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�Oh, I get by with a little help from my friends

Mm, I get high with a little help from my friends
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1 Theory and aspects of research

1.1 CDMs in the light of educational standards

In recent years educational research in Germany was characterized by an increasing

demand of complex information on students' achievement. This may be caused by only

moderate performances of German students in international comparative studies like the

Trends in International Science Study (TIMSS; Mullis, Martin, Ruddock, O'Sullivan,

Arora & Erberer, 2008), the Progress in International Reading Study (PIRLS; Mullis,

Martin, Kennedy & Foy, 2007) and the Program for International Student Assessment

(PISA; OECD, 2010). It may also be caused by the social and ethnic disparities detected

in these studies (e.g., Mullis et al., 2007).

Consequently, the standing conference of the ministers of education and cultural a�airs

(Kultusministerkonferenz der Länder der Bundesrepublik Deutschland; KMK) passed in

2003 the educational standards, which yield binding and uni�ed performance require-

ments for all German federal states for the �rst time. According to the KMK (2004)

these requirements should be considered as a norm for students' performances (cf. also

Klieme, Avenarius, Blum, Döbrich, Gruber, Prenzel, Reiss, Riquarts, Rost, Tenorth &

Vollmer, 2003). In other countries similar devolopments took place and comparable

rules for educational performance standards have been developed as well. For example

the ministry for education, arts and culture (Bundesministerium für Unterricht, Schule,

Kunst und Kultur; Bmukk) in Austria introduced educational standards in 2009 (BGBl.

II Nr 1/2009) and Sweden, Finland and the USA exhibit comparable concepts. The ef-

forts of the OECD (OECD, 2004) in de�ning standards by introducing the PISA study

should be mentioned in this context as well.

For transferring the educational standards of the KMK (and other institutions) to an

adequate testing and learning culture, statistical methods have to be found for empir-

ically evaluating statements about the students' actual competence pro�les and about

their acquisition of competences. With these statistical methods the norms de�ned

before should be tested and the need for individual support should be identi�ed. Cur-
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1 Theory and aspects of research

rently, large-scale assessments as TIMSS, PIRLS and PISA are often accompanied by

standardized tests combined with statistical item response theory (IRT; de Ayala, 2009)

methods, which yield valuable results for the evaluation of educational systems. How-

ever, the diagnostic content of these types of assessments is often criticized. For example

the National Research Council (National Research Council, 2001, p.27) stated

�On the whole, most current large scale tests provide very limited information

that teachers and educational administrators can use to identify why students

do not perform well or to modify the conditions of instructions in ways likely

to improve student achievement.�

or educational researchers as de la Torre & Karelitz (2009, p.450) claimed that

�Scores derived from this (i.e. the IRT) framework are useful in scaling and

ordering students along a pro�ciency continuum, but these pro�ciency scores

contain limited diagnostic information necessary for the identi�cation of stu-

dents' speci�c strength and weaknesses.�

In the present work so-called cognitive diagnosis models (CDMs; Rupp, Templin &

Henson, 2010) are reviewed, applied and enhanced, which allow diagnostic conclusions

and hence targeted pedagogical interventions. It seems worth noting that the aim of

this work is not to criticize present approaches in large scale assessments. The currently

applied methods seem adequate as long as the goal of these studies is de�ned in a

description and comparison of educational systems (as it is). Rather, the focus of the

present work is to investigate alternative models, which may provide further information

for diagnosing students' performances beyond the system and class level, but also on the

individual student level. The following paragraphs indicate why CDMs ful�ll some of

the prevailing needs and demands of educational research on diagnostics of performances

or, in other words, assessment of competences.

Recently, the concept of �competences� is often mentioned in the context of students'

performances. In the expertise for national educational standards (Klieme et al., 2003),

which was an important pillar in the development of Germany's educational standards

(KMK, 2004), competences are de�ned according to Weinert (2001, p.27f) as

�available or learnable cognitive capacities and abilities of individuals for

solving speci�c problems, as well as the related motivational, volitional and

social willingness and ability to responsibly and successfully apply the prob-

lem solving strategies in various situations.�

Hence, competencies are seen as synonymous to the potential of solving problems from
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1.1 CDMs in the light of educational standards

speci�c topic areas in speci�c situations (cf. Kanning, 2003, p.12; Prenzel, Drechsel,

Carstensen & Ramm, 2004, p.18). From a psychological point of view, this concept

of competences is very broadly de�ned, as it includes not only cognitive psychological

elements (i.e. capacities and abilities) but also motivational elements (i.e. motivational,

volitional and social willingness). It therefore allows for several tests and questionnaires

about achievement, personality and behavioral assessment (Kubinger, 2006; Rost, 2004)

for connecting the measured constructs.

Such a broad de�nition opens up liberties in the composition of normative demands

such as the educational standards. On the contrary, the broader the de�nition, the more

challenging is �nding an adequate operationalization of the individual constructs and

of their nomological integration (Embretson, 1983). The precision which is necessary

in the de�nition of the constructs has to be emphasized in order to ensure that the

applied measurement instruments generate reliable data and permit valid statements

about students. In this regard four characteristics can be carved out, which de�ne the

concept of competences in the present work:

(1) Competences generally represent coarsely de�ned abilities, which may also be seen

as competence levels or skills. In this sense, the mathematical skill �handling of

numbers and measures� can be regarded as a part of the students' mathematical

abilities (Prenzel, Drechsel, Carstensen & Ramm, 2004, p.50). The splitting of

abilities into skills is normally based on educational and subject oriented didactics

(Niss, 2003).

(2) The description of skills and their connections to the total ability is often explained

in so called competence models (cf. Campbell, Kelly, Mullis, Martin & Sainsbury,

2001, for reading; Peschek & Heugl, 2007, for math).

(3) The de�nition of separate skills does of course not exclude the possibility that

students have to possess a combination of these skills for successfully mastering

a test problem. From a didactical point of view, in the problem solving process

of complex tasks this is even desired (Blum, Neubrand, Ehmke, Senkbeil, Jordan,

Ul�g & Carstensen, 2004). Thus it is important to de�ne whether the relationship

among the skills is compensatory or non-compensatory, i.e. if in the process of

problem solving a lack in one required skill can be compensated by the possession

of another skill or not.

(4) The skills are obviously not directly observable and therefore they have to be

distinguished from the observable test responses (Prenzel et al., 2004, p.19). This

aspect is transfered to the statistical level in modeling skills with latent variables.
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1 Theory and aspects of research
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Figure 1.1.1: Illustration of population and individual oriented CDM results.

This theoretical con�nement of the concept of competencies used in the education stan-

dards reveals a strong coherence to the CDM framework presented in this work: They

(1) model latent skills with latent variables, which (2) can be combined in compensatory

or non-compensatory ways, can therefore (3) represent complex competence structures

and hence can (4) provide statements about individual skills.

Roughly spoken, the goal of CDMs is to classify students based on their observed re-

sponse behavior in dichotomous latent skill classes, which predict the presence or absence

of prede�ned skills underlying the tested ability. The main results obtained from CDMs

are threefold: Firstly, the distribution of the skill classes in the test population allows

for statements how many students possess certain combinations of skills. Secondly, the

skill mastery probabilities in the population show how many students possess the indi-

vidual skills. Thirdly, for each student an individual skill class is deduced, explaining

the student's possession or non-possession of the individual skills. The concept of CDM

results is illustrated in Figure 1.1.1.

Despite these possibilities, CDMs are not very well known in the empirical educational

research so far. The reason may be grounded in various di�erent statistically sophis-

ticated modeling approaches or in the sparse number of successful CDM applications

to empirical educational data (Templin & Henson, 2006). The present work is twofold:

On the one hand it introduces some new statical aspects of CDMs and on the other

hand it presents some new applications of CDMs to current educational data sets, for

example the Austrian test of educational standards 2012 or the PIRLS 2006 study. Both

statistical theory and practical applications are blended in using the statistical details
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1.2 CDMs: De�nition, estimation and related approaches

for the practical analyses and in illustrating the statical theory by real life examples.

The research questions and their context are presented in detail in Section 1.3. For a

better understanding of these topics at �rst the statistical theory of CDMs is reviewed

and an embedding of CDMs in the context of related classi�cation approaches is given

in Section 1.2.

1.2 CDMs: De�nition, estimation and related

approaches

The origins of cognitive diagnosis models have not been conclusively established. Inde-

pendent developments emerged from di�erent directions: Firstly, from theory of classi-

�cation, where basic ideas can be found in the mastery model by Macready & Dayton

(1977) and in restricted latent class models by Haertel (1989). Secondly, from item re-

sponse theory with initial approaches in the multicomponent model by Whitely (1980)

and in the linear logistic test model by Fischer (1973), and thirdly from mathematical

psychology, and here especially the �eld of knowledge space theory, see e.g. Doignon

& Falmagne (1999). Based on the multitude of di�erent approaches, CDMs have many

names, as for example diagnostic classi�cation models, cognitive psychometric models

or structured item response theory models.

In all CDM approaches it is assumed that a set of basic skills (i.e. competencies) is un-

derlying the tested ability. Furthermore, all CDM approaches determine the possession

and non-possession of these skills (i.e. the skill classes) in the test population and for

the individual students. Therefore, all approaches require the responses of examinees to

(test) items and an expert assignment of the latent skills to these items. Even though

CDMs may also be applied to psychological tests (Templin & Henson, 2006), in the

present work we focus on CDMs for educational testing data.

The huge variety of CDMs di�ers basically in two aspects: Firstly, the combination in

which students have to possess the skills for successfully mastering an item, i.e. the level

of compensability. In some CDMs all assigned skills have to be possessed for mastering

the items, in other CDMs just one of the assigned skills has to be possessed, and other

CDMs require one of several speci�c combinations of the assigned skills. CDMs in which

exactly one skill is required for mastering each item are called CDMs with between

item dimensionality, whereas CDMs requiring more than one skill have a within item

dimensionality. Secondly, CDM approaches di�er in the way a stochastic component is
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1 Theory and aspects of research

introduced into the model, i.e. students can slip or guess in items or skills or in both.

In an achievement test each item may follow another CDM approach. These di�erent

approaches for the items are sometimes also called the items condensation rule or simply

the item rule (DiBello, Roussos & Stout, 2007). A summary and discussion of prominent

CDMs is for example given in DiBello et al. (2007), George (2010) or Rupp et al. (2010).

Current research yields approaches which unify many di�erent models in one framework

as for example the Generalized-Deterministic Input Noisy-And-Gate (G-DINA; de la

Torre, 2011) model, the General Diagnostic Model (GDM; von Davier, 2008) and the

Log-linear Cognitive Diagnosis Model (LCDM; Henson, Templin & Willse, 2009).

In this section only models and frameworks are reviewed which are examined or applied

in the present work: Firstly, the Deterministic Input Noisy And Gate (DINA; Haer-

tel, 1989; Junker & Sijtsma, 2001) model (cf. Section 1.2.2), which has achieved some

popularity because of its simplicity in interpretation and its parsimony in establishing

model parameters. Secondly, the Generalized-DINA (de la Torre, 2011, cf. Section 1.2.3),

as it is the generalized framework build upon the DINA. Thirdly, Section 1.2.5 shows

some important connections and equalities between the three generalized frameworks

G-DINA, GDM and LCDM, and therefore justi�es the subsequent priority in the use

of the G-DINA model. Finally, CDMs are set in the context of related psychometric

models (cf. Section 1.2.6).

The reviewed models are illustrated by data from the Austrian baseline testing 2009 of

educational standards in math (Breit & Schreiner, 2010). In this study each test item

(i.e. task in a test) is assigned to exactly one of the four content subcategories �num-

bers and measures�, �variables and functional dependencies�, �geometry� and �statistics�

and to exactly one of the four operational subcategories �model building�, �calculation�,

�interpretation� and �argumentation�. In the present context the content and opera-

tional subcategories are used as basic skills underlying the tested mathematical ability

of students in the eighth grade.

1.2.1 Basic components of CDMs, terminology and notation

Consider a test situation, in which I, i = 1, . . . , I, students responded to J , j = 1, . . . , J ,

items. A value of 1 indicates a correct response and a value of 0 an incorrect one. The

binary empirical (manifest) response of student i, i = 1, . . . , I, to item j, j = 1, . . . , J ,

is denoted by Xij. The responses of all I students to all J items are given in a I × J
binary data matrix X. The i-th row of X represents the answers of student i to all J

14



1.2 CDMs: De�nition, estimation and related approaches

items, denoted by the J-dimensional response vector X i, which is called the response

pattern of student i.

Educational experts de�ne a set of K basic skills αk, k = 1, . . . , K, which the students

have to possess for mastering all J items under consideration (K ≤ J). The i-th student's

dichotomous skill pro�le αi = [αi1, . . . , αiK ] denotes her possession and non-possession

of the K prede�ned skills. Obviously the skill pro�les are unknown. Furthermore the

educational experts also de�ne which skills are required to master which item through

the J ×K matrix Q, the so-called Q-matrix (Tatsuoka, 1983): The (j, k)th element qjk
of Q is equal to 1 if skill k is relevant for the mastery of item j and equals 0 otherwise.

Additionally the experts have to specify the items' condensation rules.

In the example of the Austrian baseline testing we consider one test booklet with J = 36

items which was administered to I = 1308 eight graders in Austria. Thus, the data

matrix X has a size of 1308 × 36. Educational experts assigned each item to either

exactly one content skill or to exactly one content and one operational skill. The �rst

assignment with K = 4 content skills is summarized in a 36× 4 matrix

Qcontent =


0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

. . . . . . . . . . . .


and the second assignment with K = 8 content and operational skills leads to

Qcontent;operation =


0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

 .

CDMs assume that the manifest response Xij of student i to item j arises as a result of

her possessed skills αi, the skills required for item j de�ned in the j-th row qj of the

Q-matrix and the j-th item's condensation rule (cf. Figure 1.2.2). Because the skills αi
are unknown, a CDM algorithm deduces from the manifest responses, the Q-matrix and

the condensation rules information on the K skills the student possesses.

From a statistical point of view this procedure has two steps: In the �rst step all students
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Figure 1.2.2: In CDMs the manifest response Xij of student i to item j is assumed to
arise as a result of the student's possessed skills αi, the skills required
for item j de�ned in the j-th row qj of the Q-matrix and the j-th item's
condensation rule.

are classi�ed into skill classes αl, l = 1, . . . , 2K , satisfying a global optimization criterion.

Note, that all possible combinations of the assumed K skills yield the 2K disjunctive

skill classes αl, l = 1, . . . , 2K . In our example, for K = 4 skills we obtain 2K = 24 = 16

skill classes, i.e. α1 = [0, 0, 0, 0], α2 = [1, 0, 0, 0], α3 = [0, 1, 0, 0], α4 = [0, 0, 1, 0],

α5 = [0, 0, 0, 1], α6 = [1, 1, 0, 0], α7 = [1, 0, 1, 0], α8 = [1, 0, 0, 1], α9 = [0, 1, 1, 0],

α10 = [0, 1, 0, 1], α11 = [0, 0, 1, 1], α12 = [1, 1, 1, 0], α13 = [1, 1, 0, 1], α14 = [1, 0, 1, 1],

α15 = [0, 1, 1, 1], α16 = [1, 1, 1, 1]. Students who are classi�ed in skill classα5 = [1, 1, 0, 0]

are predicted to have mastered the �rst and the second skill but not to possess the third

and the fourth one. That is, they are predicted to be able to handle �numbers and

measures� and �variables and functional dependencies� but not to master �geometry�

and �statistics�. From this �rst step the distribution of the skill class probabilities, i.e. the

relative frequencies P (αl), l = 1, . . . , 2K , of students classi�ed into the skill classes αl,

is obtained. If for example P (α5) = P ([1, 1, 0, 0]) = .13, then 13 percent of the eight

graders have mastered the �rst and the second skill. We also get the skill mastery

probabilities P (αk), k = 1, . . . , K, giving for each skill αk the relative frequency of

students in possession of it. For example P (α1) = 0.26 means that 26 percent of all
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students possess the �rst skill �numbers and measures�. Obviously,
∑2K

l=1 P (αl) = 1 and∑K
k=1 P (αk) = 1.

In a second step, the CDM algorithm deduces the skill classes which are optimal for

each individual student i, i = 1, . . . , I. The i-th student's vector of present and absent

skills is also called the i-th student's (simpli�ed) skill pro�le and is denoted by α̂i =

[αi1, . . . , αiK ]. The skill pro�les can be easily used as feedback for teachers or parents,

providing a solid empirical base for further instruction and learning. In our example

with K = 4 skills the skill pro�le of student i = 137 may be α̂137 = [1, 1, 0, 0] and thus

the student should be supported in �geometry� and �statistics� because she does not

master these skills yet.

Note that we have to distinguish between the skill classes αl, l = 1, . . . , 2K , in the popu-

lation and the individual skill pro�les αi, i = 1, . . . , I, even though both are represented

by K-length dichotomous vectors. Obviously, the 2K possible skill classes cover all I

skill pro�les. For the ease of notation we use the same symbol. It will always become

clear from the context whether α1 refers to the �rst skill class or the �rst individual skill

pro�le.

1.2.2 DINA

The Deterministic Input Noisy-And-Gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001)

model is a very popular core CDM because of its simplicity and its parsimony in the

use of model parameters. It was one of the �rst CDMs introduced as restricted latent

class models by Haertel (1989, compare Section 1.2.6). The DINA model asserts that

students have to possess all skills assigned to an item via the Q-matrix for successfully

mastering it. To put it di�erently, the DINA model is completely non-compensatory, in

that a lack in a single required skill can not be compensated.

The i-th student's probability to master the j-th item involves a deterministic one and

a probabilistic component (cf. Figure 1.2.3). The former states whether the student is

expected to master the j-th item given her possessed skills. If the student possesses all

required (or even more) skills for item j, she is expected to master the item, whereas

if she lacks at least one required skill, she is not expected to master the item. This

deterministic component is expressed through the dichotomous latent response

ηij =
K∏
k=1

α
qjk
ik .
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Figure 1.2.3: In the DINA model the manifest response Xij of student i to item j is
assumed to arise as a result of the student's possessed skills αi, and all
skills required for item j de�ned in the j-th row qj of the Q-matrix. The
stochastic component of the slipping and guessing errors is modeled on the
level of items.

of student i with skill pro�le αi = [αi1, . . . , αiK ] to item j, where [qj1, . . . , qjK ] denotes

the q-th row of the Q-matrix. In case of ηij = 1 the student is expected to master item

j, in case of ηij = 0 she is not. The latter, namely the probabilistic component, possible

deviates from these expectations. On the one hand, if student i is expected to master

the item (i.e. ηij = 1), she may nevertheless slip and not solve the item. On the other

hand, even if ηij = 0 (i.e. she is not expected to master the item), she may succeed by

luckily guessing the correct response. Thus

P (Xij = 1|αi) = (1− sj)ηij · g
(1−ηij)
j =

1− s1 for ηij = 1,

g1 for ηi1 = 0.

Hence, for a given item j, j = 1, . . . , J , all students have either the probability gj to

solve the item by lucky guess (conditional on not being expected to master the item, i.e.
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ηij = 0) or the probability 1 − sj not to slip item j (conditional on being expected to

master item j, i.e. ηij = 1). As can be seen, the probabilities of guessing and slipping

are modeled as item speci�c parameters.

Let us again consider the example in which the four content skills and the four operational

skills in the testing of educational standards in math are analyzed. Let us further

consider a student i = 1 with skill pro�le α1 = [1, 1, 1, 0, 0, 0, 1, 1] and recall the �rst

row of the Q-matrix Qcontent;operation with entries q1 = [0, 0, 1, 0, 0, 0, 1, 0]. Because of

η11 =
K∏
k=1

αq1k1k = 10 · 10 · 11 · 00 · 00 · 00 · 11 · 10 = 1

student 1 is expected to master item 1 in skill class α1. Thus she is likely to master the

item with probability P (X11|α1) = 1− s1, where s1 is the slipping parameter of item 1.

More generally spoken, the DINA model's two-probability constraint in item 1 of this

example is

P (Xi1 = 1|αi) =

1− s1 for all αi with αi3 = 1 ∧ αi7 = 1 and thus ηi1 = 1,

g1 for all αi with αi3 = 0 ∨ αi7 = 0 and thus ηi1 = 0.

1.2.3 G-DINA

Remember that the DINA model will always employ one of the two probabilities 1− sj
or gj for correctly solving item j, j = 1, . . . , J :

P (Xij = 1|αi) =

1− sj if all required skills are possessed,

gj if at least one required skill is not possessed.
(1.2.1)

For relaxing this restrictive constraint, de la Torre (2011) introduced the Generalized-

DINA (G-DINA) model, in which students exhibiting di�erent sets of required skills

have di�erent probabilities of mastering item j. For that purpose, the G-DINA model

employs the item response function

P
(
Xij = 1

∣∣∣α∗j;i) = δj;0+

K∗j∑
k=1

δj;kα
∗
j;ik+

K∗j−1∑
k=1

K∗j∑
k′=k+1

δj;kk′α
∗
j;ikα

∗
j;ik′+ . . .+δj;12...,K∗j

K∗j∏
k=1

α∗j;ik.

(1.2.2)

Here α∗j;i is the shortened skill pro�le of student i, which includes only the skills relevant

for the mastery of j-th item. Furthermore, K∗j =
∑K

k=1 qjk represents the number of
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skills necessary for the mastery of item j, i.e. K∗j is the sum of ones in the j-th row

of the Q-matrix. For notational convenience and without loss of generality, let the �rst

K∗j skills be the ones required for item j. The skill pro�les αi decompose into di�erent

reduced skill pro�les depending on the item j (i.e. on the skills required for item j),

which necessitates the notation of an additional item index in each skill pro�le. For

example, if only the �rst two skills are required for item j, the skill pro�le of student

i for item j reduces from αj;i = [αj;i1, . . . , αj;iK ] to α∗j;i = [αj;i1, αj;iK∗ ] = [αj;i1, αj;i2].

If the second and sixth skill are required for item m, the notation of the i-th student's

skill pro�le reduces to α∗m;i = [αm;i1, αm;i2]. If in the G-DINA framework only �rst-order

e�ects δj;k are modeled (i.e. all other parameters are de�ned to be zero), the resulting

models are called G-DINA 1way models or additive CDMs (A-CDM). G-DINA models

with �rst-order e�ects and second-order interaction e�ects δj;kk′ are called G-DINA 2way,

and so on.

In the Austrian educational test in math with K = 8 skills exactly 2 skills are as-

signed to each item. The full model is represented by a G-DINA 2way model with

second-order interaction e�ects between the 2 skills. For the �rst item the skill pro�le

α1;i = [α1;i1, . . . , α1;i8] of student i reduces to the second and seventh element, because

these elements correspond to the required skills. The reduced skill pro�le is denoted

by α∗1;i = [α1;i1, α1,iK∗ ] = [α1;i1, α1,i2]. The G-DINA 2way model provides the following

probabilities:

P (Xi1 = 1|α∗1;i) =



δ1;0 for α∗1;i = [0, 0],

δ1;0 + δ1;3 for α∗1;i = [1, 0],

δ1;0 + δ1;7 for α∗1;i = [0, 1],

δ1;0 + δ1;3 + δ1;7 + δ1;37 for α∗1;i = [1, 1].

As can be seen, in the G-DINA 2way model the response probability increases with every

skill relevant for the item (i.e. qjk = 1) and being possessed (i.e. αik = 1).

The DINA model is a special case of the G-DINA framework and can be deduced in two

ways: If exactly one skill k is required to master each item (e.g. if only the content skills

are considered in the educational testing in math), the response function of the G-DINA

model with K∗j = 1 for all items j simpli�es to

P
(
Xij = 1

∣∣∣α∗j;i) = δj;0 + δj;kα
∗
j;ik.

In terms of the DINA parameters, gj = δj;0 and 1− sj = δj;0 + δj;k. If several skills are
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required to master the items, the DINA model is deduced from the G-DINA model by

setting all parameters except δj;0 and δj;12...,K∗j to zero. Then

P
(
Xij = 1

∣∣∣α∗j;i) = δj;0 + δj;12...,K∗j

K∗j∏
k=1

α∗j;ik,

with gj = δj;0 and 1− sj = δj;0 + δj;12...,K∗j .

Instead of the identity link implicitly used in Equation (1.2.2), other versions of the

G-DINA model use logit or log links for modeling the conditional response probability.

For the logit link, the G-DINA response function is de�ned as

logit
[
P
(
Xij = 1

∣∣∣α∗j;i)] = νj;0+

K∗j∑
k=1

νj;kα
∗
j;ik+

K∗j−1∑
k=1

K∗j∑
k′=k+1

νj;kk′α
∗
j;ikα

∗
j;ik′+. . .+νj;12...,K∗j

K∗j∏
k=1

α∗j;ik.

(1.2.3)

Many common CDM models can be deduced and new model variants can be de�ned

by using the di�erent link functions, by in- and excluding parameters, or by setting

constraints on parameters, which makes the G-DINA a general CDM framework. For

more details see de la Torre (2011). For a comparison between the di�erent link functions

and parameter restrictions see also Section 2.3.4 of the present work.

1.2.4 Parameter estimation in DINA and G-DINA models

Parameter estimation of G-DINA models (i.e. also of DINA models, because they are

included in the G-DINA framework) involves four parts and can be implemented us-

ing an expectation maximization (EM) algorithm (de la Torre, 2009). The process of

parameter estimation is carried out in the same way if di�erent items follow di�erent

condensation rules. The goal is the estimation of the item parameters δ = [δ1, . . . , δJ ],

with δj = [δj;0, δj;1, . . . , δK∗j ;1, δj;12, . . . , δj;12...K∗j ] being the item parameters for item j,

the estimation of the skill class probabilities P (αl), l = 1, . . . , 2K , in the population and

based on that the deduction of the skill mastery probabilities P (αk), k = 1, . . . , K, and

the estimation of the individual skill pro�les αi, i = 1, . . . , I.

(1) It is assumed that the responses Xi of student i to the di�erent items are inde-

pendent conditional on αi (local independence). Furthermore, it is assumed that

examinees are mutually independent as well, because they are expected to repre-

sent a random sample of the population. Let α = [α1, . . . ,αI ] be the matrix of
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skill pro�les. Then the conditional likelihood of the observed data X is

L(X |α, δ) =
I∏
i=1

L(X i |αi, δ)

=
I∏
i=1

J∏
j=1

P (Xij = 1|α∗j;i)Xij
[
1− P (Xij = 1|α∗j;i)

]1−Xij

where L(X i|αi, δ) is the likelihood contribution of Xi conditional on αi and δ

and P (Xij = 1|α∗j;i) is the probability of student i for correctly solving item j

de�ned through the G-DINA framework (cf. Equation 1.2.2). Investigations in the

context of item response models have shown that a joint estimation of item and

ability parameters does not lead to consistent estimators (Baker & Kim, 2004, p.

108). Thus, in CDMs as well as for the item response models, the item parameters

δ and the skill class probabilities αl, l = 1, . . . , 2K , are not jointly estimated, but

parameter estimation is conducted with marginal maximum likelihood (MML)

methods.

Up to here the probability P (Xij = 1|α∗j;i) is interpreted as probability of student

i to master item j given her skills α∗j;i. This notion facilitates the interpretation

and the understanding of the models. But, strictly speaking, the students' skill

pro�les are unknown and our goal is to estimate them. Thus, more correctly, we

should denote P (Xij = 1|α∗j;l) as probability of student i to master item j if she

is classi�ed in skill class l, l = 1, . . . , 2K . This notation is used for the following

three steps.

(2) In preparation for the MML procedure, the probabilities P (αl), l = 1, . . . , 2K , are

de�ned to follow a uniform distribution, i.e. P (αl) = 1
2K
, l = 1, . . . , 2K are taken

as starting values for the estimation. Because the distribution of the skill classes

is discrete, taking the weighted sum of the conditional likelihood across the 2K

possible skill classes is equivalent to integrating the conditional likelihood over the

distribution of the parameters in the continuous case. The marginalized likelihood

L(X | δ) =
I∏
i=1

L(X i | δ) =
I∏
i=1

2K∑
l=1

L(X i |αl, δ)P (αl).

depends only on the item parameters δ and no longer on the skill classes. Maximiz-

ing the marginal likelihood L(X|δ) over δ leads to the item parameter estimates

δ̂ = [δ̂1, . . . , δ̂J ].
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(3) For each student with response pattern X i the probabilities P (αl |X i) of being

classi�ed into skill class αl are calculated by multiple applications of Bayes' theo-

rem

P (αl |X i) =
P (X i |αl)P (αl)∑2K

l=1 P (X i |αl)P (αl)
, l = 1, . . . , 2K .

By applying the formula of total probability, the so called distribution of the skill

class probabilities in the population is calculated

P (αl) =
I∑
i=1

P (αl |X i)P (X i), l = 1, . . . , 2K

and the skill mastery probabilities are de�ned as

P (αk) =
∑
l:αlk=1

P (αl), k = 1, . . . , K.

(4) Based on the probabilities P (αl|X i), l = 1, . . . , 2K , i = 1, . . . , I, the individual stu-

dent classi�cations or individual skill pro�les can be deduced with three methods:

Firstly, according to maximum a priori (MAP) classi�cation, the largest value of

P (αl|X i) for all l = 1, . . . , 2K gives the skill class into which student i is classi�ed:

α̂i;MAP = arg maxl {P (αl |X i)}.

Secondly, an individual classi�cation of student i based on maximum likelihood

estimation (MLE) is obtained by maximizing

α̂i;MLE = arg maxl {P (X i |αl)}.

Thirdly, for a classi�cation based on expected a posterior (EAP) the marginal skill

probabilities P (αk |X i) of student i for mastering skill k are computed as the sum

of all P (αl |X i) corresponding to mastery of skill k (i.e., having a 1 as the k-th

element)

P (αk |X i) =
∑
l:αlk=1

P (αl |X i), k = 1, . . . , K.

Then, the i-th student's EAP skill pro�le is estimated by

α̃i;EAP = [P (α1 |X i), . . . , P (αK |X i) ] .
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For deducing the simpli�ed dichotomous skill pro�le α̂i;EAP of student i, each

marginal skill mastery probability P (αk|X i), k = 1, . . . , K, smaller than 0.5 is set

to 0, whereas each one larger or equal to 0.5 is set to 1. For a comparison among

MAP, MLE and EAP classi�cation methods see Huebner & Wang (2011).

