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Thilo A. Schmitt1, Rudi Schäfer1, Dominik Wied2, and Thomas
Guhr1

1Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg,
Germany

2Fakultät Statistik, TU Dortmund, 44221 Dortmund, Germany
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We analyze a recently proposed spatial autoregressive model for stock re-
turns and compare it to a one-factor model and the sample covariance ma-
trix. The influence of refinements to these covariance estimation methods is
studied. We employ power mapping as a noise reduction technique for the
correlations. Further, we address the empirically observed non-stationary be-
havior of stock returns. Local normalization strips the time series of changing
trends and fluctuating volatilities. As an alternative method, we consider a
GARCH fit. In the context of portfolio optimization, we find that the spatial
model has the best match between the estimated and realized risk measures.
(JEL: G17, C33)

1 Introduction

The covariance matrix of stock returns plays a crucial role for portfolio optimization,
see Markowitz (1952). Finding the portfolio weights that yield minimum risk given a
desired portfolio return requires the best possible estimation of the future covariance
matrix. A natural approach is to estimate the sample covariance matrix using historical
data, assuming that the recent past is a good predictor for the future. The length of the
historical time series which can be used for covariance estimation is often rather short.
In particular in emerging markets, the total length of the available time series may be the
limiting factor. Another consideration is the non-stationarity of the financial markets,
see, e.g., Longin and Solnik (1995), Bekaert and Harvey (1995) and Münnix et al. (2012):
The correlation structure changes with time. Hence, to achieve a decent estimate of the
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current or future covariance matrix, we should only take into account rather recent data.
However, since the sample covariance matrix for n assets requires n(n+1)/2 parameters
to be estimated, the finiteness of the time series leads to a considerable amount of
measurement noise, see Laloux et al. (1999), Bouchaud and Potters (2009), Plerou et al.
(1999) and Plerou et al. (2002). As pointed out by, e.g., Pafka and Kondor (2002, 2003),
this has dire consequences for portfolio optimization, but can be mitigated to a large
extent by noise reduction techniques. Here we will concentrate on one such technique,
the power mapping, which has been introduced in Guhr and Kälber (2003) and further
studied in Schäfer et al. (2010).

An alternative approach to reducing the noise in sample covariance matrices is to
consider a model for the correlation or covariance matrix which entails fewer parameters.
Many models have been proposed to reduce the number of parameters which have to be
estimated, see Pantaleo et al. (2011). Here we consider a simple one-factor model, see
Sharpe (1963), where 2n+1 parameters have to be estimated. In addition, we study the
spatial autoregressive model for stock returns, which was recently introduced by Arnold
et al. (2013). One particular feature of the spatial model is its ability to produce reliable
Value-at-Risk (VaR) forecasts. This is partly due to the fact that the model captures a
lot of dependence with a small number of parameters. It involves only n+3 parameters,
3 for the dependence and n parameters describing the individual volatilities.

A specific issue we want to address in this paper concerns the empirically observed
non-stationarity of financial time series. We are going to study the influence of sudden
changes in local trends and volatilities on the covariance estimation methods described
above. In particular, we investigate how the estimation of the spatial parameters is af-
fected. We suggest the following refinements to substantially improve covariance estima-
tion methods: The well known GARCH(1,1) model (see Bollerslev (1986) and Bollerslev
et al. (1988)) can be utilized to remove the fluctuating volatilities in the return time se-
ries and to predict future volatilities. This approach is compared to a local normalization
method, recently introduced by Schäfer and Guhr (2010), and a short-term historical
prediction of the individual volatilities. Moreover, we apply the above mentioned power
mapping to reduce the noise in the correlation matrices. We study the influence of these
refinements on each of the covariance estimation methods and the implications for port-
folio optimization. To this end we consider the stocks of the Euro Stoxx 50 and use the
realized portfolio variances as a risk measure. We compare the results to the predicted
portfolio variances. We analyze the VaR forecast quality in more detail by comparing
it to predicted and realized variances. Comparing different models with respect to their
VaR forecast ability is a quite common approach in the literature, see e.g. Santos et al.
(2013). While it were basically possible to include still other models like a multivariate
DCC model, see Engle (2002), in the study or to account for possible structural breaks
in the model parameters (in the spirit of Wied (2013)), we have decided to focus on
the present models in order to keep the presentation clear. In fact, the current analysis
is in our opinion sufficient for the main results: It is extremely important for covari-
ance estimation to take into account non-stationarity of financial time series and the
measurement noise. And while using GARCH residuals and volatility forecasts yields
comparable results, the combination of local normalization and short term historical
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volatilities requires much shorter time series.
The paper is structured as follows: Section 2 presents the above mentioned methods

