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ABSTRACT 

Biodegradable and biocompatible polymers are widely used for the encapsulation of drug 
molecules. Various particulate carriers with different sizes and characteristics have been pre-
pared by miscellaneous techniques. In this review, we reported the commonly used preformed 
polymer based techniques for the preparation of micro and nano-structured materials intended 
for drug encapsulation. A description of polymer-solvent interaction was provided. The most 
widely used polymers were reported and described and their related research studies were 
mentioned. Moreover, principles of each technique and its crucial operating conditions were 
described and discussed. Recent applications of all the reported techniques in drug delivery 
were also reviewed. 
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INTRODUCTION 

Particulate carriers have gained tremen-
dous interest during the last decades which 
permitted to deliver many hydrophilic and 
hydrophobic molecules. Obtained particles 
present small size which facilitates their 
absorption. These drug delivery systems 
protect active pharmaceutical ingredients 
from degradation, enhance biopharmaceuti-
cal properties and could provide passive or 
active targeting or sustained delivery. Bio-
medical applications of the developed carri-
ers are continuously growing (Ahmad, 
2013; Soares, 2013; Miladi et al., 2013). 
Although, they present different physico-
chemical properties, the used polymers are 

mainly biocompatible and biodegradable. A 
multitude of techniques are used to obtain 
these particles. These methods differ by 
their principles and the nature of drug mol-
ecules that could be encapsulated. Some 
successfully marketed products led to an 
enlargement of the applications and the in-
terest given by researchers to these drug 
delivery systems. Choice of the technique 
and operating conditions is crucial to obtain 
formulations bearing good properties for in 
vitro and in vivo applications. In this re-
view, we will focus on polymeric particles 
and give a scope about the most used poly-
mers. We will also describe the common 
preformed polymer based techniques used 
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for the encapsulation of drug molecules. 
We will also review the major applications 
of the developed particles during the last 
years and their main properties. 

 
1. POLYMER-SOLVENT INTERAC-

TIONS 

Many techniques that rely on preformed 
polymers have been used for the prepara-
tion of particulate carriers. Although these 
methods are quite different, they generally 
share a unique principle which is polymer 
precipitation. Precipitation of the polymer 
occurs either when a non solvent is added 
or after subsequent decrease of its solubility 
in a solvent. Many parameters could influ-
ence polymer solubility such as, solvent 
nature, pH, salinity and temperature of the 
dispersion medium. Solubility of polyelec-
trolytes in water, for example, is highly pH 
and salinity dependent (Gennes, 1979), 
while that of poly(alkyl acrylamide) and 
poly(alkyl methacrylamide), is mainly tem-
perature dependent (Elaissari, 2002). In 
fact, nanoprecipitation and emulsion based 
techniques are based on the addition of a 
non solvent to the polymer which causes its 
precipitation. However, ionic gelation tech-
nique, for instance, in which generally a 
polyelectrolyte is used as polymer, is based 
on the addition of a salt or an oppositely 
charged polymer. This results in a change 
in the salinity of the medium and the ap-
pearance of electrostatic interactions and 
thus, leads to polymer precipitation. The 
thermodynamic behavior of the polymer in 
a given solution is highly dependent on the 
Flory -parameter. This parameter is de-
fined as the free energy change per solvent 
molecule (in kBT units) when a solvent-
solvent contact is shifted to a solvent-
polymer contact. It is expressed by the fol-
lowing mathematical equations: 
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where kB and T are Boltzmann constant 
and temperature, respectively; A and  pa-
rameters are defined as follows: 
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It can be seen that the A parameter is di-

rectly related to entropy changes, whereas  
temperature is a function of both entropic 
and enthalpic variations. When  tempera-
ture = T, the corresponding Flory -
parameter = 1/2, at which the second Virial 
coefficient is equal zero (Elias, 2003). The 
latter can be easily determined from light 
scattering measurements of a diluted poly-
mer solution. At  temperature conditions, 
the binary interactions among constituents 
will be negligible and only the excluded 
volume effects will be predominant. Con-
sequently, the solvent will be a good sol-
vent for the polymer when  < 1/2 and a 
poor one when  > 1/2 (Minost et al., 
2012). 
 
2. COMMONLY USED POLYMERS 

FOR ENCAPSULATION 

Several polymers have been used for 
drug encapsulation but only biodegradable 
and biocompatible ones are suitable for bi-
omedical applications. The biodegradability 
of a polymer is acquired by the presence of 
a labile function such as ester, orthoester, 
anhydride, carbonate, amide, urea or ure-
thane in their backbone. These polymers 
could be of natural (polysaccharides and 
protein based polymers) or synthetic (poly-
esters) nature (Pillai and Panchagnula, 
2001). The most commonly used polymers 
for drug encapsulation are polyesters (lac-
tide and glycolide copolymers, poly--
caprolactone), acrylic polymers (polymeth-
acrylates) and polyamides (gelatin and al-
bumin). The selection of the right polymer 
is a crucial step to obtain particles that are 
suitable for a well-defined application. In 
fact, polymers’ structures are highly differ-
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ent and their surface and bulk properties are 
highly relevant for the obtaining of the de-
sirable biological application. Copolymers 
could be also used to monitor the hydro-
phobicity of the materials. Some polymers 
are poly(ethyleneglycol) (PEG) copolymer-
ized in order to decrease nanoparticle 
recognition by the reticular endothelial sys-

tem. Table 1 contains examples of the most 
used biocompatible and biodegradable pol-
ymers in encapsulation. Some polymers, 
especially those having mucoadhesive 
properties, could also be used for coating 
the nanocarriers (Mazzaferro et al., 2012; 
Zandanel and Vauthier, 2012).  

