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1 Introduction

Proteins are biological macromolecules, responsible for several structural and functional tasks

in the human body. The structural investigation of these macromolecules has considerably in-

creased in recent years due to the strong connection between the shape and conformation of a

protein and its biological function. More and more stud-
ies reveal relations between diseases and structural de-
formations of bio-molecules and their consequential mal-
function. Many protein structures were solved by X-ray
crystallography, which is the most successful technique
to determine the atomic structure of macromolecules. A
three dimensional representation of the protein lysozyme
is depicted in fig. 1.1. However, the determination of a
protein structure with atomic resolution by X-ray diffrac-
tion requires the production of high quality protein crys-
tals, which is a bottleneck in current research. Improved
methods to increase the capability of handling proteins
for storage as well as investigation purposes are there-

fore constantly needed.

Figure 1.1: The protein lysozyme.

The native environment for a protein is in an aqueous, crowded solution. Highly concentrated

protein solutions were found to yield a large number of different phases, like amorphous aggre-

gates, gels, crystals, or a liquid-liquid phase separation, which are all governed by the underlying

protein-protein interactions in water.
Microscopy pictures of solution form-
ing a liquid-liquid phase separation and
a protein crystal are shown in fig.
1.2. The liquid-liquid phase separation
(LLPS) is formed by two coexisting so-
lutions that differ in their protein con-
centration.  Small, micrometer-sized

droplets with a high protein density are

formed, surrounded by a less dense pro- Figure 1.2: Different phases can form in a protein solution,

tein solution. Attractive protein-protein

i.e., a liquid-liquid phase separated state (picture

, , , o taken from [Dumetz et al., 2008]) or a protein
interactions, typically in highly concen- crystal (picture taken from [Wikimedia, 2014]).

trated protein solutions, are needed to
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induce such phase transitions from the dissolved protein to an aggregated or phase separated
state. Understanding and tuning those intermolecular interaction potentials and with that the
phase behavior of highly concentrated protein solutions is needed in several tasks, like for exam-
ple protein purification or crystallization. Moreover, (self-)crowded protein environments are the
typical in vivo environments of proteins, as macromolecular concentrations of up to 300 mg/ml
can occur inside a living cell. Notably, proteins rarely crystallize even in these highly concentrated
environments. For example, the human eye lens stays remarkably transparent for light, even
though it is one of the most crowded environments in the human body. Several diseases, like
cataract with a decreasing solubility of the protein yD-crystallin in the human eye lens, are di-
rectly connected to phase separation and aggregation phenomena of proteins. For these reasons,
fundamental knowledge on the physical properties which govern protein-protein interactions and
the resulting phase and crystallization behavior of proteins are of strong interest.

The interactions present in dense protein solutions are highly complex. Changes in the aque-
ous environment influence the inter- and intramolecular protein-protein interactions, the protein-
solvent interactions, and the solvent-solvent interactions. Hence, a precise perturbation agent is
needed, which is able to influence protein solutions in a controlled and reversible way. High hydro-
static pressure is used in this thesis, as it presents various preferable properties. Pressure is known
as a relatively mild perturbation agent for soft matter systems that slightly weakens hydrophobic
effects and even strengthens hydrogen bridges. The internal energy of a system is unchanged
upon pressure increase, in contrast to investigations as a function of temperature. Additionally,
the use of pressure is of considerable physiological and biotechnological interest, for example in
deep sea biology and high pressure food processing.
Therefore, the influence of pressure in the context
of protein crystallization and phase separation is in-
vestigated in this thesis, emphasizing strongly at-
tractive protein interactions.

The focus of this thesis lies on the pressure de-
pendence of the protein-protein interaction poten-
tial V(r) as well as the resulting phase behavior
in protein solutions of high ionic strength. Only

few studies addressed the pressure dependence of
protein-protein interaction potentials, systematic

Figure 1.3: The intermolecular interaction po- studies have been done on mainly repulsive inter-
tential VV(r) is a function of temper-
ature, pressure, and salt concentra-
tion. Furthermore, the type of salt pressure effects on the liquid-liquid phase separation

influences the interaction potential.  phenomena so far. To this purpose, small angle X-
[Moéller et al., 2014b]

actions only. Furthermore, nothing is known about

ray scattering (SAXS) experiments were conducted
on dense lysozyme solution, with different param-
eters like salt concentration and type as well as temperature in combination with increasing
hydrostatic pressure. SAXS is the ideal tool in this context as it gives structural information on



the length scale of several nanometers, which is in the size range of proteins and their inter-
molecular distances in crowded solutions. Therefore, the measured scattering intensity can give
information on the structure of the investigated proteins, the interaction potential between the
proteins, and the resulting phases formed. A liquid state theoretical approach is used to connect
the obtained scattering information with the intermolecular interaction potential of the proteins.
Furthermore, it will be shown that SAXS investigations are able to detect the phase transition in
a protein solution, thus, rendering it an ideal tool to investigate the presented issues.

The chapters of this thesis are ordered as follows:

e First, a short review on proteins and the known implications of external parameters on

inter- and intramolecular interactions is presented.

e In chapter 3, the theory of small angle X-ray scattering as well as tools for data analysation
are introduced.

e A description of the experimental setup and the different beamlines at which SAXS experi-
ments were conducted is given in chapter 4. The principle data handling and the established

refinement routines are presented, t00.

e The obtained results on the intermolecular interactions as function of various parameter,

namely pressure, temperature, salt type, and salt concentration are presented in chapter 5.

e In chapter 6, interactions close to the phase boundary and the location of the liquid-liquid
phase separation boundary as a function of pressure and temperature are discussed.

The results presented in this thesis are published in [Moller et al., 2012], [Mdller et al., 2014a],
and [Moller et al., 2014b].
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2 Proteins Under Pressure

In this chapter, the use of hydrostatic pressure as a tool to investigate and tune proteins in so-
lution will be introduced. A complete thermodynamical description of chemical systems includes
knowledge on the response to external influences. In this context, pressure is one of the most
fundamental thermodynamic variables. The use of pressure as perturbation agent in biophysi-
cal research presents several advantages, as it induces a very gentle disturbance to biochemical
systems. First, non-covalent interactions are of major importance for the stability of biological
systems. They can accurately be probed by pressure, in contrast to the major perturbations
produced by changes in temperature or the chemical potential [Daniel et al., 2006]. Notably, a
change in temperature results in a change of thermal energy and density of the considered sys-
tem. The different influences can be distinguished by the additional use of pressure, which only
changes the density of the system. Hence, pressure can be used to influence chemical equilibria
and reaction rates, depending on the activation and reaction volumes involved [Daniel et al.,
2006, Meersman et al., 2013].

Furthermore, nature has adapted to the most extreme habitats, forming life in extreme salinites,
pH ranges, temperatures, or pressures. Deep sea environments with pressures up to the kbar
range were found to host life forms that have adjusted considerably to these extreme conditions.
Pressure dependent studies can provide knowledge on fundamental biochemical properties by re-
vealing how nature has developed to deal with these extreme influences. Investigations of high
pressure effects on biological model systems have for example been performed on folding and
unfolding characteristics of proteins or the phase behavior of lipids [Daniel et al., 2006, Meers-
man et al., 2013]. Throughout these numerous studies, pressure has proven its value to probe

structure and dynamics of proteins in solution.

The primary focus of this work lies on high pressure effects on the intermolecular interactions
of proteins, which have been studied in much less extent so far. In the following chapter, the
general structure of proteins and their interactions, intra- and intermolecular as well as with
the surrounding solvent molecules, will be introduced. The influence of pressure and further
external parameters on the stability of proteins will be discussed in order to establish the effect of
external influences on inter- and intramolecular interactions. As the pressure effects on proteins
are strongly determined by changes in the solvation and aqueous solution itself, changes in the
water structure and the resulting solvation properties will also be introduced. In this context,

different influences on protein systems will be discussed, like pressure, osmolytes, and salts.

- 5-
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2.1 Proteins

Soft matter systems can generally be classified into three distinct groups; colloids, polymers, and
amphiphiles. All living matter, from DNA to cell membranes and proteins, can be described on

the molecular level by the properties of these type of systems in aqueous solution.
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Figure 2.1: The triangle of soft matter. Proteins are a special group of soft matter, as they combine the
characteristics of polymers, colloids, and lipids. Picture taken from [Dhont et al., 2008].

Proteins present one specific class of soft matter as they combine different characteristic at-
tributes of soft matter systems. They address different functions in biochemistry, being responsi-
ble for replicating DNA, responding to external and internal stimuli, transporting molecules, and
many more tasks. In the Escherichia coli cell, proteins constitute half of the dry weight [Voet
et al., 2005]. Basically, proteins are linear polymers, consisting of a linear chain of amino acids.
Since many proteins exist natively in a globular, very compact form, solvated proteins can often
be described as colloidal particles. The strong interplay between hydrophobic and hydrophilic
interactions in protein folding may also be seen as a resemblance to the behavior of surfactants.
There are 20 standard proteinogenic amino acids, which are encoded directly by triplet codons in
the DNA. The vast functional and structural variety of proteins is founded in the many combina-
torial possibilities of these amino acid sequences. Every amino acid has different properties due
to its characteristic side chain (fig. 2.2 a), which determines its size, charge, and polarity. The
condensation of amino acids via peptide bonds formed between the carboxyl-group of one and
the amino group of another amino-acid produce the long polypeptide backbones of proteins (fig.
2.2 b)). The sequence of amino acids in the backbone is characteristic for every protein and is
called its primary structure (fig. 2.2 c)).

The three dimensional structure of a protein is based on the sequence of the amino acids and



2.1 Proteins 7

a) b) C)

v w
HpN-C—COOH  HN-C—COOH
| "
H,N-C—COOH ‘o
. 154
N"H,— ¢—C—N—C—C00'
B + R

Figure 2.2: a) A single amino acid, 'R’ marks the location of the side group. b) The condensation of two
amino acids. c) The resulting polypeptide chain. Picture c) adapted from [Wikimedia, 2014].

their interactions among each other. There are different interactions involved, which cause the

so-called folding of the protein:
e van der Waals interaction,
e (onic interaction,
e hydrophobic interaction,
e hydrogen bonds, and
e disulfide bonds.

The flexibility of the polypeptide chain allows many different conformations; however, one single
conformation is characteristic for most proteins. Due to steric repulsion of two neighboring
amino acids, the conformation of the chain is reduced to certain angles between these [Voet
et al., 2005, Winter et al., 2011]. Furthermore, amino acids that are not closely located in the
primary structure can interact with each other due to the properties of their side chains. The
20 different proteinogenic side chains can be classified in four basic classes, which are defined
by their intramolecular interactions [Voet et al., 2005]. In fig. 2.3, the amino acids are shown,
classified as polar/uncharged, nonpolar/hydrophobic, acidic, and basic.

Oppositely charged parts of the polypeptide chain attract each other and can result in closely
located amino acids in the finally folded proteins. Additionally, all polar side chains are able to
form hydrogen bonds with each other. Those interactions can give rise to characteristic structural
elements, known as the secondary structure of the protein. The most frequent examples are the
a-helix and B-sheets, which are depicted in fig. 2.4. The connecting hydrogen bonds are shown
as dotted lines. The a-helix is stabilized through the hydrogen bonds formed between an amino
acid side chain and its fourth neighbor of the same sequence. The B-sheet incorporates two
neighboring parts of the polypeptide chain, which are located parallel or anti-parallel to each
other. In rare cases, also left-handed a-helices can exist. Furthermore, even more highly ordered
regions can be formed in structure proteins, like a triplet-helix in collagen [Winter et al., 2011].

Besides those highly ordered structures, interconnecting, less ordered parts of the proteins exist.
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Figure 2.3: The 20 different proteinogenic amino acids ordered corresponding to the characteristic of the
side chain. Picture adapted from [Wikimedia, 2014].

A protein natively functions in solvated form, which has direct implications on its folding. Roughly
40 % of a protein consists of nonpolar amino acids which tend to be located inside the folded
protein due to the hydrophobic effect [Winter et al., 2011]. Also polar parts of the polypeptide
chain can lay in the inside of the protein, forming hydrogen bonds. This results in a very compact
conformation with a dense protein interior. The arrangement of the secondary structure elements
and the further proteins parts are known as the tertiary structure of a protein. In the case of
proteins consisting of more than one polypeptide chain, the association of those subunits is known
as quartiary structure. Also incorporated metal atoms can occur in some cases [Loffler et al.,
2007].

Other than the mentioned non-covalent, intramolecular interactions, also covalent interactions
between side chains via so-called disulfide bonds are possible. Those can form between two
cysteine side chains and are strongly involved in the stabilization of native proteins like insuline
[Winter et al., 2011]. Important for this thesis is the protein lysozyme, which has four disulfide
bonds incorporated [Canfield and Liu, 1965], making it very resistant against unfolding by pressure.

This effect will be discussed later.
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Figure 2.4: The a-helix and [-sheet are the typical forms of secondary structure elements. Pictures
adapted from [Oregon State University, 2008]. The arrangement of secondary structure
elements is known as tertiary structure, shown here for the protein lysozyme. Picture adpated
from [Wikimedia, 2014].

The charged side chains of the polypeptide chain are mainly located at the surface of the
protein, which has several implications. First, these amino acids can form hydrogen bonds with
the surrounding water molecules, resulting in a dense water layer around the protein (see fig
2.5). Notably, the water molecules are packed much more densely at charged or polar sides,
compared to nonpolar surface areas. The resulting so-called hydration shell was found to have
10—15 % higher density compared to bulk water [Svergun et al., 1998, Merzel and Smith, 2002].
Furthermore, the charged surface parts result in an effective net charge of the protein surface,
which has implications for the intermolecular protein interactions. An extended discussion of this

interactions will follow in sec. 2.2.

Figure 2.5: Simulated localisation of water molecules on the surface of the protein staphylococcal nuclease
(SNase). Different surface areas are marked in different colors; polar (white), charged (red,
blue), and non polar (green). The water molecules are more closely packed in vincinity to
hydrophilic areas. Picture taken from [Mitra et al., 2006].
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Considering the strong impact of the protein’s hydration on its folding, it is clear that changes in
the surrounding medium must have direct consequences on the conformation. For example, the
addition of hydrophobic cosolutes like ethanol results in a destabilization of the protein structure,
as the molecules can bind to the hydrophobic parts of the protein, which then are less strongly
drawn to the protein’s interior [Brandts and Hunt, 1967]. In general, every change in pH, temper-
ature, or pressure, away from physiological conditions, results in a destabilization of the protein
conformation. The physical processes and forces involved will be discussed in sec. 2.5.

2.2 Intermolecular interactions: DLVO theory

The forces and interactions connected to the folding of proteins can also act between different
proteins, i.e., as intermolecular interactions. The two main contributions that influence the in-
teraction potential are the Coulomb interaction caused by the surface charge of the proteins,
and the van der Waals interaction. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was
independently established by Derjaguin and Landau [Derjaguin and Landau, 1941] and Verwey
and Overbeek [Verwey, 1947], to describe the stability of colloidal dispersions. It models the
interactions of charged colloidal particles in an implicit solvent by the combination of repulsive,
long-ranged, screened Coulomb interaction and an attractive, short-ranged van der Waals inter-
action. Notably, the proteins are treated as spheres with an isotropic interaction potential in
this description, hence neglecting the anisotropy of shape and charge distribution. Nevertheless,
such idealized potentials were successfully used to model phenomena like a liquid-liquid phase
separation [Rosenbaum et al., 1996, Pellicane et al., 2003, Dumetz et al., 2008].

A sketch of the different contributions is depicted in fig. 2.6. The interacting particles exhibit an
effective surface net charge, which is determined by the pH of the solution. Dissolved salt ions are
modeled as point like charges and form a counterion cloud around the particle surface. Therefore,
the ions are able to screen partially the surface net charge of the protein and effectively decrease
the repulsive interaction. In the course of scientific discussion, several extensions to the DLVO
theory have been proposed in order to account for hydration forces, hydrohobic forces, water
structure forces, or specific ion effects [Ninham, 1999, Bostrém et al., 2001, Bostrém et al.,
2006, Dahirel and Jardat, 2010]. Anisotropic contributions were incorporated into the descrip-
tion by using computational methods [Quang et al., 2014], accounting for charge anisotropy of
the proteins [Carlsson et al., 2001, Rosch and Errington, 2007] or modeling proteins with sticky,
highly attractive patches [Bianchi et al., 2011].