for estimating the covariance matrix of stock returns. In Section 3 we discuss the refine-
ments to these methods, which aim at removing changes in local trends and volatilities,
improving the quality of volatility predictions, and reducing estimation noise. Section
4 details the portfolio optimization technique and the data set under consideration. In
Section 5 we discuss the results of the covariance estimation and VaR forecasts, and we
summarize our findings in Section 6.

2 Covariance estimation

The covariance matrix is a crucial input parameter for many risk assessing methods in
finance, such as portfolio optimization. Due to the non-stationarity of financial markets
the estimation of the covariance matrix is a non-trivial task. The natural way is to
calculate the sample covariance matrix from the time series. As usual, we use the
definition Ĉov(yt) = 1

T−1

∑T
t=1(yt − ȳ)(yt − ȳ)′, where ȳ is the mean of the time series.

The sample covariance matrix requires the estimation of n(n+ 1)/2 parameters. If the
covariance matrix is calculated on a short time horizon it contains a great degree of
noise. For larger time horizons the predictive power of the covariance matrix decreases
as the market constantly changes. In Section 2.1 and 2.2 we discuss two models that
require less parameters to be estimated to determine the covariance matrix.

2.1 One-factor model

The simple one-factor model radically reduces the amount of parameters to estimate by
assuming that the change of all assets is tied to one factor, e.g. a market index. It was
first used to improve portfolio optimization by Sharpe (1963) and decreases the amount
of parameters to estimate to 2n+ 1. A comprehensive description of the model is given
by Jorion (2007), p. 192 ff. The one-factor model assumes that the stock returns can be
described by

yt = α+ βym,t + ηt , (1)

where the n-dimensional vector yt contains the returns for all stocks 1 . . . n at time t.
The scalar ym,t describes the market return, e.g. is calculated from a stock market index.
The vector β = (β1, . . . , βn) contains a constant for each stock which must be estimated,
for example with a linear fit (ordinary least squares-estimator) separately for all stocks.
The fixed intercepts’ vector α can be neglected in the context of risk estimation as it
contains no randomness. Assuming that the error terms in ηt are uncorrelated to each
other the covariance matrix of yt is given by

Cov(yt) = ββ′σ2
m +Dη (2)

with a matrix Dη = diag(σ2
η1, . . . , σ

2
ηn) that contains the variances of ηt on its diagonal

and which can be estimated by standard ordinary least squares methods. The one-factor
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model requires an estimation of n entries for the β vector and the n diagonal elements
of Dη, plus one for the market volatility σm.

Given the parameter estimates, we can directly obtain a parametric estimate for
Cov(yt).

2.2 Spatial dependence model

The spatial dependence model introduced by Arnold et al. (2013) is based on the assump-
tion that a lot of the cross-sectional dependence between the stock returns can be cap-
tured by three different types of dependence: A general dependence, dependence within
industrial branches and dependence based on geographic locations. For an overview of
spatial dependence modeling see Anselin (1988), Cressie (1993) and LeSage and Pace
(2009). Formally, we have the spatial autoregressive model

yt = ρgWgyt + ρbWbyt + ρlWlyt + εt , t = 1, . . . , T (3)

where ρg is a scalar parameter measuring the general dependence, ρb is a scalar parameter
measuring the dependence between industrial branches and ρl is a scalar parameter
measuring the dependence based on geographic locations. Wg, Wb and Wl are spatial
weighting matrices. The stochastic component in this model stems from the error vector
εt. Given the basic model assumption it is plausible to assume that its covariance matrix
has uncorrelated entries although heteroscedasticity is allowed.

