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1 Introduction

In this article we develop methods for the analysis of non-standard experimental

designs by using techniques from algebraic statistics. Our work is motivated by a

thermal spraying process used to produce a particle coating on a surface, e.g. for

wear protection or durable medical instruments. In this application non-standard

designs occur as intermediate results from initial standard designs in a two-stage

production process. We investigate algebraic methods to derive better identifiable

models with particular emphasis on the second stage of two-stage processes.

Ideas from algebraic statistics are explored where the design as finite set of distinct

experimental settings is expressed as solution of a system of polynomials. Thereby

the design is identified by a polynomial ideal and features and properties of the

ideal are explored and provide inside into the structures of models identifiable by

the design [Pistone et al., 2001, Riccomagno, 2009]. Holliday et al. [1999] apply

these ideas to a problem from the automotive industry with an incomplete standard

factorial design, Bates et al. [2003] to the question of finding good polynomial meta-

models for computer experiments.

In our thermal spraying application, designs for the controllable process parame-

ters are run and properties of particles in flight measured as intermediate responses.

The final output describes the coating properties, which are very time-consuming

and expensive to measure as the specimen has to be destroyed. It is desirable to

predict coating properties either on the basis of process parameters and/or from

particle properties. Rudak et al. [2012] provides a first comparison of different mod-

eling approaches. There are still open questions: which models are identifiable with

the different choices of input (process parameters, particle properties, or both)? Is

it better to base the second model between particle and coating properties on es-

timated expected values or the observations themselves? The present article is a

contribution in this direction. Especially in the second stage particle properties as

input variables are observed values from the originally chosen design for the con-

trollable factors. The resulting design on the particle property level can be tackled

with algebraic statistics to determine identifiable models. However, it turns out that

resulting models contain elements which are only identifiable due to small deviations

of the design from more regular points, hence leading to unwanted unstable model
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results.

We tackle this problem with tools from algebraic statistics. Because of the fact

that data in the second stage are very noisy, we extend existing theory by switching

from symbolic, exact computations to numerical computations in the calculation of

the design ideal and of its fan. Specifically, instead of polynomials whose solution

are the design points, we identify a design with a set of polynomials which "almost

vanish" at the design points using results and algorithms from Fassino [2010].

The paper is organized as follows. In Section 2 three different approaches towards

the modeling of a final output in a two-stage process are introduced and compared.

The algebraic treatment and reasoning is the same whatever the approach. Section

3 contains the theoretical background of algebraic statistics for experimental design,

always exemplified for the special application. Section 4 is the case study itself.

2 Direct, indirect and composite model

Aiming at a prediction model of the final response Z in a two stage model, we

consider three different approaches where the prediction model is either based on

the initial input X, the intermediate outcomes Y or a prediction Ŷ of them. After

introducing the different approaches in general we discuss them in more detail for

main effect models from Y to Z.

2.1 Three model strategies

To fix notation assume X has q components, Y has p components, and Z has m

components. Model building is based on an initial design Dx and we have observed

values Dy and Dz.

A first model building strategy, which we name direct model, assumes Z =

h(X) + δ with E(δ|X) = E(δ) = 0 and given V ar(δ|X) = V ar(δ) and hence

E(Z|X = x) = h(x).

Our composite model is based on the assumptions that Z = g(f(X)) + η and

Y = f(X) + ε, thus

E(Z|X = x) = g(E(Y |X = x))
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Figure 1: Modeling strategies

and the indirect model takes Z = g(f(X) + ε) + η̃ and Y = f(X) + ε, hence

E(Z|X = x) = E(g(f(X) + ε)|X = x). (1)

We assume throughout

E(ε|X) = E(ε) = 0 and V ar(ε|X) = V ar(ε) given

E(η|Y ) = E(η|X) = 0 and V ar(η|Y ) = V ar(η|X) = V ar(η) given

E(η̃|Y ) = E(η̃|X) = 0 and V ar(η̃|Y ) = V ar(η̃|X) = V ar(η̃) given.

Figure 1 illustrates these three model approaches.

If g is a linear function then Equation (1) becomes E(Z|X) = g(f(x)) by linearity

of expectation and the indirect and composite model coincide.

2.2 Main effect linear models from Y to Z

We next compare the different approaches on the model level for the special case

of linear models and main effects in going from Y to Z. Note that we still allow

models beyond main effects in the direct strategy as well as from X to Y for the

other two strategies. Without loss of generality we set m = 1, hence Z ∈ R.

Under these restrictions the direct model becomes

Z = h(X) + δ =︸︷︷︸
linear model

XT
z γ
∗ + δ
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with γ∗ an unknown parameter vector and Xz a vector of monomials of the original

X-variables, to model intercept, main effects, interactions, quadratic terms and so

on, as required. Thereby it follows from the assumptions in Section 2.1 that

E(Z|X = x) = XT
z γ
∗. (2)

We next introduce a notation to represent polynomial models that will be expedi-

ent in this section and later on. The symbol xα stands for the monomial xα1
1 . . . x

αq
q

where for i = 1, . . . , q, αi is a non negative integer number and α = (α1, . . . , αq) ∈

Zq≥0. For example, the intercept is given by the zero vector (0, . . . , 0) = 0q, and a

main effect model by
∑

α∈L θαx
α with L = {0q, (1, 0, . . . , 0), (01, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

and θα real numbers, while a generic linear model is of the form∑
α∈L

θαx
α

with θα ∈ Rq and L a finite subset of Zq≥0. In this notation model (2) above becomes

E(Z|X = x) = xTz γ
∗ =

∑
α∈L

γ∗αx
α

Note that the support of the model xz = [xα]α∈L is identified with the exponents of

the monomials in the model and the parameter vector is γ∗ = [γα]α∈L.

For the composite model when we assume a main effect linear model between

Y and Z, equation (1) simplifies to

E(Z|X = x) = E(γ0 + f(X)Tγ + η|X = x) = γ0 + f(x)Tγ (3)

with γ0 ∈ R and γ ∈ Rp unknown parameters, for some suitable p ∈ Z≥1. Similarly

when g gives a main effect linear model the indirect model gives

E(Z|X = x) = E(γ̃0 + (f(X) + ε)T γ̃ + η̃|X) = γ̃0 + f(x)T γ̃ (4)

From (3) and (4) we can conclude that the indirect and composite strategies are

structurally the same if and only if γ = γ̃ and γ0 = γ̃0.

