Appendix B, in Table 4, for Dt = 1 with g(s) = s3, and in Table 5, for

Dt = (1, t)′ with g(s) = s5.

The monitoring procedure can also be used to detect breaks in the trend parameters θD

that occur after [mT ], given that the trend parameters are also estimated only using the

observations up to [mT ]. Again we consider fixed and local alternatives.10 In the present

context local alternatives are not described by a scalar parameter, but by ∆θ ∈ Rp and

the appropriate local alternatives are given by G−1′D ∆θ, reflecting the different rates of

10The usage of the word alternative is sloppy here, since it is now not the stochastic component that
leads to divergence of the detector. We are confident that this will not lead to any confusion.
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convergence of the trend parameters. E.g. for the constant term, the rate is the usual

1√
T

, whereas for the linear trend coefficient the rate is T−3/2.

Proposition 3. (Behavior in Case of Trend Breaks)

Let the data be generated by (1) with Assumptions 1 and 2 in place and let ω̂2
m denote

again a consistent long-run variance estimator. Assume furthermore again that g is

continuous with 0 < g(s) <∞.

(a) (Fixed Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,2, with θD,1 6=

θD,2, from t = [rT ] + 1 onwards, with

lim
T→∞

1√
T

T∑
t=[rT ]+1

D′t(θD,1 − θD,2) = ±∞ (25)

then it holds for any c > 0 that

lim
T→∞

P(τm(Ĥm, g, c) <∞) = 1. (26)

(b) (Local Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,1 + G−1′D ∆θ from

t = [rT ] + 1 onwards with

∫ 1

r

D(z)′dz∆θ 6= 0, (27)

then the monitoring procedure has non-trivial local power. That means that for any

1 − α ≥ ε > 0 and the 0 < c = c(α, g) < ∞ from Proposition 1 there exists a

∆θ = ∆θ(c, g) fulfilling (27) such that

lim
T→∞

P(τm(Ĥm, g, c(α, g)) <∞) ≥ 1− ε. (28)

The condition (25) is in case of polynomial trend functions fulfilled for all θD,1 6= θD,2,

clearly for all r < s ≤ 1 and not just for s = 1 as used in (25). The condition (27) is not

15



fulfilled only on an algebraic set. E.g. in case of Dt = (1, t)′ it holds that
∫ 1

r
D(z)′dz =(

1− r, 1
2
− 1

2
r2
)

and thus the set of values for which ∆θ ∈ R2 is orthogonal to this vector

corresponds to a straight line in R2.

An analogous result as given above in (21) but now for the case of local trend breaks is,

for the special case of Dt = 1 and for s > r ≥ m, given by:

Ĥm(s) ⇒ Ĥm(s) + 2
∆θ

ω

∫ s

r

Ŵm(z)(z − r)dz + (29)

+
∆2
θ

ω2

(
s3

3
− s2r + sr2 − r3

3

)
.

Remark 4. In case that breaks occur in both the deterministic and stochastic component

of {yt}t∈Z, the behavior of our detector is a corresponding combination of the behavior

discussed in Propositions 2 and 3. This implies that a rejection of the null hypothesis

does not allow one to identify the source(s) of the break. �

Remark 5. Our approach can also be employed for detecting bubbles. In the recent

literature, a bubble is often characterized as a period where the behavior of a time

series has switched from integrated to explosive behavior, compare Phillips et al. (2011).

Thus, our procedure allows to detect (the beginning of) a bubble by considering the first

difference of the series, since in case of no bubble the first differences are stationary,

whereas in case of explosive behavior also the first differences exhibit explosive behavior.

�

Remark 6. In relation to the previous remark, with bubbles typically considered to be

temporary rather than permanent phenomena, it has to be noted that our procedure

will be consistent in detecting episodes of I(1) or explosive behavior, as long as these

episodes have asymptotically positive length. E.g. in the case of only one period under

the alternative it has to hold that this period occurs over a sub-sample of the form

[r1T ], . . . , [r2T ] with r1 < r2. It is immediate that consistency generalizes to multiple

periods of this form. �
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We close this section by looking at local asymptotic power (LAP) of the monitoring

procedure. We consider LAP as discussed in Proposition 2(b) and against local-to-zero

trend breaks as discussed in Proposition 3(b). The power curves are simulated similarly to

the critical values. Discretized versions of the corresponding limiting distributions under

the local alternatives are simulated. The limiting distribution for LAP against a unit root

process is given in (21) and the limiting distribution in case of local trend breaks is given

in (29). Again time series of length 1,000 are generated, with the number of replications

given by 10,000. For each replication the errors ut, and when considering Proposition 2(b)

the ξt, are drawn as i.i.d. standard normal random variables independent of each other.

The resulting values are then compared with the critical values and all test decisions

are performed at the 5% level. All LAP curves are drawn for a grid of 21 equidistant

values of δ, in the interval [0, 100]. Throughout we consider different combinations of

the calibration period m ∈ {0.25, 0.5, 0.75} and break point r ≥ m from the same set of

values.

In Figure 1 we display local asymptotic power based on Proposition 2(b). The upper two

plots consider the intercept only case and the lower two plots display the linear trend

case. LAP is lower in the linear trend case compared to the intercept case. In each of

the two sub-blocks of the figure the upper plot shows the effect of increasing r relative

to fixed m = 0.25. As expected, LAP is decreasing with increasing r, since the period

over which the integrated behavior can be detected is getting shorter and starts later.

The lower two figures each display the effect of increasing the estimation sub-sample with

increasing values of m = r. Here the effects are as expected for the intercept case, where

LAP is decreasing with increasing values of m = r. The results are different in the linear

trend case, where LAP is highest for m = r = 0.5 and lowest for m = r = 0.25.

In Figure 2 we display, based on the result in Proposition 3(b), LAP against breaks in the

intercept (upper two plots) and breaks in the linear trend parameter (lower two plots).11

The structure of the plots is the same as in Figure 1 and also the findings are very similar.

11Note the different ranges of the horizontal axis for the two cases, with ∆θ ∈ [0, 10] in case of an
intercept break and ∆θ ∈ [0, 100] in case of a break of the slope of the linear trend.
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Figure 1: Local asymptotic power against I(1) alternatives. The upper two plots display the
intercept case and the lower two plots the linear trend case. The plots show results for different
combinations of m and r.
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The only non-expected result again occurs in the lowest plot, where LAP for different

values of m = r in case of a break in the linear trend is displayed. In this case LAP is

highest for m = r = 0.5, whereas in the intercept only case LAP monotonously decreases

in m = r.

3. Monitoring Cointegration

In this section we use the same ideas as discussed before to monitor cointegrating rela-

tionships using the following setup:

yt = D′tθD +X ′tθX + ut (30)

Xt = Xt−1 + vt, (31)

with yt scalar, Dt ∈ Rp as before and Xt k-dimensional. The joint error vector process

{ηt}t∈Z, with ηt = (ut, v
′
t)
′, fulfills a similar assumption as {ut}t∈Z in the previous section:

Assumption 3. The stationary process {ηt}t∈Z fulfills

1√
T

[sT ]∑
t=1

ηt =
1√
T

[sT ]∑
t=1

 ut

vt

 ⇒ Ω1/2W (s), (32)

with W (s) = [Wu·v(s),Wv(s)
′]′ ∈ R1+k a vector of standard Brownian motions and 0 <

Ω <∞, with

Ω =

 Ωuu Ωuv

Ωvu Ωvv

 :=
∞∑

j=−∞

E(ηtη
′
t−j). (33)

For our purposes it is convenient to use

Ω1/2 =

 ωu·v λuv

0 Ω
1/2
vv

 , (34)
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Figure 2: Local asymptotic power against breaks in deterministic components. The upper two
plots display the case of a break in the intercept and the lower two plots display the case of a
break in the linear trend. The plots show results for different combinations of m and r.
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where ω2
u·v := Ωuu − ΩuvΩ

−1
vv Ωvu and λuv := Ωuv(Ω

1/2
vv )−1.

The assumption Ωvv > 0 excludes cointegration amongst the regressors and is typically

required for the modified OLS estimation techniques available, including Fully Modified

OLS (FM-OLS) of Phillips and Hansen (1990), Dynamic OLS (D-OLS) of Saikkonen

(1991), and Integrated Modified OLS (IM-OLS) of Vogelsang and Wagner (2014). It

is well-known that OLS estimation of θ = [θ′D, θ
′
X ]′ in (30) is consistent, but that in

general the limiting distribution of the OLS estimator depends on second order bias terms,

which render asymptotic standard inference based on the OLS estimates infeasible. This

problem occurs in particular when the regressors are not strictly exogenous, i.e. when the

matrix Ω is not block-diagonal.12 The mentioned modified OLS estimators lead to limiting

distributions of the parameters that are proportional to functionals of standard Brownian

motions (which depend upon Dt and the number of integrated regressors k) also in case

of endogeneity. For brevity we abstain from explaining these well-known procedures here

and just consider the residuals obtained from these estimation procedures as input in our

monitoring procedure.13

We consider for illustration specifically the residuals of FM-OLS estimation, denoting the

dependent variable used in FM-OLS by y+t := yt −∆X ′tΩ̂
−1
vv Ω̂vu:

14

û+t,m := y+t −D′tθ̂D,m −X ′tθ̂X,m (35)

= yt −∆X ′tΩ̂
−1
vv Ω̂vu −D′tθ̂D,m −X ′tθ̂X,m

= ut − v′tΩ̂−1vv Ω̂vu −D′t
(
θ̂D,m − θD

)
−X ′t

(
θ̂X,m − θX

)
,

where θ̂D,m and θ̂X,m denote the FM-OLS coefficient estimates and Ω̂(= Ω̂m) denotes the

long-run variance estimate, all computed from the pre-break sample 1, . . . , [mT ].15

12In case of strict exogeneity, asymptotically valid inference can be based on the OLS estimates if serial
correlation in {ut}t∈Z is handled appropriately using consistent long-run variance estimation.

13Only the less well-known IM-OLS estimator is briefly discussed below.
14Clearly, the construction of y+t using ∆Xt implies that the sample size available is t = 2, . . . , T . To

simplify notational flow we nevertheless consider the sums below starting at t = 1, by setting û+1,m = 0,

with û+t,m defined in the next equation. In the same way, D-OLS estimation leads to a reduced effective
sample size due to the usage of leads and lags.

15In case the procedure is implemented using the D-OLS estimator, the residuals are defined
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Using consistent estimators of the long-run variances, ensured again by assuming to be in

the framework covered by Jansson (2002), leads to a FCLT for the modified OLS residuals

û+t,m.

Lemma 2. Let the data be generated by (30) and (31) with Assumptions 1 and 3 in

place and let Ω̂ be a consistent long-run variance estimator (required only for FM-OLS).

Then it holds under the null hypothesis and for m ≤ s ≤ 1 for T →∞ for FM-OLS and

D-OLS that

1√
T

[sT ]∑
t=1

û+t,m ⇒ ωu·v

(
Wu.v(s)−

∫ s

0

J(z)′dz

(∫ m

0

J(z)J(z)′dz

)−1 ∫ m

0

J(z)dWu·v(z)

)
=: ωu·vŴu·v(s) (36)

with J(s) := [D(s)′,Wv(s)
′]′.

Clearly, the process Ŵu·v(s) depends upon Dt, the number of integrated regressors k

and the pre-break fraction m, with these dependencies neglected for notational brevity

henceforth.

Given the FCLT (36) for the partial sum process of the modified residuals, the detector

for cointegration, using either the FM-OLS or the D-OLS estimator, is defined by

Ĥm,+(s) :=
1

ω̂2
u·v

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝ+
i

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Ŝ+
i

)2
 , (37)

where the scaling factor is now a consistent estimator ω̂2
u·v = Ω̂uu − Ω̂uvΩ̂

−1
vv Ω̂vu of the

conditional long-run variance ω2
u·v.