The non-diagonal elements of the matrix Wg are set to the normalized market capital-
ization of the corresponding assets. For the matrices Wb and Wl the element in the i-th
row and j-th column is non-zero if the i-th and j-th asset are in the same branch (Wb)
or country (Wl). The non-zero elements are set to the normalized market capitalization
of the asset in each row.

If the three parameters are known, the covariance matrix of the vector yt is given by

Cov(yt) = (In − ρgWg − ρbWb − ρlWl)
−1Σ(In − ρgW ′g − ρbW ′b − ρlW ′l )−1 , (4)

where Σ is the covariance matrix of the error term εt and In is an n×n identity matrix.
The error terms are assumed to be uncorrelated, so all off-diagonal elements of Σ are
zero. This leads to n additional parameters. The model uses n + 3 parameters which
are best estimated by a two-step procedure that is based on the generalized methods of
moments (GMM) approach, see Arnold et al. (2013) and in addition Lee and Liu (2009)
and Lin and Lee (2010). Again, given the parameter estimates, we can directly obtain
a parametric estimate for Cov(yt).

3 Refined methods of covariance estimation

We discuss four approaches to enhance the predictive capabilities of the methods dis-
cussed in Section 2. The GARCH residuals (Section 3.1) and local normalization (Section
3.2) reduce the empirically observed non-stationarity of return time series with regard
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to the volatility. The power mapping method discussed in Section 3.3 is aimed at de-
creasing the noise in a correlation matrix. In Section 3.4 we explore additional methods
to estimate the volatilities of the individual stocks.

3.1 GARCH residuals

The return time series has a fluctuating volatility which can lead to estimation errors
in parameters derived from the time series. To improve the estimation it is desirable to
remove these fluctuations from the return time series. This is possible by modeling the
returns with a GARCH process introduced by Bollerslev (1986) as a generalization of
the ARCH process invented by Engle (1982). We fit the GARCH(1,1)-model

Xt =σtεt (5)

σ2
t =α0 + α1X

2
t−1 + β1σ

2
t−1 (6)

to the historic data to estimate the parameters α0, α1 and β1. Here, (εt)t∈Z is a strong
white noise process with var εt = 1 and E[εt] = 0. The conditional variances σ2

t can
replicate the fluctuating volatilities in empirical time series. Hansen and Lunde (2005)
have shown that in most cases a GARCH(1,1) is sufficient to capture the return time
series. Then we use the GARCH residuals

εt =
Xt

σt
(7)

to receive a return time series, where the volatility fluctuations are removed to the degree
the return time series fits the GARCH process.

For the comparison in Section 5, we use a rolling window of T = 100 trading days to
estimate model parameters. This window is too small for the GARCH fit to converge.
Therefore we use a rolling window of TGARCH = 1000 trading days to estimate the
GARCH parameters. We emphasize that this larger window is only used to estimate the
GARCH parameters.

3.2 Addressing local trends and changes in volatilty: local normalization

Estimating the GARCH parameters requires a rather large time window. Therefore we
use a second method called local normalization introduced by Schäfer and Guhr (2010).
It removes local trends and changes in volatility without altering the cross-correlations
between time series. The local average of a function is defined as

〈ft〉m =
1

m

m−1∑

j=0

ft−j∆t , (8)

where ∆t is the return interval. Then the locally normalized returns are given by

ρmt =
rt − 〈rt〉m√
〈r2
t 〉m − 〈rt〉2m

, (9)
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where we first subtract the local mean value 〈rt〉m from the return rt and then divide
by the local volatility. As shown by Schäfer and Guhr (2010) a value of m = 13 yields
optimal results for daily stock returns.