Next, we replace each component of f(x) in (3) and (4) by a multivariate linear

model. So for i = 1, . . . , p let the i-th component of f be written as

f(x)i =
∑
α∈Li

xαβiα = xTy,iβ
i
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where Li identifies the support vector xy,i = [xα]α∈Li for the X to Yi regression

model and βi = [βiα]α∈Li gives the unknown parameter vector. Hence equation (3)

becomes

E(Z|X = x) = γ0 + f(x)Tγ = γ0 +

[∑
α∈Li

xαβiα

]T
i=1,...,p

γ

= γ0 +

p∑
i=1

∑
α∈Li

xαβiαγi. (5)

By assuming equality of E(Z|X = x) in all modeling approaches, from (2) and

(5) we obtain an equality of polynomials

∑
α∈L

γ∗αx
α = γ0 +

p∑
i=1

∑
α∈Li

xαβiαγi

This holds true if and only if coefficients of the same monomial on the left hand

side and right hand side are equal. To expand on this we further assume that all

X-to-Y models admit intercept, so that 0q ∈ Li for all i from 1 to p, and define

L∗i = Li \ {0q}. The above become

γ∗0q +
∑
α∈L∗

γ∗αx
α = γ0 +

p∑
i=1

βi0qγi +

p∑
i=1

∑
α∈Li

xαβiαγi

Equating coefficients of the intercept gives

γ∗0q = γ0 +

p∑
i=1

βi0qγi

Similarly for each α ∈ L∗ we have

γ∗α =

p∑
i=1

βiαγi

where βiα is zero if α is not in Li. Finally for α 6∈ L∗ we have

0 =

p∑
i=1

βiαγi

The above can be intended as theoretical aliasing relationships among the pa-

rameters for the indirect/composite case and the direct case. For a generalization

to a multivariate linear model with higher order terms for the Y -variables, further

assumptions on the structure of the error terms are necessary.
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Fitting above models to real data sets, e.g. by common estimating and model

selection procedures, indicates that the obtained models have different monomials in

the x variables. This prompts us to adopt new ways to compare the three approaches

by algebraic statistics. Besides, in any approach it is of interest to know which

models may be identified from the given design on the X, Y or Ŷ ’s. One aim is to

find out if information is lost or models are missed by considering any of the three

possible input types. For the model selection procedure the knowledge of possible

maximal models is extremely useful as an all-subset selection is usually unfeasible.

3 Computational polynomial algebra and designed

experiments

A design or a set of observations can be seen as the zeros of polynomial equations.

This simple observation is the entry key for algebraic geometry to the design and

analysis of experiments.

In the case study we analyse in Section 4 we consider a full factorial design with

central point in four factors, Dx. In total we have 17 points at which four different

outputs Y = (Y1, . . . , Y4) are measured. The observed or the estimated values of Y

at Dx are the input points for the next stage of the modeling process from Y to Z

(see Figure 1). To start with we ignore the output, concentrate on the input and

consider the two dimensional analogue of Dx.

Example 1. The design Dx = {(±1,±1), (0, 0)} is the solution set of
p1 = x31 − x1 = 0

p2 = x32 − x2 = 0

p3 = (x1 − x2)(x1 + x2) = 0.

From classical theory we know that only two saturated models, with the hier-

archical (or order ideal) property, are identifiable by this design.1 The order ideal

property states that any lower order term of an interaction term in the model is in
1Here a model with support [f1(x), . . . , fr(x)] is identified by the design with distinct points

d1, . . . , ds if the design/model matrix [fj(di)]i=1,...,s;j=1,...,r is full rank. It is saturated if the

rank is r = s.

8



the model as well. Peixoto [1990] among many authors advocates the desirability

of the hierarchical property for a statistical model. In practice the final model will

have less terms than there are design points and, very often, its terms are chosen

from a larger set satisfying the order ideal property.

The two models for Example 1 are {1, x1, x2, x1, x1, x2, x21} and {1, x1, x2, x1, x1, x2, x22}.

The corresponding design/model matrices coincide and are

X =



1 x1 x2 x1x2 x11/x
2
2

1 1 1 1 1

1 1 −1 −1 1

1 −1 1 −1 1

1 −1 −1 1 1

1 0 0 0 0


(6)

Clearly X is invertible and the two models are identifiable. In this example it is

evident that there are no other saturated identifiable hierarchical models. These

two models give the so-called statistical fan of Dx. Note that x21 and x22 cannot be

part of the same models because they are aliased. Algebraically this follows from

the fact that p3 = (x1 − x2)(x1 + x2) = 0 is equivalent to x21 = x22. Statistically

this also means that both effects are not distinguishable by data observed from this

design. The notion of a statistical fan goes back to [Pistone et al., 2001, Def. 35].

Definition 1. The statistical fan of a design is the set of hierarchical (support

vectors for polynomial) models identified by the design with as many terms as distinct

design points.

Main properties of the statistical fan are:

• it is finite;

• each of its elements, called leaves, is formed by as many monomials as there

are points in the design;

• each leaf is an order ideal and hence it contains 1, the constant term;

• the design/model matrix for each leaf is invertible.
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In designs with a less regular structure than Dx, the statistical fan might not be

as easy to determine as in Example 1. Many authors advocate the importance of

hierarchical models (see e.g. Cox and Reid [2000], p.104). (Subsets of) fans provide

lists of saturated hierarchical models each of which can be be input to a selection

procedure for determination of a well-fitting parsimonious submodel. Furthermore,

if we have different hierarchical models in the fan which differ only by a few terms

this gives an indication of confounding within these terms.

However, the space of hierarchical models is often too large for an exhaustive

search of saturated and identifiable models by the design, namely of the statistical

fan. Still it is useful to have a large selection of saturated hierarchical models from

which to select a submodel. A systematic method to investigate at least an “inter-

esting” part of that space is provided by algebraic methods. The obtained subset

of the statistical fan is called the algebraic fan of a design, or of the design ideal.

For the analysis of the relation between these two fans see Maruri-Aguilar [2007]

and Section 3.1 below. The technical tool at the basis of the computation is a term-

ordering on the set of monomials. The technique from computational commutative

algebra that allows this, also provides a theory that develops the observation about

aliasing written up before Definition 1 for general designs. The key notion is the

design ideal discussed below in Subsection 3.1.

3.1 Term ordering, matrices and fans

A good reference for this section is Cox et al. [1996]. A mathematical reference for

the connection between matrices and term ordering is Robbiano [1985] and for the

algebraic fan of a polynomial ideal see Mora and Robbiano [1988].

The set of polynomials in the variables x1, . . . , xn and with real coefficients is

indicated with R[x1, . . . , xn] and the set of monomials with T n. More generally

instead of real coefficients we might consider coefficients in an algebraic field and

in the applications we often have rational coefficients. Polynomials are a linear

combination of monomials and in turn, monomials are special polynomials formed

by just one power product with coefficient equal to one. Note that a monomial

xα = xα1
1 . . . xαnn is represented by its exponent vector α = (α1, . . . , αn) ∈ Zn≥0 with

αi non-negative integers for all i = 1, . . . , n. Hence ordering monomials correspond
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to order non-negative integer vectors, more precisely a term order τ on T n is a well-

order relation on Zn≥0. This can be extended to Zn but we do not need to consider

this generalisation here.