 
 

Table 1: Commonly used polymers 

Materials References 
Polymers 
Natural polymers 
Chitosan Elmizadeh et al., 2013; Fàbregas et al., 2013; Khalil et al., 2012; Konecsni et al., 2012; 

Du et al., 2009; Bernkop-Schnürch et al., 2006; Gan et al., 2005; Asada et al., 2004 

Dextran Liang et al., 2013; Dai et al., 2012; Sajadi Tabassi et al., 2008; Koten et al., 2003 

Dextran derivatives Kanthamneni et al., 2012; Kauffman et al., 2012; Aumelas et al., 2007; Miyazaki et al., 
2006 

Cyclodextrins Çirpanli et al., 2009; Memişoğlu et al., 2003; Pariot et al., 2002; Lemos-Senna et al., 
1998 

Gelatin Nahar et al., 2008; Balthasar et al., 2005; Vandervoort and Ludwig, 2004; Bruschi et al., 
2003 

Synthetic polymers 
Biodegradable polyesters 
PLGA Gyulai et al., 2013; Beck-Broichsitter et al., 2012; Morales-Cruz et al., 2012; Beck-

Broichsitter et al., 2011; Nehilla et al., 2008; Song et al., 2008; Budhian et al., 2007; 
Bozkir and Saka, 2005; Fonseca et al., 2002;Yang et al., 1999; Govender et al., 1999 

PLA Bazylińska et al., 2013; Fredriksen and Grip 2012; Kadam et al., 2012; Kumari et al., 
2011; Ataman-Önal et al., 2006; Lamalle-Bernard et al., 2006; Hyvönen et al., 2005; 
Katare et al., 2005; Chorny et al., 2002; Leo et al., 2000  

PCL Behera and Swain, 2012; Guerreiro et al., 2012; Hernán Pérez de la Ossa et al., 2012; 
Khayata et al., 2012; Arias et al., 2010; Wang et al., 2008; Limayem Blouza et al., 2006; 
Tewa-Tagne et al., 2006; Yang et al., 2006; Le Ray et al., 2003; Chawla and Amiji 2002; 
Raval et al., 2011; Hombreiro Pérez et al., 2000; Benoit et al., 1999; Masson et al., 1997 

Poly(lactide-co-
glycolide-co-
caprolactone) 

Zhang et al., 2006  

Acrylic polymers 
Eudragit  Hao et al., 2013; Das et al., 2010; Eidi et al., 2010; Trapani et al., 2007; Galindo-

Rodríguez et al., 2005; Haznedar and Dortunç 2004; Pignatello et al., 2002 

Others 
Polyvinylbenzoate Labruère et al., 2010 

Pegylated polymers 
Chitosan-PEG Seo et al., 2009 

MPEG-PCL Falamarzian and Lavasanifar, 2010; Xin et al., 2010  

PCL-PEG-PCL Suksiriworapong et al., 2012; Huang et al., 2010; Gou et al., 2009  

Poly(caprolactone)-
poly(ethylene ox-
ide)-polylactide 

Hu et al., 2003 

PLA-PEG Sacchetin et al., 2013; Essa et al., 2010; Ishihara et al., 2010; Vila et al., 2005; Vila et al., 
2004; Govender et al., 2000; Huang et al., 1997  

PLA-PEG-PLA Chen et al., 2011; Ruan and Feng 2003 

MPEG-PLA Zheng et al., 2010; Dong and Feng, 2007; Dong and Feng, 2004 
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2.1 Natural polymers 
2.1.1 Chitosan 

Chitosan is obtained by deacetylation of 
chitin, which is the structural element in the 
exoskeleton of crustaceans (crabs, shrimp, 
etc.) and cell walls of fungi. It is a cationic 
and biodegradable polysaccharide consist-
ing of repeating D-glucosamine and N-
acetyl-D-glucosamine units, linked via (1-
4) glycosidic bonds. Chitosan is non toxic 
and can be digested in the physiological 
environment, either by lysozymes or by chi-
tinases, which are present in the human in-
testine and in the blood. These properties 
led to increased interest for this polymer in 
pharmaceutical research and industry as a 
carrier for drug delivery (Mao et al., 2010). 
In addition, chitosan has mucoadhesive 
properties owing to its positive charge that 
allows interaction with the negatively-
charged mucosal surface. Consequently, the 
use of chitosan as a matrix (Patil and 
Sawant, 2011) or as a coating material 
(Mazzarino et al., 2012) in drug encapsula-
tion had become a promising strategy to 
prolong the residence time, to increase the 
absorption of active molecules through the 
mucosa (Mao et al., 2010; Alpar et al., 
2005) and also for targeted delivery (Park et 
al., 2010).  
 
2.1.2 Dextran and its derivatives 

Dextran polymers are produced by bac-
teria from sucrose. Chemical synthesis is 
also possible. These glucose polymers con-
sist predominantly of linear -1,6-
glucosidic linkage with some degree of 
branching via 1,3-linkage. Dextran-based 
microspheres have got much attention be-
cause of their low toxicity, good biocom-
patibility and biodegradability, which are of 
interest for application in biomedical and 
pharmaceutical fields (Mehvar, 2000). 
Many detxran polymers such as Sephadex® 
(cross-linked dextran microspheres) as well 
as Spherex® (cross-linked starch micro-
spheres) were used as carriers for drug de-
livery. Other derivatives of dextran and 

starch including diethyl aminoethyl dextran 
and polyacryl starch have also been used 
for mucosal drug delivery. Illum et al. 
(2001) proposed some mechanisms to ex-
plain absorption enhancement effects of 
cross-linked starch and dextran micro-
spheres intended to nasal delivery which 
are: (1) Deposition of the microspheres in 
the less or non ciliated anterior part of the 
nasal cavity and slower nasal clearance; (2) 
Retention of the formulation in the nasal 
cavity for an extended time period because 
of the bioadhesive properties of the micro-
spheres and (3) The local high drug concen-
tration provided by the gelled system in 
close contact with the epithelial absorptive 
surface (Illum et al., 2001). 
 
2.1.3 Cyclodextrins 

Cyclodextrins (CDs) are cyclic oligo-
saccharides that contain at least six D-(+) 
glucopyranose units which are attached by 
-(1,4) glucosidic bonds. They have been 
widely used for the formulation of drugs 
with bioavailability concerns resulting from 
poor solubility, poor stability and severe 
side effects. There are 3 natural CDs which 
are α-, β-, and γ-CDs (with 6, 7, or 8 glu-
cose units respectively) (Challa et al., 
2005). In addition, amphiphilic cyclodex-
trins are synthetic derivatives of natural cy-
clodextrins. Such derivatives are able to 
self-organize in water to form micelles and 
nano-aggregates, which is interesting for 
pharmaceutical applications, mainly, encap-
sulation (Gèze et al., 2002). In fact, am-
phiphilic cyclodextrins have recently been 
used to prepare nanoparticles and nanocap-
sules without surfactants and have shown 
high drug-loading capacity with favorable 
release properties (Lemos-Senna et al., 
1998; Çirpanli et al., 2009; Duchêne, 1999). 
They have also been used for targeting and 
for increasing drug loading (Duchêne et al., 
1999).  
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2.1.4 Gelatin 

Gelatin is a natural polymer that is de-
rived from collagen. It is commonly used 
for pharmaceutical and medical applica-
tions because of its biodegradability and 
biocompatibility in physiological environ-
ments. Gelatin is attractive for use in con-
trolled release due to its nontoxic, bioactive 
properties and inexpensive price. It is also a 
polyampholyte having both cationic and 
anionic groups along with hydrophilic 
groups. Mechanical properties, swelling 
behavior and thermal properties of gelatin 
depend significantly on its crosslinking de-
gree (Young et al., 2005). 
 