Standard errors of the estimated item parameters δ̂ are computed from the Fisher-

Information matrix

I(δ) = −E
[
∂2 l(X)

∂2 δ

]
,

where l(X) = log
∏I

i=1 L(X i) =
∑I

i=1 logL(X i) is the marginal log-likelihood of the

data. Instead of computing the expectation, the information matrix is approximated

by evaluating it at β̂ using the observed X, thus resulting in I(δ̂). Finally, the in-

verse I−1(δ̂) provides an approximation of Cov(δ̂), and the square roots of its diagonal

elements represent the standard errors SE(δ̂).

1.2.5 Some connections between G-DINA, LCDM and GDM

In this subsection some similarities and di�erences between the three general CDM

frameworks G-DINA (de la Torre, 2011), LCDM (Henson, Templin & Willse, 2009) and

GDM (von Davier, 2008) are clari�ed. It will be shown, that in the case of dichotomous

data and skills and under the usage of the logit link all frameworks are equivalent

concerning their representation of compensatory models.

The Log-linear Cognitive Diagnosis Models (LCDM; Henson et al., 2009) for dichotomous

data and dichotomous skills is, as inherent in it's name, based on log-linear models. Many

common CDMs can be subsumed under this framework, and it also allows for de�ning

new CDMs by setting model constraints �in between� the constraints of the common

CDMs. In the LCDM framework the i-th student's probability of correctly solving item

j conditional on her skill pro�le αi is given by

P (Xij = 1|αi) =
exp

(
λj,0 + λ

′
j · h(αi,qj)

)
1 + exp

(
λj,0 + λ

′
j · h(αi,qj)

) .
In this notation λj,0 is an intercept parameter for item j and λj is a (2K−1) dimensional

vector including the parameters for K main e�ects and all (up to Kway) interaction

e�ects between the K skills, thus

λj = [λj,1, . . . , λj,K︸ ︷︷ ︸
main e�ects

, λj,12, . . . , λj,1K , . . . , λj,(K−1)K︸ ︷︷ ︸
2way interaction e�ects

, . . . , λj,1...K︸ ︷︷ ︸
Kway interaction e�ect

].
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Furthermore, h(αi,qj) is a vector of size 2K−1 with its components being linear combi-

nations of αi and qj, where qj again denotes the j-th row of the Q-matrix. By de�ning

λj and h the condensation rule for item j can be speci�ed, where h gives the level of

compensability.

For example, one may de�ne h(αi, qj) by

h(αi, qj) = [αi1 · qj1, . . . , αiK · qjK︸ ︷︷ ︸
for main e�ects

, αi1qj1 · αi2qj2, . . . , αi(K−1)qj(K−1) · αiKqjK︸ ︷︷ ︸
for 2way interaction

, . . . ,
K∏
k=1

αikqjk︸ ︷︷ ︸
for Kway interaction

].

Then it holds

λj,0 + λ
′
j · h(αi,qj) = λj,0 +

K∑
k=1

λj,k · αikqjk +
K∑
k=1

K∑
k′=k+1

λj,kk′ · αikqjk · αik′qjk′ + . . .

with λj,0 being the intercept term for item j, λj,k being the main e�ects for item j

with respect to skill k, and λj,kk′ being the two way interaction e�ects for item j with

respect to skills k and k′. In de�ning h(αi, qj) this way, the similarity to the G-DINA

framework, which only includes the skills relevant for the mastery of item j (i.e. qjk = 1),

can already be seen.

The following example illustrates how DINA parameters can be deduced from the LCDM

framework: Assume a DINA model with K = 2 skills and an item j for which both skills

are required. All main e�ects λj,k, k = 1, 2, are de�ned to be zero (because a DINA

model assumes that the items are only mastered in case of possession of all relevant

skills) and the interaction e�ect λj,12 with respect to skills 1 and 2 has to be estimated.

The response probability for a student possessing no skill is

P (Xij = 1|αi = [0, 0]) =
exp (λj,0 + [0, 0, λj,12]

′[αi1qj1, αi1qj1, αi1qj1 · αi2qj2])
1 + exp (λj,0 + [0, 0, λj,12]′[αi1qj1, αi1qj1, αi1qj1 · αi2qj2])

=
exp (λj,0 + [0, 0, λj,12]

′[0, 0, 0])

1 + exp (λj,0 + [0, 0, λj,12]′[0, 0, 0])

=
exp (λj,0)

1 + exp (λj,0)
=: gj.
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Analogously, if both skills are possessed

P (Xij = 1|αi = [1, 1]) =
exp (λj,0 + [0, 0, λj,12]

′[αi1qj1, αi1qj1, αi1qj1 · αi2qj2])
1 + exp (λj,0 + [0, 0, λj,12]′[αi1qj1, αi1qj1, αi1qj1 · αi2qj2])

=
exp (λj,0 + [0, 0, λj,12]

′[1, 1, 1])

1 + exp (λj,0 + [0, 0, λj,12]′[1, 1, 1])

=
exp (λj,0 + λj,12)

1 + exp (λj,0 + λj,12)

=: 1− sj.

Thus students with skill pro�les [0, 0], [1, 0] or [0, 1] have a probability of gj to solve

item j and only students in possession of both skills master the item with probability

1 − sj. This re�ects the two-probability constraint of the DINA model. In summary,

the DINA model can be deduced from the LCDM by de�ning gj := logit(λj,0) and

sj := 1− logit(λj,0 + λj,1...k∗), where k∗ denotes the number of required skills for item j.

The main ideas of the LCDM framework originate from the General Diagnostic Model

(GDM; von Davier, 2008). The GDM framework includes a general log-linear class of

models for polytomous data, which also allows polytomous skills (i.e. skills with more

than the two pro�ciency levels of mastery and non-mastery) as well as continuous skills.

An instance of this class, the GDM for partial credit data, contains many well-known

models, such as univariate and multivariate extensions of the Rasch model (Rasch, 1960),

the two parameter logistic item response theory model (Birnbaum, 1968), the generalized

partial credit model (Muraki, 1992), as well as a variety of skill pro�le approaches like

latent class models and the compensatory version of the RUM model (Hartz, 2002).

Let the response data be polytomous with xij ∈ {0, 1, . . . ,mj}, let the skill levels be

polytomous and user-speci�ed with αik ∈ {sk1, . . . , sko, . . . , skOk
} and let the Q-matrix

be a J × K matrix with real-valued entries qjk. For each non-zero response category

x ∈ {1, . . . ,mj}, the class of general diagnostic models is given by

P (Xij = x|αi) =
exp

(
βxjg + γ

′
xjgh(qj,αi)

)
1 +

∑mj

y=1 exp
(
βyjg + γ ′yjgh(qj,αi)

) ,
where βxjg are real-valued di�culty parameters and γxjg = [γxjg1, . . . , γxjgK ] is a K-

dimensional slope parameter. The index g is a population indicator that allows formu-

lating the GDM as multiple group model.
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If we reduce the GDM to g = 1 group, dichotomous data and dichotomous skills, then

P (Xij = 1|αi) =
exp

(
βj + γ

′
jh(qj,αi)

)
1 + exp

(
βj + γ ′jh(qj,αi)

) .
This formulation is extremely similar to the LCDM. For the reduced case above, the

di�erence between the GDM and the LCDM is the following: In the LCDM λj is a (2K−
1) dimensional vector including the parameters for K main e�ects and all interaction

e�ects between the K skills. On the contrary, in the GDM γj is a K dimensional vector

which only includes parameters for the main e�ects. In the case of the GDM, the DINA

model can not be deduced because it is not possible (as there is no suitable parameter)

but required to estimate the interaction between all required skills, while setting all other

e�ects to zero.

Table 1.2.1 summarizes the comparison between the three frameworks G-DINA, LCDM

and GDM. As can be seen, the GDM framework is the most �exible one concerning

di�erent data and skill formats. On the other hand, the GDM framework does not

include some speci�c model types, as for example the non-compensatory DINA model or

the additive CDM (de la Torre, 2011), which is de�ned with an identity link. A strength

of the G-DINA framework is the application of di�erent link functions, allowing for a

de�nition of many core CDMs. However, the G-DINA framework does not enable the

user to specify a function h(qj, αi) for de�ning the in�uence of (non-)possessed and

(non-)required skills to the items' response probabilities. The LCDM framework for

dichotomous data and skills can be regarded as a mixture of both frameworks: It allows

for a user-de�ned speci�cation of h(qj, αi) and includes non-compensatory models.

For the purpose of working with dichotomous data and skills (as done in the present

work), both the G-DINA and the LCDM would be appropriate. However, because the

most commonly used DINA model is structurally related to the G-DINA, the latter will

be considered further. Additionally, the free de�nition of h(qj, αi) in the LCDM seems

to be most useful for polytomous data. Here, h may be de�ned in such a way that it

de�nes a su�cient level for skill k on item j. Then a higher skill level will not increase the

probability for mastering item j, whereas a lower skill level results in a lower probability

for mastering item j.

27



1 Theory and aspects of research

G-DINA LCDM GDM

data
dichotomous X X X

polytomous X

skills

dichotomous X X X

polytomous X

continuous X

Q-matrix
dichotomous X X X

real-valued X

model
compensatory X X X

non-compensatory X X

link

identity X

log X

logit X X X

h(qj, αi)
qjkαik X X X

user-de�ned X X

Table 1.2.1: Comparison between G-DINA, LCDM and GDM frameworks.

1.2.6 Related approaches

In this subsection CDMs are linked to some related approaches: First, it is shown

how CDMs are deduced from latent class models (LCM). Second, the connections to

mathematical psychology, more precisely to knowledge space theory (KST) are shown,

and third, the striking di�erence between item response theory (IRT) and factor analysis

(FA) as opposed to CDMs is shown. All three approaches may be seen as the basis

for the the development of CDMs: In LCM and KST students are also classi�ed into

groups with respect to their response behavior, but the basics of both approaches do not

consider skills underlying the items. IRT and FA models are much more prominent for

identifying students abilities and thus they are more often applied than CDM models.

Finally, in this subsection the link between CDMs and the Rule Space Method (RSM)

is explained, as RSM can be seen as a related approach, which gains some attention in

recent literature.
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1.2 CDMs: De�nition, estimation and related approaches

Latent Class Analysis The goal of a Latent Class Analysis (LCA; Lazarsfeld, 1950) is

to identify unobservable latent classes of students which have similar properties in their

response behavior. More precisely, each student i, i = 1, . . . , I, is classi�ed into one

latent class l, l = 1, . . . , L, according to her response pattern xi = [xi1, . . . , xiJ ]. The

method is conducted in three steps:

(1) The conditional probabilities P (xi| l) of observing the i-th student's response pat-

tern in class l, l = 1, . . . , L, are determined:

P (xi | l) =
J∏
j=1

p
xij

jl (1− pjl)(1−xij), l = 1, . . . , L. (1.2.4)

Here pjl are the unknown probabilities of students in class l who correctly respond

item j, j = 1, . . . , J .

(2) The marginal probability of observing a response pattern xi is calculated as

P (xi) =
L∑
l=1

πl︸ ︷︷ ︸
stuctural model

J∏
j=1

p
xij

jl (1− pjl)(1−xij)︸ ︷︷ ︸
measurement model

, (1.2.5)

with πl being the unknown relative frequency of class l, l = 1, . . . , L, with

L∑
l=1

πl = 1.

(3) Via Bayes' Theorem

P (l |xi) =
πl · P (xi | l)
P (xi)

where P (xi|l) is the probability of observing response pattern xi in class l. Each

student is classi�ed into the class for which P (l|xi), l = 1, . . . , L, is maximal.

The parameters πl and pjl, l = 1, . . . , L, j = 1, . . . , J , are determined with the help of

an EM-algorithm (e.g. Formann, 1978; Goodman, 1979). Because both parameters are

unknown, they are set to arbitrary starting values at the beginning of the algorithm,

which ful�ll πl, pjl ∈ (0, 1), l = 1, . . . , L, j = 1, . . . , J , and
∑L

l=1 πl = 1. In each step

of the algorithm the parameter values are adapted until a stopping criterion is satis�ed.

Note that the number of classes L is not an estimable model parameter but has to be

chosen in advance (McLachlan & Peel, 2000).
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pjl Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 πl

Class 1 0.83 0.77 0.90 0.56 0.24 0.43 0.43

Class 2 0.33 0.28 0.45 0.75 0.81 0.69 0.28

Class 3 0.90 0.86 0.59 0.59 0.77 0.40 0.17

Class 4 0.32 0.22 0.09 0.19 0.31 0.29 0.12

Table 1.2.2: Probabilities pjl for students in class l, l = 1, . . . , 4, to correctly answer item
j, j = 1, . . . , 6, and class sizes πl, l = 1, . . . , 4.

Table 1.2.2 gives a possible solution for the πl and plj in a LCM with 4 classes and 6

Items. The estimated values of pjl comprise information about the response behavior

of students in each class. For example, students in class 1 have high probabilities for

mastering items 1 and 2 and low probabilities for solving items 5 and 6. On the opposite,

students in class 2 have low probabilities for solving items 1 and 2 but high probabilities

for answering items 4 and 5.

In CDMs each student i, i = 1, . . . , I, is classi�ed into a latent class αl, l = 1, . . . , 2K ,

based on her response pattern xi. Here, the latent classes indicate presence or absence

of K skills underlying the items. Analogously to LCA, in the CDM framework the

probability of observing a response pattern xi is de�ned as

P (xi) =
2K∑
l=1

P (αl)︸ ︷︷ ︸
stuctural model

J∏
j=1

Pj(αl)
xij(1− Pj(αl))(1−xij)︸ ︷︷ ︸

measurement model

(1.2.6)

with Pj(αl) being the conditional probability of correctly answering item j in skill class

αl, P (αl) being the probability of skill class αl and
∑2K

l=1 P (αl) = 1.

In comparing LCMs (cf. Equation 1.2.6) and CDMs (cf. Equation 1.2.5) the following

statements hold:

(1) CDMs are con�rmatory LCA models with 2K classes. In CDMs the examinees are

classi�ed in 2K classes according to their (non-)possession of K skills. Because the

number and the structure of these skills (i.e. the Q-matrix) is de�ned prior to to

parameter estimation, the model has a con�rmatory character.

(2) Measurement model: CDMs are restricted LCA models. The restriction from LCA

to CDMs evolves because, contrary to plj, Pj(αl) is not estimated independently for

each class l and each item j. CDMs demand that students in skill classes including
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1.2 CDMs: De�nition, estimation and related approaches

all (or more than the) required skills for item j exhibit an equal probability pj(αl)

for mastering the item. More sophisticated CDMs, as for example the G-DINA,

also demand that the probability of mastering item j increases in equal steps each

time a speci�c required skill is possessed. For example, if item j requires skills

1 and 2, then the response probabilty equally increases from [1001] to [1101] and

from [1000] to [1100].

Consider an example with K = 4 skills and J = 3 items in which a DINA model

is developed by restricting the pjl parameters: According to the Q-matrix

Q =


1 1 0 0

0 0 0 1

0 1 1 1

 .

students require skills 1 and 2 for mastering item 1. That is, in terms of a DINA

condensation rule, item 1 is mastered with the same probability 1− s1 in all skill

classes l in which skills 1 and 2 are possessed, and is mastered with probability gj
in all skill classes in which at least one of the skills 1 or 2 is missing. Thus

p1l =

1− s1 for all αl with αl1 = 1 and αl2 = 1

gj for all αl with αl1 = 0 or αl2 = 0 .

Restrictions for the items 2 and 3 are de�ned analogously. Table 1.2.3 yields a

possible parameter constellation for this example. Note that this example is for

illustrational purposes only, as in practice a CDM with only 3 items but 4 skills

would not be estimable.

(3) Structure model: LCA structural parameters can be used for modeling skill hierar-

chies in CDMs. By structuring the LCA parameters πl, that is the CDM proba-

bilities P (αl), ambiguous skill classes can be avoided (see Chapter 3 of the present

work or Groÿ & George, 2012). Further, attribute hierarchies can be de�ned (e.g.

Groÿ & George, 2013; Leighton & Gierl, 2007; Tatsuoka, Varadi & Jaeger, 2013).

The development from latent class models to CDMs has begun with the mastery model

by Macready & Dayton (1977) and was extended to more items, more classes and more

response occasions by Macready & Dayton (1980) and Dayton & Macready (1983). A

�rst core extension came from Haertel (1989), which leads to a model that later has

been called the DINA model (Junker & Sijtsma, 2001). Note that based on the LCA
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pjl skill class αl Item 1 Item 2 Item 3

Class 1 [0,0,0,0] 0.23 0.16 0.04

Class 2 [1,0,0,0] 0.23 0.16 0.04

Class 3 [0,1,0,0] 0.23 0.16 0.04

Class 4 [0,0,1,0] 0.23 0.16 0.04

Class 5 [0,0,0,1] 0.23 0.81 0.04

Class 6 [1,1,0,0] 0.75 0.16 0.04

Class 7 [1,0,1,0] 0.23 0.16 0.04

Class 8 [1,0,0,1] 0.23 0.81 0.04

Class 9 [0,1,1,0] 0.23 0.16 0.04

Class 10 [0,1,0,1] 0.23 0.81 0.04

Class 11 [0,0,1,1] 0.23 0.81 0.04

Class 12 [1,1,1,0] 0.75 0.16 0.04

Class 13 [1,1,0,1] 0.75 0.81 0.04

Class 14 [1,0,1,1] 0.23 0.81 0.04

Class 15 [0,1,1,1] 0.23 0.81 0.78

Class 16 [1,1,1,1] 0.75 0.81 0.78

Table 1.2.3: LCA probabilities plj restricted according to a DINA condensation rule in
which item 1 is mastered in possession of skills 1 and 2, item 2 is mastered
in possession of skill 4 and item 3 is mastered in possession of skills 2, 3,
and 4.

framework with parameters pjl and πl, j = 1, . . . , J , l = 1, . . . , L it can be explained

that for example the model parameters of a DINA model are composed of skill class

probability parameters p(αl), l = 1, . . . , 2K , and the item parameters gj and sj, j =

1, . . . , J .

Knowledge Space Theory Knowledge Space Theory (KST) is a set and order the-

oretical approach for describing how respondents acquire and retain knowledge in a

knowledge domain, with the domain being characterized by a set of items on which the

students are tested (cf. Albert & Lukas, 1999; Doignon & Falmagne, 1999; Falmagne

& Doignon, 2010). On the one hand, KST allows for representing the knowledge state
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1.2 CDMs: De�nition, estimation and related approaches

of an individual learner, that is her actual status of knowledge. On the other hand, a

main goal of KST is to provide methods to signi�cantly reduce the number of possible

knowledge states and learning histories by introducing a hierarchy among the items. The

a-priori information for the derivation of these hierarchies is based on qualitative meth-

ods including psychological theories and principles developed by domain experts. Two

aspects observe attention: Firstly, the basic ideas of CDMs and KST, that is classifying

students in learning states and including hierarchies between these states are the same.

However, the main di�erence between the two approaches is that the classi�cation in

basic KST approaches is done on the item and not on the skill level. Only extended KST

approaches, as for example the research of Düntsch & Gediga (1995) considers skills. A

second di�erence is that original KST is a qualitative, discrete mathematical approach.

That is, in the basic approaches of KST no probabilities for mastering the items are

assumed, instead an item is deterministically mastered or not. Only extensions of KST

lead to probabilistic models, such as the basic local independence model (Doignon &

Falmagne, 1999, Chapter 7) and the newer approach of learning spaces (Falmagne &

Doignon, 2010). For a more detailed analysis of the connections between the models for

describing the knowledge states (i.e. skill pro�les) in KST and CDMs, see for example

George (2010), George & Ünlü (2011) and Schrepp (2005).

IRT, M-IRT, and CFA As stated earlier, CDMs are discrete latent variable models,

which provide direct statistically driven classi�cations of the respondents into disjunc-

tive, prior to estimation de�ned skill classes. In contrast, item response theory models

(IRT; e.g. Van der Linden & Hambleton, 1997) and multidimensional item response the-

ory (M-IRT; e.g. de Ayala, 2009) models or con�rmatory factor analysis (M-CFA; e.g.

McDonald, 1999) models contain continuous latent variables. When data is scaled with

(M-)IRT or CFA methods the classi�cation of students is only possible through post-hoc

procedures such as standard settings (e.g. Cizek, Bunch & Konns, 2004). This classi�-

cations are based on consensual cut-scores on the continuous scales. For an extensive

comparison of the CDM DINA model and the one-dimensional IRT Rasch model (Rasch,

1960) see Chapter 4 of the present work. For a discussion about the di�erence between

CDM and M-IRT models see Section 5.3.4.

Rule Space Method The Rule Space Method is a method to classify students in

clusters according to their response patterns and their possessed skills. The Rule Space

Method was introduced by Tatsuoka (e.g. Tatsuoka, 2009, 1995, 1983) in two steps:
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𝜃 

f(𝜃, 𝒙𝑛) 

typical cluster  
for good students 

typical low  
score cluster 

unusual cluster with 
 high score students 

highly populated 
 cluster 

highly populated by  
avarage students 

Figure 1.2.4: Interpretation of clusters with standardized caution indices in the rule
space (Figure from Tatsuoka (2009), page 192).

(1) A traditional unidimensional IRT model is �tted to the response data. That is,

IRT functions Pj(θ) for each item j, j = 1, . . . , J , and an average IRT function

T (θ) are computed, with T (θ) = 1
J

∑J
j=1 Pj(θ). In this step no information about

the skills required to master the items is used.

(2) The students are clustered into groups according to their achievement and ac-

cording to the unusualness of their response patterns. Therefore Tatsuoka (1983)

introduced the so called two dimensional rule space {(θ, f(θ,X)}, with the �rst

dimension build up by the person parameters θ = [θ1, . . . , θI ] of the beforehand

computed IRT model and the second dimension de�ned through the so called cau-

tion indices f(θi,xi), i = 1, . . . , I. The caution indices measure the unusualness of

the i-th student's response pattern xi:

f(θi,xi) = −
J∑
j=1

(Pj(θi)− T (θi))xij +
J∑
j=1

Pj(θi)(Pj(θi)− T (θi)).

Figure 1.2.4 gives some interpretations for di�erent locations of student clusters in

the rule space.
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𝜃 

f(𝜃, 𝒙𝑛) 

Centroids corresponding to expected response patterns 

Points corresponding to observed response patterns 

Cluster 3 

Cluster 1 

Cluster 2 

Figure 1.2.5: Illustration of a rule space with unstandardized caution indices (Figure
from Rupp et al. (2010), page 104).

Step 2 is conducted as follows: The rule space includes a two dimensional coordinate

point (θi, f(θi,xi)) for each observed response pattern xi, i = 1, . . . , I. Additionally

it contains two dimensional coordinate points for each expected response pattern, with

the expected response patterns being the deterministic responses (i.e. responses without

errors) of students within certain skill classes. The variances corresponding to the person

parameters and caution indices are displayed as centroids around the coordinate points

of the expected response patterns. Centroids with standardized variances are called

standardized caution indices. For classi�cation purposes, from each observed response

pattern the Mahalanobis distance to all expected response patterns is computed and,

�nally, the observed response pattern (i.e. the respective student) is classi�ed into the

cluster of the expected response pattern with shortest distance. For an illustration see

Figure 1.2.5.
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Figure 1.3.6: Structure of present work: Blending theory with practicality.

The �rst dimension of the rule space constitutes the main di�erence between the RSM

and the CDM framework, as in CDMs no unidimensional ability scores are involved.

However, the basic idea for classi�cation in clusters of expected response patterns (i.e. la-

tent response patterns) in the second dimension is used in both approaches. Further

research of Tatsuoka shows how to reduce the number of expected response patterns

by taking skill hierarchies into account. For more information see for example Gierl,

Leighton & Hunka (2000) or Tatsuoka (2009) and also Groÿ & George (2013) as an

application for CDMs.

1.3 Aspects of research

While recent CDM research mostly splits up into theoretical (i.e. statistical) based (e.g.

de la Torre, 2011; von Davier & Yamamoto, 2004) and application-oriented parts (e.g.

DeCarlo, 2011; Park & Lee, 2011) the present work blends both parts, compare Figure

1.3.6. This work is divided into four aspects of research: Software implementation, de-

scription and solution of statistical limitations in individual DINA model classi�cations,

model selection and analysis of background data.
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1.3.1 Aspect 1: Software implementation

Working with CDMs requires an adequate software program for estimating the model

parameters. Currently a handful of di�erent programs by various authors supports CDM

parameter estimation, for example the G-DINA procedure in Ox (Doornik, 2002) by de

la Torre, the LCDM framework in SAS (SAS Institute Inc., 2007) and a function by

Templin, Henson, Douglas and Ho�man in Mplus (Muthén & Muthén, 2010), or the

mdltm stand alone program by Von Davier. All these programs di�er in mainly two

aspects: In their programing framework (and thus in their availability and price) and in

the model frameworks implemented. In recent years the programming framework R (R

Core Team, 2013) has become more and more important in social sciences (Alexandrow-

icz, 2012; Kubinger, Rasch & Yanagida, 2011), as it is freely available and very �exible.

R supports many ready to use methods, but beyond this the user has the possibility to

code up any method that is needed. Nevertheless, an implementation of CDM algorithms

in R was missing so far and thus became the �rst research aspect of the present work.

The R package CDM (George, Kiefer, Robitzsch, Groÿ & Ünlü, 2013) is introduced in

Chapter 2 in a kind of tutorial. It is illustrated and discussed using PIRLS 2006 data.

Furthermore, a review of existing software for estimating CDMs is given.

1.3.2 Aspect 2: Limitations of individual DINA classi�cations

One of the most important results obtained from CDMs is the set of individual skill

pro�les, because they can easily be used as empirical base for feedback and further

instructions. We expect that the CDM algorithm classi�es the students in their true

(but unknown) skill pro�les. Consider again the baseline test of educational standards

in math with the four underlying skills measures, functions, geometry and statistics: It

is of course expected that the estimated skill pro�le of a student i with true skill pro�le

αi = [0, 0, 0, 1] is α̂i = [0, 0, 0, 1], i.e. she possesses only the skill statistics and is actually

predicted to possess only statistics.

A basic prerequisite for achieving an accurate classi�cation is that each student is as-

signed to a unique skill pro�le based on her manifest responseX i, the Q-matrix and the

items' condensations rules. For example, if student m solves the 36 items of the baseline

test with

Xm = [1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0]
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she is desired to be uniquely classi�ed into a skill pro�le

αm = [1, 0, 1, 1].

On the contrary, an ambiguous classi�cation of student m in classes

αm1 = [1, 0, 1, 1] or αm2 = [1, 0, 0, 1]

is undesired, as such an ambiguous classi�cation may result in incorrect feedback or

improper recommendations for supporting the student.

In Chapter 3 of the present work it is shown that DINA models do not necessarily lead

to unique student classi�cations. For the case of given data and Q-matrix a statistical

solution is introduced. Implications for the interpretation of the model are described and

illustrated by data of the Austrian test in educational standards in math. Furthermore

it is discussed that the problem of ambiguous skill classi�cations can be avoided in the

test construction phase by using an appropriate Q-matrix.

1.3.3 Aspect 3: Model selection

Which of various statistical models should be �tted to the data can not only be evaluated

based on the absolute model �t but also based on several other measures as for example

the relative model �t, item and person �t or classi�cation criteria. Another aspect in

the selection of a statistical model for the description of the manifest response data are

model inherent presuppositions: For example a Rasch model (Rasch, 1960) includes the

assumption that the modeled competencies are hierarchically ordered. On the contrary,

an unrestricted CDM DINA model assumes non-ordered parallel skills. This di�erence

between various statistical model approaches can be exploited if the order between the

skills or the number of skills underlying the data is not known: First di�erent statistical

models can be build which mirror di�erent theoretical assumptions about the connec-

tions between and the number of the skills. In a second step, by empirically comparing

the di�erent statistical models, the di�erent theoretical competence concepts are vali-

dated. In Chapter 4 various theories about the connection between reading skills are

evaluated based on the PIRLS-Transfer data. In recent literature there are many studies

analyzing reading competences with CDMs (cf. e.g. Jang, 2009; Li, 2011; Svetina, Gorin

& Tatsuoka, 2011; Wang & Gierl, 2011), however in all of them the deployed competence

model is already prede�ned.
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1.3.4 Aspect 4: Analyses of background data

In recent years CDMs have not only been applied to smaller studies (cf. e.g. DeCarlo,

2011; Tatsuoka, 1984) but also to large scale assessment data (e.g. Chiu & Minhee, 2009,

for PIRLS data; Park & Lee, 2011, for TIMSS data). In these studies some bene�cial

information was found about how speci�c skill mastery e�ects student performances.

A fundamental goal of large scale assessments is to perform international comparisons

between countries (i.e. di�erent educational systems) or national comparisons between

federal states. Some �rst CDM studies also employ these kind of comparisons, see for

example Birenbaum, Tatsuoka & Yamada (2004), Dogan & Tatsuoka (2008) or Lee,

Park & Taylan (2011). Another fundamental goal of large scale studies are comparisons

between di�erent groups of students, as they enable predicting students' abilities (cf. the

PIRLS framework, Bos et al., 2007, p.22). Grouping variables on the student level are for

example sex, social background, the socio economic status (SES; including the migration

status) and, on the structural level, for example the federal state or the school form. In

the context of debates about equal opportunities, predicting students' abilities based on

grouping variables may help to develop funding programs and to improve teaching and

learning conditions.

Chapter 5 of the present work introduces and illustrates some possibilities of multiple

group DINA models applied to the Austrian educational test of math 2012. The study is

twofold: Firstly, the results obtained for the group comparisons with standard 2PL IRT

models (Bruneforth & Lassnigg, 2013) are reproduced with DINA models. Secondly,

the reported di�erences are broken down to the skill level and re�ned information is

obtained, which provides an empirical basis for establishing the following questions: Are

there skills with respect to which migrants perform better than non-migrants even if

their general ability is lower? Or: Are there at least skills in which the di�erences in the

mastery between migrants and non-migrants are much smaller as the mean di�erence?

