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ABSTRACT 

Objective: The objective is to evaluate the effect of heme oxygenase-1 (HO-1) enzyme induc-
er and inhibitor on Mesenchymal Stem Cells (MSCs) in Alzheimer disease.  
Materials and Methods: 70 female albino rats were divided equally into 7 groups as follows: 
group 1: healthy control; group 2: Aluminium chloride induced Alzheimer disease; group 3: 
induced Alzheimer rats that received intravenous injection of MSCs; group 4: induced Alz-
heimer rats that received MSCs and HO inducer cobalt protoporphyrin; group 5: induced Alz-
heimer rats that received MSCs and HO inhibitor zinc protoporphyrin; group 6: induced Alz-
heimer rats that received HO inducer; group7: induced Alzheimer rats that received HO inhib-
itor. Brain tissue was collected for HO-1, seladin-1 gene expression by real time polymerase 
chain reaction, heme oxygenase activity, cholesterol estimation and histopathological exami-
nation.  
Results: MSCs decreased the plaque lesions, heme oxygenase induction with stem cells also 
decreased plaque lesions however there was hemorrhage in the brain. Both heme oxygenase 
inducer alone or with stem cells increased seladin-1 expression and decreased cholesterol lev-
el.  
Conclusion: MSCs alone or with HO-1 induction exert a therapeutic effect against the brain 
lesion in Alzheimer’s disease possibly through decreasing the brain cholesterol level and in-
creasing seladin-1 gene expression. 
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INTRODUCTION 

Alzheimer's disease is a progressive 
neurodegenerative disease characterized by 
abnormal clumps (amyloid plaques) and 
tangled bundles of fibers (neurofibrillary 
tangles) composed of misplaced proteins in 
the brain. It is manifested by a progressive 
decline in cognitive abilities such as 
memory, comprehension, language expres-
sion, learning capacity, calculation, abstrac-
tion, judgment, spatial orientation and the 
recognition of familiar people or place 
(Berchtold and Cotman, 1998). Neurologi-
cally, there are 3 main identifying features 
of Alzheimer’s disease: beta-amyloid 
plaques which form outside and around 
neurons, neurofibrillary tangles which form 
inside dead neurons and overall dramatic 
shrinkage of neural tissues. The “plaques” 
and “tangles” in particular have come to be 
regarded as the hallmarks of Alzheimer’s 
disease (Brookmeyer et al., 1998). Age is 
considered to be the greatest “risk factor” 
for Alzheimer's, as the number of people 
diagnosed with the disease doubles for eve-
ry 5 years beyond the age 65. On the other 
hand, approximately 5 % of men and 6 % of 
women have developed Alzheimer's by the 
age of 65 (Bodles et al., 2001; Quinlan et 
al., 2001). 

The precise causes of Alzheimer’s dis-
ease are believed to involve a complex in-
teraction of genetic and environmental fac-
tors, as no one particular etiology has been 
identified that would explain all cases. 
Since there is no recognized cure for Alz-
heimer’s disease, conventional medical 
treatment has typically consisted primarily 
of drug therapy which is prescribed with the 
hope of managing symptoms, although such 
medication does not alter the progression of 
the disease itself. Medications fall into a 
class of drugs known as cholinesterase in-
hibitors (Bodles et al., 2001; Quinlan et al., 
2001). 

As a chronic, progressive, neurodegen-
erative disorder, Alzheimer’s disease is a 
prime candidate for adult stem cell treat-
ment. Indeed, research has shown a variety 

of promising approaches to the treatment of 
this disease with adult stem cells. Alz-
heimer’s disease is characterized by the de-
struction of neuronal circuitry which is the 
result of a buildup of beta-amyloid plaques 
in combination with the tangles that form 
the tau protein. An effective treatment for 
Alzheimer’s disease, therefore, would be 
one which would prevent and reverse the 
formation of such plaques and tangles, 
while also regenerating lost neuronal con-
nections. Thus far, the only therapy that of-
fers the possibility of accomplishing these 
objectives is stem cell therapy (Lie et al., 
2004; Ke et al., 2006; Danilov et al., 2006). 