2.2 Biodegradable polyesters 

Polyester-based polymers are among of 
the most widely investigated materials for 
drug delivery. Poly(lactic acid) (PLA), 
poly(glycolic acid) (PGA) and their copol-
ymers poly(lactic acid-co-glycolic acid) 
(PLGA) along with poly--caprolactone are 
some of the well-defined biomaterials with 
regard to design and performance for drug-
delivery applications. 
 
2.2.1 PLGA 

PLGA, a copolymer of lactic acid and 
glycolic acid, has generated tremendous 
interest due to its excellent biocompatibil-
ity, biodegradability, and mechanical 
strength. PLGA is approved by the US 
FDA and European Medicine Agency 
(EMA) in various drug delivery systems in 
humans. In order to improve the formula-
tion of controlled drug delivery systems, an 
understanding of the physical, chemical, 
and biological properties of polymers is 
helpful. In fact, the polymer is commercial-
ly available with different molecular 
weights and copolymer compositions. The 
degradation time can vary from several 
months to several years, depending on the 
molecular weight and copolymer ratio 
(Danhier et al., 2012). For example, lactic 
acid is more hydrophobic than glycolic acid 
and, therefore, lactide-rich PLGA copoly-

mers are less hydrophilic, absorb less water, 
and subsequently, degrade more slowly 
(Dinarvand et al., 2011). PLGA particles 
are widely used to encapsulate active mole-
cules with a broad spectrum of pharmaceu-
tical applications (Danhier et al., 2012; 
Menei et al., 2005; Singh et al., 2004).  
 
2.2.2 PLA 

PLA is a biocompatible and biodegra-
dable synthetic polyester which undergoes 
scission in the body to monomeric units of 
lactic acid. The latter is a natural intermedi-
ate in carbohydrate metabolism. PLA pos-
sess good mechanical properties and it is 
largely used for the preparation of particles 
(Gupta and Kumar, 2007). 
 
2.2.3 PCL 

It was in 1930s that the ring-opening 
polymerization of PCL was studied. The 
biodegradable property of this synthetic 
polymer was first identified in 1973. PCL is 
suitable for controlled drug delivery due to 
its high permeability to many drugs and 
non-toxicity (Sinha et al., 2004). Molecular 
weight dependent surface hydrophobicity 
and crystallinity of PCL are the causes for 
its slower biodegradation in two distinct 
phases such as random non-enzymatic 
cleavage and enzymatic fragmentation. 
Lipophilic drugs are generally distributed 
uniformly in the matrix while hydrophilic 
drugs tend to move towards the interface 
and remain on the surface of PCL formula-
tion in adsorbed state. Diffusion was de-
scribed as the only possible mechanism by 
which the lipophilic drugs release from 
PCL particles as they were shown to be in-
tact for a much longer duration in vivo. 
However, two phenomena could be impli-
cated in hydrophilic drugs’ release. Highly 
lipophilic drugs that resist complete diffu-
sion are released upon surface erosion by 
enzymatic action while hydrophilic drugs 
that accumulate at the interface during the 
formulation processes are released by de-
sorption at the initial period of release study 
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or dosage intake. This results in a biphasic 
drug release pattern for PCL particles with 
much higher burst release for hydrophilic 
drugs than lipophilic ones (Dash and 
Konkimalla, 2012). 

 
2.3 Pegylated polymers 

Many of the above cited polymers could 
be conjugated to PEG chains, which allows 
the enhancement of their hydrophilicity and 
permits the obtaining of a stealth surface 
that could protect the prepared carriers from 
degradation by the cells belonging to the 
reticuloendothelial system. Conjugation to 
PEG confers also bioadhesive properties for 
the carriers (Yoncheva et al. 2005). 
 
3. Used methods for the encap-

sulation of active molecules 
3.1 Nanoprecipitation 

The nanoprecipitation technique was 
first developed by Fessi et al. in 1986 (De-
vissaguet et al., 1991). The technique al-
lows the obtaining of either nanospheres or 
nanocapsules. The organic phase could be 
added to the aqueous phase under magnetic 
stirring. This one-step process allows the 
instantaneous and reproducible formation 
of monodisperse nanoparticles. Nanopre-
cipitation is simple, is by far the fastest, 
most reproducible, and industrially feasible 
preparation procedure of nanospheres 
(Vauthier and Bouchemal, 2009). Practical-
ly, two miscible phases are required: an or-

ganic solvent in which the polymer is dis-
solved and an aqueous phase (non-solvent 
of the polymer). The most common used 
organic solvents are ethanol and acetone. 
Such solvents are miscible in water and 
easy to remove by evaporation. Some oils 
could be added to these solvents to allow 
the dissolving of the active (Rosset et al., 
2012). As Figure 1 shows, the method is 
based on the addition of one phase to the 
other under moderate magnetic stirring 
which causes the interfacial deposition of a 
polymer after displacement of the organic 
solvent from the organic solution. This 
leads to the formation of a suspension of 
nanoparticles. The organic phase could be a 
mixture of solvents such as, mixture of ace-
tone with water or ethanol etc. Similarly, 
the aqueous phase could consist of a mix-
ture of non-solvents and could contain sur-
factants. Commonly used polymers are bio-
degradable polyesters, especially PCL, PLA 
and PLGA (Rao and Geckeler, 2011). Par-
ticle formation process includes three basic 
steps which are, particle nucleation, molec-
ular growth and aggregation. The rate of 
every step has a crucial impact on the parti-
cle size distribution. Supersaturation is the 
driving force that manages all of these 
steps, namely, particles nucleation rate. Su-
persaturation, itself, is influenced by fluid 
dynamics and mixing. In fact, low stirring 
rate results in low nucleation rates while 
higher mixing rates give high nucleation 
rates (Lince et al., 2008). 