Definition 2. A term order τ is a total order on T n such that

1. 1 is the smallest term (i.e. 1 <τ x
α for all xα in T n \ {1}) and

2. τ is compatible with simplification of monomials (i.e. xα <τ x
β then xα+γ <τ

xβ+γ for all γ ∈ Zn≥0).

Terms in a polynomial p can be ordered according to a τ and in particular the

largest term in p is called the leading term of p.

Let A be a n× n matrix with integer entries whose rows are linearly independent

and such that in every column the top non-zero entry is positive. Then A induces a

term order on T n by setting xα < xβ if and only if Aα < Aβ if and only if the first

non-zero component of A(α−β) is positive. Furthermore, every term order can vice

versa be described by an appropriate associated matrix A.

After this brief introduction to term orders we outline the link between polyno-

mials and designs using our running example.

Example 2 (Example 1 contd.). The design Dx is the zero set of the three polyno-

mials p1 = p2 = p3 = 0. However its points satisfy also the following equation

s1(x
3
1 − x1) + s2(x

2
1x2 − x2) + s3(x1 − x2)(x1 + x2) = 0

for any polynomials s1, s2, s3. These polynomials are elements of the polynomial

ideal generated by p1, p2 and p3 defined as

I(Dx) =
{
s1(x

3
1 − x1) + s2(x

3
2 − x2) + s3(x1 − x2)(x1 + x2) : s1, s2, s3 ∈ R[x1, x2]

}
I(Dx) is called the ideal generated by p1, p2 and p3. It is also referred to as the

design ideal of Dx or the vanishing ideal at Dx.

More generally the ideal generated by p1, . . . , pt ∈ R[x1, . . . , xn] is indicated with

I = 〈p1, . . . , pt〉 and the set of common zeros of the elements in I, equivalently the

zero set of p1 = . . . = pt = 0, is referred to as the variety of I. We work with a special

case of polynomial ideals and varieties, namely varieties formed by a finite number of
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distinct points, also referred to as zero dimensional varieties. For a generalization to

designs with replicated points see Notari and Riccomagno [2010]. There is no need

to consider it here because all of our designs in Section 4 turn out to be without

replications.

Observe that x21x2 − x2 in Example 2 above has been obtained by substituting in

p2 the condition x21 = x22 obtained from p3. This is an example of aliasing: x21 and

x22 take the same values over Dx, leading to a rewriting rule within I(Dx): x32 =

x21x2. Term orders allow us to determine and perform these rewritings systematically

ensuring that the process ends univocally and returns a set of polynomials which

generate the same ideal and are formed by monomials of lowest term with respect to

the chosen term order. This is formalised by the notion of Gröbner bases, which are

special types of generators of polynomial ideals whose introduction by Buchberger

[1970] was at the core of the development of computational commutative algebra.

They provide a general method by which many problems requiring solutions of

polynomial system of equations in mathematics and engineering, and more recently

statistics, can be solved by structurally simple algorithms.

Definition 3. A set of polynomials G is a Gröbner basis (or G-basis) with respect

to the term order τ if

〈Ltτ (f) : f ∈ 〈G〉〉 = 〈Ltτ (p) : p ∈ G〉

where Ltτ (f) is the highest term in f with respect to τ . A τ -Gröbner basis G is

reduced if for all g ∈ G

1. the coefficients of LT (g) is equal to 1 and

2. no term of g lies in 〈LT (G \ {g}〉.

The definition of G-bases states the equality between two monomial ideals: the

ideal generated by the leading terms of the elements in G and the ideal generated by

the leading terms of the polynomials in the ideal generated by G. Roughly spoken,

a reduced G-basis is written as economically as possible. A well-known theorem

states that a τ reduced G-basis is unique. Given τ , (reduced) Gröbner bases are

computed via the Buchberger algorithm whose efficiency is largely improved when

the underlying variety is a finite set of points as in our case (see e.g Faugere et al.

[1993], Möller and Buchberger [1982]).
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Example 3. For any term ordering τ for which x2 is smaller than x1, the three

polynomials g1 = x31 − x1, g2 = x21x2 − x2, g3 = (x1 − x2)(x1 + x2) = x21 − x22 form a

Gröbner basis. The leading terms are underlined.

In this example there is only one other possible Gröbner basis of the ideal. It is

obtained for term orders in which x1 is smaller than x2. By symmetry argument it

is seen to be (x32 − x2), (x22x1 − x1), (x1 − x2)(x1 + x2).

Definition 4. The set of all reduced Gröbner bases of an ideal as the term order

varies is called the algebraic fan of the ideal.

A saturated hierarchical model identifiable by the design is determined from a

τ -Gröbner basis G as those monomials in T n which are not divisible by any of the

leading terms of the elements of G. This is sometimes referred to as the Fundamental

Theorem of Algebra. The obtained set is called a quotient basis, and in some

literature it is known as an Est set (Pistone et al. [2001]). We indicate it as Oτ (D).

It belongs to the statistical fan of D. Hence its main properties are: it has as

many terms as there are points in D, it is a (real) vector space basis of the space of

interpolating (real valued) polynomial functions at D and the design/model matrix

X = [dα]d∈D,α∈Oτ (D)

for D and Oτ (D) is invertible. Hence Oτ (D) is one of the elements of the algebraic

fan. As there is a one-to-one relationship between reduced G-bases and order ideals,

the set we are most interested in FD = {Oτ (D) : τ} is also called the algebraic fan

of D.

Example 4. In Example 3 the leading terms are underlined. The set Oτ (Dx) is

1, x1, x2, x
2
1, x1x2 corresponding to the design/model matrix in Example 6. The full

algebraic fan of Dx is {{1, x1, x2, x21, x1x2}, {1, x1, x2, x22, x1x2}}.

Note that for Dx the algebraic and the statistical fans coincides. This is not

usually the case and in general the algebraic fan is much smaller than the statistical

fan (see Maruri-Aguilar [2007]). It follows that the algebraic fan is finite. The

computations of Gröbner bases, order ideals, and algebraic fan can be performed

using specialised software such as gfan (Jensen) and it can be computationally very

demanding.
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3.2 Algebraic analysis of the direct case

The case study in Section 4 involves a full factorial design with central point in the

four factors k, l, d, f . By generalising Example 3 to four dimensions we deduce that

its algebraic fan has four leaves obtained by permutation of the four factors. Each

leaf has seventeen elements as there are seventeen distinct points in the design.