(using the same notation for the residuals and coefficient estimates) as û+t,m := yt − D′tθ̂D,m −
X ′tθ̂X,m −

∑k2
j=−k1 ∆X ′t−jΘ̂j,m, or equivalently û+t,m = ut − D′t

(
θ̂D,m − θD

)
− X ′t

(
θ̂X,m − θX

)
−∑k2

j=−k1 ∆X ′t−jΘ̂j,m, with the matrices θ̂D,m, θ̂X,m and Θ̂j,m being the OLS estimates from the re-

gression yt = D′tθD +X ′tθX +
∑k2
j=−k1 ∆X ′t−jΘj + ut estimated on the sample 1, . . . , [mT ]. Whereas in

FM-OLS estimation bandwidth and kernel have to be chosen, D-OLS estimation requires choosing the
number of leads k1 and lags k2. Under appropriate assumptions concerning the asymptotic behavior of
lag/lead choices the D-OLS residuals fulfill the same FCLT as the FM-OLS residuals. Asymptotically,
therefore the usage of either estimator leads to the same monitoring procedure.
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All long-run variances and covariances required in the procedure (both for modified OLS

parameter estimation as well as for scaling the detector) are based on the OLS residuals

ût,m stacked on top of the first differences of the regressors, i.e. upon η̂t = [ût,m, v
′
t]
′.

Again the OLS estimation from which the parameter estimates and long-run variance

estimates are computed uses observations t = 1, . . . , [mT ] only.

Given the definition of the detector for cointegration (37) the first result to be established

is the asymptotic distribution of the detector under the null hypothesis.

Lemma 3. Let the data be generated by (30) and (31) with Assumptions 1 and 3 in place

and let ω̂2
u·v denote a consistent long-run variance estimator. Then it holds under the null

hypothesis and for m ≤ s ≤ 1 for T →∞ for FM-OLS and D-OLS that

Ĥm,+(s) ⇒
∫ s

m

Ŵ 2
u·v(z)dz −

∫ m

0

Ŵ 2
u·v(z)dz =: Ĥm,+(s) (38)

Alternatively, one can also base the cointegration monitoring procedure on the residuals

of the recently proposed Integrated Modified OLS (IM-OLS) estimator of Vogelsang and

Wagner (2014). A potential advantage of the IM-OLS estimator compared to FM-OLS

and D-OLS is that for parameter estimation no kernel and bandwidth or lead and lag

choices are required. The IM regression is given by

Syt = SD′t θD + SX′t θX +X ′tϕ+ Sut , (39)

with Syt =
∑t

j=1 yj denoting the partial sums, and similar definitions of SDt and SXt .

We denote the corresponding OLS residuals, with estimation based upon the pre-break

sample 1, . . . , [mT ] by (using the same notation for the coefficient estimates as before)

Ŝut,m := Syt − SD′t θ̂D,m − SX′t θ̂X,m −X ′tϕ̂m (40)

= Sut −X ′tϕ̂m − SD′t (θ̂D,m − θD)− SX′t (θ̂X,m − θX)

Under the assumptions stated the following FCLT holds:
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Lemma 4. Let the data be generated by (30) and (31) with Assumptions 1 and 3 in

place. Then it holds for T →∞ that

1√
T

[sT ]∑
t=2

∆Ŝut,m ⇒ ωu·v

(
Wu·v(s)− f(s)′

(∫ m

0

f(z)f(z)′dz

)−1 ∫ m

0

[F (m)− F (z)] dWu·v(z)

)
=: ωu·vP̃m(s), (41)

where f(s) := [
∫ s
0
D(z)′dz,

∫ s
0
Wv(z)′ds,Wv(z)′]′ and F (s) :=

∫ s
0
f(z)dz.

Based upon the above result, the IM-OLS based detector is defined analogously as:

Îm(s) :=
1

ω̂2
u·v

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝui,m

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Ŝui,m

)2
 , (42)

where the scaling is, as for the other detectors, based on a consistent estimator of ω2
u·v.

Note that the same estimator as for FM-OLS or D-OLS, i.e. the estimator based on the

OLS residuals ût,m stacked on top of the first differences of the regressors, is used. The

asymptotic null behavior of the IM-OLS detector is given next.

Lemma 5. Let the data be generated by (30) and (31) with Assumptions 1 and 3 in place

and let ω̂2
u·v denote a consistent long-run variance estimator. Then it holds under the null

hypothesis and for m ≤ s ≤ 1 for T →∞ for IM-OLS that

Îm(s) ⇒
∫ s

m

P̃m(z)2dz −
∫ m

0

P̃m(z)2dz =: Im(s) (43)

As for the stationarity monitoring procedure, it can be shown that under the null hy-

pothesis for given weighting function g(s), there exist critical values c = c(α, g(s)), such

that the detection time is finite with probability equal to the pre-specified level α.

Proposition 4. Let the data be generated by (30) and (31) with Assumptions 1 and 3 in

place, let long-run variance estimation be carried out consistently and assume again that

g is continuous with 0 < g(s) <∞. Then, under the null hypothesis there exists for any
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given 0 < α < 1 critical values c = c(α, g), depending upon estimation method, such that

lim
T→∞

P(τm(Ĥm,+, g, c(α, g)) <∞) = α, (44)

in case that FM-OLS or D-OLS is used, respectively

lim
T→∞

P(τm(Îm, g, c(α, g)) <∞) = α, (45)

in case IM-OLS is used.

Remark 7. Note that for given weighting function g the critical values are identical

for the FM-OLS and D-OLS based detectors, but are different for the IM-OLS based

detector. �

The critical values depend again also on the weighting function g(s), which we again

choose as g(s) = s3 in the intercept case Dt = 1 and g(s) = s5 in the linear trend case

Dt = (1, t)′. Critical values for these two cases are provided for FM-OLS & D-OLS and

for IM-OLS for one and two regressors in Appendix B in Tables 6 to 13.16 The simulations

are performed analogously to the ones described above in Section 2 for the critical values

for the stationarity monitoring procedure.

It remains to establish the behavior of the monitoring procedure under alternatives. In

fact there are now three dimensions of structural change against which the procedures are

shown to have power. First, changes in the behavior of {ut}t∈Z, where we consider exactly

the same alternatives as above in Proposition 2. Second, again similar to before, we

consider the behavior against breaks in the parameters corresponding to the deterministic

component. Third, we now additionally consider the behavior against breaks in the slope

coefficients corresponding to the integrated regressors. For all three cases we consider

fixed and local alternatives.

16The supplementary material contains critical values for three and four regressors.
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Proposition 5. (Consistency and Local Asymptotic Power)

Let the data be generated by (30) and (31) with Assumption 1 in place and {ηt}t∈Z fulfilling

Assumption 3 until [rT ], with m ≤ r < 1. Furthermore, assume that long-run variance

estimation is performed consistently using observations 1, . . . , [mT ] and assume again

that g is continuous with 0 < g(s) <∞. Denote with F̂m(s) either Ĥm,+(s) or Îm(s).

(a) Let {ut}t∈Z be an I(1) process (as specified in H1) from [rT ] + 1 onwards. Then the

monitoring procedures are consistent, i.e. for any c > 0 it holds that

lim
T→∞

P(τm(F̂m, g, c(α, g)) <∞) = 1. (46)

(b) Let {ut}t∈Z be as specified in (17) from [rT ] + 1 onwards. Then the monitoring

procedures have non-trivial local power. That means, for any 1−α ≥ ε > 0 and the

0 < c = c(α, g) < ∞ from Proposition 4 there exists a 0 < δ = δ(c, g) < ∞ such

that

lim
T→∞

P(τm(F̂m, g, c(α, g)) <∞) ≥ 1− ε. (47)

Proposition 6. (Behavior in Case of Trend Breaks)

Let the data be generated by (30) and (31) with Assumptions 1 and 3 in place. Further-

more, assume that long-run variance estimation is performed consistently using observa-

tions 1, . . . , [mT ] and and assume again that g is continuous with 0 < g(s) <∞. Denote

with F̂m(s) either Ĥm,+(s) or Îm(s).

(a) (Fixed Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,2, with θD,1 6=

θD,2, from t = [rT ] + 1 onwards, with

lim
T→∞

1√
T

T∑
t=[rT ]+1

D′t(θD,1 − θD,2) = ±∞ (48)
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then it holds for any c > 0 that

lim
T→∞

P(τm(F̂m, g, c) <∞) = 1. (49)

(b) (Local Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,1 + G−1′D ∆θ from

t = [rT ] + 1 onwards with

∫ 1

r

D(z)′dz∆θ 6= 0, (50)

then the monitoring procedure has non-trivial local power. That means, for any

1 − α ≥ ε > 0 and the 0 < c = c(α, g) < ∞ from Proposition 4 there exists a

∆θ = ∆θ(c, g) fulfilling (50) such that

lim
T→∞

P(τm(F̂m, g, c(α, g)) <∞) ≥ 1− ε. (51)

Compared to the discussion in the previous section, there is now the additional possibility

of breaks in the slope coefficients θX , which are in a sense equivalent to changes in the

behavior of the {ut}t∈Z. Consider for simplicity the case θX = θX,1 for t = 1, . . . , [rT ] and

θX = θX,2, with θX,1 6= θX,2, for t = [rT ] + 1, . . . , T . In this case we can write for t > [rT ]

yt = D′tθD +X ′tθX,2 + ut (52)

= D′tθD +X ′tθX,1 +X ′t(θX,2 − θX,1) + ut.

Clearly, this implies that in the residual process starting from [rT ] onwards an integrated

process given by X ′t(θX,2− θ̂X,1,m) is present. This component remains present as an I(1)

process also in the limit due to consistency of θ̂X,1,m → θX,1 6= θX,2. Consequently, in

case of a break in the slope parameters, the residual process is an I(1) process. There-

fore, the asymptotic behavior in case of slope breaks is similar to the case discussed in

Proposition 5. We therefore have a very similar result, where local alternatives are now
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of the form θX,2 = θX,1 + 1
T

∆θ.

Proposition 7. (Behavior in Case of Slope Breaks)

Let the data be generated by (30) and (31) with Assumptions 1 and 3 in place. Further-

more, assume that long-run variance estimation is performed consistently using observa-

tions 1, . . . , [mT ] and and assume again that g is continuous with 0 < g(s) <∞. Denote

with F̂m(s) either Ĥm,+(s) or Îm(s).

(a) Considering fixed alternatives of the form θX = θX,1 for t = 1, . . . , [rT ] and θX =

θX,2 for t = [rT ] + 1, . . . , T , with θX,1 6= θX,2 leads to a similar result as in part (a)

of Proposition 5.

(b) Considering local alternatives of the form θX = θX,1 for t = 1, . . . , [rT ] and θX =

θX,1 + 1
T

∆θ, with ∆θ 6= 0, for t = [rT ] + 1, . . . , T leads to a similar result as in part

(b) of Proposition 5.

Remark 8. Remarks 3 to 6 apply analogously to the cointegration monitoring procedures

as well. �

We again close this section by considering local asymptotic power which is simulated anal-

ogously to the LAP simulations in the previous section, i.e. the number of replications is

10,000 and the time series considered are of length 1,000. All random variables are i.i.d.

standard normal. The limiting distribution for LAP as discussed in Proposition 5(b)

is based on the FCLTs under local alternatives given in (60) for FM-OLS and D-OLS

and (61) for IM-OLS in Appendix A. These are the input to obtain a limiting distribution

similar to the limiting distribution given in (21) used above to study LAP when mon-

itoring stationarity. Also local asymptotic power against trend breaks (Proposition 6)

is simulated in the same way with the corresponding FCLTs given in (64) and (65) in

Appendix A that can be used to obtain limiting distributions similar to (29). Finally,

local asymptotic power against slope breaks (Proposition 7) is based on the FCLTs given

in (68) and (69) in Appendix A. Also for this case the FCLTs allow to establish the lim-

iting distributions of the detectors under the local alternative. Considering these results
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in detail leads to exactly the same observations as in the previous section with respect to

the dependence of LAP on the signal-to-noise ratio. As an extension of this fact it turns

out that LAP against slope breaks increases with the variance of the regressors. Similarly

to the simulations in the previous section we set all signal-to-noise ratios equal to one. It

is also clear that in addition to the dependence upon the deterministic component, LAP

now also depends upon the number of integrated regressors, as illustrated in Figure 3.

As expected, LAP decreases with an increasing number of regressors. Consequently, all

other results displayed are for the case of only one integrated regressor.

In Figure 4 we display LAP against local I(1) alternatives in case of intercept and linear

trends included in the model, where we consider again the same combinations of m and

r as in the previous section. The upper two plots correspond to FM-OLS and D-OLS

and the lower two plots correspond to IM-OLS. The results show that LAP is lower

for IM-OLS, which is as expected given the results of Vogelsang and Wagner (2014)

concerning the relative conditional efficiency of FM-OLS over IM-OLS.17 The practical

usefulness of IM-OLS stems from the lower finite sample size distortions that it implies

compared to FM-OLS, as illustrated in the following section where we consider finite

sample simulations. With respect to changing values of m and r all methods have similar

LAP rankings, which coincide with the rankings found in the previous section.

