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ABSTRACT 

Molecularly imprinted polymers (MIPs) are macromolecular matrices that can mimic the 
functional properties of antibodies, receptors and enzymes while possessing higher durability. 
As such, these polymers are interesting materials for applications in biomimetic sensor, drug 
synthesis, drug delivery and separation. In this study, we prepared MIPs and molecularly im-
printed nanospheres (MINs) as receptors with specific recognition properties toward tocoph-
erol succinate (TPS) in comparison to tocopherol (TP) and tocopherol nicotinate (TPN). MIPs 
were synthesized using methacrylic acid (MAA) as functional monomer, ethylene glycol di-
methacrylate (EGDMA) as crosslinking agent and dichloromethane or acetronitrile as poro-
genic solvent under thermal-induced polymerization condition. Results indicated that imprint-
ed polymers of TPS-MIP, TP-MIP and TPN-MIP all bound specifically to their template mol-
ecules at 2 folds greater than the non-imprinted polymers. The calculated binding capacity of 
all MIP was approximately 2 mg per gram of polymer when using the optimal rebinding sol-
vent EtOH:H2O (3:2, v/v). Furthermore, the MINs toward TPS and TP were prepared by pre-
cipitation polymerization that yielded particles that are 200-400 nm in size. The binding ca-
pacities of MINs to their templates were greater than that of the non-imprinted nanospheres 
when using the optimal rebinding solvent EtOH:H2O (4:1, v/v). Computer simulation was 
performed to provide mechanistic insights on the binding modalities of template-monomer 
complexes. In conclusion, we had successful prepared MIPs and MINs for binding specifical-
ly to TP and TPS. Such MIPs and MINs have great potential for industrial and medical appli-
cations, particularly for the selective separation of TP and TPS. 
 
Keywords: molecular imprinting, molecularly imprinted polymer, anti-cancer, tocopherol 
succinate, computational chemistry 
 
 

INTRODUCTION 

Significant changes to the environment 
and climate as a result of global warming 
had increased the exposure to toxic sub-
stances that may culminate in the develop-
ment of pathogenic diseases (Dapul-Hidal-

go and Bielory, 2012; Hunter, 2003; Tho-
mas et al., 2012). Among these, cancer has 
been found to increase incidentally owing 
to increases of UV exposure and toxicant-
induced gene mutation. The development of 
therapeutic agent toward cancer has predo-
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minantly focused on addressing issues per-
taining to its toxicity, drug delivery proper-
ties and multidrug resistance (Abraham et 
al., 2000; Dubikovskaya et al., 2008). Fur-
thermore, intense efforts have been invested 
in improving therapeutic approaches as to 
increase patient survival (Bechet et al., 
2008; Campbell et al., 2009). 

Tocopherol succinate (TPS), a vitamin 
E analogue, is a promising and attractive 
compound with known anti-cancer activity 
toward several types of human cancer cell 
lines. Particularly, TPS can selectively in-
duce apoptosis in malignant cells (Constan-
tinou et al., 2008; Neuzil, 2003; Shanker et 
al., 2007; Zhao et al., 2009) while being 
non-toxic to normal cells and tissues. Struc-
ture-function relationship study of the ter-
minal dicarboxylic moiety of tocopherol 
(TP) analogues have been previously inves-
tigated (Kogure et al., 2004) and it was 
concluded that the apoptogenic activity de-
pended on the length and charge of the ester 
moiety. Birringer et al. (2003) provided fur-
ther insights into the structure-function rela-
tionship of vitamin E by dividing the struc-
ture into three distinct domains. The phar-
macokinetic property of TPS is similar to 
that of TP in which after infusion it is circu-
lated in the blood stream by docking to lip-
oproteins where it subsequently targets the 
micro-capillary of tumor cells. In regards to 
its physicochemical properties, the hydro-
phobic nature of the molecule is responsible 
for the propensity of TP to bind lipoprotein 
and travel through the peripheral tissues 
followed by its sequential transfer to tumor 
cells. As compare to the normal tissue that 
exerts neutral state membrane, malignant 
cells possess acidic membranes in the pro-
tonated state. The inherent physicochemical 
property of TPS enables it to counteract this 
by being freely diffusible into malignant 
cells owing to its weak acidic nature that 
comprises of charged and deprotonated 
moieties. TPS undergoes hydrolysis and is 
converted to TP by nonspecific esterases 
from hepatocytes (Neuzil and Massa, 2005; 
Wu and Croft, 2007). 