Mesenchymal stem cells (MSCs) are 
pluripotent cells isolated from the bone 
marrow and other various organs. They are 
able to proliferate and self-renew, as well as 
to give rise to progeny of at least the osteo-
genic and adipogenic lineages (Weissman, 
2000). Indeed, research has shown a variety 
of promising approaches to the treatment of 
this disease with adult stem cells (Chen et 
al., 2000). 

The heme oxygenase (HO) enzyme ca-
talyses the degradation of heme. It was re-
ported that the activity of HO is reduced in 
familial or early onset Alzheimer disease. 
The products of the reaction include bili-
verdin and carbon monoxide; they are all 
involved in various ways in the pathway of 
oxidative stress. Biliverdin is a potent anti-
oxidant agent. Under normal condition bili-
verdin is metabolized by biliverdin reduc-
tase to bilirubin that also decreases oxida-
tive impairment of the cells. CO is a gase-
ous material that activates guanyl cyclase 
increasing cyclic guanosine monophosphate 
(cGMP) which acts as neurotransmitter and 
vasodilator (Takahashi et al., 2000). HO-1 
plays a vital role in many aspects, such as 
suppression of oxidative stress, inflamma-
tion, cell proliferation and regulation of cy-
tokine expression in various pathological 
conditions (Eugenio Barone et al., 2011). 

This work aims to study the effect of 
heme oxygenase enzyme inducer and inhib-
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itor on stem cells in neurodegenerative le-
sions of Alzheimer disease. 

 
MATERIALS AND METHODS 

Preparation of the animal model 

Experimental animals 
The study was carried on 70 female 

white albino rats weighing 150 to 200 g. 
Rats were bred and maintained in an air-
conditioned animal house with specific 
pathogen-free conditions, and were subject-
ed to a 12:12-h daylight/darkness and al-
lowed unlimited access to chow and water. 
All the ethical protocols for animal treat-
ment were followed and supervised by the 
animal facilities, Faculty of Medicine, Cai-
ro University. All animal experiments re-
ceived approval from the Institutional Ani-
mal Ethics Committee. They were divided 
into 7 groups as follow: 
 Group 1: 10 rats as a healthy control 

group 
 Group 2: 10 rats as Aluminium chloride 

induced Alzheimer disease (17 mg/kg 
b. wt daily for 75 days) (Krasovskiĭ et 
al., 1979) 

 Group 3: 10 induced Alzheimer rats that 
received MSCs only, which were pro-
cessed and cultured for 14 days, in a sin-
gle dose of 106 cells per rat, given by in-
travenous infusion in the rat tail vein 
.The rats were kept for one month. 

 Group 4: 10 induced Alzheimer rats that 
received MSCs and HO inducer, cobalt 
protoporphyrin in a single dose of 
(0.5 mg/100 gm) subcutaneously. The 
rats were kept for one month. 

 Group 5: 10 induced Alzheimer rats that 
received MSCs and HO inhibitor, zinc 
protoporphyrin in a single dose of 
(10 mmol/kg) subcutaneously. The rats 
were kept for one month. 

 Group 6: 10 induced Alzheimer rats that 
received HO inducer. 

 Group 7: 10 induced Alzheimer rats that 
received HO inhibitor. 

After 75 days, 5 animals were scarified 
and pathological examination was done to 
ensure Alzheimer disease induction. 

Brain tissues were dissected and exam-
ined for: 
- Quantitative analysis of heme oxygen-

ase-1 gene and seladin-1 gene expres-
sion by real time PCR, heme oxygen-
ase activity and cholesterol estimation. 

- Histopathological examination of brain 
tissue by hematoxylin and eosin. 

- Detection of the MSCs homing in brain 
tissue after its labeling with PKH26 
dye by fluorescence microscopy to de-
tect its red fluorescence. 