 
Figure 1: The nanoprecipitation technique (Pinto Reis et al., 2006) 
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Operational parameters that should be 
controlled include the organic phase to non 
organic phase ratio, the concentration of the 
polymer and the stabilizer and the amount 
of the drug. Every one of these parameters 
may exert an impact on the characteristics 
of the obtained nanoparticles (size, uni-
formity and charge). In fact, an increase of 
the polymer amount generally increases 
particles’ size (Chorny et al., 2002; Simşek 
et al., 2013; Dong and Feng, 2004; Asadi et 
al., 2011). The same effect was obtained 
after increasing the polymer molecular 
weight (Limayem Blouza et al., 2006; Hol-
gado et al., 2012). These findings were ex-
plained by an increase of the viscosity of 
the organic phase which rendered solvent 
diffusion more difficult and thus, led to 
larger nanoparticles’ size. The effect of in-
creasing organic phase volume seems con-
flicting: some studies showed that it causes 
a decrease of the particles size (Dong and 
Feng, 2004) while others showed the oppo-
site phenomenon (Asadi et al., 2011). In-
creasing the water phase amount leads to a 
decrease of the particles size as a result of 
the increased diffusion of the water-
miscible solvent in the aqueous phase and 
thus, the more rapid precipitation of the 
polymer and formation of nanoparticles 
(Budhian et al., 2007). An increase of the 
surfactant amount generally causes a de-
crease of the particles size and reduces size 
distribution (Contado et al., 2013; Siqueira-
Moura et al., 2013). Some studies did not, 
however, found significant change follo-
wing surfactant amount increase (Dong and 
Feng, 2004). The nature of the surfactant 
may also influence the particles’ size (Li-
mayem Blouza et al., 2006). Increasing 
mixing rate decreases the particles size as it 
causes faster diffusion rate (Asadi et al., 
2011). Theoretical drug loading may also 
influence particles size and drug loading 
(Govender et al., 1999). Nanoprecipitation 
is generally designed for the encapsulation 
of hydrophobic drug molecules (Seju et al., 
2011; Katara and Majumdar, 2013; 
Seremeta et al., 2013). Such actives may be 

dissolved within the organic phase. Bilalti 
et al. (2005) described a nanoprecipitation 
technique intended to the encapsulation of 
hydrophilic molecules but the size of the 
obtained particles was not sufficiently uni-
form (Bilati et al., 2005). To further im-
prove the reproducibility of the nanoprecip-
itation technique and make it more conven-
ient for industrial applications, membrane 
contactor and microfluidic technology were 
successfully used (Khayata et al., 2012; Xie 
and Smith, 2010). These techniques allow 
better size control within different batches 
of particles. Table 2 contains some exam-
ples of the applications of the nanoprecipi-
tation technique in drug delivery during the 
last years. It can be concluded that polyes-
ters are among the most used polymers for 
the preparation of the nanoparticles by this 
technique. 

 
3.2 Emulsion diffusion (ESD) 

ESD was first developed by Quintanar-
Guerrero and Fessi (Quintanar-Guerrero et 
al., 1996) to prepare PLA based nano-
spheres. Three liquid phases are needed in 
this technique: an organic phase, an aque-
ous phase and a dilution phase. The organic 
phase generally contains the polymer and 
the hydrophobic drug. The aqueous phase is 
a solution of a stabilizing agent while the 
dilution phase usually consists of a large 
volume of water. Mutual saturation of the 
aqueous and organic phase allows further 
obtaining of a thermodynamically equili-
brated emulsion upon high speed homoge-
nization. Subsequent addition of an excess 
of water enables the diffusion of the organic 
solvent from the dispersed phase resulting 
in precipitation of the polymer and the for-
mation of the particles (Figure 2). Com-
monly used polymers in this method in-
clude PCL, PLA and Eudragit® (Mora-
Huertas et al., 2010). Table 3 shows that the 
technique is mainly used for the encapsula-
tion of hydrophobic molecules. However, 
hydrophilic molecules may also be encap-
sulated by a modified solvent diffusion 
method using an aqueous inner phase (Ma 
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et al., 2001). Operating conditions affecting 
the size of the obtained particles include 
external/internal phase ratio, emulsification 
stirring rate, volume and temperature of wa-
ter for dilution, polymer amount and con-
centration of the stabilizer (Quintanar-
Guerrero et al., 1996; Mora-Huertas et al., 
2010). Influence of high shear homogeniza-
tion and sonication on the particles size was 
assessed and it was found that sonication 
was more efficient for particle size re-
duction. The nature of the surfactant influ-
enced also the particles size. In fact, when 
Pluronic F68 (PF68), didodecyldime-
thylammonium bromide (DMAB) and pol-
yvinylalcohol (PVA) were compared, 
DMAB gave the smallest particles but with 
the lowest encapsulation efficiency (Jain et 
al., 2011). Particles size was also described 
to increase with an increase of initial drug 
amount (Youm et al., 2012), polymer 

amount (Youm et al., 2012; Esmaeili et al., 
2011) and the oil phase volume (Esmaeili et 
al., 2011; Poletto et al., 2008). An increase 
of the surfactant amount resulted in a de-
crease of the size but it seems that above 
some level further significant size reduction 
is no longer possible (Jain et al., 2011; Su-
rassmo et al., 2010). An increase of the ho-
mogenization rate led to a decrease of the 
particles’ size (Jain et al., 2011; Kwon et 
al., 2001; Galindo-Rodríguez et al., 2005). 
Likely, the same effect was obtained fol-
lowing an increase of the temperature and 
the volume of added water (Kwon et al., 
2001; Song et al., 2006). The nature of the 
organic solvent also influenced particle size 
(Song et al., 2006). Table 3 shows some of 
the recent applications of the ESD tech-
nique. 