Other group comparisons discuss di�erences in skill mastery of boys and girls, students

with strong and weak social background, or comparisons between students from di�erent

federal states in Austria.
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2 Analyzing CDMs with the R

Package CDM - A didactic

2.1 Introduction

2.1.1 Objectives of the R package CDM

The objective of the software package CDM (George, Kiefer, Robitzsch, Groÿ & Ünlü,

2013) is to provide an extensive, easy manageable and open source tool for CDM anal-

yses. In achieving this aim we bene�t from the advantages of R (R Core Team, 2013):

Firstly, R provides a free programming framework and secondly it is object-orientated

(i.e. a CDM model is treated as an object with which all steps of the analysis may

be performed). An additional argument for choosing the R framework is its increasing

popularity for research in the social sciences (Alexandrowicz, 2012; Kubinger, Rasch

& Yanagida, 2011), combined with a lack of implemented CDM algorithms. The R

package CDM is available from the Comprehensive R Archive Network (CRAN) at

http://CRAN.R-project.org/package=CDM.

Until now the R package CDM supports estimation and subsequent analysis of DINA,

DINO and G-DINA models. It seems worthwhile noting that the class of G-DINA

models involves other prominent CDM models as for example the NIDA or the R-RUM

model (cf. Sections 1.2.3 and 2.3.4). The R package CDM also supports analyses in

which we de�ne a di�erent model for each item. An expansion to the class of GDMs is

in preparation, for �rst prospects see Section 2.8. A short review and a comparison of

other software packages for the estimation of CDMs is given in Section 2.1.3.

The composition of the R package CDM is two-sided: On the one hand it allows for a

simple and straightforward introduction to software based CDM analyses. These simple

analyses only require the user to specify the data, the Q-matrix and the model. On

the other hand, the R package provides advanced methods and techniques for analyzing
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CDMs, as for example the analysis of correlations between skills (cf. Section 2.4.3),

possibilities to avoid ambiguous skill classes in DINA models (cf. Section 2.3.2) or the

examination of item �t indices (see Section 2.4.4). Furthermore, the package can deal

with datasets from large scale analysis employing a block design, it can perform multiple

group analysis and provides tools for simulation studies.

The present chapter may serve as tutorial for the usage of the R package CDM and,

at the same time, as a tutorial for CDM analyses. As a thorough review of CDMs and

their objectives is given in Chapter 1, it is left out at this point and is assumed to be

known. However, Section 2.1.2 brie�y reviews the goals of and the di�erent types of

model parameters in a CDM analysis.

In the following, R codes or R objects are printed in typewriter font. For illustrating

how to access features of DINA, DINO and G-DINA models (i.e. of objects of the

class din or gdina), the notation model or qmatrix is used by referring to a general

exemplary CDM model or Q-matrix. The tutorial is illustrated by DINA, DINO and

G-DINA models for the PIRLS 2006 data. For a description of the data see Section

2.1.4. The tutorial proceeds according to the steps of a CDM analysis, with Sections

2.3, 2.6, 2.7 and 2.8 yielding deepening aspects.

2.1.2 Goals and parameters in CDM analyses

The aim of CDMs is to identify dichotomous skill pro�les; that is, to perform multiple

classi�cations of students based on their observed response patterns with respect to

features (i.e. skills) that are assumed to derive the probability of correct responses.

Which skills are required to master the items is prede�ned by educational experts in the

so called Q-matrix.

CDMs employ two types of parameters, the item and the person parameters. Item

parameters describe characteristics of the items with regard to the students' response

probabilities. In some items the possession of almost all necessary skills directly leads

to a high probability of success. However, in other items there may be large chances of

slipping or the response probabilities remain small until students possess a speci�c com-

bination of skills. Person parameters describe characteristics of the students with regard

to their possession and non-possession of the skills. We distinguish between population

and individual oriented person parameters: The set of population oriented classi�ca-

tion parameters includes the distribution of the skill classes in the population and the

population's skill mastery probabilities. These parameters are mainly used for the in-
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terpretation of large scale educational assessments, in which the model must not hold

for each individual student. The set of individual oriented person parameters includes

the individual students' skill pro�les. These parameters are established in studies which

have their focus on individual diagnosis and feedback.

Because in the estimation process the individual classi�cation parameters are obtained

based on the item parameters and the population oriented classi�cation parameters, only

the two last sets have an in�uence on the models' identi�cation. They are also called

model parameters (cf. also the de�nition of CDMs as restricted latent class models,

Section 1.2.6).

2.1.3 Review of existing software for CDM parameter estimation

The software for the estimation of CDMs reviewed in this section basically di�ers in

the embedded programming framework and in the CDM frameworks they are able to

estimate. The following list describes di�erent programs in terms of the supporting

operational systems, the input of code and the �le format of the output. Additionally,

a comparison of the programs in terms of their possibilities with regard to e.g. the

adaption of the output, the estimation of the parameters, the provided �t statistics and

the usage of di�erent sampling designs is given in Table 2.1.1. Explicitly not listed are

software packages for the estimation of log-linear models or latent class models, even if

the estimation of these models in a restricted form leads to CDM parameters as well

(cf. Section 1.2.6). An example of this software is the free program LEM (Vermunt,

1997) for latent equation modeling.

LCDM with SAS and Mplus LCDM estimation can be conducted with a set of

stand-alone macros (Templin, Henson, Douglas & Ho�man, 2009) for the commercial

package SAS (SAS Institute Inc., 2007). After speci�cation of the data and Q-matrix

(either as external �les or as SAS data sets) the adapted SAS script generates Mplus

(Muthén & Muthén, 2010) code and calls Mplus, which runs the estimation of the

LCDM parameters by using marginal maximum likelihood (MML) methods. Finally,

the parameter information is returned to SAS in form of SAS data �les. The output

includes the estimated item parameters with their standard errors, information about the

classi�cation reliability, some �t indices like item and person �t statistics and information

criteria for evaluating the model �t.
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GDM with mdltm Von Davier (2005) implemented the GDM framework in the stand-

alone software for multidimensional discrete latent traits models (mdltm). For research

purposes, the mdltm software is available free of charge from the Educational Testing

Service and works on Windows, Unix and Mac OS systems. The software comes with

a beta version of a graphical user interface, which allows editing the control �le and

entering the data, the Q-matrix, an optional IRT person parameter �le, and it of course

allows starting the estimation. The estimation of person and item parameters is con-

ducted via MML methods, individual classi�cation is accomplished by either EAP or

MAP estimation. The ASCII output �le contains item and person parameter estimates,

item and person �t indices and classi�cation information. Goodness of �t can be as-

sessed via χ2 and RMSEA measures, and the program yields information criteria for

overall model-data �t and model selection.

G-DINA with Ox De la Torre implemented the G-DINA framework using a console

version of Ox (Doornik, 2002). Ox and the Ox editor can be downloaded free of charge

for academic research purposes, the program code has to be requested from its authors.

After a modi�cation of the code concerning the data set, the Q-matrix, the number

of students, items and skills (up to K = 15) and the convergence criterion, the Ox

procedure estimates the parameters of the G-DINA model with identity link function

by conducting MML methods. The output is provided as Exel �le.

NC-RUM with Arpeggio System Software The NC-RUM (or fusion model) is im-

plemented by Bolt, Chen, DiBello, Hartz, Henson, Roussos, Stout and Templin in the

commercial Arpeggio System software (DiBello & Stout, 2008). The software is called

from a DOS command window and requires the user to specify a response data �le, a

Q-matrix �le, an IRT person parameter �le, and a run parameter �le as input. It then

estimates the model parameters of the NC-RUM model including a continuous latent

ability component, the skill class probabilities and skill classi�cation consistency indices

using a Markov Chain Monte Carlo (MCMC) procedure. Because the MCMC proce-

dure is not feasible for individual student classi�cation in large datasets, this part of the

estimation is accomplished by another component of the Arpeggio system, the so called

Fast Classi�er. Using the calibrated NC-RUM parameters and a likelihood approach,

the Fast Classi�er yields individual EAP and MAP classi�cation of the students.

RSM with C++ The rule space method is implemented by Kikumi and Curtis Tat-

suoka in a C++ (Sun Microsystems, 2001) procedure that only runs on Linux systems
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(Tatsuoka & Yan, 2001). The C++ procedure requires as input a Q-matrix and IRT

di�culty parameters for each item. It �rst uses a Boolean descriptive function to gen-

erate the expected patterns and then, second, parameter estimation and the analysis of

the model are accomplished by assuming a latent class model on the partially ordered

network of the generated expected response patterns. The model output of the RSM

program provides the coordinates for each observed response pattern in the rule space

and its four closest expected response patterns with their coordinates. Additionally,

measurement and classi�cation errors are computed.

CDMs with R The R package CDM (George et al., 2013) is an open source software

package which can be downloaded at the Comprehensive R Archive Network (CRAN) at

http://cran.r-project.org/web/packages/CDM/index.html. The package does not only

allow the estimation of one CDM framework or model but rather of the two general main

frameworks G-DINA and GDM. Thus it also allows the estimation of all common CDMs

by specifying parameters of the general frameworks. Almost all methods for analyzing

CDMs which are included in the other software packages (i.e. global �t measures, item

�t, classi�cation accuracy,. . .) are contained in the R package as well. Additionally the

R package CDM provides a simulation tool for DINA and G-DINA models.

2.1.4 The PIRLS 2006 data

The Progress in International Reading Literacy Study (PIRLS; Mullis, Martin, Kennedy

& Foy, 2007) is a large scale assessment study for analyzing and providing information

about the reading achievement of fourth graders. The data includes 126 items in 10

booklets and students from 35 countries around the world. Following the PIRLS test

design (i.e. a partial incomplete balanced block design), each student worked 2 test

booklets, i.e. on between 22 to 26 items.

All test booklets include multiple choice and open format items. For the purposes of

this example, the students' responses are recoded as follows: Only completely correct

responses received a 1, all other response categories a 0. Missing responses were coded

as 0 and not administered items were coded as NA.

For the PIRLS study a competence model was conceptualized (Campbell, Kelly, Mullis,

Martin & Sainsbury, 2001) according to which a student's possession of a general reading

ability is divided into the mastery of the four reading processes �focus on and retrieve

explicitly stated information�, �make straightforward inferences�, �interpret and integrate
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2.2 Data, Q-matrix and sample size

ideas and information; make complex inferences� and �examine and evaluate content,

language, and textual elements�. According to educational experts, each item in PIRLS

is based on exactly one of these four processes. In the following the much-discussed

question whether to treat the four reading processes as parallel or as hierarchically

ordered will also be discussed. A deeper discussion of this topic is given in Chapter 4.

2.2 Data, Q-matrix and sample size

Before starting a CDM analysis three things have to be prepared: The data has to be

arranged in the right form, the Q-matrix has to be built and the issue of sample size

has to be considered. Additionally, the number of model parameters is deduced, as it is

required for determining information criteria like AIC or BIC.

2.2.1 Data

The data contains the manifest dichotomous responses of I students to J items. Missing

values (responses) are allowed, they have to be coded as NA. In large scale studies, which

employ a partially balanced incomplete block design (Bose & Nair, 1939), the items that

are not administered to parts of the students have to be coded as NA as well. The I × J
data matrix data has to be of class matrix or data.frame.

Example The PIRLS 2006 data pirls for Germany includes I = 7899 students and

J = 126 items partitioned to 10 test booklets. Each student worked on between 22 to 29

items. The students' responses were coded as 0 or 1 and missing responses were coded

as NA. Not administered items were coded as NA as well.

2.2.2 Q-matrix

The J ×K binary Q-matrix contains for each item the skills which have to be possessed

by the students in order to solve it. Of course each item has to be assigned to at

least one skill, that is each row in the Q-matrix has to comprise at least one 1. Di�erent

educational theories concerning the skills underlying the tested ability imply di�erent Q-

matrices, especially the number of skills, and thus the number of columns in the Q-matrix

may vary. If the number and manner of the underlying skills is prede�ned, di�erent

experts may nevertheless assign di�erent skills to the items. This phenomenon is called
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inter-rater disagreement. For a deeper discussion of this topic see for example Rupp &

Templin (2008b). Models with all sorts of Q-matrices can be evaluated concerning their

�t to the response data and the best �tting model - or Q-matrix - may be chosen. In the

R package CDM the Q-matrix object q.matrix has to be of class matrix or data.frame.

Example The four reading processes in PIRLS may be considered as parallel (i.e. to

have the same level of di�culty), because it is possible to construct simple and di�cult

items for each process. On the contrary, these processes may be considered as ordered

in a linear hierarchical form, as it is plausible to assume that the process �focus on

and retrieve explicitly stated information and ideas� is easier than the process �make

straightforward inferences�, which itself is easier than �interpret and integrate ideas and

information� and than �examine and evaluate content, language, and textual elements�.

The 126 × 4 Q-matrix Q_RC for the reading concept assuming no order between the

reading processes has the form

Q_RC =


0 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

. . . . . . . . . . . .

 ,

whereas the 126 × 4 Q-matrix Q_H for the linear hierarchical order of the skills has the

form

Q_H =


1 1 0 0

1 0 0 0

1 1 0 0

1 1 1 0

. . . . . . . . . . . .

 .

2.2.3 Sample size

There have been few concrete recommendations in the CDM literature (as well as in the

LCA literature) regarding the minimum sample size for conducting CDM analyses. Rupp

& Templin (2008b) suggest that for simple models such as the DINA a �few hundred�

students responding each item are su�cient for convergence if the number of skills is

small (four to six). A systematic study investigating minimum sample size for various

numbers of skills is so far missing. A related and also not yet investigated issue is that
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of parameter identi�ability in the sense of achieving a unique set of item parameters for

a given data set. Von Davier (2005) states that models diagnosing more than eight skills

are likely to have problems with identi�ability. Related issues about identi�ability of

students' skill pro�les are also discussed in Chapter 3 of the present work.

2.2.4 Number of model parameters

DINA or DINO models (without constraints on the parameters) employ (2K − 1)+ 2 · J
model parameters, i.e. the number of skill classes minus one (as they sum up to 1) and

2 parameters (guessing and slipping) per item. The number of parameters in G-DINA

models is signi�cantly larger and depends on the number of skills assigned to the items.

For example, a G-DINA 1way model has (2K − 1) + J +
∑J

j=1

∑K
k=1 qjk parameters. In

the R package CDM the number of parameters is accessible via model$Npar after the

estimation of a model.

Example Independent of the Q-matrix Q_RC or Q_H, DINA or DINO models for the

PIRLS data with 4 skills employ (24 − 1) + 2 · 126 = 267 parameters. For the Q-matrix

Q_RC, in which only between item dimensionality is considered, the G-DINA 1way model

is equivalent to the DINA model and thus employs 267 parameters as well. A G-DINA

1way model based on Q_H needs (2K − 1) + J +
∑J

j=1

∑K
k=1 qjk = 432 parameters. A G-

DINA 2way based on QH has 165 additional parameters, that is 597 parameters, because

it needs one additional parameter for each two-way interaction in each item considering

more than one skill.

2.3 Further settings prior to model estimation

Besides the selection of a speci�c model (cf. Section 2.4) some additional, more elaborate

settings can be de�ned prior to the model estimation. They may in�uence the accuracy

of the parameter estimates, the identi�ability of the model or the computing time.

2.3.1 Convergence criteria

The convergence criteria de�ne when and how the estimation process terminates. More

strictly chosen criteria may increase the computation time but also the accuracy of the

estimated parameters.
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The R package CDM provides three types of convergence criteria: maxit, conv.crit and

dev.crit. Following the �rst criterion the estimation process terminates if a maximal

number maxit of iterations is reached. Concerning the second criterion the process ends

if the maximal parameter change between successive iterations is below conv.crit.

Maximal change means the maximum of the changes between model parameters of the

same type (e.g. in DINA models the maximal parameter change may emerge either in

the guessing, or the slipping or skill class parameters). The third criterion causes the

termination of the process if the relative di�erence between the deviances of the models

�tted is below dev.crit. Here �deviance� is de�ned as −2 log L, with L being the

likelihood of the model.

The whole estimation process terminates if the maximal number of iterations is reached,

or if the conv.crit and the dev.crit criterion are both true. There may be data

sets and Q-matrices in which conv.crit would lead to a termination of the estimation

process after the �rst or second iteration, because the di�erences between the parameters

in consecutive steps of iteration are very small. To reach convergence in these cases it

is more appropriate to consider the dev.crit.

In applications where the exact value of the parameter estimates (including the positions

after the digital point) is relevant, as for example in simulation studies for the detection of

the true parameter values, it may be reasonable to choose a more stringent setting of the

convergence criteria as the one given in the default setting. A graphical visualization of

the progress in the log-likelihood or in the parameter values can be obtained by plotting

model$param.history.

Example For a DINA model on the PIRLS data Figure 2.3.1 shows the convergence

history of the likelihood and of an item's guessing and slipping parameter. The conver-

gence history of the likelihood is included in the object

model$param.hist$likelihood.hist ,

the convergence history of the slipping parameters in

model$param.hist$slip.history

and the convergence history of the guessing parameters in

model$param.hist$guess.history.
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Figure 2.3.1: Convergence history of the likelihood (left hand side), a slipping parameter
(middle part) and a guessing parameter (right hand side) for a DINA model
on the pirls data.

2.3.2 Reducing the skill space

A reduction of a model's skill space which is characterized by the distribution of the skill

classes can have three goals: First, to reach unambiguous classi�cations of individual

students, second to test hypothesis about the students' acquisition of skills and third,

to reduce the number of parameters.

In DINA models students may not be unambiguously classi�ed into one of the 2K skill

classes. Rather they are classi�ed into an equivalence class of skill classes consisting of

skill classes leading to the maximal value of the likelihood. The larger these equivalence

classes get, the less speci�c becomes the students' classi�cation. For further details see

Groÿ & George (2013) and Chapter 3 of the present work.

The R package CDM o�ers the opportunity to check how many of the 2K skill classes

in a DINA model are distinguishable by applying the function din.equivalent.class

(qmatrix). In this function the Gini coe�cient (Gini, 1921) is used as a measure of
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the concentration of skill classes, that is, it measures the number of uniquely identi�ed

skill classes and the size of the equivalence classes. For example, if all skill classes are

distinguishable the Gini coe�cient becomes 0. On the contrary, if there is only one equiv-

alence class including all skill classes, the Gini coe�cient becomes 2K−1
2K

. Additionally,

the din.equivalent.class-function returns the equivalence classes.

We can avoid ambiguous classi�cations of students in a DINA by conducting two steps

(cf. Chapter 3): Firstly, one representative skill class in each equivalence class has to be

chosen. Secondly, the likelihood probabilities of all other skill classes than the represen-

tative ones are set to zero. In this way, we do not allow classi�cation in another class than

the representative one, and thus achieve a unique classi�cation for each student.1 Setting

likelihood probabilities of skill classes to zero is possible by zeroprob.skillclasses,

which is a vector of integers between 1 and 2K identifying the zero-skill-classes. The

skill classes are ordered according to binary principles2. Another method is to deter-

mine all skill classes for which the likelihood should not be set to zero in the matrix

skillclasses.

Setting likelihood probabilities of skill classes to zero can not only be used for obtaining

a non-ambiguous classi�cation, but also for testing hypothesis about the skill class distri-

bution (cf. Chapter 4). There may be applications in which it is for example reasonable

to assume that only linear hierarchical skill classes occur (e.g. if the acquisition of the

tested ability follows a developmental theory). The comparison of the model with spe-

ci�c selected skill classes (e.g. the linear hierarchical ones) and the full model (i.e. the

model employing all 2K skill classes) may then yield an idea about the true learning

theory underlying the tested ability. The possibilities concerning model comparison are

discussed in detail in Section 2.5.

In G-DINA models a reduction of the skill space is mainly established to control for

the number of model parameters. Choosing reduced.skillspace for G-DINA models

reduces the model's skill space based on a method by Xu & von Davier (2008) in which

the skill space is modeled through use of tetrachoric correlations. A tetrachoric correla-

tion is the correlation between two underlying normally distributed variables (with zero

mean and unit variance) that have both been dichotomized by cut-point parameters

speci�c to each variable. Extrapolating from the bivariate distribution of any pair of

given skills to the joint distribution of all skill patterns, the tetrachoric model presumes

underlying continuous multivariate normal variables with a zero mean vector and a tetra-

1Note that the representative classes are of course not unique for the model interpretation as they still
represent all skill classes included in the equivalence classes.

2The ordering can be found for example in the �rst column of the object model$attribute.patt.
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choric correlation matrix. Then, for dichotomous attributes, the cut-point parameters

represent the marginal probability of an individual mastering a skill in the population.

The method reduces the number of person parameters from 2K − 1 to K + K(K−1)
2

,

although it does not considerably a�ect the accuracy of the parameter estimates com-

pared to the estimates obtained in a full model (von Davier, 2008). Furthermore, the

CDM package allows users to de�ne speci�c tetrachoric correlations between skills by

specifying the Z.skillspace matrix. This part of the method can be employed simi-

lar to the zeroprob.skillclasses method for DINA models concerning the aspects of

identi�ability (i.e. non-ambiguous skill classes) and hypothesis testing.

Example Applying the function din.equivalent.class(Q_RC) for the Q-matrix Q_RC

representing the parallel reading processes yields the result

16 Skill classes | 16 distinguishable skill classes |

Gini coefficient = 0.

That is, in a DINA model based on the Q-matrix Q_RC all 16 skill classes are distinguish-

able, which is also expressed by a Gini coe�cient of zero. For the linear hierarchical

Q-matrix Q_H the command din.equivalent.class(Q_H) leads to

16 Skill classes | 5 distinguishable skill classes |

Gini coefficient = 0.425,

which means that only 5 of 24 = 16 skill classes are distinguishable. The equivalence

classes are given by din.equivalent.class(Q_H)$skillclasses[,c(1,3)]

skillclass distinguish.class

1 Skills_0000 1

2 Skills_1000 2

3 Skills_0100 1

4 Skills_1100 3

5 Skills_0010 1

6 Skills_1010 2

7 Skills_0110 1

8 Skills_1110 4

9 Skills_0001 1

10 Skills_1001 2
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11 Skills_0101 1

12 Skills_1101 3

13 Skills_0011 1

14 Skills_1011 2

15 Skills_0111 1

16 Skills_1111 5.

Because of that the skill space for the DINA model based on Q_H may be restricted to

5 skill classes (e.g. the 5 linear hierarchical ones) representing the 5 equivalence classes.

This is in accordance to the reading literacy concept, as it seems to be reasonable to

assume that students acquire the 4 reading skills in a linear hierarchical order. Hence,

we de�ne a model which classi�es the students only into the 5 linear hierarchical skill

pro�les by specifying the skillclasses matrix:

skillclasses =


0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 .

2.3.3 Constraining item parameters

In some cases it may be desired to constrain the item parameters, for example they

have been calibrated during a pre-test and and should be utilized in the post-test. In

DINA and DINO models the items' guessing and slipping parameters may be constrained

by making use of the commands contrained.guess and constrained.slip. In G-

DINA models item parameter constraints may be inserted by delta.designmatrix.

De�ning equality constraints of parameters in DINA and DINO models is possible with

the commands guess.equal and slip.equal, and in G-DINA models by de�ning the

matrices Mj. For a detailed de�nition of Mj see de la Torre (2011).

2.3.4 Establishing the link function in G-DINA models

Establishing the link function in G-DINA models has two e�ects: Firstly, G-DINA

models with di�erent link functions include other prominent CDM models. Secondly,

the link function regulates the impact of skill mastery to the response probabilities.
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As de�ned by de la Torre (2011) the R package CDM also allows de�ning G-DINA

models with three di�erent link functions, namely the identity, the logit and the log

link. G-DINA models with all link functions include DINA and DINO models. Models

with identity link involve the Additive CDM (A-CDM), which is equivalent to the G-

DINA 1way model. The logit link formulation includes the linear logistic model (LLM;

Maris, 1999) and the log link formulation contains the NIDA model (Junker & Sijtsma,

2001), a generalized form of the NIDA model (G-NIDA) which is equivalent to a model

discussed in Maris (1999), and the R-RUM (Hartz, 2002). The parameter constraints

needed to achieve the LLM, NIDA, G-NIDA and R-RUM models are given in detail in

de la Torre (2011).

Although the A-CDM, LLM and the G-NIDA have the same number of parameters, they

assume di�erent underlying processes, and therefore will not provide an identical model-

data �t: In the A-CDM (as in all models implying the identity link) skill mastery has an

direct additive impact on the response probabilities, in the LLM it has a direct additive

impact on the logit of the response probabilities (i.e. an indirect impact on the response

probabilities) and in the G-NIDA skill mastery has a direct multiplicative impact on the

response probabilities. The direct impact makes the interpretations of the A-CDM and

G-NIDA model, particularly the former, more straightforward. Another point is that of

the three links only for the logit link the item mastery probabilities are automatically

constrained to be between 0 and 1. On the contrary, probability estimates resulting

from the identity and the log link need appropriate constraints (e.g., 0 ≤ P (αlj) ≤ 1).

In the R package CDM the link functions of the G-DINA model may be addressed by the

command linkfct, with the identity link function being the default one.

2.4 Estimation and interpretation

2.4.1 Conducting the model estimation

The main part of the parameter estimation process relies on marginalized maximum

likelihood (MML) methods, in which in a �rst step the item parameters and then in a

second step the population orientated classi�cation parameters are estimated. Techni-

cally, this part of the estimation is conducted with an expectation maximization (EM)

algorithm, which is implemented according to de la Torre (2009). Hereafter, the individ-

ual classi�cation is accomplished by maximum likelihood estimation (MLE), maximum a

posteriori (MAP) or expected a posteriori (EAP) estimation. In the MLE case students
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are classi�ed in the skill class exhibiting the maximum likelihood value, whereas they

are classi�ed in the skill class with the maximum a posteriori or maximum expected

a posterior value in the MAP or EAP case, respectively. Under the precondition of a

uniform prior distribution of the skill classes (which is the default setting) MLE and

MAP methods yield the same results. For a comparison of the classi�cation methods

see Huebner & Wang (2011).

As already mentioned in Chapter 1, the selected items rules (e.g., DINA, DINO or G-

DINA) do not have to be the same for all items. In these cases the rule argument is

speci�ed as a vector of character strings specifying the model rule that is used for each

item, e.g. rule = c("DINA", "DINA", "DINO", ...).

Example For an illustration of the before discussed models just run

DINRC<-din(pirls,Q_RC)

for a DINA model based on Q_RC,

DINH<-din(pirls,Q_H,skillclasses=skillclasses)

for a DINA model based on Q_H which classi�es the students only into linear hierarchical

skill classes,

oneskill<-din(pirls,matrix(rep(1,ncol(pirls)),ncol=1))

for a DINA model which only di�erentiates between masters and non-masters of the

reading ability,

GDIN1H <- gdina(pirls,Q_H,rule="GDINA1",reduced.skillspace=FALSE)

for a G-DINA 1way model based on Q_H,

GDIN1Hred<-gdina(pirls,Q_H,rule="GDINA1")

for a G-DINA 1way model based on Q_H with reduced skill space and

GDIN2Hred<-gdina(pirls,Q_H,rule="GDINA2")

for a G-DINA 2way model based on Q_H with reduced skill space.
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2.4 Estimation and interpretation

2.4.2 Item parameters

The models' estimated item parameters can be accessed by model$coef. For DINA and

DINO models this object contains for each item the used model rule (i.e. DINA or DINO)

and the estimated guessing and slipping parameters together with their standard errors

and an item �t measure (cf. Section 2.4.4). For G-DINA 1way models the object includes

for each item the condensation rule (i.e. DINA, DINO, GDINA1, ACDM,...), the used

link function, an intercept parameter and main e�ect parameters for the skills assigned to

the item. In G-DINA 2way models the set of G-DINA 1way model parameter estimates

is supplemented by two-way interaction e�ects between assigned skills. All parameters

come along with estimated standard errors. The list of parameters is completed by an

item �t measure.

In DINA and DINO models the additional constraint gj < 1 − sj should be satis�ed

for each item, with gj being the j-th items guessing and sj the j-th items slipping

parameter. This constraint ensures that a student who possesses all required skills for

item j has a higher chance of mastering the item without slipping than a student who

lacks in at least one of the required skills and masters the item by a lucky guess. With

the item discrimination index IDIj = 1 − sj − gj (Lee, de la Torre & Park, 2012)

it can be checked if the items ful�ll the additional constraint, as negative IDI values

signalize a violation of it3. The IDI may also be seen as diagnostic index, reporting

for each item how it discriminates between students possessing all skills (i.e. having a

response probability of 1−sj) and students lacking in at least one skill (i.e. guessing with
probability gj). Thus, IDIs close to 1 signalize a good discrimination or �diagnosticity�

of the item, whereas IDI values close to 0 detect items with a low discrimination. In

the R package CDM the items' IDIs may by accessed by model$IDI or the model's

guessing and slipping parameters and the values of the IDI may be plotted by the

command plot(model,display.nr = 1). Items exhibiting negative or low IDIs may

be excluded from further analysis or the guessing and slipping parameters of these items

may be constrained before the estimation of the model. It should be noted that the IDI

values are not used as item �t measures, as the response data has no direct in�uence on

that index. A possibility to evaluate the item �t is given in Section 2.4.4.

Example Figure 2.4.2 shows the item parameters and the IDIs for the DINRC model.

This plot is obtained by the command plot(DINRC, display.nr = 1). For each of the

126 items the guessing parameter is illustrated as grey bar, the slipping parameter is

3In these cases the din-function will also end with a warning.
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Figure 2.4.2: Item parameters and IDIs for DINRC model on pirls data.

drawn as red bar and the IDIs are depicted as solid black line. There are no items

with negative IDIs, but some items have strikingly low IDIs. The low IDI values

are caused by large guessing parameters: Item 64 has a guessing parameter of .95 and

additional 6 items have guessing parameters above .8. If we have an in�uence on the

test construction phase, these items should be checked concerning their task formulation

and may be changed or excluded from further analysis. The values of the guessing and

slipping parameters with their standard errors may be addressed by DINRC$coef. This

yields for the �rst 6 items

type guess se.guess slip se.slip rmsea

R011C01C_R DINA 0.536 0.014 0.015 0.038 0.033

R011C02C_R DINA 0.206 0.008 0.354 0.072 0.282

R011C03C_R DINA 0.762 0.016 0.017 0.012 0.155

R011C04M_R DINA 0.479 0.013 0.126 0.039 0.052

R011C05M_R DINA 0.700 0.015 0.037 0.018 0.056

R011C06C_R DINA 0.590 0.014 0.119 0.223 0.097

... ... ... ... ... ... ...