 
Preparation of BM-derived  
mesenchymal stem cells from rats 

Bone marrow was harvested by flushing 
the tibiae and femurs of 6-week-old male 
white albino rats with Dulbecco's modified 
Eagle's medium (DMEM, GIBCO/BRL) 
supplemented with 10 % fetal bovine serum 
(GIBCO/BRL). Nucleated cells were isolat-
ed with a density gradient [Ficoll/Paque 
(Pharmacia)] and resuspended in complete 
culture medium supplemented with 1 % 
penicillin–streptomycin (GIBCO/BRL). 
Cells were incubated at 37 °C in 5 % hu-
midified CO2 for 12–14 days as primary 
culture or upon formation of large colonies. 
When large colonies developed (80–90 % 
confluence), cultures were washed twice 
with phosphate buffer saline (PBS) and the 
cells were trypsinized with 0.25 % trypsin 
in 1 mM EDTA (GIBCO/BRL) for 5 min at 
37 °C. After centrifugation, cells were re-
suspended in serum-supplemented medium 
and incubated in 50 cm2 culture flask (Fal-
con). The resulting cultures were referred to 
as first-passage cultures (Abdel Aziz et al., 
2007). MSCs in culture were characterized 
by their adhesiveness and fusiform shape. 
Also CD29 gene expression was detected 
by RT-PCR as a marker of MSCs (Abdel 
Aziz et al., 2007). 
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Labeling of MSCs with PKH26 
MSCs were harvested during the 4th 

passage and were labeled with PKH26, 
which is a red fluorochrome. The fluoro-
chrome has excitation (551 nm) and emis-
sion (567 nm) characteristics compatible 
with rhodamine or phycoerythrin detection 
systems. The linkers are physiologically 
stable and show little to no toxic side-
effects on cell systems. Labeled cells retain 
both biological and proliferating activity, 
and are ideal for in vitro cell labeling, in 
vitro proliferation studies and long, in vivo 
cell tracking. In the current work, MSCs 
were labeled with PKH26 from Sigma 
Company (St. Louis, MO/USA). Cells were 
centrifuged and washed twice in serum free 
medium. Cells were pelleted and suspended 
in dye solution. Cells were injected intrave-
nously into rat tail vein. After one month, 
liver tissue was examined with a fluores-
cence microscope to detect and trace the 
cells. 

 
Real-time quantitative analysis for  
heme oxygenase-1 and seladin-1 gene  
expression 

Total RNA was extracted from brain 
tissue homogenate using RNeasy purifica-
tion reagent (Qiagen, Valencia, CA). cDNA 
was generated from 5 μg of total RNA ex-
tracted with 1 μl (20 pmol) antisense primer 
and 0.8 μl superscript AMV reverse tran-
scriptase for 60 min at 37 °C. 

The relative abundance of mRNA spe-
cies was assessed on an ABI prism 7500 
sequence detector system (Applied Biosys-
tems, Foster City, CA). PCR primers were 

designed with Gene Runner Software 
(Hasting Software, Inc., Hasting, NY) from 
RNA sequences from GenBank (Table 1). 
All primer sets had a calculated annealing 
temperature of 60°. Quantitative RT-PCR 
was performed in duplicate in a 25-μl reac-
tion volume consisting of 2X SYBR Green 
PCR Master Mix (Applied Biosystems), 
900 nM of each primer and 2–3 μl of 
cDNA. Amplification conditions were 
2 min at 50°, 10 min at 95° and 40 cycles of 
denaturation for 15 s and annealing/exten-
sion at 60° for 10 min. Data from real-time 
assays were calculated using the v1·7 Se-
quence Detection Software from PE Bio-
systems (Foster City, CA). Relative expres-
sion of VEGF, TNF alpha and IL10-mRNA 
was calculated using the comparative Ct 
method as previously described. All values 
were normalized to the -actin gene and 
reported as fold change over background 
levels detected in Alzheimer Disease. 

 
Biochemical analysis 

Brain tissue was homogenized and cen-
trifugated at 3000 °C for 10 minutes. The 
supernatant was collected and kept frozen at 
-80 °C till analysis of cholesterol by using a 
commercially available kit.  

 
Analysis of brain histopathology 

The obtained tissue sections were col-
lected on glass slides, deparaffinized, 
stained by hematoxylin and eosin. Exami-
nation was performed by light microscopy 
(Bancroft et al., 1996). 