For any term order τ on T 4 for which f is lowest, the reduced Gröbner basis is

{
f 3 − f, d · f 2 − d, d2 − f 2, k · f 2 − k, k2 − f 2, l · f 2 − l, l2 − f 2

}
(7)

and the corresponding saturated model is

Oτ (D) =



1, f, f 2, d, l, k,

df, lf, ld, kf, kd, kl,

ldf, kdf, klf, kld,

kldf


It includes f 2 and all square free terms of total degree at most four. As for its

two dimensional analogue, this is a special case where the algebraic fan equals the

statistical fan, providing all four hierarchical models with 17 monomials and for

which the design matrix is invertible. This statement follows by observing that

1. a monomial in Oτ (D) cannot have degree three or more in any variable because

the four factors have three levels each (the leading terms in (7) are of total

degree less than four) and that

2. d2, k2 and l2 are aliased with f 2, indeed the two evaluation vectors [f 2(d)] =

[l2(d)] are equal. Hence as f 2 is in the model, d2, k2 and l2 cannot be.

The intersection of the four models in the fans gives a hierarchical model with all

16 interactions up to order four.

3.3 Motivations for a numerical fan of a design

Usually the necessary computations to obtain the algebraic fan cannot be done

by hand even for designs which exhibit regular geometric structure. A study for

the class of Latin hypercube designs carried out in Bernstein et al. [2010] shows
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different situations that can occur when computing the algebraic fan. Moreover by

Theorem 30 in Pistone et al. [2001] for a design whose points are chosen at random

(with respect to any Lebesgue absolute continuous measure) the algebraic fan equals

the statistical fan with probability one. These are examples where the algebraic fan

is very large, albeit it can be much smaller than the statistical fan, for few points

in many dimensions (Maruri-Aguilar [2007]). Furthermore for practical purposes it

might not be desirable to compute the full algebraic or statistical fans. We argue

this here with special reference to the real case driving our work.

In our two stage problem the design in the first stage has a nice regular structure

and in Section 3.2 we computed easily its fan. However, the four “designs” D∗y in

the second stage treated in Section 4, look, although are not, random and have a

fairly complex geometrical structure. Standard statistical techniques go only so far

(see e.g. Rudak et al. [2012]) in their analysis and do not provide information on the

aliasing structure imposed by the D∗y on the space of polynomial models. This is

where, we believe, the algebraic method adopted in this paper becomes worthwhile.

The aliasing structure, described by a reduced G-basis, is clearly term-ordering

dependent and clever application of Euclidean division of polynomials allows us to

substitute terms in a model in order to include physically meaningful interactions

or to exclude the simultaneous presence of some terms in the model.

In our application we encounter yet another problem. The complexity of D∗y
carries over to its ideal and to its fans which could have many leaves. Example 5

shows another reason why it might be desirable to consider only a subset of the

fans by excluding numerically unstable leaves. Example 5 shows some of the issues

we encounter and overcome by the approximated version of the design ideal and

of its fan described in Subsection 3.5. A measure of stability of a system of linear

equations Ax = b with A ∈ IRn×n, x ∈ IRn, b ∈ IRn is the condition number

||A|| · ||A−1|| of a matrix A [Allaire, 2009]. The condition number is at least 1 and

if it is 1 or approximately 1, then the matrix A is said to be well conditioned. The

matrix A is said to be ill conditioned if the condition number is large (>> 1). In

case of an ill conditioned matrix A, the solution of the Ax = b will be sensitive to

errors in the matrix A or the right hand side b.

Example 5. Let D be the 22 full factorial design with levels ±1. The algebraic and
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statistical fans have only one leaf {1, x1, x2, x1x2} and a generating set of the design

ideal (the only reduced G-basis) is given by the two polynomials x21 − 1 and x22 − 1.

Now suppose to substitute the point (1,−1) with (1,−1.001). A reduced G-basis is

x21 − 1, x32 − x2 + 1.001x22 − 1.001, x1x2 + x2 − x1 − 2001 + 2000x22

where underlined are the possible leading terms. The algebraic and statistical fans

are formed by two leaves

{1, x1, x2, x1x2} and {1, x1, x2, x22}

The corresponding design/model matrices are

X1 =


1 1 1 1

1 1 −1.001 −1.001

1 −1 1 −1

1 −1 −1 1

 and X2 =


1 1 1 1

1 1 −1.001 1.002001

1 −1 1 −1

1 −1 −1 1

 ,

respectively. The condition number of X1 is almost 1.000707180 and of X2 is

3.737445584. The X1 matrix is well conditioned and so are problems relying on

it, e.g. stability of most commonly used algorithms in statistical analysis is ensured.

But no statistician will be comfortable with the results of an analysis based on X2.

A switch is required from symbolic, exact computations to numerical computa-

tions. Few key points summarise this section and lead us into Subsection 3.4:

1. the generating set of a design ideal embeds the design itself;

2. a (τ -reduced) G-basis of the design ideal also embeds a full identifiable model:

the set of terms not divisible by its leading terms. The tail of each polynomial

in a reduced G-basis is a linear combination of these terms;

3. starting for a generating set the FGLM algorithm computes the algebraic

fan (Faugere et al. [1993]).

More poignantly we can state that a (reduced) G-basis gives a simultaneous and

implicit description of a design and of its fan.
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3.4 Numerical BM-algorithm

This section deals with the designs in the second stage of the analysis. Two cases

can occur. We have a 17 point design Dobs
y of measured values or we have estimated

designs Dest
y obtained by prediction from the first stage analysis. Theoretically both

types of designs could include replicated points, but this does not occur in our

application. The strategy we develop next applies to both types of designs which

are characterised by the fact that the coordinates of their points are known up to

a certain precision. We might think that there are measurement errors for Dobs
y or

prediction errors in Dest
y .

We seek a set of polynomials which “almost vanish” at the design points, namely

evaluated at the design points are close enough to zero. To do that, we use the nu-

merical Buchberger-Möller (NBM) algorithm in Fassino [2010] and its implementa-

tion in CoCoA4 (CoCoATeam). The NBM algorithm is from the field of approximate

computational algebraic geometry and is based on a least square approximation. It is

a variation of a purely symbolic algorithm: the Buchberger-Möller algorithm (Möller

and Buchberger [1982]) and its spirit is numerical.

The inputs to the NBM algorithm are a finite set of distinct points in n dimensions,

say D ∈ Rn, a term-ordering τ and a precision vector (ε1, . . . , εn) ∈ Rn. The

outputs are a set of polynomials G and a hierarchical set of monomials O. The

output includes also a flag stating whether the X matrix build from O and D is

numerically stable in the sense of Example 5.

We recall from Fassino [2010] the basic definitions, see also references and discus-

sion therein.