In Figure 5 we display local asymptotic power results against breaks in the intercept,

with the same structure of the figure as in Figure 4. The ordering of LAP as a function

of m = r (in the second and fourth plot) differs between FM-OLS/D-OLS and IM-OLS.

For IM-OLS LAP increases with increasing m = r, whereas for the other two methods

LAP is, as in the previous section, highest for m = r = 0.5.

17The results are similar, with the differences smaller, in case of the model with intercept only. Ad-
ditional results, including also results for breaks in the slope parameter, are available in supplementary
material. The findings are, as expected, very similar to the ones for local I(1) alternatives.
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Figure 3: Local asymptotic power for k = 1, . . . , 4 regressors for monitoring cointegration for
the case with intercept. The upper plot corresponds to FM-OLS & D-OLS and the lower plot
to IM-OLS. The plots show results for m = r = 0.25.
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Figure 4: Local asymptotic power for monitoring cointegration for the case with intercept and
linear trend. The upper two plots correspond to FM-OLS & D-OLS and the lower two plots to
IM-OLS. The plots show results for different combinations of m and r.
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Figure 5: Local asymptotic power against break in intercept for monitoring cointegration for
the case with intercept. The upper two plots correspond to FM-OLS & D-OLS and the lower
two plots to IM-OLS. The plots show results for different combinations of m and r.
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4. Finite Sample Performance

In this section we investigate the performance of the monitoring procedure by means of a

small simulation study. For the sake of brevity we only consider cointegration monitoring.

We consider a data generating process similar to Vogelsang and Wagner (2014), i.e. we

consider (under the null hypothesis):

yt = µ+ γt+ x1tβ1 + x2tβ2 + ut, (53)

xit = xi,t−1 + vit, xi0 = 0, i = 1, 2

where

ut = ρ1ut−1 + εt + ρ2(e1t + e2t), u0 = 0,

vit = eit + 0.5ei,t−1, i = 1, 2,

where εt, e1t and e2t are i.i.d. standard normal random variables independent of each

other. The parameter values chosen are µ = 3, β1, β2, γ = 1. Due to space limitations we

will only briefly comment on the corresponding results for the intercept only case (γ = 0)

but abstain from showing the analogous graphs and tables (which are available as sup-

plementary material). The values for ρ1 and ρ2 are chosen from the set {0.0, 0.3, 0.6, 0.9}.

The parameter ρ1 controls serial correlation in the regression error and is set to ρ1 = 1

under the alternative of I(1) errors, whereas the parameter ρ2 controls whether the re-

gressors are endogenous (ρ2 6= 0) or not (ρ2 = 0).

Both, parameter estimation as well as the computation of the detector require the choice

of kernel and bandwidth for long-run variance estimation. We use the data dependent

bandwidth chosen according to Andrews (1991) and the Bartlett kernel. The D-OLS

estimator is implemented using the information criterion based lead and lag length choice

developed in Kejriwal and Perron (2008), where we use the more flexible version discussed

in Choi and Kurozumi (2012) in which the numbers of leads and lags included are not

33



ρ1 = ρ2 = 0

m

R
ej

. p
ro

b.

0.1 0.3 0.5 0.7 0.9
0.0

0.2

0.4

0.6

0.8

1.0

ρ1 = ρ2 = 0.3

m

R
ej

. p
ro

b.

0.1 0.3 0.5 0.7 0.9
0.0

0.2

0.4

0.6

0.8

1.0

ρ1 = ρ2 = 0.6

m

R
ej

. p
ro

b.

0.1 0.3 0.5 0.7 0.9
0.0

0.2

0.4

0.6

0.8

1.0

ρ1 = ρ2 = 0.9

m

R
ej

. p
ro

b.

0.1 0.3 0.5 0.7 0.9
0.0

0.2

0.4

0.6

0.8

1.0
FM−OLS
D−OLS
IM−OLS

Figure 6: Empirical null rejection probabilities for monitoring cointegration for the case with
intercept and linear trend for a grid of values of m and T = 200.

restricted to be equal. The considered sample sizes are T = 200, 500 and the number of

replications is 10,000. All tests are performed at the 5% nominal level.

We start by considering the empirical null rejection probabilities for a grid of 81 values

given by m = 0.1, 0.11, . . . , 0.9 for ρ1, ρ2 = 0, 0.3, 0.6, 0.9 and T = 200 in Figure 6 and

T = 500 in Figure 7. Several main patterns in line with expectations emerge: First, the

size distortions decrease with increasing m and increasing sample size T . The exception

to this general pattern is D-OLS and T = 200 where size distortion are very high and

partly increasing for small values of m before they start decreasing. Second, larger values

of ρ1, ρ2 lead to increasing size distortions and the larger ρ1, ρ2 are, the more beneficial is a

larger value of m to mitigate the size distortions. Third, the largest size distortions occur

for D-OLS and typically the smallest ones for IM-OLS, with the largest differences for

small values of m. The larger ρ1, ρ2 the bigger is the performance advantage of IM-OLS

over the two other methods. Grosso modo the observed size distortions are comparable

to the size distortions observed for parameter tests in Vogelsang and Wagner (2014). Let

us note for completeness that size distortions are smaller when considering the intercept

only case.
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Figure 7: Empirical null rejection probabilities for monitoring cointegration for the case with
intercept and linear trend for a grid of values of m and T = 500.

Let us next consider power against I(1) errors from sample fraction [rT ] for calibration

fraction [mT ]. We consider the values 0.25, 0.5, 0.75 for both m and r. Thus, we also

include cases where m > r, i.e. where the break occurs in the calibration period. It can

be shown, most easily for stationarity monitoring, that in case m > r, the order of the

detector is given by Op(
T
bT

), with bT denoting the bandwidth chosen. Given that in case

of I(1) errors, i.e. under the alternative, typically large bandwidths bT are chosen, one

can expect a low divergence rate of the detector in the m > r case and thus low power

in finite samples. This is exactly what happens. The results are shown for T = 200 in

Table 1 and for T = 500 in Table 2.

In addition to the above observation, two more (to be expected) findings are that power

increases with the sample size T and decreases with ρ1, ρ2. For any given constellation

of T and ρ1, ρ2 power is largest for m = r, compared to situations where m 6= r. For

m = r, power is the larger the larger m and r are. In case that m > r, i.e. when the

break occurs in the calibration period, power is also increasing with the sample size. In

this case, however, power is decreasing in the difference between m and r. This finding

reflects the fact that asymptotically the term that is subtracted in the numerator of the
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m = 0.25 m = 0.5 m = 0.75

ρ1 = ρ2

r
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0
FM 0.60 0.52 0.43 0.21 0.87 0.56 0.06 0.34 0.89
D 0.20 0.49 0.44 0.07 0.82 0.57 0.05 0.27 0.87
IM 0.51 0.47 0.43 0.17 0.80 0.54 0.06 0.25 0.82

0.3
FM 0.45 0.47 0.39 0.14 0.79 0.51 0.05 0.23 0.83
D 0.13 0.42 0.39 0.06 0.71 0.51 0.05 0.16 0.80
IM 0.39 0.43 0.40 0.12 0.71 0.50 0.05 0.17 0.75

0.6
FM 0.21 0.31 0.29 0.07 0.56 0.38 0.05 0.10 0.65
D 0.08 0.34 0.33 0.05 0.53 0.42 0.05 0.09 0.65
IM 0.23 0.35 0.37 0.08 0.53 0.43 0.05 0.09 0.60

0.9
FM 0.06 0.07 0.09 0.05 0.09 0.10 0.05 0.05 0.15
D 0.05 0.08 0.12 0.05 0.09 0.13 0.05 0.05 0.15
IM 0.06 0.09 0.14 0.05 0.09 0.14 0.05 0.05 0.13

Table 1: Empirical rejection probabilities for monitoring cointegration for the case with intercept
and linear trend for T = 200: Size corrected power against I(1) breaks.

detector is under the alternative a function of the difference m− r, rather than of m as

under the null. In case that m ≤ r power is decreasing with increasing r, which merely

reflects the fact that a smaller sub-sample is available under the alternative for detecting

the structural change from I(0) to I(1) behavior.

The differences in power between FM-OLS and IM-OLS are minor, whereas power of

D-OLS is markedly smaller in case r = 0.25. Clearly, this latter finding cannot be

predicted by LAP, which is by construction identical between FM-OLS and D-OLS. This

finding reflects the well-known fact that D-OLS leads to coefficient estimators with larger

variances in small samples. Comparing FM-OLS and IM-OLS shows a slight tendency

that power for IM-OLS is marginally lower than for FM-OLS, and in case that r is

large marginally lower than for D-OLS, which is in line with the LAP analysis. In

case of large values of ρ1, ρ2, however, size corrected power is sometimes higher for IM-

OLS. These findings concerning power, however, have to be seen in conjunction with

the partly substantially lower size distortions when using IM-OLS compared to FM-OLS

or in particular D-OLS. All findings analogously hold for the intercept only case, with

power being typically higher in the intercept only case compared to the intercept and

linear trend case.
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m = 0.25 m = 0.5 m = 0.75

ρ1 = ρ2

r
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0
FM 0.94 0.57 0.47 0.59 0.99 0.61 0.11 0.72 0.99
D 0.91 0.56 0.48 0.54 0.98 0.63 0.09 0.70 0.99
IM 0.89 0.52 0.48 0.49 0.97 0.60 0.08 0.63 0.98

0.3
FM 0.86 0.53 0.45 0.47 0.97 0.58 0.08 0.61 0.98
D 0.82 0.52 0.45 0.40 0.96 0.58 0.07 0.59 0.98
IM 0.80 0.49 0.45 0.38 0.95 0.56 0.07 0.51 0.95

0.6
FM 0.64 0.44 0.38 0.24 0.90 0.50 0.06 0.39 0.93
D 0.62 0.48 0.41 0.22 0.91 0.52 0.06 0.41 0.93
IM 0.63 0.45 0.43 0.23 0.87 0.53 0.06 0.34 0.89

0.9
FM 0.09 0.17 0.19 0.05 0.27 0.24 0.05 0.06 0.41
D 0.09 0.21 0.24 0.06 0.32 0.30 0.05 0.06 0.46
IM 0.10 0.25 0.32 0.06 0.32 0.37 0.05 0.06 0.43

Table 2: Empirical rejection probabilities for monitoring cointegration for the case with intercept
and linear trend for T = 500: Size corrected power against I(1) breaks.

We next consider power against breaks in the trend or slope parameters. For brevity

we only display results for the case ρ1, ρ2 = 0.9, i.e. the worst results from our set of

values for ρ1, ρ2. All figures have the same structure and display in the left column the

graphs for m = 0.25 and r ∈ {0.25, 0.5, 0.75} and in the right column the graphs for

m = r ∈ {0.25, 0.5, 0.75}.

For trend breaks we consider a grid with 21 points and mesh 0.1 for the trend slope

γ ∈ [1, 3] (including the null) displayed on the horizontal axis in Figure 8 for T = 200

and in Figure 9 for T = 500. Three main observations emerge: First, power is decreasing

with increasing r for given m (left column). Second, power is increasing with increasing

m = r (right column). Third, power is very similar for FM-OLS and IM-OLS and is in

some cases lower for D-OLS. The differences across estimation methods get smaller for

increasing sample size.

For slope breaks we consider the case that β1, β2 both change their value from 1 to some

value larger than 1, where we consider the same grid of 21 points as for trend breaks

above, i.e. βi ∈ [1, 3] (including the null). The results for T = 200 are displayed in

Figure 10 and for T = 500 in Figure 11. The results are qualitatively very similar to

the findings in case of a trend break. Note for completeness that power against slope
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Figure 8: Empirical rejection probabilities for monitoring cointegration for the case with inter-
cept and linear trend for T = 200, ρ1 = ρ2 = 0.9: Size corrected power against trend breaks.
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Figure 9: Empirical rejection probabilities for monitoring cointegration for the case with inter-
cept and linear trend for T = 500, ρ1 = ρ2 = 0.9: Size corrected power against trend breaks.
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Figure 10: Empirical rejection probabilities for monitoring cointegration for the case with in-
tercept and linear trend for T = 200, ρ1 = ρ2 = 0.9: Size corrected power against slope breaks.

breaks (of similar magnitude) is slightly higher in the intercept only case compared to

the intercept and linear trend case.