 

 
 

Table 2: Applications of the nanoprecipitation technique 

Encapsulated 
molecule 

Polymer  Size (nm) Zeta potential
(mV) 

Reference 

Doxorubicin Gelatin-co-PLA-DPPE 131.5-161.1 - Han et al., 2013 

Aceclofenac Eudragit RL 100 75.5-184.4 22.5 - 32.6 Katara and Majumdar, 
2013 

Doxorubicin Dextran-b-
polycaprolactone 

95-123.3 - Li et al., 2013 

Chloroaluminum 
phthalocyanine 

PLGA 220.3-326.3 -17.7-(-40.9) Siqueira-Moura et al., 
2013 

Efavirenz PCL and Eudragit® RS 
100 

89.5 - 173.9 -17.9-53.8 Seremeta et al., 2013 

Paclitaxel PLGA 50 - 150 -15 - (-20) Wang et al., 2013 

Retinoic acid PLA 153.6-229.8 -27.4-(-20.9) Almouazen et al., 2012 

Brimonidine  
Tartrate 

Eudragit® RL 100 123.5 - 140.2 13.1- 20.8 Khan et al., 2012 

Vitamin E PCL 123-320 -24.5-(-1.46) Khayata et al., 2012 

Paclitaxel Hydrophobized pullulan 127.6-253  Lee et al., 2012 

Curcumin PCL, chitosan 104-125 (-0.099)-79.8 Mazzarino et al., 2012 

Diclofenac PCL 152 -50 Mora-Huertas et al., 2012 

Amphotericin B PLGA 86-153 -31.4-(-9.1) Van de Ven et al., 2012 

Epirubicin Poly(butyl cyanoacry-
late) 

217-235 -4.5-(-0.1) Yordanov 2012 

Camptothecin Beta-cyclodextrin 
PLGA 
PCL 

281 
187 
274 

-13 
-0.06 
-19 

Cırpanlı et al., 2011 

Naringenin Eudragit® E 90 - Krishnakumar et al., 2011 
Olanzapine PLGA 91.2 -23.7 Seju et al., 2011 
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Figure 2: Emulsion diffusion technique (Pinto Reis et al., 2006) 
 

 
Table 3: Applications of the emulsion diffusion method 

Encapsulated 
molecule 

Polymer  Size (µm) Zeta potential
(mV) 

Reference 

Articaine PCL - - Campos et al., 2013 
Omeprazole Eudragit L 100-55 0.256.3- 0.337 8.92 - 16.53 Hao et al., 2013 
Curcumin  Polyurethane and 

polyurea 
0.216- 4.901 - Souguir et al., 2013 

Matricaria recutita 
L. extract 

PEG-PBA-PEG 0.186- 0.446  - Esmaeili et al., 2011 

Bovine serum 
albumin 

Chitosan  81-98  - Karnchanajindanun et 
al., 2011 

Alendronate PLGA 0.145  -4.7 Cohen-Sela et al., 
2009 

An oligonucleo-
tide 

PLA 0.390  - Delie et al., 2001 

 
 
3.3 Simple Emulsion evaporation 

(SEE) 

The SEE technique is widely used in the 
field of particulate carriers’ development. 
This method was first developed by 
(Vanderhoff et al., 1979). It consists on the 
formation of a simple emulsion followed by 
the evaporation of the organic solvent. Sub-
sequent precipitation of the polymer allows 
the obtaining of the particles (Figure 3). 
Practically, for oil in water emulsion meth-
od, the polymer is dissolved in a volatile 
and non miscible organic solvent such as 
chloroform, ethylacetate or dichloro-
methane. This organic phase, in which the 
drug and the polymer are dissolved, is then 
dispersed by high speed homogenization or 
by sonication in an aqueous phase contain-
ing a surfactant. Once an oil-in-water (o/w) 

emulsion is obtained, the evaporation of the 
organic solvent permits the precipitation of 
the polymer and thus, the formation of the 
particles. As it can be seen in Table 4, SEE 
is generally used for the encapsulation of 
hydrophobic drugs (O’Donnell and McGin-
ity, 1997). The evaporation of the organic 
solvent is obtained by moderately stirring 
the emulsion at room temperature or under 
high temperature and low pressure condi-
tions. The obtained particles can be then 
harvested by ultracentrifugation or filtra-
tion, then washed and lyophilized. Mem-
brane technology was also used to prepare 
particles by the simple emulsion technique 
(Doan et al., 2011). Another alternative of 
the technique is the use of water in oil 
emulsion method that is suitable for the en-
capsulation of hydrophilic active molecules. 
Particulate carriers are obtained after evap-



EXCLI Journal 2014;13:28-57 – ISSN 1611-2156 
Received: November 05, 2013, accepted: January 25, 2014, published: February 03, 2014 

 

 

37 

oration of the water phase which causes the 
precipitation of the hydrophilic polymer 
(Banerjee et al., 2012). Parameters that 
have to be managed include organic phase 
to water phase ratio, nature of the surfactant 
and its concentration, stirring rate, polymer 
amount and evaporation rate. Decreasing 
the organic solvent volume resulted gener-
ally in a decrease of particle size (Budhian 
et al., 2007). Particle size could also be de-
creased by increasing surfactant amount 
(Valot et al., 2009; Manchanda et al., 2010; 
Khaled et al., 2010; Su et al., 2009), increa-

sing stirring rate (Su et al., 2009; Lee et al., 
2012; Avachat et al., 2011; Yadav and 
Sawant, 2010) or increasing aqueous phase 
volume (Adibkia et al., 2011). However, an 
increase of polymer amount generally in-
creases particles’ size (Doan et al., 2011; 
D’Aurizio et al., 2011; Adibkia et al., 2011; 
Agnihotri and Vavia, 2009). Table 4 shows 
the applications of the SEE technique in 
drug delivery. Polyesters were widely used 
for the encapsulation of hydrophobic drugs. 

 

 

Figure 3: Simple emulsion solvent evaporation (Pinto Reis et al., 2006) 
 
 

Table 4: Applications of simple emulsion solvent evaporation technique 

Encapsulated 
molecule 

Polymer  Size (µm) Zeta potential 
(mV)

Reference 
 

Curcumin PLGA and PLGA-
PEG 

0.161-0.152 - Khalil et al., 2013 

Efavirenz  PCL and Eu-
dragit® RS 100 

0.083-0.219 53 Seremeta et al., 
2013 

Human amylin PCL 0.202 - Guerreiro et al., 
2012 

Azithromycin PLGA 14.11-15.29  - Li et al., 2012 
Teniposide PLGA 0.113-0.135 -36.6-(-23.1) Mo et al., 2012 
Camptothecin PCL-PEG-PCL 4.2-5.4  - Dai et al., 2011 
Naproxen PLGA 352-824 - Javadzadeh et al., 

2010 
Doxorubicin PLGA 0.137-0.164  -12.3-(-9.9) Manchanda et al., 

2010 
Dexamethasone PLGA 5.18-7  - Rawat and Bur-

gess, 2010 
Ibuprofen Eudragit RSPO 14-51.1 - Valot et al., 2009 
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3.4 Double emulsion evaporation 
(DEE) 