Definition 5. Let ε = (ε1, . . . , εn) ∈ Rn and εM = max{εi : i = 1, . . . , n}.

1. A point d̄ = (d̄1, . . . , d̄n) ∈ Rn is an ε-(admissible) perturbation of d =

(d1, . . . , dn) ∈ Rn if |di − d̄i| < εi for i = 1, . . . , n. Let Dε be the set of

all ε-perturbed points of D.

2. Without loss of generality assume D ⊂ [−1, 1]n. A polynomial g, with coeffi-

cient vector c, is almost vanishing at D if

||X||2
||c||2

< O(εM)
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where X = [g(d)]d∈D is the evaluation vector of g at D and ||a||2 is the Eu-

clidean norm of the vector a ∈ Rd.

3. The set of polynomials almost vanishing at D is called the approximate ideal

of tolerance ε.

We can assume D ⊂ [−1, 1]n because the support vector of an identifiable poly-

nomial model is invariant by scaling and translation of design points. This holds

true also for the numerical fans of Section 3.5. The main properties of G and O are

listed in Theorems 4.1 and 5.1 in Fassino [2010], respectively. Here we just state

them briefly: G = {g} is finite; G is the approximate ideal of tolerance ε of D and of

Dε; G can be viewed as an approximation of a Gröbner basis of the polynomial ideal

of a “more regular” set of points close to D; G likely is not a proper (different from

R[x1, . . . , xn] polynomial ideal. If the flag value is true, then O is stable neglecting

errors of order O(εM); the tail of the first polynomial in G is formed by the smallest

monomials with respect to τ for which the design matrix is full-rank for O and for

every perturbed design in Dε. This is particularly interesting for us because it can

be interpreted as a high-dimensional surface of a shape which is as simple as possible

in τ and which approximates our original designs D in a least square sense. Indeed

the NBM algorithm returns an implicit representation of D depending on the term

ordering τ in input.

3.5 Numerical fan

An algorithm which computes the numerical fan, that is repeats the NBM for every

input term-ordering, has not been implemented yet. From the fact that the under-

lying variety is zero-dimensional, it follows that the fan is finite. Indeed the key

technical step in the NBM algorithm and the FGLM algorithm, is to start building

the (almost) vanishing polynomial in G by adding the lowest possible monomials in

τ :

1. start with M := {1},

2. consider the smallest available monomials in τ , say xα,

3. solve the least square problem for D, M and xα,
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4. check if the obtained polynomial is zero for all d ∈ D (in the exact case) or

small enough in some norm, e.g. Euclidean in the NBM algorithm,

5. if yes, add the obtained polynomial to G,

6. if not, add xα to M and repeat from 2.

For a numerical version of the fan of a design, in Step 2 one needs to consider

each possible xα that preserves the order ideal structure. Clearly this procedure will

return the statistical fan. In high dimension this is no trivial task. For a special

class of polynomial interpolators this has been attempted in Bates et al. [2003]. In

Section 4 we choose to approximate the numerical fan in two ways.

1. Compute a subset by running the NBM algorithm for some significant term

orderings. For a similar procedure see Holliday et al. [1999].

2. Compute the exact algebraic fan of the first polynomials in an approximated

vanishing ideal, G, and the O set of each leaf in this fan. The intersection of these O

sets satisfies the hierarchical property and forms the support of a polynomial models

identifiable by D for every term ordering. It is a robust, core, set of terms to include

in the input of standard methods for building regression models.

We point out that the polynomials returned by the NBM algorithm do not gener-

ate usually a proper polynomial ideal because they might have non common zeros,

unless the tolerance parameters are set to zero. However their role for our appli-

cation, both when giving interpretation in terms of aliasing and when discussing

identifiable models, is the same as that of generating set of the exact design ideal.

Furthermore, as already mentioned, G can be viewed as an approximation of a G-

basis of the polynomial ideal of a set of points D̂ close to D and with a less complex

geometric structure.

4 Application: Thermal Spraying Process

In this section we apply the theory of Section 3 to the application that motivated it:

the analysis of an experiment from a thermal spraying process where a full factorial

design with central point with four controllable parameters (Dx) is run. During the

experiments four particle properties, Dobsy are measured online. Afterwards coating
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Ẑ

Composite

Indirect

Direct

Figure 2: Prediction strategies

properties, Dz are also measured. The aim of the whole project is to determine

X-to-Y models from measured data in order to define good Y -to-Z models for

the prediction of the difficult-to-measure Z and hard-to-control Y . The different

prediction strategies are summarized in Figure 2.

In Section 4.1 we start the statistical analysis of the thermal spraying data with

direct models X-to-Z based on the hierarchical model identified in Section 3.2. In

order to build Y -to-Z models, three X-to-Y models are discussed in Section 4.2,

which evaluated at the points in Dx define three “estimated designs” in Y . We

compare them with Dobsy and among themselves by comparing “almost vanishing

polynomials” of increasing complexity built with the same criterion, here given by

the choice of the same term order. This is done in Section 4.3 and then we compare

(part of) their fans in Section 4.4. The computations were done in R 2.15.1 (see R

Core Team [2012]), CoCoA 4.7.5 (see CoCoATeam) and gfan 0.5 (see Jensen).

4.1 Statistical analysis of the direct case

Next we build linear models by forward backward search for each coating property

(hardness, thickness, porosity and deposition rate) where the maximal model follows

from Section 3.2. We start with a constant linear model and then perform a forward

backward selection based on the AIC criterion with the hierarchical model as maxi-
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mal model. The calculated models can be found in Appendix 6.1. Table 1 contains

R2 Adjusted R2

Porosity 0.87 0.82

Hardness 0.62 0.49

Thickness 0.77 0.66

Deposition rate 0.28 0.20

Table 1: R2 squared and adjusted R2 for each coating property

the R2 with corresponding adjusted R2 for each coating property. The best fit is

derived for porosity with R2 = 0.87, whereas deposition rate is worst predicted with

R2 = 0.28. This can be also observed in Figure 3 which contains the fitted versus

predicted values. Here, the red line indicates a perfect fit and the green lines stay

for +
−10%. For hardness all points lie within the +

−10% area (or are very close) and

for the remaining coating properties some points are outside of the +
−10% region.

4.2 Possible designs for the second stage

Fitting models from Y to Z requires input data on the Y -stage. This can either be

the observed Y -values or predicted values from a X-to-Y model, where we compare

three different models constructed as follows.

1. FB: We select a model by means of forward backward selection based on the

AIC criterion (see Akaike [1973]) where the minimal model contains only the

intercept and the maximal model is the usual saturated model forDx computed

also in Section 3.2. The predicted values at Dx are collected in the estimated

design DFB
y .

2. best: We perform an all subset selection where the maximal model contains

all main effects and interactions up to order 4 to generate Dbesty .