 

 

Table 1: Sequence of the primers used for real-time PCR 

 Primer sequences 
Annealing 

temperature 

HO-1 gene 
Forward primer: 5-GAGCGCCCACAGCTCGACAG-3 
Reverse primer: 5-GTGGGCCACCAGCAGCTCAG-3 

60 °C 

Seladin-1 gene 
Forward primer: 5-ATCGCAGCTTTGTGCGATG-3 
Reverse primer: 5-CACCAGGAAACCCAGCGT-3 

60 °C 

β-actin gene 
Forward primer: 5-CCAGGCTGGATTGCAGTT- 3 
Reverse primer: 5-GATCACGAGGTCAGGAGATG-3 

55 °C 
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HO activity assay 
Brain tissue was homogenized with 2.5 

volume Tris-HCl buffer (10 mmol/L, 
pH 7.6) containing 250 mmol/L sucrose and 
0.4 mmol/L phenylmethylsulfonyl fluoride. 
The homogenate was centrifuged at 800 g 
for 10 minutes and then at 13500 g for 
20 minutes to produce the mitochondrial 
pellet. The supernatant was withdrawn. The 
protein content was determined by the 
method of Lowry et al. (1951). The activity 
of HO in the supernatant was determined as 
follows; the supernatants were incubated at 
37 °C for 1 hour with heme (50 mmol/ L), 
rat liver cytosol (5 mg/mL), MgCl2 
(2 mmol/L), glucose-6-phosphate dehydro-
genase (1 unit), glucose-6-phosphate 
(2 mmol/L), and NADPH (0.8 mmol/L) in 
0.5 mL of 0.1 mol/L phosphate buffer sa-
line (pH 7.4). The reaction was stopped by 
putting the tubes on crushed ice, then the 
bilirubin generated was extracted by chloro-
form and its amount was determined with a 
scanning spectrophotometer and was de-
fined as the difference between the absorb-
ance at 463 and 520 nm, while using a 
standard bilirubin curve. 

 
Statistical analysis 

Data were expressed as mean ± SD. 
Significant differences were determined by 
using ANOVA and post-hoc tests (LSD) for 
multiple comparisons using SPSS 9.0 com-
puter Software. Results were considered 
significant at p<0.05. 

 
RESULTS 

MSCs culture, identification & homing 
Isolated and cultured undifferentiated 

MSCs reached 70-80 % confluence in 14 
days. In vitro osteogenic and chondrogenic 
differentiation of MSCs were confirmed by 
morphological changes and special stains 
(Figure 1A, B and Figure 2A, B respective-
ly). In addition MSCs were identified by 
surface marker CD29 (+) by PCR (Figure 
3). MSCs labeled with PKH26 fluorescent 
dye were detected in the brain tissues con-

firming that these cells homed into the brain 
tissues (Figure 4). 

 

 
Figure 1: Morphological and histological stain-
ing of BM-MSCs differentiated into osteoblasts 
(A) (×20) Arrows for differentiated MSCs osteo-
blasts after addition of growth factors 
(B) (×200) MSCs differentiated into osteoblasts 
stained with Alizarin red stain 
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Figure 2: Morphological and histological stain-
ing of BM-MSCs differentiated into chondro-
cytes 
(A) (×20) Arrows for differentiated MSCs chon-
drocytes after addition of growth factors 
(B) (×200) MSCs differentiated into chondro-
cytes stained with Alcian blue stain 

 

Figure 3: An agarose gel electrophoresis 
shows PCR of CD29 gene expression in MSC 
culture (261 bp) (as a molecular marker for rat 
MSCs) 

Lane M: DNA marker with 100 bp;  
Lane 1: MSCs culture 
 
 
MSCs and/or HO improve the 
neurodegenerative lesions in the brain 

The results of the present study show a 
significant decrease in the cholesterol level 
and HO activity in AD/MSC, AD/MSCs/ 
HO inducer groups compared to the AD 
group (P<0.05) (Table 2). 

 

 

Figure 4: Labeling of MSC with PKH26 dye 
Cells labeled with the PKH26 showed strong 
red autofluorescence after transplantation in 
rats, confirming that these cells were actually 
seeded into the brain tissue. 
 