Double emulsion technique is suitable 
for the encapsulation of hydrophilic mole-
cules (see Table 5 and Figure 4). Generally, 
the method consists on the dispersion of an 
aqueous phase in a non miscible organic 
solvent to form the first emulsion (W1/O). 
This dispersion is performed under high 
shear homogenization or low power soni-
cation for a short time. This step is followed 
by the dispersion of the obtained emulsion 
in a second aqueous phase containing a hy-
drophilic emulsifier. Again, homogeniza-
tion could be carried under high shear ho-
mogenization or with a sonication probe. 
When sonication is used, it must be per-
formed at low power and within a short pe-
riod of time to not break the first emulsion 
(Giri et al., 2013). After the formation of 
the multiple emulsion, evaporation of the 
volatile organic solvent under low pressure 
(by a rotary evaporator) or at ambient tem-
perature allows the obtaining of the particu-
late carriers (Figure 4). There are other 
types of multiple emulsions like w/o/o or 
o/w/o (Giri et al., 2013). A lot of parame-
ters may influence the properties of the ob-
tained particles such as, relative phases’ 
ratio (Khoee et al., 2012), amount of the 
polymer, its nature and molecular weight 
(Zambaux et al., 1998; Péan et al., 1998; 
Van de Ven et al., 2011), nature of the sur-
factants and their amounts (Zhao et al., 
2007; Khoee and Yaghoobian, 2009; Dha-
naraju et al., 2004), homogenization speed 
(Eley and Mathew, 2007; Basarkar et al., 
2007), the composition of the external 
phase (Péan et al., 1998; Tse et al., 2009) 
and evaporation speed (Khoee et al., 2012). 
Operating conditions may also influence 
strongly encapsulation efficiency (Tse et 
al., 2009; Billon et al., 2005; Silva et al., 
2013; Zhou et al., 2013; Karataş et al., 
2009; Hachicha et al., 2006; Al-Kassas, 
2004; Cun et al., 2011; Gaignaux et al., 
2012; Cun et al., 2010). Membrane tech-
nique and microfluidic devices were also 
used to prepare particulate carriers by the 

DES method (Vladisavljević and Williams, 
2008; van der Graaf et al., 2005). 

 
3.5 Spray drying 

Spray drying is a simple process which 
gained too much interest due to its cost-
effectiveness and scalability (Sou et al., 
2011). Practically, a polymer containing 
drug solution is atomized and sprayed into a 
drying chamber where droplets are dried by 
heated air (See Figure 5). Reduction of 
droplets’ size that follows atomization al-
lows the obtaining of an enormous surface 
area between droplets and the drying gas. 
The subsequent precipitation of the polymer 
permits the encapsulation of the drug within 
the obtained particulate carriers. The evapo-
ration of the solvent occurs within a very 
short period of time. Consequently, the ma-
terials never reach the inlet temperature of 
drying gas. This is very attractive for en-
capsulating heat-sensitive drug molecules 
like proteins (Cal and Sollohub, 2010; Sol-
lohub and Cal, 2010; Prata et al., 2013). 
Many operating conditions could influence 
the properties of the obtained particles. Pa-
rameters to be controlled include the drying 
air temperature and humidity (Bruschi et 
al., 2003), the rate and fluid dynamics of 
the air flow, the atomization process (Drop-
let size, spray rate, spray mechanism) and 
the composition of ingredients and excipi-
ents in the feeding solution (Rattes and 
Oliveira, 2007). PLA (Baras et al., 2000; 
Gander et al., 1996; Sastre et al., 2007; 
Muttil et al., 2007), PLGA (Wang and 
Wang, 2002; Mu and Feng, 2001; Castelli 
et al., 1998; Bittner et al., 1999; Prior et al., 
2000; Conti et al., 1997), PCL, methacryla-
te polymers (Esposito et al., 2002; Año et 
al., 2011; Cruz et al., 2010; Hegazy et al., 
2002; Raffin et al., 2008) and chitosan (He 
et al., 1999; Giunchedi et al., 2002; Cevher 
et al., 2006) are among the most used po-
lymers in spray-drying method. As Table 6 
shows, the technique allowed the obtaining 
of mainly microparticles bearing better drug 
solubility and sustained release. 
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Table 5: Applications of the double emulsion technique 

Encapsulated molecule Polymer  Size (µm) Zeta potential
(mV) 

Reference 
 

Vancomycin PLGA 0.450-0.466 -7.2-(-3.5) Zakeri-Milani et al., 2013
Prostaglandin E1 PLGA 7-22.5  - Gupta and Ahsan, 2011 
Deoxyribonuclease I PLGA 0.190-0.349 - Osman et al., 2011 
S. equi antigens PCL 0.242-0.450 -53.1-38.7 Florindo et al., 2009 
Hepatitis B surface antigen PLGA 1-5  0.51-14 Thomas et al., 2009 
Plasmid DNA PLGA 1.9-4.6 -24.6-(-22.9) Tse et al., 2009 
 
 

 
Figure 4: Double emulsion solvent evaporation technique (Giri et al., 2013) 
 

 
Figure 5: The spray drying method (Pinto Reis et al., 2006) 
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Table 6: Applications of the spray drying technique 

Encapsulated 
molecule 

Polymer  Size (µm) Zeta potential
(mV)

Reference 
 

Nimodipine PLGA 1.9-2.37  - Bege et al., 2013 
Theophylline Eudragit RS30D < 60 - Garekani et al., 2013 
Ofloxacin PLA 2.6-4.9  - Palazzo et al., 2013 
Sodium diclofenac PGA-co-PDL 

PEG-PGA-co-PDL 
and mPEG-co-
(PGA-co-PDL) 

2.3  
3.9  
2.5  

-32.2 
-29.9 
-31.2 

Tawfeek, 2013 

Sodium fluoride Chitosan 3.4-5.3  - Keegan et al., 2012 
Plasmid  Chitosan 2.5-11.7  - Mohajel et al., 2012 
Heparin PLGA 2.5-3.8 -63.5 - (-28.2) Yildiz et al., 2012 
Alendronate  Eudragit® S100 13.8  - Cruz et al., 2010 
Zolmitriptan Chitosan glutamate 

and Chitosan base 
2.6-9.4  - Alhalaweh et al., 

2009 
Triamcinolone PLGA 0.5-1.5  - da Silva et al., 2009 
Acyclovir Chitosan  18.7-34.9  - Stulzer et al., 2009 

 
 
3.6 Supercritical fluid technology (SFT) 

In the recent years, novel particle for-
mation techniques using supercritical fluids 
(SCF) have been developed in order to 
overcome some of the disadvantages of 
conventional techniques that are: (1) poor 
control of particle size and morphology; (2) 
degradation and lost of biological activity 
of thermo sensitive compounds; (3) low en-
capsulation efficiency and (4) low precipi-
tation yield (Santos et al., 2013). Moreover, 
SFT presents the main advantage of not re-
quiring the use of toxic solvents. In fact, 
SCF based technologies have attracted 
enormous interest for the production of mi-
croparticles  and nanoparticles (Table 7), 
since their emergence in the early 1990s 
(Sanli et al., 2012). 