3. simple: This strategy builds a model that consists only of main effects and the

predicted values at Dx are denoted by Dsimpley .

The fitted regression models are stated in Appendix 6.2. Table 2 shows the adjusted

and the non-adjusted R2 values. Not surprisingly the best model performs best in
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Figure 3: Fitted vs. measured values for direct case

terms of the highest R2-values and can therefore be considered as good approxi-

mation of the observed Dobsy . However, with (adjusted) R2 values above 0.67 even

the simple model seems to work quite reasonable, with exception of flame width

(adjusted R2 = 0.56).

The generating process of the D∗y designs destroys the symmetries of the Dx de-

sign. In particular, both Dobsy and D∗y, where ∗ ∈ {best, FB, simple}, have a fairly

intricate geometry, although Dx is a very regular design.See the scatter plots in

22



FB best simple

Temperature
R2 0.88 0.98 0.79

Adjusted R2 0.81 0.92 0.72

Velocity
R2 0.94 0.99 0.92

Adjusted R2 0.91 0.97 0.89

Flame Width
R2 0.76 0.97 0.67

Adjusted R2 0.66 0.86 0.56

Flame Intensity
R2 0.85 0.99 0.75

Adjusted R2 0.78 0.96 0.67

Table 2: R2 and adjusted R2 for the three different modeling strategies

Figure 4. Their irregularity comes from different sources, all traceable back to the

measurement errors of the observed Y values, an inherent complexity of the gener-

ating process, and modeling approximation. The R2 values in Table 2 are a measure

of this, but we would like to investigate and compare further the geometry of the

four D∗y. Observe furthermore that the designs D∗y and Dobsy all have 17 distinct

points. In general this is not necessarily the case.

4.3 Approximated vanishing ideals for the Y -designs

A rough measure of the difference between the D∗y designs and Dobsy is given by the

cumulated distances. Recall that each d∗ ∈ D∗y is the predicted value of a d ∈ Dx
with respect to a certain model and that dobs is the observed Y -value at a specific

d ∈ Dx input. Hence we can define

CSS =
∑
d∈Dx

||dobs − d∗||22

unambiguously, where ||.||2 is the Euclidean distance for vectors. These are given in

Table 3. As Dbesty results from the best subset selection, its cumulated distances are

lowest as expected. The polynomials in each exact design ideals I(D∗y) vanish at the

points of the corresponding D∗y, by definition. Even when the designs are close in

a Euclidean distance, e.g. are an ε-perturbation of Dobsy , their ideals could be very

different. This is an implicit analogue of the well-known problem of overfitting. The
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Figure 4: Illustration of design Dy

four design ideals have generating sets with many polynomials and their fans are

rather big.

More informative for us is to consider approximated versions of the design ideals

and compare them. We fix the term order degrevlex(t, v, w, i) with i smallest, then

w, v, t in order. This choice implies that the first polynomials in the output of

the NBM algorithm involves as far as possible main effect terms and lower order

interaction terms with a preference of i over, say, t.

In order to compute the approximated ideals of the Y -designs D∗y, the NBM

algorithm requires to specify a tolerance vector ε = (ε1, . . . , ε4) where ε1 refers to

temperature, ε2 to velocity, ε3 to flame width and ε4 to flame intensity. The manufac-

turer of the measurement system recommends an uncertainty of 2% for temperature

and velocity measurements whereas the uncertainty for intensity and width are not

Distance between Distance between Distance between

Dobsy and Dbesty Dobsy and DFBy Dobsy and Dsimpley

Cumulated distance 1204.20 6951.60 11189.45

Table 3: Cumulated distances
∑

d∈Dx ||d
obs − d∗||22
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known. Therefore, we choose

ε = (25, 14, 0.5, 0.3).

It turns out that the first polynomial returned by the NBM algorithm contains only

main effect terms for all four designs. These are

obs : t− 164

459
v + 21w − 272

45
i− 1364,

FB :w − 1168

16839
i− 685

106
,

best : t− 597

1567
v +

728

45
w − 208

37
i− 1318,

simple :w − 251

2983
i− 295

48
.

The resulting order ideals O given in Table 4 are not stable in the sense of Fassino

[2010] and of Section 3.3.

Case Order ideal

obs 1, i, w, v, i2, vi, v2, i3, vi2, i4, i5

best 1, i, w, v, i2, vi, v2, i3, i4, i5, i6, i7

FB 1, i, v, i2, vi, v2, i3, vi2, v2i, v3, i4, i5, i6

simple 1, i, v, i2, vi, v2, i3, vi2, i4, i5, i6, i7, i8, i9

Table 4: Order ideals for ε = (25, 14, 0.5, 0.3)

Experiments show that the uncertainty of 2% is strongly overestimated and there-

fore we decide together with engineers on a different choice of ε which corresponds

to a realistic uncertainty on the one hand (for t, v) and ensures a stable order ideal

on the other hand (for w, i). We finally choose

ε = (5, 2, 0.01, 0.01).

The number of polynomials in each approximated vanishing set is given in Table 5

obs FB best simple

Number of Polynomials 17 15 15 12

Table 5: Number of Polynomials in each Ideal
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and Table 6 gives the number of different monomials between the supports of the

first four polynomials of each approximated vanishing set. In particular, none of the

four designs is not an ε-perturbation of any among the other three designs.

obs vs FB obs vs best obs vs simple

Polynomial 1 0 0 3

Polynomial 2 0 1 3

Polynomial 3 1 4 6

Polynomial 4 3 3 4

Table 6: Number of different monomials in the support of the first four polynomials

in each approximated vanishing ideal

Consider the unitary version of the approximating sets obtained by multiplying

each polynomial with the inverse of the Euclidean norm of its coefficient vector (see

e.g. (Heldt et al. [2009])). Due to the fact that the four approximating sets are

computed with respect to the same term order, it is reasonable to compare the first

polynomials in each approximating set separately from the second polynomials and

so on. The Euclidean norm of the difference between the coefficient vectors of the

first four polynomials in the approximated vanishing set of Dobsy and DFBy are given

in Table 7.

obs-FB obs- best obs-simple

Polynomial 1 0.16 0.12 0.33

Polynomial 2 0.69 1.97 1.99

Polynomial 3 0.64 1.85 0.77

Polynomial 4 0.05 1.99 0.13

Table 7: Norm of the difference of standardized coefficient vectors of the polynomials

in each approximated vanishing set

The polynomials of the almost vanishing sets for the three D∗y have to almost

vanish, in the sense of Fassino [2010] and Section 3.4, at the observed values Dobsy if

D∗y is a good approximation of Dobsy . We have already observed that the four designs

are not an ε-perturbation of each other for ε = (5, 2, 0.01, 0.01) and that theR2 values

26



in Table 2 are a measure of this. In order to check this further and also in order

to check whether the first polynomials are sufficiently informative to compute the

fans, we substitute Dobsy in the first and second polynomials of each almost vanishing

set. The resulting values, which we call implicit residuals, should be almost zero.