3.3 Noise-reduction: power mapping

The correlation matrix of financial assets contains a significant amount of noise, which
can be seen by comparing the eigenvalue density of a correlation matrix to a random
matrix, see Laloux et al. (1999). The part of small eigenvalues, called the bulk part,
exhibits the same shape for both matrices. They only differ for larger eigenvalues,
which can be associated to industrial branches. The natural method to reduce the noise
would be to increase the length of the time series to calculate the correlation matrix
from. This is not a feasible way to predict the future correlation matrix, because the
relationships between companies constantly change, as they start competing on new
markets or discontinue their activities in one field. Several methods have been proposed
in the past to reduce the noise, while keeping the times series short, e.g. see Gopikrishnan
et al. (2001) and Giada and Marsili (2001).

Here we discuss the power mapping method introduced by Guhr and Kälber (2003)
to reduce the noise in a correlation matrix. Every entry of the correlation matrix C is
substituted by

C
(q)
ij = sign(Cij) |Cij |q (10)

yielding the noise reduced correlation matrix C(q). Notice that the diagonal elements
are equal to one and thus not affected by power mapping. In general, the optimal value
for the parameter q depends on the time horizon T on which the correlation matrix is
calculated, i.e., the degree of noise in the correlation matrix. However, power mapping
is a very robust method which yields good results for a wide range of q values around
the optimal one, as discussed in Schäfer et al. (2010). Here, we use q = 1.5.

3.4 Volatility forecast

The correlation matrix needed for the power mapping method can be calculated from
the covariance matrix by dividing each element of the covariance matrix

Cij =
Cov(yt)ij
σiσj

(11)

by the respective volatilities σi and σj . In case of the sample covariance matrix we
use the standard deviations of the returns calculated on the rolling window of T = 100
trading days. There is a plethora of possible methods or models to forecast volatility, see
Poon and Granger (2003) for a review. Here, we use standard deviations from historic
time series and the predicted volatilities from a GARCH fit. For the one-factor and
the spatial dependence model we use the model specific volatilities from the diagonal of
the covariance matrix in Equation (2) and (4), respectively. Then we can apply power
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mapping to the correlation matrix. For the portfolio optimization in Section 4.2 we use
the covariance matrix

Cov(yt)ij = Cij σ̂iσ̂j . (12)

At this point we could use the same volatilities as in Equation (11) σ̂i,j = σi,j or we can
use other methods to estimate the volatility. We use two additional ways to calculate
the volatilities. First, we calculate the standard deviation from the unaltered returns,
i.e. with no further methods applied to them, in a rolling window of Tvol = 14 trading
days. Here we assume that the volatility in the past three weeks is a better indicator for
the future standard deviation compared to the longer horizon of T = 100 trading days.

Second, we can use the parameters from the GARCH fit described in Section 3.1 to
predict the volatilities for the next trading day according to Equation (6).

4 Application to portfolio optimization

4.1 The data set

We use the adjusted daily closing prices for a collection of 49 stocks contained in the
Euro Stoxx 50. It includes companies from various countries in the eurozone and spans
across different branches. We had to remove GDF Suez because of incomplete data
due to the merger. The data is taken from Thomson Reuters Datastream. A complete
list of the stocks including their industrial branch and country as used in the spatial
dependence model is given in Table 1. Nokia and CRH from Finland and Ireland are
put together in the country group “others” because groups are not allowed to contain
only one entry to avoid singularities. The observation period ranges from January 2001
to May 2012. We calculate the logarithmic returns from the adjusted prices. Table 1
gives an overview of the used stocks.

4.2 Portfolio optimization

We compare the effects of the methods discussed in Section 3 on the covariance estimation
techniques of Section 2. For each covariance matrix, we perform a portfolio optimization
to determine the minimum variance portfolio, see Markowitz (1952) and also Markowitz
(1959) and Elton et al. (2006).

