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Abstract—A proper understanding and modelling of the be-
haviour of heavily loaded large-scale electrical transmission
systems is essential for a secure and uninterrupted operation.
In this paper we present a descriptive analysis especially of
low frequency oscillations within an electricity network and
methods to assess the stability of the whole system based on an
ARMAX model and the ESPRIT algorithm. Further we present
two methods to separate the network into local areas, which is
necessary for an efficient modelling of a large electrical system.
The first method has its foundation in the results of the ARMAX
based stability analysis and the second method concentrates on
the network topology. In the last part of this paper we present an
approach how an modelling of such local areas within an large
electrical system based on stochastic differential equation models
is possible.

I. INTRODUCTION

The European electrical transmission system is operated
increasingly close to its operational limits due to market
integration, energy trading and the increased feed-in by re-
newable energies. For this reason it is necessary to analyse
that part of power that permanently oscillates through the
electrical transmission system with a low frequency. These
so called Low Frequency Oscillations are described and anal-
ysed within a smaller electrical system, the New England
Test System, which guarantees a convenient handling. The
analysis results in a new model which describes each node
of the transmission system over partly excited mechanical
harmonic oscillators. As in a real transmission system, the
harmonic oscillators are connected over mechanical compo-
nents according to the transmission lines of the electrical
system. This model, which is based on a system of differential
equations, is compared with a well established and much more
complex simulation system used at the Institute of Energy
Systems, Energy Efficiency and Energy Economics of TU
Dortmund University. The current work is to optimise the
parameters of the connected mechanical harmonic oscillators
(mass, damping, stiffness and excitation) to get the same be-
haviour for the Low Frequency Oscillations as in the complex
simulation. In addition stochastic elements are implemented in
the differential equations to analyse their impact on the Low
Frequency Oscillations.

To allow the simulation of large transcontinental electrical
systems it is necessary to build smaller local models for
different areas of the whole system to reduce the amount
of transferred data, computational time and communication
latencies. Hence it is necessary to structure the whole electrical

system into such areas. The available transmission lines con-
strain the possible structure and it is desirable to have similar
dynamic behaviour within an area. In Sec. IV we present
a method to use the results of an ARMAX based stability
analysis for the construction of clusters within the system. In
Sec. V we construct the clusters via Spectral Clustering, a
method which uses the static information about the network
topology as the main criterion for the clustering process.
This results in clusters, which follow the constraints of the
available transmission lines. Although these two methods use
completely different information from the electrical system,
the agreement of the results is large, which we will discuss in
Sec. V-A. This makes it possible to get a sensible clustering
even if only one of these information is available.

II. DATA GENERATION

The base for our modelling is a simulation of the
New England Test System (NETS) [1], [3], [4] imple-
mented in the well established energy simulation software
DIgSilent PowerFactory. The New England Test
System is a well known reference system for testing and
evaluation of methods and algorithms for the control of
electrical systems. It consists in total of 39 busbars which
connect 10 generators and 18 loads to the network and are
interconnected by 37 power lines. An abstracted overview of
the system is given in Fig. 1. At all nodes every information
about the electrical characteristics is available.

The simulation software DIgSilent PowerFactory
allows a flexible simulation of complex electrical systems.
Beside static load flow calculations also dynamic simulations
are possible. To examine the dynamic behaviour of the the
electrical system different events are generated. These are
changes of the electrical load in parts of the system and
failure events. The used events for inducing oscillations into
the electrical system are:

• Increase the load at every second node by 5%
• Line outage between node 1 and 2
• Combination of the line outage between node 1 and 2

with a variation of the load at node 4

In our work we use the electro-mechanical simulation mode.
In this mode the behaviour of the electrical system is simulated
in discrete time steps of at least 10 ms. We use this maximum
resolution and record the voltage magnitude and angle at every
bus bar in the network. This builds the data base for the
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Fig. 1: The New England Test System

descriptive analysis in Sec. III and the stability assessment
in Sec. IV.

III. DESCRIPTIVE ANALYSIS

To generate data sets for the descriptive analysis, different
load events were simulated with the established energy sim-
ulation software DIgSilent PowerFactory in the New
England Test System. After 20 s of transient effects, all
chosen events that excite the electrical transmission system
show the characteristics for Low Frequency Oscillations on
the analysed voltage angle and magnitude of about 0.17 Hz.
In the first stage of the statistical part of project 51, the
descriptive analysis shows that the different events result in
different amplitudes for the nodes of the system. The relative
oscillation situation, in contrast, is always the same. This adds
up to the assumption that the topology of the transmission
system mainly determines which nodes show a higher or lower
amplitude of the Low Frequency Oscillation.