Figures 5 and 6 show the implicit residuals for polynomial 1 and 2 of each ideal.

The worst approximations are for the exact vanishing ideal of Dsimpley . Figures 7

and 8 show the implicit residuals for polynomial 1 and 2 where the corresponding

D∗y is plugged in. Indeed, the residuals are very small as they have to almost vanish.

We can observe that the absolute maximal value of the implicit residuals is lower

than 1e−3, although the residuals for the case obs are largest. Furthermore, the

residuals lie either over or under the x-axis. The implicit residuals for polynomials 2

in Figure 8 scatter around zero, as expected involving more non-linear terms than

the polynomials 1. Note that they are largest for the situations best and simple.
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Figure 5: Implicit Residuals for Polynomial 1

4.4 Computation of the Algebraic Fan

In Section 4.3 we have considered one possible O set for each D∗y and for Dobsy ; that

is, one set of monomial terms from which to start a forward backward model search

27



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15

−
4

−
3

−
2

−
1

0
1

Polynomial 2: Implicit Residuals

Index

Im
pl

ic
it 

R
es

id
ua

ls

● Observed
FB
Best
Simple

Figure 6: Implicit Residuals for Polynomial 2

depending on a given term ordering. Here, we consider a larger set of O sets by

varying the term ordering. We adopt two intrinsically different strategies.

Strategy A

In strategy A we use gfan 0.5 in order to derive the algebraic fan of the approx-

imated ideals of D∗y and Dobsy . If the variety of a polynomial ideal is empty then

the algebraic fan contains only the constant term 1. Therefore, exact computations

of the algebraic fan of the approximated ideals of D∗y and of Dobsy fail due to the

fact that the polynomials in the approximated ideals have no common zero. So, for

each Y -design we consider only a subset of the approximated ideal and compute its

algebraic fan. We proceed as follows:

1. Take a subset S of the approximated ideal.

2. Use gfan 0.5 to compute the algebraic fan corresponding to S.

3. Derive the leading terms of each polynomial in each leaf of the algebraic fan.

4. Consider, L, the union of these leading terms.

5. Compute O the set of monomials not divisible by any element in L.
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Figure 7: Implicit Residuals for Polynomial 1 where corresponding D∗y is plugged in

Equivalently, for each leaf we could consider the set of monomials not divisible by

the leading terms in the leaf and take the intersection over the leaves. The final set

O contains one (the intercept). Based on the analysis in Section 4.3 we take S to

be the first polynomial for each approximated ideals, namely they are:

best:

f 1
best(t, v, i, w) = t2−207/199tv+44/153v2 +458/27tw−979/43vw−1221w2−

97/9ti+253/45vi+1217/4wi+589/67i2−2345t+2593/2v+2546w+10322i+

1284817

FB:

f 1
FB(t, v, i, w) = t2−686/1135tv+383/2280v2+219/4tw−383/26vw+2263/2w2−

1017/67ti+ 724/157vi− 1211/4wi+ 58i2− 2835t+ 731v− 86942w+ 20501i+

2100764

obs:

f 1
obs(t, v, i, w) = t2−865/707tv+1191/3223v2−733/17tw−433/37vw−2009w2−

403/175ti+232/47vi+803wi−701/15i2−1934t+1404v+90095w−7869/2i+

738463
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Figure 8: Implicit Residuals for Polynomial 2 where corresponding D∗y is plugged in

simple:

f 1
simple(t, v, i, w) = tw + 1277/2364vw + 621/4w2 − 779/13225ti− 61/972vi−

419/12wi+ 299/183i2 − 341/51t− 292/99v − 7375/2w + 691/2i+ 17291

The L sets in point 4. of the algorithm above are listed in Table 8. Clearly, the set

of monomials that are not divisible by the leading terms consists of all main effects

and square free interactions up to order four for the situations FB, best and obs.

This is different for the situation simple. Here, the set of monomials consists terms

not involving the interactions tw,vw, ti and vi. Because t and v appear only in form

of an interaction (tw,vw,ti,vi), it is possible to take every possible power of t and v

which is not a desirable result the situation simple.

Thus the O sets for obs, best and FB are equal and given by intercept, main terms

and all 11 square free interactions, while the O set for simple is given by intercept,

main terms and the two way interactions tv, tw. This suggests a different role

in statistical analysis and interpretation for interactions common to all situations

from the other interactions. In particular, the smaller model is identifiable for all

considered designs and term orderings. In this sense it is a robust, core, set of terms

to consider when searching for a good model for prediction as well as fitting.
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FB t2,v2,w2,i2

best t2,v2,w2,i2

obs t2,v2,w2,i2

simple tw,vw,w2,i2,ti,vi

Table 8: Union of leading terms based on strategy A

Strategy B

In strategy B the StableBBasisNBM5 function of CoCoa4 (CoCoATeam), which

implements the numerical Buchberger-Möller algorithm, is used to compute the ap-

proximate ideals and the corresponding O set. In order to get the algebraic fan we

have to repeat these calculations for every possible term ordering. This is not im-

plemented in CoCoa4 or elsewhere, yet. Therefore, we compute the approximated

vanishing ideals together with the corresponding O sets for three standard term

orderings, namely lexicographical, degree lexicographical and reverse degree lexi-

cographical ordering. These are quite extreme term orderings with respect to the

monomials to be included in the leaves (O sets): lexicographic orderings tend to

include first all powers of the smallest variable, while degree compatible term or-

derings favors the inclusion of the first suitable monomials with lowest total degree

(sum of exponents).

We also permute the order of the main factors (see Holliday et al. [1999]). In this

way, to each design Dobsy and D∗y with ∗ ∈ {best, FB, simple} there is associated a

(subset of its) fan, Fobs or F∗. Each subfan has 72 leaves each of which is labelled

by the term ordering with respect to which it has been computed. Figure 9 gives

a comparison of the leaves within each subfan by displaying the number of the 20

most frequent monomials in F∗, ∗ ∈ {obs, best, FB, simple}. The 20 most frequent

terms for DbestY and DobsY coincide. There are four differences between the situation

simple and obs, namely t4, w4, ti and tv2. Two differences can be observed between

the situation FB and obs which are v4 and tv2. Furthermore, we compare the

i-th leaf from situation obs with the i-th leaf for the remaining three situations,

for n = 1, . . . , 72. The i-th leaf was derived by the same term ordering for every

situation. Thus for a good approximation of Dobsy we should get nearly the same leaf
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Figure 9: Number of most frequent terms for each situation
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in all cases. (Notice that different designs can have the same fan.) Next we count

the number of terms for the i-th leaf of situation best, FB and simple that coincide

with the terms of the n-th leaf of situation obs. By this way, we get information

about the similarity of the leafs, n = 1, . . . , 72. Figure 10 presents a boxplot of the

number of differences. As expected occur the most agreements for the situation best.