The supercritical state is achieved when 
a substance is exposed to conditions above 
its critical pressure and temperature. In such 
conditions, the fluid will have liquid-like 
density and, thus, solvating properties that 
are similar to those of liquids and, at the 
same time, gas-like mass transfer proper-
ties. Carbon dioxide (CO2) is the most 
commonly used critical fluid. In fact, CO2 
is nontoxic, nonflammable and easy recy-
clable. Moreover, CO2 has moderate critical 
parameters of CO2 (a critical pressure of 7.4 

MPa and a critical temperature of 304.1 K) 
and low price and is highly available which 
makes it very attractive from an economical 
point of view and also for the processing of 
labile compounds (Elizondo et al., 2012). 
Supercritical fluid technology methods can 
be divided in four methods which are rapid 
expansion of supercritical solution (RESS), 
Particles from gas saturated solutions 
(PGSS), gas antisolvent (GAS) and super-
critical antisolvent process (SAS). These 
methods depend on whether CO2 was used 
as a solvent, a solute or an antisolvent. Fig-
ure 6 shows the experimental set up of the 
RESS technique. In the RESS technique, 
the drug and the polymer are first dissolved 
in supercritical CO2 in high pressure cham-
ber. The subsequent passing of the solution 
through a nozzle results in a rapid decrease 
of the pressure and thus, a precipitation of 
the drug particles embedded in the polymer 
matrix and their recovery in the extraction 
unit (Byrappa et al., 2008). Many parame-
ters such as the density of the SCF (Pres-
sure and temperature of supercritical fluid) 
(Kalani and Yunus, 2012), flow rate of 
drug-polymer solution and/or CO2 and for-
mulation variables (Martin et al., 2002) 
could influence the size of the obtained par-
ticles. Table 7 shows that SFT was used for 
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the processing of nanoparticles and micro-
particles mainly based on polyesters. 

 
3.7 Ionic gelation (IG) 

IG method is used mainly with natural 
hydrophilic polymers to prepare particulate 
carriers. These polymers include gelatin, 
alginate, chitosan and agarose. IG has the 
advantage of not using organic solvents. 
The technique is based on the transition of 
the polymer from liquid state to a gel (Fig-
ure 7). For instance, gelatin based particles 
are obtained after the hardening of the drop-
lets of emulsified gelatin solution. The par-
ticles are obtained after cooling gelatin 
emulsion droplets below the gelation point 
in an ice bath. For alginate, however, parti-
cles are produced by drop-by-drop extru-
sion of the sodium alginate solution into the 

calcium chloride solution. Sodium alginate 
is, in fact, a water-soluble polymer that gels 
in the presence of multivalent cations such 
as calcium. Chitosan particles are prepared 
by spontaneous formation of complexes 
between the positively charged chitosan and 
polyanions (tripolyphosphate or gelatin) or 
by the gelation of a chitosan solution dis-
persed in an oil emulsion (Mahapatro and 
Singh, 2011). Figure 7 illustrates the gela-
tion mechanism of polysaccharides. At high 
temperatures, a random coil conformation 
is assumed. With decreasing temperature, 
the aggregation of double helices structure 
forms the physical junctions of gels (Rees 
and Welsh, 1977). Table 8 displays some 
recent applications of IG. This technique 
has been mainly used to prepare chitosan 
nanoparticles. 

 

 

Table 7: Applications of the SCF technology 

Encapsulated  
molecule 

Polymer  Size (µm) Zeta poten-
tial 

(mV) 

Reference 
 

Hydrocortisone acetate PLGA 1-5  - Falco et al., 2013 

17-methyltestosterone PLA 5.4-20.5  13.9 - 67.7 Sacchetin et al., 2013 

Paracetamol PLA 0.301-1.461  - Kalani and Yunus, 2012 
5-fluorouracil PLLA-

PEG/PEG 
0.175  - Zhang et al., 2012 

Human growth  
hormone 

PLGA 93  - Jordan et al., 2010 

Azacytidine  PLA 2  - Argemí et al., 2009 
Bovine serum albumin PLA 2.5  - Kang et al., 2009 
Retinyl palmitate PLA 0.040-0.110 - Sane and Limtrakul, 2009 
Indomethacin PLA 2.35 - Kang et al., 2008 
 

 

Figure 6: Schematic 
presentation of the 
experimental set up 
for the RESS process 
(Byrappa et al., 2008) 
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Table 8: Some applications of the ionic gelation technique 

Encapsulated 
molecule 

Polymer Size (µm) Zeta potential 
(mV) 

Reference 
 

Articaine  
hydrochloride 

Alginate/chitosan 0.340-0.550 -22 - (-19) de Melo et al., 2013 

TNF- siRNA Trimethyl chitosan-
cysteine 

0.146  25.9 He et al., 2013 

Paclitaxel O-carboxymethyl 
chitosan 

0.130-0.180  -30 - (-12) Maya et al., 2013 

pDNA Chitosan 0.153-0.403 46.2-56.9 Cadete et al., 2012 
Gemcitabine Chitosan 0.095  - Derakhshandeh and 

Fathi, 2012 
Dexamthasone 
sodium  
phosphate 

Chitosan 0.256-0.350  - Doustgani et al., 2012 

Itraconazole Chitosan 0.190-0.240  11.5-18.9 Jafarinejad et al., 2012 
5-fluorouracil and 
leucovorin 

Chitosan 0.040-0.097  25.6-28.9 Li et al., 2011 

Insulin Chitosan and  
arabic gum 

0.172-0.245  35.7-43.4 Avadi et al., 2010 

CKS9 peptide 
sequence 

Chitosan 0.226  - Yoo et al., 2010 

 
 