For the G-DINA 1way model GDIN1Hred based on Q_H the item parameters are accessible

via GDIN1Hred$coef and we obtain for the �rst two items

link item nr tp rule est se partype.attr

identity R011C01C_R 1 0 GDINA1 0.453 0.042

identity R011C01C_R 1 1 GDINA1 0.521 0.054 focus on explicitly stated ideas

identity R011C02C_R 2 0 GDINA1 0.038 0.041

identity R011C02C_R 2 1 GDINA1 0.479 0.037 focus on explicitly stated ideas

identity R011C02C_R 2 2 GDINA1 0.201 0.058 make straightforward inferences

... ... . . ... ... ... ...
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2.4 Estimation and interpretation

Because of a lack of space the captions of the output are shortened: �itemno� became

�nr� and �partype� became �tp�. For the �rst item an intercept and a main e�ect for the

possession of the �rst skill is estimated. For the second item, an intercept, and main

e�ects for the �rst two skills are estimated, because both skills are assigned to the item

(cf. Q_H).

2.4.3 Person parameters

Population oriented perspective

The population oriented skill class distributions in DINA, DINO, and G-DINA models

may be accessed via the command model$attribute.patt. The population oriented

skill mastery probabilities are included in the object model$skill.patt.

For DINA and DINO the population oriented skill class distribution may be plotted by

the command plot(model,display.nr = 3). The top.n.skill.classes exhibiting

the largest frequencies are labeled in this plot. The population oriented skill mastery

probabilities in DINA and DINO models can be plotted in the form of gray bars with

the command plot(model, display.nr = 2).

Another aspect of the model's population oriented interpretation are the tetrachoric

correlations between skills. For DINA, DINO and G-DINA models, the correlation

matrix may be invoked by the command skill.cor(model)$cor.skills. Skills with

correlations exceeding .9 exhibit a large amount of similarity and it may be reasonable

to merge them.

Example Figure 2.4.3 shows the population oriented skill mastery probabilities and

the skill class distribution of the DINRC model (top) and the DINH model (bottom). The

DINRC$skill.patt object contains the population oriented skill mastery probabilities

of the DINRC model

skill.prob

Skill_focus on explicitly stated information 0.7010765

Skill_make straightforward inferences 0.6690154

Skill_interpret information 0.5692033

Skill_evaluate content 0.6110003
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Figure 2.4.3: Population oriented skill mastery probabilities and skill class distribution
for DINRC (top) and DINH model (bottom) on pirls data.

and, analogously, in DINH$skill.patt for the DINH model. In the DINRC model 70% of

the students possess the skill �focus on explicitly stated information�, 66% possess �mak-

ing straightforward inferences�, 56% of the students are able to �interpret information�

and 61% are able to �evaluate the content�. The mastery probabilities of the individual

skills in the DINH model con�rm the hierarchy assumption: Skill 1 is possessed by 70%

of the students, skill by 66%, skill 3 by 59% and, at last, skill 4 by 55% of the students.

Via DINRC$attribute.patt we can access the population oriented skill class distribu-

tion of the DINRC model. The skill class distribution of the DINH model is given by

DINH$attribute.patt object

class.prob

0000 0.29428116

1000 0.04398327

1100 0.06665478

1110 0.04370169

1111 0.55137912

which only includes the linear hierarchical skill classes to which the skill space was

constrained before (cf. Section 2.4.1). In the skill class distribution of the DINH model

no hierarchical order between the skill classes can be identi�ed, for example the class

[1, 1, 0, 0] is possessed by more students than the class [1, 0, 0, 0].
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2.4 Estimation and interpretation

Another point is that in both models the skill classes with the highest frequencies are the

zeroclass [0, 0, 0, 0] and the class [1, 1, 1, 1]. This indicates a strong coherence between

the skills and makes it necessary to analyze the correlations between the skills. The

DINH model is a unidimensional model in which one skill builds upon another and thus

the skills correlate to a large extent. On the contrary, the DINRC model is assumed to be

a four dimensional model, in which the reading skills do not provide a systematic order

and because of that, they should not be highly correlated. Nevertheless, the tetrachoric

correlation matrix of the skills shows extremely high correlations:

skill.cor(DINRC)$cor.skills =


1

.98 1

.99 .98 1

.95 .95 .95 1

 .

Based on that, it is questionable if the PIRLS items are constructed to discriminate

between the four reading processes and thus, if a CDM analysis of the PIRLS data is

reasonable.

Individual oriented perspective

For DINA, DINO and G-DINA models the individual MLE and MAP classi�cations

are contained in the object model$pattern. This object also includes a posterior skill

probability for each student and each skill, that is the students' probabilities to master

the skills conditional on their response pattern.

The K posterior probabilities of an individual student are also called posterior skill

pro�les. They o�er a third possibility to classify individual students into skill classes:

Students exhibiting a posterior probability smaller than .5 in a skill are not assumed

to possess this skill, whereas they are assumed to possess the skill if the respective

posterior skill probability is larger than .5. This procedure yields a skill pro�le for each

student, which is also called the student's expected a posteriori (EAP) or simpli�ed skill

pro�le. Based on the EAP skill pro�les, the frequency of students in the test population

possessing an individual skill may be calculated. This frequency is depicted in the plot

plot(model, display.nr = 2) as a solid black line. The plot allows for a comparison

of an individual oriented classi�cation method and the population oriented classi�cation.

For DINA and DINO models it is possible to plot an individual student's posterior skill

pro�le with the command plot(model, pattern = "110100010", display.nr = 5)
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Figure 2.4.4: Posterior skill pro�les of two individual students: The �rst student worked
on 27 items in test booklets 9 and 10 and solved 18 of these items (top).
The second student worked on 24 items in test booklets 4 and 8 and solved
11 of these items (bottom).

and a beforehand speci�ed response pattern of the student (here: �110100010�).

Example In Figure 2.4.4 posterior skill pro�les of two di�erent students are shown. The

�rst student worked on 27 items in test booklets 9 and 10 and solved 18 of these items

(top). Since all four posterior probabilities are larger than 0.5, she is classi�ed as a master

of all 4 reading processes and her EAP skill pro�le is [1, 1, 1, 1]. The second student

worked on 24 items in test booklets 4 and 8 and solved 11 of these items (bottom). She

did not master skills 1,2 and 4 and reached the uncertainty region for the classi�cation

of skill 3. As her posterior skill mastery probability of skill 3 is below .5, her EAP

skill pro�le is [0, 0, 0, 0]. As mentioned in Section 2.4.3, the DINRC model tends towards

classifying students into the skill pro�les [0, 0, 0, 0] and [1, 1, 1, 1]. Figure 2.4.3 shows
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model (0, 0.05] (0.05, 0.1] (0.1, 1] mean
oneskill 125 0 0 0.0004

DINRC 44 55 26 0.0725
DINH 108 14 3 0.0284

GDIN1H 74 45 6 0.0499
GDIN1Hred 72 47 6 0.0511
GDIN2Hred 97 25 3 0.0358

Table 2.4.2: Number of items j with RMSEAj in (0, 0.05], (0.05, 0.1], and (0.1, 1] and
mean RMSEA value for models on pirls data.

that the population oriented and the individual oriented EAP classi�cation do not di�er

to a large extent.

2.4.4 Item �t

The R package CDM also provides an item �t statistic, the so called root mean square

error of approximation (item-�t RMSEA; Kunina-Habenicht, Rupp & Wilhelm, 2009).

An item �t measure indicates how good an item j suits the chosen model. Roughly

spoken, the item-�t RMSEA for an item j compares the model-predicted item response

probabilities P (Xj = 1|αl) with the observed proportions of correct responses N(Xj =

1|αl) for students in each skill class αl:

RMSEAj =
2K∑
l=1

π(αl)

[
P (Xj = 1|αl)−

N(Xj = 1|αl)
N(Xj|αl)

]2
Here π(αl) is the frequency of students classi�ed in skill class αl and N(Xj|αl) is the
observed number of responses (i.e. correct and incorrect ones) of students in skill class αl
to item j. As a general guideline items with item �t indices below .05 show good �t, items

with RMSEA values below .10 show moderate �t, whereas items with RMSEAj > .10

indicate a poor �t (Kunina-Habenicht et al., 2009, p. 68). The item �t indices are

included in the object model$itemfit.rmsea.

Example Table 2.4.2 shows the number of items j with RMSEAj between 0 and 0.05

(i.e. items with good �t), between 0.05 and 0.1 (i.e. items with moderate �t) and between

0.1 and 1 (i.e. items with poor �t) and the mean RMSEA value for all models applied

to the pirls data. The oneskill DINA provides the best item �t, that is this model

predicts the students' response probabilities in the di�erent items in the most accurate
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model #dim #p loglike AIC BIC
oneskill 1 251 -92474.15 185450.30 187200.90
DINRC 4 265 -92306.87 185143.75 186991.91
DINH 1 254 -92347.75 185203.51 186975.03

GDIN1H 1 427 -91750.48 184354.97 187333.07
GDIN1Hred 1 423 -91747.23 184340.46 187290.67
GDIN2Hred 1 670 -91304.80 183949.61 188622.52

Table 2.5.3: Number of dimensions (#dim), number of parameters (#p), loglikelihood
(loglike), AIC and BIC for di�erent models applied to the pirls data.

way. We have to note that the oneskill DINA only di�erentiates between students who

are able to read and those who are not, and of course, students who are able to read are

predicted to solve the items. A more di�erentiated analysis is given by the DINH model,

which also provides a good item �t.

2.5 Model selection

A model may be evaluated concerning two aspects: Following the population oriented

perspective, model �t is measured in terms of likelihood based criteria, whereas in the

individual oriented perspective it may be more reasonable to assess the model's classi�-

cation accuracy or classi�cation consistency.

2.5.1 Likelihood based criteria

Di�erent DINA, DINO and G-DINA models may be compared in terms of the informa-

tion criteria AIC or BIC and, if the models are nested, by likelihood ratio tests. Nested

CDM models are of di�erent nature: A model that only involves a subset of skill classes

(i.e. a model with restricted skill space) may be nested in the original full model which

employs all skill classes, or a model that includes only a subset of skills may be nested in a

model with a larger set of skills. The model's number of parameters may be accessed via

model$Npar, the value of the loglikelihood is obtained by the command model$loglike

and the information criteria AIC and BIC are included in the objects model$AIC and

model$BIC. Likelihood ratio tests can be accomplished by anova(model1,model2).

Example In Table 2.5.3 the number of dimensions, the number of model parameters,

the loglikelihood and the AIC and BIC information criteria are listed for all models
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which were estimated in Section 2.4 for the PIRLS data. As can be seen the G-DINA

2way model based on the Q-matrix Q_H provides the best model �t in terms of the AIC.

Because of the large number of parameters included in this model, it does not have the

lowest BIC value. In terms of the BIC, the DINA model DINH based on the Q-matrix

Q_H provides the best model �t, but the DINRC model cannot be seen as considerably

di�erent (i.e. the di�erence in the BIC values is smaller than 20). Based on the PIRLS

data, it seems to be hard to decide whether the reading skills follow a linear hierarchical

order or not. By means of the large correlations between the skills, the low IDI values

and the fact that the oneskill DINA provides the best item-�t, we assert again that

the PIRLS items are not built to distinguish the four reading processes.

Likelihood ratio tests show that the DINH and the DINRC model �t the data signi�cantly

better than the oneskill DINA model: Both, anova(DINHred, oneskill)

Model loglike Deviance Npars AIC BIC Chisq df p

2 Model 2 -92474.15 184948.3 251 185450.3 187200.9 334.5562 14 0

1 Model 1 -92306.87 184613.7 265 185143.7 186992.0 NA NA NA

and anova(DINRC, oneskill) lead to a p-value of about zero. This means that the data

includes more information than dividing students in masters and non-masters of reading,

even if in both models, the DINH and the DINRC, only a low percentage of students is not

classi�ed into the extreme classes [0, 0, 0, 0] or [1, 1, 1, 1]. On the contrary, a likelihood

ratio test for the comparison of the GDIN1H and the GDIN1Hred model did not lead to a

signi�cant result

Model loglike Deviance Npars AIC BIC Chisq df p

1 Model 1 -91747.23 183494.5 423 184340.5 187290.7 -6.50149 4 1

2 Model 2 -91750.48 183501.0 427 184355.0 187333.1 NA NA NA

which underlines that the skill space reduction does not pose a severe restriction.

2.5.2 Classi�cation criteria

For evaluating a model from the individual oriented perspective it might be useful to

analyze the model's classi�cation accuracy and classi�cation consistency. Classi�cation

accuracy is a measure of how well individual students are correctly classi�ed into their

true competence levels, whereas classi�cation consistency is a measure for the consistence

of the classi�cations in two parallel test forms with the same items and parameters. In

the R package CDM, the classi�cation accuracy and consistency for DINA and DINO
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MLE MAP
model ac ac sim con con sim ac ac sim con con sim
oneskill .89 .96 .82 .92 .88 .96 .82 .93

DINRC .36 .47 .24 .29 .74 .82 .81 .82
DINH .49 .72 .37 .56 .76 .85 .80 .83

Table 2.5.4: Classi�cation accuracy assessed via analytical method (ac) and via simula-
tion (ac sim) and classi�cation consistency assessed via analytical method
(con) and via simulation (con sim) for di�erent DINA models based on MLE
and MAP classi�cation methods.

models are assessed via simulation methods (cf. DiBello, Roussos & Stout, 2007) and

analytically by the method of Cui, Gierl & Huang (2012). Concerning the former, the

simulation is conducted with known guessing, slipping and skill class parameters (i.e. the

parameters of the beforehand estimated model). For G-DINA models, classi�cation

accuracy and consistency can only be assessed analytically. Accuracy and consistency

are estimated using MLE and MAP classi�cation methods and may by accessed by the

command cdm.est.class.accuracy(model). We have to note, that both, the accuracy

and consistency measures, rely on the assumption that the data is actually generated

by the particular examined model.

Example Table 2.5.4 contains the classi�cation accuracy and consistency assessed via

analytical methods (ac and con) and via simulation (ac sim and con sim) for di�erent

DINA models based on MLE and MAP classi�cation methods. The oneskill DINA

model provides the best classi�cation accuracy and consistency. For this model the

measures may be accessed via cdm.est.class.accuracy(oneskill, n.sims=10000)

P_a P_a_sim P_c P_c_sim

MLE 0.888 0.955 0.818 0.919

MAP 0.884 0.958 0.822 0.928

However, as mentioned before, these measures rely on the assumption that the data is

generated by the examined model. In our case this means, that the data is actually

generated by the oneskill DINA model, which only di�ers between masters and non-

masters of reading and thus facilitates the classi�cation.
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Figure 2.6.5: Population oriented mastery probabilities of the 4 reading skills for boys
and girls in the PIRLS data.

2.6 Speci�c models

Two speci�c methods which are often used two analyze data in large scale assessments

are multiple group analysis and the inclusion of sample weights.

2.6.1 Multiple group analysis

In educational tests it may be desirable to compare di�erent groups of students con-

cerning their abilities. For example, it could be of interest if boys possess the skills in

another form than girls, or if migrants have particular di�culties in speci�c skills. For

detailed analysis of this topic, i.e. the di�erences in possession of mathematical skills, see

Chapter 5 of the present work. Conducting a multiple group analysis in the R package

CDM is possible by using the group argument in the gdina function. The statistical

theory of multiple group analysis in CDMs is also introduced in Chapter 5 of the present

work.

Example Figure 2.6.5 shows the population oriented mastery probabilities of the 4

reading skills for boys and girls in the DINRC model. Within the group-vector students

are assigned to the group of boys or girls. Girls are coded by 1 and boys by 2 in the

data background, which gives information about the students taking part in PIRLS.

group <- background[,"ITSEX"]

zero <- c(3,4,5,7,8,9,10,11,13,14,15)

mod2 <- gdina(pirls, Q_RC, rule="DINA",
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Figure 2.6.6: Population oriented skill class frequencies of DINRC model without weights
and DINRC model with PIRLS sample weights.

zeroprob.skillclasses = zero, group = group)

As can be seen, girls perform slightly better in each reading skill but the di�erences do

not seem to be signi�cant.

2.6.2 Sample weights

Many large scale assessments include student speci�c sample weights tot.wgt to balance

the sampling design (Levy & Lemeshow, 1999). In the R package CDM it is possible to

include these weights in the analysis, for example din(data, weights=tot.wgt).

Example Figure 2.6.6 shows the di�erence in the population oriented skill class dis-

tribution preserved from the DINRC model without weights and the DINRC model with

PIRLS sample weights, respectively. The di�erences are not that large. The largest

di�erences can be seen in the mostly occupied classes [0, 0, 0, 0] and [1, 1, 1, 1].

2.7 Simulation studies

For analyzing theoretical aspects of DINA, DINO or G-DINA models it is often helpful

to work with datasets for which we know the true data generating model and the true

model parameters. Simulated data may be created based on known item parameters

(e.g. the slipping and guessing parameters in DINA models) or based on the known
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(simpli�ed) skill pro�les of students. The �rst method may be extended by specifying

mean values of skill mastery and correlations between the individual skills. Of course

both methods can be combined. Simulated DINA data is obtained by using the function

sim.din and simulated G-DINA data is generated by use of the function sim.gdina.

Example To simulate data based on item parameters (i.e. response data for 125 items),

mean values of skill mastery and skill correlations from the DINRC model run

sim.guess <- DINRC$guess[,1]

sim.slip <- DINRC$slip[,1]

sim.mean <- DINRC$skill.patt[,1]

sim.cor <- skill.cor(DINRC)$cor.skills

sim.rc <- sim.din(1000, Q_RC, guess=sim.guess, slip=sim.slip,

mean=sim.mean, Sigma=sim.cor, rule="DINA")

DINRCSIM <- din(simrcdata$dat, Q_RC, dev.crit= 10^(-8),

conv.crit = 10^(-5))

In this example a data set with 1000 responses was created. If a hundred of these

data sets are simulated and �t them by the DINA RCSIM model with Q-matrix Q_H,

the true parameters (i.e. the parameters with which we started the simulation) and

the estimated parameters (i.e. the parameters obtained from the �tted models) can

be compared which results in Figure 2.7.7. This �gure shows the distribution of the

maximal di�erences between the true parameters and the estimated parameters for the

guessing and slipping parameters, the skill mastery and the skill class probabilities.

For example, the �rst value used for the distribution of the maximal di�erences in the

guessing parameters is the largest of the J = 125 di�erences between the items' true

and estimated guessing parameters in the �rst of the 100 simulated data sets. As Figure

2.7.7 shows, the maximal di�erences between true and estimated guessing parameters

are slightly larger than the maximal di�erences in the slipping parameters. However,

even the di�erences in the guessing parameters, which have a mean value below 0.08,

cannot be assessed as serious. The situation is slightly di�erent when it comes to the

evaluation of the maximal di�erences between the true and estimated skill mastery and

the skill class probabilities, which exhibit mean values between .14 and .16. A detection

of those parameters in the simulated data sets seems to be di�cult because of the large

correlations between the skills.

It is also possible to create DINA data based on the individual skill pro�les of the DINRC

model: Firstly, the individual skill pro�les (e.g. based on MAP classi�cation) of the
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Figure 2.7.7: Distribution of maximal di�erences between true and estimated parameters
for 100 data sets simulated according to the DINRC model.

DINRC model are imported to a 7899× 4 matrix est.skills.map (the dimension of the

that matrix is a result of the 7899 students and the 4 reading skills in the pirls data).

Secondly, with the help of

alpha <- est.skills.map

simrcclass <- sim.din(q.matrix=Q_RC, alpha=alpha)

7899 response patterns are simulated.

The construction of 1000 simulated response patterns from a model with analogous

features as the GDIN2Hred model may be performed by the following code:

# preparing necessary skills for items

rp <- sim.gdina.prepare(Q_H)

necc.attr <- rp$necc.attr

# preparing item parameters

delta<-GDIN2Hred$delta

Aj <- GDIN2Hred$Aj

Mj <- GDIN2Hred$Mj

# preparing skill mastery probabilities and skill correlations
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thresh.alpha <- GDIN2Hred$skill.patt[,1]

cov.alpha <- skill.cor(GDIN2Hred)$cor.skills

sim.gdin2 <- sim.gdina(n=1000, q.matrix=Q_H, delta=delta,

link = "identity", thresh.alpha=thresh.alpha,

cov.alpha=cov.alpha, Mj=Mj, Aj=Aj,

necc.attr=necc.attr).

2.8 Future prospects: The GDM model

An extension of the R package CDM to the class of GDM models (von Davier, 2008)

is currently work in progress. The class of GDMs includes nearly all common CDM

models (cf. Chapter 1 of the present work), but can also be applied to polytomous

data. Furthermore, with GDMs not only dichotomous skills can be established, but also

polytomous and continuous ones. Hence, the class of GDMs also includes a partial credit

model for polytomous response data as well as uni- and multidimensional IRT models.

Furthermore, in this class Q-matrices with polytomous entries can be handled.

As in DINA, DINO and G-DINA models, the estimation of GDMs is based on marginal

maximum likelihood methods and is implemented by an EM-algorithm based on Xu &

von Davier (2008). In GDMs as in DINA, DINO and G-DINA models, model parameters

are estimated and individual skill parameters are determined (with MLE, MAP and EAP

classi�cation methods). Basic components for the analysis of GDMs are available: item

�t indices, model �t criteria, likelihood ratio tests, reductions of the skill space, multiple

group designs and sample weights.

The estimation of uni- and multidimensional IRT models opens the possibility to com-

pare IRT and CDM models in terms of their model �t. Of course model �t is not the

only substantial part in the selection of a statistical model. We should always thoroughly

analyze the goals of a study and the quality of the data.

Example In the R package CDM estimation of GDMs is implemented in the function

gdm. We can de�ne the speci�c model via irtmodel. The default irtmodel = 2PL

corresponds to a 2PL model in which the item slopes on all dimensions are equal for all

item categories. If item-category slopes should be estimated, one may use irtmodel =

2PLcat. If no item slopes should be estimated irtmodel = 1PL can be selected.
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2.9 Discussion

This chapter describes various steps in the analysis of response data with CDMs. All

steps are illustrated by CDM models applied to the PIRLS 2006 data, and software code

has been provided to reconstruct the steps with the R package CDM. As all substantial

parts in a CDM analysis are supported and all common CDM models are included

in this package, it can be seen as an alternative to existing programs as for example

M-plus (Muthén & Muthén, 2010), Latent Gold (Vermunt & Magidson, 2005), lem

(Vermunt, 1997), the mdltm package by von Davier or the G-DINA routines by de la

Torre (cf. Section 2.1.3 of the present work for a review and comparison of these software

packages). Estimation of CDMs with these software packages leads to similar results as

the estimation with the R package CDM. While working with the CDM package it

has been shown that it supports practical applications of CDMs as well as theoretical

analysis of CDM characteristics. In future work the CDM package should be extended

by some functions to increase the user-friendliness, as for example direct routines for

conduction of NIDA, NIDO and R-RUM models. Furthermore, it is planned to extend

the plot function for G-DINA models and GDMs and to implement measures of person

�t (cf. Lui, Douglas & Henson, 2009).

The CDMs analyses applied to the response data of the PIRLS 2006 study showed that

the PIRLS items do not seem to be constructed to distinguish the four reading processes

but rather consider a general unidimensional reading ability. This is underlined by the

o�cial PIRLS analyses (Martin, Mullis & Kennedy, 2007) using unidimensional 2PL

and partial credit models. A detailed comparison of student classi�cations via one

dimensional 1PL (i.e. Rasch) models and four dimensional DINA models can be found

in Chapter 4 of the present work. An approach to construct test items designed to

distinguish on the one hand as much skill classes as possible and on the other hand the

four reading processes is given in Chapter 3 of the present work.
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classi�cations in DINA models

3.1 Problem

A main goal of CDM analyses is to accurately and uniquely estimate the students'

individual skill pro�les, which then are used as empirical base for feedback and further

instruction. This is obviously also true for the DINA model, which is applied in many

practical CDM applications (cf. e.g. DeCarlo, 2011; Lee et al., 2012, 2011; Templin &

Henson, 2006). Assume student i solves the 36 items of the baseline test of educational

standards in math (cf. Section 1.2) with

X i = [1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0].

It is desired that the DINA model uniquely classi�es student i into a skill pro�le

α̂i = [1, 0, 1, 1]

predicting possession and non-possession of the four underlying skills �measures�, �func-

tions�, �geometry� and �statistics�. In this example the student is predicted to be no

master of the skill α2 �functions�. Therefore she should be supported in this content

domain. On the contrary, it is not desired, but might nevertheless happen, that the

applied DINA model yields an ambiguous classi�cation of student i in classes

α̂i1 = [1, 0, 1, 1] or α̂i2 = [1, 0, 0, 1].

In the �rst case the student should be only supported in the domain �functions�, while

in the second case she should be supported in �functions� and �geometry�. Even more
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relevant are situations in which student i is ambiguously classi�ed into

α̂i1 = [1, 1, 0, 0] or α̂i2 = [0, 0, 1, 1]

given her manifest response X i. Here it remains completely unspeci�c whether to sup-

port her in �geometry� and �statistics� or �measures� and �functions�.

In the following Section 3.2 the reasons and implications of ambiguous skill classi�cations

in DINA models are shown. It will come out that many of the mentioned problems

are connected to the construction of the Q-matrix. Typically we have no impact on

this construction as it is de�ned by educational experts, rather we have to take it as

given. In Section 3.3.1 a statistical solution for given Q-matrices and given data is

introduced, while Section 3.3.2 discusses how to construct tests (i.e. Q-matrices) which

avoid ambiguous skill classi�cations.

3.2 Theory

3.2.1 Individual skill classes

Remember that the iterative CDM estimation process consists of two steps: In the

�rst step the item parameters and the population oriented values (i.e. the skill class

distribution and the skill mastery probabilities) are determined. Based on that, in the

second step, the individual skill pro�les are deduced (for details see Section 1.2.2). After

each iteration (including steps one and two) all parameters are adapted. The iteration

terminates if a stopping criterion is ful�lled. For details see Section 2.3.

The individual classi�cation in the second step of the estimation step may be conducted

via MLE, MAP or EAP methods. The cases of MLE and MAP classi�cation are de-

scribed in this subsection while EAP classi�cation is discussed in Subsection 3.2.3.

The MLE case

In the case of MLE classi�cation a student i, i = 1, . . . , I, is allocated in that class α̂l,

l = 1, . . . , L, for which

α̂l;MLE = max
αl:l=1,...,2K

P (Xi|αl). (3.2.1)
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Here,

P (X i|αl) =
J∏
j=1

P (Xij = 1|αl)Xij (1− P (Xij = 1|αl))(1−Xij)

is the probability of observing the i-th student's manifest response pattern X i if she

would be classi�ed into class αl. The student's probability

P (Xij = 1|αl) = g
(1−ηlj)
j (1− sj)ηlj

for correctly mastering item j, j = 1, . . . , J , in class αl = [αl1, . . . , αlK ] depends only on

her latent non-stochastic response

ηlj =
K∏
k=1

α
qjk
lk ∈ {0, 1} (3.2.2)

to item j (i.e. the item parameters gj and sj have already been estimated in the �rst

step and thus may be considered as constant here).

If now two (or more) skill classes αl1 and αl2 , l1, l2 = 1, . . . , 2K , provide an equal latent

response ηl1j = ηl2j for item j, then

P (Xij = 1|αl1) = P (Xij = 1|αl2).

Note that equal latent responses are no exceptional cases: The dichotomous latent re-

sponse ηl1j may be regarded as a combination of zeros and ones provided by the entries

of the skill class vector αl1 and of the j-th Q-matrix row qj, e.g.

ηl1j = α
qj1
l11
· αqj2l12 · . . . = 11 · 10 . . . .

While the entries of the Q-matrix (i.e. the exponents) are given, the bases vary by

selecting di�erent skill classes. Obviously there may be several combinations of di�erent

bases and given exponents leading to the same response of either 1 or 0.

Furthermore, if two skill classes αl1 and αl2 lead to equal latent responses ηl1j = ηl2j for

all test items j, j = 1, . . . , J , i.e. ηl1 = ηl2 , then even

P (X i|αl1) = P (X i|αl2) (3.2.3)
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holds, because

P (X i|αl1) =
J∏
j=1

P (Xij = 1|αl1)Xij (1− P (Xij = 1|αl1))
(1−Xij)

=
J∏
j=1

P (Xij = 1|αl2)Xij (1− P (Xij = 1|αl2))
(1−Xij)

= P (X i|αl2).

Equal latent responses for all items are naturally more seldom than equal latent responses

for individual items. However they are no arti�cial cases as well, which will be shown in

the next Section 3.2.2. Note that Equation (3.2.3) holds for all response patterns X i,

i = 1, . . . , I.

But if then for the speci�c skill class αl it holds

α̂l1;MLE = max
αl:l=1,...,2K

P (Xi|αl)

in Equation (3.2.1), then also

α̂l2;MLE = max
αl:l=1,...,2K

P (Xi|αl)

is true because of Equation (3.2.3). That is, there is no unique maximum in Equation

(3.2.1), rather two (or even more) skill classes provide the same maximal value. This

implies that student i can not be uniquely classi�ed.

The MAP case

In the case of MAP classi�cation, student i is assigned to class α̂l, l = 1, . . . , 2K ,

satisfying

α̂l;MAP = max
αl:l=1,...,2K

P (αl|Xi), (3.2.4)

with

P (αl|Xi) =
P (Xi|αl)P (αl)∑L
l=1 P (Xi|αl)P (αl)

.

By default the estimation process starts with P (αl) = 1
2K

for all l, l = 1, . . . , 2K . Then,

for two (ore more) skill classes αl1 and αl2 with equal latent responses it holds in the
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�rst step of the iteration

P (αl1|Xi) =
P (Xi|αl1)P (αl1)∑L
l=1 P (Xi|αl)P (αl)

MLE
=

P (Xi|αl2)P (αl2)∑L
l=1 P (Xi|αl)P (αl)

= P (αl′ |Xi).

For the subsequent step of the iteration the skill class probabilities are adapted:

P (αl1) =
I∑
i=1

P (αl1|Xi)P (Xi) =
I∑
i=1

P (αl2|Xi)P (Xi) = P (αl2).