Note that the similarities and differences between LAP and finite sample simulations

discussed above, when considering power against I(1) errors exist as well for the case of

trend and slope breaks.

Finally we investigate the estimated detection times against I(1) breaks. These are shown

in Figures 12 (ρ1, ρ2 = 0.9) and 13 (ρ1, ρ2 = 0) for T = 200 and in Figures 14 (ρ1, ρ2 = 0)

and 15 (ρ1, ρ2 = 0.9) for T = 500. We display the detection times in the form of Box-

Whiskers plots. The numbers below the abbreviated names of the methods indicate the

null rejection probabilities given in Tables 1 and 2. Thus, the different Box-Whiskers plots

are based on different numbers of replications because of a different number of rejections

across different methods, sample sizes and ρ-parameters.

The structure of the six graphs within one figure corresponds to the structure of the

power figures with respect to the combinations of m and r displayed. By construction,

detection occurs on average with delay. An increasing sample size leads to a – ceteris

paribus – more concentrated distribution of the estimated detection times (based on a
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Figure 11: Empirical rejection probabilities for monitoring cointegration for the case with in-
tercept and linear trend for T = 500, ρ1 = ρ2 = 0.9: Size corrected power against slope breaks.

larger number of observations), but does not necessarily lead to smaller average delays. As

expected, increasing endogeneity and error serial correlation lead to increasing detection

times, i.e. bigger delays. For fixed m = 0.25 increasing values of r lead to decreasing

delays. For m = 0.25 and r = 0.75 detection often occurs already prior to the structural

change. Increasing values of m = r also lead to smaller delays of detecting the structural

change.

When comparing the three methods, there is no clear ranking with respect to delay. FM-

OLS and IM-OLS lead to very similar detection time distributions, whereas the D-OLS

detection times look rather different from the other two. These differences are more

marked in cases where the rejection probabilities (i.e. powers) of D-OLS are sizeably

smaller than for the other two methods. The detection delays are partly substantial,

in particular for ρ1, ρ2 = 0.9. Obtaining a better understanding of the impact of the

weighting function on the expected delays is consequently a topic of future research,

notwithstanding the complications outlined in Section 2.
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Figure 12: Detection times when monitoring cointegration for the case with intercept and linear
trend for T = 200, ρ1 = ρ2 = 0: Detection times for I(1) breaks.
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Figure 13: Detection times when monitoring cointegration for the case with intercept and linear
trend for T = 200, ρ1 = ρ2 = 0.9: Detection times for I(1) breaks.
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Figure 14: Detection times when monitoring cointegration for the case with intercept and linear
trend for T = 500, ρ1 = ρ2 = 0: Detection times for I(1) breaks.
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Figure 15: Detection times when monitoring cointegration for the case with intercept and linear
trend for T = 500, ρ1 = ρ2 = 0.9: Detection times for I(1) breaks.
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5. Empirical Illustration

We apply the monitoring procedure to investigate daily CDS spreads data for Austria,

Cyprus, France and Germany for maturities one, three, five, seven and ten years, see

Figure 16. Stationary or nonstationary behavior of CDS spreads during financial crises

has been investigated e.g. by Dieckmann and Plank (2011) who find mixed evidence

in this respect. The mixed evidence may not least be driven by changing stationarity

behavior over time such that an application of our monitoring procedure appears poten-

tially useful. The time span chosen ranges from April 3, 2009 to August 1, 2012, giving

a total of T = 869 observations. We try to exclude the immediate consequences of the

Lehman brothers bankruptcy on September 15, 2008 and therefore take as starting date

the day after a G20 summit held in London on April 1–2, 2009 that is considered to

have had stabilizing influences on the financial markets. Our sample period ranges until

August 1, 2012, which is the date when Cyprus was downgraded from investment grade

BB+ to BB by Standard & Poor’s. The calibration period consists of the first 10% of

the observations, i.e. ranges from April 3, 2009 to July 31, 2009 and is indicated by the

vertical lines in Figure 16.18

Graphical inspection of the data already allows for a few important observations. First,

within each country the series corresponding to the different maturities move together

quite closely, displaying something like a “term structure” of CDS spreads. In this respect

it is interesting to note that for Cyprus the term structure is inverse after the two big

jumps occurring on July 27 and August 26, 2011.19 After these jumps the level of the

series is much larger for Cyprus than for the other three countries that also experience

upward jumps around the same time. This, of course, illustrates the well-known fact that

there are not only within-country dependencies across different maturities, but that there

is also a large amount of cross-country co-movements of CDS spreads series, compare also

18The results are very robust and do not change at all when considering m = 0.2 instead. Note that
for values of m larger than 0.2 the KPSS stationarity test leads to rejection of the null of stationarity on
the calibration sample for all countries and maturities at the 1% level. From this perspective therefore,
the choice of the calibration period appears to be in line with data properties.

19On July 27, 2011 Moody’s downgraded Cyprus to Baa1 after an explosion at a marine base.
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Figure 16: Daily CDS spreads series.
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Dieckmann and Plank (2011).20

The test results are displayed in Table 3 and indicate a rejection of the null hypothesis

of stationarity at the 5% significance level for all series considered. By construction,

the estimated break dates are later for lower values of α. The break dates (at the 5%

significance level) are between April 27, 2010 (France, ten years) and February 1, 2011

(Germany, one year). All these dates precede the discussed major level shifts in the CDS

series that occurred in summer 2011. This is remarkable, given the delays observed in

the finite sample simulations. It is interesting to note that for the longer maturities the

breaks are dated earlier for the big EU member states France and Germany, whereas

it is the opposite for the short maturities. An in-depth exploration of the economic or

political reasons underlying these findings and break dates is beyond the purpose of the

present paper where we merely intend to illustrate our procedure.

Remark 9. For financial data collected at higher frequencies, e.g. the considered daily

CDS spreads series, the assumption of time-constant variances under the null hypothesis

may be too restrictive. Similarly to observations made in e.g. Cavaliere and Taylor

(2008), non-constant second moments of a form that lead to functional central limit

theorems invoking time deformed Brownian motions – in this literature typically referred

to as nonstationary volatility – will in general lead to asymptotic size distortions of our

monitoring procedure, but will not invalidate consistency against fixed alternatives.21

To be precise, consistency of the detection procedure hinges on the fact that the long-

run variance estimators computed over the pre-break period do not diverge in this more

general setting. �

20The strong nature of co-movements of series indicates that an extension of our monitoring procedures
to monitor also structural change in the cross-sectional co-movements of potentially (co-)integrated series,
in addition to changing (idiosyncratic) time series properties, may be relevant. Changes in the cross-
sectional dependence structure, in particular increasing dependencies in times of crisis, may be seen as
an indicator of contagion phenomena.

21Cavaliere and Taylor (2005) consider the asymptotic behavior of the KPSS statistic in this context
and Cavaliere and Taylor (2006) consider cointegration testing with variance breaks.
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Country Maturity Test statistic τm(α = 0.1) τm(α = 0.05)
Austria 1 4317.35 09.08.2010 03.11.2010

3 4647.26 06.08.2010 22.10.2010
5 5582.71 02.07.2010 07.09.2010
7 5492.46 05.07.2010 09.09.2010
10 5643.04 28.06.2010 02.09.2010

Cyprus 1 24474.22 07.07.2010 10.09.2010
3 20564.81 16.07.2010 24.09.2010
5 18220.25 14.07.2010 21.09.2010
7 17693.05 30.06.2010 02.09.2010
10 16749.96 09.06.2010 06.08.2010

France 1 3527.84 10.09.2010 12.01.2011
3 12371.54 11.05.2010 03.06.2010
5 14299.06 21.04.2010 17.05.2010
7 15142.24 13.04.2010 07.05.2010
10 16221.89 31.03.2010 27.04.2010

Germany 1 3450.41 02.09.2010 01.02.2011
3 3905.52 18.08.2010 18.11.2010
5 7042.27 21.05.2010 29.06.2010
7 8139.72 03.05.2010 04.06.2010
10 9083.49 06.05.2010 10.06.2010

Table 3: Results of stationarity monitoring for the daily CDS spreads data for m = 0.1. The

third column displays supm≤s≤1

∣∣∣ Ĥm(s)
g(s)

∣∣∣ and the fourth and fifth columns the associated detec-

tion times τm(Ĥm(s), g(s), c(α,w)) for α = {0.1, 0.05}. Intercept and linear trend are included,
hence g(s) = s5. The null hypothesis is rejected throughout. The 10% critical value is 1252.59
and the 5% critical value is 1777.80.
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6. Summary and Conclusions

We have proposed monitoring procedures for stationarity and cointegration that are based

on parameter estimation on a pre-break calibration period. The key ingredients of our

detectors are properly scaled squared partial sums of residuals that are compared between

the calibration and the successively increasing monitoring period. Thus, our detectors are

in the spirit of Chu et al. (1996) combined with the Kwiatkowski et al. (1992) respectively

Shin (1994) tests. In case of cointegration monitoring we have investigated the properties

of the monitoring procedure when using FM-OLS, D-OLS or IM-OLS residuals. Modified

least squares estimation is necessary to correct for the effects of error serial correlation

and regressor endogeneity in order to obtain nuisance parameter free limiting distribu-

tions. The procedures are shown to be consistent against I(1) alternatives, breaks in the

parameters corresponding to the deterministic components and, in case of cointegration

monitoring, breaks in the slope parameters.

The performance of the procedures has been investigated both in terms of local asymp-

totic power as well as by means of finite sample simulations. The effects of sample size,

regressor endogeneity and error serial correlation are as typically found in the unit root

and cointegration literature. Local asymptotic power and – in line with the asymptotic

findings – finite sample (size corrected) power are in many configurations slightly lower

for IM-OLS than for the other two procedures. However, IM-OLS has partly substan-

tially lower size distortions under the null, which makes IM-OLS a good choice given that

size corrections cannot be performed in actual applications. Detection in many circum-

stances occurs with delays, which are partly substantial. A longer calibration period is,

as expected, beneficial in lessening the delays, as is a late break point.

A brief empirical application to CDS spreads data of four European countries indicates

the usefulness of the proposed method for the case of stationarity monitoring. The break

dates all precede the turbulent period of summer 2011 by between a year and half a year.

Several extensions of the approach are conceivable: First, it may be relevant to flip null

and alternative hypothesis, i.e. to monitor changes from I(1) to I(0) behavior (which
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could potentially be based on modifying our approach or by extending the approach of

Steland and Weidauer, 2013). Second, the empirical application, with the clearly visi-

ble co-movements across maturities but also across countries, indicates that multivariate

monitoring procedures may be important for applied research. Third, especially im-

portant for monitoring data collected at higher frequencies, the effects of non-constant

variances need to be investigated in detail. Fourth, the impact of the weighting function

on the performance of the monitoring procedures has to be investigated.
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A. Proofs

Proof of Lemma 1:

The result follows directly from the assumptions using consistency of OLS detrending

(used already for the FCLT in (13)) and of long-run variance estimation. �

Proof of Proposition 1:

The result follows from Lemma 1 since the limit of Ĥm(s), Ĥm(s) is well defined and the

continuous mapping theorem, compare (11) with Ĥm(s) instead of Hm(s). �

Proof of Proposition 2:

(a): Start by decomposing the partial sum process, for 1 ≥ s > r ≥ m into

1√
T
Ŝ[sT ] =

1√
T
Ŝ[rT ] +

1√
T

[sT ]∑
t=[rT ]+1

ût,m. (54)

The first term above converges to ωŴm(r) and the second term above is unbounded under

the considered alternative, since

1√
T

[sT ]∑
t=[rT ]+1

ût,m =
1√
T

[sT ]∑
t=[rT ]+1

ut −
1√
T

[sT ]∑
t=[rT ]+1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui, (55)

where the first term is Op(T ), as it converges, when scaled by T−1, towards the integral

of a Brownian motion, and the second term converges to
∫ s
r
D(z)dz′

(∫ m
0
D(z)D(z)′dz

)−1∫ m
0
D(z)dW (z). Consequently, for s > r, the first term in Ĥm(s) and thus Ĥm(s) diverges,

which establishes the result.