Various experimental parameters were studied so far that impose different effects on the repul-
sive and attractive intermolecular forces. A common goal in these studies is to tune the protein
interactions in order to improve protein crystallization. In fact, an exact interplay of attractive
and repulsive intermolecular forces is crucial for obtaining high quality protein crystals.
Protein-protein interactions were studied as a function of protein type and concentration, pH,
temperature, as well as salt concentration and type [Malfois et al., 1996, Tardieu et al., 1999, Bon-
neté et al., 1999, Tardieu et al., 2002, Narayanan and Liu, 2003, Zhang et al., 2007, Shukla et al.,



2.3 Phase behavior of protein solutions 11

+__-_-+ r +__-_-+
~ 2= @
m --" e p L ©
4 + +
=
>
O.
0 5 10 15
rlo

Figure 2.6: Interaction potential as a function of separating distance r. The depicted DLVO potential
(black) is given by the sum of a screened Coulomb (orange) and a van der Waals potential
(green). The impenetrable surface is modeled as an infinite high potential (grey) at rjo =1,
with o being the diameter of the particles.

2008a, Zhang et al., 2008, Zhang et al., 2012a], often by using small angle X-ray scattering.
Furthermore, the effect of different cosolvents was included [Niebuhr and Koch, 2005, Sedgwick
et al., 2007, Javid et al., 2007b]. However, the effect of pressure on the interaction potential was
only studied in the strongly repulsive regime [Ortore et al., 2009, Schroer et al., 2011a, Schroer
et al., 2011b, Russo et al., 2013, Schroer et al., 2012], but highly attractive interactions are of
relevance for crystallization purposes. The experiments in this thesis are aimed to expand the
investigation of high pressure effects to solution conditions of highly attractive protein-protein

interactions.

2.3 Phase behavior of protein solutions

The phase behavior of a protein solution is directly connected to the underlying intermolecular
interaction potentials. Understanding of the phase behavior of dense protein solutions is of fun-
damental importance in various fields of research. For example, protein aggregation and phase
separation present the basic mechanisms in diseases such as sickle-cell anemia [Galkin et al.,
2002], cataract [Pande et al., 2001, Wang et al., 2010], and conformational diseases such as
Alzheimer’s or diabetes mellitus type Il [Javid et al., 2007a]. Furthermore, the study of phase
separation phenomena has implications on the fundamental physical understanding of colloidal
systems in general. For example, the occurrence of the so-called coffee-ring effect, found in dry-
ing colloidal dispersion, is believed to be connected to liquid-liquid phase separation [Miller et al.,
2013]. In a more technological context, knowledge on the phase behavior of proteins is needed in

applications such as protein crystallization, purification, and high pressure food processing [Curtis
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Figure 2.7: a) Phase diagram of highly concentrated protein solutions. Below a binodal line, two coexisting
protein phases form, which differ in their concentration. The optimal crystallization conditions
are close to the phase separation boundary. The protein solution exhibits a critical point with
the critical temperature T. and the critical protein density (orange). Picture adapted from
[Curtis and Lue, 2006]. b) Gas-liquid coexistence obtained for different substances, rescaled in
terms of the critical temperature T. and critical density n.. The occurrence of a liquid-liquid
phase separation in protein solution has similarities to the gas-liquid coexistence obtained for
different one-component substances. Picture taken from [Huang, 1987].

and Lue, 2006, Muschol and Rosenberger, 1997].

The occurrence of a metastable liquid-liquid phase separation (LLPS) region in the phase diagram
of proteins has been reported, e.g., for lysozyme [Muschol and Rosenberger, 1997, Cardinaux
et al., 2007], y-crystalline [Thomson et al., 1987], and hemoglobin [Galkin et al., 2002, Chen
et al.,, 2004]. A schematic representation is shown in fig. 2.7 a) as a function of temperature
and protein concentration. Below the binodal phase separation line, two liquid protein phases
coexist, which differ in their protein concentration. Small droplets of highly concentrated pro-
tein solution are formed, making the protein solution opaque for visible light. This behavior was
found to be generally characteristic for colloidal systems exhibiting strong attractive interactions
with a range much shorter than the size of the particles [Rosenbaum et al., 1996]. Such solu-
tion conditions are typically achieved by screening the repulsive Coulomb interaction with ions
[Muschol and Rosenberger, 1997] or inducing a depletion attraction by crowding agents [Tardieu
et al., 2002, Vivarés and Bonneté, 2004]. The formation of a LLPS in protein solution was
studied as a function of pH, salt concentration, type of salt, and temperature [Taratuta et al.,
1990, Muschol and Rosenberger, 1997, Grigsby et al., 2001, Cardinaux et al., 2007, Zhang and
Cremer, 2009, Dumetz et al., 2008, Zhang et al., 2008, Zhang et al., 2012b]. Interestingly, the
location where the LLPS occurs was found to foster protein crystallization [George and Wilson,
1994, Haas and Drenth, 1999, Muschol and Rosenberger, 1997]. The quantitative details of the
phase diagram are controlled by the precise nature of the protein-protein interaction potential
[Curtis and Lue, 2006]; for different proteins, the obtained phase diagrams can quantitatively
differ. Nevertheless, a certain congruence can be found, when the phase diagram is obtained as a
function of the second virial coefficient B, [Curtis and Lue, 2006], which will now be introduced.
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The phase diagram exhibiting a critical point (fig. 2.7 a), marked orange) has distinct simi-
larities to the liquid-gas coexistence line found in interacting, non-ideal gases. In fig. 2.7 b),
the coexistence line for different one-component substances is depicted in terms of the critical
temperature T, and density n.. The phase boundary marks conditions, where the systems are in
coexistence between liquid and gas. Thus, it is possible to describe proteins dissolved in water by
the thermodynamic description of such a non-ideal gas [Wills and Winzor, 2005]. The van der
Waals equation includes deviations from an ideal gas

RT = <p + (\//7\/)2) (V/N) = b), (2.1)

with R the universal gas constant, T the temperature, p the pressure, and V the volume of
the system. b is accounting for the reduced volume due to the volume of the molecules and
a for corrections in the pressure of the system due to attraction between the particles. Those
corrections are also needed for the description of protein solutions, where the size of the proteins
and the intermolecular forces are of considerable importance.

Another representation of the equation of state in eq. 2.1 can be calculated by the virial expansion
of the pressure in terms of the molecule concentration c¢:

p

= 2 3
==+ Ba(T)e? + By(T)S + ., (2.2)

with B; being the so-called virial coefficients and M the molecular weight of the molecule. The
virial coefficients account for the intermolecular interactions between the molecules. The van der
Waals equation is obtained by ending the expansion after the second order, the ideal gas equation
is obtained in case of not interacting particles (B; = 0).
In terms of proteins dissolved in solution, the pressure p in the description has to be replaced by
the osmotic pressure of the solution I'1. This gives for the virial expansion:
%ZCMPJrBQ(p,T, cs)cd + ..., (2.3)
with cs being the salt and cp the protein concentration in the solution. Attractive interactions
between the proteins give negative By values, therefore lowering the osmotic pressure of the
solution. Consequently, repelling protein-protein interactions result in positive By values and an
increased osmotic pressure. Notably, the virial coefficients are not only a function of temperature
in the case of proteins, which makes the complete thermodynamic description of protein solutions
much more challenging. It has been shown in the previous section that the addition of salts has
considerable influence on the protein-protein interactions and therefore also on By>. Furthermore,
the hydrostatic pressure can also be an adjustable parameter of the protein solution. A systematic
investigation of the pressure dependence of Bs(p) has never been done so far, but a complete
thermodynamical description of protein solutions is needed, especially for the challenging task
of protein crystallization. A systematic investigation of B, as a function of temperature and
pressure as well as salt type and concentrations will be presented in chapter 5.
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Figure 2.8: Total number of deposited (green) and annually added (yellow) protein structures in the
Protein Data Bank. Date: January 2014.

2.4 Protein crystallization

With the advance of synchrotron radiation facilities and the increasing capability of computational
data interpretation methods, the number of protein structures known with atomic resolution has
increased dramatically. The structures that are deposited in the protein data bank [RCSB, 1971]
as well as the number of annually added structures are shown in fig. 2.8. A nearly exponential
increase can be noted until 2007, but the number of annually deposited structures has only slowly
increased since. In 2013, 9600 new protein structures were deposited to the PDB. The huge
need for improved investigation routines is shown by the fact that the TargetTrack [PSI, 2014]
data bank currently holds more than 320000! targeted protein structures. The limiting step
in most of the experiments has become the production of high quality protein crystals. Only
such crystals can be investigated with atomic resolution. However, only a small amount of the
targeted structures could be crystallized in the first place. Even today, the search for optimal
crystallization conditions is usually carried out by a trial-and-error routine, i.e., empirical screening
through a large field of parameter sets until suitable protein crystals are obtained [Mueller et al.,
2007, Chayen and Saridakis, 2008, Giegé, 2013]. This procedure certainly presents a bottleneck
for current research. Thus, further tools for protein crystallization are constantly needed.

Protein crytallization routines were investigated at high pressure conditions in a series of studies on
various proteins, such as subtilisin [Webb et al., 1999, Waghmare et al., 2000], glucose isomerase
[Suzuki et al., 2002b, Suzuki et al., 2005], thaumatin [Kadri et al., 2003, Kadri et al., 2005], and

Date: January 2014

Annually added number of structures
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Figure 2.9: Schematic phase diagram of protein crystallization. The task is to tune the protein solution
from the undersaturated state into the so-called nucleation zone. The adjustable parameter of
the protein system will be introduced in the following sections. Picture adapted from [Chayen
and Saridakis, 2008].

lysozyme [Gross and Jaenicke, 1991, Gross and Jaenicke, 1993, Schall et al., 1994, Saikumar
et al., 1995, Lorber et al., 1996, Takano et al., 1997, Sazaki et al., 1999, Suzuki et al., 2002a,
Nagatoshi et al., 2003]. These studies investigated the solubility, nucleation, and growth rates
of protein crystals under pressure, yielding diverse results for different proteins, however. Less
attention was directed towards the resulting protein crystal structure and quality [Kadri et al.,
2005, Lorber et al., 1996] as well as towards the underlying intermolecular interaction potentials.

In this context, knowledge on the effect of increasing hydrostatic pressure on the phase diagram as
well as the underlying intermolecular interactions is needed to explore the possibility of improving
crystallization processes by pressure modulation. The protein interactions and the resulting phases
behavior can be tuned by several different parameters [Giegé, 2013]. A principle phase diagram
is sketched in fig. 2.9 as a function of protein concentration and an adjustable parameter.
Commonly used parameters in crystallization routines are temperature or the concentration of
different salts and crowders. The exact knowledge on the interaction strength as a function of
the applied parameter is crucial as the protein solution has to be tuned from outside the solubility
curve (see fig. 2.7 a) and 2.9) into the so-called nucleation zone (fig. 2.9). This presents a very
challenging task as too attractive interactions result in unordered precipitation (precipitation zone)
and too repulsive interactions in completely solvated proteins (undersaturation). No systematic

studies on the intermolecular interactions of proteins as a function of pressure have been made
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in this highly attractive regime yet.

2.5 High pressure effects on protein solutions

Several parameters can be used to influence the intermolecular interactions of proteins. However,
all changes in the aqueous environment can also have potential denaturating effects on proteins.
The unfolding of a protein is closely related
to the initial folding from the single, unfolded

=

N

polypeptide chain. The mostly accepted model \

r

for describing protein folding is using an energy W)
Unfolded

landscape (see fig. 2.10), which is predicting
a funnel-like shape of the free energy as func-
tion of the protein’s conformation [Bryngelson
et al., 1995]. Consequently, the folding can be
understood as a reduction of the configuration
space by a decrease in the total free energy. Enersy

Therefore, the folding kinetics of a protein are

directly connected to the roughness of the cor-
responding energy landscape [Dill and Chan,

1997].

For small single domain proteins, the energy 0 = _
m— X

landscape can have a relatively smooth sur- Native state

face without local minima, corresponding to a

direct folding without characteristic intermedi- Figure 2.10: Sketch of folding funnel of proteins.
The intermediate state is represented

as molten globule. Picture adapted
ing and unfolding process can typically be de- from [Wikimedia, 2014].

scribed by a single exponential decay. In the

ate states. In experiments, the obtained fold-

case of multi domain proteins, the energy landscape has a rougher surface with several local min-
ima, corresponding to intermediate folding states that the protein can adopt during the folding
process. In fig. 2.11, the different possible conformations are depicted. Notably, the unfolding
due to denaturating conditions can roughly be viewed as the same process with opposite direc-
tion.

These different states of the protein can be described with two simplistic conformations, the
molten globule and the random coil. The latter corresponds to a completely unfolded protein,
where secondary and tertiary structure elements are missing and the only structuring elements
are the peptide bonds in the backbone. In contrast, the molten globule still has a certain com-
pact form with secondary structure elements. As the tertiary structuring of these elements is
missing, the conformation is much more flexible than the native form. A further description of
this state is known as swollen protein because much more parts of the protein are hydrated. This

structure can be assigned to the intermediate states in proteins synthesis or destabilized protein
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nativ molten globule random coil

Figure 2.11: Sketches of the different conformations: native, molten globule, and random coil for the
example of lysozyme. Picture taken from [Krywka, 2008].

in mild denaturating conditions. In principle, these different conformations can be determined in
a SAXS experiment. The different influences that can induce such an unfolding of the protein
are described in the following paragraphs.

One very effective way to unfold proteins is the heat denaturation as an increase of several 10 °C
can for example already break up the hydrogen bonds to the solvent [Koizumi et al., 2007]. This
directly affects the secondary structure and can lead to a complete unfolding of the protein. On
the other hand, also cold denaturation can have a destabilizing effect. However, the necessary
temperatures can be below the freezing point of water and are therefore harder to achieve exper-
imentally.

Every protein has its isoelectric point, i.e., the solution pH where the surface net charge is van-
ishing. Drastic changes to lower pH values can induce the acid denaturation as the number of
surface charges increases. The resulting Coulomb repulsion can cause an unfolding of the protein
[Dill, 1990]. The same mechanism can cause unfolding at very high pH values.

Increased pressure presents a very gentle disturbance to the protein conformation. An increase
in pressure results in an increasing density of the pressurized system. In contrast, changes in
temperature alter the density as well as the internal energy of the system [Silva et al., 2001].
Furthermore, pressure can have an even stabilizing effect on hydrogen bond formation. In fact,
the secondary structure of a protein is not affected by pressure perturbations below 10 kbar
[Boonyaratanakornkit et al., 2002, Meersman et al., 2006]. Typically, a smaller radius of gyration
for pressure unfolded proteins than in the temperature unfolded state is obtained [Panick et al.,
1998, Schroer et al., 2010]. Furthermore, protein denaturation with pressure has been found to
be completely reversible [Perrett and Zhou, 2002, Winter et al., 2011, Heremans and Smeller,
1998, Silva et al., 2001, Mishra and Winter, 2008], in contrast to temperature denaturation. In
the case of pressure denaturation, typical values for unfolding obtained in experiments were be-
tween 1 and 7 kbar [Smeller, 2002, Winter et al., 2011], depending strongly on the used protein.
Pressure effects on chemical systems generally follow LeChatelier's principle, i.e., an increase in
pressure leads to a shift of the chemical equilibrium of the system to the state with the smaller
overall volume. In terms of protein unfolding, volumetric properties like hydrophobic packing or
the hydration of different amino acids are affected by a pressure increase. The important char-
acteristic is the difference in volume between the unfolded and the native, folded state, known
as the volume of unfolding AV. In general, this quantity is small (< 1%) and negative [Royer,

2002], meaning that the unfolded protein occupies less space. Here, collapses of internal cav-
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Figure 2.12: A typical elliptically shaped pressure-temperature stability diagram. The protein is in its
native conformation for thermodynamic parameters inside the phase boundary, corresponding
to AG(p, T) > 0. Sketch taken from [Schroer, 2011].

ities, void volumes, and packing defects are the main contributions [Frye et al., 1996, Royer,
2002, Roche et al., 2013]. Furthermore, the effect of pressure typically results in a penetration
of water molecules into the protein’s interior, leading to a partially unfolded, swollen, and increas-
ingly hydrated conformation [Meersman et al., 2006]. Because of the increased hydration of the
unfolded protein, the volume of unfolding is negative.