We estimate each covariance matrix Cov(yt) =: V on a rolling window of 100 trading
days. The covariance matrix yields the portfolio weights

V̂ −1τ

τ ′V̂ −1τ
(13)

for the minimum variance portfolio, where τ is a vector containing only ones. The
predicted portfolio variance is then

σ̂2
port :=

(
τ ′V̂ −1τ

)−1
. (14)

7



Table 1: The data set

Automobile BMW (Germany), Daimler (Germany), VW
(Germany)

Basic industry Arcelor Mittal (Benelux), CRH (Ireland), Saint-
Gobain (France), Vinci (France)

Consumer electronics Nokia (Finland), Philips (Benelux), SAP (Ger-
many), Schneider (France), Siemens (Germany)

Consumer Retail Anheuser Busch (Benelux), Carrefour (France),
Danone (France), Inditex (Spain), L’Oreal
(France), LVMH (France), Unilever (Benelux)

Energy E.ON (Germany), ENEL (Italy), ENI (Italy),
Iberdrola (Spain), RWE (Germany), Repsol
(Spain), Total (France)

Finance AXA (France), Allianz (Germany), BNP
(France), Banco Bilbao (Spain), Banco San-
tander (Spain), Deutsche Bank (Germany),
Deutsche Börse (Germany), Generali (Italy),
ING (Benelux), Intesa (Italy), Münchener Rück
(Germany), Société Générale (France), Uni-
credit (Italy), Unibail-rodamco (France)

Pharma and chemicals Air Liquide (France), BASF (Germany), Bayer
(Germany), Sanofi (France)

Telecom and media Deutsche Telekom (Germany), France Tele-
com (France), Telecom Italia (Italy), Telefonica
(Spain), Vivendi (France)

The estimated portfolio variance is then used to calculate a Gaussian value-at-risk
(VaR) for a given α-quantile uα

V̂aRα = uα

√
σ̂2

port . (15)

In this setup it is possible to calculate the VaR on a daily basis and compare it to the
realized portfolio returns.

5 Results

5.1 Spatial parameters

Figure 1 shows the influence of local normalization on the parameter estimation for the
spatial dependence model. The three parameters of the spatial dependence model are
calculated for a rolling time window of T = 250 days. The dashed lines show the param-
eters calculated from the original returns. The solid lines present the three parameters
with local normalization applied to the returns. Especially during the financial crisis
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of 2008 a strong jump is noticeable in the general and branch spatial parameters. This
coincides with the peaking volatility during this turbulent time. The artifact which has
the same width as the rolling window vanishes when applying the local normalization.
We note that the use of GARCH residuals yields similar results.
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Figure 1: The parameters ρg, ρb and ρl are shown from top to bottom estimated at
each trading day for an interval of 250 days. The solid lines are with local
normalization applied to the returns, while the dotted lines are estimated from
the unaltered returns.

5.2 Portfolio variances

First, we discuss the impact of each method presented in Section 3 on the realized
portfolio variances. Then, we examine how combinations of the methods effect the risk
assessment. The realized portfolio variances are given in Table 2. The table is structured
as follows: The second column states which returns were used. We can use the original
returns, the GARCH residuals or the locally normalized returns. The volatility forecast
method is specified in the third column. The fourth column indicates whether or not
power mapping was used to suppress the estimation noise. The last three columns show
the results of the realized portfolio variances for the spatial dependence model, the one-
factor model and the sample covariance matrix.