(b): Straightforward calculations similar to the one above establish for 1 ≥ s > r ≥ m

that
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1√
T

[sT ]∑
t=1

ût,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui (56)

=
1√
T

[sT ]∑
t=1

u0t +
1√
T

[sT ]∑
t=1

δ

T

t∑
i=[rT ]+1

ξi −
1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diu
0
i

⇒ ωŴm(s) + δωξ

∫ s

r

(Wξ(z)−Wξ(r))dz.

This shows that the partial sum process can be made arbitrarily large (with arbitrarily

large probability) by choosing δ large enough. This in turn makes the probability of a

finite τm arbitrarily close to one. �

Proof of Proposition 3:

(a): Again the starting point is the partial sum process of the OLS residuals. Consider

again 1 ≥ s > r ≥ m:

1√
T

[sT ]∑
t=1

ût,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui −
1√
T

[sT ]∑
t=[rT ]+1

D′t(θD,1 − θD,2).

The first two terms above converge to ωŴm(s) and the third term diverges due to As-

sumption 1.22

(b): When considering local alternatives, the partial sum process is as follows (for 1 ≥

s > r ≥ m):

22To be precise, divergence occurs for all trend functions such that GD diverges.
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1√
T

[sT ]∑
t=1

ût,m =
1√
T

[sT ]∑
t=1

ut

− 1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui

+
1√
T

[sT ]∑
t=[rT ]+1

D′tG
−1′
D ∆θ.

(57)

Under the stated assumptions the limit is given by

1√
T

[sT ]∑
t=1

ût,m ⇒ ωŴm(s) +

∫ s

r

D(z)′dz∆θ, (58)

from which the result follows. �

Proof of Lemmata 2, 3, 4 and 5:

These lemmata all follow immediately from the convergence properties of the underlying

estimation methods in conjunction with consistent long-run variance estimation and the

continuous mapping theorem. �

Proof of Proposition 4:

The argument is similar to the argument used in Proposition 1 and follows from the

FCLT provided in Vogelsang and Wagner (2014, Lemma 2). �

Proof of Proposition 5:

(a): Again, the limiting behavior of the partial sum process of the residuals is the key

to the result, where we now have to distinguish between two cases, FM-OLS and D-OLS

estimation on the one hand and IM-OLS estimation on the other. Again we outline the

arguments here for the FM-OLS estimator, noting that the limit process is similar for

D-OLS estimation, and the IM-OLS estimator.
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For FM-OLS, the partial sum process of the residuals is given by (again for 1 ≥ s > r ≥

m):

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[rT ]∑
t=1

û+t,m +
1√
T

[sT ]∑
t=[rT ]+1

û+t,m (59)

=
1√
T

[rT ]∑
t=1

û+t,m +
1√
T

[sT ]∑
t=[rT ]+1

ut −
1√
T

[sT ]∑
t=[rT ]+1

v′tΩ̂
−1
vv Ω̂vu −

− 1√
T

[sT ]∑
t=[rT ]+1

D′t

(
θ̂D,m − θD

)
− 1√

T

[sT ]∑
t=[rT ]+1

X ′t

(
θ̂X,m − θX

)
.

The first term above converges to ωu·vŴu·v(r), according to Lemma 2 and the second

term diverges since for the sample period considered ut is an I(1) process. The remaining

three terms converge in distribution. Thus, the partial sum process is in this case Op(T ).

The argument is analogous for the IM-OLS partial sum process, i.e. for Ŝut,m, with

Lemma 4 replacing Lemma 2.

(b): Also for this result similar arguments as in Proposition 2 apply. In particular it

follows now for FM-OLS that (for 1 ≥ s > r ≥ m):

1√
T

[sT ]∑
t=1

û+t,m ⇒ ωu·vŴu·v(s) + δωξ

∫ s

r

(Wξ(z)−Wξ(r))dz. (60)

Thus, the same argument as in Proposition 2 applies. For IM-OLS the result is of the

same type and given by

1√
T
Ŝu[sT ],m ⇒ ωu·vP̃m(s) + δωξ

∫ s

r

(Wξ(z)−Wξ(r))dz. (61)

The results follow, since the identical second term can be again made arbitrarily large by

choice of δ for both cases. �

Proof of Proposition 6:

The arguments are similar to the arguments in Proposition 3, with the only difference
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being the exact form of the terms, due to the presence of integrated regressors Xt. For

brevity we again just look at the FM-OLS expressions and note again that the result for

D-OLS coincides asymptotically.

(a): Under the fixed alternative, the partial sum process of the FM-OLS residuals, again

for 1 ≥ s > r ≥ m, can be written as:

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

v′tΩ̂
−1
vv Ω̂vu

− 1√
T

[sT ]∑
t=1

D′t

(
θ̂D,m − θD,1

)
− 1√

T

[sT ]∑
t=1

X ′t

(
θ̂X,m − θX

)
− 1√

T

[sT ]∑
t=[rT ]+1

D′t (θD,1 − θD,2) .

(62)

From this expression it is seen that the result is similar to the result in Proposition 3,

since the last term diverges and all other terms together converge to ωu·vŴu·v(s).

(b): Also here the result is analogous, with the only difference being that under local

alternatives the last term in (62) changes, as in part (b) of Proposition 3, and is instead

given by

1√
T

[sT ]∑
t=[rT ]+1

D′tG
−1′
D ∆θ ⇒

∫ s

r

D(z)′dz∆θ (63)

This shows the result as under the considered local alternatives it holds that

1√
T

[sT ]∑
t=1

u+t,m ⇒ ωu·vWu·v(s) +

∫ s

r

D(z)′dz∆θ. (64)

The arguments are analogous for IM-OLS with the corresponding limit of the residual

process given by

1√
T
Ŝu[sT ],m ⇒ ωu·vP̃m(s) +

∫ s

r

D(z)′dz∆θ. (65)
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�

Proof of Proposition 7:

The proof is analogous to the proof of Proposition 5 with the changes following from the

discussion before Proposition 7.

(a): For FM-OLS we get for 1 ≥ s > r ≥ m:

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

v′tΩ̂
−1
vv Ω̂vu

− 1√
T

[sT ]∑
t=1

D′t

(
θ̂D,m − θD

)
− 1√

T

[sT ]∑
t=1

X ′t

(
θ̂X,m − θX,1

)
− 1√

T

[sT ]∑
t=[rT ]+1

X ′t (θX,1 − θX,2) .

(66)

The first four terms together converge to ωu·vŴu·v(s) and the last term is Op(T ).

For IM-OLS we get for 1 ≥ s > r ≥ m:

1√
T
Ŝu[sT ],m =

1√
T
Su[sT ] −

1√
T
SD′[sT ]

(
θ̂D,m − θD

)
− 1√

T
SX′[sT ]

(
θ̂X,m − θX,1

)
− 1√

T
X ′[sT ]ϕ̂m −

1√
T
SX′[sT ] (θX,1 − θX,2) ,

(67)

from which it follows that the first four terms together converge to ωu·vP̃m(s) and the

last term is Op(T ).

(b): The changes implied by the local alternatives considered are similar to the previous

propositions and we obtain for FM-OLS for 1 ≥ s > r ≥ m:
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1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

v′tΩ̂
−1
vv Ω̂vu

− 1√
T

[sT ]∑
t=1

D′t

(
θ̂D,m − θD,1

)
− 1√

T

[sT ]∑
t=1

X ′t

(
θ̂X,m − θX

)
+

1

T 3/2

[sT ]∑
t=[rT ]+1

X ′t∆θ

⇒ ωu·vŴu·v(s) +

∫ s

r

Wv(z)′dzΩ1/2′
vv ∆θ.

(68)

The result for IM-OLS follows analogously to the result for FM-OLS from the result in

part (a) and we obtain for 1 ≥ s > r ≥ m:

1√
T
Ŝu[sT ],m ⇒ ωu·vP̃m(s) +

∫ s

0

Wv(z)′dzΩ1/2′
vv ∆θ. (69)

�
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B. Critical Values
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 8.41 11.37 14.54 18.94 0.51 0.79 1.01 1.24 1.55
0.11 7.50 10.10 12.94 16.84 0.52 0.76 0.98 1.20 1.51
0.12 6.73 9.08 11.61 15.09 0.53 0.74 0.95 1.17 1.46
0.13 6.08 8.21 10.46 13.62 0.54 0.72 0.92 1.13 1.42
0.14 5.54 7.45 9.50 12.36 0.55 0.69 0.90 1.10 1.38
0.15 5.06 6.81 8.66 11.29 0.56 0.67 0.87 1.08 1.35
0.16 4.65 6.24 7.94 10.33 0.57 0.66 0.85 1.05 1.32
0.17 4.29 5.76 7.34 9.53 0.58 0.64 0.83 1.02 1.29
0.18 3.98 5.33 6.77 8.80 0.59 0.62 0.81 1.00 1.27
0.19 3.70 4.94 6.28 8.15 0.60 0.61 0.79 0.98 1.24
0.20 3.44 4.59 5.83 7.56 0.61 0.59 0.77 0.96 1.22
0.21 3.22 4.29 5.44 7.04 0.62 0.58 0.76 0.94 1.20
0.22 3.01 4.01 5.07 6.56 0.63 0.56 0.74 0.92 1.18
0.23 2.83 3.76 4.74 6.13 0.64 0.55 0.73 0.91 1.15
0.24 2.66 3.52 4.44 5.73 0.65 0.54 0.71 0.89 1.14
0.25 2.50 3.31 4.17 5.37 0.66 0.53 0.70 0.88 1.12
0.26 2.36 3.11 3.92 5.05 0.67 0.52 0.69 0.86 1.10
0.27 2.23 2.94 3.69 4.75 0.68 0.51 0.68 0.85 1.09
0.28 2.11 2.78 3.48 4.48 0.69 0.50 0.67 0.84 1.07
0.29 2.00 2.63 3.29 4.22 0.70 0.50 0.66 0.83 1.05
0.30 1.90 2.49 3.11 3.98 0.71 0.49 0.65 0.81 1.04
0.31 1.81 2.36 2.94 3.76 0.72 0.48 0.64 0.80 1.02
0.32 1.72 2.24 2.79 3.56 0.73 0.47 0.63 0.79 1.01
0.33 1.64 2.13 2.65 3.37 0.74 0.47 0.62 0.78 1.00
0.34 1.56 2.03 2.52 3.20 0.75 0.46 0.61 0.77 0.99
0.35 1.49 1.93 2.40 3.03 0.76 0.45 0.60 0.76 0.97
0.36 1.42 1.85 2.28 2.89 0.77 0.45 0.60 0.75 0.96
0.37 1.36 1.76 2.18 2.75 0.78 0.44 0.59 0.74 0.95
0.38 1.30 1.68 2.08 2.62 0.79 0.44 0.58 0.73 0.94
0.39 1.25 1.61 1.98 2.49 0.80 0.43 0.57 0.72 0.92
0.40 1.19 1.54 1.90 2.38 0.81 0.43 0.57 0.71 0.91
0.41 1.15 1.47 1.82 2.27 0.82 0.42 0.56 0.70 0.90
0.42 1.10 1.42 1.74 2.18 0.83 0.42 0.55 0.70 0.89
0.43 1.06 1.36 1.67 2.09 0.84 0.41 0.55 0.69 0.88
0.44 1.02 1.30 1.60 2.00 0.85 0.41 0.54 0.68 0.87
0.45 0.98 1.25 1.54 1.92 0.86 0.40 0.54 0.67 0.86
0.46 0.94 1.21 1.48 1.85 0.87 0.40 0.53 0.66 0.85
0.47 0.91 1.16 1.43 1.78 0.88 0.39 0.52 0.66 0.84
0.48 0.87 1.12 1.38 1.72 0.89 0.39 0.52 0.65 0.83
0.49 0.85 1.09 1.33 1.66 0.90 0.39 0.51 0.64 0.82
0.50 0.82 1.05 1.28 1.60