 
Gene expression of heme oxygenase-1, 
seladin-1 genes 

Concerning gene expression, there was 
a significant increase in the heme oxygen-
ase-1expression and decrease in the seladin-
1 gene expression in the AD group com-
pared to the control group (P<0.05). Fol-
lowing MSC injection, the HO-1 expression 
was insignificantly increased (P=1.000), 
while seladin-1 expression increased signif-
icantly (P<0.05) compared to the AD 
group. Following MSC injection with HO 
inducer, the HO-1 expression increased sig-
nificantly (P<0.05) compared to the AD 
group and AD with MSCs, the Seladin-1 
expression increased significantly (P<0.05) 
compared to the AD group but insignifi-
cantly compared to AD with MSCs group 
(P=1.000). Following MSC injection with 
HO inhibitor, H0-1 expression decreased 
significantly (P<0.05) compared to the AD 
group, AD with MSCs and AD with MSCs 
with HO inducer group while the seladin-1 
expression increased significantly (P<0.05) 
compared to the AD group, AD with MSCs 
group and AD with MSCs with HO inducer 
group. Following HO inducer, the HO-1 
expression increased significantly (P<0.05) 
compared to all other groups while the 
seladin-1 expression decreased significantly 
(P<0.05) compared to the AD with MSC, 

M 1 
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AD with MSCs with HO inducer group, AD 
with MSCs with HO inhibitor group but 
was insignificantly decreased compared to 
the AD group (p=0.923). Following HO 
inhibitor, the HO-1 expression decreased 
significantly (P<0.05) compared to all other 
groups while the seladin-1 expression in-
creased significantly (P<0.05) compared to 

the AD with MSCs, AD with MSCs with 
HO inducer and the AD with MSC with HO 
inhibitor group, but was insignificantly de-
creased compared to AD group (p=0.949) 
and the AD with HO inducer group 
(P=0.872 (Figure 5A, B)). 

 

 
Table 2: Cholesterol (mg/g protein) & HO activity (pmol bilirubin/mg protein/hr) in different studied 
groups 

Groups Cholesterol  
(mg/g protein) 
Mean ± SD 
 

HO activity  
(pmol bilirubin/mg protein/hr)  
Mean ± SD 
 

Control 19.040 ± .737 970.000 ± 149.443 
AD 37.470 ± .737 * 2640.000 ± 288.483 * 
AD with MSCs 29.360 ± .759 *# 1560.000 ± 283.627 *# 
AD with MSCs with HO inducer 23.740 ± .542 *#$ 2175.000 ± 337.680 *#$ 

AD with MSCs with HO inhibitor 31.800 ± .467 *#$^ 995.000 ± 132.183 #$^ 

AD  with HO inducer 25.770 ± .596 *#$^X 2980.000 ± 246.306 *#$^ X 
AD  with HO inhibitor  33.940 ± .613 *#$^XY 1325.000 ± 305.732 *#$^ X Y 

* significant P as compared to control group (P<0.05) 
# significant P as compared to AD group (P<0.05) 
$ significant P as compared to AD+MSCS group (P<0.05) 
^ significant P as compared to AD+MSCS+HO inducer group (P<0.05) 
X significant P as compared to AD+MSCS+HO inhibitor group (P<0.05) 
Y significant P as compared to AD+HO inducer group (P<0.05) 
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Figure 5A: Box plots analysis of heme oxygenase-1 

A 
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Figure 5B: Box plots analysis of seladin-1 gene expression by real time PCR in different groups 
 
 

 
Histopathological examination of brain 
tissues in different groups 

Histopathological examination of the 
brain tissue of the AD group showed multi-
ple acellular plaques in the mid brain, asso-
ciated with oedema, hypoplasia, and con-
gested blood capillary in the hippocampus 
(Figure 6B). Following MSCs injection 
there was congestion in the blood vessels 
and focal gliosis in the cerebral cortex (Fig-
ure 6C).With MSCs & HO inducer there 
was congestion in the meninges, associated 
with focal hemorrhage and oedema with 
gliosis in the hippocampus (Figure 6D). 
With MSCs & HO inhibitor there was dif-
fuse gliosis in the cerebral cortex, associat-
ed with focal hemorrhage in the brain stem 
(Figure 6E). After injection of the inducer 
alone there was neuronal degeneration in 
the brain stem associated with focal gliosis 
in the cerebrum and congestion with hemor-
rhage in the hippocampus (Figure 6F). Af-
ter injection of the inhibitor alone focal 
gliosis with plaque formation were ob-

served in the cerebrum, associated with at-
rophy and gliosis in the hippocampus (Fig-
ure 6G). 