Using the GARCH residuals (row 2) or local normalization (row 3) yields similar
effects for all models. The spatial dependence model benefits from both methods in a
similar way, while the portfolio variances for the one-factor model get worse. There is
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Table 2: Realized portfolio variances

volatility power realized portfolio variances
returns forecast mapping sdep 1-factor sample

1 original hist no 0.000241 0.000093 0.000121
2 GARCH hist no 0.000171 0.000171 0.000115
3 normalized hist no 0.000172 0.000148 0.000127
4 original hist yes 0.000256 0.000087 0.000086
5 GARCH hist yes 0.000133 0.000207 0.000086
6 normalized hist yes 0.000135 0.000190 0.000093
7 original GARCH no 0.000100 0.000087 0.000126
8 GARCH GARCH no 0.000087 0.000142 0.000119
9 normalized GARCH no 0.000087 0.000121 0.000132

10 original GARCH yes 0.000097 0.000086 0.000098
11 GARCH GARCH yes 0.000084 0.000160 0.000095
12 normalized GARCH yes 0.000084 0.000143 0.000101
13 original hist† no 0.000101 0.000086 0.000116
14 GARCH hist† no 0.000091 0.000138 0.000119
15 normalized hist† no 0.000088 0.000119 0.000120
16 original hist† yes 0.000099 0.000084 0.000092
17 GARCH hist† yes 0.000085 0.000156 0.000093
18 normalized hist† yes 0.000086 0.000139 0.000097

no significant effect on the sample covariance matrix. Power mapping (row 4) slightly
increases the portfolio variance in case of the spatial dependence model.

The one-factor model improves a little bit, but is very good from start. The strength
of power mapping unveils when applied to the sample covariance matrix. Here power
mapping greatly reduces the realized portfolio variance. The GARCH predicted volatili-
ties (row 7) enormously decrease the portfolio variance for the spatial dependence model.
They have a minor positive effect on the one-factor model, while a minuscule negative
effect on the sample covariance matrix.

By combining different methods it is possible to further reduce the portfolio variance.
The GARCH predicted volatilities with either GARCH residuals or local normalization
(row 8,12 and 9,11) improve the spatial dependence model to be on par with the sample
covariance matrix. The one-factor model does not benefit and the sample covariance
matrix only gets better if power mapping is used (row 11,12). The effect of power
mapping is marginal in case of the spatial dependence model.

Again, we notice that the one-factor model works best if used together with the original
returns (row 10), while the spatial dependence model benefits from the GARCH volatility
forecast. Local normalization or the GARCH residuals improve the spatial dependence
model (row 5,6), but not to the same extent as a better volatility forecast (row 7-12 and
13-18).

If we shorten the time interval on which the volatility is estimated we can observe
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comparable results to the GARCH predicted volatilities (row 13-18 and 7-12). In partic-
ular, local normalization in combination with the shorter historical volatilities achieve
matching results compared to GARCH residuals with GARCH predicted volatilities and
requires far shorter time series (row 12 and 18).

With regard to the realized portfolio variances we can conclude that the spatial de-
pendence model works best in combination with methods that improve the volatility
estimation, like GARCH predicted volatilities or local normalization with a shorter hori-
zon for the volatility calculation. The one-factor works best without any refinements
with the exception of minor improvements in combination with power mapping. For the
sample covariance matrix only power mapping is required to achieve the best perfor-
mance.

Table 3: Relative predicted portfolio variances in percent

volatility power realized−predicted
predicted in %

returns forecast mapping sdep 1-factor sample

1 original hist no 57 203 426
2 GARCH hist no 64 45 362
3 normalized hist no 73 53 397
4 original hist yes 80 195 180
5 GARCH hist yes 32 206 174
6 normalized hist yes 39 234 184
7 original GARCH no 137 256 581
8 GARCH GARCH no 141 847 515
9 normalized GARCH no 144 452 564

10 original GARCH yes 108 260 283
11 GARCH GARCH yes 119 1330 267
12 normalized GARCH yes 121 755 276
13 original hist† no 323 401 903
14 GARCH hist† no 297 953 877
15 normalized hist† no 233 480 727
16 original hist† yes 186 319 353
17 normalized hist† yes 187 765 359
18 GARCH hist† yes 183 1345 350