Thus, skill classes with equal latent responses always exhibit equal skill probabilities

P (αl1) even if they may change in each step of the iteration. For this reason

P (αl1|Xi) = P (αl2|Xi), i = 1, . . . , I

is true for all steps and if αl1 ful�llsmaxαl:l=1,...,2K P (αl|Xi) then αl2 does as well. Hence

the MAP classi�cation in Equation (3.2.4) does not provide a unique maximum either.

3.2.2 Examples

A Contrived Example

Suppose a test consists of J = 6 items, and K = 3 skills are required to master these

items. Furthermore, let the assignment of skills to the items be given by the Q-matrix

Q =



1 0 1

0 1 1

0 1 1

1 0 1

0 0 1

1 1 1


.

Altogether, 3 items are build upon skill α1, 3 items are assigned to skill α2 and all items

request skill α3. Note again that we have no impact on the construction of the Q-matrix.
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Let us further assume that 10 students responded to the test items as given in the matrix

X =



1 1 1 0 1 1

0 0 0 0 1 0

0 1 1 0 1 0

0 1 1 0 1 1

1 1 0 1 0 0

1 0 1 1 0 1

1 1 1 1 0 1

1 1 1 1 1 1

0 0 0 0 0 0

0 1 1 0 0 1



.

The DINA model classi�es each student i, i = 1, . . . , 10, in one of the 2K = 23 = 8

possible skill classes αl, l = 1, . . . , 8. Note that, compared to the rules of thumb about

sample size and convergence in CDMs, which demand a �few hundred� students (Rupp

& Templin, 2008b), the sample size of I = 10 in this example is extremely small. Even

if we may not relay on the convergence of the algorithm, the artifacts described above

can be illustrated here as well and are the same as in larger data sets.

Table 3.2.1(a) gives the latent responses ηl of an arbitrary student in skill class αl,

l = 1, . . . , 8, i.e. the response patternsX i do not a�ect the latent responses, see Equation

(3.2.2). As can be seen, the skill classes [1, 0, 0], [0, 1, 0], [1, 1, 0] yield the same latent

response as the skill class [0, 0, 0], being η = [0, 0, 0, 0, 0, 0]. That is, students in these

four skill classes are (independently of their manifest response X i) not expected to

master any of the 6 items.

Tables 3.2.1(b) and (c) give the probabilities P (X2|αl) and P (αl|X2), l = 1, . . . , 8, for

student 2 with response pattern X2 = [0, 0, 0, 0, 1, 0]. Both probabilities are listed after

the �rst and the last iteration step of the DINA estimation algorithm (implemented in

the R package CDM, see Chapter 2). In the MLE classi�cation case the estimated skill

pro�le α̂2;MLE of student 2 is obtained through the class αl which has the largest value

P (X2|αl) amongst all l, l = 1, . . . , 8, in the last step of the iteration. Analogously, in

the MAP case the class αl with largest value P (αl|X2) is chosen to de�ne the students

skill pro�le α̂2;MAP . As usually, the estimation process starts with P (αl) = 1
2K

= 1
8
for

all l, l = 1, . . . , 8.

As can be seen in Table 3.2.1 skill classes αl with equal latent responses lead to equal

values of P (X2|αl) and P (αl|X2) in both the �rst and the last step of the iteration.
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(a) (b) (c)
αl ηl P (X2|αl) P (αl|X2)

�rst step last step �rst step last step
[0, 0, 0] [0,0,0,0,0,0] 0.066 0.222 0.118 0.181
[1, 0, 0] [0,0,0,0,0,0] 0.066 0.222 0.118 0.181
[0, 1, 0] [0,0,0,0,0,0] 0.066 0.222 0.118 0.181
[0, 0, 1] [0,0,0,0,1,0] 0.262 0.221 0.470 0.274

[1, 1, 0] [0,0,0,0,0,0] 0.066 0.222 0.118 0.181
[1, 0, 1] [1,0,0,1,1,0] 0.016 < 0.001 0.029 < 0.001
[0, 1, 1] [0,1,1,0,1,0] 0.016 < 0.001 0.029 < 0.001
[1, 1, 1] [1,1,1,1,1,1] 0.000 0.000 0.001 0.000

Table 3.2.1: Skill classes αl, latent responses ηl, probabilities P (X2|αl) and P (αl|X2)
(in the �rst and last step of the estimation process) for student 2 with
response pattern X2 = [0, 0, 0, 0, 1, 0].

In the case of MLE classi�cation the maximal value 0.222 of P (X2|αl), l = 1, . . . , 2K ,

arises four times, i.e. for all skill classes providing a latent response of ηl = [0, 0, 0, 0, 0, 0].

Consequently, student 2 is arbitrarily classi�ed into one of the corresponding skill classes

[0, 0, 0], [1, 0, 0], [0, 1, 0] or [1, 1, 0], which di�er in the student's possession of skills 1 and

2. The largest di�erence with regard to the possession of skills is located between skill

classes [0, 0, 0] and [0, 1, 1]: The �rst class con�rms the student's possession of no skills,

while the second assigns possession of skills α1 and α2. On the contrary, on the basis of

the Q-matrix Q, we would rather expect a student who solved item j = 5 (i.e. student

2) to possess skill α3, as the mastery of item 5 requires only skill α3.

In the case of MAP classi�cation the maximal value 0.274 of P (αl|X2), l = 1, . . . , 2K , is

unique and the second student's estimated skill pro�le is α̂2;MAP = [0, 0, 1]. The essence

from this example is not that MAP delivers unique classi�cations in contrast to MLE.

Indeed, in our example, student 2 is not ambiguously classi�ed, but other students are

(i.e. all students for whom P (αl|X2), l = 1, 2, 3, 5, is maximal).

The baseline test of educational standards in math

Consider again the Austrian baseline testing 2009 of educational standards in math

(Breit & Schreiner, 2010) presented in Chapter 1. Each of the J = 36 test items is

assigned to exactly one of the four content subcategories α1 : �numbers and measures�,

α2 : �variables and functional dependencies�, α3 : �geometry� and α4 : �statistics�, and on

exactly one of the four operational subcategories α5 : �model building�, α6 : �calculation�,

α7 : �interpretation� and α8 : �argumentation�. By conducting a DINA analysis, each
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content operation
α1 α2 α3 α4 α5 α6 α7 α8

10 10 12 4 8 13 10 5

Note: α1 : numbers, α2 : variables, α3 : geometry, α4 : statistics, α5 : model
building, α6 : calculation, α7 : interpretation, α8 : argumentation.

Table 3.2.2: Number of items assigned to the 8 skills in the Austrian baseline test of
educational standards in math 2009.

of the I = 1308 eight grades is classi�ed into one of the 2K = 28 = 256 possible skill

classes. Table 3.2.2 gives the number of items which are assigned to the 8 skills. The 256

skill classes αl lead to 196 di�erent latent responses ηl, amongst others 33 skill classes

provide the zero latent response η = [0, 0, 0, . . . , 0, 0]. The latter are listed in Table 3.2.3.

If, for an arbitrary student i, one of these skill classes in Table 3.2.3 yields the maximal

value of P (X i|αl) or P (αl|X i), then all other listed classes lead to this maximal value

as well. That is, student i is classi�ed into one of the 33 classes by chance, though

they di�er strongly in their prediction: The classi�cation in class [0, 0, 0, 0, 0, 0, 0, 0]

means that the student is predicted to possess no skills, in classes [1, 0, 0, 0, 0, 0, 0, 0]

to [1, 1, 1, 1, 0, 0, 0, 0] the student is predicted to possess combinations of content but

no operational skills, and �nally in classes [0, 0, 0, 0, 1, 0, 0, 0] to [0, 0, 0, 0, 1, 1, 1, 1] she

is likely to possess combinations of operational but no content skills. With regard to

feedback it would be careless to con�rm a student a skill pro�le α̂i = [0, 1, 0, 1, 0, 0, 0, 0]

and advise her to practice all operational skills and the content domains numbers and

geometry, although her true skill pro�le is αi = [0, 0, 0, 0, 1, 1, 1, 1], meaning that she

should rather practice all content skills instead of the operational ones.

[0, 0, 0, 0, 0, 0, 0, 0] [1, 1, 0, 1, 0, 0, 0, 0] [0, 0, 0, 0, 1, 1, 1, 0]
[1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1]
[0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 1, 1, 0, 0, 0, 0] [0, 0, 0, 0, 1, 0, 0, 1]
[1, 1, 0, 0, 0, 0, 0, 0] [0, 1, 1, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0, 1]
[0, 0, 1, 0, 0, 0, 0, 0] [1, 1, 1, 1, 0, 0, 0, 0] [0, 0, 0, 0, 1, 1, 0, 1]
[1, 0, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1, 1]
[0, 1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0, 1, 1]
[1, 1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1, 1, 0, 0] [0, 0, 0, 0, 0, 1, 1, 1]
[0, 0, 0, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0] [0, 0, 0, 0, 1, 1, 1, 1]
[1, 0, 0, 1, 0, 0, 0, 0] [0, 0, 0, 0, 1, 0, 1, 0] [0, 0, 1, 0, 1, 0, 1, 0]
[0, 1, 0, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 1, 0] [1, 0, 0, 0, 0, 0, 0, 1]

Table 3.2.3: Skill classes leading to zero latent response in math baseline test.
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3.2 Theory

3.2.3 Individual skill mastery probabilities

For each individual student i the probability of mastering skill αk, k = 1, . . . , K, is

calculated as the sum of her probabilities to master all skill classes αl1 , . . . ,αlS which

contain skill αk:

P (αk|X i) =
∑

l:αlk=1

P (αl|X i) (3.2.5)

= P (αl1|X i) + . . .+ P (αls|X i) + . . .+ P (αlS |X i)

If there exists another skill class αlt leading to the same latent response ηlt than αls ,

i.e. ηlt = ηls , the two skill classes αls and αlt are not distinguishable as shown in

Section 3.2.1. Thus the skill mastery probability P (αk|X i) might incidentally include

the probability P (αls|X i) or P (αlt |X i). Because furthermore P (αls|Xi) = P (αlt |Xi)

for all i, i = 1, . . . , I, and in each step of the iteration, the value of P (αk|X i) does not

change in dependence of αls or αlt :

P (αk|X i) =
∑

l:αlk=1

P (αl|X i)

= P (αl1|X i) + . . .+ P (αls|X i) + . . .+ P (αlS |X i)

= P (αl1|X i) + . . .+ P (αlt |X i) + . . .+ P (αlS |X i). (3.2.6)

Now it might happen that skill class αls contains skill αk, i.e. αlsk = 1, but skill class αlt
does not, i.e. αltk = 0. Then the skill mastery probability in Equation (3.2.6) includes

probabilities of skill classes not including skill αk. If in this case we would accumulate

only the probabilities of skill classes actually including skill αk in (3.2.6), we end up with

a lower skill mastery probability for αk than in (3.2.5).

This can be explained as follows: Based on the given Q-matrix some skill classes (as αls
and αlt) are not distinguishable. It is ambiguous if students possess the skills included

in αls or in αlt , and thus in our example if the students possess skill αk or not. However,

calculating the individual skill mastery probabilities as in Equation (3.2.5) requires a

di�erentiation between these skill classes, as only the probabilities of the skill classes

actually including skill αk should be added up.
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3 Limitations of individual classi�cations in DINA models

The EAP case

For classifying student i, i = 1, . . . , I, based on EAP

α̃i;EAP = [P (α1|X i), . . . , P (αK |X i)]

is dichotomized at the threshold 0.5. But, given (3.2.6) the estimated skill class prob-

abilities P (αk|X i) may be a lot larger than they actually are and thus the chance of

obtaining 1 instead of 0 increases. Thus student i is rather classi�ed into a skill class

containing too many skills.

A Contrived Example

Consider again the example from Section 3.2.2 with Q-matrix Q and student 2 with

manifest response patternX2 = [0, 0, 0, 0, 1, 0]. According to (3.2.5) and Table 3.2.1 (c),

her probability for possessing the �rst skill is

P (α1|X2) =
∑

l:αl1=1

P (αl|X2)

= P ([1, 0, 0]|X2) + P ([1, 1, 0]|X2) + P ([1, 0, 1]|X2) + P ([1, 1, 1]|X2)

= 0.181 + 0.181 + 0.103 · 10−5 + 0.000

= 0.362.

That is, although student 2 did not solve any item requesting skill α1, she has a prob-

ability of .36 to possess that skill. This is much higher than we would expect. Because

the skill classes [0, 0, 0], [1, 0, 0], [0, 1, 0] and [1, 1, 0] are not distinguishable judged by

P (αl|X2), i.e.

P ([0, 0, 0]|X2) = P ([1, 0, 0]|X2) = P ([0, 1, 0]|X2) = P ([1, 1, 0]|X2),

it is possible to rewrite P (α1|X2) as

P (α1|X2) = P ([0, 0, 0]|X2) + P ([0, 0, 0]|X2) + P ([1, 0, 1]|X2) + P ([1, 1, 1]|X2).

Consequently, the students probability of possessing skill α1 includes P ([0, 0, 0]|X2)

twice, although the skill class [0, 0, 0] does not include skill α1.
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3.2.4 State of research

Already Haertel (1989) notes that the DINA model may produce ambiguous skill classes.

However, Heartel mainly discusses the problem of model identi�cation, rather than deal-

ing with the consequences of ambiguous skill classes for deducing individual student

classi�cations and individual skill mastery probabilities. Heartel proposes to pool the

ambiguous (i.e. unidenti�ed) skill classes αl1 and αl2 into one class and estimate their

joint probability P (αl1 +αl2). This is in contrast to the approach presented in Section

3.3.1, in which P (αl1) will be estimated by de�ning P (αl2) = 0.

DeCarlo (2011) describes problems in the calculation of the individual skill mastery

probabilities. More precisely, he assessed that students, who responded no item correctly,

nevertheless yield large individual skill mastery probabilities with the DINA model. A

possible reason for this problem is described in Section 3.2.3 and illustrated by example

3.2.3. A solution can be found in Section 3.3.1.

Obviously, improper or even wrong individual classi�cations in DINA models can also

be a result of an ill speci�ed Q-matrix (cf. e.g. DeCarlo, 2012; de la Torre, 2008; Rupp

& Templin, 2008a). In contrast to that research, the present chapter deals with known

Q-matrices (i.e. assuming that the entries are given and de�nitively correct). In real life

approaches both problems appear and mix up.

In the ongoing chapter the skill class distribution P (αl), l = 1, . . . , L, is kind of modeled

by de�ning speci�c skill class probabilities as zero and several studies can be mentioned

in connection with the modeling of the skill class distribution. The goal of our adaption

is to reach unique individual classi�cation and proper individual skill class probabili-

ties. In contrast, most of the other studies deal with the population oriented skill class

distribution and aim mainly at two goals: Modeling the population oriented skill class

distribution in an accurate way by simultaneously reducing the number of model pa-

rameters (Hartz, 2002; Templin, Henson, Templin & Roussos, 2008; Xu & von Davier,

2008) and mirroring prede�ned hierarchies between the skills in the population oriented

skill class distribution (Groÿ & George, 2013; Leighton & Gierl, 2007).

3.3 Solutions

The following section shows how to handle or to avoid ambiguous skill classes in two

cases: Firstly, in the case of a given test, i.e. given Q-matrix and data (cf. Section 3.3.1)

and secondly, in the case of test construction, i.e. if the test and therefore the Q-matrix

83



3 Limitations of individual classi�cations in DINA models

can be newly developed and adapted to one's needs (cf. Section 3.3.2). Mathematically

both cases di�er in that in the �rst case the Q-matrix (i.e. its rows qj) and therefore the

latent responses ηl, l = 1, . . . , 2K , are given, whereas in the case of test construction the

qj, j = 1, . . . , J , can be designed and thus the structure of ηl can be in�uenced.

3.3.1 The case of given data and Q-matrix

Let αl, l = 1, . . . , 2K , be the L = 2K skill classes leading to the non-stochastic latent

responses ηl, l = 1, . . . , 2K , through application of Equation 3.2.2 for all items j, j =

1, . . . , J . Furthermore, let M ≤ L be the number of di�erent latent responses. Then,

each of these distinguishable latent responses ηm,m = 1, . . . ,M , is deduced through a set

of skill classes αm;1, . . . ,αm;lm , where m indicates the set and lm ≥ 1 the number of skill

classes included in them-th set. Obviously it holds l1+. . .+lm+. . .+lM = L = 2K . In the

following the set {αm;1, . . . ,αm;lm} is called the m-th equivalence class of skill classes.

For handling ambiguous skill classes in the case of MAP classi�cation the following

procedure may be chosen:

(1) From all skill classes αm;1, . . . , αm;lm in them-th equivalence class which are leading

to the same latent response ηm one representative skill class is chosen. In the

following this class is denoted as αm;1. Obviously, in equivalence classes containing

only one skill class, i.e. lm = 1, this single skill class is chosen as the representative

skill class.

(2) The starting values for the probabilities P (αm;1), . . . , P (αm;lm), m = 1, . . . ,M ,

are newly arranged: Whereas usually the starting values are set to

P (αm;1) = . . . = P (αm;lm) =
1

2K
, m = 1, . . . ,M,

now the probabilities for each representative class are �xed as

P (αm;1) =
1

M
, m = 1, . . . ,M

and all other probabilities are de�ned as

P (αm;2) = . . . = P (αm;lm) = 0, m = 1, . . . ,M.
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This solution for the starting values satis�es

l1∑
l=1

P (α1;l) + . . .+
lm∑
l=1

P (αm;l) + . . .+

lM∑
l=1

P (αM ;l) =
2K∑
l=1

P (αl) = 1.

Setting the probabilities of the non-representative classes to zero is like switching

them o� and forcing them not to occur. Note that if the probabilities of these

classes have been de�ned to be zero in the �rst iteration of the algorithm they

remain zero throughout the whole process.

By selecting only one of the non-distinguishable skill classes and setting all others to

zero we avoid skill mastery probabilities which are much larger than expected. For

an illustration see Example 3.2.3. In this example a large skill mastery probability

for α1 was obtained although no item requiring α1 has been mastered correctly.

On the contrary, after de�ning the priors as described above the skill mastery

probability for α1 decreases to almost zero (cf. Example 3.3.1), which is much

more what we would expect because the student mastered no item requiring skill

α1.

(3) The representative skill class of each equivalence class may be chosen as the skill

class within the equivalence class including the minimal number of skills (i.e. hav-

ing the minimal number of ones). Mathematically, this selection seems reasonable

as the skill class with minimal skills within an equivalence class is always unique.

For a proof see below. From the perspective of learning this solution seems con-

venient as well: it is better to learn more than necessary than to learn less than

necessary. However, from a didactic perspective, the solution of choosing the class

with minimal skills is little sensible as students may become unmotivated by such

feedback. The gap between knowledge transfer and students' motivation is dis-

cussed in detail in Seedhouse (2005).

(4) Resulting, according to MAP classi�cation students are only classi�ed into the M

representative skill classes, inducing a unique classi�cation. Note that the pre-

sented procedure does not in�uence the probabilities P (X i|αl) and thus the MLE

classi�cation results directly (i.e. their calculation is not in�uenced by the proba-

bilities P (αl)), rather the guessing and slipping parameters change through setting

some P (αl) = 0. The latter in�uences the MLE results but does not mend their

ambiguity. Even in the mathematical unique MAP case, the interpretation of the

classi�cation of students into representative skill classes requires some sensibility:

If a student is classi�ed into such a representative class, her skill pro�le may be

85



3 Limitations of individual classi�cations in DINA models

allocated in each other class of the respective equivalence class, which should be

noted in any case. However, in deducing the individual skill mastery probabilities,

the advantages of the presented method and choosing the skill classes with min-

imal skills can be seen: The sum in Equation (3.2.6) only includes probabilities

of skill classes which include a minimal number of skills. These probabilities can

not be exchanged with probabilities of other skill classes including fewer skills and

therefore perhaps not including the skill of interest.

Proof: Unique skill classes with minimal skills in each equivalence class

Let the score of a skill class be the sum of its elements. Then, if a speci�c set consists of

all possible skill classes producing the same latent response, there is a unique skill class

of minimal score within this set. This can be deduced from the two facts stated below.

Let the intersection

αl ∧αl′

of two skill classes αl and αl′ be a binary operation carried out elementwise, such that

0 ∧ 0 = 0, 0 ∧ 1 = 1 ∧ 0 = 0 and 1 ∧ 1 = 1.

Fact 1 If two di�erent skill classes have identical score, then their intersection has strictly

smaller score, since the intersection involves at least one operation 0 ∧ 1 (or 1 ∧ 0),

otherwise the skill classes could not be di�erent.

Fact 2 If two skill classes produce the same latent response, their intersection also

produces this latent response.

To see Fact 2, it is enough to consider the latent response to a single item, since the

argument is the same for all items. Let q = [q1, . . . , qK ] denote a speci�c row in the

Q-matrix (corresponding to a speci�c item) and α = [α1, . . . , αK ] denote a skill class.

Then the corresponding latent response to this speci�c item is
∏K

k=1 α
qk
k and it is either

0 or 1.

Now, if the latent response of two skill classes l and l′ to a speci�c item is 0, then for

each skill class the above product must contain at least one factor 01, where this factor

can occur at possibly di�erent positions. Necessarily, the product for the intersection

also involves at least one factor 01, thus also producing 0 as a latent response. If the

latent response of two skill classes l and l′ to a speci�c item is 1, then the above products

for both skill classes cannot contain 01 as a factor. Thus, whenever the intersection has

0 as an element, the corresponding element in q must be 0, so that the product for the

intersection does not contain a factor 01 and therefore produce 1 as latent response.
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latent response representative class included skill classes
m ηm αm;1 αm;l, l = 1, . . . , lm
1 η1 = [0, 0, 0, 0, 0, 0] α1;1 = [0, 0, 0] α1;1 = [0, 0, 0], α1;2 = [1, 0, 0],

α1;3 = [0, 1, 0], α1;4 = [1, 1, 0]
2 η2 = [0, 0, 0, 0, 1, 0] α2;1 = [0, 0, 1] α2;1 = [0, 0, 1]
3 η3 = [1, 0, 0, 1, 1, 0] α3;1 = [1, 0, 1] α3;1 = [1, 0, 1]
4 η4 = [0, 1, 1, 0, 1, 0] α4;1 = [0, 1, 1] α4;1 = [0, 1, 1]
5 η5 = [1, 1, 1, 1, 1, 1] α5;1 = [1, 1, 1] α5;1 = [1, 1, 1]

Table 3.3.4: Equivalence classes of skill classes with their included skill classes, their
representative class and their respective latent response.

By combining Facts 1 and 2, it is now clear that a complete set of skill classes with

identical latent response must also contain the intersection between these classes, and

this unique intersection must have minimal score. The possible bene�t from using classes

with minimal score is demonstrated by the following example.

A Contrived Example

Consider again the contrived example from Sections 3.2.2 and 3.2.3. From Table 3.2.1

we learned that we have M = 5 di�erent latent responses ηl out of 2
3 = 8 possible

latent classes. The �ve corresponding equivalence classes of skill classes are given in

Table 3.3.4. According to the procedure presented in Section 3.3.1 the starting values of

all non-representative classes are set to zero and the starting values of the representative

classes are de�ned as

P ([0, 0, 0]) = P ([0, 0, 1]) = P ([1, 0, 1]) = P ([0, 1, 1]) = P ([1, 1, 1]) =
1

M
=

1

5
.

The results of the estimation process for student 2 with manifest response patternX2 =

[0, 0, 0, 0, 1, 0] are given in Table 3.3.5: In comparison to Table 3.2.1 the MLE values

P (X2|αl) only change because of di�erent estimated guessing and slipping parameters.

Skill classes providing equal latent responses still yield equal values of P (X2|αl). In

the MAP case each probability P (αl|X2) belonging to a non-representative class is

zero, thus it is �not possible� to classify students into non-representative classes. In our

example student 2 is classi�ed into skill class [0, 0, 1], which is the unique class in both

the MLE and the MAP case.

According to the procedure presented before the individual skill mastery probability of
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(a) (b) (c)
αl ηl P (X2|αl) P (αl|X2)

�rst step last step �rst step last step
[0, 0, 0] [0,0,0,0,0,0] 0.066 0.221 0.182 0.431
[1, 0, 0] [0,0,0,0,0,0] 0.066 0.221 0.000 0.000
[0, 1, 0] [0,0,0,0,0,0] 0.066 0.221 0.000 0.000
[0, 0, 1] [0,0,0,0,1,0] 0.262 0.222 0.727 0.569

[1, 1, 0] [0,0,0,0,0,0] 0.066 0.221 0.000 0.000
[1, 0, 1] [1,0,0,1,1,0] 0.016 < 0.001 0.045 < 0.001
[0, 1, 1] [0,1,1,0,1,0] 0.016 < 0.001 0.045 < 0.001
[1, 1, 1] [1,1,1,1,1,1] 0.001 0.000 0.001 0.000

Table 3.3.5: Skill classes αl, latent responses ηl, probabilities P (X2|αl) and P (αl|X2)
(in the �rst and last step of the estimation process) for second student with
response pattern X2 = [0, 0, 0, 0, 1, 0] and setting starting probabilities of
non-representative classes to zero.

student 2 for skill α1 is

P (α1|X2) =
∑

l:αl1=1

P (αl|X2)

= P ([1, 0, 0]|X2) + P ([1, 1, 0]|X2) + P ([1, 0, 1]|X2) + P ([1, 1, 1]|X2)

= 0.000 + 0.000 + 0.181 · 10−6 + 0.000

= 0.181 · 10−6.

This is much more what we would expect given that student 2 has not mastered any

items requiring skill α1.

3.3.2 The case of test construction

In the case of test construction the occurrence of ambiguous latent classes may already

be avoided or at least their number limited before the conduction of the DINA analysis.

In the test construction phase we have in�uence on (a) the number of items which request

a skill and (b) the combinations of skills required to master the items. Together, (a)

and (b) compose the rows qj, j = 1, . . . , J , of the Q-matrix. Furthermore, because the

latent responses are de�ned as ηlj =
∏J

j=1 α
qjk
lj for all items j and the latent classes αl

are given by default, only the design of the qj in�uences the form of the latent classes

ηl. Thus qj, j = 1, . . . , J (i.e. Q) may be structured in such a form that the skill classes

αl lead to as much distinguishable latent classes as possible. For Q-matrices in which
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(1) there exists at least one item for each skill which solely requests this skill and

(2) all other items may request the skills in an arbitrary combination

no equal latent responses and thus no ambiguous skill classes occur.

Apart from that speci�c Q-matrices we distinguish between Q-matrices which evoke

many equivalence classes including few skill classes (preferably only one skill class) and

Q-matrices which generate few equivalence classes including many skill classes. For

classi�cation purposes, the �rst sort of Q-matrices is preferred, as has been discussed

extensively above. In the following we characterize the �rst sort of Q-matrices as Q-

matrices evoking a low concentration of equivalence classes, and the second sort of

Q-matrices as Q-matrices generating a high concentration of equivalence classes. The

concentration may be measured by an adaption of the Gini coe�cient (Gini, 1921):

G =
2
∑M

m=1(m) · l(m)

M
∑M

m=1 lm
− M + 1

M
with 0 ≤ G <

2K − 1

2K
.

Here, M is the number of equivalence classes, lm the size of the m-th equivalence class

(i.e. the number of skill classes included in the equivalence class), and (m) the m-th

equivalence class ordered by size, with (m) = (1) being the smallest class. If G = 0 each

skill class leads to a di�erent latent response and the Q-matrix evokes zero concentration.

Contrary, if G = 2K−1
2K

all skill classes would lead to the same latent response.

Thus, before developing suitable items, the concentration of the desired Q-matrix may

be measured. Q-matrices with low concentration may be preferred because they avoid

or diminish the number of ambiguous skill classes.

Examples

Table 3.3.6 includes three Q-matrices Q1, Q1 and Q3, each constructed for K = 4 skills

and J = 7 items. The �rst Q-matrixQ1 is constructed according to the above mentioned

principle of having at least one item for each skill which solely requests that skill. This

Q-matrix invokes no concentration: All 2K = 16 possible skill classes are distinguishable

and thus G = 0. Q2 slightly violates this desire, as item 1 to 3 measure solely skill α1 to

α3, but there exists no item measuring solely skill α4: For Q2 11 out of 16 skill classes

are distinguishable and G = 0.170. In Q3 only skill α1 is measured by an item for its

own. Here only 8 out of 16 skill classes are distinguishable and G3=0.375.
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Q1 Q2 Q3

1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 1 1 0 1
0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 1 0 1 0 0 1 1 1
1 0 1 0 0 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0 1 0 0 0

Gini-coe�cient G1=0.000 G2=0.170 G3=0.375
skill classes 16 16 16

distinguishable classes 16 11 8

Table 3.3.6: Three Q-matrices Q1, Q2 and Q3 leading to no, medium and high concen-
tration of the equivalences classes of skill classes.

3.4 Discussion

In the light of the presented results about individual classi�cations in DINA models

(partially arbitrary individual classi�cation, unexpected individual skill mastery proba-

bilities) it seems even more important to handle and interpret them sensibly. Lacking

care about the present problems can produce inaccurate empirical bases for student

feedback, which may end in disastrous misjudgments and students learning skills they

already possess while believing to possess skills they are not able to master.

This chapter presents two approaches for the mentioned problems, one in the case of

existing tests (i.e. Q-matrices) and one for tests to be designed. The approach for existing

tests aims more at sensitizing for the problem than at �nding a solution for the individual

classi�cation: non-distinguishable skill classes can not be made distinguishable. In the

phase of test construction desired Q-matrices can be judged by an adapted form of

the Gini coe�cient, which measures the number and size of equivalence classes the Q-

matrices evoke. Q-matrices with low coe�cients are to be preferred. Here it might be

helpful and is planned to develop a graphical tool (an adaption of the Lorenz-curve) to

illustrate and thus evaluate the number and size of the equivalence classes.
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4 Modeling reading abilities

4.1 Problem

The Progress in International Reading Literacy Study (PIRLS; Mullis, Martin, Kennedy

& Foy, 2007) provides information about the reading achievement of fourth graders in

35 countries around the world. Comparing Germany's results with those of all other

participating countries, they can be found in the upper middle part of the rank list.