The second result of the descriptive analysis is the oscilla-
tion behaviour of the nodes and areas of nodes among each
other. In a time and spatial based analysis the voltage angle
in the NETS system shows three regions, in which the nodes
oscillate in the similar way. The regions are divided by nodes
with a very low amplitude, so that these nodes cannot be
count to any region. A part of the whole analysis is shown in
Fig. 2. The graphics show the amplitude of the voltage angle
proportional to the size of the nodes at the timestamps 33.5 s
and 35.5 s. The regions B and C oscillate in the same way and
with a 180◦ phase offset against the region A. Compared to the

1see: http://for1511.tu-dortmund.de/cms/de/Projekte/Teilprojekt 5/index.
html
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Fig. 2: Visualisation of the voltage angle oscillation in the
energy system

voltage angle, the magnitude shows another behaviour, which
makes it difficult to outline the four regions. Furthermore
the nodes in the system oscillate equally without any phase
offsets between the nodes. Only the amplitudes of the nodes
are different but much smoother than for the voltage angle.
The behaviour over the whole time interval of this scenario
is shown in the video at http://www.statistik.tu-dortmund.de/
∼surmann/NETS Video/Jede2plus5 Schwingung.avi.

Mainly the antithetic oscillations of the voltage angle
makes a direct usage of the first favoured Markov Random
Fields model approach useless. Markov Random Fields model
neighbouring nodes over correlations, which means that this
approach cannot model situations where connected nodes get
full information from their neighbours, but show complete
different behaviours. Furthermore a model is needed in which
it is possible to excite the system close to reality, over a con-
tinuous stochastic excitation. Currently a punctual load change
provides the excitation of the system, which is not realistic.
These issues leads to a model of differential equations, like
a mechanical driven harmonic oscillator that is discussed in
detail in Sec. VI.

IV. STABILITY ASSESSMENT BY SYSTEM IDENTIFICATION
AND CLUSTERING

This section deals with the stability estimation of an elec-
trical transmission network. As electrical power systems tend
to be operated closer to its limits, the stability analysis is of
growing importance. Additionally it is mandatory to get a fast
overview when changes happen in the network, so the real-
time requirement to stability analysis tools is also very high.
The described algorithms are based on the voltage phase angle
data derived from the NETS system.

A. ARMAX based stability analysis

The stability of the distribution network is estimated by the
measured data from multiple phasor measurement units (PMU)
which are placed within the grid. The data from each node is
used to process an ARMAX model within each node of the
network. For the estimation process of an ARMAX model it
is mandatory to have a defined set of input and output data.



With this data an ARMAX model shown in figure 3 can be
estimated.
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Fig. 3: Signal flow for ARMAX model

The mathematical formulation

A(q)y(t) = B(q)u(t− nk) + C(q)e(t) (1)

describes the ARMAX model, where the system polynom-
inal A(q) and B(q) are relevant for the system behaviour.
The polynomial C(q) is used to model the error which the
signal contains. This error mainly consists of noise which
is superimposed to the signal. The three polynomials are
computed from a set of output data y(t) and input data u(t)
and an estimation for the error e(t). The data used for the
modelling process is gained from the node for which the
model is currently computed. For this node, the voltage phase
angle is treated as output. For the input data, each voltage
phase angle of the neighbouring nodes is used. There is no
further data of other nodes used in this process such that
the network topology can be completely unknown. After the
modelling process the eigenvalues of the system polynomial
A are estimated. These eigenvalues give an insight on the
stability of the system. The eigenvalue which is nearest to the
stability border is determined and tracked. This gives a quick
overview of the network stbility margin. In order to provide a
real-time feedback of the system stability, the ARMAX model
is frequently updated and the new eigenvalues are estimated.
The whole process of modelling and the determination of
eigenvalues is done dynamically for each time-step and uses a
data history of about 40s. The sampling of data is done every
10ms, this leads to a very time accurate view of the system
and gives a quick response for changes within the network.
In Fig. 4 an example is given for the data generated by the
simulation of the network. The plot shows the voltage phase
angle at a single node while a line outage between nodes
1 and 2 occurs. To analyse a stable and an unstable case
the line outage takes place under different loading situations
of the network. This is done by varying the load at node 4
between 400MW and 800MW. This power setting is done at
t = 20s while the line outage takes place at t = 250s. In
addition to the excitation by load changes and line outage,
the system is subject to noise caused by all of the loadings
within the network. As it can be seen in Fig. 4 and 5, for a
very high loading of 800MW, the power system reaches an
unstable operating condition.
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Fig. 4: Voltage phase angle at node 6 over time for different
load situations in case of a line outage
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Fig. 5: ARMAX based stability estimation at node 6