We compare the predicted variances with the realized portfolio variances shown in
Table 3. The prediction error of the sample covariance matrix is greatly reduced by
the use of power mapping. Local normalization yields a small enhancement for the
spatial dependence model, while there is no improvement for the one-factor model and
the sample covariance matrix. In both cases, the one-factor model and the sample
covariance matrix are not very well suited to predict the realized variance. The spatial
dependence model is the best predictor for the realized portfolio variances.
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5.3 VaR forecast

We calculate the VaR forecast according to Equation (15) on a daily basis for each α.
The probability that the realized portfolio return is smaller than the VaR forecast is
shown in Figure 2 for α ∈ (0, 0.5]. The probability is calculated from all trading days in

the observation period. For a perfect model the probability P (yport < V̂aRα) should be
equal to α, which is indicated by a straight line.
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Figure 2: The probability of a portfolio return being smaller than the value at risk given a
fixed quantile of α. The dashed lines show the results without any refinements
for the spatial dependence model (diamond), the one-factor model (square)
and the sample covariance matrix (circle). The solid lines show the effect of
improved covariance estimation methods (see text for details).

We do not show the results for each case presented in Table 2; instead we limit
ourselves to one case per model, where the realized portfolio variances are lowest and the
prediction error is smallest for each model. For the spatial dependence model (diamond)
we present the VaR forecast with GARCH residuals, GARCH-predicted volatilities and
applied power mapping. The one-factor model (squares) uses a combination of original
returns, historic volatilities and power mapping, while the sample covariance matrix
(circle) uses GARCH residuals instead, historic volatilities and power mapping. The
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dashed lines show the original models without any refinements while the solid lines show
the refined cases.

Without any refinements the spatial dependence model produces the best VaR fore-
casts in the observed period, while the results for the one-factor model and the sample
covariance matrix are rather poor in comparison. The large improvement with regard to
the realized portfolio variances leads to a poorer VaR forecast. In contrast the sample
covariance matrix not only gains better realized variances by applying power mapping
and using GARCH residuals but also leads to a better VaR forecast. For the one-factor
model there is no significant change to the predictive power of the VaR forecast.

Nonetheless, the sample covariance matrix and the one-factor model do not surpass
the spatial dependence model in their risk estimation.

6 Conclusion

We compare three approaches for covariance estimation: The spatial dependence model,
a one-factor model and the sample covariance matrix. As a benchmark for the quality of
the covariance estimation, we use portfolio optimization. The realized portfolio variances
and the relative prediction error are scrutinized. In addition to the original approaches,
we investigate several refinement methods. An estimation error can arise from fluctuating
volatilities; they can be removed from the return time series either by employing a
GARCH fit and using the residuals, or by using a local normalization method. Volatilities
of the individual return time series can be better predicted using a short-term historical
estimate. This is due to the slowly decaying autocorrelation of empirical volatilities.
Alternatively, we can use the volatility predictions of the GARCH fits. There is a large
statistical estimation error, if the length of the time series is not much larger than the
parameters to be estimated. This measurement noise can be reduced by noise reduction
techniques such as power mapping.

The spatial dependence model captures the correlation between assets very well, a
noise reduction of the covariance matrix is not necessary. However, it falls short on
estimating the future volatilities of individual stocks. The realized portfolio variances can
be immensely reduced by combining the spatial dependence model with better methods
for volatility forecasting, and using locally normalized returns for the regression. The
one-factor model produces quite good realized portfolio variances on its own. It works
best with the original returns and should not be used with GARCH residuals or locally
normalized returns. Slight improvements are possible with better volatility forecast
methods or noise reduction. The sample covariance matrix suffers from noise due to the
finite length of the time series. Noise reduction methods such as power mapping are
sufficient to achieve results that are equally good compared to the other approaches.

Local normalization and the GARCH residuals effectively remove fluctuations in the
volatility and reduce estimation artifacts for the spatial parameters. With the right
choice of refinements all three approaches are capable of producing equally good realized
portfolio variances, though the spatial dependence model provides the smallest prediction
error for portfolio variances and VaR forecasts.
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