 
Figure 6: Histopathological examination of 
brain tissues in different groups 

A: Brain of control rat showing intact histological 
structure of the hippocampus 

 

B 
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(B) AD (H&EX60) showed multiple numbers of acel-
lular plaques were detected in the mid brain, associ-
ated with oedema, hypoplasia, and congested blood 
capillary in the hippocampus. 

 
(C) AD+MSCs (H&EX60) showed congestion in the 
blood vessels and focal gliosis in the cerebral cortex. 

 

(D) AD+MSCs & inducer (H&EX60) showed conges-
tion in the meninges, associated with focal hemor-
rhage and oedema with gliosis in the hippocampus. 

 

(E) AD+MSCs & inhibitor (H&EX60) showed diffuse 
gliosis in the cerebral cortex, associated with focal 
hemorrhage in the brain stem. 

 

(F) AD+ inducer (H&EX60) showed neuronal degen-
eration in the brain stem associated with focal gliosis 
in the cerebrum and congestion with hemorrhage in 
the hippocampus. 

 

(G) AD+inhibitor (H&EX60) showed focal gliosis with 
plague formation observed in the cerebrum, associ-
ated with atrophy and gliosis in the hippocampus.

* significant P as compared to control group (P<0.05) 
# significant P as compared to AD group (P<0.05) 
$ significant P as compared to AD+MSCS group (P<0.05) 
^ significant P as compared to AD+MSCS+HO inducer group (P<0.05) 
X significant P as compared to AD+MSCS+HO inhibitor group (P<0.05) 
Y significant P as compared to AD+HO inducer group (P<0.05)
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DISCUSSION 

Bone marrow–derived stem cells con-
tribute to cell turnover and repair in various 
tissue types, including the brain (Cornac-
chia et al. 2001; Poulsom et al., 2001). 
MSCs are commonly defined as bone mar-
row–derived fibroblast-like cells, which 
despite the lack of specific surface markers 
can be selected by their adherence charac-
teristics in vitro and which have the ability 
to differentiate along the three principal 
mesenchymal lineages: osteoblastic, adipo-
cytic and chondrocytic ((Pittenger et al., 
1999; Imai and Ito, 2002). Studies demon-
strated that MSCs are non-immunogenic 
and display immunosuppressive properties, 
with the ability to inhibit maturation of 
dendritic cells and to suppress the fraction 
of memory T cells, B cells and Natural 
Killer (NK) cells. They also possess trans-
differentiation and antiapoptotic ability. 
These properties of MSCs render these cells 
especially attractive for therapeutic applica-
tion in several inflammatory and neuro-
degenerative disease, as well as in regenera-
tive medicine (Togel et al., 2007). In the 
present study, bone marrow derived mesen-
chymal stem cells were isolated from male 
rats, grown and characterized by their adhe-
siveness and fusiform shape and by detec-
tion of CD 29, one of surface marker of rat 
mesenchymal stem cells. These MSCs were 
used to detect their possible anti-
inflammatory and transdifferentiation role 
in amelioration of brain lesions (plaques) in 
the experimental model of Alzheimer’s dis-
ease. We also tested whether MSCs alone 
or MSCs with heme oxygenase inducer 
could improve brain lesions (plaques) in 
experimental model of Alzheimer’s disease. 

It was hypothesized that BM-MSCs 
transplantation may have beneficial effects 
in AD patients through playing a specific 
and a general role in Alzheimer‘s disease. 
The specific role is through microglial acti-
vation. Microglia cells are resident in the 
Central Nervous System (CNS) that regu-
late innate immunity and participate in 
adaptive immune response in CNS tissues. 
Microglia has a neuroprotective function by 