B. Esprit

Additionally to the ARMAX based approach, a subspaced
based identification technique is used to estimate the frequen-
cies within the power system. This approach is based on the
ESPRIT algorithm. It provides a fast and efficient estimation
of the spectral components of the measured signal as shown in
[5]. While this method is less complex than the ARMAX based
stability criterion, it lacks the possibility of generating clusters
from the generated data as shown in IV-C. The main advantage
of an ESPRIT based stability criterion is the faster computation
and the smaller data history used for the calculations. While
the data history needed for the ARMAX model is 40s the
ESPRIT based algorithm suffices with 6s. This great difference
is caused by the large amount of data which is needed to
get a reliable representation of the system for an ARMAX
model. As there is no modelling of the system for the ESPRIT
based algorithm, the dataset required for an estimation of the
frequencies and power spectra is therefore much smaller. This
leads to a faster reaction on events occuring within the network
by using the ESPRIT algorithm.

The ESPRIT algorithm is based on the m ×m correlation
matrix R̂yy of the signal y(t), which in this case is the voltage
phase angle of the node, where the stability criterion shall
be calculated. For this matrix an Eigenvalue decomposition



R̂yy = Û Λ̂Û∗ is computed. Matrix Û is sorted according
to the Eigenvalues in descending order and is separated into
noise and signal space Ŝ. The signal space matrix is then
decomposed to Ŝ1 = [Im−1 0]̂(S) and Ŝ2 = [0 Im−1 ]̂(S)
and the Matrix Φ̂ is estimated as Φ̂ = (Ŝ∗2 Ŝ2)−1Ŝ∗2 Ŝ1. The
Eigenvalues χ̂i of Φ̂ yield the frequencies ω̂i = arg(χ̂i)
contained in the original signal y(t). From the frequencies
the spectral power is determined by evaluating the following
function:

f(ω) =

[∣∣∣∣ n∏
k=1

ejω − |χk|ejωk

∣∣∣∣2]−1 (2)

As shown in Fig. 7, the ESPRIT based stability criterion is
the estimated power of the signal.

P (f) =
1

eH(f)(
N∑

k=p+1

vkvHk )e(f)

=
1

N∑
k=p+1

|vHk e(f)|2
(3)

For an unstable network setting this estimated power tends to
gain great values. Compared to Fig. 5, it can be seen that
not only an unstable case can be identified but it is also
possible to estimate the severity of the failure by accounting
the information of the estimated power value. On the other
hand, the ARMAX based approach allows a better stability
estimation prior to the failure when the amplitudes of the
oscillating signal are still very low.

C. ARMAX based Clustering

As the ARMAX based modelling process is done in each
of the network nodes, it is possible to obtain a time series of
eigenvalues for each node. When this information is exchanged
within the network and gathered at a central place, it is
possible to analyse the correlation of these synchronised time
series for the whole network. It has been shown that there
are certain areas with a very similar behaviour, while other
network nodes show a completely different progression. Based
on the correlation between these time series data it is possible
to cluster the network nodes. As an example Fig. 6 shows
the clusterization of the NETS network with an excitation of
800MW at node 4. Additionally the network partitioning is
examined in Sec. V. In that section mainly statically known
parameters like line impedances are used as basis for the
clustering process. Although a different data basis is used, the
cluster results of both methods show a very similar behaviour,
see Sec.V-A.

D. Further Work

Currently, there are two approaches for improving the sta-
bility analysis handled in this section. The first one describes
an additional stability indicator based on Eigenvalues. The
Eigenvalues estimated from the ARMAX models show the
tendency to produce bifurcations. These bifurcation indicate
sudden changes in stability for the system and therefore can be
used as an additional and reliable stability indicator. To evalu-
ate these bifurcations, it is mandatory to track each Eigenvalue
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Fig. 6: Network clustering by ARMAX identification
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Fig. 7: ESPRIT based stability estimation at node 6

over time. The second approach aims at the clusterization
process. To get a better insight into the changes of clusters
formed by the network, it can be useful to track the correlation
information between the Eigenvalue progression for each node
pair. If the correlation between a node pair undergoes a great
change, it is an indication for a topological change within
the network. This information can then be escalated from
the bottom of the network (the nodes) to an information
aggregator. As the nodes have the intelligence to see their
own changes in cluster membership, there will only be data
transmitted if it is required.