Table 4: Critical values for stationarity monitoring for the intercept case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 1252.59 1777.80 2327.20 3066.19 0.51 2.36 3.32 4.33 5.73
0.11 916.45 1300.66 1702.68 2242.99 0.52 2.13 2.99 3.90 5.15
0.12 685.24 977.06 1277.92 1684.26 0.53 1.92 2.70 3.52 4.64
0.13 526.01 748.01 978.33 1292.92 0.54 1.74 2.43 3.18 4.19
0.14 409.41 580.95 760.56 1003.24 0.55 1.58 2.20 2.86 3.78
0.15 323.20 459.38 599.14 792.11 0.56 1.43 1.99 2.59 3.42
0.16 259.06 366.74 480.88 634.05 0.57 1.30 1.79 2.33 3.08
0.17 209.66 297.55 388.27 512.91 0.58 1.18 1.62 2.11 2.77
0.18 171.47 243.49 318.84 421.52 0.59 1.07 1.47 1.90 2.50
0.19 141.61 200.86 263.26 347.20 0.60 0.98 1.32 1.71 2.25
0.20 117.97 167.16 218.50 287.23 0.61 0.89 1.20 1.55 2.04
0.21 99.05 140.26 183.14 241.95 0.62 0.81 1.09 1.40 1.83
0.22 83.56 118.52 155.38 204.50 0.63 0.74 0.99 1.26 1.66
0.23 71.00 100.76 131.56 173.22 0.64 0.68 0.90 1.14 1.49
0.24 60.64 85.92 112.21 148.82 0.65 0.63 0.82 1.03 1.34
0.25 51.96 73.73 96.37 126.62 0.66 0.58 0.75 0.94 1.21
0.26 44.71 63.46 82.84 109.29 0.67 0.53 0.68 0.85 1.09
0.27 38.77 55.02 71.90 94.71 0.68 0.49 0.63 0.77 0.98
0.28 33.62 47.80 62.36 82.22 0.69 0.46 0.58 0.71 0.89
0.29 29.32 41.64 54.36 71.81 0.70 0.42 0.53 0.65 0.81
0.30 25.61 36.39 47.56 62.62 0.71 0.40 0.49 0.60 0.74
0.31 22.45 31.85 41.67 54.92 0.72 0.37 0.46 0.55 0.68
0.32 19.74 27.97 36.70 48.32 0.73 0.35 0.43 0.51 0.63
0.33 17.42 24.64 32.24 42.61 0.74 0.32 0.40 0.48 0.58
0.34 15.36 21.83 28.51 37.57 0.75 0.30 0.38 0.45 0.55
0.35 13.60 19.30 25.22 33.24 0.76 0.29 0.35 0.42 0.51
0.36 12.09 17.13 22.40 29.55 0.77 0.27 0.34 0.40 0.49
0.37 10.73 15.21 19.88 26.23 0.78 0.26 0.32 0.38 0.46
0.38 9.57 13.54 17.68 23.33 0.79 0.25 0.30 0.36 0.44
0.39 8.53 12.07 15.79 20.76 0.80 0.23 0.29 0.35 0.42
0.40 7.61 10.77 14.08 18.56 0.81 0.22 0.28 0.33 0.41
0.41 6.80 9.61 12.57 16.63 0.82 0.22 0.27 0.32 0.39
0.42 6.09 8.61 11.25 14.92 0.83 0.21 0.26 0.31 0.38
0.43 5.46 7.75 10.09 13.32 0.84 0.20 0.25 0.30 0.36
0.44 4.91 6.96 9.06 11.96 0.85 0.19 0.24 0.29 0.35
0.45 4.41 6.24 8.13 10.71 0.86 0.19 0.23 0.28 0.34
0.46 3.97 5.61 7.33 9.67 0.87 0.18 0.22 0.27 0.33
0.47 3.57 5.05 6.61 8.73 0.88 0.17 0.22 0.26 0.32
0.48 3.21 4.55 5.96 7.87 0.89 0.17 0.21 0.25 0.31
0.49 2.90 4.10 5.36 7.04 0.90 0.16 0.20 0.24 0.30
0.50 2.61 3.70 4.81 6.34

Table 5: Critical values for stationarity monitoring for the intercept and linear trend case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 155.37 296.84 502.54 902.43 0.51 1.33 2.14 3.25 5.25
0.11 124.53 238.91 403.91 723.99 0.52 1.22 1.96 2.97 4.76
0.12 101.35 193.34 330.54 589.85 0.53 1.13 1.79 2.70 4.31
0.13 83.57 159.61 269.82 483.63 0.54 1.05 1.63 2.45 3.90
0.14 69.99 133.19 224.75 401.60 0.55 0.97 1.50 2.23 3.53
0.15 58.93 111.90 188.55 333.77 0.56 0.91 1.37 2.03 3.19
0.16 50.22 94.76 160.22 283.59 0.57 0.84 1.26 1.84 2.87
0.17 42.90 81.12 136.42 240.58 0.58 0.79 1.16 1.67 2.62
0.18 36.94 69.60 117.13 207.64 0.59 0.73 1.07 1.53 2.35
0.19 32.13 60.17 101.28 178.28 0.60 0.69 0.99 1.40 2.14
0.20 28.06 52.42 87.90 154.94 0.61 0.64 0.92 1.28 1.93
0.21 24.62 45.98 76.70 134.76 0.62 0.61 0.86 1.18 1.74
0.22 21.67 40.30 67.25 118.09 0.63 0.57 0.80 1.08 1.59
0.23 19.16 35.53 59.29 103.42 0.64 0.54 0.75 1.00 1.45
0.24 17.00 31.43 51.89 90.86 0.65 0.51 0.70 0.93 1.33
0.25 15.13 27.87 46.01 79.96 0.66 0.48 0.66 0.87 1.21
0.26 13.49 24.75 40.78 70.51 0.67 0.46 0.62 0.81 1.12
0.27 12.10 22.17 36.50 63.01 0.68 0.43 0.59 0.77 1.05
0.28 10.87 19.82 32.65 56.42 0.69 0.41 0.56 0.72 0.97
0.29 9.78 17.75 29.23 50.12 0.70 0.40 0.53 0.69 0.92
0.30 8.81 15.99 26.18 44.75 0.71 0.38 0.51 0.66 0.87
0.31 7.98 14.39 23.45 40.20 0.72 0.36 0.49 0.63 0.83
0.32 7.21 12.98 21.05 36.15 0.73 0.35 0.47 0.61 0.80
0.33 6.51 11.68 18.94 32.28 0.74 0.34 0.46 0.58 0.77
0.34 5.91 10.55 17.09 29.00 0.75 0.33 0.44 0.57 0.75
0.35 5.37 9.54 15.39 26.04 0.76 0.32 0.43 0.55 0.73
0.36 4.88 8.65 13.87 23.28 0.77 0.31 0.42 0.54 0.71
0.37 4.45 7.83 12.57 21.05 0.78 0.31 0.41 0.53 0.70
0.38 4.06 7.08 11.37 19.04 0.79 0.30 0.40 0.52 0.69
0.39 3.70 6.45 10.30 17.28 0.80 0.29 0.40 0.51 0.68
0.40 3.38 5.85 9.31 15.62 0.81 0.29 0.39 0.51 0.67
0.41 3.10 5.33 8.44 14.15 0.82 0.29 0.39 0.50 0.66
0.42 2.82 4.85 7.69 12.79 0.83 0.28 0.38 0.49 0.65
0.43 2.59 4.42 6.96 11.56 0.84 0.28 0.38 0.49 0.64
0.44 2.38 4.03 6.33 10.47 0.85 0.27 0.37 0.48 0.64
0.45 2.18 3.67 5.74 9.50 0.86 0.27 0.37 0.48 0.63
0.46 2.00 3.36 5.22 8.63 0.87 0.27 0.36 0.47 0.62
0.47 1.84 3.06 4.75 7.78 0.88 0.27 0.36 0.46 0.62
0.48 1.70 2.80 4.33 7.06 0.89 0.26 0.36 0.46 0.61
0.49 1.56 2.55 3.93 6.38 0.90 0.26 0.35 0.45 0.60
0.50 1.44 2.34 3.57 5.80

Table 6: Critical values for FM-OLS & D-OLS with one regressor for the intercept case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 3205.88 5325.61 8212.84 13425.47 0.51 4.42 6.85 9.95 15.33
0.11 2338.95 3866.29 5982.86 9753.77 0.52 3.93 6.10 8.85 13.59
0.12 1741.12 2875.63 4417.46 7231.43 0.53 3.51 5.44 7.88 12.07
0.13 1320.81 2181.13 3363.93 5486.46 0.54 3.14 4.85 6.99 10.67
0.14 1023.54 1683.19 2581.31 4222.53 0.55 2.81 4.32 6.21 9.50
0.15 803.93 1323.84 2030.97 3293.20 0.56 2.50 3.83 5.50 8.43
0.16 638.34 1048.89 1610.98 2613.38 0.57 2.23 3.42 4.90 7.44
0.17 514.48 845.20 1296.56 2104.27 0.58 1.99 3.05 4.36 6.58
0.18 417.80 687.25 1054.12 1711.22 0.59 1.78 2.72 3.88 5.83
0.19 343.32 562.83 860.87 1399.28 0.60 1.59 2.43 3.44 5.15
0.20 283.73 464.96 709.89 1149.95 0.61 1.42 2.15 3.05 4.57
0.21 236.56 386.21 591.37 954.52 0.62 1.26 1.91 2.71 4.06
0.22 198.19 323.69 494.83 800.37 0.63 1.12 1.69 2.39 3.56
0.23 167.04 272.48 416.71 676.20 0.64 1.00 1.50 2.11 3.15
0.24 141.49 230.35 351.74 568.17 0.65 0.89 1.33 1.87 2.78
0.25 120.65 195.58 297.08 481.41 0.66 0.79 1.18 1.66 2.45
0.26 102.92 166.91 253.84 409.60 0.67 0.71 1.04 1.46 2.15
0.27 88.33 142.87 217.42 349.75 0.68 0.63 0.92 1.29 1.89
0.28 76.20 123.56 186.78 300.96 0.69 0.56 0.81 1.13 1.66
0.29 65.95 106.60 161.16 259.16 0.70 0.51 0.72 0.99 1.45
0.30 57.22 92.54 139.93 223.76 0.71 0.46 0.64 0.87 1.26
0.31 49.82 80.61 121.45 194.05 0.72 0.41 0.57 0.76 1.10
0.32 43.65 70.07 105.78 168.11 0.73 0.37 0.51 0.67 0.95
0.33 38.07 61.16 91.95 146.09 0.74 0.34 0.45 0.59 0.82
0.34 33.36 53.51 80.53 128.04 0.75 0.31 0.41 0.52 0.72
0.35 29.27 46.81 70.38 111.98 0.76 0.28 0.37 0.47 0.63
0.36 25.70 41.15 61.75 98.46 0.77 0.26 0.33 0.42 0.55
0.37 22.72 36.37 54.33 86.55 0.78 0.24 0.31 0.38 0.49
0.38 20.04 32.00 47.60 75.75 0.79 0.23 0.28 0.35 0.44
0.39 17.75 28.28 42.28 66.64 0.80 0.21 0.26 0.32 0.40
0.40 15.70 25.03 37.47 58.94 0.81 0.20 0.25 0.30 0.37
0.41 13.92 22.13 32.91 51.92 0.82 0.19 0.23 0.28 0.35
0.42 12.37 19.60 29.07 45.88 0.83 0.18 0.22 0.26 0.33
0.43 11.01 17.40 25.75 40.46 0.84 0.17 0.21 0.25 0.31
0.44 9.82 15.47 22.79 35.75 0.85 0.16 0.20 0.24 0.30
0.45 8.74 13.72 20.29 31.72 0.86 0.16 0.19 0.23 0.29
0.46 7.77 12.19 17.92 28.27 0.87 0.15 0.19 0.22 0.28
0.47 6.92 10.86 15.93 24.84 0.88 0.14 0.18 0.22 0.27
0.48 6.20 9.68 14.21 22.00 0.89 0.14 0.17 0.21 0.26
0.49 5.54 8.63 12.61 19.58 0.90 0.14 0.17 0.20 0.25
0.50 4.95 7.67 11.22 17.35