The combined influence of temperature and pressure on protein stability can be treated in terms
of the Gibbs free energy G(p, T). In the case of proteins, where the unfolding can be described by
a simple two state model?, the so-called Hawley equation [Hawley, 1971] describes the difference
AG(p, T) between the folded and the unfolded state as

AG(p, T) = AGO — ASO(T — To) — ACP [(T — To) — T|n(T/T0)]

+ BVo(p — po) + 557 (p — po)? + B&(p — po)(T — To). (24)

with S being the entropy, C, the heat capacity, & = (0V/0p)7 the compressibility factor, and
& = (0V/0T ), the thermal expansion factor. The equilibrium between unfolded and folded state,
AG(p, T) =0, marks the boundary of the native state in the temperature-pressure phase diagram
[Meersman et al., 2013, Heremans and Smeller, 1998]. By expanding the term in square brackets
in eq. 2.4, one obtains the elliptic shape of the transition line for AG(p, T) = 0, shown in fig.
2.12. For thermodynamic parameters lying inside the elliptic contour the protein has its native
conformation (AG > 0), outside the protein is unfolded (AG < 0).

From the course of the phase boundary, some interesting observations can be made. For example,
increasing pressure can have a stabilizing effect near the denaturating temperature. The exact

2This is the case for proteins without characteristic intermediate states.
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location of the phase boundary, however, is strongly dependent on the protein's structure as well
as the solution conditions. The addition of cosolvents to the solution can markedly change the
location of the phase boundary. This will be discussed in sec. 2.7.

Studies on intermolecular interactions as a function of pressure and temperature have often been
performed by tuning the solution conditions out of the stability region of the proteins, where
phenomena like aggregation and fibrillation can occur as consequence to the unfolding [Smeller,
2002, Grudzielanek et al., 2006]. It was found that pressure can have a dissociating influence
on protein aggregates [Gorovits and Horowitz, 1998, Foguel et al., 1999, St. John et al., 1999].
In the framework of protein crystallization however, the response to non-denaturating solution
conditions is studied.

Still, changes in the intermolecular interactions can occur due to changes of the aqueous en-
vironment, but the interaction behavior can markedly be different as the proteins stay in their
native conformation. A dissociation effect on B-lactoglobulin oligomers was found for pressures
up to 2 kbar [Gebhardt et al., 2012], which is in line with an increasing repulsive interaction due
to pressure increase [Russo et al., 2013]. This increasing repulsiveness with pressure was also
found for lysozyme [Ortore et al., 2009], but for higher pressures this effect is reversed [Schroer
et al.,, 2011a]. This non-linear pressure dependence is associated to structural changes in the
second coordination shell of water, starting roughly at a pressure of 2 kbar. This effect will be dis-
cussed in the next section. It will be investigated in this thesis, if the resulting non-linear pressure
dependence is still present in strongly attractive solution conditions of high ionic strength.
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(b) High density water

Figure 2.13: Spatial density function for water of low (a) and high (b) density. A closer location of the
second hydration shell can be seen for high density water. Picture adapted from [Soper and
Ricci, 2000].

2.6 High pressure effects on solvation

Notably, changes in temperature, pressure, pH, and cosolvent concentration mainly change the
properties of the solvent and not of the protein. In order to understand the changing hydrational
properties of macromolecules under high pressure conditions, one has to consider that those are
closely linked to the changes in the local water structure itself. It has to be mentioned that even
at atmospheric conditions the local water structure is still a subject of scientific debate [Ball,
2008, Nilsson and Pettersson, 2011], as it presents many unusual properties, which are assigned
to the strong influence of constantly forming and breaking hydrogen bonds.

This results in unusual characteristics under increased pressure, such as the lowest temperature
were water is liquid was found to be —22 °C at 2100 bar. Different transport properties of water
also show a marked pressure dependence in this pressure region, with a maximum of the diffusion
coefficient at 2 kbar [Ludwig, 2001] and a minimum of the shear viscosity between 1 — 2 kbar
[Debenedetti, 2003].

This behavior comes in hand with structural changes, namely a collapse of the second hydration
shell at pressures above 2 kbar [Okhulkov et al., 1994, Soper and Ricci, 2000]. The structural
representations, obtained from pressure dependent neutron scattering experiments, of the first (I)
and second (II) hydration shell around a central water molecule are shown in fig. 2.13 for low (a)
and high (b) density water [Soper and Ricci, 2000]. Starting at 2 kbar, the increasing pressure
results in an increasing population of the high density conformation of water and therefore a
closer location of the second hydration shell in respect to the central water molecule, almost at
the same distance as the first hydration shell.

As a consequence of the higher average number of water molecules surrounding another water
molecule due to increasing pressure, the average binding energy decreases [Sciortino et al., 1991].
This reduces the cost of inserting a water molecule into unfavorable non-polar locations [Meers-
man et al., 2013], pointing out an effective decrease of the hydrophobic effect at higher pressure.

Computer simulations on the pair potential of hydrophobic methane molecules in water support
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Figure 2.14: Potential of mean force for methane molecules as a function of separating distance. The
minimum of the water molecule separated distance stays constant as a function of pressure
whereas the direct contact minimum is strongly destabilized. Changes due to increasing
pressure are depicted by arrows. Picture taken from [Hummer et al., 1998].

this supposition [Hummer et al., 1998, Ghosh et al., 2001]. The potential of mean force® for a
pair of methane molecules is depicted in fig. 2.14. With increasing pressure, the direct contact
minimum is destabilized compared to the solvent separated minimum, owing to a preferred solva-
tion of the hydrophobic molecules. A similar behavior has also been found for protein oligomers
[Gebhardt et al., 2012]. In general, it can be stated that pressure increases the hydration of
hydrophobic and polar moieties [Meersman et al., 2013], which can result in the aforementioned
swollen conformation of proteins, but can also change markedly the intermolecular interactions
of solvated molecules.

2.7 Osmolytes and salts

The effective solution conditions cannot only be influenced by changes in temperature and pres-
sure, but also the addition of further molecules or cosolvents can alter stability and interactions of
proteins significantly. Those can be small osmolytes, salts, or larger polymers, so-called crowders.
In fact, the cytoplasm of the cell is a highly crowded solution with a complex variety of different

salts and osmolytes [Daniel et al., 2006].

Cosolvents are generally classified into kosmotropic cosolvents, which have a stabilizing effect
on proteins, and chaotropic cosolvents, which destabilize the native protein conformation. Well
studied examples are urea as denaturating agent and trimethylamine-/N-oxide (TMAQ) or glycerol

as kosmotropic cosolutes.

3The potential of mean force (PMF) is defined as the potential between two particles in a systems that results
as an average force over all the possible configurations.
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The microscopic working mechanisms that cause the markedly different behaviors of those coso-
lutes are still subject to large efforts in research. Simulations suggest that TMAQ increases the
number of strong hydrogen bonds of the water structure, so that a direct interaction between
the protein and the osmolyte is disfavored in comparison with the surrounding water [Zou et al.,
2002, Bennion and Daggett, 2004, Street et al., 2006]. This depletion causes the trend to reduce
the interaction interface and therefore the native protein conformation is favored. Notably, it was
shown that the kosmotropic effect of TMAQ is able to counteract the denaturating influence of
pressure or urea on the conformation of SNase [Krywka et al., 2008].

Interestingly, similar characteristics were found in the pressure dependence of the protein-protein
interaction potential of lysozyme. TMAO shifts the minimum of the before described non-linear
pressure dependence to higher pressure values, indicating a stabilizing effect on the water struc-
ture against pressure perturbation [Schroer et al., 2011b]. Additionally, the canceling effect of
TMAO and urea in a ration of 1 : 2 has been found in the pressure dependence of the interaction
potential.

A ranking from kosmotropic to chaotropic characteristics can also be found for different an-
ions and cations. The empirical Hofmeister series describes the minimal concentration required
of a certain salt to precipitate a given protein from aqueous solution and was found by Franz
Hofmeister over 125 years ago [Hofmeister, 1888, Kunz et al., 2004]. Notably, the precipitation
properties of salts strongly depend on the anion and cation type. This empirical ranking was
established in several further examples since, proving the remarkable universality of those specific
ion effects [Bénas et al., 2002, Collins, 2004, Curtis and Lue, 2006, Zhang and Cremer, 2009].
Some cations and anions are depicted in fig. 2.15, ranked in accordance to their kosmotropic or
chaotropic properties.

For example, an often used salt to unfold proteins is guanidinium chloride (CHgCIN3), kosmotropic
properties are known for phosphate and sulphate anions. Interestingly, the influence of anions is
in general much stronger compared to cations. Although the molecular origin of the Hofmeister
effect is subject to large efforts in research in recent years, a detailed understanding of the in-
terplay between the ions, water molecules, and the hydrated biomacromolecules is still missing
[Omta et al., 2003, Batchelor et al., 2004, Zhang and Cremer, 2006, Smith et al., 2007, Zhang
and Cremer, 2010, Paschek and Ludwig, 2011]. Interpretations on the molecular level are often
referring to the structure making and structure breaking properties of the ions. Small cations
and anions with a high charge density are considered as kosmotropic ions, as they are thought to
reinforce the H-bond network of water and therefore are named structure makers. On the other
hand, large ions are associated with chaotropic properties for being structure breakers that dis-
turb the water structure. The exact interplay between ion and proteins, i.e. directly or indirectly
via influences on the water structure are heavily discussed. To shed light into this topic, high
pressure studies are crucial as they permit to directly disturb the local water structure.

Only few studies addressed the influence of ions on the water structure under high pressure condi-

tions, mainly studying pressures above the range considered in this thesis. A discussion together
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Figure 2.15: Schematic representation of the Hofmeister series for different cations and anions. Charac-
teristic properties for kosmotropic ions are listed on the left hand side, chaotropic properties
on the right hand side. Picture adapated from [Jakubowski, 2014].

with the results obtained in this thesis will follow in sec. 5.5. The influence of different anions on
the pressure dependence of the protein-protein interactions is unknown and will be investigated

in this work.
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3 Small Angle X-ray Scattering

Since the first theoretical description of X-ray scattering at small angles [Guinier, 1939, Guinier
and Fournet, 1955], SAXS has become a widely used technique. A development which has been
strongly facilitated by the progress of high flux SAXS beamlines at synchrotron light sources. Due
to the small scattering angle in the experiment (< 5°), structures larger than the wavelength
of the used radiation are probed. Typically length scales of 1 — 100 nm and in USAXS (Ultra
small angle X-ray scattering) geometry even larger system lengths are accessible. The basic prin-
ciple is that electron density inhomogeneities on the considered length scales give rise to X-ray
scattering at small angles. Those inhomogeneities can be proteins or nanoparticles in solution as
well as inclusions in porous materials. From the scattered intensity recorded as a function of the
scattering angle, several structural quantities like size, shape, or polydispersity of the scattering
entity can be obtained.

In case of SAXS on proteins, one special advantage is the investigation without the pre-
production of protein crystals. The proteins can be handled and studied in solution, more similar
to their in vivo environment. Nevertheless, the SAXS signal from such a disordered arrangement
of macromolecules gives also a less detailed, so-called low resolution structure of the proteins. The
possibility of obtaining these structural information from the scattering signal will be discussed in
sec. 3.2.

A further important characteristic of SAXS, on which will be mainly focused in this work, is
the possibility of investigating the intermolecular interactions of proteins in solution. The un-
derstanding and controlled tuning of these interaction potentials is the groundwork for protein
crystallization and further bio-technological applications. Sec. 3.3 deals with the extraction of
characteristic quantities of the protein interactions from the scattering patterns and how the
inherent structure factor can be calculated theoretically.

The outline of the theoretical description of small angle scattering is based on [Glatter and
Kratky, 1982], [Feigin and Svergun, 1987], [Als-Nielsen and McMorrow, 2001], [Lindner and
Zemb, 2002], and [Schroer, 2011].

3.1 Fundamentals of small angle X-ray scattering

First, the typical scattering geometry of a SAXS experiment is described (fig. 3.1). A plane and
monochromatic electromagnetic wave, characterized by the wave vector ko, is scattered at the

- 25
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3

Figure 3.1: Scattering geometry of a small angle X-ray scattering experiment [Méller, 2010]

sample. The experimental observable is the scattered intensity at a certain point on the detector.
The intensity is measured as a function of the wave vector transfer @, which is defined as

G=k— ko, (3.1)

with k being the wave vector of the scattered wave. As only elastic scattering contributions are
considered, the wavelengths A of incoming and scattered waves are the same:

/}" - ‘ko = (3.2)
In the case of isotropic scattering samples, the wave vector transfer reduces to a function of the
scattering angle 20:

q= 4%sin(ze/z). (3.3)

From the scattered intensity as a function of g, different structural information can be obtained. In

the following, the scattering of X-rays from single electrons to complex particles will be described.

3.1.1 Scattering from a free electron

The interaction of an electron in the sample with the incoming X-ray can be calculated in a
classical description, with the electron being forced to vibrate when placed in the alternating
electric field of the incident X-ray beam [Als-Nielsen and McMorrow, 2001]. It can be assumed
as a free electron, so that it acts as a small dipole. The ratio between incident intensity /o and

scattered intensity / can than be calculated in dipole approximation by the Thomson scattering
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formula [Als-Nielsen and McMorrow, 2001]

2 2 2
Il _ e -1 (1+4cos?(29)) (3.4)
lo Aregmc? L2 2
2
I
= L% -11(20). (3.5)

Here, e is the elementary charge, m the mass of the electron, g the vacuum permittivity, ¢ the
speed of light, and L the distance between the electron and the point of detection. The constants
are combined to the classic electron radius ry = 2.82 - 10~ A. The polarization factor M(20)

can be neglected in the case of small angle scattering.

The scattering from a single atom however, is a function of wave vector transfer @ and the
energy E of the radiation and can be calculated as [James, 1967]:

f(q,E)=fo(q)+f'(E)+i-f"(E). (3.6)

Here, f'(E) and f"( E) describe the dispersion correction and the absorption of the X-rays. Both
contributions are element specific and energy dependent, but have no dependence on §, as their
behavior is dominated by tightly bound inner-shell atoms [Als-Nielsen and McMorrow, 2001]. The
imaginary part f”(E) can be calculated from the absorption cross-section [Schurtenberger, 2002]
and both contributions are related to each other by the Kramers-Kronig relation [Stuhrmann,
1982]. As the beam energy in a typical SAXS experiment is unchanged, these two contributions
are constants. However, they offer the opportunity of changing the scattering contrast of certain
elements in the sample by varying the X-ray energy as the two terms are strongly dependent on
the beam energy near the absorption edge of the atom. This feature is used in anomalous small
angle X-ray scattering (ASAXS) experiments.

The form factor of the atom, f3(q), is calculated as the Fourier transform of the electron density
of the corresponding atom. At small angles, the atom form factor is proportional to the total
electron number of the atom and is equal to rpZ [Schurtenberger, 2002].

3.1.2 Scattering from a single particle

The next build up is the spatial arrangement of a certain number of atoms to a particle, like for
example a small molecule, a nanoparticle, or a protein. The spatial arrangement of the electrons
will be characterized by a charge distribution p(7). The description of a particle by a continuous
electron distribution is valid for particles sizes much larger than internal structural inhomogeneities
[Porod, 1982]. As described before, the impingement of the X-ray wave with wave vector kg and

electrical field strength Eg generates the emission of secondary waves from the sample. The
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Figure 3.2: Schematic drawing of the scattering geometry to calculate the scattering from a single particle.
[Méller, 2010]

resulting wave can be calculated in the first Born approximation [Lindner, 2002], as

E(F) = Eg - exp(ikoP) + Eq - exp(ikoF)/r - 1o - / p(r') exp(igrt) d3r'. (3.7)
Vol

A corresponding sketch can be found in fig. 3.2. Here, some approximations have to be made.
First, the distance between the sample and the point of detection has to be much larger than the
size of the sample system. This is known as far field approximation. Furthermore, the interaction
between the incident X-ray wave and the sample is weak, so that only single scattering events
have to be considered.