V. CLUSTERING OF NETWORK GRAPH

In highly distributed electrical systems like the transconti-
nental Continental European system of the European Network
of Transmission System Operators for Electricity a centralized
stability assessment as described in Sec. IV or modelling of
the network behaviour as presented in Sec. VI is usually not
feasible. The necessary amount of communication to gather all
data and the time for the analysis take often a not acceptable
amount of time for the secure control of such a large electrical



system. Hence it is necessary to distribute these calculations
into local data centers and feed them only with the relevant
information for their region. To allow such a distributed
analysis, the electrical system has to be divided into regions. In
Sec. IV-C we have presented a method to get such a structure
out of a stability analysis of the system. For this method only
the dynamic behaviour of the nodes is analysed. The network
topology is not relevant.

In this section we use the network topology of the electrical
system for the clustering. The topology is described by the
nodal admittance matrix A. With the total number of nodes
n and aij the admittances of all direct power lines between
node i and j, the entries of the admittance matrix are defined
by

Aij =

{
−aij i 6= j∑n
k=1 aij i = j

The admittance can be interpreted as a similarity measure
between the nodes in the network graph. If there is no direct
connection between two nodes, the corresponding entry in the
matrix is zero. The result is a neighborhood matrix, which is
singular. In order to make this matrix strict diagonal dominant
and in consequence invertible we enlarge all diagonal elements
by a factor of 1.1:

A′ij =

{
Aij i 6= j

1.1 ·Aij i = j

We get our final similarity matrix S by inversion of A′:

S = A′−1

Spectral clustering is a method for the clustering of an
undirected graph with respect to the neighborhood structure.
It is a collective term for clustering methods which are based
on the eigenvalue structure of a matrix. Our method uses the
algorithm by Ng, Jordan and Weiss [2].

First our similarity Matrix S is normalized using the diag-
onal matrix D with Dii =

∑n
j=1 Sij :

L = D−
1
2SD−

1
2

Then we calculate the eigenvalues and vectors and use the
eigenvectors of the K largest eigenvalues in decreasing order,
where K is the desired number of clusters, to build the
columns of matrix E. The rows of E are standardized by

Esij =
Eij(∑K

j=1E
2
ij

) 1
2

.

In the end the matrix Es is clustered by K-means. K-
means is an iterative optimization method to find the cluster
configuration C =

⋃K
j=1 Cj , where Cj is the set of all

network nodes in Cluster j, that minimizes the sum of squared
euclidean distances de(xi,mj) between the nodes xi and their
corresponding cluster center mj

Co = arg min
C

K∑
j=1

∑
m∈Cj

d2(xm,mj)
2,

by alternating in every iteration t between the reassignment of
all nodes to their new cluster

Ctj =
{
xi|d2(xi,m

t
j) ≤ d2(xi,m

t
j′)∀j′ = 1, . . . ,K

}
and recalculating the new cluster centers

mt
j =

1∣∣Ctj∣∣
∑
xj∈Ct

j

xj

until convergence. The algorithm is initialized by choosing K
nodes of the electrical system at random for the initial cluster
centers m0

j .
The drawback of K-means is the risk of not finding the

global optimum. Restarting the algorithm for a few times with
different initial cluster centers reduces this risk.

An alternative to K-means is the usage of agglomerative
hierarchical clustering with average linkage and the Euclidean
distance. This method is for large numbers of nodes a lot
slower than K-means, but always finds the global optimum.
The results of both methods are equivalent if K-means finds the
global optimum, hence they can be easily exchanged, whether
the higher precision of hierarchical clustering or the higher
speed of K-means is more important in the final application.

The final clustering of the NETS into K = 4 clusters is
shown in Fig.8.

1

2

3

45

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21
22

23

24

25
26

27

28
29

39

Fig. 8: Spectral Clustering of the New England Test System

One of the important questions for the future work is the
definition of a quality criterion for the clustering in order to
automatically find the optimal number of clusters. If such
a quality criterion has been found, it may be necessary to
include further static information into the similarity matrix, for
example characteristics of the generators or even the results
of a static power flow calculation.