Molecular imprinting is a technique that 
affords the production of synthetic recep-
tors or so-called plastic antibodies. Such 
molecularly imprinted polymers (MIPs) are 
recognition matrices that have the ability to 
recognize and bind specifically to com-
pounds of interest. MIPs are known to pos-
sess higher durability than biological recep-
tors as it is known to possess excellent 
thermostability, reusable and is easy to 
store (Bagheri et al., 2012). As such, MIP 
has been successfully utilized for various 
applications such as substitutes for biologi-
cal antibodies and receptors (Ye and Mos-
bach, 2008), separation matrices for chro-
matography (Wei et al., 2005) and solid 
phase extraction (Pichon and Haupt, 2006), 
analytical sensors (Piacham et al., 2005; 
Ton et al., 2012), immuno assays (Moreno-
Bondi et al., 2012), drug delivery (Cunliffe 
et al., 2005; Puoci et al., 2011), enzyme in-
hibitor synthesis (Yu et al., 2002; Zhang et 
al., 2006) and enzyme mimetics (Piacham 
et al., 2003, 2006). In recent years, molecu-
lar imprinting have been employed in the 
synthesis of polymers affording robust 
recognition properties toward several com-
pounds of interests and several recent re-
views have been published describing their 
potential utilizations for selective separa-
tion of compounds (Chen and Li, 2012; 
Cheong et al., 2013a, b; Hu et al., 2013; 
Murray and Örmeci, 2012; Sharma et al., 
2012; Vasapollo et al., 2011). Of particular 
note, is its utilization as specific drug deliv-
ery agents such as for metal-based anti-in-
flammatory drug (Sumi et al., 2008), gly-
cyrrhizic acid (Cirillo et al., 2010), hyalu-
ronic acid (Ali and Byrne, 2009) and 5-
fluorouracil (Puoci et al., 2007b) among 
others. 

Molecularly imprinted polymers are 
prepared in essentially three major steps:  
(i) Formation of template-monomer com-
plexes, cross-linking and polymerization 
(Komiyama et al., 2003). The first step in-
volving the self-association of template-
monomer complexes in which functional 
monomers affording the strongest binding 
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are typically deemed as the optimal one to 
use in molecular imprinting experiments. 
Several approaches exist for calculating the 
interaction energy of template-monomer 
complexes:  
(ii) Computational chemistry approach (i.e. 
involving the computation of the molecular 
energy of template, monomer and their 
complexes followed by calculating their en-
ergetic difference) (Piletsky et al., 2001; 
Subrahmanyam et al., 2001),  
(iii) Data mining approach (i.e. involving 
the use of multivariate analysis methods 
such as neural network for correlating mo-
lecular descriptors with their experimental 
imprinting factor) (Nantasenamat et al., 
2007a, 2005), molecular dynamics ap-
proach (i.e. involving the construction of 
atomistic model of molecularly imprinted 
polymer in which the cross-linked polymer 
contained template cavities to mimic exper-
imental settings) (Dong et al., 2009; Herdes 
and Sarkisov, 2009; Lv et al., 2008). Previ-
ously, we had successfully employed the 
computational chemistry approach for cal-
culating the interaction energy of sulfona-
mides (Isarankura-Na-Ayudhya et al., 
2008) and tocopherols (Piacham et al., 
2009). The data mining approach was first 
introduced by us as a facile method that al-
lows simultaneous modeling of molecular 
and solvent descriptors by means of quanti-
tative structure-property relationship 
(QSPR) to make predictions of the imprint-
ing factor values for template-monomer 
complexes of interests (Nantasenamat et al., 
2007a, 2005). A more extensive account on 
computational approaches for the rational 
design of molecularly imprinted polymers 
has previously been reviewed (Levi et al., 
2011; Nicholls et al., 2009, 2011). Further 
information on QSPR is provided in our 
previous review articles (Nantasenamat et 
al., 2009, 2010) and the utilization of such 
modeling approach had successfully been 
demonstrated on a wide range of biological 
activities (Mandi et al., 2012; Pingaew et 
al., 2012; Thippakorn et al., 2009; 
Worachartcheewan et al., 2011, 2009) and 

chemical properties (Nantasenamat et al., 
2007a, b, 2008, 2005, 2013). 