The result can then be described by the sum of two contributions. The first term of the relation
presents the not with the sample interacting, plane wave. This primary beam will be removed
in the experiment by a beamstop, see sec. 4.2. The second term corresponds to the emitted
secondary waves from the sample. Here, every infinitesimal volume element d3r’ is source of a
spherical wave, its amplitude is determined by the electron density p(ﬁ). As every volume element
of the sample is a source of secondary waves, interference between the waves will occur. The
second term in eq. 3.7 has the form of a Fourier transform of the electron density distribution.
Therefore, the so-called scattering amplitude is defined as [Guinier and Fournet, 1955, Porod,
1982]:

A() :ro/ o(r') exp(igr’) d3r'. (3.8)
Vol

With this formulation, the differential scattering cross section is calculated as

S @) =A@ A (@), (39)
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Figure 3.3: Schematic drawing of the vectors used to calculate the scattering from an ensemble of many
particles.

from which the scattered intensity follows:

1 do
1(q) = o= —=(9). 1
(@) = loz 55 (D (3.10)
The differential scattering cross section is defined as the fraction of photons scattered in the angle

element dQ2. A*(q) is the complex conjugated of the scattering amplitude and in accordance
lo = E3.

3.1.3 Scattering from an assembly of particles

The next step is to consider the scattering of an ensemble of many particles, as it is the case for
example in a solution of proteins. The description starts from the calculation of the scattering
amplitude (eq. 3.8), which is the Fourier transform of the system'’s electron density. Considering
a system of N particles within a sample volume V,,, the position of the j-th particle is given by ﬁj
and every single particle is described by its electron density pl(.P)(F). A sketch of the description

can be found in fig. 3.3. The overall electron density of the system is than described by:

N
p(R) =3 n" (R~ F). (3.11)
Jj=1

With this, the differential scattering cross section is given as
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N

do o= - o

79 g g exp(iq - Rj)/v pj(-P)(r) exp(ig - 7) d°r
=1 b

N
: {Zem(—/a- Re) / AP () exp(—ig - 7) d3r'}
k=1 Yo

N
=g Y exp(iq- (R - ﬁk))/v /V PP ()P () exp(iG- (F— 7)) d®r . (3.12)
Jk=1 P Vp

Two cases can now be distinguished. First, terms of the double sum with the same index
(j = k). These terms correspond to scattering contributions from only one particle. The other
terms (j # k) describe scattering contributions from two different particles. These are not only
a function of the electron density of the two particles but also of the distance between them.
Therefore, particle-particle interactions affect these terms. Thus, the formula of the scattering

cross section is decomposed into this two contributions

N N N
L @D=B N IE@+ Y F@ F@ eolidR - Ry . (313)
J=1 J=1 k#j

with the form amplitude of the j-th particle

F@) = | oM extia-n e (3.14)

Up to now, scattering of a static sample systems was considered. However, particles in solution
are diffusing, so that the scattered intensity is changing in time and the average over many
configurations is measured [Spalla, 2002]. For these systems ergodicity is assumed, i.e. there is
no difference between temporal reorientation of a single particle and different orientations of many
particles [Spalla, 2002]. To further simplify the description, only identical particles are treated,
which differ just in their orientation and spatial location. Therefore, the differential cross section

is calculated, statistically averaged over all orientations:

do do

—(q) =( —=(q . 3.15

G- (5@) (315)
Note that the scattering cross section is now only a function of the scalar g, i.e. a function of
scattering angle 20 and the wavelength of the X-ray beam . It follows:

N N
%(q)zré N<|F(c‘f)|2>9+<ZZB(@’)-Fi(a’).exp(ia’(ﬁf—ﬁk>)> . (316)
Q

J=1 ki
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As a first characteristic quantity of small angle scattering, the so-called form factor is introduced:

P() = (IF@P),_ . (3.17)

It depends on the size and shape of the scattering particle and thus can be used to determine
these quantities from the measured scattering intensities. A further discussion of the form factor

of different systems will follow in sec. 3.2.

The second term in eq. 3.16 is characteristic for intermolecular interactions and will now be
discussed further. It is assumed that interparticle distance and their orientation with respect to
each other are not correlated. This decoupling approximation means that the relative orientation
of two particles to each other is not influenced by their separating distance. Obviously, this
approximation is only valid while the particle concentrations are not to high [Kotlarchyk and
Chen, 1983]. Furthermore, very elongated shapes or anisotropic interactions between the particles
(magnetic, electro static, hydrophobic surface spots,...) can interfere with this approximation.
In the decoupling approximation the form amplitudes can be averaged independently and therefore
be factorized. It follows:

N N
<ZZFJ@-F:(a‘)-exp</a‘<ﬁj—ﬁk)>> (F(@) <Zzexp(/q(ﬂ> —Rk)>>
Q

J=1 k#j J=1 k#j
(3.18)

Note, that in the first term of the right hand side the form amplitude is first averaged before the
square is calculated, in contrast to the calculation of the form factor (eq. 3.17). Both quantities
are only equal for particles with spherical symmetry (see eq. 3.25).

From the interference term, the spatial distribution of the scattering entities follows. In the
isotropic, continuous case [Spalla, 2002], the interference term can be connected to the radial

pair correlation function of the particles centers of mass, g(r), as:

1/3 .
<ZZexp(/q(R — Rk))> = /f 47r/0V r? g(r) smc(l;]r) dr. (3.19)

J=1 k#j

g(r) is a measure for the order of the systems, i.e., to which extent the structure of the fluid
deviates from complete randomness. It is defined so that the number of particles in a spherical
shell of radius r and thickness dr around a particle at r = 0 is given by 4wnr?g(r)dr [Klein, 2002].
A further discussion of the quantity follows in sec. 3.3. In this thesis, only systems lacking long
range order will be discussed, therefore

Jim, 9(r) 3

can be assumed. This fact can be used to split up the integral into two parts by the substituting
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the distribution function as g(r) — 1 + 1. The first resulting integral reads as

Vi sin(qr)
/0 r? (g(r)—1) ar dr, (3.20)

being non-zero only for small r, where a short-ranged order is given. Hence, the upper limit of the

integral boundary can be set to oo instead. The second integral reduces to the three-dimensional
Fourier transform of the irradiated volume

V1/3 .
/ P2 S'”C(’;’r) dr. (3.21)
0

This results in a scattering contribution at very small and not detectable angles, so that this

integral can be neglected.

The complete scattering can thus be written as:

As a further characteristic quantity, the structure factor is introduced:

S(g)=1+ 47rg /OOO r?(g(r) — 1)sinc(’;]r) dr. (3.23)

The structure factor is connected to the radial pair correlation function and hence information

on the intermolecular interactions of the sample systems can be obtained.

With this, the scattering cross section can be written as

do

Jg = ONP(a) - {1+ B(a) - (S(a) = 1)}, (3.24)

where

A2
(IF@F),

As mentioned before, only in the case of centro-symmetric particles both terms on the right hand

(3.25)

side are the same. In this case, B(g) = 1 and the scattering can be described by the product of
form and structure factor. For not spherical particles, the so-called effective structure factor is
introduced [Kotlarchyk and Chen, 1983]:

Seri(9) =1+B(a) - (S(a) — D). (3.26)
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For the overall scattering intensity, this leads to

2
o

12 N P(a) - Serr(a). (3.27)

I(q) =1lo

As can be seen, the two g-dependent scattering contributions are the form factor, which exhibits
information about the size and shape of the scattering particles, and the effective structure factor,
which is sensitive to the spatial arrangement and thus intermolecular interactions of the scattering
particles. Both quantities will be discussed in sec. 3.2 and sec. 3.3, respectively.

3.1.4 Contrast and transmission

Before discussing further the properties of form and structure factor, some general aspects of
the experimental implementation and their consequences for the description of small angle X-ray
scattering have to be considered.

So far, one assumption was the treatment of scattering particles in vacuum. However, the
solvent or matrix, in which the particles are embedded, has its own, distinct electron density.
These additional electrons in the irradiated sample volume give rise to further scattering of the
X-ray beam, which has to be considered. Again, internal density fluctuations in the solvent or
in the particle will be neglected and the density of the solvent will be treated as constant. The

scattering amplitude of this system can be written in accordance to eq. 3.8 as:

A(@):/ pPY(F) - exp(—iGF) dF’+/ o) - exp(—igF) dF, (3.28)
PV (1-o)v

where p(P)(7) is the electron density of the particle, p{5) of the solvent, and @ is the volume
fraction of the sample occupied by the particles. The scattering amplitude can be rearranged as
[Glatter, 2002]:

A(d) = /¢ D7)~ 4) - exp(—iar) d7+ /V 09 - exp(—ig) dr,  (3.29)
so that follows:
A() = / Ap(P) - exp(iF) dF + o) - 8(d). (3.30)
\4

The §-function gives only a contribution at § = 0, so that these scattering features are not

detectable in the experiment. With this, an equal formulation for the scattering amplitude as in

eq. 3.14 is calculated, only with an effective electron density | Ap(F) = p(P)(r) — p(3) | instead,

which is the so-called contrast.

The scattering intensity is calculated by the square of the scattering amplitude, so the sign of
the scattering contrast is lost. This means in particular that two complementary structures, like
those shown in fig. 3.4, with opposite electron densities produce the same scattering pattern.

This is known as the 'Babinet’ principle in optics [Spalla, 2002].
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a a
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Figure 3.4: The scattering pattern is dependent on the absolute electron density difference between the
two phases. Two complementary structures, which have the same electron density difference
(contrast), but with opposite sign, would give rise to the same scattering pattern.

Comparing the electron density of proteins (= 420%5) and water (= 334%;), one can see the
strong reduction of the scattering contrast, which results in a small signal-to-background ratio in
the experiment. This problem can be accounted to by either increasing the measurement time or
using an incoming X-ray beam of high flux, as it is the case for SAXS experiments at synchrotron

facilities.

Besides the scattering contrast, also the absorption of the X-rays is of importance in the
description of a scattering experiment. The absorption is characterized by the linear absorption
coefficient @, which can be considered in the case of protein solutions as the one of water. With d
being the thickness of the sample, the transmission of the X-rays is calculated as T = exp(—ud)
[Lindner, 2002].

With the described effects, the scattering intensity can be calculated as

2
@) =I5 - T-A-d-n-P(a) - Serr(a). (3.31)

with A being the spot size of the X-ray beam on the sample. Information about the struc-
tural properties of the investigated samples are only present in form and structure factor. Both

quantities will be discussed in the following.
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3.2 SAXS analysis: The form factor

The following paragraphs deal with the theoretical description of small angle scattering data to
obtain information about the size and shape of the scattering particles from the measured data
sets. The analysis methods can roughly be divided into model free approaches, when spatial infor-
mation of the scattering object is directly calculated from the scattering curve, and approaches
where scattering curves are calculated from suitable models. Here, the information are obtained

by refining the models to the measured data.

In the case of highly diluted protein solutions (cp < 0.5 mg/ml), the g-dependence of the

scattering pattern can be described by the form factor of the proteins only because
lim S(g) — 1. (3.32)
n—0

As already derived in the previous section, the form factor can be calculated as the orientational
average of the square of the scattering amplitude of the considered particle:

P() = (IF@P), .

The scattering amplitude has been established as the Fourier transform of the effective electron

density, so that the square can be written out as:

IF(G)]° = F (@) - F*(q)

- / / Ap(7L) - Ap(7) - exp(—id - (7L — 7)) d dP
Vo

= [ [ so(0) - 8007 = - exp(-iq 1) i o (333)
Ve

Here, ris defined as 7= r; — 5. Now, the spatial autocorrelation function is introduced, which

is defined as the convolution square of the effective electron density:
10 = [ Bor)- 8ol - 7) 47 (3.34)
Vp

A sketch of the geometrical form of the autocorrelation function is presented in fig. 3.5 a). It
corresponds to the overlapping volume between the particle and itself shifted by the distance 7
[Glatter, 2002].

The square of the scattering amplitude can therefore be written as:

F(@)? = /V V(7 - exp(—id- 7) dF (3.35)

The next step is the orientational averaging of this expression. The spatial average of this
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Figure 3.5: a) Sketch of the calculation of the spatial autocorrelation function (F). For a constant
electron density Ap(F) inside the particle, the overlapping volume between the particle and
the same particle shifted by ¥ corresponds to the convolution square [Glatter, 2002]. b)
Spatially averaged performed for the calculation of the autocorrelation function y(r). The
particle is shifted by |F| = r, but averaged over all directions in space [Glatter, 2002].

expression gives the form factor as [Debye, 1915, Glatter, 2002]

P() = (IF@P),

=47 / ¥(r)-r?- ANar g, (3.36)
0 qr

In this formulation, the autocorrelation function y(7) is replaced by the spatial average of the
function v(r) = {(J7(7)|)q. This function has been introduced by [Debye and Bueche, 1949]
and in its normalized form o(r) by [Porod, 1951]. It presents the spatial information from the
scattering data transformed to real space.

The corresponding sketch can be seen in fig. 3.5 b). It shows that -y is only a function of the
magnitude of the distance r = |r] and therefore the scattering intensity reduces to a function
of the magnitude of . Throughout this averaging, information about the system is lost so that
a direct calculation of the particle’s electron density from the scattering data is not possible.
Nevertheless, routines have been established to interpret the scattering data in real space, which

will be presented in the following.

In this context, the pair distance distribution function (PDDF) is now introduced, which is

defined as

p(r)=~(r)-r*. (3.37)

For a homogeneous particle!, the PDDF is a completely geometrical quantity. Considering two

1The electron density is treated as constant inside the particle. Therefore, the scattering intensity depends on
the shape of the particle, only.
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Figure 3.6: Form factor P(q), normalized autocorrelation function vyy(r), and partial distance distribution
function (PDDF) p(r) for a homogeneous sphere with radius R =5 nm.

arbitrary points inside a particle's volume, then 47p(r) is the probability that the distance between
them is equal to r [Porod, 1948].
In accordance to eq. 3.8, the scattering intensity can be calculated from p(r) with

singr

oo (3.38)

P(q) = 4 /O ()

The most general example that can be considered is the case of scattering from homogeneous
spheres. In order to demonstrate the course of the previously introduced functions and the

connections between those, this example will now be discussed.

3.2.1 Particles with spherical symmetry

The density distribution of a homogeneous sphere can be described as p(r) = 1 for r < R,
p(r) = 0 for r > R, with R being the radius of the sphere. The calculations of y(r) and p(r)
can be made very easily as in this case a orientational averaging is not needed. Both functions
read as [Glatter, 2002]

3r 13
Yolr) = (1 4R + 16R3> (339)
and
3 12 3r r3
pr) = 4 R? <2 “3r T 8R3> ' (3.40)

The functions are plotted for a sphere with radius R = 5 nm in fig. 3.6. As can be seen, the
diameter of the scattering particle dmnax = 10 nm can easily be obtained from the course of yo(r)

and p(r) as the value of r where both functions become equal to 0.
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Furthermore, the scattering amplitude can directly be calculated in the considered case as:

Fon(q) = 4 /0 o(r) r2 S'”C(,"r)

1 R
4 — / r-sin(qr) dr
a Jo

1 R 1
=47 g <_q cos(gR) + 7z sin(qR))

4 R3 . 3(sin(gR) — gR cos(gR))
"3 (gR)3

=V(R)-Fo(a. R) (3.41)

The corresponding form factor of a sphere, P(q) = |F(q)|?, is also shown in fig. 3.6. Sharp
minima can be seen in the course of P(q), which are typical for centro-symmetric particles.

The radius of the scattering sphere is connected to the location of minima with ¢ - R =
4.493,7.725, ... [Glatter, 2002]. However, it is a difficult task to obtain structural informa-
tion of the scattering object directly from the scattering intensity alone. Therefore, obtaining
structural information of the scattering object via the calculation of the PDDF is an often used

routine.