Table 7: Critical values for FM-OLS & D-OLS with one regressor for the intercept and linear
trend case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 302.01 616.19 1123.15 2164.76 0.51 2.51 4.47 7.37 13.14
0.11 241.96 493.68 892.29 1746.33 0.52 2.31 4.09 6.72 11.88
0.12 196.96 401.15 727.88 1416.39 0.53 2.12 3.73 6.11 10.80
0.13 163.30 331.04 598.38 1168.42 0.54 1.95 3.42 5.57 9.79
0.14 136.16 275.69 499.38 964.93 0.55 1.79 3.13 5.07 8.91
0.15 114.69 232.45 417.34 807.86 0.56 1.65 2.86 4.62 8.08
0.16 97.31 196.84 354.39 684.46 0.57 1.51 2.61 4.20 7.29
0.17 83.27 167.74 301.22 577.64 0.58 1.39 2.38 3.82 6.59
0.18 71.82 144.46 258.47 495.75 0.59 1.27 2.18 3.47 5.96
0.19 62.20 124.50 222.98 430.48 0.60 1.17 1.99 3.15 5.39
0.20 54.42 108.62 193.99 371.84 0.61 1.07 1.81 2.85 4.90
0.21 47.71 94.86 169.98 324.57 0.62 0.98 1.65 2.59 4.44
0.22 41.90 83.56 149.20 284.74 0.63 0.90 1.50 2.36 4.01
0.23 37.10 73.76 131.23 248.97 0.64 0.82 1.37 2.14 3.61
0.24 32.97 65.32 115.76 220.59 0.65 0.75 1.25 1.94 3.25
0.25 29.34 57.81 102.68 195.35 0.66 0.69 1.13 1.76 2.93
0.26 26.15 51.51 91.22 173.74 0.67 0.63 1.03 1.59 2.63
0.27 23.37 45.91 81.20 154.67 0.68 0.57 0.93 1.43 2.37
0.28 20.96 41.03 72.56 137.34 0.69 0.52 0.84 1.29 2.11
0.29 18.88 36.74 64.76 122.15 0.70 0.47 0.76 1.16 1.90
0.30 17.01 33.02 57.93 108.59 0.71 0.43 0.69 1.04 1.70
0.31 15.35 29.73 52.00 97.75 0.72 0.39 0.62 0.93 1.51
0.32 13.90 26.90 46.73 87.99 0.73 0.35 0.56 0.84 1.35
0.33 12.60 24.30 42.13 78.89 0.74 0.32 0.50 0.75 1.20
0.34 11.41 21.97 38.08 70.78 0.75 0.29 0.45 0.67 1.06
0.35 10.38 19.85 34.37 63.50 0.76 0.26 0.40 0.59 0.94
0.36 9.44 18.01 31.16 57.60 0.77 0.23 0.36 0.53 0.83
0.37 8.59 16.31 28.20 51.74 0.78 0.21 0.32 0.47 0.73
0.38 7.82 14.79 25.47 46.81 0.79 0.19 0.29 0.41 0.64
0.39 7.13 13.43 23.03 42.45 0.80 0.18 0.26 0.37 0.56
0.40 6.51 12.21 20.90 38.47 0.81 0.16 0.23 0.32 0.49
0.41 5.96 11.12 18.96 34.86 0.82 0.15 0.21 0.29 0.43
0.42 5.46 10.14 17.22 31.48 0.83 0.14 0.19 0.25 0.37
0.43 4.99 9.23 15.63 28.61 0.84 0.13 0.17 0.23 0.33
0.44 4.57 8.42 14.21 25.91 0.85 0.12 0.16 0.21 0.29
0.45 4.19 7.68 12.96 23.53 0.86 0.11 0.15 0.19 0.26
0.46 3.85 7.00 11.78 21.32 0.87 0.11 0.14 0.18 0.24
0.47 3.53 6.41 10.75 19.38 0.88 0.10 0.13 0.17 0.22
0.48 3.24 5.86 9.79 17.55 0.89 0.10 0.13 0.16 0.21
0.49 2.97 5.35 8.91 15.96 0.90 0.10 0.12 0.16 0.20
0.50 2.73 4.89 8.11 14.45

Table 8: Critical values for IM-OLS with one regressor for the intercept case.

64



m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 5714.91 10161.34 16644.37 29142.29 0.51 7.86 12.94 20.08 33.62
0.11 4152.40 7378.48 12117.97 21252.75 0.52 7.03 11.55 17.83 29.76
0.12 3089.93 5464.02 8971.08 15675.90 0.53 6.29 10.31 15.89 26.53
0.13 2342.37 4146.13 6756.60 11835.05 0.54 5.62 9.21 14.14 23.58
0.14 1806.26 3197.50 5215.71 9125.17 0.55 5.03 8.21 12.61 20.91
0.15 1412.96 2501.02 4084.95 7165.94 0.56 4.50 7.33 11.27 18.47
0.16 1120.95 1980.70 3244.39 5689.81 0.57 4.03 6.54 10.03 16.43
0.17 902.07 1587.83 2604.16 4539.43 0.58 3.60 5.83 8.91 14.62
0.18 734.42 1290.14 2106.33 3677.08 0.59 3.21 5.21 7.94 12.98
0.19 602.14 1056.42 1729.21 2995.80 0.60 2.87 4.65 7.07 11.53
0.20 497.42 873.46 1420.37 2473.81 0.61 2.57 4.15 6.28 10.22
0.21 413.63 724.41 1179.08 2052.30 0.62 2.30 3.69 5.58 9.02
0.22 346.15 604.26 988.04 1708.32 0.63 2.06 3.29 4.94 7.94
0.23 291.81 511.02 832.81 1445.81 0.64 1.84 2.93 4.38 7.03
0.24 247.93 432.50 702.19 1222.98 0.65 1.64 2.60 3.88 6.19
0.25 210.91 367.02 596.79 1036.96 0.66 1.46 2.31 3.44 5.45
0.26 180.55 314.53 509.13 880.85 0.67 1.30 2.05 3.04 4.80
0.27 154.91 269.85 435.13 749.23 0.68 1.15 1.81 2.68 4.22
0.28 133.47 231.82 373.85 642.20 0.69 1.02 1.61 2.36 3.71
0.29 115.45 200.84 322.62 557.63 0.70 0.91 1.42 2.08 3.26
0.30 100.24 173.63 279.36 481.82 0.71 0.81 1.25 1.83 2.85
0.31 87.31 150.80 243.53 417.67 0.72 0.71 1.10 1.61 2.49
0.32 76.18 131.32 211.84 362.84 0.73 0.63 0.97 1.41 2.17
0.33 66.58 114.85 184.51 316.22 0.74 0.55 0.85 1.23 1.89
0.34 58.44 100.30 161.13 276.70 0.75 0.49 0.75 1.08 1.64
0.35 51.38 87.90 140.91 242.11 0.76 0.42 0.65 0.94 1.42
0.36 45.19 77.32 123.37 211.84 0.77 0.37 0.57 0.81 1.23
0.37 39.92 68.12 108.66 186.27 0.78 0.32 0.49 0.70 1.06
0.38 35.23 60.01 95.72 164.54 0.79 0.28 0.43 0.61 0.91
0.39 31.21 52.92 84.43 144.50 0.80 0.24 0.37 0.52 0.78
0.40 27.67 46.93 74.67 127.68 0.81 0.21 0.32 0.45 0.66
0.41 24.54 41.62 65.99 112.02 0.82 0.18 0.27 0.38 0.56
0.42 21.81 36.86 58.36 99.02 0.83 0.16 0.23 0.32 0.47
0.43 19.37 32.76 51.63 87.88 0.84 0.14 0.20 0.27 0.39
0.44 17.26 29.06 45.94 78.07 0.85 0.12 0.17 0.23 0.33
0.45 15.39 25.83 40.86 69.45 0.86 0.11 0.15 0.19 0.27
0.46 13.71 23.00 36.30 61.27 0.87 0.10 0.13 0.17 0.23
0.47 12.26 20.53 32.13 54.29 0.88 0.09 0.12 0.15 0.19
0.48 10.97 18.24 28.52 47.92 0.89 0.09 0.11 0.13 0.17
0.49 9.82 16.25 25.36 42.53 0.90 0.08 0.10 0.12 0.15
0.50 8.77 14.50 22.56 37.91

Table 9: Critical values for IM-OLS with one regressor for the intercept and linear case.

65



m 90 % 95 % 97.5 % 99 % m 90 % 95 % 97.5 % 99 %
0.10 426.04 748.19 1192.55 1993.76 0.51 2.56 4.20 6.32 9.98
0.11 339.66 598.44 950.03 1583.82 0.52 2.32 3.80 5.72 8.96
0.12 275.97 485.69 771.64 1283.15 0.53 2.11 3.45 5.17 8.10
0.13 226.07 398.20 630.19 1048.84 0.54 1.91 3.11 4.67 7.29
0.14 188.00 330.85 526.34 869.44 0.55 1.73 2.82 4.21 6.59
0.15 157.66 276.31 438.86 729.21 0.56 1.57 2.54 3.77 5.88
0.16 133.67 234.35 372.69 618.66 0.57 1.42 2.29 3.40 5.28
0.17 113.74 199.44 315.97 523.14 0.58 1.29 2.06 3.07 4.74
0.18 97.51 170.79 269.60 447.51 0.59 1.16 1.86 2.76 4.24
0.19 84.09 147.37 233.22 385.43 0.60 1.05 1.68 2.47 3.79
0.20 73.26 127.98 201.10 333.61 0.61 0.95 1.51 2.21 3.40
0.21 63.97 111.20 174.87 289.85 0.62 0.86 1.35 1.98 3.03
0.22 55.65 96.98 152.83 250.75 0.63 0.78 1.22 1.77 2.71
0.23 49.04 85.23 133.95 218.94 0.64 0.71 1.09 1.58 2.40
0.24 43.18 75.03 117.57 191.89 0.65 0.64 0.98 1.41 2.14
0.25 38.03 66.26 103.91 169.35 0.66 0.58 0.88 1.26 1.90
0.26 33.84 58.48 91.78 150.18 0.67 0.53 0.79 1.12 1.68
0.27 30.11 51.95 81.22 132.23 0.68 0.48 0.71 1.00 1.49
0.28 26.79 46.32 72.12 118.02 0.69 0.44 0.64 0.90 1.31
0.29 23.94 41.30 64.13 104.68 0.70 0.41 0.59 0.80 1.16
0.30 21.38 36.85 57.31 93.49 0.71 0.37 0.53 0.72 1.03
0.31 19.12 32.90 51.32 83.26 0.72 0.35 0.49 0.65 0.92
0.32 17.18 29.51 46.10 74.66 0.73 0.32 0.45 0.59 0.83
0.33 15.44 26.52 41.18 66.33 0.74 0.30 0.41 0.54 0.75
0.34 13.91 23.75 36.73 59.41 0.75 0.28 0.38 0.50 0.68
0.35 12.50 21.24 32.98 53.07 0.76 0.26 0.36 0.46 0.63
0.36 11.28 19.16 29.70 47.62 0.77 0.25 0.34 0.44 0.58
0.37 10.19 17.24 26.58 42.79 0.78 0.24 0.32 0.41 0.55
0.38 9.21 15.56 23.96 38.35 0.79 0.23 0.30 0.39 0.52
0.39 8.33 14.06 21.64 34.66 0.80 0.22 0.29 0.38 0.50
0.40 7.53 12.68 19.51 31.22 0.81 0.21 0.28 0.36 0.49
0.41 6.82 11.45 17.59 28.11 0.82 0.21 0.27 0.35 0.47
0.42 6.18 10.36 15.91 25.44 0.83 0.20 0.27 0.35 0.47
0.43 5.59 9.40 14.37 22.94 0.84 0.20 0.26 0.34 0.46
0.44 5.08 8.50 12.94 20.65 0.85 0.19 0.26 0.34 0.45
0.45 4.61 7.68 11.70 18.52 0.86 0.19 0.26 0.33 0.45
0.46 4.17 6.96 10.56 16.79 0.87 0.19 0.25 0.33 0.44
0.47 3.78 6.28 9.57 15.10 0.88 0.19 0.25 0.32 0.44
0.48 3.43 5.69 8.62 13.55 0.89 0.18 0.25 0.32 0.43
0.49 3.11 5.13 7.77 12.25 0.90 0.18 0.24 0.32 0.43
0.50 2.82 4.64 6.99 11.05