A wide range of MIPs with specific bin-
ding properties towards TP and its deriva-
tives has been synthesized by various poly-
merization techniques. Faizal and Kikuchi, 
(2010) utilized molecular imprinting mem-
branes synthesized via phase inversion 
technique bearing calix[4]resorcarenes 
moieties that engages in multiple non-
covalent interactions with TP. The imprint-
ed membrane was reported to bind TP over 
2-folds higher than the non-imprinted 
membranes in methanol/water (2:1, v/v). 
Furthermore, Faizal et al. (2008) had also 
employed the phase inversion imprinting 
technique for preparing copolymers of acry-
lonitrile with α-tocopherol methacrylate 
(TPM) monomer by means of the covalent 
imprinting method. Moreover, Faizal and 
Kobayashi (2008) had also synthesized a 
hybrid molecular imprinting polymer for 
TP using pre-polymerization powders of 
TPM cross-linked by divinylbenzene onto a 
scaffold matrix of polysulfone, cellulose 
acetate, and nylon. Puoci et al. (2007a) 
demonstrated the use of α-TP imprinted 
polymer as solid phase extraction sorbents 
of α-TP from bay leaves extract. In our pre-
vious investigation we had successfully 
prepared bulk monoliths and nanospheres 
for selective recognition of TP and TP ace-
tate (TPA). The study also provided mech-
anistic insights into the binding modes of 
TP-MAA and TPA-MAA complexes (Pia-
cham et al., 2009). Liu et al. (2012) pre-
pared MIP-based nano-sensing material to-
wards TP by anchoring the MIP layer onto 
1-vinyl-3-octylimidazolium ionic liquid-
modified CdSe/ZnS quantum dots. Such 
smart material exhibited florescence quen-
ching signal upon TP binding without the 
need for inducers and derivatization. TP-
MIP as drug delivery devices has been in-
vestigated for their recognition characteris-
tics in organic and aqueous media including 
their release property in gastrointestinal 
simulated fluids (Puoci et al., 2008).  
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Molecularly imprinted polymers with 
binding specificity towards the apoptogenic 
TPS have not yet been reported. Therefore, 
this study aims to synthesize bulk mono-
liths and nanospheres via precipitation 
polymerization for further application as 
TPS delivery matrices. Computer simula-
tion was also employed to provide pertinent 
insights on the binding modalities of the in-
vestigated template-monomer complexes in 
order to understand the origins of the ob-
served binding performance. 

 
MATERIAL AND METHODS 

Reagents 
Tocopherol (TP), tocopherol nicotinate 

(TPN), tocopherol succinate (TPS), meth-
acrylic acid (MAA), ethyleneglycol dime-
thylacrylate (EDMA) and azobis-isobutyro-
nitrile (AIBN) were purchased from Sigma-
Aldrich. All solvents were of analytical or 
HPLC grade. 
 

Preparation of molecularly imprinted  
polymer 

Molecularly imprinted polymers were 
synthesized using TP, TPN and TPS as 
template molecules (Figure 1). To 10 ml of 
DCM, 0.5 mmol of template, 8 mmol of 
MAA as functional monomer, 50 mmol of 
EDMA as cross-linking monomer and 
202 mg of AIBN were added. The pre-poly-
merization mixture was purged with argon 
for 10 min and screw-capped in a 20 ml bo-
rosilicate tube. Thermal-induced polymeri-
zation was performed in a pre-heated water 
bath at 60 °C for 18 h. The obtained mono-
lithic polymer was ground by a mechanical 
mortar to produce particles of varying sizes. 
Sedimentation in acetone was performed to 
separate and collect particles with diameters 
around 10-25 μm. Templates were eluted 
from the polymer by using acetic acid: 
methanol (15 %, v/v). Spectrophotometric 
examinations were performed in order to 
determine the amount of remaining tem-
plates. Non-imprinted polymers (NIPs) 
were prepared in the same manner with the 
omission of templates. 