3.8 Layer by layer 

Polyelectrolyte self assembly is also 
called layer-by-layer (LbL) assembly pro-
cess. The earliest technology was based on 
the assembly of colloidal particles on a sol-
id core (Iler, 1966). From the 1990s, appli-
cations were expanded. LbL allowed, in 
fact, the assembly of polyelectrolyte films 
using biopolymers, proteins, peptides, poly-

saccharides and DNA (Powell et al., 2011). 
This approach was first developed by Su-
khorukov et al. (Sukhorukov et al., 1998). 
Polyelectrolytes are classified according to 
their origin. Standard synthetic polyelectro-
lytes include poly(styrene sulfonate) (PSS), 
poly (dimethyldiallylammonium chloride) 
(PDDA), poly(ethylenimine) (PEI), poly(N-
isopropyl acrylamide (PNIPAM), poly-

Figure 7: Gelation 
mechanism of poly-
saccharides in water 
(Guenet, 1992) 
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(acrylic acid) (PAA), poly (methacrylic ac-
id) (PMA), poly(vinyl sulfate) (PVS) and 
poly(allylamine) (PAH). Natural polyelec-
trolytes include nucleic acids, proteins and 
polysaccharides such as, alginic acid, chon-
droitin sulfate, DNA, heparin, chitosan, cel-
lulose sulfate, dextran sulfate and carbox-
ymethylcellulose (de Villiers et al., 2011). 
The obtained particles are vesicular and are 
called polyelectrolyte capsules. Assembly 
process is based on irreversible electrostatic 
attraction that leads to polyelectrolyte ad-
sorption at supersaturating polyelectrolyte 
concentrations. Other interactions such as, 
hydrogen bonds, hydrophobic interactions 
and Van der Waals forces were also de-
scribed (de Villiers et al., 2011). A colloidal 
template that serves to the adsorption of the 
polyelectrolyte is also needed. The com-
monly used cores for the formulated parti-
cles are derived from stabilized colloidal 
dispersions of charged silica, charged 
poly(styrene) spheres, metal oxides, poly-
oxometalates and conducting liquid crystal-
line polymers. Carrier systems can be func-
tionalized with stimuli-responsive compo-
nents that respond to temperature, pH and 

ionic strength. The polymers/colloids used 
in LbL technique can also be functionalized 
to alter their properties preceding layer by 
layer assembly. Experimental parameters 
that have to be managed include coating 
material concentration, ion concentration 
and the pH of the medium (Vergaro et al., 
2011). Polymer assembly occurs after incu-
bation of the template in the polymer solu-
tion or by decreasing polymer solubility by 
drop-wise addition of a miscible solvent 
(Radtchenko et al., 2002). This procedure 
could be repeated with a second polymer to 
allow sequential deposition of multiple pol-
ymer layers (Figure 8). LbL presents ad-
vantages over several conventional coating 
methods: (1) simplicity of the process and 
equipment; (2) its suitability for coating 
most surfaces; (3) availability and abun-
dance of natural and synthetic colloids; (4) 
flexible application to objects with irregular 
shapes and sizes; (5) formation of stabiliz-
ing coats and (6) control over the required 
multilayer thickness (de Villiers et al., 
2011). Table 9 contains some recent appli-
cations of LbL technique. 

 
 

 

Figure 8: The layer by layer technique based on electrostatic interaction (Ariga et al., 2011) 
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Table 9: Applications of the layer-by-layer technique 

Active Polyelectrolytes Size (µm) Zeta  
potential 

(mV) 

References 

Kaempferol Sodium 
Alginate and protamine sulfate 

0.161 - 8.9 Kumar et al., 2012 

Designed pep-
tide DP-2015 

Poly-l-glutamic acid and poly-l-
lysine 

- - Powell et al., 2011 

5-fluorouracil Poly(L-glutamic acid) and  
chitosan 

1  25-40 Yan et al., 2011 

Plasmid DNA Plasmid DNA and reducible hy-
perbranched poly(amidoamine) 
or polyethylenimine 

- - Blacklock et al., 2009 

Artemisinin Alginate, gelatin and chitosan 0.806  -33 Chen et al., 2009 
Insulin Glucose oxidase and catalase  6  - Qi et al., 2009 
Heparin Poly(styrene sulfonate) and chi-

tosan 
1 -10.4 Shao et al., 2009 

Acyclovir Poly(vinyl galactose 
ester-co-methacryloxyethyl tri-
methylammonium chloride) and 
poly(sodium 4-styrenesulfonate) 

- - Zhang et al., 2008a 

Propranolol  
hydrochloride 

Poly(vinyl galactose ester- 
co-methacryloxyethyl trime-
thylammonium 
chloride) and Poly(sodium  
4-styrenesulfonate) 

5-15.6 - Zhang et al., 2008b 

 
 

CONCLUSION 

Encapsulation of active molecules is a 
crucial approach that has been widely used 
for many biomedical applications. It per-
mits enhancement of bioavailability of mol-
ecules, sustained delivery, passive or active 
targeting and decrease of toxicity and side 
effects. These formulations can render 
some active molecules more suitable for a 
specific route such as the delivery of pro-
teins by the oral route or the delivery of 
some drugs via the blood brain barrier. 
Thus, they enhance efficiency, patient com-
pliance and allow successful management 
of diseases. Many biodegradable and bio-
compatible polymers were investigated. 
The choice of the technique and the suitable 
polymer is a crucial step. It depends on the 
physicochemical properties of the drug to 
be encapsulated. The management of oper-
ating conditions is also a hard task to moni-
tor particles’ properties and to enhance drug 
loading. Recent research works are focus-

ing on active targeting by the coating the 
carriers by biomolecules that specifically 
recognize a well-defined cell receptor. One 
can also notice a shift for more ’intelligent’ 
drug delivery systems. Responsive materi-
als, for example, react to a specific physio-
logical stimulus such as a variation of pH to 
release the encapsulated drug. Other ther-
mo-sensitive materials deliver drugs at a 
specific temperature. It can be noted also 
that more attention is paid to safer methods 
that avoid the use of organic solvents 
(RESS) or to techniques that provide better 
reproducibility and easy scalability (micro-
fluidics and membrane emulsification tech-
nology), which could be attractive for in-
dustrial processing.  
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