3.2.2 The pair distance distribution function

The form of the PDDF is a direct connection between the scattering information and the shape
and dimension of the scattering particle. The example of the PDDF of a homogeneous sphere is
shown in fig. 3.6 and fig. 3.7 (red), together with the PDDFs of some further, simple geometric
bodies. The different shapes give rise to very different PDDFs, so that a rough determination of
the particle's shape can be more easily gathered from the PDDF than the corresponding scatter-
ing function. For example, more elongated shapes (thin cylinder, green) can clearly be separated
from the PDDF of a hollow sphere (blue) or a dumb bell (pink). Furthermore, the maximum
diameter dnax Of the object can directly be obtained as p(r > dmax) = 0.

As can be seen in eq. 3.38, the form factor is connected via a Fourier transform to the PDDF,
so that theoretically the PDDF can be calculated from the scattering data as [Glatter, 2002]:

o(r) = 2;/000 1(q) - ar -sin(qr) da. (3.42)

However, this equation can not be used in practice, as /(q) is not measured as a continuous func-
tion in the full regime of 0 < ¢ < oo. This means, that in order to obtain real space information
from the scattering data, different approaches have to be made.

A very common approach is the use of the so-called indirect Fourier transform [Glatter and
Kratky, 1982]. Here the fact is used, that p(r) = 0, for r > dmax, With dmax being the diameter
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log P(q)

Figure 3.7: Scattering intensities and pair distance distribution functions of various geometrical objects.
Picture taken from [Svergun and Koch, 2003]

of the scattering particle. Therefore, the PDDF is divided into a discrete set splines pa(r) =
> ¢iSi(r), their weight is given by the coefficients ¢;. The scattering intensity is calculated
from pa(r) and refined to the measured intensity by varying the coefficients ¢;. This procedure
is implemented in the program GNOM [Svergun et al., 1988, Svergun, 1991, Svergun, 1992],
which has been used in this thesis (see sec. 4.4). The advantage of this analysis method is that
no model for the scattering object has to be chosen before the refinement. Only the maximum
diameter of the object has to be estimated, in order to obtain reasonable results.

3.2.3 Modeling of form factors

As a consequence of the inability to obtain the shape of the considered particle directly from the
scattering data, the approach of calculating the form factor from adjustable models is a further
possibility. The form factor of a sample with known atomic structure can be calculated with the
scattering formula of a set of discrete scatterers as [Debye, 1915]:

P(q) = ZZ f Sk (3.43)

qljk

Here, rj is the distance between the two scatterers and f; and fy their scattering strength. The
treatment of an averaged, homogeneous electron density inside the particle is sufficient for scat-
tering at small angle in most cases, however. The scattering amplitude of simple geometrical
bodies with a homogeneous density can often be calculated from an analytical form, the calcu-
lation for a homogeneous sphere has been shown as an example in eq. 3.41. Often, proteins or
other macromolecules are modeled as simple geometrical objects and the dimensions are used as
refinement parameter. Still, the decision of the best model has to be made carefully in order to

obtain reasonable results.
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Figure 3.8: The form factor for homogeneous spheres with radii of R = 3 nm, 5 nm, and 7 nm, respec-

tively, and the form factor of a homogeneous sphere (R =5 nm), an ellipsoid of revolution,
and a random coil, all with the same radius of gyration R = 3.88 nm (see sec. 3.2.4).

The form factors of some basic models are presented in the following:

¢ Homogeneous sphere (R: radius):

P(q) = |Fspn(a, R)|* = V(R)? - |Fo(q, R)[?

_ V(R (3 (sin(gR) — qR COS(qR))>2

3.44
(qR)? (3.44)
e Tri-axial ellipsoid (a, b, c: semi-axes) [Mittelbach and Porod, 1962]:
1,1
Pa) = [ [ F(a-r(xy)) dx oy (3.45)
0o Jo

r(x,y) = \/(32 cos? (%) + b2 sin? (%) (1—y?)+ 62y2)

¢ Ellipsoid of revolution (a, b: semi-axes, ji: first order Bessel function) [Guinier, 1939]:

1
Pa) = | R0/ + 25— a7)) dx

[P A@/FIRE=DP
=}, faver 240
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Figure 3.9: Three dimensional representation of a lysozyme molecule calculated from the atomic coor-
dinates deposited in the PDB and calculated by refining to SAXS data by using DAMMIN.
Picture taken from [Krywka, 2008].

e Random coil (Rg: radius of gyration (see sec. 3.2.4)) [Debye, 1947]:

2 (exp(—a’R3) + ¢°R% — 1)

P(q) =
(9) R

(3.47)

The SAXS curves for different geometrical particles are shown in figure 3.8. As can be seen, the

scattering of centro-symmetric particles produces sharp minima in the SAXS curves. Furthermore,
differences in the scattering curves can be seen, both for varying diameter and shape of the
considered particles. This shows the sensitivity of the method on shape and size of the investigated
particles.
It can be mentioned, that the structures of more complex particle surfaces can be obtained from
SAXS data, too. The use of so-called dummy atom models has been proven to be successful in
recent years. This approach is for example realized in the program DAMMIN [Svergun, 1999] (see
fig. 3.9). Here, a search volume is completely filled with densely packed spheres of fixed position,
which are either assigned to have the density of the solvent or the protein. The scattering signal
of the configuration of the 'solute spheres’ is then calculated. With certain stability mechanisms,
which for example encounter for the connectivity of the solute dummy-atoms and the location
of the model close to the center of the search volume, the configuration of 'protein spheres’ is
searched that minimizes the difference between measured and calculated SAXS curve. With this
routine, a simple shape for the protein can be obtained. As an example, the refinement of a
lysozyme molecule is shown in fig. 3.9.

In this work, which focuses on the intermolecular interactions of the proteins, the modeling of
the from factor of lysozyme by refining the PDDF as well as the form factor of an ellipsoid of
revolution was found to be completely sufficient. The modeling to the experimental scattering
data is shown in sec. 4.4.
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3.2.4 Asymptotic behaviour

The scattering from different geometrical objects produces scattering curves with very distinct
differences. However, considering the asymptotic behavior of the form factor, some general
descriptions can be formulated. A sketch of the considered g-range and the approximations
made are shown in figure 3.10 for the case of a homogeneous sphere.

As indicated with a straight line in the double logarithmic plot, the high-g behavior follows a
power-law behavior. For most proteins, the compact and only slightly anisotropic shape exhibits
a so-called Porod g=* behavior [Glatter, 2002], which is shown in fig. 3.10.

Furthermore, in the case of small wave vector transfers g, the form factor can be expanded and
the first contribution reads as a Gaussian function [Guinier and Fournet, 1955]:

I(q) =~ 1(0) - exp(—q° RE/3). (3.48)

This formulation is known as the Guinier approximation, where the scattering of every object
is only determined by its radius of gyration Rg. In particular, this means that the scattering of
different shaped objects will be the same at very small g, if they all have the same Rg. The radius
of gyration is a measure for the electronic extent of the scattering particle and is connected to
the electron density distribution of a particle as:

o [ Bp(r) r2dv [ p(r) r?dv

ST TRy oV T2 [l av (549

2

In practice, Rg can be obtained by plotting In/(g) vs. g“, so that the scattering intensity

describes a straight line. For data points where Rg - ¢ < 1 [Guinier and Fournet, 1955], Rg can
be obtained from the slope of the scattering intensity. With eq. 3.49, the radius of gyration
can also be determined from the pair distance distribution function. The calculated R¢ for the

previously discussed particle shapes are given in the following list:

¢ Homogeneous sphere (R: radius):

Re = %R (3.50)

¢ Ellipsoid of revolution (a, b: semi-axes):

222 1 b2
Rg = \/% (3.51)

e Tri-axial ellipsoid (a, b, c: semi-axes):

2 b2 2
Rg = 1 /% (3.52)
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Figure 3.10: Scattering intensity of a homogenous sphere with radius R =5 nm. The Guinier regime is
marked by Rg - q < 1. The inset shows the Guinier fit in In(l) vs. g° representation.

e Random coil (N: number of elements of the chain, a: element length):

Rg = \/g a (353)

In the context of SAXS investigations on proteins, Rg is of special interest as an unfolding of
proteins corresponds to a drastic change in their electronic extent [Panick et al., 1998, Panick
et al., 1999, Schroer et al., 2010]. The increase of the radius of gyration can very easily be ob-
tained from the scattering curve, so that denaturating solution conditions are recognized. This

was used to assure non-denaturating solution conditions, see sec. 4.4.
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3.3 Intermolecular interactions: The structure factor

From now on, the description will be expanded on the scattering of highly concentrated colloidal
suspensions that includes the influence of the structure factor S(q) (eq. 3.23). As previously
discussed, this quantity depends on the radial pair correlation function g(r), which describes the
spatial particle-particle correlations [Hansen and McDonald, 1986]. The structure factor follows
as

S(q) =1+ 47 n /OOO 2 (g(r) — 1) S”‘;j’r) dr. (3.54)

In the case of anisotropic or polydisperse particles, the decoupling approximation has to be con-
sidered additionally [Kotlarchyk and Chen, 1983], which has been discussed in sec. 3.1.3.

The calculation of the structure factor of concentrated protein solutions is outlined in the follow-
ing, using the statistical mechanics description of simple liquids. In this concept, the solvent will
be treated as a continuous background, characterized by its dielectric permittivity. Furthermore,
the interacting macromolecules will be assumed as spherical particles, having a homogeneous
surface net charge. Further details of this description can for example be found in [Hansen and
McDonald, 1986, Klein, 2002, Nagele, 2008].

The challenging task is the calculation of g(r) and S(g) from a given pair potential [Nagele,
2008]. As mentioned before, g(r) is defined as the probability of finding two particles separated
by a distance r. The most simple case is the one of an ideal gas, where g(r) = 1. Here, the scat-
tering particles are distributed randomly and therefore no interference occurs. In liquids however,
a short ranged correlation between the particles exists, which gives g(r) # 1 for length scales
smaller then the correlation length of the liquid, i.e. r < £. In case the liquid approaches near
its critical point, this correlation length diverges. The implications for the structure factor will
be discussed in sec. 3.3.5.

First, some general characteristics of structure factors will be discussed. The most simple
example is the one of non-interacting, hard spheres, which is shown in fig. 3.11 for spheres with
a diameter of 10 nm and volume fractions of 0.15 (orange) and 0.33 (green). The fact, that the
spheres have a non-penetrable hard surfaces, results in an effective, short ranged repulsion. This
gives a deviation of the g(r) function from 1 at short distances (fig. 3.11 a)), which is more
pronounced with increasing volume fraction. For larger distances, the particle are distributed
randomly (fig. 3.11 b)). The corresponding particle-particle interaction potential has infinite
height for distances smaller than the particle diameter, reflecting the not penetrable particle
surface. For larger distances, the potential is equal to 0 (fig. 3.11 c¢)). The resulting structure

factor modulates the scattering signal, which is given by a product of form and structure factor
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Figure 3.11: a) Radial pair distance distribution function for a liquid of non interacting, hard spheres with
a diameter of 10 nm and volume fractions of 0.33 (green) and 0.15 (orange), respectively.
b) Representation of the spatial arrangement of hard spheres and their seperating distance
r. c) Interaction potential of a hard sphere suspension. For distances smaller the diameter
of the particles, the potential has infinite height, corresponding to the not penetrable particle
surface. For larger distances, the potential is equal to 0. d) The resulting structure factor for
the two volume fractions. e) The resulting scattering signal, which is given by the product
of the form factor of a homogeneous sphere with diameter of 10 nm and the in d) shown
structure factors.

(fig. 3.11 d) and e)). For small g values, the structure factor converges to a certain value
lim S(q) = nkgTKT, (3.55)
g—0

given by the isothermal compressibility of the suspension 7. For large g values however

S(q) =1

3.3.1 Ornstein-Zernicke equation

Connections between the presented functions can be calculated by using the Ornstein-Zernicke
theory of simple liquids. In order to explain the opalescence of liquids close to the critical point
(see also sec. 3.3.5), Ornstein and Zernicke introduced the following concept in 1914 [Ornstein

and Zernike, 1914]. However, it has been proven to be suitable in many further applications.

The basic concept is that in a simple liquid the spatial correlations between two particles are not
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only given by the direct interaction between them, but also by the indirect interactions involving
additional particles.

In this context, the total correlation function
h(r)y=g9g(r)—1 (3.56)

as well as the direct correlation function c(r) are introduced. Both quantities are connected
through the so-called Ornstein-Zernicke equation:

h(r12) = c(r2) + ”/C(f13)h(f23) drs. (3.57)

The overall correlation between particle (1) and (2) is therefore described as the direct correlation
between them (c(r12)) plus a further term. This term on the right hand side describes the before
mentioned indirect correlations of the particles. A definition of h(r) inserted iteratively into this
term vyields the correlation presented through direct correlation with a third particle, a fourth
particle, and so on [Ndgele, 2008]:

h(rs) = c(r2) + n/c(r13)c(r23) 47 + n? / c(r13)C(raa)C(raa) 7 47 + O(Y).  (3.58)

The OZ-equation presents the important link between particle correlations and the corresponding
interaction potential. The direct correlation function can be connected to interaction potentials
via suitable closure relations, which will be discussed in sec. 3.3.2. Furthermore, it can be
connected to the structure factor. Rewriting eq. 3.57 by substituting 7 = 7, ' = I3 and
consequently |F— 7| = Fi3 gives [Nagele, 2008]:

h(r) = c(r) + n/c(|F— Fh(r') dr'. (3.59)
The Fourier transform of this equation gives?

h(q) = c(q) + n c(q) h(q). (3.60)

As S(q) = 14+n h(q), the general relation between the Fourier transform of the direct correlation
function ¢(q) and the structure factor S(q) follows as

1

S(q) = m

(3.61)

In order to calculate the structure factor from a given interaction potential, so-called closure
relations are needed that connect c(r) with the interaction potential V(r) of the proteins.

Here, the convolution theorem for Fourier transformations is used: [ exp(iGF)(fix£)(F) dF = f(J) £(§) [Négele,
2008]
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3.3.2 Closure relations

The best choice of closure relations is dependent on the strength and range of the corresponding
interaction potential as well as the particle density. Only for some closure relations in combination
with certain interaction potentials, analytical solutions can be calculated. In the other cases, those
solutions have to be calculated numerically.

In this thesis, two different closure relations were used. In the case of mainly repulsive proteins
interactions, which are investigated in chapter 5, the mean-spherical approximation in combination
with a 2-Yukawa potential was used. In chapter 6, where protein solution near phase boundaries,
i.e. in highly attractive interaction regimes, were investigated, the Percus-Yevick closure relation
with a sticky sphere potential was used. Explanations of the different interaction potentials will
be given in the next section. The used relations are written as:

e Mean-spherical approximation (MSA) [Lebowitz and Percus, 1966]:
cmsalr) =—=BV(r),r>o (3.62)
e Percus-Yevick closure relation (PY) [Percus and Yevick, 1958]:

cpy (r) = (1 —exp(BV(r))) g(r) (3.63)

The PY approximation can be characterized as best suited for short-ranged interaction potentials
[Nagele, 2008]. Additionally, analytical solutions exist for hard sphere [Percus and Yevick, 1958,
Vrij, 1979] and sticky hard sphere potentials [Menon et al., 1991]. The MSA is better suited for
midrange interaction potentials and moderate particle densities. Further closure relations are for
example the hypernetted-chain approximation (HNC) [van Leeuwen et al., 1959] or the random
phase approximation (RPA) [Nagele, 2008].

3.3.3 Interaction potentials

The previously presented closure relations can be used to connect the structure factor to a
certain interaction potential. Different interaction potentials are presented in this section, which
can be used to describe different protein solutions. The choice of the best model is dependent
on the solution conditions of the investigated system, like for example the protein concentration
or the ionic strength. The most relevant interaction potentials for this thesis are presented in the
following.