 
Figure 1: Chemical structures of tocopherol (TP), tocopherol nicotinate (TPN), tocopherol succinate 
(TPS) and methacrylic acid (MAA) 
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Preparation of molecularly imprinted  
polymers nanospheres 

Molecularly imprinted polymers nano-
spheres (MINs) toward TP and TPS were 
prepared according to Ye et al. (1999). 
Briefly, 80 ml of pre-polymerization mix-
ture in acetonitrile contained 0.5 mmol of 
template, 8 mmol of MAA, 50 mmol ED-
MA and AIBN. The pre-polymerization 
mixture was purged with argon for 15 min 
prior to subjecting it to thermal-induced po-
lymerization at 60 °C for 24 h. Templates 
were then eluted from the obtained nano-
spheres using acetic acid:methanol (15 %, 
v/v) via Soxhlet extraction. The non-im-
printed polymers nanospheres (NINs) were 
prepared in the absence of template mole-
cules. 
 
Scanning electron microscopy 

Particle sizes of imprinted and non-im-
printed nanospheres were determined from 
scanning electron microscope (HITACHI 
S-3400). Briefly, the nanospheres were 
mounted on metallic studs via double-sided 
conductive tape and subsequently applying 
gold ion coating using sputter coater (Bal-
tec SCD 050) for 90 s under vacuum at cur-
rent intensity of 60 mA and scanning accel-
erating voltage of 15 kV. 
 
Binding analysis 

Binding analysis was performed by in-
cubating a fixed amount of template 
(0.1 mg/mL) against various amounts of po-
lymers in a 1 ml microfuge tube on a rock-
ing table at room temperature for 12 h. Su-
pernatants were taken after centrifugation at 
12,000 rpm for 5 min prior to determining 
the amount of template bound via spectro-
photometry. 
 
Computer simulation  

Chemical structures of template mole-
cules (i.e. TP, TPN and TPS) and functional 
monomer MAA were drawn into Marvin 
Sketch (ChemAxon Ltd.) and were subse-
quently converted to the Gaussian input file 
format using Babel (OpenEye Scientific 

Software). Full geometry optimizations 
with no symmetry constrains were then per-
formed initially at the semi-empirical AM1 
level in order to afford good starting struc-
tures for subsequent refinement at the den-
sity functional theory level using Becke’s 
three-parameter Lee-Yang-Parr (B3LYP) 
(Becke, 1993; Lee et al., 1988) and the 6-
31G(d) basis set. Single point energy calcu-
lation was then performed on these opti-
mized structures using the B3LYP func-
tional and 6-311++G(d,p) basis set. All 
computational chemistry calculations were 
performed using Gaussian 09 (Frisch et al., 
2009). 

Template-monomer complexes were 
then constructed by using the optimized 
structures of template and monomer. The 
functional monomer MAA was placed near 
each of the oxygen and nitrogen atoms of 
the template molecule to give rise to several 
possible template-monomer complexes. 
These structures were then subjected to full 
geometry optimizations. Finally, the total 
energy of the template molecules, function-
al monomers and complexes were parsed 
from the Gaussian output files using in-
house developed scripts. The interaction 
energy was then computed using the fol-
lowing equation: 

E  Etemplatemonomer Etemplate Emonomer  (1) 

where  
E , Etemplatemonomer , Etemplate  and Emonomer  

represents the interaction energy, energy of 
template-monomer complexes, energy of 
template molecule and energy of functional 
monomer, respectively. 
 