The median (15) is the same for situation FB and simple, whereas the box is higher

for the situation FB.

●●●

Simple FB Best

8
10

12
14

16

How many terms coincide?

Figure 10: Leaf to leaf comparison (best, FB , simple vs. obs). How many terms

coincide?

4.5 Composite vs Direct Approach

Finally we compare the goodness of fit for the models resulting from the composite

strategy and direct strategy as these are the two models resulting in a prediction

of Z based on X. We take each leaf (saturated model) as scope for a forward and

backward selection. The model selection is based on the AIC criterion. We obtain

a selected model for each leaf for each Y -design and take the model with minimal

AIC value. Thus, our procedure is as follows:

1. For each D∗y, ∗ ∈ {simple, best, fb, obs}, we perform a model selection as

follows:
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• We conduct a forward backward selection based on AIC with

⇒ Minimal model: only intercept

⇒ Maximal model: the saturated model from each leaf

• By this way, we end up with a selected model for each leaf

2. We choose the model with minimal AIC among the selected models for each

leaf from Step 1.

Porosity Hardness Thickness Deposition Rate

Adjusted R2

best 0.67 0.44 0.66 0.24

FB 0.65 0.31 0.80 0.08

obs 0.62 0.49 0.65 0.14

simple 0.72 0.29 0.75 0.19

direct 0.82 0.49 0.66 0.20

Table 9: Adjusted R2 values for composite and direct models

Table 9 displays the adjusted R2 values for the selected models for each Y -design

and for the direct case from Section 4.1. In Figure 11 the observed values for every

coating property are plotted against the predicted values for each model considered.

The red lines indicate a perfect fit and the green lines stand for an uncertainty

band +
−10%, as in Figure 3. All models lead to low values of the adjusted R2 for

the deposition rate. Here, we might have a problem with the quality of measuring

deposition rate such that we discard these results from our comparison of models.

The highest adjusted R2 values for porosity and hardness are achieved by the direct

case and the composite strategy leads to highest R2 values for thickness (situation

FB). Thereby, the direct approach is not always superior to two-way strategies and

vice versa. However, all approaches lead to comparable R2 values. Depending on

the aim at hand we might go along with the respective strategy: prediction of

coating properties based on particles in flight especially if day-effect are suspected,

prediction of coating properties based on process parameters if no in flight properties

are available. As a next step hybrid models might be considered where both process
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parameters and in flight properties are taken into account in order to get further

inside into the process.
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Figure 11: Fitted vs. measured values for direct and all indirect cases

5 Conclusion

In this paper, we treat the question of identifiable models in a two-stage process. The

main focus lies on models for the relationship between the intermediate variables and

the final output. These models have to be based on data or predictions which result

from observations on standards design in the initial input space. We adapt tools

from algebraic statistics to this situation. The novelty is the use of approximating

ideals in order to deal with the instability in the observed or predicted designs. We
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employ an algorithm from Fassino [2010], whose use in statistics is completely new.

Our work is motivated throughout by a thermal spraying process for which different

modeling strategies are compared. The models treated are from the class of linear

models. It is known that more elaborate models like generalized linear models, non-

linear models or measurement error models might be more appropriate. However,

the algebraic treatment would be very much the same, hence we stay with the easier

to handle linear models. Overall, we achieve a much improved model selection due to

an enhanced knowledge of the space of identifiable models achieved through methods

developed within the general framework of algebraic statistics.
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6 Appendix

6.1 Direct Models

Porosity: Po =4.1850− 1.6311 · k − 0.8145 · l + 1.9748 · l2 − 0.3071 · k · l

Hardness: Ha =1370.45 + 78.15 · k − 46.82 · l − 134.35 · l2 − 30.47 · k · l

Thickness: Th =249.40 + 50.25 · f + 28.37 · d− 21.80 · k − 18.47 · d · k + 14.46 · f · k

Deposition Rate: Dr =47.12 + 2.75 · d

6.2 First Stage Models

Method FB
Temperature: t = 1606.700 + 32.763 · k − 20.088 · l − 17.925 · d+ 9.463 · f − 26.925 · l2

+12.950 · k · f

Velocity: v =695.000 + 41.075 · k − 14.588 · d+ 13.525 · l + 19.925 · l2

−6.162 · k · d

Flame Width: w =7.9471 + 0.5625 · f + 0.2125 · d− 0.1875 · l − 0.2000 · f · l

+0.1500 · d · l

Flame Intensity: i = 21.406 + 5.163 · f + 2.575 · k − 1.938 · l − 1.200 · d

+2.225 · f · k
Method Best
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Temperature: t = 1581.359− 20.088 · l + 32.763 · k − 17.925 · d9.463 · f2.625 · l · f

+12.950 · k · f − 3.437 · d · f − 2.625 · l · k · d

+8.637 · l · k · f + 10.525 · l · d · f + 7.400 · k · d · f

+3.887 · l · k · d·

Velocity: v =713.753 + 13.525 · l + 41.075 · k − 14.588 · d− 3.437 · f − 3.575 · l · k

−2.688 · l · d− 6.162 · k · d+ 8.562 · k · f

+5.650 · d · f

Flame Width: w =7.9471− 0.1875 · l + 0.0875 · k + 0.2125 · d+ 0.5625 · f − 0.1250 · l · k

+0.1500 · l · d− 0.2000 · l · f − 0.1750 · k · d+ 0.0750 · k · f

+0.1000 · d · f + 0.1875 · l · d · f

−0.1375 · k · d · f − 0.0500 · l · k · d · f

Flame Intensity: i = 21.4059− 1.9375 · l + 2.5750 · k − 1.2000 · d+ 5.1625 · f + 0.5000 · l · k

+0.4500 · l · d+ 2.2250 · k · f − 0.9000 · d · f

−0.5625 · l · k · d+ 1.4000 · l · k · f + 1.7000 · l · d · f

+0.8625 · k · d · f
Method Simple

Temperature: t = 1581.359− 20.088 · l + 32.763 · k − 17.925 · d+ 9.463 · f

Velocity: v =713.753 + 13.525 · l + 41.075 · k − 14.588 · d− 3.437 · f

Flame Width: w =7.9471− 0.1875 · l + 0.0875 · k + 0.2125 · d+ 0.5625 · f

Flame Intensity: i = 21.406− 1.938 · l + 2.575 · k − 1.200 · d+ 5.163 · f
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