¢ hard sphere potential (o: diameter of particle):

00, O<r<o

VHS(I’) = { (364)

0, oc<r

e attractive square well potential (¢: depth of attractive potential; A: range of attractive
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potential):

o, O0<r<o
Vow(r) =< —¢, o<r<oc+A (3.65)
0, o+A<r

e sticky hard sphere potential (7: sticking parameter, A — 0):

0, O<r<o
Vsw(r) =4 In(12758%)., o<r<o+A (3.66)
0, c+A<r

e 1-Yukawa-type potential (J: strength of potential, d: range of potential):

00 r<o

V() — . 3.67
1y (1) {J-J-M, o< r (3.67)

e 2-Yukawa-type potential (J,, d,: strength and range of attractive potential, J,, d,:

strength and range of repulsive potential):

Vay (1) 00, r<o (3.68)
r)= _
Y o 2C0)/d) gy ee(o)d) o

The different interaction potentials presented are plotted in fig. 3.12. The most simple
potential is the so-called hard sphere potential as it only regards the not penetrable particle
surface. This hard sphere contribution is also present in all the other presented potentials. Most
general for proteins in solution is the 2-Yukawa potential as it can be used to model the long-
ranged repulsive Coulomb interaction as well as the a short ranged attractive interaction, which
is mainly the van der Waals interaction potential. This potential was used in chapter 5 because
varying ionic strengths of the solution can be implemented into the calculation of the potential.
An increasing ionic strength in the solution decreases the strength of the repulsive coulomb
interaction. The overall interaction potential for proteins in solutions of high ionic strength is
more similar to the attractive 1-Yukawa potential shown in fig. 3.12. Additionally, the attractive
square well potential is shown, with similar range and strength of the attractivity, which results
in a nearly identical structure factor. A special case of this potential is the sticky hard sphere
potential, which was used to refine the scattering from solution conditions of constant, high ionic
strength (chapter 6). All three potentials shown, i.e. 1-Yukawa, square well, and sticky sphere,
are sufficient to describe protein solutions where the repulsive coulomb potentials is strongly
screened. However, the sticky hard sphere potential can analytically be solved using the Percus-
Yevick relation [Menon et al., 1991], which strongly reduces the time needed to refine the model

to the scattering curves.
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Figure 3.12: The different used interaction potentials as a function of r/a, with o being the diameter of
the considered particle.

3.3.4 Second virial coefficient

The presented interaction potentials are functions of many various parameters. In order to com-
pare solution conditions independent of the model used, one characteristic interaction parameter
is needed. In this context, the second virial coefficient is introduced, which characterizes the
strength of the interaction potential and is therefore often used to describe aggregation and
crystallization phenomena.
It is defined as the second coefficient of the virial expansion of the osmotic pressure IM(c):
%?=&+B2c2+53c3+..., (3.69)
with M being the molecular weight, R the gas constant, T the temperature, and ¢ the concen-
tration. The classical virial expansion in thermodynamics describes the pressure of a many-body
system as an expansion in density, where the virial coefficients B; are characteristics for the
interactions between the particles. For an ideal gas, the expansions ends after the first term,
giving the ideal gas law. Therefore, the virial coefficients can be seen as a measure for a system’s
deviation from an ideal gas (see also sec. 2.3).
The second virial coefficient can directly be calculated from the protein-protein interaction po-
tential as:

B> =27 /00(1 —exp(=V(r)/kgT))r? dr. (3.70)
0
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It therefore describes the direct interaction strength between two proteins in solution.
In order to compare the virial coefficients for different proteins, the normalized second virial
coefficient is introduced, which is independent of the protein’s size. In the case of an 2-Yukawa
interaction potential, it can be calculated as:

B>

3 o0
b= g =1+ g /2 _dee(sc + (M ar (37

Here, § is set to § = 0.1437 nm, in accordance to previous studies [Poon et al., 2000, Sedgwick
et al., 2007], to suppress the divergence of the integral at r = 2R. In general, negative b,
values correspond to mainly attractive interactions whereas positive values characterize repulsive
interactions.

A special case is the calculation from the sticky sphere potential, as the normalized second virial
coefficient is directly connected to the stickiness parameter with [Vliegenthart and Lekkerkerker,
2000]

1
bp=1— —. 3.72
=1 o (372)
The benefit of by has been shown in the case of protein crystallization, where solution conditions
which foster proteins to crystallize are generally in certain range of b, values [George and Wilson,
1994]. Furthermore, it was shown that a value of by, < —1.5 is needed for proteins to undergo a

liquid-liquid phase separation [Vliegenthart and Lekkerkerker, 2000, Noro and Frenkel, 2000].

3.3.5 Critical phenomena

Systems with short ranged attractive interactions, for example one component Lennard-Jones
type systems like argon or suspensions of sticky colloidal spheres can bear a critical point of a
liquid-gas-type demixing transition [Nagele, 2008]. In protein solutions, this phenomena is de-
scribed as liquid-liquid phase separation, as here two proteins phases with differing concentrations
form (see sec. 2.3).

To describe these phenomena in the formulation of scattering theory, the structure factor will
be derived for large distances r and consequently small g. In the vicinity of the critical point,
long-ranged spatial correlations between the particles occur, so that the volume integral over h(r)
and therefore g(r) diverge in the limit of an infinite volume. The Fourier transform of the direct

correlation function however, stays short ranged as [N&gele, 2008]
e 1
c(g—0)= 47r/ r?c(r) dr — o (3.73)
0
for T — T.. Therefore, c(g) can be expanded in a Taylor series around g = 0, as [Nagele, 2008]

o .
nc(q) = 47rn/ c(r)r25m(§(r]r) dr = co — ©q? + 0(g%), (3.74)
0
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with the coefficients

x0
Co = 47rn/ r’c(r)dr—1 (3.75)
0
2 [e.e]
o= 3?Tn/ rce(r) dr. (3.76)
0

The substitution into eq. 3.61 gives the Ornstein-Zernicke relation for the near-critical structure
factor for small g, i.e. gRy << 1 with Ry being the range of the attractive potential [Ornstein
and Zernike, 1914]

1 1 1

R = — a7
>(@) l-c—0¢ f?2+4q? (3.17)

with the correlation length
£ = (c/(1—c))'/? = (c2S(0))"2. (3.78)

In practice, the inverse of the scattering intensity plotted against g2 gives a straight line in the
so-called Ornstein-Zernicke plot:

1/1(q) x 1/5(q) = 2 (§72 + ¢°). (3.79)

The correlation length can thus be obtained experimentally from the constant slope ¢; and the
intercept 62/52. If the solution conditions come closer to the critical point, this value will diverge.
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4 Experimental Setup & Data Treatment

The studies on concentrated protein solution were performed by high pressure small angle X-ray
scattering experiments at different synchrotron light sources. In this chapter, the high pressure
SAXS setup will be described. The SAXS experiments were performed with a custom built high
pressure cell, which will be presented in sec. 4.1. The typical setup and implementation of a
SAXS experiment will be shown in sec. 4.2, together with the description of the different SAXS
beamlines at which the experiments were conducted. The sample preparation will be described
in sec. 4.3. The principle data handling as well as the refinement routines used are introduced in
sec. 4.4.

4.1 The high hydrostatic pressure setup

The main experimental parameter in this study is hydrostatic pressure. As the generation of
hydrostatic pressure within a sample volume is much more challenging than for example the
change of temperature or chemical composition, a special designed sample cell is needed. The
employed sample cell was constructed, built, and previously used in the studies by C. Krywka

[Krywka, 2008, Krywka et al., 2008]. In the following, only the main features of the cell and the
adaptions that where made during this thesis will be presented. For a detailed description of the
pressure cell, see [Krywka, 2008].

A sketch of the sample cell design is shown in figure 4.1. The sample cell consists of a compact
body made from stainless steel (Inconel 718, 2.4668), in which the actual sample holder can be
placed. Three orifices are inserted into the body. One is for placing the sample holder into the cell
and two further for the entering and exit of the X-ray beam. The openings are sealed using O-
rings and customized steel screws (1.6580). The orifices for the X-rays are additionally equipped
with 1 mm thick diamond windows (type lla, 6 mm diameter). The windows have a relatively
small absorbance of X-rays compared to other materials, transmitting 60 % of the incoming
photons!, but are strong enough two withstand pressure of up to 7 kbar. The windows are glued
onto special holders, to be fixed in position at low pressure. At increasing hydrostatic pressure,
these so-called Poulter-type windows [Poulter, 1932] are fixed and sealed by the pressure.
Through the front opening, a fast exchange of the sample holder is possible. Furthermore, the
change of a sample does not come along with moving of the diamond windows, which gives
benefit in terms of background subtraction. A sketch of the sample carrier is shown in figure
4.1 c). The carrier can be filled through the filling channel with a thin needle and closed using

!Transmission for 2 mm diamond at a photon energy of 15 keV [Henke et al., 1991], the transmission is strongly
energy dependent. The absorption of water has to be considered additionally.

- h3-
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. high pressure connection

cooling/heating duct

diamond
-\

sample cavity
\_polyimide window

Figure 4.1: Sketch of the high pressure cell [Krywka et al., 2008]. a) Cell body with steel screws and
window holders. Beam passage happens through the two diamond windows. b) Blow-up
sketch of the sample carrier (grey) placed into the sample cell between the two diamond
windows (dark grey). c) Sketch of the sample carrier.

a nylon screw (M 2.5). Water is used as pressure transmitting medium that can enter the cell
through a high pressure connection on the top of the cell.

As the cell has already been used for several years, some small adjustments and renewals had to
be made. First, the sample carriers were revised. Collapses of the polyimide foil windows of the
sample carrier (fig. 4.2 c)) occurred from time to time when the pressure in the high pressure
cell was increased from ambient conditions. Those malfunctions had their cause in small pressure
differences between the pressure that pressed from outside onto the foil windows and the pressure
that pressed onto the nylon screw. Small indentations were added into the sample carrier body
to improve the passing of pressure transmitting water alongside the sample carrier. A picture
of the new sample carrier is shown in fig. 4.2 a). Furthermore, the threads of the steel screws
closing the pressure cell body were affected by corrosion as they had to withstand high pressure
in constant contact with water. The front of the screw also presents the locating surface of the
sealing O-ring, so that the increasing corrosion led to a leaking of the cell. Here, only the steel
used for the screws (1.6580) was found to be affected by corrosion, not the one of the cell itself
(2.4668). Therefore, the old screw design was changed to a two part design with a small plate as
locating surface for the O-ring, made of the same material as the cell, and a slightly shorter screw
made of the same material as before (see figure 4.2 b) and c)). Additionally, a small indentation

was added into the plate, for better positioning of the O-ring and thus improved sealing. These



4.2 Small angle X-ray scattering setups I|55

Figure 4.2: Revised parts of the high pressure cell. a) Sample carrier with indentation at the front and
back for improved passing of pressure increases alongside the sample carrier. b) & c) New and
old version of the front screw. The front plate is made of steel (2.4668) instead of (1.6580)
and has a gap for placing the O-ring.

adjustments were made simultaneously with the design and construction of a new high pressure
cell for X-ray reflectivity measurements at high hydrostatic pressure [Wirkert et al., 2014], which
also has this adaptation.

The high pressure setup consists further of a hand spindle pump, a water reservoir, high pressure
valves, and tubing, all purchased from NOVA Swiss. Additionally, the setup was equipped with

two pressure detectors to measure the pressure in the cell and the pump separately.

4.2 Small angle X-ray scattering setups

A typical small angle X-ray scattering setup consists of several parts. First, the X-rays are gen-
erated at a source, which can be an X-ray tube or an insertion device in a storage ring. SAXS
beamlines at storage rings have the advantage of using synchrotron radiation of high flux and
tunable photon energy. The experiments in this work were performed at beamlines at different

storage rings.

At synchrotron light sources the polychromatic X-ray beam is usually monochromatized by a
double-crystal monochromator. The monochromatic X-ray beam is then passing through the
X-ray optics. They can consist of various slits, attenuators, and focusing devices. The goal is
to have a collimated, well defined X-ray beam profile. The actual design of the optics can vary
from beamline to beamline. Usually, the beam is passing through a system of three slits that
have the purpose of collimating the beam. The first slit is cutting of the side edges of the beam,
which can originate from parasitic scattering at previous parts of the beam path. The second
collimation slit is defining the beam. However, those slits can be the source of parasitic scattering

themselves. Thus, a third set of slits located close to the sample is used to remove this kind of
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scattering close to the primary beam.

The actual sample holder is positioned after the optics section. Here, various different sample
environments exist, customized to the needs of the experiments. Besides the investigation of
samples at high hydrostatic pressure, experimental setups for investigation of the influence of
temperature, rheological parameters, mechanical stress, high magnetic fields, etc. have been
built [Panine et al., 2003, Paulis et al., 2009, Davidson et al., 1997]. Also automated sample
exchange systems have been employed at several SAXS beamlines, for high throughput studies
mainly on biological samples [Hura et al., 2009, Martel et al., 2012, Pernot et al., 2013].

In the case of solution scattering of macromolecules or nanoparticles, the size of the sample
container has to be considered. As proteins in solution only scatter a small portion of the
incoming beam, one can increase the statistics of the measurement by increasing the thickness
of the sample holder and therefore the number of particles in the beam. However, the thickness
must not be too large as otherwise the approximation of a single scattering event loses its validity
as well as the absorption of the X-rays increases. The optimum size of the sample container
depends on the wavelength of the incoming beam as the transmitted intensity is proportional to

I o d - exp(—pd), (4.1)

with d being the thickness of the sample and u the wavelength dependent, linear attenuation
coefficient. An optimum condition is reached for d = 1/u [Lindner, 2002]. In case of protein
solutions, the absorbance of water can be used as good approximation. For the resulting trans-
mission in the experiment, the used sample cell has to be considered, too. This additionally adds
two 1 mm thick diamond windows into the beam path. A higher transmission can be achieved
by an increase of the photon energy. Furthermore, beam damages of the sample by the X-rays
can be decreased with higher photon energy. Therefore, energies of 18 keV at beamline 122 (sec.
4.2.4) and 16 keV at ID02 (sec. 4.2.3) were used. At beamline BL9 and BW4, lower energies
had to be used due to technical and spatial constrains, see sec. 4.2.1 & 4.2.2.

Subsequent to the sample cell, the SAXS setups consist of an evacuated flight path, which pre-
vents signal loss due to air scattering of the transmitted primary beam and attenuation of the
scattered X-rays, and a two-dimensional area detector. Using such a detector has the advantage
of utilizing the complete isotropic scattering of the samples and the signal-to-noise ratio can be
increased by performing an azimuthal averaging over the whole detector plane. Moreover, the
complete g-range is measured in a single detector image, which also decreases the measurement
time and sample exposure.

Since only a small portion of the incoming X-rays is scattered by the sample, the weak SAXS
signal is overlaid by the primary beam. To prevent a damage of the detector due to the much
stronger intensity of the direct beam, typically a beamstop in front of the detector is used. The
beamstop can be equipped with a diode that measures the intensity of the transmitted, direct
beam. With this, the normalization of the scattered intensity to the incoming beam intensity and
sample transmission is possible, see also sec. 4.4.

The specific setups of the different SAXS beamlines will be presented in the following sections.
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Figure 4.3: The SAXS setup of beamline BL9, DELTA [Krywka, 2008].

4.2.1 Beamline BL9, DELTA

The beamline BLO is located at the electron storage ring DELTA (Dortmunder Elektronen-
Speicherring-Anlage, Dortmund, Germany). DELTA is a synchrotron facility with an electron
energy of 1.5 GeV and a maximum ring current of 130 mA. One wiggler, two undulators, and
various bending magnets provide synchrotron radiation for several beamlines. BL9 is located
alongside with the beamlines BL8 and BL10 at the superconducting asymmetric wiggler (SAW).
The beamline is designed as a multi-purpose beamline, so that different setups for X-ray diffraction
(XRD), gracing incident diffraction (GID), X-ray reflectivity (XRR), and SAXS exist [Krywka
et al., 2006, Krywka et al., 2007, Paulus et al., 2008]. The SAXS setup is sketched in fig. 4.3.
With a Si(311) double crystal monochromator, X-ray energies from 4 to 27 keV can be used in the

experiments. The beam size is typically 1 mm in horizontal and 2 mm in vertical direction. At 10

photons
s mm?2 mA

keV, the flux is approximatly 5-10° [Krywka et al., 2007]. Due to the small experimental
hutch of BL9, only a maximal sample to detector distance D =~ 1.33 m for the SAXS setup is
possible with a rigid vacuum flight path. The evacuated flight path has a maximum diameter of
200 mm. These constrains of the scattering geometry restrict the choice of the beam energy to
10 keV in order to take measurements on the needed g-range. The detector is a MAR345 image
plate detector with a pixel size of 100x100 um?. A detailed description of the setup can be found
in [Krywka et al., 2007, Krywka, 2008]. Typical exposure times for a single SAXS pattern were

20 minutes.