RESULTS AND DISCUSSION 

Molecular imprinting of tocopherols 
Molecularly imprinted polymers toward 

TP, TPN and TPS have been successfully 
prepared. Results indicated that TP-MIP, 
TPN-MIP and TPS-MIP in DCM displayed 
very low binding capacity toward their re-
spective template analytes. Such findings 
were in accordance with the results from 
our previous investigations (Piacham et al., 
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2009). In order to resolve this situation, ap-
propriate solvents for template rebinding 
were investigated using various amounts of 
aqueous-ethanol mixtures. It was found that 
the optimum ratio for the ethanol-aqueous 
mixture was 3:2, v/v. Such aqueous mix-
tures ratio displayed good rebinding and se-
lective recognition for TP and its analogs as 
compared to the control non-imprinting 
polymer (NIP) as shown in Figure 2. It 
should be noted that these MIPs were syn-
thesized via thermal-induced polymeriza-
tion. TP-MIP displayed recognition proper-
ty greater than the MIP prepared from the 
previous report (Piacham et al., 2009), 
which was also synthesized by thermal-
induced polymerization. binding properties 
may be attributed to differences in the tem-
plate and monomer content ratio and the 
porogenic solvent used (Puoci et al., 

2007a). Particularly, results revealed that 
TP-MIP, TPS-MIP and TPN-MIP all bound 
its respective template molecules with 2-
fold greater binding than the NIP at 10 mg 
polymer. The binding capacity for all MIPs 
was approximately 2 mg/g of polymer. 

It was observed that NIP could bind TP 
and TPN rather non-specifically even when 
the polymer concentration was increased. 
On the other hand, NIP was shown to have 
low binding capacity towards TPS. It can 
be seen from Figure 2 that 80 mg of TPS-
MIP exhibited high affinity towards TPS as 
deduced from a binding capacity of greater 
than 92 % in comparison to 13 % binding 
by NIP at template concentration of 
0.1 mg/mL while TPN-MIP, TPS-NIP, TP-
MIP and TP-NIP provided binding perfor-
mances of 78.2 %, 55.2 %, 92 % and 55 %, 
respectively. It can be seen that TPS-MIP

 

TP-NIP TP-MIP TPN-NIP TPN-MIP
TPS-MIPTPS-NIP

 
Figure 2: Rebinding experiment of tocopherol molecularly imprinted polymers (TP-MIP), tocopherol 
succinate molecularly imprinted polymer (TPS-MIP) and tocopherol nicotinate molecularly imprinted 
polymer (TPN-MIP) toward their template as well as their non-imprinted counterparts (TP-NIP, TPS-
NIP and TPN-NIP) 
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provided over 7 folds higher % binding 
when compared to their control NIP while 
TPN-MIP and TP-MIP afforded roughly 
1.5-folds higher % binding than the NIP. 
Such specific binding of TPS may be attri-
buted to their inherent physicochemical 
properties in which the succinic moiety of 
TPS possesses both hydrogen bond donat-
ing and accepting properties. This may con-
sequently lead to strong binding of TPS to 
MAA, which also contain hydrogen bond 
donating and accepting capacities. Such 
strong template-monomer interaction of 
TPS and MAA may potentially give rise to 
a rather defined binding cavity. On the oth-
er hand, the rather non-specific binding of 
MIP and NIP to their respective templates 
TP and TPN may be attributed to the long 
chain aliphatic moiety as well as the one-
point monomer interactions at hydroxyl 
group of TP and pyridine nitrogen of TPN. 

In light of the non-specific binding pro-
perties as afforded by TP-MIP and TPN-
MIP, a second round of polymer synthesis 
was performed to produce molecularly im-
printed nanospheres toward TP and TPS us-
ing the precipitation polymerization tech-
nique. Sizes and morphology of the ob-
tained nanospheres were determined by 
SEM (Figure 3) to have uniform shape and 
size in the range of 200-400 nm, which may 
be suitable for future drug delivery applica-
tions. The binding capacities of TP-MIN, 
TPS-MIN and NIN were investigated by 
means of batch analysis in acetonitrile.  