More alarming is that about 13.2% of the German students do not possess basic reading

abilities, which means that they are not able to ful�ll the demands of any secondary

education (Bos, Lankes, Prenzel, Schwippert, Walther & Valtin, 2003, p. 118). On the

opposite, 10.8% of the German students are classi�ed as excellent readers. These di�er-

ences in reading abilities of fourth graders should be taken seriously, as they may result

in severe inequalities concerning economical, political, cultural and social conditions

in the students' further lives (Bos et al., 2003). Thus, some e�ort seems indicated to

raise the overall competence level and especially to maintain lower performing students.

But obviously, before targeted methods for supporting students can be developed, the

students' abilities have to be measured adequately.

In this section two model approaches which provide qualitative classi�cations of students

abilities are presented. As it will turn out, the approaches are not only di�erent in their

statistical nature, but they also presuppose various underlying concepts of reading. Thus

a quantitative comparison of the statistical models also includes an empirical validation

of the di�erent reading theories. The possibility of evaluating theoretical competence

models (here: concepts of reading) empirically is rather new.
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4.2 Theory

4.2.1 The preferred approach: Rasch model

At present, the preferred method to model dichotomous responses in educational tests

is the Rasch model (RM; Rasch, 1960). Belonging to the family of Item Response

Theory (IRT) models (e.g. Van der Linden & Hambleton, 1997), the RM delivers a uni-

dimensional quanti�cation of the items' di�culties and the respondents' abilities through

real-valued parameters located on the same continuous latent scale.

Let Xij ∈ {0, 1} be the dichotomous response of student i, i = 1, . . . , I, to item j,

j = 1, . . . , J . The probability of student i to correctly respond item j is given by

P (Xij = 1|θi, βj) =
exp(θi − βj)

1 + exp(θi − βj)
,

where θi is the ability parameter of student i and βj the di�culty parameter of item

j. Since item di�culty and student ability parameters are located on the same latent

scale, only the di�erence between the two parameters is utilized for determining the

response probability. This allows for ordering and comparing individual students and

items with respect to their ability or di�culty, respectively: If, for example, β1 = 1.1

and β2 = −0.5, then item 1 is 1.6 Logits more di�cult than item 2 for all respondents. If

θ1 = 0.3 and θ2 = 2.6, student 2 is located 2.3 Logits above student 2 on the ability scale,

irrespective of the chosen items. Moreover, mutual inferences between the student and

item parameters can be drawn: For example, student 1 with ability θ1 = 0.3 will master

the items with di�culty βj < 0.3 with a probability exceeding .5, while the student's

probability to master items with di�culty βj > 0.3 is lower than .5. For an illustration

see Figure 4.2.1.

Albeit the parameters of the RM are quantitative in nature, they may be transformed to

obtain qualitative diagnostic information, as has been done for example in PIRLS (Mar-

tin, Mullis & Kennedy, 2007) or the National Assessment in Education Progress (NAEP)

Study (Lee, Grigg & Dion, 2007). Three steps have to be taken (for an illustration see

Figure 4.2.2):

(1) Discrete levels of ability are de�ned by discretizing the continuous parameter scale

at cutpoints (benchmarks). The benchmarks are chosen to be the percentiles of the

estimated student ability distribution (e.g. .25, .50, .75, .90), which are obtained

by evaluating plausible values drawn from the RM. Note that individual person
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Figure 4.2.1: Illustration of item response curves for two items with di�culties and β1 =
1.1 and β2 = −0.5 in the Rasch model. The probability that student 1
with ability θ1 = 0.3 masters item 2 exceeds .5.

parameter estimates (like the weighted likelihood estimate, WLE; Warm, 1989)

should not be chosen here: The distribution of the WLEs contains measurement

error variance and thus may lead to a biased estimation of the percentiles (Wu,

2005). De�ning 4 benchmarks (percentiles) yields 5 levels of ability.

(2) In the second step, we use the fact that both parameters reside on a common latent

scale. Hence, discrete levels of di�culty are build by again using the percentiles

of the estimated student ability parameter distribution. Similar to the procedure

in PIRLS (Martin et al., 2007, Chapter 12) in the present study the 65 percent

criterion is used to classify the items into these di�culty levels. That is, the RM

item di�culties βj are transformed into di�culties β∗j such that a student with

ability θi = β∗j correctly solves this item with a probability of .65. Then all items

with transformed di�culty parameters β∗j below the .25 percentile of the estimated

student ability distribution (�rst benchmark) are classi�ed into di�culty level I,

items with β∗j between the .25 and .50 percentile of the estimated student ability

distribution (�rst and second benchmark) are classi�ed into di�culty level II, and

so on. Then educational experts (try to) generalize the content of the items in

each of the 5 di�culty levels to one type or description of a competence, which
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θ 

Figure 4.2.2: Illustration of qualitative competence levels obtained through quantitative
parameters of Rasch model.

may represent the whole level, e.g. �recognize and repeat explicitly requested

information� (Bos et al., 2007, p. 100) describes the �rst level in PIRLS.

(3) In the third step, switching back from the item di�culties to the students' abilities,

the students are classi�ed into the �ve ability levels according to their WLE ability

estimates. For example, a student with estimated WLE student ability parame-

ter below the .25 percentile of the estimated ability parameter distribution (�rst

benchmark) is classi�ed into ability level I, and a student with estimated ability

between the .25 percentile and the .50 percentile (�rst and second benchmark)

is classi�ed into ability level II, and so on. Because of step (2) students in each

ability level are assumed to possess the before de�ned general competence of the

respective level, e.g. students in ability level I are likely to �recognize and repeat

explicitly requested information�.

Because for the whole transformation information about the items' di�culties and con-

tents is used the obtained levels are called competence levels: Students classi�ed in

competence level I are assumed to be able to �recognize and repeat explicitly requested

information� and items classi�ed in competence level I require the students to �recognize

and repeat explicitly requested information�. It is worthwhile noting that the obtained

competence levels are hierarchically ordered, because students in one competence level

are likely to solve the items of lower competence levels as well. Sometimes such a hier-

archy is called �linear� (de la Torre & Karelitz, 2009), because no bifurcation appears;
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however, the term �linear� does not imply a linearity in competence gain across levels.

4.2.2 The not yet well-known approach: CDMs

As already discussed extensively, CDMs allow for the measurement of students' abil-

ities not only on a general ability scale but rather on several basic underlying skills.

According to their possession and non-possession of these skills, students are classi�ed

into dichotomous skill classes. The skill classes di�er in three main aspects from the

competence levels obtained through the RM:

(1) The basic skills underlying the general ability are de�ned through educational

experts before the estimation of the CDM. On the contrary, in the RM the compe-

tence levels are de�ned based on the estimated model parameters (i.e. the estimated

student ability distribution and the estimated item di�culty parameters).

(2) In CDMs educational experts de�ne the skills which are required for the mastery

of each item in the so-called CDM Q-matrix (Tatsuoka, 1984). The Q-matrix nor-

mally does not include any dependencies or orders between the skills. Each item

may request an arbitrary combination of skills, see for example Q-matrix Q1. On

the contrary, the Q-matrix may include hierarchies between the skills, see for ex-

ample Q2. This Q-matrix assumes a linear hierarchy between the skills: Skill α4

is the most di�cult one as items requesting this skill presuppose the possession of

skills α1 to α3. In the RM the competence levels are as model inherent hierarchi-

cally ordered, e.g. the mastery of an item with di�culty parameter in competence

level III also requires students to master competence levels I and II.

Q1 =



1 0 0 1

1 1 0 0

0 1 0 0

1 0 1 1

0 0 1 1

. . . . . . . . . . . .


Q2 =



1 0 0 0

1 1 1 0

1 1 1 0

1 1 0 0

1 1 1 1

. . . . . . . . . . . .



(3) In unrestricted CDMs students are classi�ed into skill classes which allow for each

combination of possessed and non-possessed skills, i.e. the skill classes assume no

dependencies or order between the skills. For an example see Figure 4.2.3 on

the left hand side: In an unrestricted CDM which assumes four underlying skills,
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students are classi�ed into all 24 = 16 possible skill classes. On the contrary, it is

possible and may be reasonable to restrict the applied CDM by classifying students

in only these skill classes representing a special order between the skills. In Figure

4.2.3 on the right hand side the students are only classi�ed in skill classes satisfying

a linear hierarchical order between the skills.

To put it in a nutshell that means that CDMs do not include a model inherent hierarchy

between the skills, but that it is possible to de�ne such hierarchies or dependencies by

restricting the model. On the contrary, because the competence levels in the RM are

based on real-valued parameters they imply a model inherent hierarchy. The di�erent

de�nitions with respect the order of the skills or competence levels imply that the RM

and the CDM model approaches emanate from di�erent theoretical competence con-

structs: While the RM assumes that reading competencies are hierarchically ordered

and hierarchically acquired, the CDM approach is less restrictive and does not assume

any order. Thus the quantitative comparison of the two statistical model approaches in-

cludes a qualitative comparison of the di�erent underlying reading concepts (cf. Section

4.4.2).

4.2.3 Developing the H-DINA

A further goal of this study is to develop a CDM model which mirrors the characteristics

of the RM concerning the unidimensionality and the linear hierarchical order between

the competence levels. As a basis an unrestricted CDM DINA model is taken, as it is,

comparably to the RM in the IRT framework, an often applied and easily interpretable

CDM model. The to-be-developed restricted CDM model will be called Hierarchical-

skill not possessed 

skill possessed 

Figure 4.2.3: Illustration of skill classes including no hierarchy or dependencies between
skills (left hand side) and skill classes including a linear hierarchy between
the skills (right hand side).
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Figure 4.2.4: Q-matrix of H-DINA developed based on item di�culty parameters ob-
tained through RM.

DINA (H-DINA) in the following. The H-DINA will be compared to the RM in terms

of general model �t (cf. Section 4.4.2) and in terms of accordance between individual

classi�cations (cf. Sections 4.2.3 and 4.4.2).

For the purpose of developing the DINA, we may assume that each competence level in

the RM framework corresponds to a skill in the H-DINA model, e.g. skill 1 requires the

students to possess the abilities of competence level I and so on. With this assumption,

we achieve comparability by conducting two steps: First, the DINA model has to be

constrained in such a way that the skills re�ect the linear hierarchical structure of the

competence levels in the RM (Groÿ & George, 2013; Leighton, Gierl & Hunka, 2004).

Second, the set of skill classes into which the students are classi�ed has to be restricted

to those classes which also include the before de�ned linear hierarchy between the skills.

Concerning the �rst step, the H-DINA's Q-matrix needs not to be designed by experts,

but evolves already from the model structure and the estimated item di�culty parame-

ters of the RM (cf. Figure 4.2.4). For example, for solving an item with estimated RM

item di�culty parameter in competence level I, students only have to master the �rst

skill, which yields to a [10000] row in the Q-matrix of the H-DINA. For solving an item

with estimated RM di�culty parameter in competence level III, students have to master

skill 3, and, because of the hierarchy assumption, skills 1 and 2. The respective row of

the Q-matrix has the entries [11100].

Concerning the second step, the complete set of step 25 = 32 skill classes is reduced to

the 6 skill classes satisfying the linear hierarchical structure, namely [00000], [10000],

[11000], [11100], [11110], and [11111].
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Figure 4.2.5: Transformation of individual competence levels obtained through RM into
CDM skill pro�les.

Comparison of individual classi�cations obtained from Rasch and H-DINA

Analogously to the approach of de�ning the H-DINA's Q-matrix, the individual students'

competence levels obtained through the RM are transformed into CDM skill pro�les

(cf. Figure 4.2.5). For example, an individual student in the RM competence level III

possesses the �rst three skills in the H-DINA model and gets the skill pro�le [11100]

and so on. Furthermore, students having lower RM ability parameters than the easiest

RM item parameter are handled analogously to students with skill pro�le [00000] which

possess no skill in the H-DINA model.

4.2.4 State of research

Recently, several studies used CDMs to diagnose reading abilities: Jang (2009, 2008)

and Li (2011) applied the Reduced Reparameterized Uni�ed Model (Reduced RUM;

Hartz, 2002) to L2 reading comprehension assessments. Kim (2011) also used the RUM

to analyze English for academic purposes and Wang & Gierl (2011) and Svetina, Gorin

& Tatsuoka (2011) used the Attribute Hierarchy Method (Leighton et al., 2004) or the

Rule Space Method (Tatsuoka, 1983), respectively, for examining skills in critical reading.

All authors agree in that CDMs can provide more �ne-grained diagnostic information

about the level of competency in reading than traditional aggregated-test scoring and

the authors consequently used this information for feedback systems. Nevertheless, in all

studies concerns were raised with regard to the uncertainty in the assignment of reading

skills to the test items.

The major di�erence between the present study and the studies mentioned above is
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that the latter work with presupposed competence models. These competence models

are assumed to be true without any empirical veri�cation. As opposed to this, the

present study considers several di�erent competence concepts re�ected by the di�erent

conducted statistical models. By means of a quantitative comparison of the statistical

model approaches, the connections between the competences (i.e. skills) and thus the

competence concepts are empirically validated as well.

The topic of the second research question, i.e. the comparison of individual student

classi�cations obtained through the RM and H-DINA, can be recovered in a simulation

study by de la Torre & Karelitz (2009). The present study di�ers in the following aspects

from the study by de la Torre & Karelitz (2009): Firstly the benchmarks are developed

in di�erent ways: de la Torre & Karelitz (2009) simulate IRT and CDM models in a

way that enables them to use theoretically deduced benchmarks for building the IRT

competence levels. In the present study the benchmarks are build upon the percentiles

of the estimated student ability distribution. This new approach seems superior for

practical applications because the distribution of the person parameters is available in

empirical studies in contrast to the theoretical parameter structure applied by de la Torre

& Karelitz (2009). The second di�erence between the two studies is the development

of the Q-matrix for the CDM model: While de la Torre & Karelitz (2009) deduce the

rows of the Q-matrix from the theoretical design of the simulation, in the present study

the rows of the Q-matrix are derived from the estimated RM item di�culty parameters.

This again puts the present study in a more practical relevant perspective. Finally, the

third di�erence between the studies is that in the present one the item parameters of

the H-DINA are not deduced from the RM item parameters. In the present study the

students' individual classi�cations in both models should only be a�ected through the

underlying competence model.

4.3 Data

As PIRLS is a study on the system level for educational monitoring, individual diag-

nosis and feedback of reading abilities is not a primary goal. Therefore, the German

�PIRLS-Transfer� has been invoked in order to provide individual feedback and train-

ing opportunities as well. More precisely, three goals should be achieved: Firstly, to

help individual learners in the second and third grade to improve their reading compre-

hension skills; secondly, to provide a solid empirical base for feedback systems, which

inform teachers about the pro�ciency level in their classes; and thirdly, as a consequence,
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to raise the overall reading competence level of German students. By now, the PIRLS-

Transfer study contains two test booklets with literary stories (Nahberger, 2010), created

according to the principles of PIRLS. Each test booklet consists of 21 items.

The PIRLS-Transfer data analyzed for this study include 153 second graders from the

German district North Rhine-Westphalia responding to 21 multiple choice items of the

test booklet named �Lockis adventures in the jungle� (Nahberger, 2007). The students'

responses were coded dichotomously, i.e. 1 for a correct response and 0 for an incorrect

one. Missing responses were allowed. Because pre-analysis showed that four items had

a negative discrimination parameter (in the sense of the IRT 2PL model), the respective

items were excluded from the analysis.

The sum score of the 17 remaining items had a reliability of .71, which can be considered

to be su�cient. The test (i.e. the distribution of the sum scores) did not exhibit obvious

�oor or ceiling e�ects (M= 11.5, SD= 3.1). For legitimating the usage of unidimensional

models, the degree of the test's multidimensionality is investigated with an exploratory

factor analysis (EFA) based on tetrachoric correlations. The EFA results in �ve factors,

but because 29.5 percent of the total variance is explained by the �rst factor and the

ratio of the �rst and the second eigenvalue amounted to 2.0, the test could be consid-

ered as essentially uni-dimensional (Hattie, 1985). This �nding is also con�rmed by the

following method: The model based reliability Omega total (Reise, Moore & Haviland,

2010) of the EFA model with �ve factors is .85.1 Then a Schmid-Leiman transformation

(Schmid & Leiman, 1957) is applied to the factor loadings of the EFA to obtain a bifac-

tor model, which includes one general factor and speci�c factors. 59% of the variance

explained by all factors could be attributed to the general factor, which also indicates a

dominance of the general factor and provides another argument for using a unidimen-

sional model (Reise et al., 2010). Because the conducted methods neither clearly prefer

unidimensional nor multidimensional models, models of both types may be �tted to the

data.

The item di�culty parameters for the RM are estimated with marginal maximum likeli-

hood methods (MML) using the R package TAM (Kiefer, Robitzsch & Wu, 2013).2 Ten

plausible values are drawn in TAM for deducing the four benchmarks of the competence

levels. The individual person parameters are estimated using WLEs. Classi�cation ac-

1Note that because the data is dichotomous, the reliability measure has to be adjusted by the method
of Green & Yang (2009).

2Note that absolute di�erences in the estimated item parameters using MML methods or distribution
free conditional maximum likelihood (CML) methods (as e.g. implemented in the R package eRm;
Mair & Hatzinger, 2007) are smaller than .05. Thus the deviations may be considered irrelevant for
the results of this article. We decided to apply the estimation method which is used in PIRLS.
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curacy and classi�cation consistency are estimated in a simulation with known item

and trait distribution parameters (i.e. the parameters estimated for the PIRLS-Transfer

data).3 The classi�cation accuracy measure could also be assessed analytically by the

method of Rudner (2001).

The DINA parameters and the distribution of the skill pro�les are estimated with MML

methods in the R package CDM (George, Kiefer, Robitzsch, Groÿ & Ünlü, 2013). For

the prediction of the students' individual skill pro�les Maximum Likelihood Estimations

(MLEs) are used. The CDM package also allows a restriction of the skill pro�le space

to linear hierarchical skill pro�les. Classi�cation accuracy and consistency of the MLEs

is assessed by simulation (DiBello, Roussos & Stout, 2007) and analytically (Cui, Gierl

& Huang, 2012). The simulation is conducted with known guessing, slipping and skill

pro�le parameters (i.e. the parameters estimated for the PIRLS-Transfer data).

4.4 Results

4.4.1 Statistical models and underlying reading theories

In the following di�erent statistical models are �tted to the PIRLS-Transfer data. The

models di�er in their dimension, the number of assumed skills (competences), the struc-

ture between these skills, the number of skill classes (competence levels) in which the

students are classi�ed and the structure between these skill classes (cf. Table 4.4.1).

Thus each of the models presupposes a di�erent concept of reading.

Rasch model For estimating the RM, the mean of the latent trait distribution is set

to 0 and a standard deviation of .94 is obtained. The calculated benchmarks (cf. Figure

4.4.6) for the four competence levels are −0.59 (.25 percentile), 0.04 (.50 percentile) and
0.62 (.75 percentile). Because only 1 of 17 items is classi�ed in each of the originally

de�ned competence levels IV and V, these levels were merged for the analysis into one

new competence level IV*, i.e. the .90 percentile is not been taken into consideration.

By generalizing the content of the items included in the four levels educational experts

de�ned the four competence levels based on the PIRLS standards: In competence level I

students are likely to decode words and sentences, in competence level II students should

3As described before classi�cation accuracy is a measure of how well individual students are correctly
classi�ed into their true competence levels, whereas classi�cation consistency is a measure for the
consistence of the classi�cations in two parallel test forms with the same items and parameters.
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model ]skills/ skill/competence ]dim ]skill classes/ skill class/level
competences structure levels structure

RM 4 hierarchy 1 5 hierarchy
2PL 4 hierarchy 1 5 hierarchy

H-DINA 4 hierarchy 1 6 hierarchy
UN-DINA 4 hierarchy 1 16 no

1skill-DINA 1 no 1 2 no
4skill-DINA 4 no 4 16 no
3skill-DINA 3 no 3 9 no

Table 4.4.1: Number of assumed skills/competences (] skills/competences), structure
between these skills/competences, dimension of model (]dim), number of
skill classes/competence levels in which students are classi�ed (] skill class-
es/levels) and structure between those skill classes/levels for models �tted
to PIRLS-Transfer data.

-3 -2 -1 0 1 2 3 θ 

RM 

H-DINA 

[xxxxx]   student skill profile 

[00000] [10000] [11000] [11100] [11110] [11111] 
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student ability parameter 

I II III IV* 
0 I* IV V 

Figure 4.4.6: Competence levels with benchmarks, transformed item di�culty parame-
ters and WLE student abilities for Rasch model on PIRLS-Transfer data.

know how to recognize and repeat explicitly given information, in competence level III

students may possess the ability of �nding relevant information and deducing simple

conclusions and in competence level VI* students are predicted to �nd central actions

and thoughts and to abstract, generalize, and justify preferences. As model inherent

these competence levels are linear hierarchically ordered, i.e. students being classi�ed

into a higher competence level are assumed to possess the lower levels as well.

The third column of Table 4.4.2 yields the classi�cations of students into RM competence

levels: A large percentage of students (i.e. 25%) is classi�ed into level I, meaning that

these students should be able to decode words and sentences, but that they are not very

likely to tap into and acquire information from the text.
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level skill pro�le RM H-DINA ]items

I
0

[1000]∗ [0000]
.25

.04
.20

.19
7

I* [1000] .21 .01
II [1100] .26 .37 4
III [1110] .23 .07 4
IV* [1111] .26 .36 2

Note: In the RM, classi�cations in level I are divided up
into level 0 (students with estimated abilities lower than
the easiest di�culty parameter) and level I* (students with
abilities larger than the lowest di�culty parameter but lower
than the .25 quantile). In the H-DINA model classi�cations
in the skill classes [0000] and [1000] are merged to be directly
comparable to the classi�cation in RM level I.

Table 4.4.2: Relative classi�cation frequencies of students in competence levels (RM) or
skill classes (H-DINA) and number of items requesting the competences in
each level (]items) for the PIRLS-Transfer data.

2PL model The IRT 2PL model (Birnbaum, 1968) is �tted to the data as a matter of

completeness. Like the RM the 2PL model assumes a linear hierarchical order between

the competence levels. The only di�erence between the RM and the 2PL model is that

the 2PL allows individual and thus di�erent item discriminations for each item.

H-DINA The H-DINA CDM is build to take up the model inherent linear hierarchy

assumption between the competence levels of the RM and 2PL. The fourth column of

Table 4.4.2 yields the population oriented skill class distribution obtained from the H-

DINA model: Low frequencies of students were classi�ed into the skill pro�les [1000]

and [1110]. Students, who possess the �rst skill seem to possess the second as well, and

the possession of the third skill seems to be adherent with the possession of the fourth

skill. Relatively large frequencies of students were classi�ed into the zero pro�le [0000],

in which they do not possess any skill.

UN-DINA The so-called unrestricted-DINA (UN-DINA), checks the strength of the

hierarchy restriction put on the H-DINA in reversing it. The UN-DINA keeps the

assumption of linear ordered skill di�culties (i.e. for the mastery items requesting higher

skills the lower skills have to be possessed as well) but it reverses the assumption of the

H-DINA that students acquire the skills in a linear hierarchical way (i.e. that they are

only classi�ed into the hierarchical skill classes). That is, similar to the H-DINA model,

the rows of the UN-DINA's Q-matrix are obtained through the RM item di�culties but,

103



4 Modeling reading abilities

in di�erence to the H-DINA model, the students are classi�ed in all 24 = 16 skill classes.

1skill-DINA The 1skill-DINA is a CDM which assumes just one single skill (i.e. the

Q-matrix is a vector), which re�ects whether a student is capable of reading or not.

4skill-DINA In the Rasch and H-DINA models discussed above a hierarchy between

the competence levels is model inherent. From a linguistic point of view, the assumption

of a hierarchical graduation of reading competencies has been doubted by Bremerich-Vos

(1996). To shed light on this con�ict, the 4skill-DINA is build upon a concept of reading,

in which the competences are not assumed to be hierarchically ordered.

The before addressed reading concept builds on the cognitive psychology research of van

Dijk & Kintsch (1983) and the psychometric approach of Kirsch & Mosenthal (1991) and

is used for developing the items for PIRLS (Campbell, Kelly, Mullis, Martin & Sains-

bury, 2001). Following this reading concept, the comprehension of texts is understood

as a process of information processing, during which readers combine text immanent

information with their previous and general knowledge. Finally, reading literacy is split

up into four reading processes: α1 �Focus on and retrieve explicitly stated information�,

α2 �make straightforward inferences�, α3 �interpret and integrate ideas and information;

make complex inferences� and �examine and evaluate content, language, and textual

elements�. For notational convenience the reading processes are called skills in the fol-

lowing. The reading skill α1 �focus on and retrieve explicitly stated information� requires

location of information explicitly given in the text, to understand that information and

to link it to the question. The skill α2 requires the reader to make straightforward

inferences, that is to carry on thinking about information discussed in the text. Pos-

sessing α3, the reader should be able to make complex inferences and substantiate them

by statements given in the text. With skill α4, readers should examine and critically

evaluate contents, language, and textual elements. This is an ability on a meta-level,

which requires critical thinking about the text itself. The skills α1 to α4 are assumed

to underlie no order or structure, especially no hierarchy, as it is possible to construct

items of di�erent di�culty for each of the processes.

Every item in PIRLS is based on exactly one of these four reading skills. As PIRLS-

Transfer is created according to the same principles as PIRLS, PIRLS-Transfer is also

based on the same reading concept and thus each PIRLS-Transfer item is based on

exactly one of the four reading skills as well. Which reading skill is required to master

the items is summarized in the 18×4 expert Q-matrix, in which the rows re�ect no order
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Figure 4.4.7: Skill class distribution of the 4skill-DINA: Some non-hierarchical skill
classes like [1001] and [1011] prohibit large frequencies.

α1 α2 α3 α4

α1 .80
α2 .45 .44
α3 .61 .96 .53
α4 .47 .34 .35 .51

Table 4.4.3: Marginal probabilities of skills (diagonal elements) and tetrachoric correla-
tions between skills in the 4skill-DINA for the PIRLS-Transfer data.

between the skills (contrary to the assumption in the H-DINA model). The respective

multidimensional DINA, which represents the reading literacy concept (4skill-DINA),

allows classi�cation of students into all 24 = 16 possible skill classes. In the 4skill-DINA

skill α1 is measured by 9 items, α2 by 4 items, α3 by 3 items and α4 by 1 item. The

average proportion correct values of the items (item p values) measuring skill α1, α2, α3

and α4 are .80, .50, .57 and .59, respectively, which means that items measuring skill α1

are the easiest ones.

Figure 4.4.7 shows the population oriented skill class distribution of the 4skill-DINA,

i.e. the estimated relative frequencies of the 16 possible skill classes. As can be seen, the

non-hierarchical skill classes [1001] and [1011] have large frequencies as well. In both

pro�les students do not possess the skill α2 �make straightforward inferences� but they

are able to evaluate the text α4. In total, 31% of the skill classes do not represent a

hierarchical linear order. Altogether the probability of mastering skill α1 is .80, skill α2

is mastered with probability .44, α3 with .53 and α4 with .51 (cf. Table 4.4.3), which

contradicts the assumption of hierarchical item di�culties in that items measuring skill

α2 are easier than items measuring skill α4. This result is in accordance to the calculated

item p values.
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3skill-DINA By inspecting the association of the latent skills obtained in the 4skill-

DINA, tetrachoric correlation coe�cients between .34 and .61 are found (cf. Table 4.4.3).

This indicates that the skills in the 4skill-DINA model are only moderately correlated.

However, the high correlation of .96 between the skills α2 and α3 forms an exception,

signaling that these two skills are hard to distinguish. For this reason, the 4skill-DINA

was adapted in merging the skills α2 and α3, leading to a reduced three dimensional

DINA model (3skill-DINA).4 Like the 4skill-DINA, the 3skill-DINA assumes no order

or structure between the three skills.

4.4.2 Model comparison

The di�erent IRT models and CDMs (with their di�erent underlying concepts of reading)

are compared through likelihood ratio tests (if the models are nested) and through the

information criteria AIC (Akaike, 1973) and BIC (Schwarz, 1978). These values describe

a general population oriented model �t but do not specify how well the models perform

in terms of individual classi�cation. For the RM and the H-DINA the latter is analyzed

by classi�cation accuracy and consistency measures.

Hierarchical CDMs: H-DINA and UN-DINA The question behind the comparison

of the H-DINA and the UN-DINA is the following: Given the assumption of linear

hierarchically ordered skills (in both models), do students also acquire the reading skills

in a linear hierarchal way (H-DINA) or not (UN-DINA)?

Figure 4.4.8 shows the population oriented skill class distributions of the H-DINA and the

UN-DINA. There are only small di�erences between the skill class distributions or, more

precisely, only 8% of the students in the UN-DINA are not classi�ed in skill classes with a

linear hierarchical order. Because the UN-DINA allows for a unrestricted classi�cation of

the students it has a signi�cantly better �t than the H-DINA (χ2(11) = 22.97, p= .018).

Nevertheless, because the hierarchy assumption in the H-DINA poses little restriction

on the skill class distribution and, in addition, the H-DINA needs a lower number of

parameters, one may prefer the H-DINA. Such a decision would be supported by the

small di�erence between the AIC values of the two models (cf. Table 4.4.4). That is,

given the assumption that the skills are linear hierarchical ordered, most students seem

to acquire the skills in a linear hierarchical form as well.

4The high correlation is in line with the expert disagreement when assigning skills α2 and α3 to the
items. Consider again, that the two skills cover the aspects �straightforward inferences� α2 and
�complex inferences� α3, which are traceably di�cult to distinguishing.

106



4.4 Results

R
el

at
iv

e 
fr

eq
u

en
cy

 o
f 

sk
ill

 c
la

ss
es

 

H-DINA 

UN-DINA 

0.
0 

0.
1 

0.
2 

0.
3 

0.
4 

0
0

0
0

 

1
0

0
0

 

0
1

0
0

 

1
1

0
0

 

1
1

1
0

 

1
1

1
1

 

0.
0 

0.
1 

0.
2 

0.
3 

0.
4 

0
0

0
0

 

1
0

0
0

 

0
1

0
0

 

0
0

1
0

 

0
0

0
1

 

1
1

0
0

 

1
0

1
0

 

1
0

0
1

 

0
1

1
0

 

0
1

0
1

 

0
0

1
1

 

1
1

1
0

 

1
1

0
1

 

1
0

1
1

 

0
1

1
1

 

1
1

1
1

 R
el

at
iv

e 
fr

eq
u

en
cy

 o
f 

sk
ill

 c
la

ss
es

 

Figure 4.4.8: Population oriented skill class distributions of the H-DINA (top) and the
UN-DINA (bottom) for PIRLS-Transfer data.