A. Comparison of Clustering results

In Fig. 6 and Fig. 8 the clustering results based on the
stability analysis and on the network topology are shown. The



clustering based on the stability analysis favours a result with
two more clusters (K = 6). It splits the red cluster in Fig. 8
into two and uses an additional cluster for the interconnecting
nodes between the green and blue cluster. The remaining
nodes show a large aggreement on their cluster assignment.
Island nodes like the one with number 1 in Fig. 6 are a
result of ignoring the network topology in the ARMAX based
clustering process. A combination of the network topology
and stability based clustering methods could be an interesting
goal. As a result we could get a clustering of the electrical
system, which is based on the the stability assessment by the
ARMAX model and respects the network topology.

VI. DIFFERENTIAL EQUATION MODEL

A simple example for a Differential Equation Model is
illustrated by a mechanical harmonic oscillator, which consists
of a mass and a spring. The mass is connected to a fixed point
over the spring and oscillates permanently after a punctual dis-
placement, because the spring generates a force proportional to
how far it is stretched and acting in the opposite direction to
the stretch. A more general harmonic oscillator additionally
includes a damper and an external excitation, the so called
driven harmonic oscillator. The damper connects the mass to
the fixed point, like the spring, and generates a damping force
that resists the motion and is proportional to the velocity of
the mass. The excitation applies an external force to the mass,
which is added to the spring and damping force. This changes
the acceleration of the mass over Newtons second law and
thereby the impact of the spring and damper. The mechanical
driven harmonic oscillator describes a second order differential
equation.

A. Identify the Energy System with harmonic oscillators

The driven harmonic oscillator was chosen to describe the
differential equations, because it can be identified to the parts
of an electromechanical energy system. A mass represents
the inertia of a generator or a load, the spring its reactance.
Over the damper it is possible to model the resistance, which
extracts energy from the system. The excitation, in contrast,
adds an external force to the electromechanical system, that
can be identified with the turbine. Furthermore it is possible
to identify the position of the mass with the magnitude and
the velocity with the angle of the voltage. Another reason to
choose the mechanical oscillator is the easy way to increase the
complexity of the differential equation model without losing
the overview. To model a generator with two loads in a row,
connect one driven oscillator and two oscillators without an
external force at its masses over pairs of springs and dampers.
One spring and one damper connects the mass of the driven
oscillator to the first non-driven mass, and another pair of a
spring and a damper connects the second non-driven mass to
the first non-driven mass. In this case, the pairs of springs and
dampers between the harmonic oscillators can be identified
with the power lines in an electrical transmission system.

B. Stochastic excitation

One requirement for the differential equation model was the
potential to model the excitation in a continuous stochastic
way. This type of excitation is necessary, because an initial
analysis with a fixed sinusoidal driving force at 50 Hz shows,
that the differential equation model swings in a steady state
condition with a fast disappearing Low Frequency Oscillations.
In addition, the analysis shows that a sinusoidal force at 50 Hz
is inappropriate to excite the model, because the differential
equation model is built to model Low Frequency Oscillations,
not the power supply frequency of 50 Hz. This leads to an
excitation force F (t) = 0, which describes a generator with
no differences from the desired frequency. In this case the
mass of the harmonic oscillator stands still at its starting point
x = 0 with its starting velocity v = 0, because the modelled
generator is in a steady state condition. A continuous force
F (t) = c, with c > 0, models a punctual load change,
described in Sec. III. In this case, the mass starts to oscillate,
because the modelled generator was disturbed and tries to
find the new steady state condition. In this model the external
excitation force describes the distance from the desired supply
frequency.

To model the excitation in a stochastic way the excitation
force F is modelled by an AR(1) process Ft with

Ft = c+ α · Ft−1 + εt (4)

where c is a constant, α ∈ (0, 1) is a parameter and εt
iid∼

N (0, σ2). The process starts at the desired value of F0 = 0.
To get an expected value E(Ft) = µF = 0 the constant c
must be c = µF (1 − α) = 0. The variance Var(Ft) = σ2

F of
the stochastic process is σ2

F = σ2

1−α2 . With this equation the
value α can be calculated from a desired variance and vice
versa. The AR process rates large difference to the expected
value higher, than small differences if α < 1, and attract the
process to the expected value. The process is weak stationary.
This behaviour is close to reality, where a large difference to
the desired frequency is worse than small differences.