4.2.2 Beamline BW4, DORIS IlI

Beamline BW4 was located on the DESY campus (Hamburg, Germany) at the storage ring
DORIS 1ll, which was operating until October 2012. A picture of the experimental setup is
shown in fig. 4.4. DORIS Ill was a positron storage ring with an energy of 4.5 GeV and a
maximum ring current of 150 mA. Synchrotron radiation was used at 33 different beamlines.

Beamline BW4 was served by a wiggler with hybrid magnet structure at a photon energy of
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Figure 4.4: Sketch of the experimental setup of beamline BW4, DORIS Il [Beamline BW4, 2012].

8.98 keV, using a Si(111) double crystal monochromator. The scattered intensity was recorded
using a marCCD165 detector with 2048x2048 pixels and a pixel size of 79.1x79.1 um?. The
focused beam size was 0.4 x 0.4 mm? [Roth et al., 2006]. SAXS patterns were taken with 20
minutes exposure time.

4.2.3 Beamline ID02, ESRF

The SAXS beamline ID02 is located at the European Synchrotron Radiation Facility (ESRF),
Grenoble, France. The radiation is provided by three undulators (two U21.4, one U35) with
high photon flux and low divergence. A cryogenic cooled Si(111) monochromator and a toroidal
mirror are used in the beamline optics. A beam energy of 16 keV was used in the experiments,
with a beam size of approximately 200 um x 400 um and a flux of the order of 1013 photons/sec
[Narayanan et al., 2001]. This offered the possibility of taking a SAXS pattern with less than
one second exposure time. The SAXS detector is mounted inside a 12 m detector tube and can
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Figure 4.5: Sketch of the experimental setup at beamline ID02 [Beamline 1D02, 2014].

be moved inside the tube from 1 to 10 m detector distances. The used detector was a FRelLoN
CCD detector with an active field of 100 mm x 100 mm and 2048 x 2048 pixels at a frame rate
of 3 frames/second. The layout of the beamline is shown in fig. 4.5. In order to prevent beam

damages due to the intense X-ray beam, different attenuator configurations were used. Exposure
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Figure 4.6: Sketch of the experimental setup of beamline 122 [Beamline 122, 2014].

times for one SAXS image were typically between 0.1 and 0.5 s.

4.2.4 Beamline 122, Diamond Light Source

Beamline 122 is situated at the synchrotron radiation source Diamond Light Source, Didcot, UK.
It is served by an undulator equipped with a Si(111) monochromator, so that an energy range
from 3.7 to 20 keV is accessible. A sketch of the beamline setup is depicted in fig. 4.6. For the

Sample closure

Temperature sensor well

Water circulation

Figure 4.7: Sketch of the high pressure cell used at beamline 122. Picture adapted from [Brooks et al.,
2010].

experiments, an energy of 18 keV with a sample to detector distance of 5.4 m was used. The
SAXS patterns were recorded using a Pilatus 2M detector, the exposure time was 15 s.

In contrast to the experiments at the beamlines described before, an in-house high pressure sample
cell was used at 122. A drawing of the sample cell is depicted in fig. 4.7.

The design of this cell is similar to the cell described before. Two openings of the cell are equipped

with high pressure windows for the beam path through the cell. Here, sapphire windows were
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used, which set the maximum pressure to 3 kbar. The samples were inserted into the cell through
a third opening. The sample holder (J,K) has a different design as a small plastic spacer is used.
Kapton foils were put on both sides of the spacer and sealed by using double faced adhesive tape.
The sealing of the pressure cell is designed in a different way compared to the cell used before,
for details see [Brooks et al., 2010].

4.3 Sample preparation

The protein lysozyme (14.3 kDa, pl 11, from hen egg white) was purchased from Roche GmbH,
Mannheim, Germany, and used without further purification. As the pH value is an important
parameter for studies on protein interactions, the buffer Bis-Tris was used for all samples. This
buffer is capable of fixing the pH to 7 up to pressures of several kbar. A concentration of 25 mM
was found to work well in the investigated pressure range [Schroer et al., 2011a, Schroer et al.,
2011b].

Prior to the measurements, different buffer solutions were prepared, each with Bis-Tris and
adjusted pH value. In the case of ionic strengths up to 100 mM, the proteins were freshly
dissolved in the buffer solution before each measurement. For measurements with higher ionic
strength as well as in the case of measurements as a function of salt type and concentration, the
preparation of different stock solutions, either with protein or salt dissolved in buffer solution,
makes the sample handling much easier during the beamtime. Therefore, stock solutions with
varying salt type and salt concentration were prepared and mixed directly before use with a protein
stock solution. Doing so, protein concentrations up to 10 wt.% at varying ionic strength could be
reached (see chapter 5). The used salts were sodium sulfate (NaxSO4), sodium chloride (NaCl),
and sodium phosphate (NaH2PQO4, NagHPOy4), purchased from Sigma Aldrich Chemie GmbH,
Steinheim, Germany. As the anions have different charges, the solutions were not prepared
with the same concentrations but with matching ionic strengths. For the calculation of the
ionic strength, see eq. 4.6. The phosphate samples were also prepared in the ration 0.39:0.61
(monobasic:dibasic), to obtain a pH of 7 already for the unbuffered solution.

Higher protein concentrations in solutions of high ionic strength were also investigated, described
in chapter 6. A different preparation routine is needed, using dialysis cassettes. The cassettes
(Slide-A-Lyzer, 2,000 MWCO, 15 mL, Thermo Scientific, Rockford, IL, USA) are constructed
from two sheets of low-binding, regenerated-cellulose dialysis membranes that are permeable for
water and buffer salts, but not for the proteins. After a short hydration of the membrane in
millipore water, the cassettes were filled with lysozyme solution of 15 wt.% and placed in 1 L of
250 g/L polymer solution. The used polymer was Polyethylene glycol (PEG) with a molecular
weight of 35000, purchased from Sigma Aldrich, Steinheim, Germany. The cassettes were kept
in the polymer solution for 10-20 h at 30 °C under constant steering. As the membrane is
permeable for the buffer, both, the protein as well as the polymer solution, consisted additionally
of 25 mM Bis-Tris buffer adjusted to pH 7.

The final protein concentrations were determined by UV-Vis spectroscopy, using an extinction
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coefficient of 2.64 mL/(mg cm) for lysozyme [Sophianopoulos et al., 1962] at a wavelength of
280 nm. A further protein free stock solution with 3 M NaCl and 25 mM Bis-Tris was prepared.
Before each measurement, lysozyme and salt stock solutions were freshly mixed to obtain final
protein concentrations of 18.5, 20.0, and 21.5 wt.% with 500 mM NacCl.

4.4 Data treatment and refinement

In the following, the principle data handling and reduction will be presented. The treatment of
the raw data was different for every beamline, depending on the soft- and hardware available.
The fundamental steps are the same, however, and will be described in this section.

The SAXS images were collected with different image plate detectors. The geometrical posi-
tioning of the experimental setup, e.g. the distance between the detector and the sample or the
center of the scattering signal on the detector, were calibrated using a reference sample. The
standard calibrant was silver behenate (AgCooH4307). Due to its large unit cell, silver behenate
gives very well defined Bragg reflections at small angles.

After the calibration, the two-dimensional scattering pattern is azimuthaly averaged in order to
obtain the scattering information as a function of wave vector transfer g, but different areas of
the detector have to be excluded from the averaging first. For example, parts of the area detector
are shadowed by the beamstop. Those areas are masked in the data processing routine, examples
for used masks are shown in fig. 4.8.

Furthermore, the scattering from the diamond windows can give distinct scattering patterns on
the detector. Those so-called Pseudo-Kossel lines emerge from reflections of the X-rays at lattice
planes of the diamond and can cause higher or lower intensities at certain areas on the detector.
In fig. 4.8 c), those emerging straight lines can be seen. In the processing, they are masked from
the image (see fig. 4.8 f)). As the strength of this effect is strongly dependent on the orientation
of the diamond windows, one can also try to minimize it by slightly rotating the sample cell with
respect to the incoming beam. The best position was kept fixed for the complete experiment.

A huge portion of the scattered intensity can be treated as background of the measured SAXS
signal. These scattering contributions originate from scattering of the diamond windows, the
Kapton foil, and the solvent. In order to obtain the SAXS signal of the proteins, a background
signal of the buffer filled sample cell is measured and can then be subtracted from the measured
curve. To do so, the measured SAXS curve has to be normalized to the incoming flux of the
X-ray beam and the transmission of the sample cell. Both values differ from measurement to
measurement as the ring current of the storage ring changes as well as the transmission of the
sample cell due to the increase of pressure. The normalized signal is calculated as

/exp(q) 1 /exp(q) /0 /exp(CI)
norm(Q) /0 T /0 /T /T ' ( )

with /o being the incoming intensity and 7 the transmission of the cell, which is the ratio of

incoming and transmitted beam. At most beamlines, a diode in the beamstop measures a signal



62 Experimental Setup & Data Treatment

c)
N
; iib\
/

Figure 4.8: a-c): Raw scattering images measured at beamline BW4 (a), 122 (b), and ID02 (c). d-f):
The same images with the corresponding masks (red). Note the further masking in f) due to
the Kossel lines on the detector.

proportional to the transmitted intensity /7. As can be seen, the incoming intensity is not needed
for the normalization, but is often also measured and stored in the data files.

Further possibilities to normalize the scattering intensity are required, if for example the diode in
the beamstop is missing or the normalization is not working accurately enough. In these cases,
it is possible to calculate the overall scattering by integrating the scattering signal. A further
method, which is used in this thesis, is to divide the scattering by the scattering intensity at high
g-values, i.e. at the outer part of the detector. The scattering in this area is mainly caused
by background contributions. Still, the normalization with the beamstop diode was found to be
sufficient in most cases.

An exact background subtraction is not only defined by an accurate normalization of the scattering
curves since the background curves have to be scaled by an additional factor . The SAXS curve

is then given as:

/( ) /exp(Q) . Ibuffer(Q). (1_3)
I(e) /(b)
T T

The scaling factor is close to 1, but is deviating from this value with increasing protein concen-
tration, i.e. less solvent scattering. An approximation for protein solutions is @ = 1 — Cmg/ml *
0.743/1000. For lysozyme solutions, many prior measurements have been performed that can
be used as validation for a good background subtraction. Furthermore, scattering contributions
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Figure 4.9: Three dimensional structure of lysozyme, the four disulfide bonds are marked in red. The
shape of lysozyme is roughly that of an ellipsoid with volume (7/6) 4.5 x 3 x 3 nm®.

from the kapton foil ('"Kapton peak’) can be found at ¢ = 3.8 nm~!. After a proper background
subtraction, this peak should not be visible in the scattering pattern. In any cases, a perfect
background subtraction is a difficult task. However, it is more important that the background
correction is made uniformly for all measured SAXS curves.

A special case is the measurement of highly concentrated lysozyme solutions as in this case the
high-q region of the obtained structure factor can be used as criterion for a good background sub-
traction (see fig. 5.3). With this, a consistent background subtraction was additionally checked
in this thesis.

The first step of the data refinement process was the modeling of the form factor of the
lysozyme molecules. A three-dimensional representation of lysozyme is depicted in fig. 4.9.
Lysozyme is a small, globular protein consisting of four a-helices and three B-sheets. Fur-
thermore, four disulfide bonds are present in lysozyme, making it very stable against external
perturbations (marked in red). It has a pl of 11 [Kuehner et al., 1999] and a molecular weight
of 14.3 kDa, consisting of 129 amino acids. As it is a bactericidal enzyme, inducing an osmotic
collapse of bacterial cells, it can be found in many secretions of vertebrates, like tears or saliva.
In hen egg white, lysozyme occurs in very high concentrations. It can be extracted from the
egg white in large amounts, making hen egg white (HEW)-lysozyme one of the most studied
proteins.

The scattering of a diluted lysozyme solution together with the corresponding refinements is
depicted in fig. 4.10 a) and b). The dashed line is calculated with the model free approach, by
refining the pair distance distribution function p(r) to the scattering curve. The p(r)-function is
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Figure 4.10: a) SAXS curve obtained from a diluted lysozyme solution and refined by the form factor of

an ellipsoid (orange) and by the calculation of the distance distribution function with the
program GNOM (dashed black line). b) Corresponding scattering curve and refinements in
a Kratky plot. c) Resulting partial distance distribution function p(r). The calculated radius
of gyration is Rg = 1.45 nm.

plotted in fig. 4.10 c¢). As can be seen, the model can reproduce the scattering curve very well.

The globular shape of the protein is reflected in the course of p(r), giving a radius of gyration
Rg = 1.45 nm (see eq. 3.49).

Since the proteins have no perfect spherical shape, the decoupling approximation is needed for
the modeling of the effective structure factor (see eq. 3.25). Hence, the form factor has to be
modeled by an analytical expression to obtain the scattering amplitude, too. The refinement of
an ellipsoid of revolution to the scattering data is also displayed in fig. 4.10 a) and b) (orange).

With a = 1.52 nm, b = 2.42 nm, and a constant ¢ = 0.0078, the scattering signal was refined
reasonably well. Notably, the model has the same radius of gyration Rg = 1.45 nm and follows
the course of the scattering curve until the first minimum of the form factor. A small constant
was added to (F(q))3 as well as P(q), as (F(q))3 has very distinct minima, being 0 at certain g
values that would result in an unphysical course of B(q). To prevent these steep minima, (F(q))3
can for example be convoluted with a small dispersion, corresponding to the resolution of the

experiment. A very similar effect has the addition of a constant, which was chosen so that P(q)

and the measured scattering intensity are matching in the best possible way. The same constant
was then also added to (F(q))3.

In order to obtain the intermolecular interactions of proteins at several solution conditions from
the SAXS data, an important assumption is that changes in the surrounding conditions do not
affect the form factor of the proteins, i.e. no unfolding of the proteins happens. To validate this,
the radius of gyration was measured in different solution conditions. Diluted lysozyme samples
(5 mg/ml) were measured as a function of pressure in pure buffer solution as well as solutions
with high ionic strength of / = 1 M. The used salts were sodium chloride, sodium phosphate, and

sodium sulfate. The radius of gyration was obtained by refining eq. 3.48 to the scattering data,
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Figure 4.11: Pressure dependence of the radius of gyration R of lysozyme in different solutions. The
salt solutions contained sodium chloride, sodium sulfate, and sodium phosphate at an ionic
strength of | =1 M. The straight line marks the value of Rg = 1.45 nm, which was used to
model the form factor of the proteins. No unfolding due to pressure or high ionic strength
was observed.

the results for Rg are shown in fig. 4.11. The addition of salt has no effect on the stability of the
lysozyme molecules and no unfolding can be observed. Note that the scattering contrast of the
proteins is reduced in the salt solution, as the solved ions increase the mean electron density of
the solvent. Therefore, the scattering signal has lower statistics, which results in larger deviations
in the obtained Rg values compared to the values measured in pure buffer solution.