secreting neurotrophic agents (Nguyen et 
al., 2002) and eliminating Aβ via phagocy-
tosis. It was suggested that transplantation 
of BM-MSCs into the brain promotes the 
clearance of Amyloid Beta (AB) deposits 
and/or blocks their formation, and that mi-
croglia/macrophage recruitment which was 
found to be enhanced by grafted Bone Mar-
row-MSCs (BM-MSCs) might be involved 
in this process. Experimental AD model 
was induced by injecting amyloid-β (AB) 
into the dentate gyrus (DG) of hippocampus 
of mice. Intracerebral transplantation of 
BM-MSCs into the brain of an induced AD 
model reduced their AB levels when com-
pared to control animal (Trzaska et al., 
2008). Also through its transdifferentiation 
ability; several studies have demonstrated 
that MSCs can generate cells of neuroecto-
dermal origin (Trzaska et al., 2008). This 
generation of ectodermal neurons is termed 
transdifferentiation, or plasticity. Although 
the plasticity of MSCs is still controversial, 
many more studies are confirming that they 
can transdifferentiate or ‘jump germ layers’ 
(Zipori, 2004). Under various culture condi-
tions and stimulation with inductive factors, 
MSCs exhibit vast plasticity and are capa-
ble of generating several cell types outside 
of their mesodermal origin. Transplantation 
of MSCs into the subventricular zone 
(SVZ) of mice housed in an enriched envi-
ronment stimulates cell proliferation and 
neuronal differentiation. Additional studies 
showed that MSCs promote endogenous 
neurogenesis in the hippocampus ((Tfilin et 
al., 2009; Kan et al., 2011). Finally through 
secreting neurotrophic factors of nutritional 
value as brain derived neurotrophic factor 
(BDNF) and glial derived neurotrophic fac-
tor (GDNF) either by itself or through the 
microglia cells that support the regenerative 
microenvironment (Caplan, 2007). The 
general role may be through its anti-
apoptotic role or its immunomodulatory 
role via suppression of T cells, inhibition of 
B-cell proliferation and suppress NK cells 
activation (Gerdoni et al., 2007). 

In this study, the histopathological ex-
amination of brain tissue showed no 
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plaques but the cerebral cortex showed 
congestion in the blood vessels and focal 
gliosis. These findings agree with Lee et al. 
(2009), who stated that BM-MSCs can 
promote the reduction of Aβ through the 
microglia activation in induced AD brain 
suggesting a potential therapeutic agent 
against AD. These findings also agree with 
Lee et al. (2009), who stated that trans-
planted BM-MSCs caused reduction in Aβ 
in induced AD mice. 

Another possible mechanism may be 
through decreasing cholesterol level and 
increasing seladin-1 expression. Seladin-1 
(SELective AD INdicator-1) which is a nov-
el neuroprotective gene, found to be down 
regulated in brain lesions in AD. This result 
was in accordance with Benvenuti et al. 
(2006), who found that the hippocampus 
and the subventricular zone, which are af-
fected in AD, are the unique regions con-
taining stem cells with neurogenic potential 
in the adult brain. It might be hypothesized 
that this multipotent cell compartment is the 
predominant source of seladin in normal 
brain. After isolation and characterization 
of mesenchymal stem cells (MSCs) as a 
model of cells with the ability to differenti-
ate into neurons. MSCs were then differen-
tiated toward a neuronal phenotype (MSC-
n). These cells were thoroughly character-
ized and proved to be neurons, as assessed 
by molecular and electrophysiological eval-
uation. Seladin-1 expression was deter-
mined and found to be significantly reduced 
in MSC-n compared to undifferentiated 
cells. These changes in seladin-1 gene ex-
pression could be attributed for the 
antiapoptotic function exerted by conferring 
resistance against oxidative stress (Di Stasi 
et al., 2005). 

Heme oxygenase has a cytoprotective, 
anti-apoptotic and anti-inflammatory action. 
Its role in Alzheimer’s disease may be 
through facilitating phagocytosis, Exoge-
nous HO-1 protein administration was 
shown to induce the production of cyto-
kines, Tissue necrotic Factor (TNFα) and 
Interleukin (IL-6), and facilitate the phago-
cytosis and clearance of amyloid-β peptides 