C. Modelling

To model the voltage angle and magnitude of the simulated
NETS in PowerFactory, a differential equation model
with the corresponding characteristics was build. The model
consists of 30 harmonic oscillators, one for every node, that
are connected over 46 spring-damper pairs to model the power
lines. A first analysis of this model, with a manual chosen
set of parameters (masses, stiffness and damping constants,
excitations) for the harmonic oscillators, shows a Low Fre-
quency Oscillation in the position and velocity of the masses
after the transient time interval. As in PowerFactory the
position and velocity of the masses refer to a referee generator.
The observed Low Frequency Oscillation disappears in the
following 100 s, because the excitation in this first analysis
is not appropriate for this model as described in Sec. VI-B.
Currently, a method is developed to estimate the parameters



(masses, stiffness and damping constants, excitation ampli-
tudes) of the differential equation model to get a corresponding
behaviour of the nodes in the model to the simulation data
from PowerFactory. The method takes, on the one hand,
the information of the existing NETS system. For instance, a
short power line with a low impedance should be represented
by a strong spring, because both forward information directly.
On the other hand, the method should work with the simulated
data, to ensure an adequate model. After the parameter esti-
mation, an analysis of a simulation study will show whether
the stochastic excitation keeps the Low Frequency Oscillation
in the model. Furthermore the study will answer the question,
if it is possible to excite a Low Frequency Oscillation when
switching from a steady state differential equation model with
a fixed excitation to a stochastic driving force.

D. Further Work

The future development will show whether a stochastic
excitation is sufficient to model the Low Frequency Oscillation
in the differential equation model. If this is not the case, it is
possible to add stochastic processes to the masses of the loads
and after that, to the springs and dampers in the model. In this
approach the layout of the stochastic processes is important.
If a desired Low Frequency Oscillation requires a stochastic
process with a too large variance for the excitation frequency
it is not possible to identify the process to real deviations in a
power plant. An equivalent argumentation can be obtained to
all parameters of the model, because the elements in the model
identify parts of the real electromechanical energy system.

An important part of the energy system are the controllers
for the frequency of power plants. These controllers adjust
the frequency of a power plant that moves away from the
desired frequency of 50 Hz. Due to the fact, that every power
plant adjusts its frequency by a controller their interactions
can cause in an oscillation of power plants generators against
each other. This gives a further optimisation potential of the
differential equation model by implementing a basic controller
to the driven harmonic oscillators that identify the generators
in the model. With a controller for the excitation frequency
the model gets the ability to adjust its frequency depending
on the current frequency of the corresponding moving mass.

From the estimated parameters of the differential equation
model, an in-depth analysis of the harmonic oscillators, for
example, its eigenfrequencies will be interesting. The analysis
can figure out groups of oscillators, that have different param-
eters, but react similar to external excitations.

VII. SUMMARY

At the beginning of the DFG research unit 1511 the descrip-
tive analysis gives a basic understanding of the simulated data.
To decode the dynamic processes in the electrical transmission
system was important for the further work. Especially the
understanding of the interacting behaviour between the gener-
ators helps to find an adequate model approach, the currently
favoured differential equation model, which is illustrated by
mechanical driven harmonic oscillators.

In the following research a model, with respect to the
New England Test System, was build, that contains 30
connected driven harmonic oscillators. A first analysis of the
differential equation model shows the Low Frequency Oscil-
lations in this model. In the current development a stochastic
process in the frequency of the external excitation is studied to
analyse its potential to excite the Low Frequency Oscillations.
If necessary, it is possible to implement stochastic processes
in every part of the harmonic oscillators. A future concept is
the implementation of basic controllers, close to controllers
in a power plant, that adjusts the excitation frequency if the
frequency of the corresponding mass differs from the desired
frequency. This can optimise the differential equation model
to show antithetic oscillations between generators.

Furthermore, the analysis of the network stability has been
discussed. An ARMAX and an ESPRIT based approach has
been proposed. In combination these two methods lead to
a comprehensive view on the stability level of the observed
system. Additionally it is possible to gain clustering informa-
tion from the implmented ARMAX based modelling methods.
These clustering results have been compared to impedance
based statical clustering and show a consistency. It can be
seen that the cluster centres are the same for both methods.
The main differences are experienced to the bordering nodes of
a cluster. With this information, it is possible to get a detailed
stability estimation of the network which can assist in control-
ling the network and protection of endangered transmission
lines.
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