The structure factors of the concentrated protein solutions were calculated by using two dif-
ferent models. In mainly repulsive solution conditions, the 2-Yukawa model was used (see eq.
3.68). Corresponding to the DLVO description of colloidal suspensions (see sec. 2.2), the two

Yukawa terms can be written as

Vporvo = Vsc + W

e z? exp(—(r — a)/Ad) s exp(—(r —a)/d)
" dqege, (14 0.50/Mg)2 r r '

(4.4)

The structure factor of this potential can be calculated with the MATLAB code by [Liu et al.,
2005]. The effective hard sphere diameter of the proteins is ¢ = 2.99 nm and the volume fraction
was calculated using the density of lysozyme p = 1.351 g cm 3 [Cardinaux et al., 2007]. At pH
7, the effective protein surface net charge has a value of Z = 8 [Kuehner et al., 1999], which
was kept constant for all refinements. The further parameters of the repulsive interaction are

the elementary charge e, the Boltzmann constant kg, the temperature T, the Avogadro number
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N4, the vacuum dielectric constant €g, the dielectric permittivity of the solutions €,, and the
reciprocal Debye-Hiickel screening length . The temperature and pressure dependence of the
dielectric permittivity of the solution was taken into account, following experimental values from
[Floriano and Nascimento, 2004]. The screening length was calculated as

A=k L= W (4.5)
where
1
| = 2;@-2, (4.6)

is the ionic strength of the salt solution with ¢; the concentration and z the charge of the ion
type /. The width of the attractive interaction was set to d = 0.3 nm and the strength J was

used as the free parameter to model the measured SAXS curves.

For solution conditions near the LLPS phase boundary, the repulsive part of the interaction
potential can be neglected as the high ionic strength / almost completely screens the surface net
charge of the proteins. Hence, a simpler model was used, namely the sticky hard sphere potential
(eq. 3.66). As the structure factor is calculated in the limit of the range of the attractive po-
tential A — 0, no range for the attractive potential has to be set. In the limit of an infinitesimal
small ranged and infinite deep potential, the free parameter to refine the model to the data is
the sticky parameter 7. The resulting structure factor of this so-called Baxter model has an
analytical solution in the Perkus-Yevick approximation [Menon et al., 1991]. The volume fraction
was calculated as for the 2-Yukawa potential; a slightly smaller hard sphere diameter o = 2.9 nm

as global parameter for all curves was found to refine the curves better for this model.

A further issue in the data refinement was the pressure dependence of the volume fractions. Due
to the different compressibilities of the bulk water, the hydration shell water, and the lysozyme
molecules themselves, the correct calculation of the pressure effects on the volume fraction,
especially at very high protein concentrations, is not an easy task. Basically, two options can be
reviewed. In a first-order approximation, the compressibility data of the neat solvent can be used
to calculate the resulting increase of the volume fraction, assuming the volume of the proteins
to be constant. This certainly present an overestimation of the expected pressure effect. The
other option is to keep the volume fraction constant as a function of pressure, i.e. assuming
the same compressibility for water and proteins. As an example, the resulting by values from the
refinement to the scattering data with this two options are plotted in fig. 4.12 for a 21.5 wt.%
lysozyme solution with 500 mM NaCl at different temperatures. The interaction potential used
for the refinement is the sticky hard sphere model.

The colored data points correspond to a constant volume fraction of 0.154. The gray data points

are the corresponding refinements using the slightly increasing volume fraction calculated from
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Figure 4.12:

-1.1 T
¢ 8°C
¢ 16°C
¢ 20°C

-1.3 % % % :

-1.4

—15§§++*%§

-1.6} ]

0 05 1 15 2 25 3
p [ kbar
Comparision of resulting b, values obtained from refinements to the scattering curves with

a constant volume fraction (colored) and an increasing volume fraction calculated from bulk
water compersibility data (gray). As can be seen, the effect on the results is small.

the compressibility of bulk water that increases from 0.154 at 1 bar to a maximum value of 0.167

at 3 kbar, i.e. by about 6%. As can be clearly seen, the increasing volume fraction has only a

small effect on the refinement results. Owing to the uncertainties in the compressibility data, the

volume fraction is therefore kept constant in the fitting procedures in this thesis.
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5 Protein-Protein Interactions

The phase behavior of a dense protein solution is governed by the underlying protein-protein inter-
action potential. In this chapter, results on the intermolecular interaction potential of lysozyme
are presented, probed as a function of various parameters. This study has the purpose to quanti-
tatively characterize the protein-protein interaction potential as a function of pressure and tem-
perature as well as salt type and concentration. Information is obtained on how to manipulate
protein interactions with pressure, e.g. for crystallization purposes, as well as on how various an-
ions affect the pressure dependence. The protein-protein interactions are characterized in terms
of the second virial coefficient bo(p, T, cs) as a function of the before mentioned parameters.
The results have been published in [Moller et al., 2012] and [Moller et al., 2014b].

6 , ,
repulsion
al = attraction
m—Sum
m== hard sphere

-6 1 1 1 1 1
2 3 4 5 6 7 8 9

r / nm

Figure 5.1: Intermolecular interaction potential V(r) modeled as a 2-Yukawa potential. The repulsive part
is a screened Coulomb potential. The strength of the attractive interaction, J, was used as
free parameter to model the calculated structure factor to the scattering data.

The protein used in all investigations is lysozyme. Protein concentrations from 5 to 20 wt.%
were studied on a temperature range from 8 to 45 °C and pressures from 1 bar to 3 kbar. Sodium
chloride, sodium phosphate, and sodium sulfate solutions of varying ionic strength up to 400 mM
were investigated.

The obtained SAXS curves are refined by calculating the structure factor from a 2-Yukawa in-
teraction potential, presented in fig. 5.1. The strength of the attractive part of the interaction

potential, J, is the free parameter to adjust the model to the data. The second virial coefficient

- 09-
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Figure 5.2: Small angle X-ray scattering data of concentrated lysozyme solution in concentrations of 5,
10, and 15 wt.%. Electrostatic screening is induced due to the addition of 50 and 100 mM
NaCl. The calculated SAXS curves are plotted in orange. The SAXS curves were shifted
vertically for reasons of clarity. Data published in [Mdller et al., 2012].

b>(p, T, cs) can be calculated with eq. 3.71 from the obtained potentials.

5.1 Increasing the ionic strength

In a first step, the SAXS intensities for various temperatures and ionic strengths at atmospheric
pressure are discussed. The purpose of these first measurements is to find out how the increasing
ionic strength is modulating the scattering signal and how the used model can adapt to these
changes.

The influence of an increasing ionic strength on the SAXS data is shown in fig. 5.2 together
with the refinements to the data. The scattering intensities of 5, 10, and 15 wt.% lysozyme
are depicted, with sodium chloride concentrations of 0, 50, and 100 mM. The corresponding

refinements are plotted in orange and calculated by fitting the function

I(q) = Sefr(q) - P(q) + ¢ (5.1)

to the data. The form factor P(q) is calculated as that of an ellipsoid of revolution, the effective
structure factor Ser(q) is calculated as presented in sec. 4.4, ¢ is a constant added.

A so-called correlation peak can be seen at low ionic strength, most pronounced in the absence of
salt for all protein concentrations. This peak is characteristic for the structure factor of strongly

repulsive systems. The 2-Yukawa model can successfully be applied for solutions of varying ionic
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Figure 5.3: Effective structure factors, Se(q), at various salt concentrations and temperatures. The
lysozyme concentration is 10 wt.%. Picture adapted from [Moéller et al., 2012].

strength and protein concentration, giving refinements with reasonable quality. In the high g-
regime, the refinement follows the data points until the minimum in /(g). For larger wave vector
transfers ¢, the calculated curves are below the measured scattering intensities. This is caused
by the deviations that have already be seen between the measured and calculated form factor,
see fig. 4.10. Changes in the scattering curve due to varying protein or salt concentration are
only seen at smaller g values. For this g-range, the model follows the measured data. Especially
the position of the correlation peak can accurately be reproduced.

The effective structure factor, See(q), of the 10 wt.% lysozyme solution upon addition of dif-
ferent NaCl concentrations is presented in figure 5.3 at different temperatures. The scattering
curves are divided by the form factor of lysozyme, calculated by fitting the scattering data of a
0.5 wt.% lysozyme solution with the program GNOM (see sec. 4.4).

Clearly, a drastic increase of attractive interaction between the proteins is seen with increasing
ionic strength, indicated by a marked increase of the scattering intensity at small g-values. Fur-
thermore, an increasing attractivity is observed upon a decrease of temperature from 45 to 8
°C. This also results in the disappearance of the well defined correlation peak at ¢ ~ 1.0 nm™1.
This peak can be seen in the depicted scattering data (fig. 5.2) and the corresponding effective
structure factor Serr(q) (fig. 5.3).

A second maximum of the effective structure factor can be seen at g ~ 2.6 nm~1! in accordance
with previous studies. The origin of this maximum in the structure factor is heavily discussed in
literature, interpreted as evidence for equilibrium clusters in lysozyme solution [Stradner et al.,
2004]. Nevertheless, this interpretation has been strongly debated [Shukla et al., 2008a, Stradner
et al., 2008, Shukla et al., 2008b]. Two conclusions can be made from the data in this thesis
that disagree with the interpretation of equilibrium cluster. First, the high-g peak is unaffected by

changes in temperature and pressure as well as the passing of phase boundaries in the protein sys-
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Figure 5.4: a)-c) Intermolecular interaction potentials obtained from refining the SAXS curves of 10
wt. % lysozyme solution with varying NaCl concentration and temperature. d) Interaction
potential of 10 wt.% lysozyme at 25° C with increasing ionic strength. The dominant repulsive
interaction can strongly be screened with ions.

tem (chapter 6), which is hardly to be expected for equilibrium cluster. Furthermore, the position
of the peak is the same as the minimum in the form factor, implying that, for example, dividing a
constant by the form factor also results in such a peak. Consequently, small differences between
the two scattering curves that are divided, that is from diluted and concentrated solution, can
result in such a peak. Notably, the scattering intensities of both curves are orders of magnitude
smaller at this g-values, which increases the uncertainties in the measured values. Therefore, the
occurrence of this peak can probably be explained with a slight mismatch between the scattering
curves of diluted and concentrated solutions at those g-values. Also, changes in the effective

structure factor are found for ¢ < 2 nm™*!

only, where the scattering can be described by the
interactions of monomeric lysozyme molecules [Shukla et al., 2008a]. Those changes will be
discussed in the following results of this thesis.

The intermolecular interaction potential V(r) is calculated by refining the model described before
to the experimental data with the strength of the attractive interaction, J, being the only free
parameter. The resulting interaction potentials are illustrated in fig. 5.4. The protein-protein

interaction potentials reflect the behavior of the structure factors, showing a lower repulsive in-
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Figure 5.5: Temperature dependence of the strength of the interprotein attractive interaction, J, as a
function of NaCl and protein concentration. Picture published in [Méller et al., 2012].

teraction for increasing salt concentration and decreasing temperature. Notably, the higher ionic
strength influences the interaction potentials much stronger than changes in temperature. In fig.
5.4 d), the obtained interaction potentials are also presented for sodium chloride concentrations
up to 400 mM so that the electrostatic repulsion is screened to a huge extent. It can thus
be concluded that the increase in ionic strength for salt concentrations up to 100 mM already
screens the main part of the repulsive interactions; above 400 mM the repulsive contributions of
the Coulomb repulsion can in principle be neglected.

Despite the repulsive, screened Coulomb part of the potential, the attractive part was also found
to be a function of salt concentration and temperature, which is presented in fig. 5.5. A clear
temperature dependence of the attractive interaction is observed for all salt concentrations. Re-
ducing the temperature leads to an increase of the attractive protein-protein interaction. This
behavior is in agreement with the observation of a liquid-liquid phase separation or aggregation
of potein solutions upon cooling (see sec. 2.3).

The attractive interaction is found to be independent of the protein concentration under salt-
free conditions only. With increasing ionic strength of the solution, an increase of the protein
concentration reduces the attractive interaction parameter, J. Furthermore, with higher protein
concentrations, intermolecular distances decrease, thus, leading to a more pronounced effect of
charge screening on V/(r) and hence J.
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Figure 5.6: Scattering curves of 10 wt.% lysozyme solution measured at different ionic strengths and
hydrostatic pressures. Refinements to the data are plotted in black. The intensities are
shifted vertically for reasons of clarity.

5.2 Non-linear pressure dependence

As a next step, the effect of increasing pressure on the intermolecular interaction potentials is
investigated. This has been analyzed before in solutions of very low ionic strength, i.e. buffer
only [Schroer et al., 2011a]. In that work, a non-linear pressure dependence was found (see
also sec. 2.5) that is probably governed by marked changes in the local water structure upon
pressure increase (sec. 2.6). The influence of additional salt ions in the solution has never been
considered yet. As different salts can strongly influence the local water structure (sec. 2.7), the
pressure dependence of the interaction potential in solutions of high ionic strength is far from
trivial. First, the salt sodium chloride is used because it is located in the middle of the Hofmeister
series, having neither strong kosmotropic nor chaotropic properties. Specific ion effects will be
discussed later on in sec. 5.4.

The measured SAXS curves for different ionic strengths at atmospheric pressure are illustrated
in fig. 5.6 a) and for increasing pressure at an ionic strength of 100 mM in fig. 5.6 b). The
refinement of the data with the structure factor of the 2-Yukawa interaction potential yields J.
The pressure dependence of J for varying protein concentrations and temperatures is shown in
fig. 5.7 a) and b). The influence of increasing ionic strength is depicted in fig 5.7 ¢). Clearly, the
non-linear behavior of the interaction strength as a function of pressure is visible in all solution
conditions studied. The interaction potentials become more repulsive with increasing pressure up
to a pressure of 1.5 —2 kbar. From there on, the strength of the attractive interaction increases,

causing a minimum of J(p) at around 1.5 — 2 kbar. This non-linear dependence of the attractive



5.2 Non-linear pressure dependence 75

a) ® 5wt% b) e 10°C C) @ 100 mM NaCl
8 ® 10wt%|| 8 e 25°C|| 8 © 200 mM NaCl
® 15 wt% ® 40°C ® 400 mM NaCl
®
7 7 7o ® o °
" o ° ; o °® o
fm * * ° ° °
S 6 . . 6 ® o o ° 6
® ¢ * ¢ ¢ © Q@ © (@)
5im ° o (O (: 5 ® o e © ° 5 ® e e © @
[ | ] o
] | ] ® ° o o ° [}
44 . . = 4L > . 4L > - -
0 1 2 3 0 1 2 3 0 1 2 3
p / kbar p / kbar p [ kbar

Figure 5.7: Results of the refinement for J(p) as a function protein concentration (25 °C, 100 mM
NaCl) (a) and temperature (10 wt.% Lys, 100 mM NaCl) (b). (c) Strength of the attractive
interaction, J, for different NaCl concentrations ranging from 100 mM (bottom) to 400 mM
(top) NaCl (10 wt.% Lys, 25 °C). J(p) for 10 wt.%, 25 °C, 100 mM NaCl, is plotted in a,
b, and c (green). Data published in [Méller et al., 2012].

interaction strength J on pressure is in agreement with the behavior found for salt free buffer
solutions [Schroer et al., 2011a], displaying also a broad minimum around 1.5 — 2 kbar. This
behavior was attributed to changes in the local structure of water upon compression that changes
alongside with different further properties of water in this pressure range. A short discussion is
given in sec. 2.6. The hypothesis that structural changes in the aqueous solvent are responsible
for this non-linear pressure dependence is supported by the fact that the position of the minimum
can be influenced by water structuring cosolvents like TMAO [Schroer et al., 2011b].
Nevertheless, the increasing ionic strength was found to have no effect on the pressure depen-
dence of J. Only an increase in attractivity is noted to higher salt concentrations, which has also
been observed at atmospheric pressure conditions (fig. 5.5). Therefore, it can be stated that
the influence of sodium chloride on the interactions under pressurized solution conditions is only
due to charge screening and no influences on the water structure can be assumed. This finding
is in line with the empirical Hofmeister series, locating sodium and chloride ions in the central
part (fig. 2.15) with neither marked structure making nor breaking properties.

Small changes in the pressure dependence seem to occur as a function of protein concentration
(fig. 5.7 a)), whereas the location of the minimum in J(p) is independent of temperature (fig.
5.7 b)). J values decrease by ~ 30% upon an increase of temperature from 10 to 40 °C. Ad-
ditionally, the pressure dependence is more pronounced at 10 °C compared to 40 °C. In order
to quantitatively characterize the interaction strength, the second virial coefficient bo(p, T) is

calculated from the obtained interaction potentials.
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Figure 5.8: Results of the refinement for b, as a function of protein concentration (25 °C, 100 mM
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