Table 10: Critical values for FM-OLS & D-OLS with two regressors for the intercept case.
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m 90 % 95 % 97.5 % 99 % m 90 % 95 % 97.5 % 99 %
0.10 853.59 1594.54 2671.27 4698.76 0.51 5.15 8.90 14.12 23.97
0.11 681.29 1268.17 2124.67 3762.92 0.52 4.67 8.07 12.79 21.56
0.12 550.84 1026.96 1712.63 3043.26 0.53 4.23 7.31 11.58 19.40
0.13 452.09 839.08 1410.65 2513.50 0.54 3.84 6.63 10.46 17.46
0.14 375.72 696.55 1167.20 2070.47 0.55 3.49 6.00 9.45 15.71
0.15 314.58 584.99 979.70 1741.06 0.56 3.16 5.42 8.53 14.20
0.16 266.22 494.56 824.15 1460.65 0.57 2.87 4.90 7.69 12.79
0.17 226.88 420.42 701.09 1243.68 0.58 2.60 4.42 6.92 11.51
0.18 194.33 359.30 596.49 1058.81 0.59 2.35 3.99 6.23 10.31
0.19 167.59 309.51 514.22 906.80 0.60 2.13 3.59 5.59 9.26
0.20 145.33 267.50 445.66 785.03 0.61 1.93 3.23 5.03 8.31
0.21 126.91 233.60 387.75 678.19 0.62 1.74 2.91 4.50 7.43
0.22 111.01 203.38 337.77 593.70 0.63 1.57 2.63 4.04 6.63
0.23 97.74 178.16 296.22 520.60 0.64 1.42 2.36 3.61 5.92
0.24 86.07 157.75 260.18 457.41 0.65 1.28 2.12 3.24 5.28
0.25 76.12 139.14 229.90 401.84 0.66 1.15 1.90 2.88 4.69
0.26 67.51 123.07 202.49 355.06 0.67 1.03 1.70 2.58 4.16
0.27 59.99 109.05 179.55 315.19 0.68 0.93 1.52 2.30 3.68
0.28 53.50 97.40 159.68 279.33 0.69 0.83 1.36 2.05 3.27
0.29 47.71 86.71 142.13 248.23 0.70 0.74 1.21 1.82 2.90
0.30 42.69 77.38 126.72 221.69 0.71 0.66 1.08 1.62 2.56
0.31 38.12 69.12 113.58 198.01 0.72 0.59 0.96 1.43 2.26
0.32 34.20 61.83 101.68 177.45 0.73 0.52 0.84 1.26 1.99
0.33 30.76 55.63 91.50 158.15 0.74 0.47 0.75 1.11 1.75
0.34 27.72 49.87 81.77 141.88 0.75 0.41 0.66 0.98 1.53
0.35 24.95 44.75 73.24 127.65 0.76 0.36 0.58 0.85 1.33
0.36 22.50 40.24 65.73 114.48 0.77 0.32 0.51 0.74 1.16
0.37 20.29 36.32 58.99 102.50 0.78 0.28 0.44 0.65 1.00
0.38 18.35 32.81 53.10 91.94 0.79 0.24 0.38 0.56 0.87
0.39 16.57 29.56 47.95 82.62 0.80 0.21 0.33 0.48 0.75
0.40 14.99 26.64 43.15 74.36 0.81 0.18 0.29 0.42 0.64
0.41 13.59 24.07 38.81 66.55 0.82 0.16 0.24 0.36 0.54
0.42 12.31 21.80 35.10 59.80 0.83 0.13 0.21 0.30 0.46
0.43 11.17 19.75 31.71 53.74 0.84 0.11 0.18 0.25 0.38
0.44 10.13 17.90 28.62 48.55 0.85 0.10 0.15 0.21 0.32
0.45 9.18 16.19 25.84 43.82 0.86 0.09 0.13 0.18 0.26
0.46 8.33 14.65 23.38 39.55 0.87 0.08 0.11 0.15 0.22
0.47 7.55 13.24 21.13 35.92 0.88 0.07 0.09 0.12 0.18
0.48 6.84 11.97 19.12 32.30 0.89 0.07 0.08 0.11 0.15
0.49 6.21 10.84 17.24 29.29 0.90 0.06 0.08 0.10 0.13
0.50 5.65 9.84 15.62 26.56

Table 11: Critical values for IM-OLS with two regressors for the intercept case.
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m 90 % 95 % 97.5 % 99 % m 90 % 95 % 97.5 % 99 %
0.10 6200.37 10193.95 15326.19 24073.55 0.51 7.23 11.48 16.82 25.63
0.11 4509.27 7377.93 11123.03 17501.96 0.52 6.43 10.18 14.93 22.63
0.12 3352.96 5490.25 8244.13 12962.80 0.53 5.72 9.04 13.18 19.96
0.13 2538.73 4164.23 6236.31 9813.63 0.54 5.08 8.00 11.67 17.77
0.14 1955.13 3206.43 4839.43 7570.52 0.55 4.50 7.10 10.31 15.64
0.15 1532.08 2516.54 3784.19 5980.17 0.56 3.98 6.25 9.09 13.82
0.16 1216.30 1996.07 3005.41 4722.84 0.57 3.54 5.53 8.03 12.20
0.17 973.37 1601.75 2405.88 3775.01 0.58 3.14 4.90 7.09 10.65
0.18 789.56 1294.82 1951.46 3066.88 0.59 2.79 4.33 6.25 9.40
0.19 644.63 1059.77 1591.94 2503.19 0.60 2.47 3.83 5.50 8.28
0.20 532.42 872.15 1310.34 2070.55 0.61 2.19 3.38 4.87 7.27
0.21 441.97 723.55 1086.14 1707.82 0.62 1.93 2.99 4.31 6.38
0.22 370.47 604.21 904.88 1418.19 0.63 1.70 2.64 3.79 5.62
0.23 310.95 506.52 759.99 1188.72 0.64 1.50 2.32 3.31 4.94
0.24 262.06 426.60 641.85 1004.59 0.65 1.32 2.03 2.91 4.31
0.25 222.84 363.35 543.98 850.11 0.66 1.16 1.79 2.55 3.78
0.26 190.30 310.19 462.77 727.46 0.67 1.02 1.57 2.23 3.29
0.27 162.76 266.04 397.85 620.09 0.68 0.89 1.37 1.95 2.88
0.28 140.04 228.50 342.80 534.01 0.69 0.78 1.19 1.69 2.49
0.29 120.84 196.51 294.37 459.92 0.70 0.68 1.04 1.47 2.16
0.30 104.04 169.63 254.19 395.40 0.71 0.60 0.91 1.28 1.88
0.31 90.53 147.29 219.51 342.83 0.72 0.52 0.79 1.11 1.62
0.32 78.57 127.87 191.05 297.45 0.73 0.46 0.68 0.96 1.39
0.33 68.31 111.24 165.77 258.54 0.74 0.40 0.59 0.82 1.19
0.34 59.54 96.83 144.76 223.95 0.75 0.35 0.51 0.70 1.02
0.35 52.07 84.63 126.42 196.34 0.76 0.31 0.44 0.60 0.87
0.36 45.79 74.08 110.23 172.21 0.77 0.28 0.38 0.52 0.74
0.37 40.09 64.87 96.52 150.31 0.78 0.25 0.34 0.44 0.62
0.38 35.28 56.91 84.69 132.06 0.79 0.22 0.30 0.38 0.53
0.39 31.04 50.03 74.31 115.74 0.80 0.20 0.26 0.33 0.45
0.40 27.43 44.13 65.53 101.57 0.81 0.19 0.24 0.30 0.39
0.41 24.18 38.93 57.60 88.93 0.82 0.17 0.22 0.27 0.34
0.42 21.40 34.31 50.68 78.33 0.83 0.16 0.20 0.24 0.31
0.43 18.90 30.32 44.85 69.06 0.84 0.15 0.18 0.22 0.28
0.44 16.76 26.82 39.45 60.89 0.85 0.14 0.17 0.21 0.26
0.45 14.84 23.78 34.92 53.38 0.86 0.13 0.16 0.20 0.24
0.46 13.18 21.00 30.96 47.39 0.87 0.13 0.16 0.19 0.23
0.47 11.70 18.55 27.31 41.88 0.88 0.12 0.15 0.18 0.22
0.48 10.35 16.46 24.17 37.06 0.89 0.12 0.14 0.17 0.22
0.49 9.19 14.58 21.44 32.82 0.90 0.11 0.14 0.17 0.21
0.50 8.16 12.95 18.98 28.96

Table 12: Critical values for FM-OLS & D-OLS with two regressors for the intercept and linear
trend case.
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m 90 % 95 % 97.5 % 99 % m 90 % 95 % 97.5 % 99 %
0.10 12039.65 20715.05 32501.01 53971.50 0.51 13.88 23.08 35.52 57.72
0.11 8689.67 14895.60 23578.76 39302.34 0.52 12.35 20.56 31.50 50.87
0.12 6432.55 11042.93 17417.93 29048.79 0.53 10.99 18.24 27.96 44.98
0.13 4872.51 8398.59 13214.74 21965.82 0.54 9.77 16.19 24.80 39.81
0.14 3767.09 6463.54 10161.91 16946.37 0.55 8.67 14.38 21.91 35.08
0.15 2948.46 5077.83 7989.20 13197.20 0.56 7.71 12.75 19.38 31.01
0.16 2339.27 3996.26 6318.34 10473.81 0.57 6.84 11.30 17.14 27.41
0.17 1867.97 3211.80 5044.28 8400.40 0.58 6.08 9.99 15.19 24.19
0.18 1512.38 2607.53 4089.88 6810.43 0.59 5.39 8.83 13.39 21.23
0.19 1238.05 2129.85 3346.91 5552.07 0.60 4.78 7.81 11.82 18.74
0.20 1018.04 1755.18 2769.11 4583.95 0.61 4.24 6.91 10.44 16.48
0.21 842.95 1450.13 2290.85 3803.40 0.62 3.76 6.11 9.18 14.55
0.22 705.29 1207.90 1911.03 3150.13 0.63 3.33 5.40 8.10 12.82
0.23 592.05 1014.74 1595.03 2647.62 0.64 2.95 4.76 7.13 11.25
0.24 499.12 855.29 1346.41 2235.18 0.65 2.60 4.20 6.28 9.89
0.25 423.64 725.12 1139.81 1891.74 0.66 2.30 3.71 5.52 8.64
0.26 360.94 618.54 970.63 1610.13 0.67 2.03 3.26 4.84 7.56
0.27 310.03 529.29 832.41 1374.49 0.68 1.78 2.86 4.24 6.61
0.28 266.49 456.52 714.64 1183.35 0.69 1.57 2.50 3.69 5.75
0.29 229.75 393.51 615.86 1020.97 0.70 1.38 2.18 3.23 4.98
0.30 198.60 339.93 531.44 881.60 0.71 1.20 1.91 2.81 4.33
0.31 172.30 294.72 461.25 766.06 0.72 1.05 1.66 2.44 3.76
0.32 149.88 256.24 401.43 666.86 0.73 0.92 1.45 2.12 3.26
0.33 130.78 223.30 348.47 575.94 0.74 0.80 1.26 1.83 2.81
0.34 113.98 194.71 303.25 500.24 0.75 0.69 1.09 1.58 2.42
0.35 99.63 169.55 265.96 438.76 0.76 0.60 0.94 1.36 2.07
0.36 87.21 148.69 233.14 382.53 0.77 0.52 0.81 1.16 1.77
0.37 76.60 130.40 203.78 334.97 0.78 0.44 0.69 1.00 1.51
0.38 67.42 114.24 178.34 293.07 0.79 0.38 0.59 0.85 1.28
0.39 59.28 100.41 156.28 257.33 0.80 0.32 0.50 0.72 1.08
0.40 52.23 88.33 137.28 226.35 0.81 0.27 0.42 0.61 0.90
0.41 46.15 78.10 120.94 198.71 0.82 0.23 0.36 0.51 0.76
0.42 40.79 68.71 106.99 174.90 0.83 0.19 0.30 0.42 0.62
0.43 36.16 60.82 94.12 153.71 0.84 0.16 0.25 0.35 0.52
0.44 32.04 53.95 83.05 135.36 0.85 0.13 0.20 0.29 0.42
0.45 28.43 47.71 73.44 119.38 0.86 0.11 0.16 0.23 0.34
0.46 25.17 42.29 65.08 105.37 0.87 0.09 0.13 0.19 0.28
0.47 22.32 37.39 57.48 93.35 0.88 0.08 0.11 0.15 0.22
0.48 19.79 33.08 50.99 82.72 0.89 0.07 0.09 0.12 0.17
0.49 17.52 29.36 45.14 73.75 0.90 0.06 0.08 0.10 0.13
0.50 15.57 26.03 40.03 65.03

Table 13: Critical values for IM-OLS with two regressors for the intercept and linear trend case.
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