in rat and mouse microglia mediated by 
Toll like Receptor (TLR4) activation (Ka-
kimura et al., 2002). These results suggest 
that HO-1 may have a role to play in neuro-
protection in the brain. Another role may be 
via secreting brain derived neurotrophic 
factor and glial derived neurotrophic factor 
expression. Hung et al. (2010) found that 
HO-1 induction by adenovirus containing 
human HO-1 gene (Ad-HO-1) in substantia 
nigra of rat increases BDNF and GDNF ex-
pression. On the other hand, glial HO-1 hy-
peractivity may contribute to cellular oxida-
tive stress, pathological iron deposition, and 
the bioenergetic failure characteristics of 
degenerating and inflamed neural tissues 
and thus may constitute a rational target for 
therapeutic intervention in these conditions 
(Song et al., 2006). Also it may be through 
stimulating Tau degradation. The ubiquitin-
proteosome system (UPS) mediates turno-
ver of normal, mis-folded and chemically 
modified (e.g. oxidized) intracellular pro-
teins. Tau protein is degraded by the UPS in 
vitro and in vivo. Proteosomal activity is 
reduced in AD brain and b-amyloid peptide 
inhibits the UPS in cultured cells (Shastry, 
2003). Expression of HO-1 by transient 
transfection triggers proteosomal tau degra-
dation in human neuroblastoma cells, an 
effect that can be blocked with SnMP or the 
proteosomal inhibitor, lactacystin. Up-
regulation of HO-1 in AD brain (Premku-
mar et al., 1995) may therefore serve to 
stimulate a failing UPS in an attempt to lim-
it the accumulation of toxic tau aggregates. 
Interestingly, HO-1 may keep tau levels in 
check by more than one mechanism as 
Takeda et al. (2000) reported transcriptional 
suppression of tau in neuroblastoma cells 
transfected with human HO-1 cDNA. The 
general role of HO may be through its cyto-
protective, anti-apoptotic and anti-
inflammatory action via decrease in caspase 
activity and cytochrome c release. Also it is 
reported that HO-1 overexpression reduces 
heme induced intercellular adhesion mole-
cule-1 (ICAM-1) expression, whereas inhi-
bition of HO activity increases heme-
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induced ICAM-1 expression and leukocyte 
influx (Wagener et al., 2001). 

The role of heme oxygenase with stem 
cells had been reported on cardiac perfor-
mance. Induction of human HO-1 expres-
sion (human heme oxygenase-1, hHO-1, 
was transfected into cultured MSCs using 
an adenoviral vector) in ischemic myocar-
dium increasesd MSCs survival and aided 
MSCs immunomodulatory function via re-
duction of TNF-a, IL-1-beta and IL-6-
mRNA expression, increased IL-10-mRNA 
expression and significant decrease in 
proapoptotic Bcl-2–associated X protein 
(Bax) expression (Zeng et al., 2008). 

In the present study, heme oxygenase 
induction with stem cells in histopathologi-
cal examination of brain tissue revealed no 
plaques but hemorrhage and congestion 
were noticed in the meninges, associated 
with focal hemorrhage in the brain stem, 
and edema with gliosis in the hippocampus. 
The possible mechanism may be through 
decreasing brain cholesterol level. Xiong et 
al. (2008) concluded that cholesterol home-
ostasis and transport was impaired in AD, 
leading to increased retention in AD brains, 
due to altered levels or activities of nuclear 
receptors. Vaya and Schipper (2007) also 
concluded that in advanced AD, a massive 
increase in the free cholesterol pool (de-
rived from widespread neuronal degenera-
tion) saturates sterol efflux mechanisms re-
sulting in increased brain cholesterol levels 
which, in turn, exacerbate amyloid deposi-
tion and neurodegeneration in AD. Infante 
et al. (2010) concluded through studying 
the polymorphism in the promoter region of 
liver X receptor beta (LXR-B), that heme 
oxygenase-1 (HO-1) stimulates oxidation of 
glial cholesterol to oxysterols, and in-
creased oxysterol concentrations may pro-
tect neural tissues by activation of liver X 
receptor-β (LXR-β), which induces tran-
scription of genes associated with reduction 
of cellular cholesterol concentrations and 
decrease of Aβ formation. In cultured rat 
astrocytes, HO-1 augments intraglial oxida-
tive stress and promotes the conversion (ox-

idation) of cholesterol to oxysterols (Vaya 
et al., 2007). 

In conclusion, these data revealed that 
infusion of HO inducer either alone or as-
sociated with BM-derived MSCs exert a 
therapeutic effect on the brain lesion in 
Alzheimer’s disease possibly through de-
creasing the brain cholesterol level and in-
creasing seladin-1 gene expression. 
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