Hierarchical models: H-DINA and RM The H-DINA is build to reproduce the as-

sumptions of the RM. The question behind the comparison of the two hierarchical models

is if one may be preferred in terms of model �t (loglikelihood, AIC and BIC) or in terms

of individual classi�cations (classi�cation consistency and accuracy): With respect to

the model �t, the H-DINA performs better in terms of the loglikelihood and the AIC,

while the RM performs better in terms of the BIC. Note that the RM's low BIC value

may be explained by the model's low number of parameters (compared to the other

models' numbers of parameters). With respect to classi�cation consistency and accu-

racy measures, the H-DINA model turned out to be more reliable: Whereas a simulation

con�rmed the H-DINA model a classi�cation accuracy of .80 and a classi�cation consis-

tency of .67, the RM exhibited only a moderate accuracy of .58 and consistency of .49.

Nevertheless, one has to consider that the accuracy and consistency measures rely on
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Model ]dim ]par loglike AIC BIC
RM 1 18 -1325.70 2687.39 2741.94
2PL 1 34 -1307.56 2683.12 2786.15

1skill-DINA 1 35 -1312.94 2695.88 2801.94
H-DINA 1 38 -1300.25 2676.51 2791.66

UN-DINA 4 49 -1288.78 2675.55 2824.04
4skill-DINA 4 49 -1296.39 2690.77 2839.27
3skill-DINA 3 41 -1298.11 2678.21 2802.46

Table 4.4.4: Number of dimensions (]dim), number of parameters (]par), value of log-
likelihood (loglike), AIC and BIC for the models �tted to the PIRLS-
Transfer data.

the assumption that the data is generated by the particular examined model.

Non-hierarchical CDMs: 1skill-DINA, 3skill-DINA and 4skill-DINA The compar-

ison of the non-hierarchical CDMs is targeted at the dimension of the reading literary

concept: Can students' reading abilities be described by only one general reading skill

(1skill-DINA), the four reading processes (4skill-DINA) suggested by Campbell et al.

(2001) or by three reading skills, which evolved from merging the second and third read-

ing process (3skill-DINA)? All models are build under the assumption that the skills are

not hierarchically ordered.

Likelihood ratio tests show, that the H-DINA model (χ2(3) = 25.37, p< .001) and

the 4skill-DINA model (χ2(14) = 33.10, p= .003) �t the data signi�cantly better than

the 1skill-DINA model. That is, the data includes more information than only the

di�erentiation of students being able to read or not. A likelihood ratio test for the

comparison of the 4skill-DINA and the 3skill-DINA model does not lead to a signi�cant

result (χ2(8) = 3.43, p= .904). Therefore, one would not favor the 4skill-DINA, which

underlines that three skills are su�cient to describe the students' abilities.

Hierarchical and non-hierarchical models In Table 4.4.4 all considered models are

compared in terms of the model �t criteria AIC and BIC. The DINA model including four

hierarchical reading skills without a hierarchy assumption in the students' acquisition

(UN-DINA) performs best in terms of the AIC, but it is almost indistinguishable from the

DINA model with four hierarchical skills and the assumption of a hierarchical acquisition

(H-DINA) and from the DINA model representing the reduced reading literacy concept

with three unordered skills (3skill-DINA). The BIC favors the RM because of its low

number of parameters.
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The remaining essential question is whether to prefer the H-DINA or the 3skill-DINA,

with both models performing almost equally well. One may tend towards the 3skill-

DINA because it is based on a fundamental reading theory and incorporates the informa-

tion thereof. Because no clear empirical evidence for (H-DINA) or against (3skill-DINA)

the hierarchy assumption was found, the present analysis is nondistinctive in whether

the acquisition of reading competencies should be seen as a hierarchical process or not

(in favor: Erikson (1950), Inhelder & Piaget (1958); against: Bremerich-Vos (1996)).

It may be possible to �nd stronger empirical evidence for one of the two directions if,

for example, each item is measured by the same number of skills, the items exhibit a

high discrimination and mediator e�ects are controlled. If these and other aspects are

considered in the test construction (cf. Henson & Douglas, 2005), possible problems in

the estimation and classi�cation process may be reduced (cf. de la Torre, 2009; de la

Torre & Douglas, 2008; Rupp & Templin, 2008a).

Comparison of individual classi�cations obtained from RM and H-DINA

For the comparison of the students' classi�cations obtained through the RM and the

H-DINA model the students' RM competence levels are transformed into skill pro�les.

Then the relative frequency of WLEs in each RM competence level is compared to the

relative frequency of individual MLE classi�cations in the appropriate CDM skill class.

For the comparison the skill classes [0000] and [1000] are merged to one new class [1000]*

because the benchmark between [0000] and [1000] depends of the easiest test item.

The di�erences between the relative classi�cation frequencies are relatively small in that

they reach from .01 (levels II and IV*) to .07 (levels I and III). More detailed, for each of

the 153 students it is analyzed into which level the student is classi�ed in the RM and in

the H-DINA model (cf. Table 4.4.5). For example, out of the 46 students being classi�ed

into competence level I, 32 students are classi�ed into the appropriate skill class [1000].

Altogether, 90 of 153 students (59%) are classi�ed within the same level in the RM and

the H-DINA and 135 of 153 (88%) students are classi�ed into the same or an adjacent

level. The chance corrected kappa agreement measure is .44 (z = 9.22, p< .01), which

signals a rough correspondence between the results of the two classi�cations methods. In

general, the RM leads on average to lower competence levels (M=2.42) than the H-DINA

model (M=2.56). However, a Wilcoxon matched pairs signed ranks test (Wilcoxon, 1945)

did not reveal signi�cant di�erences of the average levels of the RM and the H-DINA

classi�cation (p = .06).

On the whole, there seems to be no strong correspondence between Rasch and H-DINA
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Skill pro�le
Level [1000] [1100] [1110] [1111] marginal
I 32 11 2 1 46
II 2 22 10 9 43
III 0 6 6 6 18
IV* 0 6 11 29 46

marginal 34 45 29 45 153

Note: Out of the 46 students being classi�ed into level I
with the RM, 32 are classi�ed into the skill pro�le [1000]
in the H-DINA model, 11 into [1100], 3 into [1110] and 1
student into [1111]. The bold numbers signalize students
classi�ed within the same level in the RM and the H-DINA,
italic numbers represent students classi�ed in an adjacent
level.

Table 4.4.5: Di�erences between individual classi�cations in RM levels (WLEs) and H-
DINA skill pro�les for all 153 students in the PIRLS-Transfer data.

classi�cations: Either in �tting both models to the PIRLS-Transfer data dependences

between the population oriented skill class distributions were found (cf. Table 4.4.2),

nor the comparison of the individual student classi�cations indicated a clear dependence

(cf. Table 4.4.5). In the light of the literature, which suggests interpreting kappa values

larger than .60 as agreement, the kappa value of .44 indicated no strong correspondence.

Furthermore, the number of students classi�ed in adjacent levels may not be overvalued,

since for the PIRLS-Transfer data students are only classi�ed into four levels. Moreover,

increasing the sample size and the number of items in an additional simulation study

yield no improvement in the classi�cation agreement. Hence, the result appears to hold

and may therefore not be attributed to sampling errors

4.5 Discussion

The �rst goal of this study was to build di�erent statistical models, which all describe dif-

ferent theories about the acquisition of and structure between reading competences. By

quantitatively comparing the statistical models the di�erent underlying reading concepts

are empirically validated. Altogether 7 models were analyzed: The H-DINA model with

a linear hierarchical ordering of the skills and a DINA model which represents a three

dimensional reading concept (3skill-DINA), yielded similar results in terms of the AIC.

One may prefer the 3skill-DINA model because of its theoretical foundation. If read-

ing is postulated to be a multidimensional concept, then reading competencies should
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consequently be modeled with multidimensionaly (Goldstein, 1979).

Nevertheless, as noted by Holland (1990) the distinction between uni- and multidimen-

sional item response models is di�cult to evaluate in terms of likelihood based informa-

tion criteria. If the uni-dimensional RM holds for a population of students it is never-

theless possible that individuals do not ful�ll its assumptions. Students with this kind

of person mis�t may be characterized by deviating person response functions (Sijtsma

& Meijer, 2001) which then may result in di�erent person discriminations (Ferrando,

2004). The emerging variation in the person response functions and person discrimina-

tions may then be better described by a multidimensional model instead of the initial

envisaged uni-dimensional one. In the multidimensional model not every student has

to ful�ll the assumptions of the uni-dimensional one, as in our case, in which not every

student of the multidimensional UN-DINA has to ful�ll the hierarchal acquisition of

skills assumed in the uni-dimensional H-DINA model. Thus, there may be situations in

which a multidimensional model (as the UN-DINA) is preferred to the uni-dimensional

variant (the H-DINA) in terms of model �t because of relevant person mis�t.

Another aspect of the model selection is that likelihood based approaches (like deviance

tests and information criteria) may prefer high-dimensional item response models with

low reliability of individual subscores (Haberman, 2008). This holds especially for CDMs.

However, as emphasized in the �bandwidth-�delity-dilemma� (DiBello, Roussos & Stout,

2007; Feldt, 1997), a decrease in reliability can sometimes be compensated by an increase

in subscore validity. Therefore it has to be underlined that a uni�ed perspective of

reliability and validity for the assessment of statistical models and their use of test score

de�nitions is needed (Kane, 1982). It may weaken the relevance of likelihood-based

model selection. For further investigations about the sensitivity of various �t statistics

for absolute or relative �t the discussion of Chen, de la Torre & Zhang (2013) should be

considered.

The selection of the 3skill-DINA is fundamentally based on the model's Q-matrix. It has

to be acknowledged that a di�erent expert de�nitions of the Q-matrix might have led to

di�erent results. The structure of the Q-matrix is a crucial part of the model speci�ca-

tion as it relies on valid expert judgments (Rupp & Templin, 2008a; Templin, Henson,

Templin & Roussos, 2008). On the other hand, the RM assumes uni-dimensionality and

parallel item response functions, which are known to be hard to achieve as well.

An important aspect in the discussion about a hierarchical or non-hierarchical acquisition

of reading competencies seems to be the e�ect of mediators. From a linguistic point

of view, acquisition of reading competences is often analyzed with theories stating a
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hierarchy between items on the word-, the sentence, and the text-level (Bredel & Reich,

2008). Thus, further studies might analyze if the often postulated hierarchy between

the reading processes (Campbell et al., 2001) only results because the easier items are

located on the word level, whereas di�cult items are mainly found on the text level.

The second goal of the present study was to compare individual student classi�cations

resulting from the RM and a special DINA model, the H-DINA, which satis�es the

assumptions of the RM competence levels concerning their dimensionality and their

linear hierarchical ordering. Neither the population oriented skill class distributions

(cf. Table 4.4.2) nor the individual classi�cations (cf. Table 4.4.5) showed a conspicuous

accordance between the classi�cations. The lack of accordance may be traced back to the

di�erent theoretical fundaments of the two models (e.g. di�erent forms of item response

functions, cf. Chapter 5.3.4). This result is in accordance with a simulation study by

de la Torre & Karelitz (2009), although a di�erent de�nition of the benchmarks and

a di�erent concept for building the Q-matrix was developed. In a next step might it

be meaningful to �t a 2PL model to the data because the item response functions of a

2PL model and the H-DINA have more similarities (e.g. both allow for di�erent item

discriminations) than those of the RM and the H-DINA. In the present study the RM

was conducted, because most educational tests are scaled with this model.
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CDMs

5.1 Problem

�Because the school education e�ects the labor market participation, the

vocational mobility and the quality of life, all countries insist on reducing

di�erences caused by the educational system (OECD, 2001, p. 144).�

Obviously, before methods can be developed to reduce such di�erences, the di�erences

�rstly have to be uncovered. To reach this goal, in most large scale studies researchers

attach student background questionnaires, in which student oriented context variables

(also called background variables) like for example gender, age or migration status are

captured. More precisely, the background questionnaires satisfy three tasks:

(1) Descriptive task: Background questionnaires provide information about the exis-

tence and extent of the student context variables, e.g. the percentage of females

in the test population. In a subsequent step relational measures, i.e. factors, have

to be found which describe the relationship between school achievement on the

one hand and the student oriented context variables on the other hand (PIRLS

framework model: Bos, Valtin, Voss, Hornberg & Lankes, 2007; PISA Konsortium,

2003).

(2) Identi�cation Task: With the information obtained from background question-

naires it is possible to identify subgroups. The gained knowledge about conceptual

dissimilarities between subgroups yields the possibility to initiate remedial actions,

which themselves may stabilize the equality of educational opportunities. Addi-

tionally the reduction di�erences between subgroups may enhance the quality of

schools or even of the educational system.

(3) Explanation task: For enhancing the quality of schools it is essential to �nd ex-

planations for di�erences in student achievement between schools and between
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classes with comparable determining factors. In the �fair comparison� the stu-

dents' extracurricular situation (described through the student context variables)

is considered as a factor which in�uences the students' achievement but which can

not be in�uenced by the teacher or the school. Thus schools and classes are com-

pared which reached the same level of ability under the same conditions (Opho�,

Koch, Hosenfeld & Helmke, 2006).

The common standard procedure for the descriptive and the identi�cation task is to

analyze the in�uence of the student context variables on a general ability, e.g. reading

in PIRLS or math in TIMSS (cf. e.g. Bos, Valtin, Voss, Hornberg & Lankes, 2007;

Mullis, Martin, Ruddock, O'Sullivan, Arora & Erberer, 2008; PISA Konsortium, 2003).

For example, in many large scale studies (e.g. PIRLS, TIMSS, PISA) the students'

migration status is identi�ed as a context variable which has a strong in�uence on the

students' achievement. However, we cannot expect that a context variable has an equal

extent on the mastery of each basic skill underlying the general ability. For example, we

may assume that migrants exhibit strong de�cits in speci�c mathematical skills which

are strongly related to the use of language (i.e. interpretation) while they may perform

better in other skills (i.e. calculation). The present chapter yields methods and examples

for empirically verifying assumptions about di�erences in the mastery of underlying skills

for speci�c subgroups of students. These methods also allow specifying di�erences in

skill mastery between speci�c subgroups of students, which do not have to be of equal

extents in each skill. If once the descriptive task of background questionnaires is re�ned,

then in the explanation task more concrete methods can be developed to reduce the

existing di�erences and thus to ensure equal opportunities.

In current results from large scale studies amongst others the following student con-

text variables turned out to be predictors of student achievement: gender, migration

background, the parents' educational background, the number of books in the parents'

household and the socio economic status (Bos et al., 2007; PISA consortium, 2001, p.

241). Thus in the following chapter comparisons of achievement between subgroups

formed through the before mentioned variables are prioritized.

5.2 Data

The data reanalyzed in this chapter consists of the students' responses to a test of

mathematics and to a background questionnaire. With a sample size of I = 71464

it is a complete survey of all Austrian eighth graders in 2012. Both, the test and
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the questionnaire were originally employed in the framework of educational standards

testing, i.e. a main goal was to check whether the students reach before de�ned standard

norms of mathematical ability. The test consists of altogether J = 72 items arranged

in 6 test booklets by a partially balanced incomplete block design (Bose & Nair, 1939).

Each individual student responded to the items in one of the test booklets, with each

test booklet including a number of 48 items. The test booklets are mutually comparable

concerning length, di�culty and content of the items. In the following the test and

the data are called BIST-M8 (�Bildungsstandards-Mathe 8�; mathematical educational

standards in the eight grade).

Following the competence model of Peschek & Heugl (2007) mathematical ability in

the eighth grade can be divided into four operational sub-competencies namely �α1:

model building�, �α2: calculation�, �α3: interpretation� and �α4: argumentation� and

four content sub-competencies namely �α5: numbers and measures�, �α6: variables and

functional dependencies�, �α7: geometry� and �α8: statistics� 1. In the present study

the four operational and four content subcategories are used as the K = 8 basic skills

underlying the tested mathematical competence in the eighth grade. According to ed-

ucational experts, for successfully mastering each of the items students require exactly

one operational and one content skill. That is for mastering an item students require

one of 16 possible combinations of one operational and one content skill, e.g. they have

to possess α1 in combination with α7 for mastering item 1 in the �rst test booklet. Alto-

gether, each skill is required for the mastery of 12 items in each test booklet. The speci�c

combinations of skills required for the mastery of each item are de�ned in a Q-matrix.

As a summary, Table 5.2.1 shows how many items in each test booklet request the 16

possible combinations of one content and one operational skill for their mastery: For

example the operational skill α1 is required in combination with the content skill α5 for

the mastery of 3 items in the �rst test booklet.

In the present study group speci�c di�erences in achievement are analyzed with respect

to the following variables: gender, migration background, type of school, education of

parents, number of books in the parents' household, HISEI index and the federal state in

which the student is attending school. As already mentioned, these background variables

are taken into account, because, with expectation of the federal state, they turned out to

be predictors of school achievement in other larger scale studies like PIRLS, TIMSS and

1Note that the four content subcategories of the educational standards test are comparable to the
content domains de�ned in the math test of the Trends in International Mathematics and Science
Study (TIMSS; Mullis et al., 2008) for the eighth grade, which are: �numbers�, �algebra�, �geometry�,
and �data and chance�.
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test α1 α2 α3 α4

booklet α5 α6 α7 α8 α5 α6 α7 α8 α5 α6 α7 α8 α5 α6 α7 α8

∑
1 3 3 3 3 3 4 2 3 2 1 6 3 4 4 1 3 48
2 3 4 2 3 2 3 3 4 4 1 4 3 3 4 3 2 48
3 3 3 3 3 4 5 1 2 3 1 5 3 2 3 3 4 48
4 3 3 3 3 3 4 2 3 4 2 3 3 2 3 4 3 48
5 4 4 2 2 2 4 2 4 4 1 5 2 2 3 3 4 48
6 4 3 3 2 2 4 2 4 3 2 5 2 3 3 2 4 48

α1: model building, α2: calculation, α3: interpretation, α4: argumentation, α5: numbers, α6:
functions, α7: geometry, α8: statistics

Table 5.2.1: Number of items requiring a speci�c combination of operational and content
skills in each of the 6 test booklets. For example the operational skill α1 is
required in combination with the content skill α5 for the mastery of 3 items
in the �rst test booklet.

PISA (cf. e.g. Bos et al., 2007). The federal states are taken into account for national

comparisons of student achievement, which is a usual procedure in common large scale

studies as well (cf. e.g. Bos, Lankes, Prenzel, Schwippert, Valtin & Walther, 2004).

Here the considered variables from the student background questionnaire are presented

and their categorizations for the subsequent analyses are introduced:

(1) Gender: Gender of the students, male or female.

(2) Migration background: Students are de�ned to have a migration background if

both parents are born abroad and no migration background if at least one parent

is born in Austria.

(3) Type of school: The type of school the students are attending, either AHS (Allge-

meinbildende Höhere Schule) or BHS (Berufsbildende Höhere Schule). The AHS

may be compared to the German grammar school (Gymnasium).

(4) Education of Parents: The parents' education is di�erentiated into three cate-

gories: compulsory school or vocational education, A level and university. The

highest education of the parents is taken into account.

(5) Number of books in parents' household: The family is regarded as �rst educational

world and most important socializing environment of children, where already from

the point of birth, di�erent basic competencies are deposed and formed (cf. e.g.

Artelt, McElvany, Christmann, Richter, Groeben, Köster, Schneider, Stanat, Os-

termeier, Schiefele, Valtin & Ring, 2007; Bos, Valtin, Voss, Hornberg & Lankes,

2007). The number of books serves as measure for the resources supporting read-
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ing and learning in the parental household. Thereby �books� explicitly does not

include magazines, newspapers or schoolbooks. The number of books is classi�ed

in �ve categories: 0 to 10 books, 11 to 25 books, 26 to 100 books, 100 to 200 books

and more than 200 books.

(6) HISEI: The abbreviation HISEI signi�es the Highest International Socio-Economic

Index of Occupational Status and characterizes the maximal ISEI (International

Socio-Economic Index) value of either the student's father or mother. The ISEI is

a standardized measure for the socio economic status, which combines information

about the profession, the income and the education. The ISEI is evaluated on the

ISEI scale (Ganzeboom, De Graaf & Treiman, 1992): High ISEI values characterize

a high socio economic status, for example the maximal ISEI value of 90 belongs to

a legislator. On the contrary the minimal value of 16 belongs to unskilled laborers

in agriculture or �sheries or cleaning personal. In the following analyses the HISEI

values are divided into 4 categories: HISEI values below 30, values between 31 and

50, values between 51 and 70 and values above 70.

(7) Federal State: The federal state of Austria in which the students attend school:

Burgenland (BL), Kärten (K), Oberösterreich (OÖ), Niederösterreich (NÖ), Salz-

burg (S), Steiermark (SM), Tirol (T), Voralberg (VA) and Wien (W).

Figure 5.2.1 yields a summary of the testpopulation and shows the relative frequencies

of students in the di�erent background categories.

5.3 Theory

5.3.1 O�cial scaling methods for BIST-M8

In the o�cial BIST-M8 analysis (Bruneforth & Lassnigg, 2013) the data is scaled in four

steps:

(1) After dichotomizing the student responses, the data is �tted with the Rasch model

(Rasch, 1960). For a description of the Rasch model and its parameters see Section

4.2.1 of the present work.

(2) The individual student abilities θi, i = 1, . . . , I, are estimated by conducting

weighted likelihood estimation (WLE; Warm, 1989).

(3) For evaluating the students' abilities with respect to the before de�ned, normed

and standardized educational performance requirements, the unidimensional Rasch
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Figure 5.2.1: Percent distribution of students in background categories.

ability scale is discretized into four levels (for details see also Section 4.2.1). The

cutpoints, i.e. the benchmarks, between the four levels and the interpretations of

the levels are determined through a standard setting procedure (Cizek, Bunch &

Konns, 2004). Depending on their individual WLE ability values the students are

classi�ed in the before de�ned four competence levels:

Students below level 1: Students which do not achieve the educational standards.

Students are classi�ed below level 1 if their WLE ability values are at most 439.

Students at level 1: Students which partly achieve the educational standards.

These students possess basic knowledge in all parts of the math curriculum. They

are able to manage reproductive tasks and routine work. Students are classi�ed in

level 1 if they have WLE ability values between 440 and 517.

Students at level 2: Students which achieve the educational standards. These stu-

dents possess basic knowledge in all parts of the math curriculum and are able

to use this knowledge in a �exible way. That is they are able to �nd appropriate

strategies for solving the tasks and they are able to describe and justify their ap-

proaches. Students are classi�ed in level 2 if they have WLE ability values between

518 and 690.

Students at level 3: Students which outperform the educational standards. These
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students do not only possess basic knowledge in all parts of the math curriculum

but also expanded knowledge which exceed the requirements of level 2. Particu-

larly these students possess a distinct ability to abstract and to combine. Students

are classi�ed in level 3 if they have WLE ability values above 691.

(4) The student achievement in di�erent subgroups is compared. Therefore percent

distributions of speci�c groups of students in the four competence levels are de-

termined. For example, in the group of boys, 16% do not achieve the educational

standards, 26% partly achieved the standards, 52% achieved the standards and

6% outperformed the standards. This group speci�c student distributions are

compared: For example if 16% of the boys do not achieve the educational stan-

dards and 6% outperform the educational standards, whereas 17% of the girls do

not achieve the standards and 5% outperform them, then the comparison indicates

that boys perform slightly better than girls.

5.3.2 Methods for reproducing o�cial results with CDMs

The present section describes the statistical methods deployed to reproduce the results

of the o�cial group comparisons with CDMs:

(1) The data is �tted with di�erent DINA and G-DINA models and the best �tting

model in terms of the global �t indices AIC and BIC is chosen for the subsequent

analysis.

(2) The individual CDM student classi�cations in dichotomous skill pro�les are con-

ducted with MLE methods. The MLE classi�cations may be seen as similar to the

individual WLEs used in the o�cial analysis.

(3) The unidimensional achievement scale θ and the benchmarks are recreated by form-

ing three pro�le groups of students: The �rst group is characterized by students

with low results who solved at most two arbitrary out of the eight analyzed skills.

The second group is de�ned through students who achieved a moderate result,

that is students who possess between three and six of the altogether eight skills.

Finally, the third group includes students who have revealed a particularly good

level, i.e. all students who possess all of the altogether eight skills or at least seven

of the skills. Thus, the third group includes students who are classi�ed in skill pro-

�les such as [11111111], [01111111], [10111111] and so on. In forming the groups

it was not important which skills the students possess but rather how many skills

they posses. In this step the multidimensional construct of the students' CDM
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skill pro�les is broken down into a unidimensional construct, which is comparable

to the Rasch ability scale. The partition of the skill pro�les in three groups mirrors

the idea of the benchmarks.

(4) The relative frequencies of students classi�ed in the three pro�le groups in each

speci�c student subgroup are calculated and compared. Illustrated by the example

of comparing the achievement of girls and boys, the question of interest is �how

large is the proportion of particularly good students in the group of girls compared

to the proportion of particularly good students in the group of boys�. That is, the

frequencies

P ( girl | pro�le group 3 ) = P ( girl |αl = [11111111]) + P ( girl |αl = [01111111]) +

P ( girl |αl = [01111111]) + . . .

=
∑

l:
∑

k αlk≥7

P ( girl |αl)

and

P ( boy | pro�le group 3 ) =
∑

l:
∑

k αlk≥7

P ( boy |αl)

are compared. With respect to pro�le group 2 the frequencies∑
l:
∑

k αlk∈{3,4,5,6}

P ( girl |αl) and
∑

l:
∑

k αlk∈{3,4,5,6}

P ( boy |αl)

are compared, and for pro�le group 1 the frequencies∑
l:
∑

k αlk∈{0,1,2}

P ( girl |αl) and
∑

l:
∑

k αlk∈{0,1,2}

P ( boy |αl)

are compared.

5.3.3 Re�ning o�cial results on the skill level

In the following speci�c groups of students are not only compared on the level of a

general ability but rather on the level of skills, i.e. on the level of the four operational

and the four content domains. Therefore CDMs with separate skill class distributions

and skill mastery probabilities for each group of students are estimated.

At �rst M groups G1, . . . , GM of students are de�ned. Each student i, i = 1, . . . , I,

belongs to exactly one of these groups, i.e. there exists exactly one m, m = 1, . . . ,M ,
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for each student i with i ∈ Gm. Furthermore, let gm be the number of students belong-

ing to group Gm and then obviously
∑M

m=1 gm = I. For example, if the di�erence in

achievement between girls and boys is examined, thenM = 2 and G1 corresponds to the

group of girls and G2 to the group of boys. If student i = 1 is a boy then it holds i /∈ G1

but i ∈ G2 and accordingly g1 is the number of tested girls and g2 the number of tested

boys. The procedure for the estimation of the group speci�c skill class distributions and

skill mastery probabilities is similar to the general algorithm presented in Section 1.2.4.

The di�erences to the general algorithm are described in the following:

(1) Based on the probabilities P (X i|αl), i = 1, . . . , I, l = 1, . . . , 2K , the model like-

lihood is de�ned and the item parameters are estimated (cf. Section 1.2.4 step 1

and 2). According to de la Torre & Lee (2010) the item parameters are assumed

to be invariant in the di�erent groups.

(2) In di�erence to Section 1.2.4 for each group Gm, m = 1, . . . ,M , separate starting

values P (αl|Gm) =
1
2K
, l = 1, . . . , 2K ,m = 1, . . . ,M are de�ned. Thus, the estima-

tion algorithm starts with a uniform distribution over the probabilities P (αl|Gm)

in each group.

(3) For each of theM groups the probabilities of student i in group Gm to be classi�ed

in skill class αl are calculated:

P (αl|X i, Gm) =
P (X i|αl) · P (αl|Gm)∑2K

l=1 P (X i|αl) · P (αl|Gm)
l = 1, . . . , 2K , m = 1, . . . ,M.

In this step all 2K · I ·M probabilities are calculated, i.e. it is irrelevant if student

i actually belongs to group Gm.

(4) The group speci�c skill class distribution in group Gm is de�ned as

P (αl|Gm) =
∑
i:i∈Gm

P (αl|X i, Gm) · P (Xi)

gm
, l = 1, . . . , 2K , m = 1, . . . ,M,

where the weighted sum is only taken over the students belonging to group Gm.

Based on that, the skill mastery probabilities in group Gm are given by

P (αk|Gm) =
∑
l:αlk=1

P (αl|Gm), k = 1, . . . , K, m = 1, . . . ,M.

Note that currently there exists only one common multiple group approach for CDMs,

namely the one introduced in Xu & von Davier (2008). In contrast to the procedure
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presented above, their approach assumes di�erent item parameters per group. It is a

legitimate subject for a debate, whether the di�erence in the item parameters also retains

di�erences between the groups. We decided to assume invariant item parameters because

of the procedure in the more common IRT framework: Here the comparison of di�erent

tests (e.g. pre and post test) or di�erent groups is conducted with the help of so-called

linking items which are assumed to have the same item parameters (i.e. di�culty and

discrimination) in both tests or groups (cf. item linking and calibration, e.g. Kim &

Cohen, 1998).

5.3.4 Discussion: CDM or M-IRT?

It should be noted here that in contrast to the obvious di�erences between the IRT Rasch

model and the CDM DINA model (cf. Chapter 4), the di�erences between multidimen-

sional item response models (M-IRT; cf. e.g. de Ayala, 2009) and CDMs are less striking.

Instead of a CDM analyzing K skills one may also apply a K-dimensional M-IRT model

in which each dimension describes one skill. Then CDMs and M-IRT models may be

compared in the following aspects:

(1) Q-matrix: Comparably to the concept of the Q-matrix in CDMs it is also possible

in M-IRT models to de�ne on which dimension or dimensions an item loads (cf. e.g.