It was observed that 80 mg of TPS-MIN 
and NIN afforded binding capacities of 
47 % and 19 %, respectively, while TP-
MIN and NIN had binding performances of 
35 % and 22 %, respectively (Figure 4). 
Such results indicated that TPS-MIN could 
bind to its template more specific than that 
of TP-MIN. To further enhance the binding 
performance of TPS-MIN, the binding sol-
vents were subjected to optimization studies 
in which the aqueous content in organic sol-
vent was varied. As shown in Figure 5, 
40 mg of TPS-MIN were incubated with 
0.1 mg/mL of TPS in different solvent mix-

tures including EtOH:H2O (4:1, v/v), 
EtOH:H2O (3:2, v/v) and MeCN:H2O (1:1, 
v/v), which afforded % binding of 43 %, 
22 % and 17 %, respectively for TPS-MIN 
while % binding of 10 %, 7 % and 8 %, re-
spectively, for TPS-NIN. The results indi-
cated that EtOH:H2O using a ratio of 4:1, 
v/v augmented the binding specificity of 
TPS-MIN by 4-folds higher than the control 
NIN. 

 
Figure 3: Scanning electron micrograph of 
topherol succinate molecularly imprinted nano-
spheres (TPS-MIN) (a), tocopherol molecularly 
imprinted nanospheres (TP-MIN) (b) and non-
imprinted nanospheres (NIN) (c) 
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Figure 4: Rebinding experiment of tocopherol succinate molecularly imprinted nanospheres (TPS-
MIN), tocopherol molecularly imprinted nanospheres (TP-MIN) and non-imprinted nanospheres (NIN) 
toward tocopherol succinate (TPS) and tocopherol (TP) 

 

 

Figure 5: Optimization of binding solvent of tocopherol succinate molecularly imprinted nanospheres 
(TPS-MIN) 
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Computer simulation of tocopherol-
imprinted polymers 

Mechanistic insights into the origin of 
the observed binding specificities for the 
tocopherol-imprinted polymers were de-
duced from computational chemistry calcu-
lations. Computational chemistry had been 
demonstrated to be useful in elucidating the 
physicochemical properties of chemical en-
tities that is pertinent for understanding the 
origins of the investigated biological activi-
ties and chemical properties (Nantasenamat 
et al., 2012; Piacham et al., 2006; Prachaya-
sittikul et al., 2007, 2010; Suksrichavalit et 
al., 2008, 2009).  

First, the template and functional mon-
omer were subjected to an initial geometry 
optimization at AM1 level followed by a re-
fined optimization at DFT level using 
B3LYP/6-31G(d) and finally subjected to a 
single point energy calculation at B3LYP/6-
311++G(d,p) level. Second, the optimized 

structures of template and functional mon-
omer were used for subsequent geometry 
optimizations of template-monomer com-
plexes by iteratively placing the functional 
monomer at each of the possible functional 
moiety of the template molecule. This re-
sulted in several possible complexes and 
their corresponding interaction energy, 
which were obtained by calculating the en-
ergetic difference of the template, function-
al monomer and their complexes. 

It can be seen from Table 1 that TP-
MAA complexes revealed interaction ener-
gies (in order of increasing values) of  
-46.462, -31.612, -30.683, -28.122 and  
-16.199 kJ mol-1 for TP-MAA complexes 1, 
3, 2, 4 and 5, respectively, where its bind-
ing modalities are correspondingly shown 
in Figures 6a, 6c, 6b, 6d and 6e, respective-
ly. It was observed from TP-MAA complex 
1 that the hydroxyl group emanating from  

 

Table 1: Summary of the energetic properties of templates, functional monomer and their complexes 

Molecule Energy  
(a.u.) 

 Energy  
(a.u.) 