Chalmers, 2012; Reckase, 2009)

(2) Item response functions: While in CDMs the item response functions are stepfunc-

tions, in M-IRT models they have a logistic form. A major di�erence can be found

between the logistic form of M-IRT item response functions and item response

functions of non-compensatory CDMs, which exhibit only two levels (e.g. guessing

and slipping in the DINA model).

(3) Response probabilities: In both models it is possible to calculate the students

probabilities to master the di�erent skills/dimensions based on their discrete/con-

tinuous K- dimensional vector of abilities.

(4) Skill class distribution: Comparable to the discrete skill class distribution in CDMs

in M-IRTmodels a continuous ability distribution may be determined by evaluating

plausible values (cf. Chapter 4 for the unidimensional case).

(5) Individual classi�cation: The discrete individual classi�cations are directly ob-

tained from a CDM. Similar classi�cations may also be obtained in an indirectly

way from M-IRT models: After estimating the M-IRT model the K continuous
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ability scales can be discretized at cutpoints (cf. Chapter 4 for the unidimensional

case). The determination of these cutpoints may be challenging and needs expert

driven methods like standard setting procedures.

Up to now speci�c studies investigating the di�erences between CDM and M-IRT models

have been rare in number. Kunina-Habenicht, Rupp & Wilhelm (2009) compare skill

mastery probabilities obtained from both model approaches based on an empirical data

set. The authors of this article found no substantial di�erences between a variant of the

GDM and a comparable M-IRT model. They emphasize the way of directly obtaining

individual student classi�cations from CDMs as a feasible advantage. However, an ac-

curate analysis of the di�erences between both models is still missing. Especially the

di�erences between non-compensatory CDMs and M-IRT models may be of interest.

In fact it cannot be ruled out that the results of the group speci�c di�erences on the skill

level obtained with CDMs may also be received through a comparable M-IRT model.

Still (a) the procedure for multiple group models presented in this chapter is new and

di�ers from the common approach, (b) CDM applications of multiple group models with

background data have so far been sparse and (c) the BIST-M8 data has not yet been

analyzed neither with CDMs nor with M-IRT models.

5.4 Results

5.4.1 BIST-M8 results

The results presented in a graphical or descriptive way in this section are taken from the

BIST-M8 2012 (Schreiner & Breit, 2012) report about the educational achievement of

Austrian eighth graders in 2012. Figure 5.4.2 shows the percent distribution of students

in the four levels �educational standards not achieved�, �educational standards partly

achieved�, �educational standards achieved� and �educational standards outperformed�.

Each bar represents students belonging to a di�erent subgroup of students. The �gure

only includes the percent distributions of groups which are numerically documented in

the BIST-M8 report. In the following all o�cial results (i.e. the results given numerically

and also those described in the text) obtained for the group comparisons of interest are

documented:

(1) Austria: As a national result, in Austria 17% of the eighth graders do not achieve

the educational standards in math, 26% partly achieve the educational standards,
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52% achieve the standards and 5% of the students outperformed the standards.

(2) Gender: As can be seen in Figure 5.4.2 there is hardly a di�erence between the

results of boys and girls. There are few more boys which outperformed the stan-

dards.

(3) Migration background: Students with migration background (cf. Figure 5.4.2) are

clearly more often located below level 1 (35%) than students without migration

background (13%).

(4) School: Students attending di�erent types of schools (cf. Figure 5.4.2) also exhibit

an apparent di�erence in achievement. Students attending BHS are much more

often classi�ed below level 1 (24%) than students attending AHS (1%).

(4) Education of parents: As stated in the BIST-M8 report (p. 44) parents of students

classi�ed below level 1 mostly exhibit a compulsory school graduation or a voca-

tional training (28 %). On the contrary, parents of students which outperformed

the educational standards mostly exhibit a university graduation (52%). Here an

apparent relation between the education of the parents and the achievement of the

students is captured.

(5) HISEI: As also stated in the BIST-M8 report (p. 45) students classi�ed below level

1 exhibit clearly lower mean HISEI indices than students located in level 3.

(8) Federal State: As can be seen in Figure 5.4.2 the state of Wien exhibits the largest

percentage of students below level 1 (25%) compared to the other federal states.

On the contrary, the state of Oberösterreich exhibits the largest percentage of

students which outperformed the educational standards (6%).

5.4.2 Reproduction of o�cial results with CDMs

In a �rst step the response data is �tted with four di�erent CDM models: A DINA

model considering the four operational and the four content skills (full-DINA), a DINA

model only analyzing the content skills (content-DINA), a DINA model taking only

the operational skills into account (operational-DINA) and a G-DINA 1way model with

content and operational skills (G-DINA 1way). In Table 5.4.2 the four models are

compared in terms of the goodness of �t measures AIC and BIC and the mean item

�t RSMEA (cf. Section 2.4.4). The G-DINA model shows the best �t in terms of the

AIC and BIC, but it provides the highest (i.e. worst) mean RSMEA value of all models.

The two DINA models which only include the operational or the content skills exhibit a
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Figure 5.4.3: Skill mastery probabilities obtained from the full-DINA model for eighth
graders in the test of educational standards in math.

may indicate that mathematical items in school textbooks and in school lessons often

only require model building and calculation in speci�c well known and trained struc-

tures but they do not demand a justi�cation of the used model framework. This is a

well known phenomena in the research of mathematics educationalists (cf. e.g. Prediger,

2009; vom Hofe, 1995).

In the baseline study 2009 for mathematics in the eighth grade (Breit & Schreiner, 2010)

students mastered the skill �statistics� worst of all content skills. Hence the mastery

probability of this skill changed considerably. This may be caused by an increasing

attention on mathematical tasks in the domain of statistics evoked by the results of the

baseline study. On the contrary, it may also be true that teachers prepared their students

for tasks in statistics only with regard to the test of educational standards (�teaching to

the test�).

Figure 5.4.4 shows the percent distribution of students belonging to di�erent subgroups

in levels of possessed skills obtained from the full-DINA model (cf. Section 5.3.2). The

three levels are formed by students who have mastered less than three skills (pro�le

group 1), students possessing between three and six skills (pro�le group 2) and students

having more than six of the altogether eight skills (pro�le group 3). In the whole test

population (cf. the topmost bar) and all subgroups of the test population a strikingly
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Figure 5.4.4: Percent distribution of students in levels of possessed skills obtained from
the full-DINA model on the BIST-M8 data.

large percentage rate of students is classi�ed in pro�le group 3. This group of students

should not be compared to the group of students in level 3 of the o�cial analysis who

outperformed the educational standards (cf. Section 5.3.1). Nevertheless the results

concerning group comparisons obtained from the o�cial BIST-M8 analysis (cf. Figure

5.4.2 and Section 5.4.1) can be recovered in the percent distributions obtained from the

full-DINA model (cf. Figure 5.4.4):

(1) Gender: As in the o�cial analysis, in the results obtained from the full-DINA

model no noticeable di�erence between the achievement of boys and girls can be

found as well. Slightly more boys than girls possess all or at least seven of the

eight skills.

(2) Migration background: In the full-DINA model students with migration back-

ground are far more frequently located in pro�le group 1 (25 %), i.e. in the group

of students possessing at most 2 skills, than students without migration background

(9%). This is in accordance with the o�cial results.
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(3) School: The results obtained from the full-DINA model also con�rm the detected

di�erence in achievement between students in the two types of school: Students at-

tending BHS are much more often classi�ed in pro�le group 1 (18%) than students

attending AHS (2%).

(4) Education of parents: As already mentioned in the o�cial results, in the full-DINA

a connection between the education of the students' parents and the students'

achievement is found as well: Students with parents exhibiting a university de-

gree are less often classi�ed in pro�le group 1 (4 %) than students with parents

exhibiting a compulsory or vocational education (17 %).

(5) Number of books in parents' household: In addition to the o�cial results, the full-

DINA model provides evidence that students who have access to a huge variety of

books in their parents' households are less often classi�ed in pro�le group 1 than

students who have access to only a limited number of books. 25% of the students

whose parents own at least 10 books are classi�ed in pro�le group 1 and, on the

contrary, only 4 % of the students whose parents own more than 200 books are

classi�ed in pro�le group 1.

(6) HISEI: As captured in the o�cial results, with the full-DINA it is detected as well,

that students with higher HISEI are less often classi�ed in pro�le group 1 than

students with a low HISEI: Only 4% of the students with HISEI above 70, but

20% of students with HISEI below 30, are classi�ed in pro�le group 1.

(7) Federal States: Finally the result of the o�cial analysis on the level of the federal

states is reproduced with the full-DINA as well: Wien is the state with the largest

percentage of students in pro�le group 1 (16 %) and Oberösterreich has the largest

percentage of students in pro�le group 3 (70 %).

To put it brie�y, all results concerning group comparisons obtained in the o�cial analysis

with the help of a Rasch model are reproduced with the full-DINA model. These results

are re�ned in the subsequent section.

5.4.3 Re�ned results

In order to measure the di�erences between groups of students not only on a unidi-

mensional general ability scale, but on each of the eight mathematical skills multiple

group DINA models are applied (cf. Section 5.3.3). Figure 5.4.5 shows the skill mastery

probabilities for di�erent subgroups of eighth graders. The results already obtained in
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Figure 5.4.5: Comparisons between skill mastery probabilities for subgroups of eight
graders in the BIST-M8 obtained through multiple group DINA models.
Here �α1: model building�, �α2: calculation�, �α3: interpretation�, �α4: ar-
gumentation�, �α5: numbers and measures�, �α6: variables and functional
dependencies�, �α7: geometry� and �α8: statistics�.

Sections 5.4.1 and 5.4.2 can now be re�ned on the level of skills:

(1) Gender: There seems so be neither a di�erence between boys and girls with respect

to a general overall ability nor with consideration of the eight skills. The largest

di�erence in the skill mastery probabilities is located on skill �α3: interpretation�:

The chance of boys to master α3 is 6 percent points higher than the respective

chance of girls.

(2) Migration background: The chance of non-migrants to possess the skills �α3: inter-

pretation�, �α7: geometry� and �α8: statistics� is 24 percent points higher than the

respective chance of migrants. The chance of non-migrants to possess the skill �α4:

argumentation� is �only� 16 percent points higher. This may be caused in language
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problems, as tasks in geometry and statistics may be more sophisticated in their

formulation than tasks in the domain of numbers. For the interpretation of results

some advanced language knowledge is required as well. The fact that di�erences in

achievement between non-migrants and migrants are caused in language problems

is analyzed for example in Gürsoy, Benholz, Renk, Prediger & Büchter (2013) or

Becker-Mrotzek, Schramm, Thürmann & Vollmer (2013), Chapter 3.

(3) Type of school: The largest di�erence in skill mastery between AHS and BHS

students lays in skill �α4: argumentation�: The chance of AHS students to master

α4 is 38 percent points higher than the respective chance of BHS students. The

smallest di�erence between AHS and BHS students is sought out in the skill �α7:

geometry�. This seems reasonable as in prevocational types of school like BHS

geometry may be of more importance than for example the usage of functions.

(4) Education of parents: The education of the parents mostly in�uences the stu-

dents' chance to master the skill �α4: argumentation�: the chance to master α4

is 31 percent points higher for students whose parents completed university than

for students whose parents attended compulsory school. This result may be inter-

preted in connection with results in didactics of math (cf. Prediger, 2009) in which

it is criticized that in school rather mathematical methods and tools are trained

than the justi�cation of the methods and models in practical applications. How-

ever, parents with a university degree may be apt to discuss these justi�cations

and applications with their children.

(5) Number of books in parents' household: The di�erence between students who have

access to many books and students who have access to only a small number of

books is about the same in each of the eight skills: The chance of students who

are provided with many books to master the skills is on average 35 percent points

higher. This result suggests that students who are supported in voluntary read-

ing exhibit generally less problems: they have less di�culties to understand the

formulation of the items and they are more eloquent to express their responses.

(6) HISEI: The largest di�erence between students with high and low HISEI is again

located in the skill mastery probability of �α4: argumentation�: The chance of

students providing high HIISEI to master α4 is 32 percent points higher than the

respective chance of students with low HISEI.

(7) Federal States: The comparison between the Austrian federal states on the skill

level (cf. Figure 5.4.6) re�ects their comparison on the level of a general com-

petence: Wien and Kärnten exhibit rather low results and Oberösterreich and
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Figure 5.4.6: Comparisons between skill mastery probabilities for eight graders in di�er-
ent federal states in Austria based on BIST-M8 data.

Niederösterreich perform well. However, it is striking that Wien has a higher skill

mastery probability in �α4: argumentation� than expected and Burgenland shows

lower results than expected in �α8: statistics�.

It has to be noted that the results of the di�erent subgroups are not mutually indepen-

dent because the groups mix up and correlate in di�erent degrees. For example many

students whose parents own many books and have a university degree attend AHS or

many students with migration status also have a low HISEI.

Above some possible interpretations of the group comparisons are given. They may be

rather considered as approaches and examples for demonstrating the possibilities of mul-

tiple group models with CDMs. Generally these models can be used as a substantiated

empirical basis for further theoretical research about the reasons of di�erences between

groups and for developing targeted methods to reduce these di�erences. For example, for

a deeper analysis of the di�erences in achievement between migrants and non-migrants

it might be helpful that linguists analyze the formulation of the items requiring the dif-

ferent skills for uncovering possible di�erences in the used language with respect to the

number of technical terms or the length of the sentences.
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5.5 Discussion

The present chapter is about comparisons of ability between di�erent groups of Aus-

trian eight graders. The knowledge about inequalities in achievement may facilitate the

development of methods for reducing di�erences and therefore to o�er each individual

student optimal educational chances. These chances are fundamentally important to

reduce further inequalities in economical, political, cultural and social conditions of the

students in their future lives (cf. e.g. Bos et al., 2007).

The study in the present chapter is twofold: Firstly, by conducting a CDM model and

conveniently merging skill classes, the results concerning group comparisons obtained

from the o�cial BIST-M8 analysis with a 2PL model are reproduced. Secondly, the

abilities of speci�c subgroups are compared on the level of underlying skills by applying

a newly developed multiple group approach for CDMs. In this second step particularly

large di�erences between many subgroups are detected in the skill �argumentation�.

On the contrary, the di�erences between the content skills �numbers� and �functions�

kept inconspicuous. As presented here with the BIST-M8 data, the results obtained

from multiple group models for CDMs can be taken as substantiated empirical basis for

further theoretical research about group di�erences.

Similar to the discussion about the application of unidimensional or multidimensional

IRT models in large scale studies (e.g. Magnani, Monari, Cagnone & Ricci, 2006; Voss,

Carstensen & Bos, 2005) there are arguments against and in favor of conducting a mul-

tidimensional model (i.e. a M-IRT model or CDM) for the BIST-M8 data. On the one

hand the arguments against the application of multidimensional models point out the

large correlations between the dimensions (i.e. skills) and as a result thereof that the

main statement can already be captured on one dimension (e.g. AHS students perform

better than BHS students). On the other hand, an argument in favor of applying a

multidimensional model is the recovery of �ne-grained nuances in the comparison of

groups, which may enable even more targeted support (e.g. BHS students should be

preferably supported in interpreting and arguing). Especially for large data sets like

the present one the application of multidimensional models poses no statistical prob-

lems and is unproblematically accomplishable with current computers. The application

of multidimensional models has already been inspired by Goldstein (1979) and is still

excessively discussed (e.g. Gibbons, Immekus & Bock, 2007; Walker & Beretvas, 2003).
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6.1 Summary and discussion

The present work deals with statistically and practically relevant issues of Cognitive

Diagnosis Models (CDMs; e.g. DiBello, Roussos & Stout, 2007; Rupp, Templin &

Henson, 2010) and blends both aspects. CDMs are a family of statistical models which

allow diagnosing abilities of examinees in test situations. This work focuses on students'

abilities in educational tests, but there are several other �elds of application as for

example psychology or biology (Carpenter, Just & Shell, 1990; Ivie & Templin, 2006;

Levy & Mislevy, 2004; Templin & Henson, 2006). Roughly spoken, the analysis of

students' abilities with CDMs is divided into three steps: Firstly, educational experts

de�ne basic abilities, the so-called skills, which are assumed to underly the tested ability.

In a second step, the experts also de�ne in a so-called Q-matrix which of these skills

are relevant for the mastery of each item. Finally, based on the expert information and

the manifest item responses, the students are classi�ed into dichotomous skill classes,

predicting their possession or non-possession of the underlying skills. These skill pro�les

allow a �ne-grained diagnosis of the students' abilities and can be used as targeted

empirical basis for further feedback or support.

Chapter 1 The content of the �rst chapter in the present work is twofold: As a �rst

aspect, the practical relevance of CDMs for recent empirical educational research is

demonstrated. It turns out that CDMs are in line with its demands: The National Re-

search Council (National Research Council, 2001) as well as the OECD (OECD, 2004)

and the KMK (KMK, 2004) claimed detailed diagnostic information, which teachers and

educational administrators can use to identify why students do not perform as expected.

Based on this knowledge, the organizations wish to modify the educational system and

thus to reduce the resulting di�erences in economical, political, cultural and social con-

ditions in the students' further lives. As discussed in Chapter 1, CDMs may yield this

desired information. As a second aspect of Chapter 1, CDMs are embedded in their

133



6 Summary and discussion

statistical modeling framework. Many connections to other model approaches as la-

tent class analysis (Lazarsfeld, 1950), item response models (de Ayala, 2009), knowledge

space theory (Doignon & Falmagne, 1999) and the rule space approach (Tatsuoka, 1983)

are pointed out.

Connections to further models as for example to so-called located latent trait models

(Heinen, 1996), with the skill pro�les corresponding to an ordinal ordered discretized

ability distribution, or, more generally, to the generalized probabilistic Guttman model

(Hanson, 2000; Proctor, 1970) and the latent distance model (Lazarsfeld, 1950) could

be deduced. These connections may yield some further theoretical explanations: for

example the di�erence between the item response functions of the Rasch model and

the H-DINA model discussed in Chapter 4 may be clari�ed (i.e. in the Rasch model

response behavior is modeled on two levels gj and 1 − sj, j = 1, . . . , J , whereas in

the H-DINA model several qualitative levels are modeled). In connection with the

comparison of student classi�cations obtained through the Rasch and the H-DINA model

the work of Bartolucci (2007) could be considered as well. Bartolucci de�nes a discrete

θ ability distribution in which a prespeci�ed number of θ ability levels, the locations

and probabilities of θ are estimated based on the empirical data. A completely new

perspective in recent CDM research would be the classi�cation of generalized CDM

approaches (i.e. G-DINA, GDM or LCDM) into the framework of generalized linear

models (McCullagh & Nelder, 1989) which could expedite the implementation of well-

known and often used methods for CDMs as for example di�erential item functioning

(Holland & Wainer, 1993) or new estimation methods and algorithms (cf. De Boeck &

Wilson, 2004, for a classi�cation of IRT into the framework of generalized linear models).

Furthermore, the EM-algorithm for the estimation of the skill class distribution and the

item parameters yields some new aspects: Is it possible to estimate the DINA model

parameters through descriptive methods (cf. Chiu & Douglas, 2013; George & Ünlü,

2011)? Is the uniform prior of the skill class distribution a prior distribution in the sense

of Bayesian methods (de la Torre, 2009) or is it a set of starting values in the sense

of latent class analysis (Lazarsfeld, 1950)? If the second alternative is true, the EM

algorithm has to be adapted in such a way that it starts with several di�erent skill class

distributions (i.e. stating values) and after the �rst steps of the iteration only continuous

to consider the skill class distributions with largest likelihood values (cf. Linzer & Lewis,

2011, for the estimation of latnet class models).

Chapter 2 In the second chapter the R package CDM (George, Kiefer, Robitzsch,

Groÿ & Ünlü, 2013) is introduced, which has been developed during to this work. The
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R package CDM directly enables parameter estimation of DINA, DINO, G-DINA and

GDM models. Through constraining parameters of the G-DINA approach, the package

also allows parameter estimation of other prominent CDMs as NIDA, NIDO and RUM

models. In Chapter 2 of the present work the handling of the R package CDM is

described by running through the steps for analyzing student response data with CDMs.

The tutorial like chapter includes descriptions of basic methods (e.g. goodness of �t,

parameter interpretation, model comparisons via likelihood) as well as advanced methods

of CDM analysis (e.g. reduction of skill space; establishment of link functions). Recent

simulation studies showed that the estimation of the item parameters and the skill class

distributions in the R package CDM is unbiased and that the RMSEA decreases with

increasing sample size. The speed of the algorithm is at least similar to the calculation

time of other free software packages as the Ox routine by de la Torre and the mdltm

stand alone software by Von Davier. The development of the R package CDM has

been continued up to now and will be further continued. New methods for analyzing

response data with CDMs should be implemented as for example a person �t index (Lui,

Douglas & Henson, 2009), methods for the empirical validation of the Q-matrix (de la

Torre, 2008), additional graphical plot functions and methods for adaptive routines as

for example presented in Chen, Xin, Wang & Chang (2012).

In Chapter 2 the handling of the R package CDM is demonstrated with student response

data of PIRLS 2006 in Germany. As a question of practical relevance it is discussed which

theoretical concept of reading (concerning dimensionality and connections between the

reading skills) underlies the data. Based on the PIRLS 2006 data of Germany, no clear

evidence for one of the discussed concepts was found, neither for the one assuming hier-

archical ordered skills nor for the one emanating from the concept of four parallel reading

processes. Based on a smaller data set, the topic of comparing several di�erent theo-

retical reading concepts is discussed in more detail later on in Chapter 4 of the present

work. In further analysis it might be bene�cial to conduct these in-depth investigations

on the larger PIRLS 2006 dataset. Furthermore, the new results could be compared

in detail to the work of Voss, Carstensen & Bos (2005), who compared IRT models of

di�erent dimensions for the PIRLS 2001 data in Germany.

Chapter 3 In the third chapter of the present work it is shown that for awkward Q-

matrices the individual student classi�cation obtained from DINA models may be not

meaningful or even wrong. For some Q-matrices the students' individual skill pro�les

are somehow randomly chosen: In these cases a whole set of skill classes yields equal

probabilities after convergence of the EM algorithm, whereas typically the skill class
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leading to the largest probability is chosen for the classi�cation of the individual student.

In Chapter 3 it is described how to handle these ambiguous skill classes in the case of

given and unchangeable Q-matrices and how to avoid ambiguous skill classes in the case

of a new Q-matrix construction. From that we can conclude that the Q-matrix is not only

the most sensible part of DINA models if it is wrongly speci�ed by educational experts

(Henson & Douglas, 2005; Rupp & Templin, 2008a; Templin & Henson, 2009; Templin,

Henson, Templin & Roussos, 2008) but also if it has an awkward form. Obviously it

would be bene�cial to expand the �ndings of this chapter to other and possibly more

general CDMs.

Another aspect which arises from the discussion about ambiguous skill classes is the

one about identi�ability of CDMs with di�erent Q-matrices. The basic and to be an-

swered question is whether two CDM models which yield equal values of the likelihood

after convergence necessarily must have equal skill class distributions and equal item

parameters. Already Maris & Bechger (2009) showed the existence of equivalent NIDA

models, i.e. NIDA models with di�erent Q-matrices which are not distinguishable based

on the items and the student responses. Similar but more general results were found

by Bechger, Verhelst & Verstralen (2001) and Bechger, Verstralen & Verhelst (2002) for

the linear logistic test model (Fischer, 1995; Scheiblechner, 1972), by Maris & Bechger

(2004) for item response models with internal restrictions on item di�culty (Butter,

De Boeck & Verhelst, 1998) and by Embretson & Yang (2013) for the multicomponent

latent trait model (Whitely, 1980).

Chapter 4 Chapter 4 of the present work introduces �rst methods for empirically

comparing di�erent qualitative competence concepts. Di�erent quantitative IRT and

CDM models are build, which all involve di�erent underlying competence models (here:

concepts of reading). Whereas for example the Rasch model assumes a model inherent

hierarchy between the de�ned reading competences and their acquisition, an unrestricted

CDM DINA model may describe the assumption of non-ordered parallel reading skills.

Based on the data of the PIRLS-Transfer study no clear preference for one model could

be found, neither for one assuming hierarchically ordered competences nor for a model

assuming no order. There exists at most a slight tendency towards a competence model

assuming three parallel non-ordered reading skills, which are based on the four reading

processes of Campbell, Kelly, Mullis, Martin & Sainsbury (2001). Again it should be

underlined that the attempt to compare di�erent competence concepts involved in dif-

ferent statistical model approaches is not aiming at criticizing the statistical methods

used for the analysis of large scale studies. The main goal of large scale studies is not the
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development of speci�c competence models, but rather the description, the comparison

and the analyses of di�erent educational systems. On the contrary, the present chapter

provides a chance to empirically investigate di�erent theoretical competence concepts

and their dimensionality (for M-IRT models also compare Bartolucci et al., 2012; Hartig

& Höhler, 2009). These considerations may evolve some a�liated aspects: Does reading

work in the same way in all countries, in other words is reading based on the some com-

petence construct in all countries? Do there exist mediator e�ects which have in�uence

on the structure between the reading competences (e.g. if an item is constructed on the

word, sentence or text level; cf. Bredel & Reich, 2008)? Are there connections between

the linguistic complexity of an item task and the students' responses to the item?

Furthermore in Chapter 4 a DINA model is constructed which satis�es the model inher-

ent assumptions of the Rasch model concerning dimensionality and hierarchy between

the competences. Subsequently, the individual student classi�cations obtained from both

models (after transformation) are compared but only rough similarities are found. From

a statistical point of view the di�erence between the student classi�cations is explain-

able through the di�erent forms of item response curves in the two models. It would

be interesting to broaden the conducted comparison of Rasch and CDM DINA models

to multidimensional IRT (M-IRT) models. Up to now there are only a few works which

include a structured comparison of M-IRT and CDM models (e.g. Kunina-Habenicht

et al., 2009). These comparisons could be extended to the measures of absolute and

relative model �t, item and person �t and classi�cation accuracy and reliability mea-

sures presented in the present work. A speci�c aspect of interest is the comparison of

M-IRT and non-compensatory CDMs (as for example DINA models): Whereas M-IRT

models always assume that students may compensate a lack in one skill with another

possessed skill (Reckase, 2009) this is not possible in non-compensatory CDM models.

However there may be situations of learning which assume non-compensatory skills,

e.g. Tatsuoka's (1984) famous test of fraction subtraction test. In the end and irre-

spective of the researchers choice to conduct either IRT or CDM models, future studies

may combine the advantages of both methods as already initiated by Tatsuoka's (2009)

Rule-Space approach and recently continued by Bradshaw & Templin (2013).

Chapter 5 Chapter 5 of the present work is divided into 2 basic aspects, which are

both illustrated with data from the Austrian educational standards testing in math 2012.

On the one hand, it is shown that results of multiple group analysis obtained through a

2PL model can be reproduced by conducting a DINA model: It is recovered that there

are only slight di�erences in the achievement of boys and girls and that considerably
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less APS than AHS students reached the educational standards. Furthermore in�uences

on students achievement correlated with the HISEI index, the number of books in the

parents household and the parents education are rediscovered. On the other hand, a

statistical method for multiple group analysis within the CDM framework is introduced.

The added value multiple group analysis through CDMs instead of 2PL models is dis-

cussed: With CDM multiple group analysis groups of students are not only evaluated on

one general ability (here: math) but rather on underlying basic skills which allows �ner

di�erentiations between the groups. Exploiting this advantage, it is for example found

that, compared to the average di�erence between migrants and non-migrants, migrants

have less di�culties in the domains of numbers and variables than in the �elds of geome-

try and statistics. It may be supposed that the formulation of the item tasks in geometry

and statistics requires more linguistic knowledge than the formulation of item tasks in

the �elds of numbers and variables. Furthermore it was shown that compared to the

average di�erence between APS and AHS students, APS students have less di�culties

in the domain of geometry. This may indicate a teaching style at APS schools which

is more related to practice. Based on such di�erentiated di�erences in ability targeted

feedback, fair comparisons (Opho� et al., 2006) and systems for supporting students can

be developed.

The results in Chapter 5 directly yield three research questions: The �rst question is

whether the multiple group results obtained with a DINA model can also be preserved

with a M-IRT model and if yes, which are the di�erences between both results. Because

of the large sample size of the analyzed educational standards testing data this question

could be investigated in a di�erentiated way. The second question is concerning the

aspect of student classi�cation in DINA models: In each group of the conducted DINA

model high percentages of students are classi�ed to possess all skills. This artifact of

CDM models is known (Kunina-Habenicht et al., 2009) but it has not yet been explained.

Similar reasons as the ones presented in Chapter 3 of the present work seem likely.

However, it became obvious that the interpretations of the educational levels in the

original standards testing analysis and the merged skill classes obtained through a CDM

DINA model are not directly comparable. The third question opens up a topic which

is interesting from a related practical point of view: The group of migrants may be

divided into migrants with origins in the former Soviet region, in the Turkish and in

the southern European region. Di�erences in achievement between these groups may

be analyzed and class related disparities may be considered (cf. e.g. Baumert, Stanat

& Watermann, 2006). Based on that targeted systems for supporting students from

di�erent backgrounds of migration may be developed (cf. e.g. Heckmann, 2008)
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6.2 Main results

In the author's point of view the present work provides three main results:

(1) The usability and applicability of the CDM framework for educational researchers

was increased with the development of the R package CDM. The package allows

�tting CDMs without specialized stand alone software. Several simulation and

retro�tting studies showed the accuracy of CDM results.

(2) The present work shows that through conducting and comparing di�erent CDMs

theoretical assumptions about the order and connections between underlying skills

or competencies can be evaluated empirically.

(3) As mentioned in each of the chapters of this work, CDMs are fundamentally based

on the construction and the form of the Q-matrix. There is an increased need

of developing items which �t the descriptions of the Q-matrices or of essentially

discussing and evaluating the entries of the Q-matrices. Some types of Q-matrices

should be avoided completely. The proper speci�cation of Q-matrices can only be

achieved by an enhanced interdisciplinary cooperation of educationalists, linguists

and psychometricians.

To put it in a nutshell: CDMs are a very sensible modeling approach. A correct usage of

the model framework yields very di�erentiated, feasible and interesting results. On the

contrary, if handled incorrectly, a CDMwill unquestioningly process the most nonsensical

input data and produce nonsensical output following the slogan �Garbage in, garbage

out� (cf. e.g. Butler, Lidwell & Holden, 2010).
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