 Energy  
(kJ mol-1) a 

MAA -306.578   

TP -1286.048   

TPN -1646.558   

TPS -1666.698   

TP-MAA complex 1 -1592.644 -0.018 -46.462 

TP-MAA complex 2 -1592.638 -0.012 -30.683 

TP-MAA complex 3 -1592.638 -0.012 -31.612 

TP-MAA complex 4 -1592.637 -0.011 -28.122 

TP-MAA complex 5 -1592.632 -0.006 -16.199 

TPN-MAA complex 1 -1953.152 -0.016 -41.588 

TPN-MAA complex 2 -1953.156 -0.021 -54.083 

TPN-MAA complex 3 -1953.145 -0.009 -23.627 

TPS-MAA complex 1 -1973.305 -0.029 -76.378 

TPS-MAA complex 2 -1973.292 -0.016 -41.882 

TPS-MAA complex 3 -1973.290 -0.014 -37.031 

TPS-MAA complex 4 -1973.292 -0.016 -42.562 

TPS-MAA complex 5 -1973.289 -0.013 -32.917 
a The conversion factor 2.6 × 103 was used to convert  Energy from a.u. to kJ mol-1 
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Figure 6: Possible binding modalities as obtained from computational chemistry calculations for to-
copherol-methacrylic acid (TP-MAA) complexes 1-5 (a-e) 
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the benzopyran core structure acted as both 
hydrogen bond donor and acceptor by in-
teracting with the two complementary func-
tional moieties (i.e. hydroxyl and carbonyl 
groups) of MAA. Such two-point interac-
tion with MAA accounted for the high in-
teraction energy of TP-MAA complex 1. 
The remaining complexes essentially pro-
vided one-point interaction and consequent-
ly had lower interaction energy than that of 
TP-MAA complex 1. 

The interaction energies for TPN-MAA 
complexes were -54.083, -41.588 and  
-23.627 kJ mol-1 for TPN-MAA complexes 
2, 1 and 3, respectively, and its structures 
are correspondingly depicted in Figures 7b, 

7a and 7c, respectively. As TPN could only 
provide hydrogen bond accepting capacity, 
its interaction with MAA were essentially 
one-point interactions. It was observed 
from TPN-MAA complex 2 that the nitro-
gen atom from the pyridine ring afforded 
the highest interaction energy while one-
point interaction with oxygen atoms at var-
ious positions of TPN provided lower inter-
action energy.  

Interaction energies of -76.378, -42.562, 
-41.882, -37.031 and -32.917 kJ mol-1 were 
observed for TPS-MAA complexes 1, 4, 2, 
3 and 5, respectively, and its structures are 
correspondingly shown in Figures 8a, 8d, 
8b, 8c and 8e, respectively. TPS-MAA 

 

 
Figure 7: Possible binding modalities as obtained from computational chemistry calculations for to-
copherol nicotinate-methacrylic acid (TPN-MAA) complexes 1-3 (a-c) 
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complex 1 was found to afford the highest 
interaction energy of -76.378 and this could 
be attributed to the two-point interaction of 
MAA with the succinate moiety of TPS in 
which the carboxylic group provided both 
hydrogen bond donating and accepting ca-
pacities. The bond distances of interacting 
atoms at the site of this two-point interac-
tion were 1.67 and 1.68 Å. Such distances 
were found to be the least of the investigat-
ed conformers thereby corroborating the 
observed high interaction energy. 

The computer simulation suggested that 
template-monomer complexes providing 
the strongest binding were TPS-MAA > 
TPN-MAA > TP-MAA where the highest 
interaction energy were -76.378, -54.083 
and -46.462, respectively. The high interac-
tion energy afforded by TPS-MAA com-

plex is in good agreement with the experi-
mental finding that TPS-MIP also provided 
the best binding performance of up to 7-
folds higher than the control NIP for bulk 
monoliths while 3-folds higher binding than 
the control NIP were observed for the uni-
formly-sized TPS-MIN. 

 
CONCLUSION 

Everyday we are constantly bombarded 
by a wide range of environmental factors 
that predisposes us to the development of 
cancer. Tocopherol succinate is a vitamin E 
derivative that has been shown to possess 
promising anti-cancer activity. In this work, 
molecularly imprinted polymers with bind- 
ing specificity toward tocopherol and 
 

 

 
 
Figure 8: Possible binding modalities as obtained from computational chemistry calculations for  
tocopherol succinate-methacrylic acid (TPS-MAA) complexes 1-5 (a-e) 
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derivatives were prepared by bulk polymer-
ization and precipitation polymerization. 
TPS-imprinted polymers prepared by both 
methods were found to have higher speci-
ficity and selectivity than the other deriva-
tives as deduced from 7- and 3-folds higher 
% binding for bulk and uniformly-sized 
particles, respectively. Nanospheres pre-
pared by precipitation polymerization af-
forded polymers with uniform size (~200-
400 nm) and shape, which are suitable for 
further applications in drug delivery efforts. 
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